
  
Introduction to Ajax Introduction to Ajax 

Sang ShinSang Shin
Java Technology ArchitectJava Technology Architect
Sun Microsystems, Inc.Sun Microsystems, Inc.
sang.shin@sun.comsang.shin@sun.com
www.javapassion.comwww.javapassion.com



2

Agenda
1.What is Rich User Experience?
2.Rich Internet Application (RIA) Technologies
3.AJAX: Real-life examples & Usage cases 
4.What is and Why AJAX?
5.Technologies used in AJAX
6.Anatomy of AJAX operation
7.XMLHttpRequest Methods & Properties
8.DOM APIs & InnerHTML
9.AJAX Security
10.JavaScript debugging tools   



3

Topics Covered in Other Presentations
• AJAX Toolkits & Frameworks
• JSON (JavaScript Object Notation) 
• Dojo Toolkit
• DWR (Direct Web Remoting)
• AJAX-enabled JSF Components
• Google Web Toolkit (GWT)
• jMaki
• Phobos (MVC-based server-side scripting)
• Ajax and Portlet/Portal
• Wicket and Shale (as AJAX-aware Web applicaion 

frameworks)
• JavaScript Programming Best Practices



  
1. Rich User Experience1. Rich User Experience

for Web Applicationfor Web Application



5

Rich User Experience

• Take a look at a typical desktop application 
(Spreadsheet app, etc.)
• The program responses intuitively and quickly
• The program gives a user meaningful feedback's 

instantly
> A cell in a spreadsheet changes color when you hover your 

mouse over it
> Icons light up as mouse hovers them

• Things happen naturally
> No need to click a button or a link to trigger an event



6

Characteristics of Conventional Web 
Applications (Apps without Ajax)

• “Click, wait, and refresh” user interaction
> Any communication with the server forces a page refresh

• Synchronous “request/response” communication 
model
> The user has to wait for the response

• Page-driven: Workflow is based on pages
> Page-navigation logic is determined by the server



7

Issues of Conventional Web Application

• Interruption of user operation
> Users cannot perform any operation while waiting for a response

• Loss of operational context during refresh
> Loss of information on the screen
> Loss of scrolled position

• No instant feedback's to user activities
> A user has to wait for the next page

• Constrained by HTML
> Lack of useful widgets

These are the reasons why Rich Internet Application (RIA) 
technologies were born.



2. Rich Internet2. Rich Internet
Application (RIA) Application (RIA) 

TechnologiesTechnologies



9

Rich Internet Application (RIA)
Technologies
• Applet
• Macromedia Flash/Air
• Java WebStart
• DHTML
• DHTML with Hidden IFrame
• Ajax
• Sliverlight (Windows only)
• JavaFX (Java Platform)



10

Applet
• Pros:
> Can use full Java APIs
> Custom data streaming, graphic manipulation, threading, and 

advanced GUIs
> Well-established scheme

• Cons:
> Code downloading time could be significant 
> Reliability concern - a mal-functioning applet can crash a 

browser
• There is renewed interest in applet, however, as a 

RIA technology with Java SE 10 Update 10
> Solves old applet problems



11

Macromedia Flash
• Designed for playing interactive movies originally
• Programmed with ActionScript
• Implementation examples
> Macromedia Flex
> Laszlo suite (open source)

• Pros:
> Good for displaying vector graphics 

• Cons:
> Browser needs a Flash plug-in
> ActionScript is proprietary 



12

Java WebStart
• Desktop application delivered over the net
> Leverages the strengths of desktop apps and applet 

• Pros
> Desktop experience once loaded
> Leverages Java technology to its fullest extent
> Disconnected operation is possible
> Application can be digitally signed
> Incremental redeployment

• Cons
> Old JRE-based system do not work 
> First-time download time could be still significant



13

DHTML (Dynamic HTML)

• DHTML = JavaScript +  DOM + CSS
• Used for creating interactive applications
• No asynchronous communication, however
> Full page refresh still required
> Reason why it has only a limited success



14

DHTML with Hidden IFrame

• IFrame was introduced as a programmable layout to 
a web page
> An IFrame is represented as an element of a DOM tree
> You can move it, resize it, even hide it while the page is 

visible
• An hidden IFrame can add asynchronous behavior
> The visible user experience is uninterrupted – operational 

context is not lost
• It is still a hack



15

AJAX
• DHTML plus Asynchronous communication 

capability through XMLHttpRequest
• Pros
> Emerges as a viable RIA technology 
> Good industry momentum
> Several toolkits and frameworks are emerging
> No need to download code & no plug-in required

• Cons
> Still some browser incompatibility
> JavaScript is hard to maintain and debug

• AJAX-enabled JSF components will help



  
3. AJAX: 3. AJAX: 
Real-life Examples &Real-life Examples &
UsecasesUsecases



17

Real-Life Examples of AJAX Apps
• Google maps 
> http://maps.google.com/

• Goolgle Suggest
> http://www.google.com/webhp?complete=1&hl=en

• NetFlix
> http://www.netflix.com/BrowseSelection?lnkctr=nmhbs

• Gmail
> http://gmail.com/

• Yahoo Maps (new)
> http://maps.yahoo.com/

• Many more are popping everywhere



  
AJAX: AJAX: DemoDemo
Google Maps, Google Maps, 
Yahoo Maps NewYahoo Maps New



19

Key Aspects of Google Maps

• A user can drag the entire map by using the mouse
> Instead of clicking on a button or something
> The action that triggers the download of new map data is not 

a specific click on a link but a moving the map around with a 
mouse

• Behind the scene - AJAX is used
> The map data is requested and downloaded asynchronously 

in the background
• Other parts of the page remains the same
> No loss of operational context



20

Usage cases for AJAX
• Real-time server-side input form data validation
> User IDs, serial numbers, postal codes
> Removes the need to have validation logic at both client side 

for user responsiveness and at server side for security and 
other reasons

• Auto-completion
> Email address, name, or city name may be auto-completed as 

the user types
• Master detail operation
> Based on a user selection, more  detailed information can be 

fetched and displayed



21

Usage cases for AJAX

• Advanced GUI widgets and controls
> Controls such as tree controls, menus, and progress bars 

may be provided that do not require page refreshes
• Refreshing data
> HTML pages may poll data from a server for up-to-date data 

such as scores, stock quotes, weather, or application-specific 
data



  
Demo: AJAX Sample AppsDemo: AJAX Sample Apps

javapassion.com/handsonlabjavapassion.com/handsonlab
s/ajaxbasics2/#Exercise_1s/ajaxbasics2/#Exercise_1



23

Demo Scenario

• Run sample AJAX applications within NetBeans IDE
> Auto completion
> Data validation
> Progress bar

• You can try this demo yourself 
> These applications are provided as part of the hands-on lab.
> www.javapassion.com/handsonlabs/4257_ajaxbasics2.zip



  
4. AJAX:4. AJAX:
What is and Why AJAX?What is and Why AJAX?



25

Why AJAX?

• Intuitive and natural user interaction
> No clicking required
> Mouse movement is a sufficient event trigger

• "Partial screen update" replaces the "click, wait, and 
refresh" user interaction model
> Only user interface elements that contain new information are 

updated asynchronously (no interruption to user operation)
> The rest of the user interface remains displayed without 

interruption (no loss of operational context)
• Data-driven (as opposed to page-driven)
> UI is handled in the client while the server provides data



26

Why AJAX?

• Asynchronous communication replaces 
"synchronous request/response model."
> A user can continue to use the application while the client 

program requests information from the server in the 
background

> Separation of displaying from data fetching



27

Uninterrupted
user operation
while data is 
being fetched

Interrupted user
operation while
the data is being
fetched



28



  
5. AJAX:5. AJAX:
Technologies Used Technologies Used 
in AJAXin AJAX



30

Technologies Used In AJAX
• Javascript
> Loosely typed scripting language
> JavaScript function is called when an event in a page occurs
> Glue for the whole AJAX operation

• DOM
> Represents the structure of XML and HTML documents
> API for accessing and manipulating structured documents

• CSS
> Allows for a clear separation of the presentation style from the 

content and may be changed programmatically by JavaScript
• XMLHttpRequest
> JavaScript object that performs asynchronous interaction with the 

server



31

XMLHttpRequest

• JavaScript object
• Adopted by modern browsers
> Mozilla™, Firefox, Safari, and Opera

• Communicates with a server via standard HTTP 
GET/POST
• XMLHttpRequest object works in the background for 

performing asynchronous communication with the 
backend server
> Does not interrupt user operation



32

Server-Side AJAX Request 
Processing
• Server programming model remains the same
> It receives standard HTTP GETs/POSTs
> Can use Servlet, JSP, JSF, whatever web technologies...

• With minor caveats
> Could have more frequent and finer-grained requests from 

clients (design issue)
> Response content type can be 
> text/xml
> text/plain
> text/json
> text/javascript 



  
6. AJAX: 6. AJAX: Anatomy OfAnatomy Of
AJAX InteractionAJAX Interaction
using “Data Validation”using “Data Validation”
Sample ApplicationSample Application  



34

Anatomy of an AJAX Interaction
(Data Validation Example)



35

Steps of AJAX Operation 
1.A client event occurs
2.An XMLHttpRequest object is created
3.The XMLHttpRequest object is configured
4.The XMLHttpRequest object makes an async. request
5.The ValidateServlet returns an XML document 

containing the result
6.The XMLHttpRequest object calls the callback() function 

and processes the result
7.The HTML DOM is updated



36

1. A Client event occurs
• A JavaScript function is called as the result of an 

event
• Example: validateUserId() JavaScript function is 

mapped as a event handler to a onkeyup event on 
input form field whose id is set to “userid”

<input type="text"
            size="20"  
              id="userid"
            name="id"
         onkeyup="validateUserId();">



37

2. An XMLHttpRequest object is 
created 

var req;
function initRequest() {
    if (window.XMLHttpRequest) {
        req = new XMLHttpRequest();
    } else if (window.ActiveXObject) {
        isIE = true;
        req = new ActiveXObject("Microsoft.XMLHTTP");
    }
}

function validateUserId() {
    initRequest();
    req.onreadystatechange = processRequest;
    if (!target) target = document.getElementById("userid");
    var url = "validate?id=" + escape(target.value);    
    req.open("GET", url, true); 
    req.send(null);   
}



38

3. An XMLHttpRequest object is 
configured with a callback function

var req;
function initRequest() {
    if (window.XMLHttpRequest) {
        req = new XMLHttpRequest();
    } else if (window.ActiveXObject) {
        isIE = true;
        req = new ActiveXObject("Microsoft.XMLHTTP");
    }
}

function validateUserId() { 
    initRequest();
    req.onreadystatechange = processRequest; // callback function
    if (!target) target = document.getElementById("userid");
    var url = "validate?id=" + escape(target.value);    
    req.open("GET", url, true); 
    req.send(null);   
}



39

4. XMLHttpRequest object makes an async. 
request
function initRequest() {
    if (window.XMLHttpRequest) {
        req = new XMLHttpRequest();
    } else if (window.ActiveXObject) {
        isIE = true;
        req = new ActiveXObject("Microsoft.XMLHTTP");
    }
}

function validateUserId() {
    initRequest();
    req.onreadystatechange = processRequest;
    if (!target) target = document.getElementById("userid");
    var url = "validate?id=" + escape(target.value);    
    req.open("GET", url, true); 
    req.send(null);   
}

• URL is set to validate?id=greg



40

5. The ValidateServlet returns an XML 
document containing the results (Server)

  public  void doGet(HttpServletRequest request, HttpServletResponse  response)
        throws IOException, ServletException {
        
    String targetId = request.getParameter("id");

    if ((targetId != null) && !accounts.containsKey(targetId.trim())) {
            response.setContentType("text/xml");
            response.setHeader("Cache-Control", "no-cache");
            response.getWriter().write("<valid>true</valid>");
        } else {
            response.setContentType("text/xml");
            response.setHeader("Cache-Control", "no-cache");
            response.getWriter().write("<valid>false</valid>");
        }
    }



41

6. XMLHttpRequest object calls callback() 
function and processes the result 

• The XMLHttpRequest object was configured to call 
the processRequest() function when there is a state 
change to the readyState of the XMLHttpRequest 
object

function processRequest() {
    if (req.readyState == 4) {
        if (req.status == 200) {
            var message = ...;
              
         
...



42

7. The HTML DOM is updated

• JavaScript technology gets a reference to any 
element in a page using DOM API
• The recommended way to gain a reference to an 

element is to call 
> document.getElementById("userIdMessage"), where 

"userIdMessage" is the ID attribute of an element appearing in 
the HTML document

• JavaScript technology may now be used to modify 
the element's attributes; modify the element's style 
properties; or add, remove, or modify child elements



43

1. <script type="text/javascript">
2. function setMessageUsingDOM(message) {
3.      var userMessageElement = document.getElementById("userIdMessage");
4.      var messageText;
5.      if (message == "false") {
6.          userMessageElement.style.color = "red";
7.          messageText = "Invalid User Id";
8.      } else {
9.          userMessageElement.style.color = "green";
10.         messageText = "Valid User Id";
11.     }
12.     var messageBody = document.createTextNode(messageText);
13.     // if the messageBody element has been created simple replace it otherwise
14.     // append the new element
15.     if (userMessageElement.childNodes[0]) {
16.         userMessageElement.replaceChild(messageBody,
17.                                                                  userMessageElement.childNodes[0]);
18.     } else {
19.         userMessageElement.appendChild(messageBody);
20.     }
21.}
22.</script>
23.<body>
24.    <div id="userIdMessage"></div>
25.</body>



  
7. AJAX: 7. AJAX: 
XMLHttpRequestXMLHttpRequest
Methods & PropertiesMethods & Properties



45

XMLHttpRequest Methods
• open(“HTTP method”, “URL”, syn/asyn)
> Assigns HTTP method, destination URL, mode

• send(content)
> Sends request including string or DOM object data

• abort()
> Terminates current request

• getAllResponseHeaders()
> Returns headers (labels + values) as a string

• getResponseHeader(“header”)
> Returns value of a given header

• setRequestHeader(“label”,”value”)
> Sets Request Headers before sending



46

XMLHttpRequest Properties
• onreadystatechange
> Set with an JavaScript event handler that fires at each state 

change
• readyState – current status of request
> 0 = uninitialized
> 1 = loading
> 2 = loaded
> 3 = interactive (some data has been returned)
> 4 = complete

• status
> HTTP Status returned from server: 200 = OK



47

XMLHttpRequest Properties
• responseText
> String version of data returned from the server

• responseXML
> XML document of data returned from the server

• statusText
> Status text returned from server



  
8. AJAX:  DOM API &8. AJAX:  DOM API &
InnerHTMLInnerHTML



49

Browser and DOM
• Browsers maintain an object representation of the 

documents being displayed 
> In the form of Document Object Model (DOM)
> It is readily available as document JavaScript object 

• APIs are available that allow JavaScript code to 
modify the DOM programmatically 



50

DOM APIs vs. innerHTML
• DOM APIs provide a means for JavaScript code to 

navigate/modify the content in a page
function setMessageUsingDOM(message) {

     var userMessageElement = document.getElementById("userIdMessage");
     var messageText;
     if (message == "false") {
         userMessageElement.style.color = "red";
         messageText = "Invalid User Id";
     } else {
         userMessageElement.style.color = "green";
         messageText = "Valid User Id";
     }
    var messageBody = document.createTextNode(messageText);
     if (userMessageElement.childNodes[0]) {
         userMessageElement.replaceChild(messageBody,
               userMessageElement.childNodes[0]);
     } else {
         userMessageElement.appendChild(messageBody);
     }

}



51

DOM APIs vs. innerHTML
• Using innerHTML is easier: Sets or retrieves the HTML 

between the start and end tags of the object

function setMessageUsingDOM(message) {
     var userMessageElement = document.getElementById("userIdMessage");
     var messageText;
     if (message == "false") {
         userMessageElement.style.color = "red";
         messageText = "Invalid User Id";
     } else {
         userMessageElement.style.color = "green";
         messageText = "Valid User Id";
     }
    userMessageElement.innerHTML = messageText;

}



  
Do I Have To UseDo I Have To Use
XmlHttpRequest toXmlHttpRequest to
Write Ajax application?Write Ajax application?



53

Ajax Frameworks and Toolkits

• In general, you are going to use Ajax frameworks 
and toolkits
• These toolkits provide higher-level API, which hides 

the complexity of XmlHttpRequest



9. AJAX Security9. AJAX Security



55

AJAX Security: Server Side

• AJAX-based Web applications use the same server-
side security schemes of regular Web applications
> You specify authentication, authorization, and data protection 

requirements in your web.xml file (declarative) or in your 
program (programatic)

• AJAX-based Web applications are subject to the 
same security threats as regular Web applications
> Cross-site scripting
> Injection flaw 



56

AJAX Security: Client Side

• JavaScript code is visible to a user/hacker
> Hacker can use the JavaScript code for inferring server side 

weaknesses
> Obfustication or compression can be used

• JavaScript code is downloaded from the server and 
executed (“eval”) at the client
> Can compromise the client by mal-intended code

• Downloaded JavaScript code is constrained by 
sand-box security model
> Can be relaxed for signed JavaScript 



57

Recommendations from OWASP
• Use .innerText instead of .innerHtml
• Don't use eval
• Encode data before its use
• Avoid serialization
• Avoid building XML dynamically



10. JavaScript Development 10. JavaScript Development 
Tools (Try these tools with Tools (Try these tools with 
“AJAX Basics & Dev.“AJAX Basics & Dev.
Tools” Hands-on Lab)Tools” Hands-on Lab)



59

Development Tools for NetBeans IDE

• Building AJAX Applications over NetBeans is not that 
much different from building regular Web applications

• NetBeans supports JavaScript editor and debugger



60

Development Tools on Mozilla 
Browser
• Mozilla FireBug debugger (add-on)
> This is the most comprehensive and most useful JavaScript 

debugger
> This tool does things all other tools do and more 

• Mozilla JavaScript console
• Mozilla DOM inspector (comes with Firefox package)
• Mozilla Venkman JavaScript debugger (add-on)
• Mozilla LiveHTTPHeaders HTTP monitor (similar to 

NetBeans HTTP monitor)



61

Mozilla FireBug Debugger
• Spy on XMLHttpRequest traffic
• JavaScript debugger for stepping through code one line at 

a time
• Inspect HTML source, computed style, events, layout and 

the DOM
• Status bar icon shows you when there is an error in a web 

page
• A console that shows errors from JavaScript and CSS
• Log messages from JavaScript in your web page to the 

console (bye bye "alert debugging")
• An JavaScript command line (no more "javascript:" in the 

URL bar)



  
11. AJAX:11. AJAX:
Current Issues & FuturesCurrent Issues & Futures



63

Current Issues of AJAX
• Complexity is increased
> Server side developers will need to understand that 

presentation logic will be required in the HTML client pages as 
well as in the server-side logic

> Page developers must have JavaScript technology skills
• AJAX-based applications can be difficult 

to debug, test, and maintain
> JavaScript is hard to test - automatic testing is hard 
> Weak modularity in JavaScript - namespace collision possible
> Lack of design patterns or best practice guidelines yet

• Toolkits/Frameworks still maturing



64

Current Issues of AJAX
• No standardization of the XMLHttpRequest yet
> Future version of IE will address this

• No support of XMLHttpRequest in old browsers
> Iframe will help

• JavaScript technology dependency & incompatibility
> Must be enabled for applications to function
> Still some browser incompatibilities

• JavaScript code is visible to a hacker
> Poorly designed JavaScript code can invite security problem



65

Browsers Which Support 
XMLHttpRequest
• Mozilla Firefox 1.0 and above
• Netscape version 7.1 and above
• Apple Safari 1.2 and above.
• Microsoft Internet Exporer 5 and above
• Konqueror
• Opera 7.6 and above



66

AJAX Futures

• AJAX-enabled JSF Component libraries 
• Standardization of XMLHttpRequest
• Better browser support
• Better and Standardized Framework support 
• More best practice guidelines in the programming 

model



  
AJAX BasicsAJAX Basics

Sang ShinSang Shin
Java Technology ArchitectJava Technology Architect
Sun Microsystems, Inc.Sun Microsystems, Inc.
sang.shin@sun.comsang.shin@sun.com
www.javapassion.comwww.javapassion.com


