AIEEE - 2002 Physics and Chemistry

1. 2. 3.	Which statement is incorrect ? (a) all reversible cycles have same efficiency (b) reversible cycle has more efficiency than an irreversible one (c) Carnot cycle is a reversible one (d) Carnot cycle has the maximum efficiency in all cycles Length of a string tied to two rigid supports is 40 cm. Maximum length (wave length in cm) of a stationary wave produced on it is (a) 20 (b) 80 (c) 40 (d)120 The power factor of an AC circuit having resistance (R) and inductance (L) connected in series					
	and an angular velo	ocity ωis				
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) ωL/R	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$		
4.	An astronomical tel	escope has a large ap	erture to			
	(a) reduce spherica	l aberration	(b) have high resolution			
	(c) increase span o	f observation	(d) have low dispersion			
5.	The kinetic energy	needed to project a b	ody of mass m from the e	arth surface (radius R) to		
	infinity is					
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4		
6.	If an ammeter is to	be used in place of a v	oltmeter, then we must co	nnect with the ammeter a		
	(a) low resistance in parallel (b) high resistance in parallel					
	(c) high resistance in series (d) low resistance in series					
7. If in a circular coil A of radius R, current I is flowing and in another coil B of radi						
		ne ratio of the magnetion	c fields B_A and B_B , produce			
	(a) 1	(b) 2	(c) 1/2	(d) 4		
8.	If two mirrors are ke	ept at 60° to each othe	r, then the number of image	es formed by them is		
	(a) 5	(b) 6	(c) 7	(d) 8		
9.	A wire when connec	cted to 220 V mains su	oply has power dissipation	P ₁ . Now the wire is cut into		
			parallel to the same supply	y. Power dissipation in this		
	case is P_2 . Then P_2	: P ₁ is				
	(a) 1	(b) 4	(c) 2	(d) 3		
10.	•••	•	ydrogen atom, then the end	ergy required to remove an		
	electron from $n = 2$	is				
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV		
11.	Tube A has both en	ds open while tube B h	has one end closed, otherw	vise they are identical. The		
	ratio of fundamenta	ratio of fundamental frequency of tube A and B is				
	(a) 1 : 2	(b) 1 : 4	(c) 2 : 1	(d) 4 : 1		
12.	A tuning fork arrangement (pair) produces 4 beats / sec with one fork of frquency 288 cps. A little wax is placed on the unknown fork and it then produces 2 beats /sec. The frequency of the unknown fork is					
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps		
				(1)		

13.	A wave $y = a \sin(\omega t - kx)$ on a string meets with another wave producing a node at x = 0. Then				
	the equation of the unknown wave is				
	(a) $y = a \sin(\omega t + kx)$ (b) $y = -a \sin(\omega t + kx)$				
	(c) $y = a \sin(\omega t - kx)$ (d) $y = -a \sin(\omega t - kx)$				
14.	On moving a charge of 20 coulombs by 2cm, 2 J of work is done, then the potential difference				
14.	between the points is				
	(a) 0.1 V (b) 8 V (c) 2 V (d) 0.5 V				
15.	If an electron and a proton having same momenta enter perpendicular to a magnetic field, then				
	(a) curved path of electron and proton will be same (ignoring the sense of revolution)				
	(b) they will move undeflected				
	(c) curved path of electron is more curved than that of the proton				
	(d) path of proton is more curved				
16.	In a simple harmonic oscillator, at the mean position				
	(a) kinetic energy is minimum, potential energy is maximum(b) both kinetic and potential energies are maximum				
	(c) kinetic energy is maximum, potential energy is minimum				
	(d) both kinetic and potential energies are minimum				
17.	Initial angular velocity of a circular disc of mass M is ω_1 . Then two small spheres of mass m are				
	attached gently to diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc?				
	-				
	$(a\left(\frac{M+m}{M}\right)\omega_1$ (b) $\left(\frac{M+m}{m}\right)\omega_1$ (c) $\left(\frac{M}{M+4m}\right)\omega_1$ (d) $\left(\frac{M}{M+2m}\right)\omega_1$				
18.	The minimum velocity (in ms-1) with which a car driver must traverse a flat curve of radius				
	150 m and coefficient of friction 0.6 to avoid skidding is				
	(a) 60 (b) 30 (c) 15 (d) 25				
19.	A cylinder of height 20 m is completely filled with water. The velocity of efflux of water (in ms ⁻¹)				
	through a small hole on the side wall of the cylinder near its bottom is				
20.	(a) 10 (b) 20 (c) 25.5 (d) 5 A spring of force constant 800 N/m has an extension of 5 cm. The work done is extending it				
20.	from 5 cm to 15 cm is				
	(a) 16 J (b) 8 J (c) 32 J (d) 24 J				
21.	Two identical particles move towards each other with velocity 2v and v respectively. The velocity				
	of centre of mass is				
	(a) v (b) v/3 (c) v/2 (d) zero				
22.	If a current is passed through a spring then the spring will				
22	(a) expand (b) compress (c) remains same (d) none of these				
23.	Heat given to a body which raises its temperature by 1°C is (a) water equivalent (b) thermal capacity (c) specific heat (d) temperature gradient				
24.	At absolute zero, Si acts as				
	(a) non metal (b) metal (c) insulator (d) none of these				

25.	Electromagnetic waves are transverse in nature is evident by				
201	(a) polarization	(b) interference	(c) reflection	(d) diffraction	
26.	Wires 1 and 2 carrying currents i_1 and i_2 respectively are inclined at an				
20.	angle θ to each other. What is the force on a small element dI of wire 2 at $\frac{1}{1}$				
	of wire 1?		e figure) due to the magneti	$i_1 \wedge i_2$	
	Of when?				
	(A) $\frac{\mu_0}{2\pi r}i_{1_2}$ dltan θ		(b) $\frac{\mu_0}{2\pi r} i_1 i_2 dI \sin \theta$	d	
	$(\pi)^{2} 2\pi r^{1/2}$		$2\pi r^{1/2}$	V	
	(c) $\frac{\mu_0}{2\pi r} i_1 i_2 dl \cos \theta$		(d) $\frac{\mu_0}{4\pi r} i_{1_2} dlsin\theta$		
	2π r		4πΓ		
27.	At a specific instar	t emission of radioad	tive compound is deflecte	ed in a magnetic field. The	
	compound can emit	t			
	(i) electrons	(ii) protons	(iii) He ²⁺	(iv) neutrons	
	The emission at ins				
	(a) i, ii, iii	(b) i, ii, iii, iv	(c) iv	(d) ii, iii	
28.			2.3 eV and 4.5 eV respec	tively. Then the ratio of the	
	wave lengths is ne				
00	(a) 1 : 2	(b) 4 : 1	(c) 2 : 1	(d) 1 : 4	
29.		ent bonds in compoun		la atua a	
	(a) wave nature of e		(b) particle nature of e	lectron	
20		particle nature of elect		+ +++++	
30.	÷ .	-	sistance R moves in its pla o one of its sides. A magne		
	induction B constant in time and space, pointing perpendicular and into $+$ $+$ $++++++$ the plane at the loop exists everywhere with half the loop outside the $+$ $+$ $+++++++++++++++++++++++++++++$				
	-	gure. The induced em	-	^{(ne} + <u>++++++</u> + ++++++	
	(a) zero	(b) RvB	(c) VBL/R	(d) VBL	
31.	Infra red radiation is		(-)	(-)	
	(a) spectrometer	(b) pyrometer	(c) nanometer	(d) photometer	
32.	If N ₀ is the original i		e of half- life period $t_{1/2} = 5$	years, then the amount of	
	substance left after		1/2		
	(a) N ₀ /8	(b) N ₀ /16	(c) N ₀ /2	(d)N ₀ /4	
33.	By increasing the te	emperature, the specif	fic resistance of a conduct	or and a semiconductor	
	(a) increases for bo	oth	(b) decreases for both		
	(c) increases, decr	eases	(d) decreases, increase	S	
34.	If there are n capac	itors in parallel connec	ted to V volt source, then the	ne energy stored is equal to	
	(a) CV	(b) $\frac{1}{2}$ nCV ²	(c) CV ²	(d) $\frac{1}{2n}CV^2$	
	. ,	2	()	⁽⁴⁾ 2n	
35.		ing is more closed to a	-		
	(a) black board pair	nt (b) green leaves	(c) black holes	(d) red roses	
				3	

36.	The inductance between A and D is (a) 3.66 H (b) 9 H (c) 0.66 H (c	а) 1 H
37.	A ball whose kinetic energy is E, is projected	
	angle of 45° to the horizontal. The kinetic ene	rgy of the ball at the highest point of its flight will be
	(a) E (b) $E/\sqrt{2}$ (c)	c) E/2 (d) zero
38.	_,	such that A is thrown upwards A and B downwards
	(both vertically). If v_A and v_B are their respect	-
		b) $V_{A} = V_{B}$
		d) their velocities depend on their masses
39.		ating 3 cm in a wooden block, then how much will it
	penetrate more before coming to rest?	
	(a) 1 cm (b) 2 cm (c	c) 3 cm (d) 4 cm
40.	If suddenly the gravitational force of attraction	n between Earth and a satellite revolving around it
	becomes zero, then the satellite will	
	(a) continue to move in its orbit with same ve	elocity
	(b) move tangentially to the originally orbit in	the same velocity
	(c) become stationary in its orbit (c	d) move towards the earth.
41.	Cooking gas containers are kept in a lorry m	noving with uniform speed. The temperature of the
	gas molecules inside will	
	(a) increase (b	b) decrease
	(c) remain same (c	d) decrease for some, while increase for others
42.	When temperature increases, the frequency	of a tuning fork
	(a) increases (b	b) decreases
		I) increases or decreases depending on the material
43.	If mass-energy equivalence is taken into according water should	ount, when water is cooled to form ice, the mass of
	(a) increase (b	o) remain unchanged
	(c) decrease (c	d) first increase then decrease
44.	The energy band gap is maximum in	
	(a) metals (b) superconductors (c	c) insulators (d) semiconductors
45.	The part of a transistor which is most heavily of	doped to produce large number of majority carriers is
	(a) emmiter (b	b) base
		l) can be any of the above three
46.	Energy required to move a body of mass m f	
		c) GMm/8R (d) GMm/6R
47.	If a spring has time period T, and is cut into n e	equal parts, then the time period of each part will be
		c) nT E F
40	(d) T	
48.	A charged particle q is placed at the centre C (A B C D E E C H). Another some charge g is the control of the	
	(A B C D E F G H). Another same charge q is p L from O. Then the electric flux through ABC	
	(a) $q/4\pi \in_0 L$ (b) zero (c) $q/2\pi \in_0 L$	A B
	$(a, q, me_0 = (b) 200 (0, q) 2\pi e_0$	
		4

49.	If in the circuit, power dissipation is 150 W, then R is $AA^{R}AA$
	(a) 2Ω (b) 6Ω
	(c) 5Ω (d) 4Ω
50	
50.	Wavelength of light used in an optical instrument are $\lambda_1 = 4000$ Å and $\lambda_2 = 5000$ Å, then ratio of their respective resolving powers (corresponding to λ_1 and λ_2) is
	(a) $16:25$ (b) $9:1$ (c) $4:5$ (d) $5:4$
51.	A child swinging on a swing in sitting position, stands up, then the time period of the swing will
	(a) increase (b) decrease (c) remains same
50	(d) increases if the child is tall and decreases if the child is short
52.	A lift is moving down with acceleration a. A man in the lift drops a ball inside the lift. The acceleration of the ball as observed by the man in the lift and a man standing stationary on the ground are respectively
	(a) g, g (b) g - a, g - a (c) g - a, g (d) a, g
53.	The mass of product liberated on anode in an electrochemical cell depends on
	(a) $(It)^{1/2}$ (b) IT (c) I/t (d) I^2t
	(where t is the time period, for which the current is passed)
54.	At what temperature is the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at 47° C?
	(a) 80 K (b) - 73 K (c) 3 K (d) 20 K
55.	The time period of a charged particle undergoing a circular motion in a uniform magnetic field is independent of its
56.	(a) speed (b) mass (c) charge (d) magnetic induction A solid sphere, a hallow sphere and a ring are released from top of an inclined plane (frictionless)
50.	so that they slide down the plane. Then maximum acceleration down the plane is for (no rolling)
	(a) solid sphere (b) hollow sphere (c) ring (d) all same
57.	In a transformer, number of turns in the primary coil are 140 and that in the secondary coil are
	280. If current in primary coil is 4A, then that in the secondary coil is (a) 4 A (b) 2 A (c) 6 A (d) 10 A
58.	Even Carnot engine cannot give 100% efficiency because we cannot
	(a) prevent radiation (b) find ideal sources
50	(c) reach absolute zero temperature (d) eliminate friction
59.	Moment of inertia of a circular wire of mass M and radius R about its diameter is (a) MR ² /2 (b) MR ² (c) 2MR ² (d) MR ² /4
60.	(a) $MR^2/2$ (b) MR^2 (c) $2MR^2$ (d) $MR^2/4$ When forces F_1 , F_2 , F_3 are acting on a particle of mass m such that F_2 and F_3 are mutually
00.	perpendicular, then the particle remains stationary. If the force F_1 is now removed then the
	acceleration of the particle is
	(a) F_1/m (b) F_2F_3/mF_1 (c) $(F_2 - F_3)/m$ (d) F_2/m
61.	Two forces are such that the sum of their magnitudes is 18 N and their resultant is 12 N which
	is perpendicular to the smaller force. Then the magnitudes of the forces are
60	(a) 12 N, 6 N (b) 13 N, 5 N (c) 10 N, 8 N (d) 16 N, 2 N Speeds of two identical cars are u and 4u at the specific instant. The ratio of the respective
62.	Speeds of two identical cars are u and 4u at the specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is
	(a) 1 : 1 (b) 1 : 4 (c) 1 : 8 (d) 1 : 16

63.	1 mole of a gas with $\gamma = 7/5$ is mixed with 1 mole of a gas with $\gamma = 5/3$, then the value of γ for			
	the resulting mixture is			
	(a) 7/5 (b) 2/5 (c) 24/16 (d) 12/7			
64.	If a charge q is placed at the centre of the line joining two equal charges Q such that the system			
	is in equilibrium then the value of q is			
	(a) Q/2 (b) -Q/2 (c) Q/4 (d) -Q/4			
65.	Capacitance (in F) of a spherical conductor with radius 1 m is			
	(a) 1.1×10^{-10} (b) 10^{-6} (c) 9×10^{-9} (d) 10^{-3}			
66.	A light string passing over a smooth light pulley connects two blocks of masses m_1 and m_2			
	(vertically). If the acceleration of the system is g/8, then the ratio of the masses is			
	(a) 8 : 1 (b) 9 : 7 (c) 4 : 3 (d) 5 : 3			
67.	Two spheres of the same material have radii 1 m and 4m and temperatures 4000 K and 2000 K $$			
	respectively. The ratio of the energy radiated per second by the first sphere to that by the second			
	is			
	(a) 1 : 1 (b) 16 : 1 (c) 4 : 1 (d) 1 : 9			
68.	Three identical blocks of masses m = 2kg are drawn by a force			
	F = 10.2 N with an acceleration of 0.6 ms ⁻² on a frictions surface, $\begin{vmatrix} C \\ B \end{vmatrix} = A \rightarrow F$			
	then what is the tension (in N) in the string between the blocks B			
	and C ?			
	(a) 9.2 (b) 7.8 (c) 4 (d) 9.8			
69.	One end of a massless rope, which passes over a massless and frictionless			
	pulley P is tied to a hook C while the other end is free. Maximum tension that			
	the rope can bear is 360 N. With what value of maximum safe acceleration (in			
	ms ⁻²) can a man of 60 kg climb on the rope?			
	(a) 16 (b) 6 (c) 4 (d) 8			
70.	A particle of mass m moves along line PC with velocity v as shown.			
	What is the angular momentum of the particle about P?			
	(a) mvL (b) mvl			
74	(c) mvr (d) zero			
71.	Which of the following is used in optical fibres ?			
	(a) total internal reflection (b) scattering (c) diffraction			
70	(d) refraction			
72.	The escape velocity of a body depends upon mass as (a) m ⁰ (b) m ¹ (c) m ² (d) m ³			
70				
73.	Which of the following are not electromagnetic waves?			
	(a) cosmic rays (b) gamma rays (c) β – rays (d) X- rays			
74.	Identify the pair whose dimensions are equal			
	(a) torque and work (b) stress and energy(c) force and stress (d) force and work			
75.	If θ_i , is the inversion temperature, θ_n is the neutral temperature, θ_c is the temperature of the cold junction, then			
	(a) $\theta_i + \theta_c = \theta_n$ (b) $\theta_i - \theta_c = 2\theta_n$ (c) $\frac{\theta_i + \theta_c}{2} = \theta_n$ (d) $\theta_c - \theta_i = 2\theta_n$			
	6			

76.	When H_2S is passed through Hg_2S we get
77.	(a) HgS (b) HgS + Hg ₂ S (c) Hg ₂ S (d) Hg ₂ S ₂ Alum helps in purifying water by
<i>''</i> .	(a) forming Si complex with clay particles
	(b) sulphate part which combines with the dirt and removes it
	(c) coagulating the mud particles
	(d) making mud water soluble
78.	A square planar complex is formed by hybridisation of which atomic orbitals ?
	(a) s, p_x , p_y , d_{yz} (b) s, p_x , p_y , $d_{x^2-y^2}$ (c) s, p_x , p_y , d_{z^2} (d) s, p_y , p_z , d_{xy}
79.	Polymer formation from monomers starts by
	(a) condensation reaction between monomers
	(b) coordinate reaction between monomers
	(c) conversion of monomer to monomer ions by protons
00	(d) hydrolysis of monomers
80.	The type of isomerism present in nitropentamine chromium (III) chloride is (a) optical (b) linkage (c) ionization (d) polymerisation
81.	
01.	Arrangement of $(CH_3)_3$ - C-, $(CH_3)_2$ - CH-, CH_3 - CH_2 - when attached to benzyl or an unsaturated group in increasing order of inductive effect is
	(a) $(CH_3)_3$ -C - < $(CH_3)_2$ - CH - < CH_3 - CH ₂ (b) CH_3 - CH_2 - < $(CH_3)_2$ - < CH - < $(CH_3)_3$ - C -
	(c) $(CH_3)_2 - CH - < (CH_3)_3 - C - < CH_3, - CH_2$ (d) $(CH_3)_2 - CH_3 - CH_2 - (CH_3)_2 - CH_3$
82.	$CH_3 - Mg - Br$ is an organo metallic compound due to
	(a) Mg - Br bond (b) C - Mg bond (c) C - Br bond (d) C - H bond
83.	1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is
	(a) not a buffer solution with $pH < 7$ (b) not a buffer solution with $pH > 7$
	(c) a buffer solution with $pH < 7$ (d) a buffer solution with $pH > 7$
84.	Species acting as both Bronsted acid and base is
	(a) $(HSO_4)^{-1}$ (b) Na_2CO_3 (c) NH_3 (d) OH^{-1}
85.	Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its k_{sp} is
	(a) $4x^3$ (b) $108x^5$ (c) $27x^4$ (d) $9x^3$
86.	Units of rate constant of first and zero order reactions in terms of molarity M unit are respectively
07	(a) \sec^{-1} , $M \sec^{-1}$ (b) \sec^{-1} , M (c) $M \sec^{-1}$ (d) M, \sec^{-1}
87.	In XeF_2 , XeF_4 , XeF_6 the number of lone pairs of Xe are respectively
	(a) 2, 3, 1 (b) 1, 2, 3 (c) 4, 1, 2 (d) 3, 2, 1
88.	In which of the folloiwng species the interatomic bond angle is 109°28'?
	(a) NH_3 , $(BF_4)^{-1}$ (b) $(NH_4)^+$, BF_3 (c) NH_3 , BF_4 (d) $(NH_2)^{-1}$, BF_3
89.	For the reaction A + 2B \longrightarrow C, rate is given by R = [A] [B] ² then the order of the reaction is
	(a) 3 (b) 6 (c) 5 (d) 7
90.	RNA is different from DNA because RNA contains
	(a) ribose sugar and thymine (b) ribose sugar and uracil
	(c) deoxyribose sugar and thymine (d) deoxyribose sugar and uracil
	7

91.	Which of the following are arranged in an increasing order of their bond strengths ?				
	(a) $O_2^- < O_2^- < O_2^+ < O_2^{2-}$ (b) $O_2^{2-} < O_2^- < O_2^- < O_2^+$				
	(c) $O_2^- < O_2^{2-} < O_2 < O_2^+$ (d) $O_2^+ < O_2 < O_2^- < O_2^{2-}$				
92.	If an endothermic reaction is non- spantaneous at freezing point of water and becomes feasible at its boiling point, then				
	(a) ΔH is – ve, ΔS is + ve (b) ΔH and ΔS both are + ve				
	(c) ΔH and ΔS both are – ve (d) ΔH is + ve, ΔS is – ve				
93.	A heat engine absorbs heat Q_1 at temperature T_1 and heat Q_2 at temperature T_2 . Work done by the engine is $J(Q_1 + Q_2)$. This data				
	 (a) violates 1st law of thermodynamics (b) violates 1st law of thermodynamics if Q₁ is -ve (c) violates 1st law of thermodynamics if Q₂ is -ve (d) does not violate 1st law of thermodynamics 				
94.	Most common oxidation states of Ce (cerium) are				
	(a) +2, +3 (b) +2, +4 (c) +3, +4 (d) +3, +5				
95.	Arrange Ce ⁺³ , La ⁺³ , Pm ⁺³ and Yb ⁺³ in increasing order of their ionic radii				
	(a) $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$ (b) $Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$				
	(c) $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$ (d) $Pm^{+3} < La^{+3} < Ce^{+3} < Yb^{+3}$				
96.	KO_2 (potassium super oxide) is used in oxygen cylinders in space and submarines because it				
	(a) absorbs CO_2 and increases O_2 content (b) eliminates moisture				
07	(c) absorbs CO_2 (d) produces ozone.				
97.	A similarity between optical and geometrical isomerism is that				
	(a) each forms equal number of isomers for a given compound(b) If in a compound one is present then so is the other				
	(c) both are included in stereoisomerism (d) they have no similarity				
98.	Which of the following does not show geometrical isomerism?				
	(a) 1, 2-dichloro - 1- pentene (b) 1, 3 - dichloro - 2- pentene				
	(c) 1, 1- dichloro - 1- pentene (d) 1, 4 - dichloro - 2- pentene				
99.	In case of nitrogen, NCl ₃ is possible but not NCl ₅ while in case of phosphorous, PCl ₃ as well as				
	PCI_{5} are possible. It is due to				
	(a) availability of vacant d orbitals in P but not in N				
	(b) lower electronegativity of P than N				
	(c) lower tendency of H - bond formation in P than N				
	(d) occurrence of P in solid while N in gaseous state at room temperature				
100.	For an ideal gas, number of moles per litre in terms of its pressure P, gas contant R and temperature T is				
	(a) PT/R (b) PRT (c) P/RT (d) RT/P				
101.	The formation of gas at the surface of tungsten due to adsorption is the reaction of order				
400	(a) 0 (b) 1 (c) 2 (d) insufficient data				
102.	The solubility of Mg(OH) ₂ is S moles/litre. The solubility product under the same condition is (a) $4S^3$ (b) $2S^4$ (c) $4S^2$ (d) S^3				
	(a) $4S^3$ (b) $3S^4$ (c) $4S^2$ (d) S^3				

103	How do we differentiate between Fe ³⁺ and	d Cr³+ in aroup III?		
	(a) by taking excess of NH_4OH solution	0	n concentration	
	(c) by decreasing OH ⁻ ion concentration			
104.	In a compound C, H and N atoms are p	resent in 9:1:35 by we	ight. Molecular weight of	
	compound is 108. Molecular formula of c	ompound is		
	(a) $C_2 H_6 N_2$ (b) $C_3 H_4 N$	(c) $C_6 H_8 N_2$	(d) $C_9 H_{12} N_3$	
105.	The functional group, which is found in an	nino acid is		
	(a) -COOH group (b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)	
106.	Conductivity (unit Siemen's S) is directly pr	•		
	of the solution in it and is inversely propor	tional to the length of the v	essel then the unit of the	
	constant of proportionality is		(
407		(c) S ⁻² m ² mol		
107.	In a hydrogen atom, if energy of an elect	fron in ground state is 13.6	SeV, then that in the 2nd	
	excited state is	$(a) \in (0, 1, a)$	(d) 12 6 c)/	
108	(a) 1.51 eV (b) 3.4 eV Which of the following statements is true		(d) 13.6 eV	
100.	(a) HF is less polar than HBr	:		
	(b) absolutely pure water does not contai	n anv ions		
	(c) chemical bond formation take place when	•	e the forces of repulsion	
	(d) in covalency transference of electron			
109.	Which of the following compounds has w	-		
(a) $CH_3 - CH_2 - CH_2 - COO - CH_2CH_3 \longrightarrow$ ethyl butanoate				
	(b) CH ₃ −CH−CH ₂ −CHO → 3-methyl−butanal I CH			
	(c) $CH_3 - CH - CH_3 \longrightarrow 2$ - methyl - 3 - butanol OH CH_3 OH CH_3			
	0			
	(d) $CH_3 - CH - C - CH_2 - CH_3 \longrightarrow 2 - CH_3 - CH_3$	-methyl-3-pentanone		
	CH ₃	, , , , , , , , , , , , , , , , , , , ,		
110.	$CH_{3}CH_{2}COOH \xrightarrow[red P]{Cl_{2}} A \xrightarrow[alc. KOH]{Allow} B. W$	'hat is B?		
	(a) CH ₃ CH ₂ COCI (b) CH ₃ CH ₂ CHO	(c) CH ₂ = CHCOOH	(d) CICH_CH_COOH	
111.	Aluminium is extracted by the electrolysis	-		
	(a) bauxite (b) alumina	(c) alumina mixed with m	nolten cryolite	
	(d) molten cryolite			
112.	The metal extracted by leaching with a cy	vanide is		
	(a) Mg (b) Ag	(c) Cu	(d) Na	
113.	Value of gas constant R is			
	(a) 0.082 litre atm (b) 0.987 cal mol ⁻¹ K ⁻	¹ (c) 8.3 J mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹	
			9	

14. Freezing point of an aqueous solution is $(-0.186)^{\circ}$ C. Elevation of boiling point of the same solution is $K_{b} = 0.512 \ ^{\circ}$ C, $K_{f} = 1.86 \ ^{\circ}$ C, find the increase in boiling point.				
(a) 0.186 °C (b) 0.0512 °C				
115. EMF of a cell in terms of reduction potents	C C			
	(c) $E = E_{right} - E_{left}$ (d) $E = -(E_{right} + E_{left})$			
	of mass 25 g in space is 10^{-5} m. What is the uncertainity			
in its velocity (in ms ⁻¹) ? (h = 6.6×10^{-34} J	-			
(a) 2.1×10^{-34} (b) 0.5×10^{-34}				
117. Which of these will not react with acetyler				
(a) NaOH (b) ammonical AgNO	0			
-	t alter the number of moles in which of the following			
equilibria?				
(a) $N_2(g) + O_2(g) = 2 NO(g)$	•			
(c) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	(d) $SO_2CI_2(g) \longrightarrow SO_2(g) + CI_2(g)$			
119. For the reactions,				
$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$				
$2Zn+O_2 \longrightarrow 2ZnO; \Delta H = -412J$				
(a) carbon can oxidise Zn	(b) oxidation of carbon is not feasible			
(c) oxidation of Zn is not feasible	(d) Zn can oxidise carbon			
120. Which of the following ions has the maxim	-			
(a) Mn ⁺² (b) Fe ⁺²	(c) Ti ⁺² (d) Cr ⁺²			
121. In which of the following species is the un	derlined carbon having sp ³ hybridisation?			
(a) CH ₃ <u>C</u> OOH (b) CH ₃ <u>C</u> H ₂ OH	(c) CH_3COCH_3 (d) $CH_2 = CH - CH_3$			
122. Racemic mixture is formed by mixing two				
(a) isomeric compounds	(b) chiral compounds			
(c) meso compounds	(d) optical isomers			
123. The differential rate law for the reaction H	$_2 + I_2 \rightarrow 2HI$ is			
(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[H]}{dt}$	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$			
$\frac{dt}{dt} = \frac{-1}{dt} = -\frac{-1}{dt}$	(b) $\frac{dt}{dt} = \frac{dt}{dt} = \frac{2}{2} \frac{dt}{dt}$			
$(1 \text{ d}[\text{H}_2] - 1 \text{ d}[\text{I}_2] - \text{ d}[\text{H}]$	$\int_{\Omega} d[H_2] = d[I_2] = d[H]$			
(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[H]}{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$			
124. Number of sigma bonds in P_4O_{10} is				
(a) 6 (b) 7	(c) 17 (d) 16			
125. Kinetic theory of gases proves				
(a) only Boyle's law (b) only Charles' law	(c) only Avogadro's law (d) all of these			
126. A metal M readily forms its sulphate MSO	$_4$ which is water - soluble. It forms its oxide MO which			
	soluble hydroxide M(OH) ₂ which is soluble in NaOH			
solution. Then M is				
(a) Mg (b) Ba	(c) Ca (d) Be			
127. If ϕ denotes reduction potential, then which	h is true ?			
(a) $\mathbf{F}^0 = \mathbf{A}$ (b) $\mathbf{F}^0 = \mathbf{A}$	(a) $\mathbf{F}^0 = \mathbf{b} = \mathbf{b}$ (d) $\mathbf{F}^0 = (\mathbf{b} + \mathbf{b})$			
(a) $\square_{cell} - \Psi_{right} - \Psi_{left}$ (b) $\square_{cell} = \Psi_{left} + \Psi_{right}$	(c) $E^{\scriptscriptstyle 0}_{\scriptscriptstyle {\sf cell}} = \varphi_{\scriptscriptstyle {\sf left}} - \varphi_{\scriptscriptstyle {\sf right}}$ (d) $E^{\scriptscriptstyle 0}_{\scriptscriptstyle {\sf cell}} = -(\varphi_{\scriptscriptstyle {\sf left}} + \varphi_{\scriptscriptstyle {\sf right}})$			
	10			

128.	What is the product when acetylene reacts with hypochlorous acid ?			
	(a) CH_3COCI (b) $CICH_2CHO$ (c) CI_2CHCHO (d) $CICHCOOH$			
129.	On vigorous oxidation by permanganate solution			
	$(CH_3)_2C = CH - CH_2 - CHO$ gives			
	СНОН	CH3		
	a) CH, –C –CH–CH,CH,	(b) COOH+CH	₃CH₂COOH	
	(a) $CH_{3} - C - CH - CH_{2}CH_{3}$	CH ₃		
		CH₃∖		
		$C = O + CH_2CH_2CHO$		
	(c) CH_{3} $CH-OH+CH_{2}CH_{2}CH_{2}OH$ (d)			
	CH ₃	CH ₃ ~		
	00001			
	OCOCH₃ ↓ coou			
130.	The compound COOH is used as			
	·			
	(a) antiseptic (b) antibiotic	(c) analgesic	(d) pesticide	
131.	What will be the emf for the given cell Pt	$ H_{2} (P_{1}) H^{+} (aq) H_{2} (P_{2})$) Pt	
		DT D		
	(a) $\frac{\text{RT}}{\text{f}} \log \frac{\text{P}_1}{\text{P}_2}$ (b) $\frac{\text{RT}}{2\text{f}} \log \frac{\text{P}_1}{\text{P}_2}$	(c) $\frac{1}{f} \log \frac{\Gamma_2}{P}$	(d) none of these	
		• • 1		
132.	When primary amine reacts with chlorofor		e product is	
		(c) a cyanide	(d) an alcohol	
133.	Which of the following reaction is possible	at anode?		
	(a) $2Cr^{_{3+}} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$	(b) $F_2 \rightarrow 2F^-$		
		(d) none of these		
	(c) $(1/2) O_2 + 2H^+ \rightarrow H_2O$	(d) none of these		
134.	The reaction : $(CH_3)_3C - Br \xrightarrow{H_2O} (CH_3)$	$_{3}$ – C – OH		
	(a) elimination reaction	(b) substitution reaction		
	(c) free radical reaction	(d) displacement reactior	1	
135.	If half-life of a substance is 5 yrs, then the	e total amount of substance	e left after 15 years, when	
	initial amount is 64 grams is			
	(a) 16 grams (b) 2 grams	(c) 32 grams	(d) 8 grams	
136.	Cyanide process is used for the extraction	n of		
	(a) barium (b) aluminium	(c) boron	(d) silver	
137.	Which is the correct order of ionic sizes ?			
	(a) Ce > Sn > Yb > Lu (b) Sn > Ce > Lu	> Yb (c) Lu > Yb > Sn > C	e (d) Sn > Yb > Ce > Lu	
	(Atomic Number : Ce $=$ 58, Sn $=$ 50, Yb $=$	70 and Lu = 71)		
138.	With increase of temperature, which of the	ese changes?		
	(a) molality	(b) weight fraction of solu	ite	
	(c) fraction of solute present in water	(d) mole fraction		

139.	The integrated rate equation is $Rt = \log C_0 - \log C_t$. The straight line graph is obtained by plotting			
	(a) time vs log C _t	(b) $\frac{1}{\text{time}}$ vs C _t	(c) time vs C _t	(d) $\frac{1}{\text{time}} \text{vs} \frac{1}{C_{t}}$
140.	In which of the following reactions, increase in the volume at constant temperature does not affect the number of moles at equilibrium			
	(a) $2NH_3 \rightarrow N_2 + 3I_3$	H ₂	(b) $C(g) + (1/2)O_2(g) \rightarrow 0$	CO(g)
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these	
141.	-	f copper with zinc imp	urity is to be purified by ele	ectrolysis, the appropriate
	electrodes are cathode	anode	cathode	anode
			(b) impure sample	pure copper
		impure sample		impure sample
142.	The most stable ion	is		
	(a) [Fe(OH) ₃] ³⁻	(b) [Fe(Cl) ₆] ³⁻	(c) [Fe(CN) ₆] ³⁻	(d) [Fe(H ₂ O) ₆] ³⁺
143.	β - particle is emitte	ed in radioactivity by		
	(a) conversion of pr	oton to neutron	(b) from outermost orbit	
	(c) conversion of ne	eutron to proton	(d) β -particle is not emitted as the second seco	ted
144.	In mixture A and B	component show -ve o	deviation as	
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{mix} < 0$	
	(c) A - B interaction	is weaker than A - A a	and B - B interaction	
	(d) A - B interaction	is stronger than A - A	and B - B interaction	
145.	-	-	e of body by 1 K is called	
4.40	(a) specific heat		(c) water equivalent	(d) none of these
140.		in the unit cell of their	be crystals respectively, the respective crystal is	en the number of atoms of
	(a) 4 and 2	(b) 9 and 14	(c) 14 and 9	(d) 2 and 4
147.			of Fe = 55.85 g mol ⁻¹) is	()
	(a) twice that in 60 g	g carbon	(b) 6.023 $ imes$ 10 ²²	
	(c) half that in 8g He		(d) $558.5 \times 6.023 \times 10^{23}$	
148.			and ultimately forms [Mn	
	(a) 4, 3, 1, 5	(b) 1, 5, 3, 7	in each case respectively i	d) 3, 5, 7, 1
149.		ng is a redox reaction		(d) 0, 0, 1, 1
	(a) NaCI+KNO ₃ –	→NaNO ₃ + KCl	(b) $CaC_2O_4 + 2HCI \rightarrow$	$\rightarrow CaCl_2 + H_2C_2O_4$
	(c) Mg(OH) ₂ + 2NH	$H_4CI \rightarrow MgCl_2 + 2NH_4Cl_3$	DH (d) Zn+2AgCN \rightarrow 2A	Ag+Zn(CN) ₂
150.	For the reaction CC	$D(g) + (1/2)O_2(g) = CC$	$D_{2}(g), K_{p}/K_{c}$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}
	. ,			(12)-

AIEEE - 2002 Mathematics

1.	If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$ then the equation having α / β and β / α as its roots is					
	(a) 3x ² - 19 x + 3 =	0	(b) $3x^2 + 19x - 3 = 0$			
	(c) $3x^2 - 19x - 3 = 0$)	(d) $x^2 - 5x + 3 = 0$			
2.	If $y = (x + \sqrt{1 + x^2})^n$, then $(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$ is					
3.	(a) n²y If 1, log ₉ (3 ^{1-x} + 2), lo	(b) -n²y og ₃ (4.3 ^x -1) are in A.P.	(c) -y then x equals	(d) 2x²y		
4.	(a) log ₃ 4	(b) 1+ log ₃ 4	(c) 1 - log ₄ 3	(d) log ₄ 3 eir respective probability of		
	solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved is					
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$		
5.	The period of $\sin^2 \theta$ is					
	(a) π^2	(b) π	(c) 2π	(d) π/2		
			log l	p 1		
6.	I, m, n are the p th , q th and r th term of a G.P. all positive, then $\begin{vmatrix} \log I & p & 1 \\ \log m & q & 1 \\ \log m & r & 1 \end{vmatrix}$ equals					
	(a) -1	(b) 2	(c) 1	(d) 0		
7.	$\underset{x \to 0}{\text{Lim}} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x} \text{ is }$					
	(a) 1	(b) -1	(c) zero	(d) does not exist		
8.		ces (4, 0), (-1, -1), (3,		tonglod		
	(a) isosceles and rig(c) right angled but		(b) isosceles but not righ(d) neither right angled not	, Contraction of the second se		
9.	In a class of 100 st	udents there are 70 bo	bys whose average marks	in a subject are 75. If the		
			2, then what is the averag			
10	(a) 73	(b) 65	(c) 68	(d) 74		
10.		$n^{-1}(\sqrt{\cos\alpha}) = x$, then		(α)		
	(a) $\tan^2\left(\frac{\alpha}{2}\right)$	(b) $\cot^2\left(\frac{\alpha}{2}\right)$	(c) tanα	(d) $\cot\left(\frac{\alpha}{2}\right)$		
				13		

11. The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3} = 4\frac{d^3y}{dx^3}$ are

(a)
$$(1,\frac{2}{3})$$
 (b) $(3, 1)$ (c) $(3, 3)$ (d) $(1, 2)$

12. A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is (a) x - y + z = 1 (b) x + y + z = 5 (c) x + 2y - z = 1 (d) 2x - y + z = 5

13. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$

(a)
$$\frac{e^{-2x}}{4}$$
 (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-4x} + cx + d$

14.
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{2}}$$
(a) e^4 (b) e^2 (c) e^3 (d) 1
15. The domain of sin⁻¹ [log₃ (x/3)] is
(a) [1, 9] (b) [-1,9] (c) [-9, 1] (d) [-9, -1]
16. The value of 2^{1/4}, 4^{1/8}, 8^{1/6} + ∞ is
(a) 1 (b) 2 (c) 3/2 (d) 4
17. Fifth term of a GP is 2, then the product of its 9 terms is
(a) 256 (b) 512 (c) 1024 (d) none of these
18.
$$\int_{0}^{\frac{1}{2}} |\sin x| dx is$$
(a) 20 (b) 8 (c) 10 (d) 18
19.
$$|_{n} = \int_{0}^{\frac{\pi}{4}} \tan^{n} x dx \text{ then } \lim_{n \to \infty} n[l_{n} + l_{n-2}] \text{ equals}$$
(a) $\frac{1}{2}$ (b) 1 (c) ∞ (d) zero
20.
$$\int_{0}^{\frac{\pi}{2}} [x^2] dx is$$
(a) $2 - \sqrt{2}$ (b) $2 + \sqrt{2}$ (c) $\sqrt{2} - 1$ (d) $\sqrt{2} - 2$
21.
$$\int_{-\pi}^{\pi} \frac{2x(1 + \sin x)}{4} dx \text{ is}$$
(a) $\frac{\pi^2}{4}$ (b) π^2 (c) zero (d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'(x) = 4$. Then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ is given by				
	(a) 2 (b) - 2 (c) - 4	(d) 3			
23.	z and w are two non zero complex no.s such that :	$x = w $ and Arg z + Arg w = π then z equals			
	(a) \overline{W} (b) $-\overline{W}$ (c) w	(d) - w			
24.	If z-4 < z-2 , its solution is given by				
	(a) $\text{Re}(z) > 0$ (b) $\text{Re}(z) < 0$ (c) $\text{Re}(z) < 0$	(z) > 3 (d) Re(z) > 2			
25.					
	(z, z_1 and z_2 are complex numbers) will be				
	(a) an ellipse (b) a hyperbola (c) a ci	rcle (d) none of these			
26.		n of their square is 100. The common ratio of			
	GP is				
07	(a) 5 (b) $3/5$ (c) $8/5$ (c) $8/5$	(d) 1/5			
27.	(a) 425 (b) - 425 (c) 475	(d) - 475			
28.		(γ			
20.	a \neq b, then	a + b = 0 and $x + b + a = 0$ is same and			
	(a) $a + b + 4 = 0$ (b) $a + b - 4 = 0$ (c) $a - 1$	(d) = 0 $(d) = 0$			
29.					
23.					
		(b) is always negative(d) none of these			
30.					
00.	(a) $p = 1$, $q = -2$ (b) $p = 0$, $q = 1$ (c) $p =$				
31.					
01.					
32.					
•	allowed) are	······································			
	(a) 216 (b) 375 (c) 400	(d) 720			
33.		()			
	allowed) is				
	(a) 125 (b) 105 (c) 375	(d) 625			
34.	Five digit number divisible by 3 is formed using 0	, 1, 2, 3, 4, 6 and 7 without repetition. Total			
	number of such numbers are				
	(a) 312 (b) 3125 (c) 120	(d) 216			
35.	5. The sum of integers from 1 to 100 that are divisible	e by 2 or 5 is			
	(a) 3000 (b) 3050 (c) 360	0 (d) 3250			
36.	5. The coefficients of x^p and x^q in the expansion of (1	+x) ^{p+q} are			
	(a) equal (b) equ	(b) equal with opposite signs			
	(c) reciprocals of each other (d) non	(d) none of these			
37.	7. If the sum of the coefficients in the expansion of (a	+ b) ⁿ is 4096, then the greatest coefficient in			
	the expansion is				
	(a) 1594 (b) 792 (c) 924				
		15			

38.	The positive integer just greater than $(1+0.0001)^{10000}$ is					
39.	(a) 4 (b) 5 (c) 2 (d) 3 r and n are positive integers $r > 1$, $n > 2$ and coefficient of $(r + 2)$ th term and $3r$ th term in t	he				
00.	expansion of $(1+x)^{2n}$ are equal, then n equals					
	(a) 3r (b) 3r + 1 (c) 2r (d) 2r + 1					
	$a \qquad b \qquad ax+b$					
40.	If a > 0 discriminant of $ax^2 + 2bx + c$ is -ve, then $\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & 0 \end{vmatrix}$ is					
	(a) +ve (b) $(ac - b^2) (ax^2 + 2bx + c)$ (c) -ve (d) 0					
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs then by methods of mathematical inducit	on				
	which is true	-				
	(a) $a_n > 7 \forall n \ge 1$ (b) $a_n > 7 \forall n \ge 1$ (c) $a_n < 4 \forall n \ge 1$ (d) $a_n < 3 \forall n \ge 1$					
42.	The sides of a triangle are $3x + 4y$, $4x+37$ and $5x + 57$ where x, y > 0 then the triangle is					
	(a) right angled (b) obtuse angled (c) equilateral (d) none of these					
43.	Locus of mid point of the portion between the axes of $x \cos \alpha + y \sin \alpha = p$ where p is constant	ant				
	is					
	1 1 2 1 1 4					
	(a) $x^2 + y^2 = \frac{4}{p^2}$ (b) $x^2 + y^2 = 4p^2$ (c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$ (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$					
44.	If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y - axis then					
	(a) $2fgh = bg^2 + ch^2$ (b) $bg^2 \neq ch^2$ (c) $abc = 2fgh$ (d) none of these					
45.	The point of lines represented by $3ax^2+5xy + (a^2-2)y^2 = 0$ and perpendicular to each other for	or				
40	(a) two values of a (b) \forall a (c) for one value of a (d) for no values of a					
46.	If the chord $y = mx + 1$ of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the massegment of the circle then value of m is	jor				
	(a) $2 \pm \sqrt{2}$ (b) $-2 \pm \sqrt{2}$ (c) $-1 \pm \sqrt{2}$ (d) none of these					
47.	The centres of a set of circles, each of radius 3, lie on the circle $x^2 + y^2 = 25$. The locus of a	ny				
	point in the set is					
48.	(a) $4 \le x^2 + y^2 \le 64$ (b) $x^2 + y^2 \le 25$ (c) $x^2 + y^2 \ge 25$ (d) $3 \le x^2 + y^2 \le 9$ The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $x^2 + y^2 = 9$ i	is				
10.	The centre of the circle passing through $(0, 0)$ and $(1, 0)$ and touching the circle $x^2 + y^2 = 9$ is					
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, -\sqrt{2}\right)$ (c) $\left(\frac{3}{2}, \frac{1}{2}\right)$ (d) $\left(\frac{1}{2}, \frac{3}{2}\right)$					
49.	The equation of a circle with origin as a centre and passing through equilateral triangle whose					
	median is of length 3a is (a) $x^2 + y^2 = 9a^2$ (b) $x^2 + y^2 = 16a^2$ (c) $x^2 + y^2 = 4a^2$ (d) $x^2 + y^2 = a^2$					
		<u>ر</u>				

Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are 50. (a) x = + (y + 2a)(b) $y = \pm (x + 2a)$ (c) $x = \pm (y + a)$ (d) $y = \pm (x + a)$ 51. In a triangle with sides a, b, c, $r_1 > r_2 > r_3$ (which are the ex- radii) then (b) a < b < c (d) a < b and b > c(a) a > b > c(c) a > b and b < c52. The number of solution of tan x + sec x = $2\cos x$ in $[0, 2\pi)$ is (a) 2 (b) 3 (c) 0 (d) 1 Which one is not periodic 53. (a) $|\sin 3x| + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ $\underset{n \to \infty}{\text{Lim}} \frac{1^{p} + 2^{p} + 3^{p} + \dots + n^{p}}{n^{p+1}} \text{ is }$ 54. (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (a) $\frac{1}{p+1}$ (d) $\frac{1}{n+2}$ $\lim_{x\to 0} \frac{\log x^n - [x]}{[x]}, n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) 55. (c) has value 1 (a) has value -1 (b) has value 0 (d) does not exist If f(1) = 1, f'(1) = 2, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is 56. (a) 2 (c) 1 (b) 4 (d) 1/2 57. f is defined in [-5, 5] as f(x) = x if x is rational and = -x is irrational. Then (a) f(x) is continuous at every x, except x = 0(b) f(x) is discontinuous at every x, except x = 0(c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere f(x) and g(x) are two differentiable functions on [0, 2] such that f''(x) - g''(x) = 058. f'(1)=2g'(1)=4f(2)=3g(2)=9 then f(x) - g(x) at x = 3/2 is (a) 0 (b) 2 (c) 10 (d) 5 If f(x + y) = f(x). $f(y) \forall x.y$ and f(5) = 2, f'(0) = 3 then f'(5) is 59. (d) 2 (a) 0 (b) 1 (c) 6 The maximum distance from origin of a point on the curve x = a sin t - b sin $\left(\frac{at}{b}\right)$ 60. y = a cos t - b cos $\left(\frac{at}{b}\right)$, both a, b > 0 is (c) $\sqrt{a^2 + b^2}$ (d) $\sqrt{a^2 - b^2}$ (a) a - b (b) a + bIf 2a + 3b + 6c = 0 (a,b, $c \in R$) then the quadratic equation $ax^2 + bx + c = 0$ has 61. (a) at least one root in [0, 1] (b) at least one root in [2, 3] (c) at least one root in [4, 5] (d) none of these 62. If y = f(x) makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area of 3/4 square unit with the axes then $\int_{a}^{b} x f'(x) dx$ is (a) 3/2(c) 5/4 (d) -3/4 (b) 1 17

63.	The area bounded by the curves $y = \ln x$, $y = \ln x $, $y = \ln x $ and $y = \ln x $ is (a) 4 sq. units (b) 6 sq. units (c) 10 sq. units (d) none of these					
64.	If $ \vec{a} = 4$, $ \vec{b} = 2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a} \times \vec{b})^2 = 2$ is equal to					
	(a) 48	(b) 16	(c) ā	(d) none of these		
65.	5. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$					
	(a) 16	(b) 64	(c) 4	(d) 8		
66.	6. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} = 3$ then angle between					
	vector \vec{b} and \vec{c} is					
	(a) 60	(b) 30º	(c) 45 [°]	(d) 90°		
67.	If a =5, b = 4, c	: = 3 thus what will be t	the value of a.b + b.c + c.a	a , given that $\vec{a} + \vec{b} + \vec{c} = 0$		
	(a) 25	(b) 50	(c) - 25	(d) - 50		
68.	$3\lambda \vec{c} + 2\mu(\vec{a} \times \vec{b}) = 0$	then				
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$		
69.	9. $\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c} = \vec{a} \times \vec{b}$ then					
ā : b̄ : c̄						
	(a) √ <u>34</u> : √45 : √3	$\overline{9}$ (b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39 : 35 : 34		
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c}$	$\langle \vec{a} $ then $\vec{a} + \vec{b} + \vec{c} =$				
	(a) abc	(b) -1	(c) 0	(d) 2		
71.			$3/4$, P(A \cap B) = 1/4, P(\overline{A})			
72.	(a) 5/12 A die is tossed 5 tir	(b) 3/8 nes. Getting an odd nu	(c) 5/8 mber is considered a succ	(d) 1/4 cess Then the variance of		
12.	A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of success is					
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4		
73.	The d.r. of normal to $x + y = 3$ are	o the plane through (1,	0, 0) , (0, 1, 0) which make:	s an angle $\pi/4$ with plane		
	(a) 1, √2,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$,1,1		
74.			ant whose direction is at r	ight angles to the smaller		
	(a) 13, 5	nagnitude of the two fo (b) 12, 6	(c) 14, 4	(d) 11, 7		
75.			ircular wire in a vertical pla			
	by a light thread to the highest point of the wire and in equilibrium, the thread is taut and make					
	•	vertical then tension o $R = w \tan \theta$	f the thread and reaction or (b) T = 2w $\cos \theta$	If the wire on the bead are R = w		
	(c) $T = w$	$R = w \sin \theta$	(d)T = w sin θ	$R = w \cot \theta$		
				18		