
Compiler Construction
using Flex and Bison

Anthony A. Aaby
Walla Walla College

cs.wwc.edu
aabyan@wwc.edu

Version of February 25, 2004

Copyright 2003 Anthony A. Aaby
Walla Walla College
204 S. College Ave.
College Place, WA 99324
E-mail: aabyan@wwc.edu
LaTeX sources available by request.

This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub

This book is distributed in the hope it will be useful, but without any war-
ranty; without even the implied warranty of merchantability or fitness for a
particular purpose.

The author encourages wide distribution of this book for personal and com-
mercial use, provided the above copyright notice remains intact and the method
adheres to the provisions of the Open Publication Liscense located at

http://www.opencontent.org/openpub

In summary, you may copy and distribute this book free of charge or for a
profit. No explicit permission is required from the author for reproduction of
this book in any medium, physical or electronic.

Note, derivative works and translations of this document must include the
original copyright notice must remain intact.

To Pamela Aaby

i

ii

Contents

1 Introduction 1

2 The Parser 5

3 The Scanner 9

4 The Context 13

5 Optimization 19

6 Virtual Machines 21

7 Code Generation 27

8 Peephole Optimization 37

9 Further Reading 39

10 Exercises 41

A Simple - The complete implementation 47
A.1 The parser: Simple.y . 47
A.2 Directions . 51
A.3 The scanner: Simple.lex . 52
A.4 The symbol table: ST.h . 53
A.5 The code generator: CG.h . 54
A.6 The stack machine: SM.h . 55
A.7 Sample program: test simple . 57

B Lex/Flex 59
B.1 Lex/Flex Examples . 59
B.2 The Lex/Flex Input File . 61
B.3 The Generated Scanner . 66
B.4 Interfacing with Yacc/Bison . 67

iii

C Yacc/Bison 69
C.1 An Overview . 69
C.2 A Yacc/Bison Example . 71
C.3 The Yacc/Bison Input File . 72
C.4 Yacc/Bison Output: the Parser File 86
C.5 Parser C-Language Interface . 87
C.6 Debugging Your Parser . 90
C.7 Stages in Using Yacc/Bison . 95

iv

Chapter 1

Introduction

A language translator is a program which translates programs written in a source
language into an equivalent program in an object language. The source language
is usually a high-level programming language and the object language is usually
the machine language of an actual computer. From the pragmatic point of view,
the translator defines the semantics of the programming language, it transforms
operations specified by the syntax into operations of the computational model to
some real or virtual machine. This chapter shows how context-free grammars are
used in the construction of language translators. Since the translation is guided
by the syntax of the source language, the translation is said to be syntax-directed.

A compiler is a translator whose source language is a high-level language and
whose object language is close to the machine language of an actual computer.
The typical compiler consists of several phases each of which passes its output
to the next phase

• The lexical phase (scanner) groups characters into lexical units or tokens.
The input to the lexical phase is a character stream. The output is a
stream of tokens. Regular expressions are used to define the tokens recog-
nized by a scanner (or lexical analyzer). The scanner is implemented as a
finite state machine.

Lex and Flex are tools for generating scanners: programs which recognize
lexical patterns in text. Flex is a faster version of Lex. In this chapter
Lex/Flex refers to either of the tools. The appendix on Lex/Flex is a
condensation of the manual page “flexdoc” by Vern Paxon.

• The parser groups tokens into syntactical units. The output of the parser
is a parse tree representation of the program. Context-free grammars are
used to define the program structure recognized by a parser. The parser
is implemented as a push-down automata.

1

Yacc and Bison are tools for generating parsers: programs which recognize
the structure grammatical structure of programs. Bison is a faster version
of Yacc. In this chapter, Yacc/Bison refers to either of these tools. The
sections on Yacc/Bison are a condensation and extension of the document
“BISON the Yacc-compatible Parser Generator” by Charles Donnelly and
Richard Stallman.

• The semantic analysis phase analyzes the parse tree for context-sensitive
information often called the static semantics. The output of the semantic
analysis phase is an annotated parse tree. Attribute grammars are used
to describe the static semantics of a program.
This phase is often combined with the parser. During the parse, infor-
mation concerning variables and other objects is stored in a symbol table.
The information is utilized to perform the context-sensitive checking.

• The optimizer applies semantics preserving transformations to the anno-
tated parse tree to simplify the structure of the tree and to facilitate the
generation of more efficient code.

• The code generator transforms the simplified annotated parse tree into
object code using rules which denote the semantics of the source language.
The code generator may be integrated with the parser.

• The peep-hole optimizer examines the object code, a few instructions at a
time, and attempts to do machine dependent code improvements.

In contrast with compilers an interpreter is a program which simulates the
execution of programs written in a source language. Interpreters may be used
either at the source program level or an interpreter may be used it interpret an
object code for an idealized machine. This is the case when a compiler generates
code for an idealized machine whose architecture more closely resembles the
source code.

There are several other types of translators that are often used in conjunction
with a compiler to facilitate the execution of programs. An assembler is a
translator whose source language (an assembly language) represents a one-to-one
transliteration of the object machine code. Some compilers generate assembly
code which is then assembled into machine code by an assembler. A loader
is a translator whose source and object languages are machine language. The
source language programs contain tables of data specifying points in the program
which must be modified if the program is to be executed. A link editor takes
collections of executable programs and links them together for actual execution.
A preprocessor is a translator whose source language is an extended form of
some high-level language and whose object language is the standard form of the
high-level language.

For illustration purposes, we will construct a compiler for a simple imperative
programming language called Simple. The context-free grammar for Simple is

2

program ::= LET [declarations] IN command sequence END

declarations ::= INTEGER [id seq] IDENTIFIER .

id seq ::= id seq... IDENTIFIER ,

command sequence ::= command... command

command ::= SKIP ;
| IDENTIFIER := expression ;
| IF exp THEN command sequence ELSE command sequence FI ;
| WHILE exp DO command sequence END ;
| READ IDENTIFIER ;
| WRITE expression ;

expression ::= NUMBER | IDENTIFIER | ’(’ expression ’)’
| expression + expression | expression − expression
| expression ∗ expression | expression / expression
| expression ˆ expression
| expression = expression
| expression < expression
| expression > expression

Figure 1.1: Simple

given in Figure 1.1 where the non-terminal symbols are given in all lower case,
the terminal symbols are given in all caps or as literal symbols and, where the
literal symbols conflict with the meta symbols of the EBNF, they are enclosed
with single quotes. The start symbol is program. While the grammar uses
upper-case to high-light terminal symbols, they are to be implemented in lower
case.

There are two context sensitive requirements; variables must be declared
before they are referenced and a variable may be declared only once.

3

4

Chapter 2

The Parser

A parser is a program which determines if its input is syntactically valid and
determines its structure. Parsers may be hand written or may be automatically
generated by a parser generator from descriptions of valid syntactical structures.
The descriptions are in the form of a context-free grammar. Parser generators
may be used to develop a wide range of language parsers, from those used in
simple desk calculators to complex programming languages.

Yacc is a program which given a context-free grammar, constructs a C pro-
gram which will parse input according to the grammar rules. Yacc was developed
by S. C. Johnson an others at AT&T Bell Laboratories. Yacc provides for se-
mantic stack manipulation and the specification of semantic routines. A input
file for Yacc is of the form:

C and parser declarations
%%
Grammar rules and actions
%%
C subroutines

The first section of the Yacc file consists of a list of tokens (other than single
characters) that are expected by the parser and the specification of the start
symbol of the grammar. This section of the Yacc file may contain specification
of the precedence and associativity of operators. This permits greater flexibility
in the choice of a context-free grammar. Addition and subtraction are declared
to be left associative and of lowest precedence while exponentiation is declared
to be right associative and to have the highest precedence.

%start program
%token LET INTEGER IN
%token SKIP IF THEN ELSE END WHILE DO READ WRITE

5

%token NUMBER
%token IDENTIFIER
%left ’-’ ’+’
%left ’*’ ’/’
%right ’ˆ ’
%%
Grammar rules and actions
%%
C subroutines

The second section of the Yacc file consists of the context-free grammar for
the language. Productions are separated by semicolons, the ’::=’ symbol of the
BNF is replaced with ’:’, the empty production is left empty, non-terminals are
written in all lower case, and the multicharacter terminal symbols in all upper
case. Notice the simplification of the expression grammar due to the separation
of precedence from the grammar.

C and parser declarations
%%
program : LET declarations IN commands END ;
declarations : /* empty */

| INTEGER id seq IDENTIFIER ’.’
;
id seq : /* empty */

| id seq IDENTIFIER ’,’
;
commands : /* empty */

| commands command ’;’
;
command : SKIP

| READ IDENTIFIER
| WRITE exp
| IDENTIFIER ASSGNOP exp
| IF exp THEN commands ELSE commands FI
| WHILE exp DO commands END

;
exp : NUMBER

| IDENTIFIER
| exp ’<’ exp
| exp ’=’ exp
| exp ’>’ exp
| exp ’+’ exp
| exp ’−’ exp
| exp ’∗’ exp
| exp ’/’ exp
| exp ’ˆ ’ exp
| ’(’ exp ’)’

;
%%
C subroutines

The third section of the Yacc file consists of C code. There must be a
main() routine which calls the function yyparse(). The function yyparse() is

6

the driver routine for the parser. There must also be the function yyerror()
which is used to report on errors during the parse. Simple examples of the
function main() and yyerror() are:

C and parser declarations
%%
Grammar rules and actions
%%
main(int argc, char *argv[])
{ extern FILE *yyin;

++argv; −−argc;
yyin = fopen(argv[0], ”r”);
yydebug = 1;
errors = 0;
yyparse ();

}
yyerror (char *s) /* Called by yyparse on error */
{

printf (”%s\n”, s);
}

The parser, as written, has no output however, the parse tree is implicitly
constructed during the parse. As the parser executes, it builds an internal
representation of the the structure of the program. The internal representation
is based on the right hand side of the production rules. When a right hand
side is recognized, it is reduced to the corresponding left hand side. Parsing is
complete when the entire program has been reduced to the start symbol of the
grammar.

Compiling the Yacc file with the command yacc -vd file.y (bison -vd file.y)
causes the generation of two files file.tab.h and file.tab.c. The file.tab.h contains
the list of tokens is included in the file which defines the scanner. The file
file.tab.c defines the C function yyparse() which is the parser.

Yacc is distributed with the Unix operating system while Bison is a product
of the Free Software Foundation, Inc.

For more information on using Yacc/Bison see the appendex, consult the
manual pages for bison, the paper Programming Utilities and Libraries LR
Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974
and the document “BISON the Yacc-compatible Parser Generator” by Charles
Donnelly and Richard Stallman.

7

8

Chapter 3

The Scanner

A scanner (lexical analyzer) is a program which recognizes patterns in text.
Scanners may be hand written or may be automatically generated by a lexical
analyzer generator from descriptions of the patterns to be recognized. The
descripions are in the form of regular expressions.

Lex is a lexical analyzer generator developed by M. E. Lesk and E. Schmidt
of AT&T Bell Laboratories. The input to Lex is a file containing tokens defined
using regular expressions. Lex produces an entire scanner module that can be
compiled and linked to other compiler modules. A input file for Lex is of the
form:

Lex generates a file containing the function yylex() which returns an integer
denoting the token recognized.

C and scanner declarations
%%
Token definitions and actions
%%
C subroutines

The first section of the Lex file contains the C declaration to include the file
(simple.tab.h) produced by Yacc/Bison which contains the definitions of the the
multi-character tokens. The first section also contains Lex definitions used in
the regular expressions. In this case, DIGIT is defined to be one of the symbols
0 through 9 and ID is defined to be a lower case letter followed by zero or more
letters or digits.

%{
#include ”Simple.tab.h” /* The tokens */
%}

9

DIGIT [0-9]
ID [a-z][a-z0-9]*
%%
Token definitions and actions
%%
C subroutines

The second section of the Lex file gives the regular expressions for each token
to be recognized and a corresponding action. Strings of one or more digits are
recognized as an integer and thus the value INT is returned to the parser. The
reserved words of the language are strings of lower case letters (upper-case may
be used but must be treated differently). Blanks, tabs and newlines are ignored.
All other single character symbols are returned as themselves (the scanner places
all input in the string yytext).

C and scanner declarations
%%
”:=” { return(ASSGNOP); }
{DIGIT}+ { return(NUMBER); }
do { return(DO); }
else { return(ELSE); }
end { return(END); }
fi { return(FI); }
if { return(IF); }
in { return(IN); }
integer { return(INTEGER); }
let { return(LET); }
read { return(READ); }
skip { return(SKIP); }
then { return(THEN); }
while { return(WHILE); }
write { return(WRITE); }
{ID} { return(IDENTIFIER); }
[\t\n]+ /* blank, tab, new line: eat up whitespace */
. { return(yytext[0]); }
%%
C subroutines

The values associated with the tokens are the integer values that the scanner
returns to the parser upon recognizing the token.

Figure 3.1 gives the format of some of the regular expressions that may be
used to define the tokens. There is a global variable yylval is accessible by
both the scanner and the parser and is used to store additional information
about the token.

The third section of the file is empty in this example but may contain C
code associated with the actions.

Compiling the Lex file with the command lex file.lex (flex file.lex) results in
the production of the file lex.yy.c which defines the C function yylex(). One each
invocation, the function yylex() scans the input file an returns the next token.

10

. any character except newline

x match the character ‘x’

rs the regular expression r followed by the regular expression s;
called “concatenation”

r|s either an r or an s

(r) match an r; parentheses are used to provide grouping.

r* zero or more r’s, where r is any regular expression

r+ one or more r’s

[xyz] a “character class”; in this case, the pattern matches either
an ’x’, a ’y’, or a ‘z’.

[abj-oZ] a “character class” with a range in it; matches an ‘a’, a
‘b’, any letter from ‘j’ through ‘o’, or a ‘Z’.

{name} the expansion of the “name” definition.

\X if X is an ‘a’, ‘b’, ‘f’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ANSI-C inter-
pretation of \x.

"[+xyz]+\"+foo” the literal string: [xyz]"foo

Figure 3.1: Lex/Flex Regular Expressions

11

Lex is distributed with the Unix operating system while Flex is a product
of the Free Software Foundation, Inc.

For more information on using Lex/Flex consult the manual pages lex, flex
and flexdoc, and see the paper LEX – Lexical Analyzer Generator by M. E.
Lesk and E. Schmidt.

12

Chapter 4

The Context

Lex and Yacc files can be extended to handle the context sensitive information.
For example, suppose we want to require that, in Simple, we require that vari-
ables be declared before they are referenced. Therefore the parser must be able
to compare variable references with the variable declarations.

One way to accomplish this is to construct a list of the variables during the
parse of the declaration section and then check variable references against the
those on the list. Such a list is called a symbol table. Symbol tables may be
implemented using lists, trees, and hash-tables.

We modify the Lex file to assign the global variable yylval to the identifier
string since the information will be needed by the attribute grammar.

The Symbol Table Module

To hold the information required by the attribute grammar we construct a sym-
bol table. A symbol table contains the environmental information concerning
the attributes of various programming language constructs. In particular, the
type and scope information for each variable.

The symbol table will be developed as a module to be included in the
yacc/bison file.

The symbol table for Simple consists of a linked list of identifiers, initially
empty. Here is the declaration of a node, initialization of the list to empty and

struct symrec
{
char *name; /* name of symbol */

13

struct symrec *next; /* link field */
};
typedef struct symrec symrec;
symrec *sym table = (symrec *)0;
symrec *putsym ();
symrec *getsym ();

and two operations: putsym to put an identifier into the table,

symrec *
putsym (char *sym name)
{
symrec *ptr;
ptr = (symrec *) malloc (sizeof(symrec));
ptr− >name = (char *) malloc (strlen(sym name)+1);
strcpy (ptr− >name,sym name);
ptr− >next = (struct symrec *)sym table;
sym table = ptr;
return ptr;
}

and getsym which returns a pointer to the symbol table entry corresponding to
an identifier.

symrec *
getsym (char *sym name)
{
symrec *ptr;
for (ptr = sym table; ptr != (symrec *) 0;
ptr = (symrec *)ptr− >next)
if (strcmp (ptr− >name,sym name) == 0)
return ptr;
return 0;
}

The Parser Modifications

The Yacc/Bison file is modified to include the symbol table and with routines
to perform the installation of an indentifier in the symbol table and to perform
context checking.

%{
#include <stdlib.h> /* For malloc in symbol table */
#include <string.h> /* For strcmp in symbol table */
#include <stdio.h> /* For error messages */
#include ”ST.h” /* The Symbol Table Module */
#define YYDEBUG 1 /* For debugging */
install (char *sym name)
{ symrec *s;
s = getsym (sym name);

14

if (s == 0)
s = putsym (sym name);
else { errors++;
printf(”%s is already defined\n”, sym name);
}
}
context check(char *sym name)
{ if (getsym(sym name) == 0)
printf(”%s is an undeclared identifier\n”, sym name);
}
%}
Parser declarations
%%
Grammar rules and actions
%%
C subroutines

Since the scanner (the Lex file) will be returning identifiers, a semantic record
(static semantics) is required to hold the value and IDENT is associated with
that semantic record.

C declarations
%union { /* SEMANTIC RECORD */
char *id; /* For returning identifiers */
}
%token INT SKIP IF THEN ELSE FI WHILE DO END
%token <id> IDENT /* Simple identifier */
%left ’-’ ’+’
%left ’*’ ’/’
%right ’ ’̂
%%
Grammar rules and actions
%%
C subroutines

The context free-grammar is modified to include calls to the install and context
checking functions. $n is a variable internal to Yacc which refers to the semantic
record corresponding the the nth symbol on the right hand side of a production.

C and parser declarations
%%
...
declarations : /* empty */
| INTEGER id seq IDENTIFIER ’.’ { install($3); }
;
id seq : /* empty */
| id seq IDENTIFIER ’,’ { install($2); }
;
command : SKIP
| READ IDENTIFIER { context check($2); }
| IDENT ASSGNOP exp { context check($2); }
...
exp : INT

15

| IDENT { context check($2); }
...
%%
C subroutines

In this implementation the parse tree is implicitly annotated with the infor-
mation concerning whether a variable is assigned to a value before it is referenced
in an expression. The annotations to the parse tree are collected into the symbol
table.

The Scanner Modifications

The scanner must be modified to return the literal string associated each iden-
tifier (the semantic value of the token). The semantic value is returned in the
global variable yylval. yylval’s type is a union made from the %union dec-
laration in the parser file. The semantic value must be stored in the proper
member of the union. Since the union declaration is:

%union { char *id;

}

the semantic value is copied from the global variable yytext (which contains the
input text) to yylval.id. Since the function strdup is used (from the library
string.h) the library must be included. The resulting scanner file is:

%{

#include <string.h> /* for strdup */

#include "Simple.tab.h" /* for token definitions and yylval */

%}

DIGIT [0-9]

ID [a-z][a-z0-9]*

%%

":=" { return(ASSGNOP); }

{DIGIT}+ { return(NUMBER); }

do { return(DO); }

else { return(ELSE); }

end { return(END); }

fi { return(FI); }

if { return(IF); }

in { return(IN); }

integer { return(INTEGER); }

let { return(LET); }

read { return(READ); }

skip { return(SKIP); }

then { return(THEN); }

while { return(WHILE); }

write { return(WRITE); }

{ID} { yylval.id = (char *) strdup(yytext);

return(IDENTIFIER);}

16

[\t\n]+ /* eat up whitespace */

. { return(yytext[0]);}

%%

Intermediate Representation

Most compilers convert the source code to an intermedate representation dur-
ing this phase. In this example, the intermediate representation is a parse tree.
The parse tree is held in the stack but it could be made explicit. Other pop-
ular choices for intermediate representation include abstract parse trees, three-
address code, also known as quadruples, and post fix code. In this example we
have chosen to bypass the generation of an intermediate representation and go
directly to code generation. The principles illustrated in the section on code
generation also apply to the generation of intermediate code.

17

18

Chapter 5

Optimization

It may be possible to restructure the parse tree to reduce its size or to present
a parse to the code generator from which the code generator is able to produce
more efficient code. Some optimizations that can be applied to the parse tree
are illustrated using source code rather than the parse tree.

Constant folding:

I := 4 + J - 5; --> I := J - 1;
or
I := 3; J := I + 2; --> I := 3; J := 5

Loop-Constant code motion:

From:
while (count < limit) do

INPUT SALES;
VALUE := SALES * (MARK_UP + TAX);
OUTPUT := VALUE;
COUNT := COUNT + 1;

end; -->
to:

TEMP := MARK_UP + TAX;
while (COUNT < LIMIT) do

INPUT SALES;
VALUE := SALES * TEMP;
OUTPUT := VALUE;
COUNT := COUNT + 1;

end;

19

Induction variable elimination: Most program time is spent in the body
of loops so loop optimization can result in significant performance im-
provement. Often the induction variable of a for loop is used only within
the loop. In this case, the induction variable may be stored in a register
rather than in memory. And when the induction variable of a for loop is
referenced only as an array subscript, it may be initialized to the initial
address of the array and incremented by only used for address calculation.
In such cases, its initial value may be set

From:
For I := 1 to 10 do

A[I] := A[I] + E
to:

For I := address of first element in A
to address of last element in A
increment by size of an element of A do

A[I] := A[I] + E

Common subexpression elimination:

From:
A := 6 * (B+C);
D := 3 + 7 * (B+C);
E := A * (B+C);

to:
TEMP := B + C;
A := 6 * TEMP;
D := 3 * 7 * TEMP;
E := A * TEMP;

Strength reduction:

2*x --> x + x
2*x --> shift left x

Mathematical identities:

a*b + a*c --> a*(b+c)
a - b --> a + (- b)

We do not illustrate an optimizer in the parser for Simpile.

20

Chapter 6

Virtual Machines

A computer constructed from actual physical devices is termed an actual com-
puter or hardware computer. From the programming point of view, it is the
instruction set of the hardware that defines a machine. An operating system
is built on top of a machine to manage access to the machine and to provide
additional services. The services provided by the operating system constitute
another machine, a virtual machine.

A programming language provides a set of operations. Thus, for exam-
ple, it is possible to speak of a Pascal computer or a Scheme computer. For
the programmer, the programming language is the computer; the programming
language defines a virtual computer. The virtual machine for Simple consists
of a data area which contains the association between variables and values and
the program which manipulates the data area.

Between the programmer’s view of the program and the virtual machine pro-
vided by the operating system is another virtual machine. It consists of the data
structures and algorithms necessary to support the execution of the program.
This virtual machine is the run time system of the language. Its complexity
may range in size from virtually nothing, as in the case of FORTRAN, to an
extremely sophisticated system supporting memory management and inter pro-
cess communication as in the case of a concurrent programming language like
SR. The run time system for Simple as includes the processing unit capable of
executing the code and a data area in which the values assigned to variables are
accessed through an offset into the data area.

User programs constitute another class of virtual machines.

21

A Stack Machine

The S-machine 1 is a stack machine organized to simplify the implementation
of block structured languages. It provides dynamic storage allocation through
a stack of activation records. The activation records are linked to provide sup-
port for static scoping and they contain the context information to support
procedures.

Machine Organization: The S-machine consists of two stores, a program
store, C(organized as an array and is read only), and a data store, S(organized
as a stack). There are four registers, an instruction register, IR, which
contains the instruction which is being interpreted, the stack top register,
T, which contains the address of the top element of the stack, the program
address register, PC, which contains the address of the next instruction
to be fetched for interpretation, and the current activation record register,
AR, which contains the base address of the activation record of the proce-
dure which is being interpreted. Each location of C is capable of holding
an instruction. Each location of S is capable of holding an address or an
integer. Each instruction consists of three fields, an operation code and
two parameters.

Instruction Set: S-codes are the machine language of the S-machine. S-codes
occupy four bytes each. The first byte is the operation code (op-code).
There are nine basic S-code instructions, each with a different op-code.
The second byte of the S-code instruction contains either 0 or a lexical
level offset, or a condition code for the conditional jump instruction. The
last two bytes taken as a 16-bit integer form an operand which is a literal
value, or a variable offset from a base in the stack, or a S-code instruction
location, or an operation number, or a special routine number, depending
on the op-code.
The action of each instruction is described using a mixture of English lan-
guage description and mathematical formalism. The mathematical for-
malism is used to note changes in values that occur to the registers and
the stack of the S-machine. Data access and storage instructions require
an offset within the activation record and the level difference between the
referencing level and the definition level. Procedure calls require a code
address and the level difference between the referencing level and the def-
inition level.

Instruction Operands Comments

READ 0,N Input integer in to location N: S(N) := Input

WRITE Output top of stack: Output := S(T); T:= T-1

OPR Arithmetic and logical operations
0,0 process and function, return operation

1This is an adaptation of: Niklaus Wirth, Algorithms + Data Structures = Programs
Prentice-Hall, Englewood Cliffs, N.J., 1976.

22

T:= AR-1; AR:= S(T+2); P:= S(T+3)

ADD ADD: S(T-1) := S(T-1) + S(T); T := T-1
SUB SUBTRACT: S(T-1) := S(T-1) - S(T); T := T-1
MULT MULTIPLY: S(T-1) := S(T-1) * S(T); T := T-1
DIV DIVIDE: S(T-1) := S(T-1) / S(T); T := T-1
MOD MOD: S(T-1) := S(T-1) mod S(T); T := T-1
EQ TEST EQUAL:

S(T-1) := if S(T-1) = S(T) then 1 else 0; T:= T-1

LT TEST LESS THAN:
S(T-1) := if S(T-1) < S(T) then 1 else 0; T:= T-1

GT TEST GREATER THAN:
S(T-1) := if S(T-1) > S(T) then 1 else 0; T:= T-1

LD INT 0,N LOAD literal value onto stack: T:= T+1; S(T):= N

LD VAR L,N LOAD value of variable at level offset L, base
offset N in stack onto top of stack
T:= T + 1; S(T):= S(f(L,AR)+N)+3

STORE L,N store value on top of stack into variable location
at level offset L, base offset N in stack
S(f(ld,AR)+os+3):= S(T); T:= T - 1

CAL L,N call PROC or FUNC at S-code location N declared
at level offset L
S(T+1):= f(ld,AR);{Static Link}
S(T+2):= AR; {Dynamic Link}
S(T+3):= P; {Return Address}
AR:= T+1; {Activation Record}
P:= cos; {Program Counter}
T:= T+3 {Stack Top}

CAL 255,0 call procedure address in memory: POP address, PUSH return
address, JUMP to address

DATA 0,NN ADD NN to stack pointer T := T+NN

GOTO 0,N JUMP: P := N

JMP FALSE C,N JUMP: if S(T) = C then P:= N; T:= T-1

Where the static level difference between the current procedure and the called procedure is ld.
os is the offset within the activation record, ld is the static level difference between the
current activation record and the activation record in which the value is to be stored and

f(ld,a) = if i=0 then a else f(i-1,S(a))

Operation: The registers and the stack of the S-machine are initialized as
follows:

P = 0. {Program Counter}
AR = 0; {Activation Record}
T = 2; {Stack Top}
S[0] := 0; {Static Link}
S[1] := 0; {Static Dynamic Link}
S[2] := 0; {Return Address}

The machine repeatedly fetches the instruction at the address in the reg-
ister P, increments the register P and executes the instruction until the
register P contains a zero.

23

execution-loop : I:= C(P);
P:= P+1;
interpret(I);
if { P ≤ 0 -> halt

& P > 0 -> execution-loop }

The Stack Machine Module

The implementation of the stack machine is straight forward.

The instruction set and the structure of an instruction are defined as follows:

/* OPERATIONS: Internal Representation */

enum code_ops { HALT, STORE, JMP_FALSE, GOTO,

DATA, LD_INT, LD_VAR,

READ_INT, WRITE_INT,

LT, EQ, GT, ADD, SUB, MULT, DIV, PWR };

/* OPERATIONS: External Representation */

char *op_name[] = {"halt", "store", "jmp_false", "goto",

"data", "ld_int", "ld_var",

"in_int", "out_int",

"lt", "eq", "gt", "add", "sub", "mult", "div", "pwr" };

struct instruction

{

enum code_ops op;

int arg;

};

Memory is separtated into two segments, a code segment and a run-time data
and expression stack.

struct instruction code[999];

int stack[999];

The definitions of the registers, the program counter pc, the instruction register
ir, the activation record pointer ar (which points to be begining of the current
activation record), and the pointer to the top of the stack top, are straight
forward.

int pc = 0;

struct instruction ir;

int ar = 0;

int top = 0;

The fetch-execute cycle repeats until a halt instruction is encountered.

24

void fetch_execute_cycle()

{ do { /* Fetch */

ir = code[pc++];

/* Execute */

switch (ir.op) {

case HALT : printf("halt\n"); break;

case READ_INT : printf("Input: ");

scanf("%ld", &stack[ar+ir.arg]); break;

case WRITE_INT : printf("Output: %d\n", stack[top--]); break;

case STORE : stack[ir.arg] = stack[top--]; break;

case JMP_FALSE : if (stack[top--] == 0)

pc = ir.arg;

break;

case GOTO : pc = ir.arg; break;

case DATA : top = top + ir.arg; break;

case LD_INT : stack[++top] = ir.arg; break;

case LD_VAR : stack[++top] = stack[ar+ir.arg]; break;

case LT : if (stack[top-1] < stack[top])

stack[--top] = 1;

else stack[--top] = 0;

break;

case EQ : if (stack[top-1] == stack[top])

stack[--top] = 1;

else stack[--top] = 0;

break;

case GT : if (stack[top-1] > stack[top])

stack[--top] = 1;

else stack[--top] = 0;

top--;

break;

case ADD : stack[top-1] = stack[top-1] + stack[top];

top--;

break;

case SUB : stack[top-1] = stack[top-1] - stack[top];

top--;

break;

case MULT : stack[top-1] = stack[top-1] * stack[top];

top--;

break;

case DIV : stack[top-1] = stack[top-1] / stack[top];

top--;

break;

case PWR : stack[top-1] = stack[top-1] * stack[top];

top--;

break;

default : printf("%sInternal Error: Memory Dump\n");

break;

}

}

while (ir.op != HALT);

}

25

26

Chapter 7

Code Generation

As the source program is processed, it is converted to an internal form. The
internal representation in the example is that of an implicit parse tree. Other
internal forms may be used which resemble assembly code. The internal form is
translated by the code generator into object code. Typically, the object code is
a program for a virtual machine. The virtual machine chosen for Simple consists
of three segments. A data segment, a code segment and an expression stack.

The data segment contains the values associated with the variables. Each
variable is assigned to a location which holds the associated value. Thus, part
of the activity of code generation is to associate an address with each variable.
The code segment consists of a sequence of operations. Program constants
are incorporated in the code segment since their values do not change. The
expression stack is a stack which is used to hold intermediate values in the
evaluation of expressions. The presence of the expression stack indicates that
the virtual machine for Simple is a “stack machine”.

Declaration translation

Declarations define an environment. To reserve space for the data values, the
DATA instruction is used.

integer x,y,z. DATA 2

27

Statement translation

The assignment, if, while, read and write statements are translated
as follows:

x := expr code for expr
STORE X

if cond then code for cond
S1 BR_FALSE L1

else code for S1
S2 BR L2

end L1: code for S2
L2:

while cond do L1: code for cond
S BR_FALSE L2

end code for S
BR L1

L2:

read X IN_INT X

write expr code for expr
OUT_INT

If the code is placed in an array, then the label addresses must be back-patched
into the code when they become available.

Expression translation

Expressions are evaluated on an expression stack. Expressions are translated as
follows:

constant LD_INT constant

variable LD variable

e1 op e2 code for e1
code for e2
code for op

28

The Code Generator Module

The data segment begins with an offset of zero and space is reserved, in the
data segment, by calling the function data location which returns the address
of the reserved location.

int data_offset = 0;

int data_location() { return data_offset++; }

The code segment begins with an offset of zero. Space is reserved, in the
code segment, by calling the function reserve loc which returns the address
of the reserved location. The function gen label returns the value of the code
offset.

int code_offset = 0;

int reserve_loc()

{

return code_offset++;

}

int gen_label()

{

return code_offset;

}

The functions reserve loc and gen label are used for backpatching code.

The functions gen code and back patch are used to generate code. gen code
generates code at the current offset while back patch is used to generate code
at some previously reserved address.

void gen_code(enum code_ops operation, int arg)

{ code[code_offset].op = operation;

code[code_offset++].arg = arg;

}

void back_patch(int addr, enum code_ops operation, int arg)

{

code[addr].op = operation;

code[addr].arg = arg;

}

The Symbol Table Modifications

The symbol table record is extended to contain the offset from the base address
of the data segment (the storage area which is to contain the values associated
with each variable) and the putsym function is extended to place the offset into
the record associated with the variable.

29

struct symrec

{

char *name; /* name of symbol */

int offset; /* data offset */

struct symrec *next; /* link field */

};

...

symrec * putsym (char *sym_name)

{

symrec *ptr;

ptr = (symrec *) malloc (sizeof(symrec));

ptr->name = (char *) malloc (strlen(sym_name)+1);

strcpy (ptr->name,sym_name);

ptr->offset = data_location();

ptr->next = (struct symrec *)sym_table;

sym_table = ptr;

return ptr;

}

...

The Parser Modifications

As an example of code generation, we extend our Lex and Yacc files for Simple to
generate code for a stack machine. First, we must extend the Yacc and Lex files
to pass the values of constants from the scanner to the parser. The definition
of the semantic record in the Yacc file is modified that the constant may be
returned as part of the semantic record. and to hold two label identifiers since
two labels will be required for the if and while commands. The token type of
IF and WHILE is <lbls> to provide label storage for backpatching. The function
newlblrec generates the space to hold the labels used in generating code for the If
and While statements. The context check routine is extended to generate code.

%{#include <stdio.h> /* For I/O */

#include <stdlib.h> /* For malloc here and in symbol table */

#include <string.h> /* For strcmp in symbol table */

#include "ST.h" /* Symbol Table */

#include "SM.h" /* Stack Machine */

#include "CG.h" /* Code Generator */

#define YYDEBUG 1 /* For Debugging */

int errors; /* Error Count-incremented in CG, ckd here */

struct lbs /* For labels: if and while */

{

int for_goto;

int for_jmp_false;

};

struct lbs * newlblrec() /* Allocate space for the labels */

{

return (struct lbs *) malloc(sizeof(struct lbs));

}

install (char *sym_name)

{

30

symrec *s;

s = getsym (sym_name);

if (s == 0)

s = putsym (sym_name);

else { errors++;

printf("%s is already defined\n", sym_name);

}

}

context_check(enum code_ops operation, char *sym_name)

{ symrec *identifier;

identifier = getsym(sym_name);

if (identifier == 0)

{ errors++;

printf("%s", sym_name);

printf("%s\n", " is an undeclared identifier");

}

else gen_code(operation, identifier->offset);

}

%}

%union semrec /* The Semantic Records */

{

int intval; /* Integer values */

char *id; /* Identifiers */

struct lbs *lbls /* For backpatching */

}

%start program

%token <intval> NUMBER /* Simple integer */

%token <id> IDENTIFIER /* Simple identifier */

%token <lbls> IF WHILE /* For backpatching labels */

%token SKIP THEN ELSE FI DO END

%token INTEGER READ WRITE LET IN

%token ASSGNOP

%left ’-’ ’+’

%left ’*’ ’/’

%right ’^’

%%

/* Grammar Rules and Actions */

%%

/* C subroutines */

The parser is extended to generate and assembly code. The code imple-
menting the if and while commands must contain the correct jump addresses.
In this example, the jump destinations are labels. Since the destinations are not
known until the entire command is processed, back-patching of the destination
information is required. In this example, the label identifier is generated when
it is known that an address is required. The label is placed into the code when
its position is known. An alternative solution is to store the code in an array
and back-patch actual addresses.

The actions associated with code generation for a stack-machine based ar-
chitecture are added to the grammar section. The code generated for the dec-
laration section must reserve space for the variables.

/* C and Parser declarations */

31

%%

program : LET

declarations

IN { gen_code(DATA, sym_table->offset); }

commands

END { gen_code(HALT, 0); YYACCEPT; }

;

declarations : /* empty */

| INTEGER id_seq IDENTIFIER ’.’ { install($3); }

;

id_seq : /* empty */

| id_seq IDENTIFIER ’,’ { install($2); }

;

The IF and WHILE commands require backpatching.

commands : /* empty */

| commands command ’;’

;

command : SKIP

| READ IDENTIFIER { context_check(READ_INT, $2); }

| WRITE exp { gen_code(WRITE_INT, 0); }

| IDENTIFIER ASSGNOP exp { context_check(STORE, $1); }

| IF exp { $1 = (struct lbs *) newlblrec();

$1->for_jmp_false = reserve_loc(); }

THEN commands { $1->for_goto = reserve_loc(); }

ELSE { back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label()); }

commands

FI { back_patch($1->for_goto, GOTO, gen_label()); }

| WHILE { $1 = (struct lbs *) newlblrec();

$1->for_goto = gen_label(); }

exp { $1->for_jmp_false = reserve_loc(); }

DO

commands

END { gen_code(GOTO, $1->for_goto);

back_patch($1->for_jmp_false,

JMP_FALSE,

gen_label()); }

;

The code generated for expressions is straight forward.

exp : NUMBER { gen_code(LD_INT, $1); }

| IDENTIFIER { context_check(LD_VAR, $1); }

| exp ’<’ exp { gen_code(LT, 0); }

| exp ’=’ exp { gen_code(EQ, 0); }

| exp ’>’ exp { gen_code(GT, 0); }

| exp ’+’ exp { gen_code(ADD, 0); }

| exp ’-’ exp { gen_code(SUB, 0); }

| exp ’*’ exp { gen_code(MULT, 0); }

32

| exp ’/’ exp { gen_code(DIV, 0); }

| exp ’^’ exp { gen_code(PWR, 0); }

| ’(’ exp ’)’

;

%%

/* C subroutines */

The Scanner Modifications

Then the Lex file is extended to place the value of the constant into the semantic
record.

%{

#include <string.h> /* for strdup */

#include "simple.tab.h" /* for token definitions and yylval */

%}

DIGIT [0-9]

ID [a-z][a-z0-9]*

%%

{DIGIT}+ { yylval.intval = atoi(yytext);

return(INT); }

...

{ID} { yylval.id = (char *) strdup(yytext);

return(IDENT); }

[\t\n]+ /* eat up whitespace */

. { return(yytext[0]);}

%%

An Example

To illustrate the code generation capabilities of the compiler, Figure 7.1 is a
program in Simp and Figure 7.2.

33

let
integer n,x,n.

in
read n;
if n < 10 then x := 1; else skip; fi;
while n < 10 do x := 5*x; n := n+1; end;
skip;
write n;
write x;

end

Figure 7.1: A Simple program

34

0: data 1
1: in_int 0
2: ld_var 0
3: ld_int 10
4: lt 0
5: jmp_false 9
6: ld_int 1
7: store 1
8: goto 9
9: ld_var 0
10: ld_int 10
11: lt 0
12: jmp_false 22
13: ld_int 5
14: ld_var 1
15: mult 0
16: store 1
17: ld_var 0
18: ld_int 1
19: add 0
20: store 0
21: goto 9
22: ld_var 0
23: out_int 0
24: ld_var 1
25: out_int 0
26: halt 0

Figure 7.2: Stack code

35

36

Chapter 8

Peephole Optimization

Following code generation there are further optimizations that are possible.
The code is scanned a few instructions at a time (the peephole) looking for
combinations of instructions that may be replaced by more efficient combina-
tions. Typical optimizations performed by a peephole optimizer include copy
propagation across register loads and stores, strength reduction in arithmetic
operators and memory access, and branch chaining.

We do not illustrate a peephole optimizer for Simp.

x := x + 1 ld x ld x
inc inc
store x dup

y := x + 3 ld x
ld 3 ld 3
add add
store y store y

x := x + z ld x
ld z ld z
add add
store x store x

37

38

Chapter 9

Further Reading

For information on compiler construction using Lex and Yacc see[?]. Pratt [?]
emphasizes virtual machines.

39

40

Chapter 10

Exercises

The exercises which follow vary in difficulty. In each case, determine what
modifications must be made to the grammar, the symbol table and to the stack
machine code.

1. Re-implement the symbol table as a binary search tree.

2. Re-implement the symbol table as a hash table.

3. Re-implement the symbol table, the code generator and the stack machine
as C++ classes.

4. Extend the Micro Compiler with the extensions listed below. The exten-
sions require the modification of the scanner to handle the new tokens and
modifications to the parser to handle the extended grammar.

(a) Declarations: Change the semantic processing of identifier references
to require previous declaration.

(b) Real literals and variables: Extend the symbol-table routines to store
a type attribute with each identifier. Extend the semantic routines
that generate code to consider the types of literals and variables they
receive as parameters.

(c) Multiplication and division: Make appropriate changes to the seman-
tic routines to handle code generation based on the new tokens.

(d) if and while statements: Semantic routines must generate the proper
tests and jumps.

(e) Parameterless procedures: The symbol table must be extended to
handle nested scopes and the semantic routines must be extended to
generate code to manage control transfer at each point of call and at
the beginning and end of each procedure body.

41

Optional additions include:

(a) An interpreter for the code produced by the compiler

(b) Substitution of a table-driven parser for the recursive descent parser
in the Micro compiler.

5. Extend the Micro-II compiler. A self-contained description of Macro is
included in the cs360/compiler tools directory. In brief, the following ex-
tensions are required.

(a) Scanner extensions to handle the new tokens, use of parser generator
to produce new tables(20 points).

(b) Declarations of integer and real variables(10 points).

(c) Integer literals, expressions involving integers, I/O for integers, and
output for strings(10 points).

(d) The loop and exit statements and addition of the else and elsif
parts to the if statement(20 points).

(e) Recursive procedures with parameters(8 points for simple procedures,
8 points for recursion, 12 points for parameters).

(f) Record declarations and field references(8 points).

(g) Array declarations and element references(12 points).

(h) Package declarations and qualified name references(12 points).

The total number of points is 120.

6. The compiler is to be completely written from scratch. The list below
assigns points to each of the features of the language, with a basic sub-
set required of all students identified first. All of the other features are
optional.

Basic Subset (130 points)

(a) (100 points)
i. Integer, Real, Boolean types (5 points)
ii. Basic expressions involving Integer, Real and Boolean types

(+,−, ∗, /, not, and or, abs, mod, **, <,<=, >, >=,=
, / =) (30 points).

iii. Input/Output
A. Input of Integer, Real, Boolean scalars(5 points).
B. Output of String literals and Integer, Real and Boolean

expressions(excluding formatting)(5 points).
iv. Block structure (including declaration of local variables and

constants) (20 points).
v. Assignment statement (10 points).
vi. if, loop, and exit statements (10, 5, 10 points respectively)

42

(b) (30 points) Procedures and scalar-valued functions of no argu-
ments (including nesting and non-local variables).

Optional Features (336 points possible)

(a) loop statements (15 points total)
i. in and in reverse forms (10 points)
ii. while form (5 points)

(b) Arrays (30 points total)
i. One-dimensional, compile-time bounds, including First and

Last attributes (10 points)
ii. Multi-dimensional, compile-time bounds, including First and

Last attributes (5-points)
iii. Elaboration-time bounds (9 points)
iv. Subscript checking (3 points)
v. Record base type (3 points)

(c) Boolean short-circuit operators (and then, or else) (12 points)
(d) Strings (23 points total)

i. Basic string operations (string variables, string assigns, all
string operators (&, Substr, etc), I/O of strings) (10 points)

ii. Unbounded-length strings (5 points)
iii. Full garbage collection of unbounded-length strings (8 points)

(e) Records (15 points total)
i. Basic features (10 points)
ii. Fields that are compile-time bounded arrays (2 points)
iii. Fields that are elaboration-time sized (both arrays and records)

(3 points)
(f) Procedures and functions(53 points total)

i. Scalar parameters (15 points)
ii. Array arguments and array-valued functions (compiler-time

bounds) (7 points)
iii. Array arguments and array-valued functions (elaboration-

time bounds) (5 points)
iv. Record arguments and record-value functions (4 points)
v. Conformant array parameters (i.e. array declarations of the

form type array (T range <>) of T2) (8 points)
vi. Array-valued functions (elaboration-sized bounds) (3 points)
vii. Array-valued functions (conformant bounds) (4 points)
viii. Forward definition of procedures and functions (3 points)
ix. String arguments and string-valued functions (4 points)

(g) case statement (20 points total)
i. Jump code (10 points)

43

ii. If-then-else code (4 points)
iii. Search-table code (6 points)

(h) Constrained subtypes (including First and Last attributes) (10
points total)
i. Run-time range checks (7 points)
ii. Compile-time range checks (3 points)

(i) Folding of scalar constant expressions (8 points)
(j) Initialized variables (10 points total).

i. Compile-time values, global (without run-time code) (3 points)
ii. Compile-time values, local (2 points)
iii. Elaboration-time values (2 points)
iv. Record fields (3 points)

(k) Formatted writes (3 points).
(l) Enumerations (18 points total).

i. Declaration of enumeration types; variables, assignment, and
comparison operations (9 points)

ii. Input and Output of enumeration values (5 points)
iii. Succ, Pred, Char, and Val attributes (4 points)

(m) Arithmetic type conversion (3 points).
(n) Qualified names (from blocks and subprograms) (3 points).
(o) Pragmata (2 points).
(p) Overloading (25 points total)

i. Subprogram identifier (18 points)
ii. Operators (7 points)

(q) Packages (55 points total).
i. Combined packages (containing both declaration and body

parts); qualified access to visible part (20 points)
ii. Split packages (with distinct declaration and body parts) (5

points)
iii. Private types (10 points)
iv. Separate compilation of package bodies (20 points)

(r) Use statements (11 points)
(s) Exceptions (including exception declarations, raise statements,

exception handlers, predefined exceptions) (20 points).

Extra credit project extensions:

• Language extensions – array I/O, external procedures, sets, pro-
cedures as arguments, extended data types.

• Program optimizations – eliminating redundant operations, stor-
ing frequently used variables or expressions in registers, optimiz-
ing Boolean expressions, constant-folding.

44

• High-quality compile-time and run-time diagnostincs – “Syntax
error: operator expected”, or “Subscript out of range in line 21;
illegal value: 137”. Some form of syntactic error repair might be
included.

45

46

Appendix A

Simple - The complete
implementation

A.1 The parser: Simple.y

%{/***

Compiler for the Simple language

***/
/*===

C Libraries, Symbol Table, Code Generator & other C code
===*/
#include <stdio.h> /* For I/O */
#include <stdlib.h> /* For malloc here and in symbol table */
#include <string.h> /* For strcmp in symbol table */
#include "ST.h" /* Symbol Table */
#include "SM.h" /* Stack Machine */
#include "CG.h" /* Code Generator */
#define YYDEBUG 1 /* For Debugging */
int errors; /* Error Count */
/*---

The following support backpatching
---*/
struct lbs /* Labels for data, if and while */
{
int for_goto;
int for_jmp_false;

47

};
struct lbs * newlblrec() /* Allocate space for the labels */
{
return (struct lbs *) malloc(sizeof(struct lbs));

}
/*---

Install identifier & check if previously defined.
---*/
install (char *sym_name)
{

symrec *s;
s = getsym (sym_name);
if (s == 0)

s = putsym (sym_name);
else { errors++;

printf("%s is already defined\n", sym_name);
}

}
/*---

If identifier is defined, generate code
---*/
context_check(enum code_ops operation, char *sym_name)
{ symrec *identifier;
identifier = getsym(sym_name);
if (identifier == 0)

{ errors++;
printf("%s", sym_name);
printf("%s\n", " is an undeclared identifier");

}
else gen_code(operation, identifier->offset);

}
/*===

SEMANTIC RECORDS
===*/
%}
%union semrec /* The Semantic Records */
{
int intval; /* Integer values */
char *id; /* Identifiers */
struct lbs *lbls; /* For backpatching */

}
/*===

TOKENS
===*/
%start program
%token <intval> NUMBER /* Simple integer */

48

%token <id> IDENTIFIER /* Simple identifier */
%token <lbls> IF WHILE /* For backpatching labels */
%token SKIP THEN ELSE FI DO END
%token INTEGER READ WRITE LET IN
%token ASSGNOP
/*===

OPERATOR PRECEDENCE
===*/
%left ’-’ ’+’
%left ’*’ ’/’
%right ’^’
/*===

GRAMMAR RULES for the Simple language
===*/
%%
program : LET

declarations
IN { gen_code(DATA, data_location() - 1); }

commands
END { gen_code(HALT, 0); YYACCEPT; }

;
declarations : /* empty */

| INTEGER id_seq IDENTIFIER ’.’ { install($3); }
;
id_seq : /* empty */

| id_seq IDENTIFIER ’,’ { install($2); }
;
commands : /* empty */

| commands command ’;’
;
command : SKIP

| READ IDENTIFIER { context_check(READ_INT, $2); }
| WRITE exp { gen_code(WRITE_INT, 0); }
| IDENTIFIER ASSGNOP exp { context_check(STORE, $1); }

| IF exp { $1 = (struct lbs *) newlblrec();
$1->for_jmp_false = reserve_loc(); }

THEN commands { $1->for_goto = reserve_loc(); }
ELSE { back_patch($1->for_jmp_false,

JMP_FALSE,
gen_label()); }

commands
FI { back_patch($1->for_goto, GOTO, gen_label()); }

| WHILE { $1 = (struct lbs *) newlblrec();
$1->for_goto = gen_label(); }

49

exp { $1->for_jmp_false = reserve_loc(); }
DO

commands
END { gen_code(GOTO, $1->for_goto);

back_patch($1->for_jmp_false,
JMP_FALSE,
gen_label()); }

;
exp : NUMBER { gen_code(LD_INT, $1); }

| IDENTIFIER { context_check(LD_VAR, $1); }
| exp ’<’ exp { gen_code(LT, 0); }
| exp ’=’ exp { gen_code(EQ, 0); }
| exp ’>’ exp { gen_code(GT, 0); }
| exp ’+’ exp { gen_code(ADD, 0); }
| exp ’-’ exp { gen_code(SUB, 0); }
| exp ’*’ exp { gen_code(MULT, 0); }
| exp ’/’ exp { gen_code(DIV, 0); }
| exp ’^’ exp { gen_code(PWR, 0); }
| ’(’ exp ’)’

;
%%
/*===

MAIN
===*/
main(int argc, char *argv[])
{ extern FILE *yyin;
++argv; --argc;
yyin = fopen(argv[0], "r");
/*yydebug = 1;*/
errors = 0;
yyparse ();
printf ("Parse Completed\n");
if (errors == 0)
{ print_code ();
fetch_execute_cycle();

}
}
/*===

YYERROR
===*/
yyerror (char *s) /* Called by yyparse on error */
{
errors++;
printf ("%s\n", s);

}
/**************************** End Grammar File ***************************/

50

A.2 Directions

Directions: this file contains a sample terminal session.

> bison -d Simple.y
or

> bison -dv Simple.y
Simple.y contains 39 shift/reduce conflicts.
> gcc -c Simple.tab.c
> flex Simple.lex
> gcc -c lex.yy.c
> gcc -o Simple Simple.tab.o lex.yy.o -lm
> Simple test_simple
Parse Completed
0: data 1
1: in_int 0
2: ld_var 0
3: ld_int 10
4: lt 0
5: jmp_false 9
6: ld_int 1
7: store 1
8: goto 9
9: ld_var 0
10: ld_int 10
11: lt 0
12: jmp_false 22
13: ld_int 5
14: ld_var 1
15: mult 0
16: store 1
17: ld_var 0
18: ld_int 1
19: add 0
20: store 0
21: goto 9
22: ld_var 0
23: out_int 0
24: ld_var 1
25: out_int 0
26: halt 0

Input: 6
Output: 10
Output: 625

51

A.3 The scanner: Simple.lex

/***

Scanner for the Simple language

***/
%{
/*===

C-libraries and Token definitions
===*/
#include <string.h> /* for strdup */
/*#include <stdlib.h> */ /* for atoi */
#include "Simple.tab.h" /* for token definitions and yylval */
%}
/*===

TOKEN Definitions
===*/
DIGIT [0-9]
ID [a-z][a-z0-9]*
/*===

REGULAR EXPRESSIONS defining the tokens for the Simple language
===*/
%%
":=" { return(ASSGNOP); }
{DIGIT}+ { yylval.intval = atoi(yytext);

return(NUMBER); }
do { return(DO); }
else { return(ELSE); }
end { return(END); }
fi { return(FI); }
if { return(IF); }
in { return(IN); }
integer { return(INTEGER); }
let { return(LET); }
read { return(READ); }
skip { return(SKIP); }
then { return(THEN); }
while { return(WHILE); }
write { return(WRITE); }
{ID} { yylval.id = (char *) strdup(yytext);

return(IDENTIFIER); }
[\t\n]+ /* eat up whitespace */
. { return(yytext[0]);}
%%

52

int yywrap(void){}
/************************** End Scanner File *****************************/

A.4 The symbol table: ST.h

/***
Symbol Table Module

***/
/*===

DECLARATIONS
===*/
/*---

SYMBOL TABLE RECORD
---*/
struct symrec
{
char *name; /* name of symbol */
int offset; /* data offset */
struct symrec *next; /* link field */

};
typedef struct symrec symrec;
/*---

SYMBOL TABLE ENTRY
---*/
symrec *identifier;
/*---

SYMBOL TABLE
Implementation: a chain of records.

--*/
symrec *sym_table = (symrec *)0; /* The pointer to the Symbol Table */
/*==

Operations: Putsym, Getsym
==*/
symrec * putsym (char *sym_name)
{
symrec *ptr;
ptr = (symrec *) malloc (sizeof(symrec));
ptr->name = (char *) malloc (strlen(sym_name)+1);
strcpy (ptr->name,sym_name);
ptr->offset = data_location();
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;

53

}
symrec * getsym (char *sym_name)
{
symrec *ptr;
for (ptr = sym_table;

ptr != (symrec *) 0;
ptr = (symrec *)ptr->next)

if (strcmp (ptr->name,sym_name) == 0)
return ptr;

return 0;
}
/************************** End Symbol Table **************************/

A.5 The code generator: CG.h

/***
Code Generator

***/
/*---

Data Segment
---*/
int data_offset = 0; /* Initial offset */
int data_location() /* Reserves a data location */
{

return data_offset++;
}
/*---

Code Segment
---*/
int code_offset = 0; /* Initial offset */

int gen_label() /* Returns current offset */
{

return code_offset;
}

int reserve_loc() /* Reserves a code location */
{

return code_offset++;
}

/* Generates code at current location */
void gen_code(enum code_ops operation, int arg)

54

{ code[code_offset].op = operation;
code[code_offset++].arg = arg;

}
/* Generates code at a reserved location */

void back_patch(int addr, enum code_ops operation, int arg)
{
code[addr].op = operation;
code[addr].arg = arg;

}
/*---

Print Code to stdio
---*/
void print_code()
{

int i = 0;

while (i < code_offset) {
printf("%3ld: %-10s%4ld\n",i,op_name[(int) code[i].op], code[i].arg);
i++;

}
}
/************************** End Code Generator **************************/

A.6 The stack machine: SM.h

/***
Stack Machine

***/
/*===

DECLARATIONS
===*/

/* OPERATIONS: Internal Representation */

enum code_ops { HALT, STORE, JMP_FALSE, GOTO,
DATA, LD_INT, LD_VAR,
READ_INT, WRITE_INT,
LT, EQ, GT, ADD, SUB, MULT, DIV, PWR };

/* OPERATIONS: External Representation */

char *op_name[] = {"halt", "store", "jmp_false", "goto",

55

"data", "ld_int", "ld_var",
"in_int", "out_int",
"lt", "eq", "gt", "add", "sub", "mult", "div", "pwr" };

struct instruction
{
enum code_ops op;
int arg;
};

/* CODE Array */

struct instruction code[999];

/* RUN-TIME Stack */

int stack[999];

/*---
Registers

---*/
int pc = 0;
struct instruction ir;
int ar = 0;
int top = 0;
char ch;
/*===

Fetch Execute Cycle
===*/
void fetch_execute_cycle()
{ do { /*printf("PC = %3d IR.arg = %8d AR = %3d Top = %3d,%8d\n",

pc, ir.arg, ar, top, stack[top]); */
/* Fetch */
ir = code[pc++];
/* Execute */
switch (ir.op) {
case HALT : printf("halt\n"); break;
case READ_INT : printf("Input: ");

scanf("%ld", &stack[ar+ir.arg]); break;
case WRITE_INT : printf("Output: %d\n", stack[top--]); break;

case STORE : stack[ir.arg] = stack[top--]; break;
case JMP_FALSE : if (stack[top--] == 0)

pc = ir.arg;
break;

case GOTO : pc = ir.arg; break;
case DATA : top = top + ir.arg; break;

56

case LD_INT : stack[++top] = ir.arg; break;
case LD_VAR : stack[++top] = stack[ar+ir.arg]; break;
case LT : if (stack[top-1] < stack[top])

stack[--top] = 1;
else stack[--top] = 0;

break;
case EQ : if (stack[top-1] == stack[top])

stack[--top] = 1;
else stack[--top] = 0;

break;
case GT : if (stack[top-1] > stack[top])

stack[--top] = 1;
else stack[--top] = 0;

break;
case ADD : stack[top-1] = stack[top-1] + stack[top];

top--;
break;

case SUB : stack[top-1] = stack[top-1] - stack[top];
top--;
break;

case MULT : stack[top-1] = stack[top-1] * stack[top];
top--;
break;

case DIV : stack[top-1] = stack[top-1] / stack[top];
top--;
break;

case PWR : stack[top-1] = stack[top-1] * stack[top];
top--;
break;

default : printf("%sInternal Error: Memory Dump\n");
break;

}
}

while (ir.op != HALT);
}

/*************************** End Stack Machine **************************/

A.7 Sample program: test simple

let
integer n,x.

in

57

read n;
if n < 10 then x := 1; else skip; fi;
while n < 10 do x := 5*x; n := n+1; end;
skip;
write n;
write x;

end

58

Appendix B

Lex/Flex

In order for Lex/Flex to recognize patterns in text, the pattern must be de-
scribed by a regular expression. The input to Lex/Flex is a machine readable
set of regular expressions. The input is in the form of pairs of regular expres-
sions and C code, called rules. Lex/Flex generates as output a C source file,
lex.yy.c, which defines a routine yylex(). This file is compiled and linked
with the -lfl library to produce an executable. When the executable is run, it
analyzes its input for occurrences of the regular expressions. Whenever it finds
one, it executes the corresponding C code.

B.1 Lex/Flex Examples

The following Lex/Flex input specifies a scanner which whenever it encounters
the string “username” will replace it with the user’s login name:

%%
username printf("%s", getlogin());

By default, any text not matched by a Lex/Flex scanner is copied to the output,
so the net effect of this scanner is to copy its input file to its output with
each occurrence of “username” expanded. In this input, there is just one rule.
“username” is the pattern and the “printf” is the action. The “%%” marks the
beginning of the rules.

Here’s another simple example:

int num_lines = 0, num_chars = 0;

59

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
main()

{
yylex();
printf("# of lines = %d, # of chars = %d\n",
num_lines, num_chars);
}

This scanner counts the number of characters and the number of lines in its
input (it produces no output other than the final report on the counts). The
first line declares two globals, num lines and num chars, which are accessible
both inside yylex() and in the main() routine declared after the second ”%%”.
There are two rules, one which matches a newline (“\n”) and increments both
the line count and the character count, and one which matches any character
other than a newline (indicated by the “.” regular expression).

A somewhat more complicated example:

/* scanner for a toy Pascal-like language */

%{
/* need this for the call to atof() below */
#include <math.h>
%}

DIGIT [0-9]
ID [a-z][a-z0-9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,
atof(yytext));
}

if|then|begin|end|procedure|function {

60

printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[\^{$\;$}}\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)
int argc;
char **argv;
{
++argv, --argc; /* skip over program name */
if (argc > 0)
yyin = fopen(argv[0], "r");
else
yyin = stdin;

yylex();
}

This is the beginnings of a simple scanner for a language like Pascal. It identifies
different types of tokens and reports on what it has seen.

The details of this example will be explained in the following sections.

B.2 The Lex/Flex Input File

The Lex/Flex input file consists of three sections, separated by a line with just
%% in it:

definitions
%%
rules
%%
user code

61

B.2.1 The Declarations Section

The definitions section contains declarations of simple name definitions to sim-
plify the scanner specification.

Name definitions have the form:

name definition

The “name” is a word beginning with a letter or an underscore (‘ ’) followed by
zero or more letters, digits, ‘ ’, or ‘-’ (dash). The definition is taken to begin
at the first non-white-space character following the name and continuing to the
end of the line. The definition can subsequently be referred to using “name”,
which will expand to “(definition)”. For example,

DIGIT [0-9]
ID [a-z][a-z0-9]*

defines “DIGIT” to be a regular expression which matches a single digit, and
“ID” to be a regular expression which matches a letter followed by zero-or-more
letters-or-digits. A subsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

and matches one-or-more digits followed by a ‘.’ followed by zero-or-more digits.

B.2.2 The Rules Section

The rules section of the Lex/Flex input contains a series of rules of the form:

pattern action

where the pattern must be unindented and the action must begin on the same
line.

See below for a further description of patterns and actions.

62

Finally, the user code section is simply copied to lex.yy.c verbatim. It is used
for companion routines which call or are called by the scanner. The presence of
this section is optional; if it is missing, the second may be skipped, too.

In the definitions and rules sections, any indented text or text enclosed in
%{ and %} is copied verbatim to the output (with the %{}’s removed). The
%{}’s must appear unindented on lines by themselves.

In the rules section, any indented or %{} text appearing before the first rule
may be used to declare variables which are local to the scanning routine and
(after the declarations) code which is to be executed whenever the scanning
routine is entered. Other indented or %{} text in the rule section is still copied
to the output, but its meaning is not well-defined and it may well cause compile-
time errors.

In the definitions section, an unindented comment (i.e., a line beginning with
“/∗”) is also copied verbatim to the output up to the next “∗/”.

Lex/Flex Patterns

The patterns in the input are written using an extended set of regular expres-
sions. These are:

x match the character ‘x’

. any character except newline

[xyz] a “character class”; in this case, the pattern matches either an ’x’, a ’y’,
or a ‘z’

[abj-oZ] a “character class” with a range in it; matches an ‘a’, a ‘b’, any letter
from ‘j’ through ‘o’, or a ‘Z’

[ˆA-Z] a “negated character class”, i.e., any character but those in the class.
In this case, any character EXCEPT an uppercase letter.

[ˆA-Z\n] any character EXCEPT an uppercase letter ora newline

r* zero or more r’s, where r is any regular expression

r+ one or more r’s

r? or one r’s (that is, “an optional r”)

r{2,5} anywhere from two to five r’s

r{2,} two or more r’s

r{4} exactly 4 r’s

63

{name} the expansion of the “name” definition (see above)

[+xyz]\"foo" the literal string: [xyz]"foo"

\X if X is an ‘a’, ‘b’, ‘f’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ANSI-C interpretation of
\x. Otherwise, a literal ‘X’ (used to escape operators such as ‘*’)

\123 the character with octal value 123

\x2a the character with hexadecimal value 2a

(r) match an r; parentheses are used to override precedence (see below)

rs the regular expression r followed by the regular expression s; called “con-
catenation”

r|s either an r or an s

r/s an r but only if it is followed by an s. The s is not part of the matched
text. This type of pattern is called as “trailing context”.

ˆ r an r, but only at the beginning of a line

r$ an r, but only at the end of a line. Equivalent to “r/\n”.

The regular expressions listed above are grouped according to precedence, from
highest precedence at the top to lowest at the bottom. Those grouped together
have equal precedence. For example,

foo|bar*

is the same as

(foo)|(ba(r*))

since the ‘*’ operator has higher precedence than concatenation, and concate-
nation higher than alternation (‘|’). This pattern therefore matches either the
string “foo” or the string “ba” followed by zero-or-more r’s. To match “foo” or
zero-or-more “bar”’s, use:

foo|(bar)*

and to match zero-or-more “foo”’s-or-“bar”’s:

(foo|bar)*

64

A note on patterns: A negated character class such as the example “[ˆ A-
Z]” above will match a newline unless “\n” (or an equivalent escape sequence)
is one of the characters explicitly present in the negated character class (e.g.,
“[ˆ A−Z\n]”). This is unlike how many other regular expression tools treat
negated character classes, but unfortunately the inconsistency is historically
entrenched. Matching newlines means that a pattern like [ˆ "]* can match an
entire input (overflowing the scanner’s input buffer) unless there’s another quote
in the input.

How the Input is Matched

When the generated scanner is run, it analyzes its input looking for strings
which match any of its patterns. If it finds more than one match, it takes the
one matching the most text (for trailing context rules, this includes the length
of the trailing part, even though it will then be returned to the input). If it finds
two or more matches of the same length, the rule listed first in the Lex/Flex
input file is chosen.

Once the match is determined, the text corresponding to the match (called
the token) is made available in the global character pointer yytext, and its length
in the global integer yyleng. The action corresponding to the matched pattern
is then executed (a more detailed description of actions follows), and then the
remaining input is scanned for another match.

If no match is found, then the default rule is executed: the next character in
the input is considered matched and copied to the standard output. Thus, the
simplest legal Lex/Flex input is:

%%

which generates a scanner that simply copies its input (one character at a time)
to its output.

Lex/Flex Actions

Each pattern in a rule has a corresponding action, which can be any arbitrary
C statement. The pattern ends at the first non-escaped whitespace character;
the remainder of the line is its action. If the action is empty, then when the
pattern is matched the input token is simply discarded. For example, here is
the specification for a program which deletes all occurrences of “zap me” from
its input:

%%

65

"zap me"

(It will copy all other characters in the input to the output since they will be
matched by the default rule.)

Here is a program which compresses multiple blanks and tabs down to a
single blank, and throws away whitespace found at the end of a line:

%%
[\t]+ putchar(’ ’);
[\t]+$ /* ignore this token */

If the action contains a ‘{’, then the action spans till the balancing ‘}’ is
found, and the action may cross multiple lines. Lex/Flex knows about C strings
and comments and won’t be fooled by braces found within them, but also allows
actions to begin with %{ and will consider the action to be all the text up to
the next %} (regardless of ordinary braces inside the action).

Actions can include arbitrary C code, including return statements to return
a value to whatever routine called yylex(). Each time yylex() is called it
continues processing tokens from where it last left off until it either reaches the
end of the file or executes a return. Once it reaches an end-of-file, however, then
any subsequent call to yylex() will simply immediately return.

Actions are not allowed to modify yytext or yyleng.

B.2.3 The Code Section

The code section contains the definitions of the routines called by the action
part of a rule. This section also contains the definition of the function main if
the scanner is a stand-alone program.

B.3 The Generated Scanner

The output of Lex/Flex is the file lex.yy.c, which contains the scanning routine
yylex(), a number of tables used by it for matching tokens, and a number of
auxiliary routines and macros. By default, yylex() is declared as follows:

int yylex()
{
... various definitions and the actions in here ...
}

66

(If your environment supports function prototypes, then it will be “int yylex(
void)”.) This definition may be changed by redefining the “YY DECL” macro.
For example, you could use:

#undef YY_DECL
#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the name lexscan, returning a float, and taking two
floats as arguments. Note that if you give arguments to the scanning routine
using a K&R-style/non-prototyped function declaration, you must terminate
the definition with a semi-colon (;).

Whenever yylex() is called, it scans tokens from the global input file yyin
(which defaults to stdin). It continues until it either reaches an end-of-file (at
which point it returns the value 0) or one of its actions executes a return state-
ment. In the former case, when called again the scanner will immediately return
unless yyrestart() is called to point yyin at the new input file. (yyrestart() takes
one argument, a FILE * pointer.) In the latter case (i.e., when an action exe-
cutes a return), the scanner may then be called again and it will resume scanning
where it left off.

B.4 Interfacing with Yacc/Bison

One of the main uses of Lex/Flex is as a companion to the Yacc/Bison parser-
generator. Yacc/Bison parsers expect to call a routine named yylex() to find the
next input token. The routine is supposed to return the type of the next token
as well as putting any associated value in the global yylval. To use Lex/Flex
with Yacc/Bison, one specifies the -d option to Yacc/Bison to instruct it to
generate the file y.tab.h containing definitions of all the %tokens appearing in
the Yacc/Bison input. This file is then included in the Lex/Flex scanner. For
example, if one of the tokens is “TOK NUMBER”, part of the scanner might
look like:

%{
#include "y.tab.h"
%}

%%

[0-9]+ yylval = atoi(yytext); return TOK_NUMBER;

67

68

Appendix C

Yacc/Bison

In order for Yacc/Bison to parse a language, the language must be described by
a context-free grammar. The most common formal system for presenting such
rules for humans to read is Backus-Naur Form or “BNF”, which was developed
in order to specify the language Algol 60. Any grammar expressed in BNF is a
context-free grammar. The input to Yacc/Bison is essentially machine-readable
BNF.

Not all context-free languages can be handled by Yacc/Bison, only those
that are LALR(1). In brief, this means that it must be possibly to tell how
to parse any portion of an input string with just a single token of look-ahead.
Strictly speaking, that is a description of an LR(1) grammar, and LALR(1)
involves additional restrictions that are hard to explain simply; but it is rare in
actual practice to find an LR(1) grammar that fails to be LALR(1).

C.1 An Overview

A formal grammar selects tokens only by their classifications: for example,
if a rule mentions the terminal symbol ‘integer constant’, it means that any
integer constant is grammatically valid in that position. The precise value of
the constant is irrelevant to how to parse the input: if x+4 is grammatical then
x+1 or x+3989 is equally grammatical.

But the precise value is very important for what the input means once it is
parsed. A compiler is useless if it fails to distinguish between 4, 1 and 3989 as
constants in the program! Therefore, each token has both a token type and a
semantic value.

69

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the
token may validly appear and how to group it with other tokens. The grammar
rules know nothing about tokens except their types.

The semantic value has all the rest of the information about the meaning
of the token, such as the value of an integer, or the name of an identifier. (A
token such as ’,’ which is just punctuation doesn’t need to have any semantic
value.)

For example, an input token might be classified as token type INTEGER and
have the semantic value 4. Another input token might have the same token type
INTEGER but value 3989. When a grammar rule says that INTEGER is allowed,
either of these tokens is acceptable because each is an INTEGER. When the parser
accepts the token, it keeps track of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal
symbol. For example, in a calculator, an expression typically has a semantic
value that is a number. In a compiler for a programming language, an expression
typically has a semantic value that is a tree structure describing the meaning
of the expression.

As Yacc/Bison reads tokens, it pushes them onto a stack along with their
semantic values. The stack is called the parser stack. Pushing a token is tradi-
tionally called shifting.

But the stack does not always have an element for each token read. When
the last n tokens and groupings shifted match the components of a grammar
rule, they can be combined according to that rule. This is called reduction.
Those tokens and groupings are replaced on the stack by a single grouping
whose symbol is the result (left hand side) of that rule. Running the rule’s
action is part of the process of reduction, because this is what computes the
semantic value of the resulting grouping.

The Yacc/Bison parser reads a sequence of tokens as its input, and groups
the tokens using the grammar rules. If the input is valid, the end result is
that the entire token sequence reduces to a single grouping whose symbol is the
grammar’s start symbol. If we use a grammar for C, the entire input must be
a ‘sequence of definitions and declarations’. If not, the parser reports a syntax
error.

The parser tries, by shifts and reductions, to reduce the entire input down
to a single grouping whose symbol is the grammar’s start-symbol.

This kind of parser is known in the literature as a bottom-up parser.

The function yyparse is implemented using a finite-state machine. The
values pushed on the parser stack are not simply token type codes; they represent

70

the entire sequence of terminal and nonterminal symbols at or near the top of
the stack. The current state collects all the information about previous input
which is relevant to deciding what to do next.

Each time a look-ahead token is read, the current parser state together with
the type of look-ahead token are looked up in a table. This table entry can say,
“Shift the look-ahead token.” In this case, it also specifies the new parser state,
which is pushed onto the top of the parser stack. Or it can say, “Reduce using
rule number n.” This means that a certain of tokens or groupings are taken
off the top of the stack, and replaced by one grouping. In other words, that
number of states are popped from the stack, and one new state is pushed.

There is one other alternative: the table can say that the look-ahead token
is erroneous in the current state. This causes error processing to begin.

C.2 A Yacc/Bison Example

The following is a Yacc/Bison input file which defines a reverse Polish notation
calculator. The file created by Yacc/Bison simulates the calculator. The details
of the example are explained in later sections.

/* Reverse Polish notation calculator. */
%{
#define YYSTYPE double
#include <math.h>
%}
%token NUM
%% /* Grammar rules and actions follow */
input : /* empty */

| input line
;
line : ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp : NUM { $$ = $1; }

| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */
| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { $$ = -$1; }

;

71

%%
/* Lexical analyzer returns a double floating point

number on the stack and the token NUM, or the ASCII
character read if not a number. Skips all blanks
and tabs, returns 0 for EOF. */

#include <ctype.h>
yylex ()
{ int c;
/* skip white space */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
;

/* process numbers */
if (c == ’.’ || isdigit (c))
{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;

}
/* return end-of-file */
if (c == EOF)
return 0;

/* return single chars */
return c;

}
main () /* The ‘‘Main’’ function to make this stand-alone */
{
yyparse ();

}
#include <stdio.h>
yyerror (s) /* Called by yyparse on error */

char *s;
{
printf ("%s\n", s);

}

C.3 The Yacc/Bison Input File

Yacc/Bison takes as input a context-free grammar specification and produces a
C-language function that recognizes correct instances of the grammar. The in-
put file for the Yacc/Bison utility is a Yacc/Bison grammar file. The Yacc/Bison
grammar input file conventionally has a name ending in .y.

A Yacc/Bison grammar file has four main sections, shown here with the
appropriate delimiters:

72

%{
C declarations

%}
Yacc/Bison declarations

%%
Grammar rules

%%
Additional C code

Comments enclosed in /* . . . */ may appear in any of the sections. The
%%, %{ and %} are punctuation that appears in every Yacc/Bison grammar file
to separate the sections.

The C declarations may define types and variables used in the actions.
You can also use preprocessor commands to define macros used there, and use
#include to include header files that do any of these things.

The Yacc/Bison declarations declare the names of the terminal and nonter-
minal symbols, and may also describe operator precedence and the data types
of semantic values of various symbols.

The grammar rules define how to construct each nonterminal symbol from
its parts.

The additional C code can contain any C code you want to use. Often the
definition of the lexical analyzer yylex goes here, plus subroutines called by the
actions in the grammar rules. In a simple program, all the rest of the program
can go here.

C.3.1 The Declarations Section

The C Declarations Section

The C declarations section contains macro definitions and declarations of func-
tions and variables that are used in the actions in the grammar rules. These
are copied to the beginning of the parser file so that they precede the definition
of yylex. You can use #include to get the declarations from a header file. If
you don’t need any C declarations, you may omit the %{ and %} delimiters that
bracket this section.

The Yacc/Bison Declarations Section

The Yacc/Bison declarations section defines symbols of the grammar. Sym-
bols in Yacc/Bison grammars represent the grammatical classifications of the

73

language.

Definitions are provided for the terminal and nonterminal symbols, to specify
the precedence and associativity of the operators, and the data types of semantic
values.

The first rule in the file also specifies the start symbol, by default. If you
want some other symbol to be the start symbol, you must declare it explicitly.

Symbol names can contain letters, digits (not at the beginning), underscores
and periods. Periods make sense only in nonterminals.

A terminal symbol (also known as a token type) represents a class of syntac-
tically equivalent tokens. You use the symbol in grammar rules to mean that
a token in that class is allowed. The symbol is represented in the Yacc/Bison
parser by a numeric code, and the yylex function returns a token type code to
indicate what kind of token has been read. You don’t need to know what the
code value is; you can use the symbol to stand for it. By convention, it should
be all upper case. All token type names (but not single-character literal tokens
such as ’+’ and ’*’) must be declared.

There are two ways of writing terminal symbols in the grammar:

• A named token type is written with an identifier, it should be all upper
case such as, INTEGER, IDENTIFIER, IF or RETURN. A terminal symbol that
stands for a particular keyword in the language should be named after that
keyword converted to upper case. Each such name must be defined with
a Yacc/Bison declaration such as

%token INTEGER IDENTIFIER

The terminal symbol error is reserved for error recovery. In particular,
yylex should never return this value.

• A character token type (or literal token) is written in the grammar using
the same syntax used in C for character constants; for example, ’+’ is a
character token type. A character token type doesn’t need to be declared
unless you need to specify its semantic value data type, associativity, or
precedence.

By convention, a character token type is used only to represent a token
that consists of that particular character. Thus, the token type ’+’ is used
to represent the character + as a token. Nothing enforces this convention,
but if you depart from it, your program will confuse other readers.

All the usual escape sequences used in character literals in C can be used in
Yacc/Bison as well, but you must not use the null character as a character
literal because its ASCII code, zero, is the code yylex returns for end-of-
input.

74

How you choose to write a terminal symbol has no effect on its grammatical
meaning. That depends only on where it appears in rules and on when the
parser function returns that symbol.

The value returned by yylex is always one of the terminal symbols (or 0 for
end-of-input). Whichever way you write the token type in the grammar rules,
you write it the same way in the definition of yylex. The numeric code for a
character token type is simply the ASCII code for the character, so yylex can
use the identical character constant to generate the requisite code. Each named
token type becomes a C macro in the parser file, so yylex can use the name to
stand for the code. (This is why periods don’t make sense in terminal symbols.)

If yylex is defined in a separate file, you need to arrange for the token-
type macro definitions to be available there. Use the -d option when you run
Yacc/Bison, so that it will write these macro definitions into a separate header
file name.tab.h which you can include in the other source files that need it.

A nonterminal symbol stands for a class of syntactically equivalent groupings.
The symbol name is used in writing grammar rules. By convention, it should
be all lower case, such as expr, stmt or declaration. Nonterminal symbols
must be declared if you need to specify which data type to use for the semantic
value.

Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:

%token name

Yacc/Bison will convert this into a #define directive in the parser, so that
the function yylex (if it is in this file) can use the name name to stand for this
token type’s code.

Alternatively you can use %left, %right, or %nonassoc instead of %token,
if you wish to specify precedence.

You can explicitly specify the numeric code for a token type by appending
an integer value in the field immediately following the token name:

%token NUM 300

It is generally best, however, to let Yacc/Bison choose the numeric codes for all
token types. Yacc/Bison will automatically select codes that don’t conflict with
each other or with ASCII characters.

75

In the event that the stack type is a union, you must augment the %token
or other token declaration to include the data type alternative delimited by
angle-brackets. For example:

%union {/* define stack type */
double val;
symrec *tptr;

}
%token <val> NUM /* define token NUM and its type */

Operator Precedence

Use the %left, %right or %nonassoc declaration to declare a token and spec-
ify its precedence and associativity, all at once. These are called precedence
declarations.

The syntax of a precedence declaration is the same as that of %token: either

%left symbols. . .

or

%left <type> symbols. . .

And indeed any of these declarations serves the purposes of %token. But
in addition, they specify the associativity and relative precedence for all the
symbols:

• The associativity of an operator op determines how repeated uses of the
operator nest: whether x op y op z is parsed by grouping x with y first
or by grouping y with z first. %left specifies left-associativity (grouping
x with y first) and %right specifies right-associativity (grouping y with z
first). %nonassoc specifies no associativity, which means that x op y op

z is considered a syntax error.

• The precedence of an operator determines how it nests with other op-
erators. All the tokens declared in a single precedence declaration have
equal precedence and nest together according to their associativity. When
two tokens declared in different precedence declarations associate, the one
declared later has the higher precedence and is grouped first.

76

The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for
semantic values. The keyword %union is followed by a pair of braces containing
the same thing that goes inside a union in C. For example:

%union {
double val;
symrec *tptr;

}

This says that the two alternative types are double and symrec *. They are
given names val and tptr; these names are used in the %token and %type
declarations to pick one of the types for a terminal or nonterminal symbol.

Note that, unlike making a union declaration in C, you do not write a
semicolon after the closing brace.

Yacc/Bison Declaration Summary

Here is a summary of all Yacc/Bison declarations:

%union Declare the collection of data types that semantic values may have.

%token Declare a terminal symbol (token type name) with no precedence or
associativity specified.

%right Declare a terminal symbol (token type name) that is right-associative.

%left Declare a terminal symbol (token type name) that is left-associative.

%nonassoc Declare a terminal symbol (token type name) that is nonassocia-
tive (using it in a way that would be associative is a syntax error).

%type <non-terminal> Declare the type of semantic values for a nontermi-
nal symbol. When you use %union to specify multiple value types, you
must declare the value type of each nonterminal symbol for which values
are used. This is done with a %type declaration. Here nonterminal is the
name of a nonterminal symbol, and type is the name given in the %union
to the alternative that you want. You can give any number of nonterminal
symbols in the same %type declaration, if they have the same value type.
Use spaces to separate the symbol names.

%start <non-terminal> Specify the grammar’s start symbol. Yacc/Bison
assumes by default that the start symbol for the grammar is the first non-
terminal specified in the grammar specification section. The programmer
may override this restriction with the %start declaration.

77

C.3.2 The Grammar Rules Section

The grammar rules section contains one or more Yacc/Bison grammar rules,
and nothing else.

There must always be at least one grammar rule, and the first %% (which
precedes the grammar rules) may never be omitted even if it is the first thing
in the file.

A Yacc/Bison grammar rule has the following general form:

result : components. . . ;

where result is the nonterminal symbol that this rule describes and components
are various terminal and nonterminal symbols that are put together by this rule.
For example,

exp : exp ’+’ exp ;

says that two groupings of type exp, with a + token in between, can be combined
into a larger grouping of type exp.

Whitespace in rules is significant only to separate symbols. You can add
extra whitespace as you wish.

Scattered among the components can be actions that determine the seman-
tics of the rule. An action looks like this:

{C statements}

Usually there is only one action and it follows the components.

Multiple rules for the same result can be written separately or can be joined
with the vertical-bar character | as follows:

result : rule1-components. . .
| rule2-components. . .
. . .

;

They are still considered distinct rules even when joined in this way.

If components in a rule is empty, it means that result can match the empty
string. For example, here is how to define a comma-separated sequence of zero
or more exp groupings:

78

expseq : /* empty */
| expseq1

;

expseq1 : exp
| expseq1 ’,’ exp

;

It is customary to write a comment /* empty */ in each rule with no compo-
nents.

A rule is called recursive when its result nonterminal appears also on its right
hand side. Nearly all Yacc/Bison grammars need to use recursion, because that
is the only way to define a sequence of any number of somethings. Consider this
recursive definition of a comma-separated sequence of one or more expressions:

expseq1 : exp
| expseq1 ’,’ exp

;

Since the recursive use of expseq1 is the leftmost symbol in the right hand side,
we call this left recursion. By contrast, here the same construct is defined using
right recursion:

expseq1 : exp
| exp ’,’ expseq1 ;

Any kind of sequence can be defined using either left recursion or right recursion,
but you should always use left recursion, because it can parse a sequence of any
number of elements with bounded stack space. Right recursion uses up space on
the Yacc/Bison stack in proportion to the number of elements in the sequence,
because all the elements must be shifted onto the stack before the rule can be
applied even once.

Indirect or mutual recursion occurs when the result of the rule does not
appear directly on its right hand side, but does appear in rules for other non-
terminals which do appear on its right hand side. For example:

expr : primary
| primary ’+’ primary

;

primary : constant

79

| ’(’ expr ’)’
;

defines two mutually-recursive nonterminals, since each refers to the other.

Semantic Actions

In order to be useful, a program must do more than parse input; it must also
produce some output based on the input. In a Yacc/Bison grammar, a gram-
mar rule can have an action made up of C statements. Each time the parser
recognizes a match for that rule, the action is executed.

Most of the time, the purpose of an action is to compute the semantic value of
the whole construct from the semantic values of its parts. For example, suppose
we have a rule which says an expression can be the sum of two expressions. When
the parser recognizes such a sum, each of the subexpressions has a semantic value
which describes how it was built up. The action for this rule should create a
similar sort of value for the newly recognized larger expression.

For example, here is a rule that says an expression can be the sum of two
subexpressions:

expr : expr ’+’ expr { $$ = $1 + $3; }
;

The action says how to produce the semantic value of the sum expression from
the values of the two subexpressions.

C.3.3 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are
determined by the semantic values associated with various tokens and groupings,
and by the actions taken when various groupings are recognized.

For example, the calculator calculates properly because the value associated
with each expression is the proper number; it adds properly because the action
for the grouping x + y is to add the numbers associated with x and y.

Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the
semantic values of all language constructs. Yacc/Bison’s default is to use type

80

int for all semantic values. To specify some other type, define YYSTYPE as a
macro, like this:

#define YYSTYPE double

This macro definition must go in the C declarations section of the grammar file.

More Than One Value Type

In most programs, you will need different data types for different kinds of tokens
and groupings. For example, a numeric constant may need type int or long,
while a string constant needs type char *, and an identifier might need a pointer
to an entry in the symbol table.

To use more than one data type for semantic values in one parser, Yacc/Bison
requires you to do two things:

• Specify the entire collection of possible data types, with the %union Yacc/Bison
declaration.

• Choose one of those types for each symbol (terminal or nonterminal) for
which semantic values are used. This is done for tokens with the %token
Yacc/Bison declaration and for groupings with the %type Yacc/Bison dec-
laration.

An action accompanies a syntactic rule and contains C code to be executed
each time an instance of that rule is recognized. The task of most actions is to
compute a semantic value for the grouping built by the rule from the semantic
values associated with tokens or smaller groupings.

An action consists of C statements surrounded by braces, much like a com-
pound statement in C. It can be placed at any position in the rule; it is executed
at that position. Most rules have just one action at the end of the rule, following
all the components. Actions in the middle of a rule are tricky and used only for
special purposes.

The C code in an action can refer to the semantic values of the components
matched by the rule with the construct $n, which stands for the value of the
nth component. The semantic value for the grouping being constructed is $$.
(Yacc/Bison translates both of these constructs into array element references
when it copies the actions into the parser file.)

Here is a typical example:

81

exp : . . .
| exp ’+’ exp
{ $$ = $1 + $3; }

This rule constructs an exp from two smaller exp groupings connected by a
plus-sign token. In the action, $1 and $3 refer to the semantic values of the two
component exp groupings, which are the first and third symbols on the right
hand side of the rule. The sum is stored into $$ so that it becomes the semantic
value of the addition-expression just recognized by the rule. If there were a
useful semantic value associated with the + token, it could be referred to as $2.

$n with n zero or negative is allowed for reference to tokens and groupings on
the stack before those that match the current rule. This is a very risky practice,
and to use it reliably you must be certain of the context in which the rule is
applied. Here is a case in which you can use this reliably:

foo : expr bar ’+’ expr { . . . }
| expr bar ’-’ expr { . . . }

;

bar : /* empty */
{ previous expr = $0; }

;

As long as bar is used only in the fashion shown here, $0 always refers to
the expr which precedes bar in the definition of foo.

Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n con-
structs always have that data type.

If you have used %union to specify a variety of data types, then you must
declare a choice among these types for each terminal or nonterminal symbol
that can have a semantic value. Then each time you use $$ or $n, its data type
is determined by which symbol it refers to in the rule. In this example,efill

exp : . . .
| exp ’+’ exp
{ $$ = $1 + $3; }

$1 and $3 refer to instances of exp, so they all have the data type declared
for the nonterminal symbol exp. If $2 were used, it would have the data type
declared for the terminal symbol ’+’, whatever that might be.

82

Alternatively, you can specify the data type when you refer to the value, by
inserting <type> after the $ at the beginning of the reference. For example, if
you have defined types as shown here:

%union {
int itype;
double dtype;

}

then you can write $<itype>1 to refer to the first subunit of the rule as an
integer, or $<dtype>1 to refer to it as a double.

Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions
are written just like usual end-of-rule actions, but they are executed before the
parser even recognizes the following components.

A mid-rule action may refer to the components preceding it using $n, but
it may not refer to subsequent components because it is run before they are
parsed.

The mid-rule action itself counts as one of the components of the rule. This
makes a difference when there is another action later in the same rule (and
usually there is another at the end): you have to count the actions along with
the symbols when working out which number n to use in $n.

The mid-rule action can also have a semantic value. This can be set within
that action by an assignment to $$, and can referred to by later actions using
$n. Since there is no symbol to name the action, there is no way to declare
a data type for the value in advance, so you must use the $<. . .> construct to
specify a data type each time you refer to this value.

Here is an example from a hypothetical compiler, handling a let state-
ment that looks like let (variable) statement and serves to create a vari-
able named variable temporarily for the duration of statement. To parse this
construct, we must put variable into the symbol table while statement is parsed,
then remove it afterward. Here is how it is done:

stmt : LET ’(’ var ’)’
{ $<context>$ = push context ();
declare variable ($3); }

stmt { $$ = $6;
pop context ($<context>5); }

83

As soon as let (variable) has been recognized, the first action is run. It saves
a copy of the current semantic context (the list of accessible variables) as its
semantic value, using alternative context in the data-type union. Then it calls
declare variable to add the new variable to that list. Once the first action is
finished, the embedded statement stmt can be parsed. Note that the mid-rule
action is component number 5, so the stmt is component number 6.

After the embedded statement is parsed, its semantic value becomes the
value of the entire let-statement. Then the semantic value from the earlier
action is used to restore the prior list of variables. This removes the temporary
let-variable from the list so that it won’t appear to exist while the rest of the
program is parsed.

Taking action before a rule is completely recognized often leads to conflicts
since the parser must commit to a parse in order to execute the action. For
example, the following two rules, without mid-rule actions, can coexist in a
working parser because the parser can shift the open-brace token and look at
what follows before deciding whether there is a declaration or not:

compound : ’{’ declarations statements ’}’
| ’{’ statements ’}’

;

But when we add a mid-rule action as follows, the rules become nonfunctional:

compound : { prepare for local variables (); }
’{’ declarations statements ’}’
| ’{’ statements ’}’

;

Now the parser is forced to decide whether to run the mid-rule action when it
has read no farther than the open-brace. In other words, it must commit to
using one rule or the other, without sufficient information to do it correctly.
(The open-brace token is what is called the look-ahead token at this time, since
the parser is still deciding what to do about it.

You might think that you could correct the problem by putting identical
actions into the two rules, like this:

compound : { prepare for local variables (); }
’{’ declarations statements ’}’
| { prepare for local variables (); }

’{’ statements ’}’
;

84

But this does not help, because Yacc/Bison does not realize that the two actions
are identical. (Yacc/Bison never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a state-
ment by the first token (which is true in C), then one solution which does work
is to put the action after the open-brace, like this:

compound : ’{’ { prepare for local variables (); }
declarations statements ’}’
| ’{’ statements ’}’

;

Now the first token of the following declaration or statement, which would in
any case tell Yacc/Bison which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which
serves as a subroutine:

subroutine : /* empty */
{ prepare for local variables (); }

;

compound : subroutine
’{’ declarations statements ’}’
| subroutine
’{’ statements ’}’

;

Now Yacc/Bison can execute the action in the rule for subroutine without
deciding which rule for compound it will eventually use. Note that the action is
now at the end of its rule. Any mid-rule action can be converted to an end-of-
rule action in this way, and this is what Yacc/Bison actually does to implement
mid-rule actions.

C.3.4 The Additional C Code Section

The additional C code section is copied verbatim to the end of the parser file,
just as the C declarations section is copied to the beginning. This is the most
convenient place to put anything that you want to have in the parser file but
which need not come before the definition of yylex. For example, the definitions
of yylex and yyerror often go here.

If the last section is empty, you may omit the %% that separates it from the
grammar rules.

85

The Yacc/Bison parser itself contains many static variables whose names
start with yy and many macros whose names start with YY. It is a good idea to
avoid using any such names (except those documented in this manual) in the
additional C code section of the grammar file.

It is not usually acceptable to have a program terminate on a parse error.
For example, a compiler should recover sufficiently to parse the rest of the input
file and check it for errors.

C.4 Yacc/Bison Output: the Parser File

When you run Yacc/Bison, you give it a Yacc/Bison grammar file as input. The
output is a C source file that parses the language described by the grammar.
This file is called a Yacc/Bison parser. Keep in mind that the Yacc/Bison utility
and the Yacc/Bison parser are two distinct programs: the Yacc/Bison utility
is a program whose output is the Yacc/Bison parser that becomes part of your
program.

The job of the Yacc/Bison parser is to group tokens into groupings accord-
ing to the grammar rules—for example, to build identifiers and operators into
expressions. As it does this, it runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must
supply in some fashion (such as by writing it in C or using Lex/Flex). The
Yacc/Bison parser calls the lexical analyzer each time it wants a new token. It
doesn’t know what is “inside” the tokens (though their semantic values may re-
flect this). Typically the lexical analyzer makes the tokens by parsing characters
of text, but Yacc/Bison does not depend on this.

The Yacc/Bison parser file is C code which defines a function named yyparse
which implements that grammar. This function does not make a complete
C program: you must supply some additional functions. One is the lexical
analyzer. Another is an error-reporting function which the parser calls to report
an error. In addition, a complete C program must start with a function called
main; you have to provide this, and arrange for it to call yyparse or the parser
will never run.

Aside from the token type names and the symbols in the actions you write, all
variable and function names used in the Yacc/Bison parser file begin with yy or
YY. This includes interface functions such as the lexical analyzer function yylex,
the error reporting function yyerror and the parser function yyparse itself.
This also includes numerous identifiers used for internal purposes. Therefore,
you should avoid using C identifiers starting with yy or YY in the Yacc/Bison
grammar file except for the ones defined in this manual.

86

C.5 Parser C-Language Interface

The Yacc/Bison parser is actually a C function named yyparse. Here we de-
scribe the interface conventions of yyparse and the other functions that it needs
to use.

Keep in mind that the parser uses many C identifiers starting with yy and
YY for internal purposes. If you use such an identifier (aside from those in this
manual) in an action or in additional C code in the grammar file, you are likely
to run into trouble.

The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads
tokens, executes actions, and ultimately returns when it encounters end-of-input
or an unrecoverable syntax error. You can also write an action which directs
yyparse to return immediately without reading further.

The value returned by yyparse is 0 if parsing was successful (return is due
to end-of-input).

The value is 1 if parsing failed (return is due to a syntax error).

In an action, you can cause immediate return from yyparse by using these
macros:

YYACCEPT Return immediately with value 0 (to report success).

YYABORT Return immediately with value 1 (to report failure).

The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream
and returns them to the parser. Yacc/Bison does not create this function au-
tomatically; you must write it so that yyparse can call it. The function is
sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Yacc/Bison
grammar file. If yylex is defined in a separate source file, you need to arrange
for the token-type macro definitions to be available there. To do this, use the -d
option when you run Yacc/Bison, so that it will write these macro definitions
into a separate header file name.tab.h which you can include in the other source
files that need it.

87

Calling Convention for yylex

The value that yylex returns must be the numeric code for the type of token
it has just found, or 0 for end-of-input.

When a token is referred to in the grammar rules by a name, that name in
the parser file becomes a C macro whose definition is the proper numeric code
for that token type. So yylex can use the name to indicate that type.

When a token is referred to in the grammar rules by a character literal, the
numeric code for that character is also the code for the token type. So yylex
can simply return that character code. The null character must not be used
this way, because its code is zero and that is what signifies end-of-input.

Here is an example showing these things:

yylex()
{
. . .
if (c == EOF) /* Detect end of file. */
return 0;
. . .
if (c == ’+’ || c == ’-’)
return c; /* Assume token type for ‘+’ is ’+’. */
. . .
return INT; /* Return the type of the token. */
. . .
}

This interface has been designed so that the output from the lex utility can be
used without change as the definition of yylex.

Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be
stored into the global variable yylval. When you are using just one data type
for semantic values, yylval has that type. Thus, if the type is int (the default),
you might write this in yylex:

. . .
yylval = value; /* Put value onto Yacc/Bison stack. */
return INT; /* Return the type of the token. */
. . .

88

When you are using multiple data types, yylval’s type is a union made from
the %union declaration. So when you store a token’s value, you must use the
proper member of the union. If the %union declaration looks like this:

%union {
int intval;
double val;
symrec *tptr;
}

then the code in yylex might look like this:

. . .
yylval.intval = value; /* Put value onto Yacc/Bison stack. */
return INT; /* Return the type of the token. */
. . .

Textual Positions of Tokens

If you are using the @n-feature in actions to keep track of the textual locations
of tokens and groupings, then you must provide this information in yylex. The
function yyparse expects to find the textual location of a token just parsed
in the global variable yylloc. So yylex must store the proper data in that
variable. The value of yylloc is a structure and you need only initialize the
members that are going to be used by the actions. The four members are called
first line, first column, last line and last column. Note that the use of
this feature makes the parser noticeably slower.

The data type of yylloc has the name YYLTYPE.

The Error Reporting Function yyerror

The Yacc/Bison parser detects a parse error or syntax error whenever it reads
a token which cannot satisfy any syntax rule. A action in the grammar can also
explicitly proclaim an error, using the macro YYERROR.

The Yacc/Bison parser expects to report the error by calling an error report-
ing function named yyerror, which you must supply. It is called by yyparse
whenever a syntax error is found, and it receives one argument. For a parse
error, the string is always "parse error".

The following definition suffices in simple programs:

89

yyerror (s)
char *s;
{
fprintf (stderr, "%s\", s);
}

After yyerror returns to yyparse, the latter will attempt error recovery if
you have written suitable error recovery grammar rules. If recovery is impossi-
ble, yyparse will immediately return 1.

C.6 Debugging Your Parser

Shift/Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements,
with a pair of rules like this:

if stmt : IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

;

(Here we assume that IF, THEN and ELSE are terminal symbols for specific key-
word tokens.)

When the ELSE token is read and becomes the look-ahead token, the contents
of the stack (assuming the input is valid) are just right for reduction by the first
rule. But it is also legitimate to shift the ELSE, because that would lead to
eventual reduction by the second rule.

This situation, where either a shift or a reduction would be valid, is called
a shift/reduce conflict. Yacc/Bison is designed to resolve these conflicts by
choosing to shift, unless otherwise directed by operator precedence declarations.
To see the reason for this, let’s contrast it with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-
clause to the innermost if-statement, making these two inputs equivalent:

if x then if y then win(); else lose;

if x then do; if y then win(); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result
would be to attach the else-clause to the outermost if-statement. The conflict

90

exists because the grammar as written is ambiguous: either parsing of the simple
nested if-statement is legitimate. The established convention is that these am-
biguities are resolved by attaching the else-clause to the innermost if-statement;
this is what Yacc/Bison accomplishes by choosing to shift rather than reduce.
This particular ambiguity is called the “dangling else” ambiguity.

Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expres-
sions. Here shifting is not always the preferred resolution; the Yacc/Bison dec-
larations for operator precedence allow you to specify when to shift and when
to reduce.

Consider the following ambiguous grammar fragment (ambiguous because
the input 1 - 2 * 3 can be parsed in two different ways):

expr : expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
| ’(’ expr ’)’
. . .

;

Suppose the parser has seen the tokens 1, - and 2; should it reduce them via
the rule for the addition operator? It depends on the next token. Of course, if
the next token is), we must reduce; shifting is invalid because no single rule
can reduce the token sequence - 2) or anything starting with that. But if the
next token is * or <, we have a choice: either shifting or reduction would allow
the parse to complete, but with different results.

What about input such as 1 - 2 - 5; should this be (1 - 2) - 5 or should
it be 1 - (2 - 5)? For most operators we prefer the former, which is called left
association. The latter alternative, right association, is desirable for assignment
operators. The choice of left or right association is a matter of whether the
parser chooses to shift or reduce when the stack contains 1 - 2 and the look-
ahead token is -: shifting makes right-associativity.

Specifying Operator Precedence

Yacc/Bison allows you to specify these choices with the operator precedence
declarations. Each such declaration contains a list of tokens, which are operators
whose precedence and associativity is being declared. The %left declaration
makes all those operators left-associative and the %right declaration makes

91

them right-associative. A third alternative is %nonassoc, which declares that it
is a syntax error to find the same operator twice “in a row”.

The relative precedence of different operators is controlled by the order in
which they are declared. The first %left or %right declaration in the file
declares the operators whose precedence is lowest, the next such declaration
declares the operators whose precedence is a little higher, and so on.

Precedence Examples

In our example, we would want the following declarations:

%left ’<’
%left ’-’
%left ’*’

In a more complete example, which supports other operators as well, we
would declare them in groups of equal precedence. For example, ’+’ is declared
with ’-’:

%left ’<’ ’>’ ’=’ NE LE GE
%left ’+’ ’-’
%left ’*’ ’/’

(Here NE and so on stand for the operators for “not equal” and so on. We
assume that these tokens are more than one character long and therefore are
represented by names, not character literals.)

Often the precedence of an operator depends on the context. For example,
a minus sign typically has a very high precedence as a unary operator, and a
somewhat lower precedence (lower than multiplication) as a binary operator.

The Yacc/Bison precedence declarations, %left, %right and %nonassoc,
can only be used once for a given token; so a token has only one precedence
declared in this way. For context-dependent precedence, you need to use an
additional mechanism: the %prec modifier for rules.

The %prec modifier declares the precedence of a particular rule by specifying
a terminal symbol whose predecence should be used for that rule. It’s not
necessary for that symbol to appear otherwise in the rule. The modifier’s syntax
is:

%prec terminal-symbol

92

and it is written after the components of the rule. Its effect is to assign the
rule the precedence of terminal-symbol, overriding the precedence that would
be deduced for it in the ordinary way. The altered rule precedence then affects
how conflicts involving that rule are resolved.

Here is how %prec solves the problem of unary minus. First, declare a
precedence for a fictitious terminal symbol named UMINUS. There are no tokens
of this type, but the symbol serves to stand for its precedence:

. . .
%left ’+’ ’-’
%left ’*’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

exp : . . .
| exp ’-’ exp
. . .
| ’-’ exp %prec UMINUS

Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the
same sequence of input. This usually indicates a serious error in the grammar.

Yacc/Bison resolves a reduce/reduce conflict by choosing to use the rule
that appears first in the grammar, but it is very risky to rely on this. Every
reduce/reduce conflict must be studied and usually eliminated.

Error Recovery

You can define how to recover from a syntax error by writing rules to recognize
the special token error. This is a terminal symbol that is always defined (you
need not declare it) and reserved for error handling. The Yacc/Bison parser
generates an error token whenever a syntax error happens; if you have provided
a rule to recognize this token in the current context, the parse can continue. For
example:

stmnts : /* empty string */
| stmnts ’\’
| stmnts exp ’\’
| stmnts error ’\’

93

The fourth rule in this example says that an error followed by a newline makes
a valid addition to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error
recovery rule, interpreted strictly, applies to the precise sequence of a stmnts,
an error and a newline. If an error occurs in the middle of an exp, there will
probably be some additional tokens and subexpressions on the stack after the
last stmnts, and there will be tokens to read before the next newline. So the
rule is not applicable in the ordinary way.

But Yacc/Bison can force the situation to fit the rule, by discarding part
of the semantic context and part of the input. First it discards states and
objects from the stack until it gets back to a state in which the error token is
acceptable. (This means that the subexpressions already parsed are discarded,
back to the last complete stmnts.) At this point the error token can be shifted.
Then, if the old look-ahead token is not acceptable to be shifted next, the parser
reads tokens and discards them until it finds a token which is acceptable. In
this example, Yacc/Bison reads and discards input until the next newline so
that the fourth rule can apply.

The choice of error rules in the grammar is a choice of strategies for error
recovery. A simple and useful strategy is simply to skip the rest of the current
input line or current statement if an error is detected:

stmnt : error ’;’ /* on error, skip until ’;’ is read */

It is also useful to recover to the matching close-delimiter of an opening-
delimiter that has already been parsed. Otherwise the close-delimiter will prob-
ably appear to be unmatched, and generate another, spurious error message:

primary : ’(’ expr ’)’
| ’(’ error ’)’
. . .

;

Error recovery strategies are necessarily guesses. When they guess wrong,
one syntax error often leads to another. To prevent an outpouring of error
messages, the parser will output no error message for another syntax error that
happens shortly after the first; only after three consecutive input tokens have
been successfully shifted will error messages resume.

94

Further Debugging

If a Yacc/Bison grammar compiles properly but doesn’t do what you want when
it runs, the yydebug parser-trace feature can help you figure out why.

To enable compilation of trace facilities, you must define the macro YYDEBUG
when you compile the parser. You could use -DYYDEBUG=1 as a compiler op-
tion or you could put #define YYDEBUG 1 in the C declarations section of the
grammar file. Alternatively, use the -t option when you run Yacc/Bison. We
always define YYDEBUG so that debugging is always possible.

The trace facility uses stderr, so you must add #include <stdio.h> to the
C declarations section unless it is already there.

Once you have compiled the program with trace facilities, the way to request
a trace is to store a nonzero value in the variable yydebug. You can do this by
making the C code do it (in main).

Each step taken by the parser when yydebug is nonzero produces a line or
two of trace information, written on stderr. The trace messages tell you these
things:

• Each time the parser calls yylex, what kind of token was read.

• Each time a token is shifted, the depth and complete contents of the state
stack.

• Each time a rule is reduced, which rule it is, and the complete contents of
the state stack afterward.

To make sense of this information, it helps to refer to the listing file produced
by the Yacc/Bison -v option. This file shows the meaning of each state in terms
of positions in various rules, and also what each state will do with each possible
input token. As you read the successive trace messages, you can see that the
parser is functioning according to its specification in the listing file. Eventually
you will arrive at the place where something undesirable happens, and you will
see which parts of the grammar are to blame.

C.7 Stages in Using Yacc/Bison

The actual language-design process using Yacc/Bison, from grammar specifica-
tion to a working compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Yacc/Bison. For
each grammatical rule in the language, describe the action that is to be

95

taken when an instance of that rule is recognized. The action is described
by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The
lexical analyzer may be written by hand in C. It could also be produced
using Lex.

3. Write a controlling function that calls the Yacc/Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow
these steps:

1. Run Yacc/Bison on the grammar to produce the parser. The usual way
to invoke Yacc/Bison is as follows:

bison infile

Here infile is the grammar file name, which usually ends in .y. The parser
file’s name is made by replacing the .y with .tab.c. Thus, the bison
foo.y filename yields foo.tab.c.

2. Compile the code output by Yacc/Bison, as well as any other source files.

3. Link the object files to produce the finished product.

96

