AIEEE-CBSE-ENG-03

1. A function f from the set of natural numbers to integers defined by

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$$

(A) one-one but not onto

- (B) onto but not one-one
- (C) one-one and onto both
- (D) neither one-one nor onto

2. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex. Further, assume that the origin, z_1 and z_2 form an equilateral triangle, then

(A) $a^2 = b$

(B) $a^2 = 2b$

(C) $a^2 = 3b$

(D) $a^2 = 4b$

3. If z and ω are two non–zero complex numbers such that $|z\omega|$ = 1, and Arg (z) – Arg (ω) = $\frac{\pi}{2}$,

then \overline{z}_{ω} is equal to

(A) 1

(B) - 1

(C) i

(D) - i

4. If
$$\left(\frac{1+i}{1-i}\right)^x = 1$$
, then

- (A) x = 4n, where n is any positive integer
- (B) x = 2n, where n is any positive integer
- (C) x = 4n + 1, where n is any positive integer
- (D) x = 2n + 1, where n is any positive integer

5. If $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$ and vectors (1, a, a^2) (1, b, b^2) and (1, c, c^2) are non-coplanar, then the

product abc equals

(A) 2

(B) - 1

(C) 1

(D) 0

6. If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

(A) are in A. P.

(B) are in G.P.

(C) are in H.P.

(D) satisfy a + 2b + 3c = 0

7. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in

- (A) arithmetic progression
- (B) geometric progression

(C) harmonic progression

(D) arithmetic-geometric-progression

8. The number of real solutions of the equation $x^2 - 3|x| + 2 = 0$ is

(A) 2

(B) 4

(C) 1

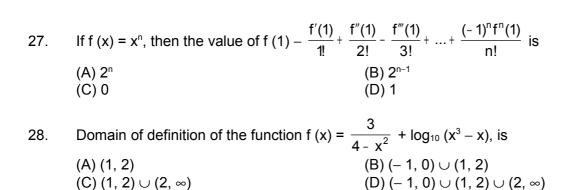
(D) 3

9.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3) x^2 + (3a - 1) x + 2 = 0$ is twice as large as the other, is		
	(A) $\frac{2}{3}$	(B) $-\frac{2}{3}$	
	(C) $\frac{1}{3}$	(D) $-\frac{1}{3}$	
I10.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then		
	(A) $\alpha = a^2 + b^2$, $\beta = ab$ (C) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$	(B) $\alpha = a^2 + b^2$, $\beta = 2ab$ (D) $\alpha = 2ab$, $\beta = a^2 + b^2$	
11.	A student is to answer 10 out of 13 question least 4 from the first five questions. The nur (A) 140 (C) 280	ns in an examination such that he must choose at mber of choices available to him is (B) 196 (D) 346	
12.	The number of ways in which 6 men and 5 women can dine at a round tab women are to sit together is given by		
	(A) 6! × 5! (C) 5! × 4!	(B) 30 (D) 7! × 5!	
13.	If 1, ω , ω^2 are the cube roots of unity, then $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ is equal to		
	(A) 0 (C) ω	(B) 1 (D) ω^2	
14.	${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$ equals	of n things taken r at a time, then the expression	
	(A) $^{n+2}C_r$ (C) $^{n+1}C_r$	(B) $^{n+2}C_{r+1}$ (D) $^{n+1}C_{r+1}$	
15.	The number of integral terms in the expansi	,	
	(A) 32 (C) 34	(B) 33 (D) 35	
16.	If x is positive, the first negative term in the (A) 7^{th} term (C) 8^{th} term	expansion of (1 + x) ^{27/5} is (B) 5 th term (D) 6 th term	
17.	The sum of the series $\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \dots$ upto ∞ is equal to		
	(A) 2 log _e 2	(B) $\log_2 2 - 1$	
	(C) log _e 2	(D) $\log_{e}\left(\frac{4}{e}\right)$	
18.	Let $f(x)$ be a polynomial function of second degree. If $f(1) = f(-1)$ and a , b , c are in A. P., then $f'(a)$, $f'(b)$ and $f'(c)$ are in		
	(A) A.P. (C) H. P.	(B) G.P.(D) arithmetic–geometric progression	

	(x ₂ , y ₂) and (x ₃ , y ₃) (A) lie on a straight line (C) lie on a circle	(B) lie on an ellipse (D) are vertices of a triangle		
20.	The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon side a, is			
	(A) a cot $\left(\frac{\pi}{n}\right)$	(B) $\frac{a}{2} \cot \left(\frac{\pi}{2n} \right)$		
	(C) a cot $\left(\frac{\pi}{2n}\right)$	(D) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$		
21.	If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{A}{2}\right)$	$\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c		
	(A) are in A.P. (C) are in H.P.	(B) are in G.P. (D) satisfy a + b = c		
22.	In a triangle ABC, medians AD and BE are drawn. If AD = 4, \angle DAB = $\frac{\pi}{6}$ and \angle ABE = $\frac{\pi}{3}$			
	then the area of the \triangle ABC is	40		
	(A) $\frac{8}{3}$	(B) $\frac{16}{3}$		
	(C) $\frac{32}{3}$	(D) $\frac{64}{3}$		
	3	3		
23.	The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} \frac{1}{x^2}$	a, has a solution for		
	(A) $\frac{1}{2} < a < \frac{1}{\sqrt{2}}$	(B) all real values of a		
	(C) $ a < \frac{1}{2}$	(D) $ a \ge \frac{1}{\sqrt{2}}$		
24.	The upper $\frac{3}{4}$ th portion of a vertical pole su	obtends an angle $\tan^{-1} \frac{3}{5}$ at point in the horizontal		
	•	m from the foot. A possible height of the vertical		
	pole is (A) 20 m	(B) 40 m		
	(C) 60 m	(D) 80 m		
25.	The real number x when added to its inverse gives the minimum value of the sum at x ed to			
	(A) 2	(B) 1 (D) – 2		
	(C) – 1	(D) – 2		
26.	If $f: R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x, y \in R$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is			
	(A) $\frac{7n}{2}$	(B) $\frac{7(n+1)}{2}$		
	2	_		
	(C) 7n (n + 1)	(D) $\frac{7n(n+1)}{2}$		

If x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. with the same common ratio, then the points $(x_1, \, y_1)$

19.



29.
$$\lim_{x \to \pi/2} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1 - \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi - 2x\right]^3}$$
 is
$$(A) \frac{1}{8}$$
 (B) 0

$$(C) \frac{1}{32} \qquad (D) \infty$$

30. If
$$\lim_{x \to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$$
, the value of k is

(A) 0 (B) $-\frac{1}{3}$

(C)
$$\frac{2}{3}$$
 (D) $-\frac{2}{3}$

31. Let f(a) = g(a) = k and their n^{th} derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n.

Further if $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)} = 4$, then the value of k is

- (A) 4 (C) 1 (B) 2 (D) 0
- 32. The function $f(x) = \log (x + \sqrt{x^2 + 1})$, is

 (A) an even function

 (B) an odd function

 (C) a periodic function

 (D) neither an even nor an odd function

33. If
$$f(x) =\begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 then $f(x)$ is

- (A) continuous as well as differentiable for all x
- (B) continuous for all x but not differentiable at x = 0
- (C) neither differentiable nor continuous at x = 0
- (D) discontinuous everywhere

34. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2 x + 1$, where a > 0, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals

(A) 3 (B) 1 (C) 2 (D)
$$\frac{1}{2}$$

35. If
$$f(y) = e^y$$
, $g(y) = y$; $y > 0$ and $F(t) = \int_0^t f(t - y) g(y) dy$, then

(A) F (t) =
$$1 - e^{-t} (1 + t)$$

(B) F (t) =
$$e^{t}$$
 – (1 + t)
(D) F (t) = $t e^{-t}$

(C)
$$F(t) = t e^{t}$$

(D) F (t) =
$$t e^{-t}$$

36. If f (a + b - x) = f (x), then
$$\int_{a}^{b} x f(x) dx$$
 is equal to

(A)
$$\frac{a+b}{2}\int_{a}^{b}f(b-x)dx$$

(B)
$$\frac{a+b}{2}\int_{a}^{b} f(x)dx$$

(C)
$$\frac{b-a}{2}\int_{a}^{b}f(x)dx$$

(D)
$$\frac{a+b}{2}\int_{a}^{b}f(a+b-x)dx$$

37. The value of
$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} \sec^{2} t \, dt}{x \sin x}$$
 is

$$(C)$$
 1

38. The value of the integral
$$I = \int_{0}^{1} x (1 - x)^{n} dx$$
 is

(A)
$$\frac{1}{n+1}$$

(B)
$$\frac{1}{n+2}$$

(C)
$$\frac{1}{n+1} - \frac{1}{n+2}$$

(D)
$$\frac{1}{n+1} + \frac{1}{n+2}$$

$$39. \qquad \lim_{n \to \infty} \frac{1 + \ 2^4 + \ 3^4 + \ldots \ldots + \ n^4}{n^5} - \lim_{n \to \infty} \frac{1 + \ 2^3 + \ 3^3 + \ldots \ldots + \ n^3}{n^5} \ \text{is}$$

(A)
$$\frac{1}{30}$$

(C)
$$\frac{1}{4}$$

(D)
$$\frac{1}{5}$$

40. Let
$$\frac{d}{dx} F(x) = \left(\frac{e^{\sin x}}{x}\right)$$
, $x > 0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx = F(k) - F(1)$, then one of the possible values

of k, is

41. The area of the region bounded by the curves
$$y = |x - 1|$$
 and $y = 3 - |x|$ is

(A) 2 sq units

(B) 3 sq units

(C) 4 sq units

(D) 6 sq units

42. Let f (x) be a function satisfying f' (x) = f (x) with f (0) = 1 and g (x) be a function that satisfies
$$f(x) + g(x) = x^2$$
. Then the value of the integral $\int_{0}^{1} f(x) g(x) dx$, is

(A)
$$e - \frac{e^2}{2} - \frac{5}{2}$$

(B) e +
$$\frac{e^2}{2}$$
 - $\frac{3}{2}$

(C)
$$e - \frac{e^2}{2} - \frac{3}{2}$$

(D) e +
$$\frac{e^2}{2}$$
 + $\frac{5}{2}$

43. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively

(A) 2, 1

(B) 1, 2

(C) 3, 2

(D) 2, 3

The solution of the differential equation $(1 + y^2) + (x - e^{\tan^{-1} y}) \frac{dy}{dx} = 0$, is 44.

(A) $(x-2) = k e^{-\tan^{-1} y}$

(B) $2xe^{2\tan^{-1}y} + k$

(C) $x e^{tan^{-1}y} = tan^{-1}v + k$

(D) $x e^{2 \tan^{-1} y} = e^{\tan^{-1} y} + k$

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1 - a_2)$ 45. a_2) x + $(b_1 - b_2)$ y + c = 0, then the value of 'c' is

(A) $\frac{1}{2}$ ($a_2^2 + b_2^2 - a_1^2 - b_1^2$)

(B) $a_1^2 + a_2^2 + b_1^2 - b_2^2$

(C) $\frac{1}{2}$ ($a_1^2 + a_2^2 - b_1^2 - b_2^2$)

(D) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$

46. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where t is a parameter, is

- (A) $(3x 1)^2 + (3y)^2 = a^2 b^2$
- (B) $(3x 1)^2 + (3y)^2 = a^2 + b^2$ (D) $(3x + 1)^2 + (3y)^2 = a^2 b^2$
- (C) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$

If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair 47. bisects the angle between the other pair, then

(A) p = q

(B) p = -q

(C) pq = 1

(D) pq = -1

a square of side a lies above the x-axis and has one vertex at the origin. The side passing 48. through the origin makes an angle α (0 < α < $\frac{\pi}{4}$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

- (A) $y (\cos \alpha \sin \alpha) x (\sin \alpha \cos \alpha) = a$
- (B) y (cos α + sin α) + x (sin α cos α) = a
- (C) $y (\cos \alpha + \sin \alpha) + x (\sin \alpha + \cos \alpha) = a$
- (D) y (cos α + sin α) + x (cos α sin α) = a

If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct 49. points, then

(A) 2 < r < 8

(B) r < 2

(C) r = 2

(D) r > 2

The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq units. 50. Then the equation of the circle is

(A) $x^2 + y^2 + 2x - 2y = 62$

(B) $x^2 + y^2 + 2x - 2y = 47$ (D) $x^2 + y^2 - 2x + 2y = 62$

(C) $x^2 + y^2 - 2x + 2y = 47$

51. The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 2bt₂), then

(A)						2
(A)	t ₂	=	_	t ₁	_	$\overline{t_1}$

(B)
$$t_2 = -t_1 + \frac{2}{t_1}$$

(D)
$$t_2 = t_1 - \frac{2}{t_1}$$

(D)
$$t_2 = t_1 + \frac{2}{t_1}$$

The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the 52. value of b2 is

(A) 1

(C)7

(D) 9

A tetrahedron has vertices at O (0, 0, 0), A (1, 2, 1), B (2, 1, 3) and C (-1, 1, 2). Then the 53. angle between the faces OAB and ABC will be

(A) $\cos^{-1} \left(\frac{19}{35} \right)$

(B) $\cos^{-1}\left(\frac{17}{31}\right)$

 $(C) 30^{\circ}$

The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the 54. plane x + 2y + 2z + 7 = 0 is

(A) 1

(C)3

The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if 55.

(A) k = 0 or -1

(C) k = 0 or -3

The two lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' will be perpendicular, if and 56.

(A) aa' + bb' + cc' + 1 = 0

- (B) aa' + bb' + cc' = 0(D) aa' + cc' + 1 = 0
- (C) (a + a') (b + b') + (c + c') = 0

The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y$ 57. -6z = 155 is

(A) 26

(B) $11\frac{4}{13}$

(C) 13

(D) 39

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, 58. b, c and a', b', c' from the origin, then

- (A) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ (B) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$
- (C) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (D) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$

59. a, b, c are 3 vectors, such that a+b+c=0, |a|=1, |b|=2, |c|=3, then $a\cdot b+b\cdot c+c\cdot a$ is equal to

(A) 0

(B) - 7

(C)7

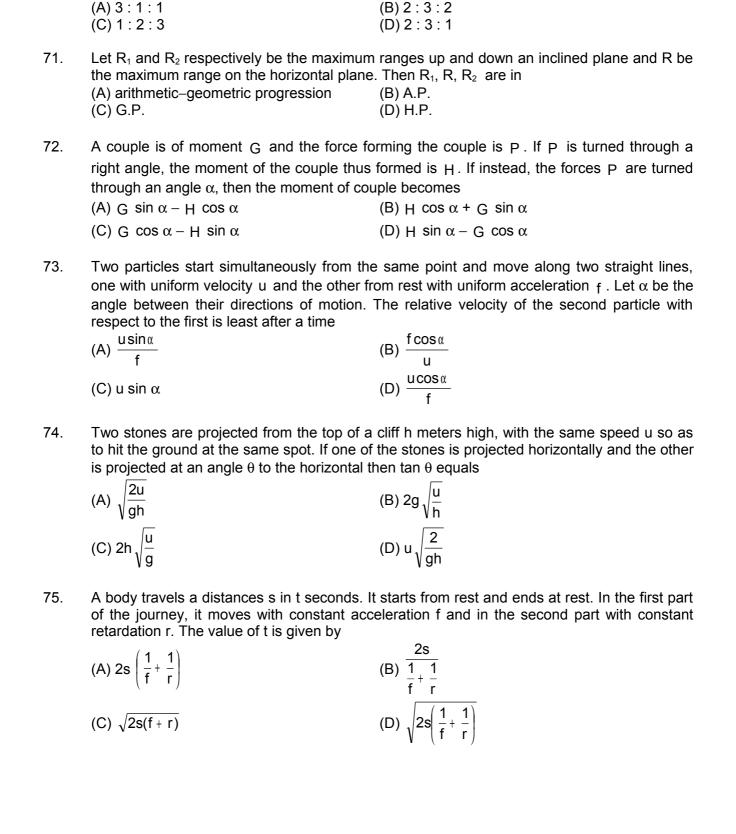
(D) 1

If u, v and w are three non-coplanar vectors, then $(u + v - w) \cdot (u - v) \times (v - w)$ equals 60.

(A) 0

(B) $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}$

	(C) u⋅w× v	(D) 3u·v× w	
61.	Consider points A, B, C and D with positi and $5\hat{i} - \hat{j} + 5\hat{k}$ respectively. Then ABCD is (A) square (C) rectangle	on vectors $7\hat{i} - 4\hat{j} + 7\hat{k}$, $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 4\hat{k}$ a (B) rhombus (D) parallelogram but not a rhombus	
62.	The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$, and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j}$ of the median through A is (A) $\sqrt{18}$ (C) $\sqrt{33}$	$\hat{j}_{}+4\hat{k}_{}$ are the sides of a triangle ABC. The length (B) $\sqrt{72}_{}$ (D) $\sqrt{288}_{}$	
63.	A particle acted on by constant forces $4\hat{i} + \hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total (A) 20 units (C) 40 units	\hat{j} - $3\hat{k}$ and $3\hat{i}$ + \hat{j} - \hat{k} is displaced from the point work done by the forces is (B) 30 units (D) 50 units	
64.	Let $u = \hat{i} + \hat{j}$, $v = \hat{i} - \hat{j}$ and $w = \hat{i} + 2\hat{j} + 3\hat{k}$. If then $ w \cdot \hat{n} $ is equal to (A) 0 (C) 2	\hat{n} is unit vector such that $u\cdot\hat{n}=0$ and $v\cdot\hat{n}=0,$ (B) 1 (D) 3	
65.	The median of a set of 9 distinct observation the set is increased by 2, then the median of (A) is increased by 2 (C) is two times the original median	ns is 20.5. If each of the largest 4 observations of of the new set (B) is decreased by 2 (D) remains the same as that of the original set	
66.	In an experiment with 15 observations on x , $\sum x^2 = 2830$, $\sum x = 170$ One observation that was 20 was found to 30. Then the corrected variance is (A) 78.00 (C) 177.33	then following results were available: be wrong and was replaced by the correct value (B) 188.66 (D) 8.33	
67.	Five horses are in a race. Mr. A selects two probability that Mr. A selected the winning has $(A) \frac{4}{5}$ $(C) \frac{1}{5}$	o of the horses at random and bets on them. The horse is $ \text{(B) } \frac{3}{5} $ $ \text{(D) } \frac{2}{5} $	
68.	Events A, B, C are mutually exclusive events such that P (A) = $\frac{3x+1}{3}$, P (B) = $\frac{1-x}{4}$ and P (C) = $\frac{1-2x}{2}$. The set of possible values of x are in the interval (A) $\left[\frac{1}{3}, \frac{1}{2}\right]$ (B) $\left[\frac{1}{3}, \frac{2}{3}\right]$		
	$(C) \left[\frac{1}{3}, \frac{13}{3} \right]$	(D) [0, 1]	



The mean and variance of a random variable having a binomial distribution are 4 and 2

(B) $\frac{1}{16}$

(D) $\frac{1}{4}$

The resultant of forces P and Q is R. If Q is doubled then R is doubled. If the direction of

Q is reversed, then R is again doubled. Then $P^2: Q^2: R^2$ is

69.

70.

(A) $\frac{1}{32}$

(C) $\frac{1}{8}$

respectively, then P(X = 1) is

Solutions

1. Clearly both one – one and onto

Because if n is odd, values are set of all non-negative integers and if n is an even, values are set of all negative integers.

Hence, (C) is the correct answer.

2.
$$z_1^2 + z_2^2 - z_1 z_2 = 0$$

 $(z_1 + z_2)^2 - 3z_1 z_2 = 0$
 $a^2 = 3b$.

Hence, (C) is the correct answer.

5.
$$\begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

$$\begin{vmatrix}
a & a^2 & 1 \\
b & b^2 & 1 \\
c & c^2 & 1
\end{vmatrix} = 0$$

$$\Rightarrow$$
 abc = -1 .

Hence, (B) is the correct answer

4.
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$

$$\left(\frac{1+i}{1-i}\right)^{x}=i^{x}$$

$$\Rightarrow$$
 x = 4n

Hence, (A) is the correct answer.

6. Coefficient determinant =
$$\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0$$

$$\Rightarrow$$
 b = $\frac{2ac}{a+c}$

Hence, (C) is the correct answer

8.
$$x^2 - 3 |x| + 2 = 0$$

 $(|x| - 1) (|x| - 2) = 0$

$$\Rightarrow x = \pm 1, \pm 2.$$

Hence, (B) is the correct answer

7. Let α , β be the roots

$$\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$$

$$\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$$

$$\Rightarrow$$
 2a²c = b (a² + bc)

$$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$$
 are in H.P.

Hence, (C) is the correct answer

10.
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$

$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$
Hence (B) is the correct answer

9.
$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2 - 5a+3}$$

$$2\alpha^2 = \frac{2}{a^2 - 5a+6}$$

$$\frac{(3a-1)^2}{a(a^2 - 5a+3)^2} = \frac{1}{a^2 + 5a+6}$$

$$\Rightarrow a = \frac{2}{3}.$$

Hence, (A) is the correct answer

- 12. Clearly 5! × 6! (A) is the correct answer
- Number of choices = ${}^5C_4 \times {}^8C_6 + {}^5C_5 \times {}^8C_5$ 11. = 140 + 56.Hence, (B) is the correct answer

13.
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

Since, $1 + \omega^n + \omega^{2n} = 0$, if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

14.
$${}^{n}C_{r+1} + {}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r}$$

= ${}^{n+1}C_{r+1} + {}^{n+1}C_{r}$
= ${}^{n+2}C_{r+1}$.
Hence, (B) is the correct answer

17.
$$\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \dots$$
$$= 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$$

$$= 1 - 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots\right)$$

$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$

$$= 2 \log 2 - \log e$$

$$= \log\left(\frac{4}{e}\right).$$

Hence, (D) is the correct answer.

- 15. General term = 256 C_r ($\sqrt{3}$) $^{256-r}$ [(5) $^{1/8}$]^r From integral terms, or should be 8k \Rightarrow k = 0 to 32. Hence, (B) is the correct answer.
- 18. $f(x) = ax^2 + bx + c$ f(1) = a + b + c f(-1) = a - b + c $\Rightarrow a + b + c = a - b + c$ also 2b = a + c f'(x) = 2ax + b = 2ax $f'(a) = 2a^2$ f'(b) = 2ab f'(c) = 2ac $\Rightarrow AP$. Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)
- 21. $a\left(\frac{1+\cos C}{2}\right)+c\left(\frac{1+\cos A}{2}\right)=\frac{3b}{2}$ $\Rightarrow a+c+b=3b$ a+c=2b.Hence, (A) is the correct answer
- 26. f(1) = 7 f(1 + 1) = f(1) + f(1) $f(2) = 2 \times 7$ only $f(3) = 3 \times 7$ $\sum_{r=1}^{n} f(r) = 7 (1 + 2 + \dots + n)$ $= 7 \frac{n(n+1)}{2}.$
- 25. (B)
- 23. $-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$ $-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$

$$\frac{1}{2} \le |a| \le \frac{1}{\sqrt{2}}.$$

Hence, (D) is the correct answer

27. LHS =
$$1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$$

= $1 - {^{n}C_{1}} + {^{n}C_{2}} - \dots$
= 0

Hence, (C) is the correct answer

30.
$$\lim_{x \to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.

28.
$$4 - x^{2} \neq 0$$

$$\Rightarrow x \neq \pm 2$$

$$x^{3} - x > 0$$

$$\Rightarrow x (x + 1) (x - 1) > 0.$$
Hence (D) is the correct answer.

29.
$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^{2}}$$
$$= \frac{1}{32}.$$

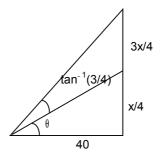
Hence, (C) is the correct answer.

32.
$$f(-x) = -f(x)$$

Hence, (B) is the correct answer.

1.
$$\sin (\theta + \alpha) = \frac{x}{40}$$

 $\sin a = \frac{x}{140}$
 $\Rightarrow x = 40$.
Hence, (B) is the correct answer



34.
$$f(x) = 0$$
 at $x = p$, q
 $6p^2 + 18ap + 12a^2 = 0$
 $6q^2 + 18aq + 12a^2 = 0$
 $f''(x) < 0$ at $x = p$
and $f''(x) > 0$ at $x = q$.

30. Applying L. Hospital's Rule
$$\lim_{x \to 2a} \frac{f(a)g'(a) - g(a)f'(a)}{g'(a) - f'(a)} = 4$$

$$\frac{k(g'(a) - ff'(a))}{(g'(a) - f'(a))} = 4$$

k = 4

Hence, (A) is the correct answer.

36.
$$\int_{a}^{b} x f(x) dx$$

$$= \int_{a}^{b} (a + b - x) f(a + b - x) dx.$$

Hence, (B) is the correct answer.

33.
$$f'(0)$$

 $f'(0-h) = 1$
 $f'(0+h) = 0$
LHD \neq RHD.
Hence, (B) is the correct answer.

37.
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$

= 1.

Hence (C) is the correct answer.

38.
$$\int_{0}^{1} X (1-x)^{n} dx = \int_{0}^{1} X^{n} (1-x)$$
$$= \int_{0}^{1} (X^{n} - X^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}.$$

Hence, (C) is the correct answer.

35.
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$

$$= \int_{0}^{t} f(y) f(t - y) dy$$

$$= \int_{0}^{t} e^{y} (t - y) dy$$

$$= x^{t} - (1 + t).$$
Hence (B) is the correct ans

Hence, (B) is the correct answer.

34. Clearly
$$f''(x) > 0$$
 for $x = 2a \Rightarrow q = 2a < 0$ for $x = a \Rightarrow p = a$ or $p^2 = q \Rightarrow a = 2$. Hence, (C) is the correct answer.

40.
$$F'(x) = \frac{e^{\sin x}}{3^x}$$

$$= \int \frac{3}{x} e^{\sin x} dx = F(k) - F(1)$$

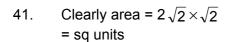
$$= \int_{1}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$$

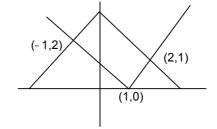
$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

$$\Rightarrow k = 64.$$
Hence, (D) is the correct answer.

Hence, (D) is the correct answer.





45. Let p (x, y)

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$

$$(a_1 - a_2) x + (b_1 - b_2) y + \frac{1}{2} (b_2^2 - b_1^2 + a_2^2 - a_1^2) = 0.$$

Hence, (A) is the correct answer.

46.
$$x = \frac{a \cos t + b \sin t + 1}{3}, y = \frac{a \sin t - b \cos t + 1}{3}$$

$$\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$$

Hence, (B) is the correct answer.

43. Equation
$$y^2 = 4a \ 9x - h$$
)
 $2yy_1 = 4a \Rightarrow yy_1 = 2a$
 $yy_2 = y_1^2 = 0$.
Hence (B) is the correct answer.

42.
$$\int_{0}^{f(x)} [x^{2} - f(x)] dx$$
solving this by putting f'(x) = f(x). Hence, (B) is the correct answer.

50. Intersection of diameter is the point
$$(1, -1)$$

 $\pi s^2 = 154$
 $\Rightarrow s^2 = 49$
 $(x - 1)^2 + (y + 1)^2 = 49$
Hence, (C) is the correct answer.

49.
$$\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1} y} - x)$$

$$\frac{dx}{dy} + \frac{x}{1+ y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+ y^2}$$

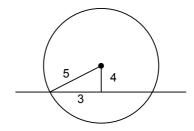
52.
$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$

$$\Rightarrow e_1 = \frac{5}{4}$$

$$ae_2 = \sqrt{1 - \frac{b^2}{16}} \times 4 = 3$$

$$\Rightarrow b^2 = 7.$$
Hence, (C) is the correct answer.

Hence, (C) is the correct an



Hence, (A) is the correct answer.

49.
$$(x-1)^2 + (y-3)^2 = r^2$$

 $(x-4)^2 + (y+2)^2 - 16 - 4 + 8 = 0$
 $(x-4)^2 + (y+2)^2 = 12$.

67. Select 2 out of 5
$$= \frac{2}{5}.$$
Hence, (D) is the correct answer.

65.
$$0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1$$

$$12x+4+3-3x+6-12x \le 1$$

$$0 \le 13-3x \le 12$$

$$3x \le 13$$

$$\Rightarrow x \ge \frac{1}{3}$$

$$x \le \frac{13}{3}$$
.

Hence, (C) is the correct answer.

3.
$$\operatorname{Arg}\left(\frac{z}{\omega}\right) = \frac{\pi}{2}$$
$$|z\omega| = 1$$
$$\overline{z}\omega = -i \text{ or } +i.$$