# AIEEE

| 76.  | Which of the following sets of quantum numbers is correct for an electron in 4f orbital?                                                                                                                                                                                                                                                                                                          |                                                                                                                 |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
|      | (1) n = 4, l =3, m = +4, s = + <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                        | (2) n = 3, l = 2, m = -2, S = + $\frac{1}{2}$                                                                   |  |  |
|      | (3) n =4, l = 3, m = +1, s = + <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                        | (4) n =4, l = 4, m -4, s = - <sup>1</sup> / <sub>2</sub>                                                        |  |  |
| Ans. | n =4, l = 3, m = +1, s = + <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |  |  |
| 77.  | Consider the ground state of Cr atom (Z = 2<br>quantum numbers I =1 and 2 are respective<br>(1) 12 and 4<br>(3) 16 and 4                                                                                                                                                                                                                                                                          | 24). The number of electrons with the azimuthal<br>ely<br>(2) 16 and 5<br>(4) 12 and 5                          |  |  |
| Ans. | 12 and 5                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |  |  |
| 78.  | Which one the following ions has the highe (1) Li <sup>+</sup> (3) O <sup>2-</sup>                                                                                                                                                                                                                                                                                                                | st value of ionic radius?<br>(2) F <sup>-</sup><br>(4) B <sup>3+</sup>                                          |  |  |
| Ans. | O <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |  |  |
| 79.  | The wavelength of the radiation emitted, when in hydrogen atom electron falls from infinity t stationary state 1, would be (Rydberg constant = $1.097 \times 10^7$ m <sup>-1</sup> )<br>(1) 91 nm<br>(3) 406 nm<br>(4) 192 nm                                                                                                                                                                     |                                                                                                                 |  |  |
| Ans. | . 91 nm                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |  |  |
| 80.  | The correct order of bond angles (smallest first) in $H_2S$ , $NH_3$ , $BF_3$ and $SiH_4$ is<br>(1) $H_2S < SiH_4 < NH_3 < BF_3$ (2) $H_2S < NH_3 < BF_3 < SiH_4$<br>(3) $H_2S < NH_3 < SiH_4 < BF_3$ (4) $NH_3 < H_2S < SiH_4 < BF_3$                                                                                                                                                            |                                                                                                                 |  |  |
| Ans. | $H_2S < NH_3 < SiH_4 < BF_3$                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |  |  |
| 81.  | Which one the following sets of ions represents the collection of isoelectronic species?(1) $K^+$ , $Ca^{2+}$ , $Sc^{3+}$ , $Cl^-$ (2) $Na^+$ , $Mg^{2+}$ , $Al^{3+}$ , $Cl^-$ (3) $K^+$ , $Cl^-$ , $Mg^{2+}$ , $Sc^{3+}$ (4) $Na^+$ , $Ca^{2+}$ , $Sc^{3+}$ , $F^-$                                                                                                                              |                                                                                                                 |  |  |
| Ans. | K⁺, Ca²⁺, Sc³⁺, Cl⁻                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |  |  |
| 82.  | Among $Al_2O_3$ , $SiO_2$ , $P_2O_3$ and $SO_2$ the correct<br>(1) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$<br>(3) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$                                                                                                                                                                                                                                                     | ect order of acid strength is<br>(2) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$<br>(4) $SiO_2 < SO_2 < Al_2O_3 < P_2O_3$ |  |  |
| Ans. | $AI_2O_3 < SiO_2 < P_2O_3 < SO_2$                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |  |  |
| 83.  | <ul> <li>The bond order in NO is 2.5 while that in NO<sup>+</sup> is 3. Which of the following statements is true for these two species?</li> <li>(1) Bond length in NO<sup>+</sup> is greater than in NO</li> <li>(2) Bond length is unpredictable</li> <li>(3) Bond length in NO<sup>+</sup> in equal to that in NO</li> <li>(4) Bond length in NO is greater than in NO<sup>+</sup></li> </ul> |                                                                                                                 |  |  |

Bond length in NO is greater than in NO<sup>+</sup> Ans.

84. The formation of the oxide ion O<sup>2</sup>-(g) requires first an exothermic and then an endothermic step as shown below

 $O(g) + e^{-}O^{-}(g)\Delta H^{\circ} = -142 k Jmol^{-1}$ 

 $O^{-}(g) + e^{-}O^{2-}(g)\Delta H^{\circ} = 844 \text{ kJmol}^{-1}$ 

- (1) Oxygen is more electronegative
- (2) O<sup>-</sup> ion has comparatively larger size than oxygen atom
- (3) O<sup>-</sup> ion will tend to resist the addition of another electron
- (4) Oxygen has high electron affinity
- O<sup>-</sup> ion will tend to resist the addition of another electron Ans.
- 85. The states of hybridization of boron and oxygen atoms in boric acid  $(H_3BO_3)$  are respectively (1)  $sp^2$  and  $sp^2$ (2)  $sp^3$  and  $sp^3$ (3)  $sp^3$  and  $sp^2$ (4)  $sp^2$  and  $sp^3$
- sp<sup>2</sup> and sp<sup>3</sup> Ans.

86. Which one of the following has the regular tetrahedral structure? (1) XeF<sub>4</sub> (2)  $[Ni(CN)_4]^{2-1}$ (4) SF<sub>4</sub> (3) BF<sub>4</sub>

- BF₄⁻ Ans.
- 87. Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them?

| (1) (n -1)d <sup>8</sup> ns <sup>2</sup> | (2) (n-1)d⁵ns²  |
|------------------------------------------|-----------------|
| (3) (n-1)d <sup>3</sup> ns <sup>2</sup>  | (4) (n-1)d⁵ns⁻¹ |

- (n-1)d<sup>5</sup>ns<sup>2</sup> Ans.
- 88. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by a factor of which of the following?

| $(1) \frac{1}{2}$     | (2) 2                        |
|-----------------------|------------------------------|
| (3) $\frac{313}{293}$ | (4) $\sqrt{\frac{313}{293}}$ |

- 313 Ans.
- 293

89. The maximum number of 90° angles between bond pair of electrons is observed in (1) dsp<sup>3</sup> hybridization (2)  $sp^{3}d^{2}$  hybridization

(3) dsp<sup>2</sup> hybridization

- (4) sp<sup>3</sup>d hybridization
- Ans. sp<sup>3</sup>d<sup>2</sup> hybridization
- 90. Which one of the following aqueous solutions will exhibit highest boiling point? (1) 0.01 M Na<sub>2</sub>SO<sub>4</sub> (2) 0.015 M glucose (3) 0.015 M urea (4) 0.01 M KNO<sub>3</sub>
- 0.01 M Na<sub>2</sub>SO<sub>4</sub> Ans.
- 91. Which among the following factors is the most important in making fluorine the strongest oxidizing halogen?

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                       | AIEEE-2004-3                                                                                |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
|      | <ul><li>(1) Electron affinity</li><li>(3) Hydration enthalpy</li></ul>                                                                                                                                                                                                                                                                                                                                                                | <ul><li>(2) Bond dissociation energy</li><li>(4) Ionization enthalpy</li></ul>              |  |
| Ans. | Bond dissociation energy                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |  |
| 92.  | In Vander Waals equation of state of the ga<br>(1) intermolecular repulsions<br>(3) Volume occupied by the molecules                                                                                                                                                                                                                                                                                                                  | (2) intermolecular collisions per unit volume                                               |  |
| Ans. | Volume occupied by the molecules                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |  |
| 93.  | The conjugate base of $H_2PO_4^-$ is<br>(1) $PO_4^{3-}$<br>(3) $H_3PO_4$                                                                                                                                                                                                                                                                                                                                                              | (2) HPO <sub>4</sub> <sup>2-</sup><br>(4) P <sub>2</sub> O <sub>5</sub>                     |  |
| Ans. | HPO4 <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |
| 94.  | •                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 ml of its solution. The concentration of urea                                           |  |
|      | solution is<br>(1) 0.001 M<br>(3) 0.02 M                                                                                                                                                                                                                                                                                                                                                                                              | (2) 0.1 M<br>(4) 0.01 M                                                                     |  |
| Ans. | 0.01 M                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |  |
| 95.  | To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H <sub>3</sub> PO <sub>3</sub> ), volume of 0.1 M aqueous KOH solution required is (1) 10 mL (2) 60 mL (3) 40 mL (4) 20 mL                                                                                                                                                                                                                              |                                                                                             |  |
| Ans. | 40 mL                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |  |
| 96.  | <ul> <li>For which of the following parameters the structural isomers C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>OCH<sub>3</sub> would be expected to have the same values?</li> <li>(Assume ideal behaviour)</li> <li>(1) Heat of vaporization</li> <li>(2) Gaseous densities at the same temperature and pressure</li> <li>(3) Boiling points</li> <li>(4) Vapour pressure at the same temperature</li> </ul>                   |                                                                                             |  |
| Ans. | Gaseous densities at the same temperatur                                                                                                                                                                                                                                                                                                                                                                                              | e and pressure                                                                              |  |
| 97.  | Which of the following liquid pairs shows a (1) Water – hydrochloric acid (3) Water – nitric acid                                                                                                                                                                                                                                                                                                                                     | positive deviation from Raoult's law?<br>(2) Acetone – chloroform<br>(4) Benzene – methanol |  |
| Ans. | Benzene – methanol                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |  |
| 98.  | <ul> <li>Which one of the following statements is false?</li> <li>(1) Raoult's law states that the vapour pressure of a components over a solution is proportional to its mole fraction</li> <li>(2) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression</li> <li>(3) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is</li> </ul> |                                                                                             |  |

- (3) The correct order of osmotic pressure for 0.01 M aqueous solution of eac BaCl<sub>2</sub> > KCl > CH<sub>3</sub>COOH > sucrose
   (4) The osmotic pressure (π) = MRT, where M is the molarity of the solution aqu eac i compound is

- **Ans.** Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression
- 99. What type of crystal defect is indicated in the diagram below? Na<sup>+</sup> Cl<sup>-</sup> Na<sup>+</sup>Cl<sup>-</sup> Cl<sup>-</sup> □ Cl<sup>-</sup> □ Na<sup>+</sup> □ Na<sup>+</sup> Na<sup>+</sup> Cl<sup>-</sup> □ Cl<sup>-</sup> Na<sup>+</sup> □ Cl<sup>-</sup> Cl<sup>-</sup> Na<sup>+</sup>Cl<sup>-</sup> □ Cl<sup>-</sup> Na<sup>+</sup> □ Na<sup>+</sup> (1) Frenkel defect (3) Interstitial defect
  (2) Frenkel and Schottky defects (4) Schottky defect

#### Ans. Schottky defect

100. An ideal gas expands in volume from  $1 \times 10^{-3}$  m<sup>3</sup> to  $1 \times 10^{-2}$  m<sup>3</sup> at 300 K against a constant pressure of  $1 \times 10^5$  Nm<sup>-2</sup>. The work done is (1) -900 J
(2) 900 kJ
(3) 2780 kJ
(4) -900 kJ

- **Ans.** -900 J
- 101. In hydrogen oxygen fuel cell, combustion of hydrogen occurs to
  - (1) generate heat
  - (2) remove adsorbed oxygen from electrode surfaces
  - (3) produce high purity water
  - (4) create potential difference between the two electrodes
- Ans. create potential difference between the two electrodes

102. In first order reaction, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is
(1) 30 minutes
(2) 60 minutes
(3) 7.5 minutes
(4) 15 minutes

- 103. What is the equilibrium expression for the reaction  $P_{4(s)} + 5O_{2(g)} \longrightarrow P_4O_{10(s)}$ ? (1) Kc =  $[P_4O_{10}] / P_4] [O_2]^5$  (2) Kc =  $1/[O_2]^5$ (3) Kc =  $[O_2]^5$  (4) Kc =  $[P_4O_{10}] / 5[P_4][O_2]$
- **Ans.** Kc =  $1/[O_2]^5$

104. For the reaction,  $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$  the  $\frac{K_p}{K_c}$  is equal to (1)  $\frac{1}{RT}$  (2) 1.0 (3)  $\sqrt{RT}$  (4) RT

Ans.  $\frac{1}{RT}$ 

105. The equilibrium constant for the reaction  $N_2(g) + O_2(g) = 2NO(g)$  at temperature T is  $4 \times 10^{-4}$ . The value of Kc for the reaction  $NO(g) = \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$  at the same temperature is

Ans. 30 minutes

| (1) 2.5×10 <sup>2</sup> | (2) 0.02 |
|-------------------------|----------|
| (3) 4×10 <sup>-4</sup>  | (4) 50   |

- **Ans.** 50
- 106. The rate equation for the reaction  $2A + B \longrightarrow C$  is found to be: rate k[A][B]. The correct statement in relation to this reaction is that the
  - (1) unit of K must be  $s^{-1}$
  - (2) values of k is independent of the initial concentration of A and B
  - (3) rate of formation of C is twice the rate of disappearance of A
  - (4)  $t_{1/2}$  is a constant
- Ans. values of k is independent of the initial concentration of A and B
- 107. Consider the following E° values

 $\begin{array}{l} E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.77 \text{ V} \\ E_{Sn^{2+}/Sn}^{\circ} = -0.14 \text{V} \\ \text{Under standard conditions the potential for the reaction} \\ Sn(s) + 2Fe^{3+}(aq) \longrightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq) \text{ is} \\ (1) 1.68 \text{ V} \\ (3) 0.91 \text{ V} \\ \end{array}$ 

- **Ans.** 0.91 V
- 108. The molar solubility product is  $K_{sp}$ . 's' is given in terms of  $K_{sp}$  by the relation

| (1) $s = \left(\frac{K_{sp}}{128}\right)^{1/4}$ | (2) $s = \left(\frac{K_{sp}}{256}\right)^{1/5}$ |
|-------------------------------------------------|-------------------------------------------------|
| (3) $s = (256K_{sp})^{1/5}$                     | (4) s = $(128K_{sp})^{1/4}$                     |

| Ans. | <b>S</b> = | $\left(rac{K_{sp}}{256} ight)$ | )1/5 |
|------|------------|---------------------------------|------|
|------|------------|---------------------------------|------|

- 109.The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 25°C.<br/>The equilibrium constant of the reaction is (F = 96,500 C mol<sup>-1</sup>: R = 8.314 JK<sup>-1</sup> mol<sup>-1</sup>)<br/>(1)  $1.0 \times 10^1$ <br/>(2)  $1.0 \times 10^{30}$ <br/>(3)  $1.0 \times 10^{10}$ <br/>(4)  $1.0 \times 10^5$
- **Ans.** 1.0×10<sup>10</sup>
- 110. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol<sup>-1</sup> respectively. The enthalpy of formation of carbon monoxide per mole is
  (1) 110.5 kJ
  (2) -110.5 kJ
  (3) -676.5 kJ
  (4) 676.5 kJ
- **Ans.** -110.5 kJ
- 111. The limiting molar conductivities  $\Lambda^{\circ}$  for NaCl, KBr and KCl are 126, 152 and 150 S cm<sup>2</sup> mol<sup>-1</sup> respectively. The  $\Lambda^{\circ}$  for NaBr is (1) 128 S cm<sup>2</sup> mol<sup>-1</sup> (2) 302 S cm<sup>2</sup> mol<sup>-1</sup> (3) 278 S cm<sup>2</sup> mol<sup>-1</sup> (4) 176 S cm<sup>2</sup> mol<sup>-1</sup>

- **Ans.** 128 S cm<sup>2</sup> mol<sup>-1</sup>
- 112. In a cell that utilises the reaction  $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(q)$  addition of  $H_{2}SO_{4}$ to cathode compartment, will
  - (1) lower the E and shift equilibrium to the left
  - (2) increases the E and shift equilibrium to the left
  - (3) increase the E and shift equilibrium to the right
  - (4) Lower the E and shift equilibrium to the right
- Ans. increase the E and shift equilibrium to the right
- 113. Which one the following statement regarding helium is incorrect?
  - (1) It is used to fill gas balloons instead of hydrogen because it is lighter and non inflammable
  - (2) It is used in gas cooled nuclear reactors
  - (3) It is used to produce and sustain powerful superconducting reagents
  - (4) It is used as cryogenic agent for carrying out experiments at low temperatures
- Ans. It is used to fill gas balloons instead of hydrogen because it is lighter and non – inflammable
- 114. Identify the correct statements regarding enzymes
  - (1) Enzymes are specific biological catalysts that can normally function at very high temperature (T ~ 1000 K)
  - (2) Enzymes are specific biological catalysts that the posses well defined active sites
  - (3) Enzymes are specific biological catalysts that can not be poisoned
  - (4) Enzymes are normally heterogeneous catalysts that are very specific in their action
- Ans. Enzymes are specific biological catalysts that the posses well – defined active sites
- 115. One mole of magnesium nitride on the reaction with an excess of water gives
  - (1) one mole of ammonia (3) two moles of ammonia
- (2) two moles of nitric acid (4) one mole of nitric acid

- Ans. two moles of ammonia
- 116. Which one of the following ores is best concentrated by froth – floatation method?
  - (1) Magnetite

(2) Malachite

(3) Galena

(4) Cassiterite

#### Ans. Galena

- 117. Beryllium and aluminium exhibit many properties which are similar. But the two elements differ in
  - (1) exhibiting maximum covalency in compound
  - (2) exhibiting amphoteric nature in their oxides
  - (3) forming covalent halides
  - (4) forming polymeric hydrides
- Ans. exhibiting maximum covalency in compound

118. Aluminium chloride exists as dimer,  $Al_2Cl_6$  in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives (1) Al<sup>3+</sup> + 3Cl<sup>-</sup> (2)  $AI_2O_3 + 6HCI$ (D)  $[AI(H_2O)_6]^{3+} + 3CI^{-}$ 

- (3) [Al(OH)<sub>6</sub>]<sup>3-</sup>
- **Ans.**  $[AI(H_2O)_6]^{3+} + 3CI^{-}$

- 119. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to
  - (1) an interaction with nitrogen of the air at very low temperatures
  - (2) an interaction with water vapour contained in the humid air
  - (3) a change in the partial pressure of oxygen in the air
  - (4) a change in the crystalline structure of tin
- Ans. a change in the crystalline structure of tin
- 120. The  $E^{\circ}_{M^{1^3}/M^{2^*}}$  values for Cr, Mn, Fe and Co are 0.41, +1.57, + 0.77 and +1.97 V respectively. For which one of these metals the change in oxidation state form +2 to +3 is easiest?
  - (1) Cr (2) Co (3) Fe (4) Mn
- Ans. Cr

121. Excess of KI reacts with CuSO<sub>4</sub> solution and then Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution is added to it. Which of the statements is incorrect for this reaction?

- $\begin{array}{ll} (1) \ Cu_2l_2 \ \text{is reduced} \\ (3) \ Na_2S_2O_3 \ \text{is oxidized} \\ \end{array} \begin{array}{ll} (2) \ \text{Evolved} \ l_2 \ \text{is reduced} \\ (4) \ Cul_2 \ \text{is formed} \\ \end{array}$
- **Ans.**  $Cul_2$  is formed
- 122. Among the properties (a) reducing (b) oxidising (c) complexing, the set of properties shown by CN<sup>-</sup> ion towards metal species is (1) a, b
  (2) a, b, c
  - (1) a, b (2) a, b, (3) c, a (4) b, c
- Ans. c, a
- 123. The coordination number of central metal atom in a complex is determined by
  - (1) the number of ligands around a metal ion bonded by sigma bonds
  - (2) the number of only anionic ligands bonded to the metal ion
  - (3) the number of ligands around a metal ion bonded by sigma and pi- bonds both
  - (4) the number of ligands around a metal ion bonded by pi-bonds
- **Ans.** the number of ligands around a metal ion bonded by sigma

124. Which one of the following complexes in an outer orbital complex? (1)  $12^{+}$ 

- (1)  $[Fe(CN)_6]^{4-}$  (2)  $[Ni(NH_3)_6]^{2+}$ (3)  $[Co(NH_3)_6]^{3+}$  (4)  $[Mn(CN)_6]^{4-}$
- **Ans.** [Ni(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup>
- 125. Coordination compound have great importance in biological systems. In this context which of the following statements is incorrect?
  - (1) Chlorophylls are green pigments in plants and contains calcium
  - (2) Carboxypeptidase A is an enzyme and contains zinc
  - (3) Cyanocobalamin is  $B_{12}$  and contains cobalt
  - (4) Haemoglobin is the red pigment of blood and contains iron

- Ans. Chlorophylls are green pigments in plants and contains calcium
- 126. Cerium (Z = 58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect?
  - (1) The common oxidation states of cerium are +3 and +4
  - (2) Cerium (IV) acts as an oxidizing agent
  - (3) The +4 oxidation state of cerium is not known in solutions
  - (4) The +3 oxidation state of cerium is more stable than the +4 oxidation state
- Ans. The +4 oxidation state of cerium is not known in solutions
- Which one the following has largest number of isomers? 127. (1)  $[Ru(NH_3)_4Cl_2^+]$ (2)  $[Co(en)_2Cl_2]^+$ 
  - (4) [Co(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup>
  - (3) [Ir(PR<sub>3</sub>)<sub>2</sub> H(CO)]<sup>2+</sup>
  - (R -= alkyl group, en = ethylenediamine)
- Ans.  $[Co(en)_2Cl_2]^+$
- 128. The correct order of magnetic moments (spin only values in B.M.) among is (1)  $[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$ (2)  $[Fe(CN)_6]^{-4} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ (3)  $[Fe(CN)_6]^4 > [MnCl_4]^2 > [CoCl_4]^2$ (4)  $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ (Atomic numbers: Mn = 25; Fe = 26, Co = 27)
- Ans.  $[MnCl_4]^{2-} > [CoCl_4]^{-2} > [Fe(CN)_6]^{-4}$
- 129. Consider the following nuclear reactions  $^{238}_{92}M \rightarrow ^{x}_{v}N + ^{4}_{2}He$  $^{x}_{v}N \rightarrow ^{A}_{B}L + 2\beta^{+}$ The number of neutrons in the element L is (1) 142 (2) 146 (3) 140 (4) 144

#### Ans. 144

130. The half – life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is

| (1) 1.042 g | (2) 4.167 g |
|-------------|-------------|
| (3) 3.125 g | (4) 2.084 g |

- Ans. 3.125 g
- 131. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is
  - (1)  $Fe_4[Fe(CN)_6]_3$ (2) Na<sub>4</sub>[Fe(CN)<sub>5</sub>NOS] (4)  $Na_3[Fe(CN)_6]$ (3) Fe(CN)<sub>3</sub>

#### **Ans.** $Fe_4[Fe(CN)_6]_3$

- 132. The ammonia evolved from the treatment of 0.30 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The excess of acid required 20 mL of 0.5 M sodium hydroxide solution hydroxide solutio for complete neutralization. The organic compound is
  - (1) acetamide (3) urea

- (2) thiourea
- (4) benzamide



H₃Ć

CH3

Ans.

Ċ<sub>2</sub>H<sub>5</sub>

ĊH3

Ċ₂H₅

H<sub>3</sub>C

- Consider the acidity of the carboxylic acids: 139.
  - (1) PhCOOH
  - (3)  $p NO_2C_6H_4COOH$

(2)  $O - NO_2C_6H_4COOH$ (4)  $m - NO_2C_6H_4COOH$ 

- Ans.  $0 - NO_2C_6H_4COOH$
- Which of the following is the strongest base? 140.



- 141. Which base is present in RNA but not in DNA?
  - (1) Uracil (2) Thymine (3) Guanine (4) Cytosine
- Ans. Uracil
- 142. The compound formed on heating chlorobenzene with chloral in the presence concentrated sulphuric acid is
  - (1) gammexene
  - (3) Freon

(2) hexachloroethane (4) DDT

- DDT Ans.
- 143. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is (1) CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> + NaCl
  - (3)  $CH_3COCI + C_2H_5OH + NaOH$
- (2)  $CH_3CI + C_2H_5COONa$ (4) CH<sub>3</sub>COONa + C<sub>2</sub>H<sub>5</sub>OH

- CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> + NaCl Ans.
- 144. Acetyl bromide reacts with excess of CH<sub>3</sub>MgI followed by treatment with a saturated solution of NH<sub>4</sub>Cl given (1) acetone (2) acetyl iodide
  - (3) 2- methyl -2- propanol
- (4) acetamide

- Ans. 2- methyl -2- propanol
- 145. Which one of the following reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
  - (1) Ethyl acetate (2) Butan -2-one
  - (3) Acetamide

- (4) Acetic acid

- Ans. Butan -2-one
- 146. Which of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid?
  - (1) Phenol

(2) Benzoic acid

(3) Butanal

- (4) Benzaldehyde

Ans. Benzaldehyde



148. Which of the following compound is not chiral?

CH<sub>3</sub>

- (1) 1- chloropentane
- (3) 1-chloro -2- methyl pentane

ÓН

- (2) 3-chloro-2- methyl pentane
- (4) 2- chloropentane

Ans. 1- chloropentane

H<sub>3</sub>C

149. Insulin production and its action in human body are responsible for the level of diabetes. This compound belongs to which of the following categories? (1) A co- enzyme (2) An antibiotic

(3) An enzyme

(4) A hormone

Ans. A hormone

| 150. | The smog is essentially caused by the presence of |                     |  |  |
|------|---------------------------------------------------|---------------------|--|--|
|      | (1) $O_2$ and $O_3$                               | (2) $O_3$ and $N_2$ |  |  |
|      | (3) Oxides of sulphur and nitrogen                | (4) $O_2$ and $N_2$ |  |  |

Oxides of sulphur and nitrogen Ans.

## SOLUTIONS

| 76.  | (3) | 77.  | (4) | 78.  | (3) | 79.  | (1) |
|------|-----|------|-----|------|-----|------|-----|
| 80.  | (3) | 81.  | (1) | 82.  | (2) | 83.  | (4) |
| 84.  | (3) | 85.  | (4) | 86.  | (3) | 87.  | (2) |
| 88.  | (3) | 89.  | (2) | 90.  | (1) | 91.  | (2) |
| 92.  | (3) | 93.  | (2) | 94.  | (4) | 95.  | (3) |
| 96.  | (2) | 97.  | (4) | 98.  | (2) | 99.  | (4) |
| 100. | (1) | 101. | (4) | 102. | (1) | 103. | (2) |
| 104. | (1) | 105. | (4) | 106. | (2) | 107. | (3) |
| 108. | (2) | 109. | (3) | 110. | (2) | 111. | (1) |
| 112. | (3) | 113. | (1) | 114. | (2) | 115. | (3) |
| 116. | (3) | 117. | (1) | 118. | (4) | 119. | (4) |
| 120. | (1) | 121. | (4) | 122. | (3) | 123. | (1) |
| 124. | (2) | 125. | (1) | 126. | (3) | 127. | (2) |
| 128. | (1) | 129. | (4) | 130. | (3) | 131. | (1) |
| 132. | (3) | 133. | (2) | 134. | (2) | 135. | (3) |
| 136. | (4) | 137. | (1) | 138. | (3) | 139. | (2) |
| 140. | (2) | 141. | (1) | 142. | (4) | 143. | (1) |
| 144. | (3) | 145. | (2) | 146. | (4) | 147. | (3) |
| 148. | (1) | 149. | (4) | 150. | (3) |      |     |
|      |     |      |     |      |     |      |     |

### SOLUTION

76.  $4f \xrightarrow{\qquad} n = 4$ | = 3m = -1 to + 1- 3 to + 3

- 77.  $24 \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$   $I = 1 \rightarrow p \longrightarrow 12$  $I = 2 \rightarrow d \longrightarrow 5$
- 78. Li<sup>+</sup> F<sup>-</sup> O<sup>-2</sup> B<sup>+3</sup>

2 10 3 0 3 9 8 р 79.  $\frac{1}{\lambda} = R \left[ \frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$  $= 1.097 \times 10^{7} \left(\frac{1}{1}\right)$  $\lambda = \frac{1}{1.097} \times 10^{-7} \text{m}$ 

е

- 80.  $H_2S \longrightarrow$ sp<sup>3</sup>  $\begin{array}{c} \mathsf{NH}_3 \longrightarrow \\ \mathsf{BF}_3 \longrightarrow \\ \mathsf{SiH}_4 \longrightarrow \end{array}$ sp<sup>3</sup> sp<sup>2</sup> SD<sup>3</sup>
- 82. Al, Si, P, S acidity of oxides increases
- 83. Bond order of NO = 2.5Bond order of  $NO^+ = 3$ Higher the bond order shorter is the bond length
- 84.  $O^{-1}(q) + e \longrightarrow O^{-2}(q)$ Due to the electronic repulsion, amount of the energy is needed to add electron

10

2

5

- Total no of valence electrons 86.  $= 3+7\times4+1 = 32$ Total No of hybrid orbital = 4  $\square$  Hybridisation = sp<sup>3</sup>
- $\frac{\mathsf{E}_1}{\mathsf{E}_2} = \frac{\mathsf{T}_1}{\mathsf{T}_2}$ 88.  $\frac{E_1}{E_2} = \frac{293}{313}$  $\Box$  factor =  $\frac{313}{293}$
- 89. sp<sup>3</sup>d<sup>2</sup> hybridisation confirms to octahedral or square bipyramidal configuration  $\therefore$  all the bond angles are 90° in the structure
- 90. Von't Hoffs factor (i) for Na<sub>2</sub>SO<sub>4</sub> is maximum i.e. 3( maximum no of particles)  $Na_2SO_4 \longrightarrow 2Na^+ + SO_4^-$
- 92. In Vander Waals equation 'b' is the excluded volume i.e. the volume occupied by the molecules

 $\frac{0.0001 \times 1000}{0.001} = 0.01 M$ 100

- 93. ☐ 6.02×10<sup>+20</sup> molecules of urea is present in<sup>=</sup>
- No. of gm equivalents of phosphorous acid 95. = No. of gm equivalents of KOH  $20 \times 0.1 \times 2$  (n = factor) = 0.1 ×V = 0.1 ×V

$$V = \frac{4}{0.1} = 40 \,\text{ml}$$

- 96. I the molecular weight of  $C_2H_5OH \& CH_3OCH_3$  are same so in its vapour phase at same temperature & pressure the densities will be same
- 97. Benzene in methanol breaks the H bonding of the alcohol making its boiling point decrease & there by its vapour pressure increases leading two +ve deviation.
- 100. Work done =  $-P(\Delta V)$ =  $-1 \times 10^5 [10^{-2} - 10^{-3}] = -900 \text{ J}$
- 102. t<sub>1/2</sub> = 15 minutes

   ∴ No. of half lives s =2
   (∴ for change of 0.1 to 0.025)
   is 30 minutes
- 103. Applying law of mass action
- 104. Kp = Kc (RT)<sup>∆n</sup>
- 105. As per property of equilibria reverse the equation & divide it by 2

107. 
$$E_{cell} = E_{RHS}^{\circ} - E_{LHS}^{\circ}$$
  
= (0.77) - (-0.14)  
= 0.91 V

108. Ksp =  $108s^5$  $1 \times 4^4 \times s^{1+4} = 256 s^5 = Ksp$ 

109. 
$$\therefore \log K_{eq} = \frac{nE^{\circ}}{0.0591} = \frac{1 \times 0.591}{0.0591}$$

$$\begin{array}{ll} \Rightarrow \mathsf{K}_{\mathsf{eq}} = 10^{10} \\ 110. & \mathsf{C} + \mathsf{O}_2 \longrightarrow \mathsf{CO}_2 \\ & 2\mathsf{CO} + \frac{1}{2} \mathsf{O}_2 \longrightarrow 2\mathsf{CO}_2 \\ & 2\mathsf{C} + \mathsf{O}_2 \longrightarrow 2\mathsf{CO} \\ & 2\mathsf{C} + \mathsf{O}_2 \longrightarrow 2\mathsf{CO} \end{array} \qquad \begin{array}{ll} \Delta \mathsf{H} = -393.5 \text{ kJ} \\ & \Delta \mathsf{H} = -283 \text{ kJ} \\ & \Delta \mathsf{H} = -110 \text{ kJ} \end{array}$$

111. 
$$\Lambda_{\text{NaCl}}^{\circ} = \lambda_{\text{Na}}^{\circ} + \lambda_{\text{Cl}}^{\circ} = 126 \dots (1)$$

$$\Lambda_{\text{KBr}}^{\circ} = \lambda_{\text{K}^{+}}^{\circ} + \lambda_{\text{Br}^{-}}^{\circ} = 152 \dots (2)$$

$$\Lambda_{\text{KCl}}^{\circ} = \lambda_{\text{K}^{+}}^{\circ} + \lambda_{\text{Cl}^{-}}^{\circ} = 150 \dots (3)$$

$$\Lambda_{\text{NaBr}}^{\circ} = \lambda_{\text{Na}}^{\circ} + \lambda_{\text{Br}^{-}}^{\circ}$$

$$\Lambda_{\text{NaBr}}^{\circ} = 126 + 152 - 150 = 128$$

- 115.  $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$
- 117. Be & Al have diagonal relationship & so possess similar properties but Be cannot form polymeric hydrides
- 120. I oxidation of potential of Cr is least & so it changes easily from +2 to +3 state
- 121. 2 CuSO<sub>4</sub> + 4KI (excess)  $\longrightarrow$  2K<sub>2</sub>SO<sub>4</sub> + Cu<sub>2</sub> I<sub>2</sub> + I<sub>2</sub><sup> $\uparrow$ </sup>

 $Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2Nal$ 

- 124.  $sp^3d^2$  : outer orbital octahedral complex
- 125. Chlorophyll contains magnesium instead of calcium
- 126. Oxidation potential of Ce(IV) in aqueous solution is supposed to be -ve i.e. -0.784 V at  $25^{\circ}C$

130. 
$$2^6 = \frac{200}{a - x}$$
  
(a - x) = 3.125 gm

135. It is having only sp<sup>3</sup> & sp hybridized carbon atom



137. Rate of reaction will be fastest when Z is CI because it is a weakest base

138. H H<sub>3</sub>C -  $C_2H_5$ 

- 146. Benzaldehyde does not contain  $\alpha$  hydrogen. Hence goes for cannizarro's reaction forming alcohol and acid
- 147.



Tertiory alcohols will undergo more easily dehydration than secondary & primary



149. Insulin