
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Core JavaScript
Reference

 October 29, 1998

Version 1.4
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software
programs offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and
related documentation is governed by the license agreement accompanying the Software and applicable copyright
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights
reserved.

The Software contains JavaScript software technology invented and implemented by Netscape Communications
Corporation. The JavaScript name is a trademark or registered trademark of Sun Microsystems, Inc. in the United
States and other countries and is used under license.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape
ONE, SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Other Netscape logos, product names, and service names are
also trademarks of Netscape Communications Corporation, which may be registered in other countries. Other product
and brand names are trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

.

Version 1.4

©1998 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

New Features in this Release
JavaScript version 1.4 provides the following new features and enhancements:

• Exception handling. You can throw and catch exceptions using the
throw and try...catch statements. See “throw” on page 243 and
“try...catch” on page 246.

• New operators in and instanceof. The in operator returns true if the
specified property is in the specified object; see “in” on page 269. The
instanceof operator returns true if the specified object is of the specified
object type; see “instanceof” on page 270.

• Changes to LiveConnect. Several changes to LiveConnect improve the
way Java and JavaScript code communicate:

• The methods of java.lang.Object are inherited by JavaArray. In
addition, the JavaArrary.toString method now calls the method
java.lang.Object.toString. See “JavaArray” on page 98.

• You can pass a JavaClass object to a Java method which requires an
argument of type java.lang.Class instead of creating a wrapper
around an instance of java.lang.Class. See “JavaClass” on
page 102.

• You cannot construct an instance of JSException with a detail
message. The three original public constructors for the Java class
netscape.javascript.JSException that supported this feature
are deprecated. See “JSException” on page 280.

• You cannot use the == operator to compare two instances of
JSObject. Use JSObject.equals. See “Comparison Operators” on
page 256 and JSObject.equals.
3

• Changes to the eval method.

• The top-level eval method cannot be called indirectly. In previous
versions, it was recommended that this method not be called indirectly;
starting with JavaScript 1.4, calling eval indirectly could result in a
runtime error. This change improves performance. See “eval” on
page 214.

• The eval method is no longer available as a method of Object; use
the top-level eval function instead. See “eval” on page 214.

• Changes to the Function object.

• You should no longer specify a function name when using the
arguments array; the arguments array is a variable and is no longer
a property of Function objects. This change improves performance.
See “Function” on page 79 and “arguments” on page 85.

• Deprecated the Function.arity property. It has been replaced by
the Function.length property. See “length” on page 92.
4 Core JavaScript Reference

Contents

New Features in this Release ...3

About this Book ..9

New Features in this Release ..9

What You Should Already Know ...9

JavaScript Versions ..10

Where to Find JavaScript Information ..11

Document Conventions ...12

Part 1 Object Reference

Chapter 1 Objects, Methods, and Properties15

Array ...16

Boolean ..38

Date ..43

Function ...79

java ...97

JavaArray ..98

JavaClass ...102

JavaObject ..104

JavaPackage ...106

Math ..107

netscape ...126

Number ..127

Object ...136

Packages ...147

RegExp ...151

String ..173

sun ..210
Contents v

Chapter 2 Top-Level Properties and Functions 211

escape .. 212

eval .. 214

Infinity ... 216

isFinite ... 217

isNaN ... 218

NaN .. 218

Number .. 219

parseFloat .. 220

parseInt .. 221

String .. 223

undefined .. 223

unescape .. 224

Part 2 Language Elements

Chapter 3 Statements .. 229

break .. 231

comment .. 232

continue ... 233

do...while ... 234

export .. 235

for ... 235

for...in .. 236

function .. 237

if...else .. 238

import .. 239

label ... 240

return ... 241

switch ... 241

throw ... 243

try...catch ... 246

var .. 248

while .. 248

with .. 249
vi Core JavaScript Reference

Chapter 4 Operators ... 251

Assignment Operators ... 254

Comparison Operators .. 256

Using the Equality Operators ... 257

Arithmetic Operators ... 259

% (Modulus) .. 259

++ (Increment) .. 259

-- (Decrement) .. 260

- (Unary Negation) ... 260

Bitwise Operators .. 260

Bitwise Logical Operators .. 261

Bitwise Shift Operators ... 262

Logical Operators .. 263

String Operators .. 266

Special Operators .. 266

?: (Conditional operator) .. 266

, (Comma operator) .. 267

delete ... 267

in .. 269

instanceof .. 270

new .. 272

this ... 274

typeof .. 275

void ... 276

Part 3 LiveConnect Class Reference

Chapter 5 Java Classes, Constructors, and Methods 279

JSException .. 280

JSObject ... 282

Part 4 Appendixes

Appendix A Reserved Words .. 289

Index .. 291
Contents vii

viii Core JavaScript Reference

About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language. This
book is a reference manual for the core JavaScript language.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.4 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.
9

JavaScript Versions
JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

JavaScript 1.3 Navigator 4.06–4.5

JavaScript 1.4

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
10 Core JavaScript Reference

Where to Find JavaScript Information
Where to Find JavaScript Information
The core JavaScript documentation includes the following books:

• The Core JavaScript Guide provides information about the core JavaScript
language and its objects.

• The Core JavaScript Reference (this book) provides reference material for
the core JavaScript language.

If you are new to JavaScript, start with the Core JavaScript Guide. Once you
have a firm grasp of the fundamentals, you can use the Core JavaScript
Reference to get more details on individual objects and statements.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

• http://developer.netscape.com/library/documentation/
javascript.html

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

• http://developer.netscape.com/library/documentation/

The DevEdge library contains documentation on many Netscape products
and technologies.

• http://developer.netscape.com

The DevEdge home page gives you access to all DevEdge resources.
11

Document Conventions
Document Conventions
JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

Boldface type is used for glossary terms.
12 Core JavaScript Reference

1
Object Reference
• Objects, Methods, and
Properties

• Top-Level Properties and
Functions

14 Core JavaScript Reference

C h a p t e r

1
Chapter 1Objects, Methods, and Properties
This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

• Full entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Properties and Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

• Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.
Chapter 1, Objects, Methods, and Properties 15

Array
Array
Lets you work with arrays.

Created by The Array object constructor:

new Array(arrayLength)
new Array(element0, element1, ..., elementN)

An array literal:

[element0, element1, ..., elementN]

JavaScript 1.2 when you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array(element0, element1, ..., elementN)

JavaScript 1.2 when you do not specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array([arrayLength])
new Array([element0[, element1[, ..., elementN]]])

JavaScript 1.1:

new Array([arrayLength])
new Array([element0[, element1[, ..., elementN]]])

Parameters

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method

ECMA version ECMA-262

arrayLength The initial length of the array. You can access this value using the
length property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

elementN A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s length property is set to the number of arguments.
16 Core JavaScript Reference

Array
Description An array is an ordered set of values associated with a single variable name.

The following example creates an Array object with an array literal; the
coffees array contains three elements and a length of three:

coffees = ["French Roast", "Columbian", "Kona"]

Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1].

Specifying a single parameter. When you specify a single numeric parameter
with the Array constructor, you specify the initial length of the array. The
following code creates an array of five elements:

billingMethod = new Array(5)

The behavior of the Array constructor depends on whether the single
parameter is a number.

• If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the length
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

• If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)
Chapter 1, Objects, Methods, and Properties 17

Array
Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp.exec, String.match, and String.replace.
To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b’s followed by one d
//Remember matched b’s and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input A read-only property that reflects the
original string against which the regular
expression was matched.

cdbBdbsbz

index A read-only property that is the zero-based
index of the match in the string.

1

[0] A read-only element that specifies the last
matched characters.

dbBd

[1], ...[n] Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

[1]=bB
[2]=d
18 Core JavaScript Reference

Array
Backward
Compatibility

JavaScript 1.2. When you specify a single parameter with the Array
constructor, the behavior depends on whether you specify
LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You
cannot specify the length property of an Array using a constructor with
one parameter.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, you specify the initial length of the array as with other JavaScript
versions.

JavaScript 1.1 and earlier. When you specify a single parameter with the
Array constructor, you specify the initial length of the array. The following
code creates an array of five elements:

billingMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example
myArray[0].

Property
Summary Property Description

constructor Specifies the function that creates an object’s prototype.

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length Reflects the number of elements in an array

prototype Allows the addition of properties to all objects.
Chapter 1, Objects, Methods, and Properties 19

Array
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following example creates an array, msgArray, with a length
of 0, then assigns values to msgArray[0] and msgArray[99], changing the
length of the array to 100.

msgArray = new Array()
msgArray[0] = "Hello"
msgArray[99] = "world"
// The following statement is true,
// because defined msgArray[99] element.
if (msgArray.length == 100)

myVar="The length is 100."

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns the new
length of the array.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toSource Returns an array literal representing the specified array; you can use
this value to create a new array. Overrides the Object.toSource
method.

toString Returns a string representing the array and its elements. Overrides the
Object.toString method.

unshift Adds one or more elements to the front of an array and returns the
new length of the array.

valueOf Returns the primitive value of the array. Overrides the
Object.valueOf method.
20 Core JavaScript Reference

Array.concat
Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to myVar.

myVar="Multidimensional array test; "
a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}
for (i=0; i < 4; i++) {

str = "Row "+i+":"
for (j=0; j < 4; j++) {

str += a[i][j]
}
myVar += str +"; "

}

This example assigns the following string to myVar (line breaks are used here
for readability):

Multidimensional array test;
Row 0:[0,0][0,1][0,2][0,3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

concat .

Joins two arrays and returns a new array.

Syntax concat(arrayName2, arrayName3, ..., arrayNameN)

Parameters

Method of Array

Implemented in JavaScript 1.2, NES 3.0

arrayName2...
arrayNameN

Arrays to concatenate to this array.
Chapter 1, Objects, Methods, and Properties 21

Array.constructor
Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

• Object references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• Strings and numbers (not String and Number objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

alpha=new Array("a","b","c")
numeric=new Array(1,2,3)
alphaNumeric=alpha.concat(numeric) // creates array ["a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,2,3]
num2=[4,5,6]
num3=[7,8,9]
nums=num1.concat(num2,num3) // creates array [1,2,3,4,5,6,7,8,9]

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
22 Core JavaScript Reference

Array.index
index .

For an array created by a regular expression match, the zero-based index of the
match in the string.

input .

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

join .

Joins all elements of an array into a string.

Syntax join(separator)

Parameters

Description The string conversions of all array elements are joined into one string.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.
Chapter 1, Objects, Methods, and Properties 23

Array.length
Examples The following example creates an array, a, with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")
myVar1=a.join() // assigns "Wind,Rain,Fire" to myVar1
myVar2=a.join(", ") // assigns "Wind, Rain, Fire" to myVar1
myVar3=a.join(" + ") // assigns "Wind + Rain + Fire" to myVar1

See also Array.reverse

length .

An unsigned, 32-bit integer that specifies the number of elements in an array.

Description The value of the length property is an integer with a positive sign and a value
less than 2 to the 32 power (232).

You can set the length property to truncate an array at any time. When you
extend an array by changing its length property, the number of actual
elements does not increase; for example, if you set length to 3 when it is
currently 2, the array still contains only 2 elements.

Examples In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}

}

Property of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: length is an unsigned, 32-bit integer with a value
less than 232.

ECMA version ECMA-262
24 Core JavaScript Reference

Array.pop
The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
statesUS.length=50

}

pop .

Removes the last element from an array and returns that element. This method
changes the length of the array.

Syntax pop()

Parameters None.

Example The following code creates the myFish array containing four elements, then
removes its last element.

myFish = ["angel", "clown", "mandarin", "surgeon"];
popped = myFish.pop();

See also push, shift, unshift

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 25

Array.push
push .

Adds one or more elements to the end of an array and returns the new length
of the array. This method changes the length of the array.

Syntax push(element1, ..., elementN)

Parameters

Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Backward
Compatibility

JavaScript 1.2. The push method returns the last element added to an array.

Example The following code creates the myFish array containing two elements, then
adds two elements to it. After the code executes, pushed contains 4. (In
JavaScript 1.2, pushed contains “lion” after the code executes.)

myFish = ["angel", "clown"];
pushed = myFish.push("drum", "lion");

See also pop, shift, unshift

reverse .

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Syntax reverse()

Parameters None

Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: push returns the new length of the array rather than
the last element added to the array.

element1, ...,
elementN

The elements to add to the end of the array.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
26 Core JavaScript Reference

Array.shift
Description The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray, containing three elements,
then reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

This code changes myArray so that:

• myArray[0] is “three”

• myArray[1] is “two”

• myArray[2] is “one”

See also Array.join, Array.sort

shift .

Removes the first element from an array and returns that element. This method
changes the length of the array.

Syntax shift()

Parameters None.

Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
shifted = myFish.shift();
document.writeln("myFish after: " + myFish);
document.writeln("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also pop, push, unshift

Method of Array

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 27

Array.slice
slice .

Extracts a section of an array and returns a new array.

Syntax slice(begin[,end])

Parameters

Description slice does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

• For object references (and not the actual object), slice copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• For strings and numbers (not String and Number objects), slice copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

begin Zero-based index at which to begin extraction.

end Zero-based index at which to end extraction:

• slice extracts up to but not including end. slice(1,4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)

• As a negative index, end indicates an offset from the end of the
sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

• If end is omitted, slice extracts to the end of the sequence.
28 Core JavaScript Reference

Array.sort
Example In the following example, slice creates a new array, newCar, from myCar.
Both include a reference to the object myHonda. When the color of myHonda is
changed to purple, both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")

//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color +
"

")

//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")

</SCRIPT>

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
"cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple

sort .

Sorts the elements of an array.
Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 29

Array.sort
Syntax sort(compareFunction)

Parameters

Description If compareFunction is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

• If compareFunction(a, b) is less than 0, sort b to a lower index than a.

• If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

• If compareFunction(a, b) is greater than 0, sort b to a higher index than
a.

So, the compare function has the following form:

function compare(a, b) {
if (a is less than b by some ordering criterion)

return -1
if (a is greater than b by the ordering criterion)

return 1
// a must be equal to b
return 0

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
return a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

compareFunction Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.
30 Core JavaScript Reference

Array.sort
The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
for (i = 0; i < x.length; i++) {

document.write(x[i]);
if (i < x.length-1) document.write(", ");

}
}

writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>

In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.
Chapter 1, Objects, Methods, and Properties 31

Array.sort
<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
return a - b

}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")

document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + numberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers)
+"<P>")

document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + numericStringArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also Array.join, Array.reverse
32 Core JavaScript Reference

Array.splice
splice .

Changes the content of an array, adding new elements while removing old
elements.

Syntax splice(index, howMany, [element1][, ..., elementN])

Parameters

Description If you specify a different number of elements to insert than the number you’re
removing, the array will have a different length at the end of the call.

The splice method returns an array containing the removed elements. If only
one element is removed, an array of one element is returned

Backward
Compatibility

JavaScript 1.2. The splice method returns the element removed, if only one
element is removed (howMany parameter is 1); otherwise, the method returns
an array containing the removed elements.

Method of Array

Implemented in JavaScript 1.2, NES 3.0

index Index at which to start changing the array.

howMany An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

element1, ...,
elementN

The elements to add to the array. If you don’t specify any
elements, splice simply removes elements from the array.
Chapter 1, Objects, Methods, and Properties 33

Array.toSource
Examples The following script illustrate the use of splice:

<SCRIPT LANGUAGE="JavaScript1.2">

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish: " + myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(3, 1)
document.writeln("After removing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2: " + myFish);
document.writeln("removed is: " + removed);

</SCRIPT>

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]

toSource .

Returns a string representing the source code of the array.

Syntax toSource()

Parameters None

Method of Array

Implemented in JavaScript 1.3
34 Core JavaScript Reference

Array.toString
Description The toSource method returns the following values:

• For the built-in Array object, toSource returns the following string
indicating that the source code is not available:

function Array() {
[native code]

}

• For instances of Array, toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an array.

Examples To examine the source code of an array:

alpha = new Array("a", "b", "c")
alpha.toSource() //returns ["a", "b", "c"]

See also Array.toString

toString .

Returns a string representing the specified array and its elements.

Syntax toString()

Parameters None.

Description The Array object overrides the toString method of Object. For Array
objects, the toString method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses toString to convert the array to a
string.

var monthNames = new Array("Jan","Feb","Mar","Apr")
myVar=monthNames.toString() // assigns "Jan,Feb,Mar,Apr" to myVar

JavaScript calls the toString method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 35

Array.unshift
Backward
Compatibility

JavaScript 1.2. In JavaScript 1.2 and earlier versions, toString returns a
string representing the source code of the array. This value is the same as the
value returned by the toSource method in JavaScript 1.3 and later versions.

See also Array.toSource

unshift .

Adds one or more elements to the beginning of an array and returns the new
length of the array.

Syntax arrayName.unshift(element1,..., elementN)

Parameters

Example The following code displays the myFish array before and after adding elements
to it.

myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("New length: " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also pop, push, shift

Method of Array

Implemented in JavaScript 1.2, NES 3.0

element1,...,
elementN

The elements to add to the front of the array.
36 Core JavaScript Reference

Array.valueOf
valueOf .

Returns the primitive value of an array.

Syntax valueOf()

Parameters None

Description The Array object inherits the valueOf method of Object. The valueOf
method of Array returns the primitive value of an array or the primitive value
of its elements as follows:

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.valueOf

Method of Array

Implemented in JavaScript 1.1

ECMA version ECMA-262

Object type of element Data type of returned value

Boolean Boolean

Number or Date number

All others string
Chapter 1, Objects, Methods, and Properties 37

Boolean
Boolean
The Boolean object is an object wrapper for a boolean value.

Created by The Boolean constructor:

new Boolean(value)

Parameters

Description Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined
or null, including a Boolean object whose value is false, evaluates to true
when passed to a conditional statement. For example, the condition in the
following if statement evaluates to true:

x = new Boolean(false);
if(x) //the condition is true

This behavior does not apply to Boolean primitives. For example, the condition
in the following if statement evaluates to false:

x = false;
if(x) //the condition is false

Do not use a Boolean object to convert a non-boolean value to a boolean
value. Instead, use Boolean as a function to perform this task:

x = Boolean(expression) //preferred
x = new Boolean(expression) //don’t use

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method

ECMA version ECMA-262

value The initial value of the Boolean object. The value is converted to a
boolean value, if necessary. If value is omitted or is 0, -0, null, false, NaN,
undefined, or the empty string (""), the object has an initial value of false.
All other values, including any object or the string "false", create an
object with an initial value of true.
38 Core JavaScript Reference

Boolean
If you specify any object, including a Boolean object whose value is false, as
the initial value of a Boolean object, the new Boolean object has a value of
true.

myFalse=new Boolean(false) // initial value of false
g=new Boolean(myFalse) //initial value of true
myString=new String("Hello") // string object
s=new Boolean(myString) //initial value of true

In JavaScript 1.3 and later versions, do not use a Boolean object in place of a
Boolean primitive.

Backward
Compatibility

JavaScript 1.2 and earlier versions. When a Boolean object is used as the
condition in a conditional test, JavaScript returns the value of the Boolean
object. For example, a Boolean object whose value is false is treated as the
primitive value false, and a Boolean object whose value is true is treated as
the primitive value true in conditional tests. If the Boolean object is a false
object, the conditional statement evaluates to false.

Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Defines a property that is shared by all Boolean objects.

Method Description

toSource Returns an object literal representing the specified Boolean
object; you can use this value to create a new object. Overrides
the Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of a Boolean object. Overrides the
Object.valueOf method.
Chapter 1, Objects, Methods, and Properties 39

Boolean.constructor
Examples The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
40 Core JavaScript Reference

Boolean.toSource
toSource .

Returns a string representing the source code of the object..

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Boolean object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]

}

• For instances of Boolean, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified Boolean object.

Syntax toString()

Parameters None.

Description The Boolean object overrides the toString method of the Object object; it
does not inherit Object.toString. For Boolean objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.

Method of Boolean

Implemented in JavaScript 1.3

Method of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 41

Boolean.valueOf
For Boolean objects and values, the built-in toString method returns the
string "true" or "false" depending on the value of the boolean object. In the
following code, flag.toString returns "true".

var flag = new Boolean(true)
var myVar=flag.toString()

See also Object.toString

valueOf .

Returns the primitive value of a Boolean object.

Syntax valueOf()

Parameters None

Description The valueOf method of Boolean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Boolean();
myVar=x.valueOf() //assigns false to myVar

See also Object.valueOf

Method of Boolean

Implemented in JavaScript 1.1

ECMA version ECMA-262
42 Core JavaScript Reference

Date
Date
Lets you work with dates and times.

Created by The Date constructor:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num, mo_num, day_num

[, hr_num, min_num, sec_num, ms_num])

Versions prior to JavaScript 1.3:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(yr_num, mo_num, day_num[, hr_num, min_num, sec_num])

Parameters

Core object

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.1: added prototype property

JavaScript 1.3: removed platform dependencies to provide a
uniform behavior across platforms; added ms_num parameter to
Date constructor; added getFullYear, setFullYear,
getMilliseconds, setMilliseconds, toSource, and UTC
methods (such as getUTCDate and setUTCDate).

ECMA version ECMA-262

milliseconds Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

dateString String value representing a date. The string should be in a
format recognized by the Date.parse method.

yr_num, mo_num,
day_num

Integer values representing part of a date. As an integer value,
the month is represented by 0 to 11 with 0=January and
11=December.

hr_num, min_num,
sec_num, ms_num

Integer values representing part of a date.
Chapter 1, Objects, Methods, and Properties 43

Date
Description If you supply no arguments, the constructor creates a Date object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. The Date object range is -100,000,000 days
to 100,000,000 days relative to 01 January, 1970 UTC.

The Date object provides uniform behavior across platforms.

The Date object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods getFullYear, setFullYear, getFullUTCYear, and
setFullUTCYear.

The following example returns the time elapsed between timeA and timeB in
milliseconds.

timeA = new Date();
// Statements here to take some action.
timeB = new Date();
timeDifference = timeB - timeA;

Backward
Compatibility

JavaScript 1.2 and earlier. The Date object behaves as follows:

• Dates prior to 1970 are not allowed.

• JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Property
Summary Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to a Date object.
44 Core JavaScript Reference

Date
Method Summary

Method Description

getDate Returns the day of the month for the specified date
according to local time.

getDay Returns the day of the week for the specified date
according to local time.

getFullYear Returns the year of the specified date according to
local time.

getHours Returns the hour in the specified date according to
local time.

getMilliseconds Returns the milliseconds in the specified date
according to local time.

getMinutes Returns the minutes in the specified date according to
local time.

getMonth Returns the month in the specified date according to
local time.

getSeconds Returns the seconds in the specified date according to
local time.

getTime Returns the numeric value corresponding to the time
for the specified date according to local time.

getTimezoneOffset Returns the time-zone offset in minutes for the current
locale.

getUTCDate Returns the day (date) of the month in the specified
date according to universal time.

getUTCDay Returns the day of the week in the specified date
according to universal time.

getUTCFullYear Returns the year in the specified date according to
universal time.

getUTCHours Returns the hours in the specified date according to
universal time.

getUTCMilliseconds Returns the milliseconds in the specified date
according to universal time.

getUTCMinutes Returns the minutes in the specified date according to
universal time.

getUTCMonth Returns the month according in the specified date
according to universal time.
Chapter 1, Objects, Methods, and Properties 45

Date
getUTCSeconds Returns the seconds in the specified date according to
universal time.

getYear Returns the year in the specified date according to
local time.

parse Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

setDate Sets the day of the month for a specified date
according to local time.

setFullYear Sets the full year for a specified date according to local
time.

setHours Sets the hours for a specified date according to local
time.

setMilliseconds Sets the milliseconds for a specified date according to
local time.

setMinutes Sets the minutes for a specified date according to local
time.

setMonth Sets the month for a specified date according to local
time.

setSeconds Sets the seconds for a specified date according to local
time.

setTime Sets the value of a Date object according to local time.

setUTCDate Sets the day of the month for a specified date
according to universal time.

setUTCFullYear Sets the full year for a specified date according to
universal time.

setUTCHours Sets the hour for a specified date according to
universal time.

setUTCMilliseconds Sets the milliseconds for a specified date according to
universal time.

setUTCMinutes Sets the minutes for a specified date according to
universal time.

setUTCMonth Sets the month for a specified date according to
universal time.

Method Description
46 Core JavaScript Reference

Date
In addition, this object inherits the watch and unwatch methods from
Object.

Examples The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

setUTCSeconds Sets the seconds for a specified date according to
universal time.

setYear Sets the year for a specified date according to local
time.

toGMTString Converts a date to a string, using the Internet GMT
conventions.

toLocaleString Converts a date to a string, using the current locale’s
conventions.

toSource Returns an object literal representing the specified
Date object; you can use this value to create a new
object. Overrides the Object.toSource method.

toString Returns a string representing the specified Date object.
Overrides the Object.toString method.

toUTCString Converts a date to a string, using the universal time
convention.

UTC Returns the number of milliseconds in a Date object
since January 1, 1970, 00:00:00, universal time.

valueOf Returns the primitive value of a Date object. Overrides
the Object.valueOf method.

Method Description
Chapter 1, Objects, Methods, and Properties 47

Date.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

getDate .

Returns the day of the month for the specified date according to local time.

Syntax getDate()

Parameters None

Description The value returned by getDate is an integer between 1 and 31.

Examples The second statement below assigns the value 25 to the variable day, based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also Date.getUTCDate, Date.getUTCDay, Date.setDate

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
48 Core JavaScript Reference

Date.getDay
getDay .

Returns the day of the week for the specified date according to local time.

Syntax getDay()

Parameters None

Description The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday, based on the
value of the Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

See also Date.getUTCDay, Date.setDate

getFullYear .

Returns the year of the specified date according to local time.

Syntax getFullYear()

Parameters None

Description The value returned by getFullYear is an absolute number. For dates
between the years 1000 and 9999, getFullYear returns a four-digit number,
for example, 1995. Use this function to make sure a year is compliant with
years after 2000.

Use this method instead of the getYear method.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 49

Date.getHours
Examples The following example assigns the four-digit value of the current year to the
variable yr.

var yr;
Today = new Date();
yr = Today.getFullYear();

See also Date.getYear, Date.getUTCFullYear, Date.setFullYear

getHours .

Returns the hour for the specified date according to local time.

Syntax getHours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date.getUTCHours, Date.setHours

getMilliseconds .

Returns the milliseconds in the specified date according to local time.

Syntax getMilliseconds()

Parameters None

Description The value returned by getMilliseconds is a number between 0 and 999.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
50 Core JavaScript Reference

Date.getMinutes
Examples The following example assigns the milliseconds portion of the current time to
the variable ms.

var ms;
Today = new Date();
ms = Today.getMilliseconds();

See also Date.getUTCMilliseconds, Date.setMilliseconds

getMinutes .

Returns the minutes in the specified date according to local time.

Syntax getMinutes()

Parameters None

Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes,
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also Date.getUTCMinutes, Date.setMinutes

getMonth .

Returns the month in the specified date according to local time.

Syntax getMonth()

Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 51

Date.getSeconds
Examples The second statement below assigns the value 11 to the variable month, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also Date.getUTCMonth, Date.setMonth

getSeconds .

Returns the seconds in the current time according to local time.

Syntax getSeconds()

Parameters None

Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also Date.getUTCSeconds, Date.setSeconds

getTime .

Returns the numeric value corresponding to the time for the specified date
according to local time.

Syntax getTime()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
52 Core JavaScript Reference

Date.getTimezoneOffset
Description The value returned by the getTime method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Date object.

Examples The following example assigns the date value of theBigDay to sameAsBigDay:

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getUTCHours, Date.setTime

getTimezoneOffset .

Returns the time-zone offset in minutes for the current locale.

Syntax getTimezoneOffset()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getUTCDate .

Returns the day (date) of the month in the specified date according to universal
time.

Syntax getUTCDate()

Parameters None

Description The value returned by getUTCDate is an integer between 1 and 31.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 53

Date.getUTCDay
Examples The following example assigns the day portion of the current date to the
variable d.

var d;
Today = new Date();
d = Today.getUTCDate();

See also Date.getDate, Date.getUTCDay, Date.setUTCDate

getUTCDay .

Returns the day of the week in the specified date according to universal time.

Syntax getUTCDay()

Parameters None

Description The value returned by getUTCDay is an integer corresponding to the day of
the week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The following example assigns the weekday portion of the current date to the
variable ms.

var weekday;
Today = new Date()
weekday = Today.getUTCDay()

See also Date.getDay, Date.getUTCDate, Date.setUTCDate

getUTCFullYear .

Returns the year in the specified date according to universal time.

Syntax getUTCFullYear()

Parameters None

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
54 Core JavaScript Reference

Date.getUTCHours
Description The value returned by getUTCFullYear is an absolute number that is
compliant with year-2000, for example, 1995.

Examples The following example assigns the four-digit value of the current year to the
variable yr.

var yr;
Today = new Date();
yr = Today.getUTCFullYear();

See also Date.getFullYear, Date.setFullYear

getUTCHours .

Returns the hours in the specified date according to universal time.

Syntax getUTCHours()

Parameters None

Description The value returned by getUTCHours is an integer between 0 and 23.

Examples The following example assigns the hours portion of the current time to the
variable hrs.

var hrs;
Today = new Date();
hrs = Today.getUTCHours();

See also Date.getHours, Date.setUTCHours

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 55

Date.getUTCMilliseconds
getUTCMilliseconds .

Returns the milliseconds in the specified date according to universal time.

Syntax getUTCMilliSeconds()

Parameters None

Description The value returned by getUTCMilliseconds is an integer between 0 and
999.

Examples The following example assigns the milliseconds portion of the current time to
the variable ms.

var ms;
Today = new Date();
ms = Today.getUTCMilliseconds();

See also Date.getMilliseconds, Date.setUTCMilliseconds

getUTCMinutes .

Returns the minutes in the specified date according to universal time.

Syntax getUTCMinutes()

Parameters None

Description The value returned by getUTCMinutes is an integer between 0 and 59.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
56 Core JavaScript Reference

Date.getUTCMonth
Examples The following example assigns the minutes portion of the current time to the
variable min.

var min;
Today = new Date();
min = Today.getUTCMinutes();

See also Date.getMinutes, Date.setUTCMinutes

getUTCMonth .

Returns the month according in the specified date according to universal time.

Syntax getUTCMonth()

Parameters None

Description The value returned by getUTCMonth is an integer between 0 and 11
corresponding to the month. 0 for January, 1 for February, 2 for March, and so
on.

Examples The following example assigns the month portion of the current date to the
variable mon.

var mon;
Today = new Date();
mon = Today.getUTCMonth();

See also Date.getMonth, Date.setUTCMonth

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 57

Date.getUTCSeconds
getUTCSeconds .

Returns the seconds in the specified date according to universal time.

Syntax getUTCSeconds()

Parameters None

Description The value returned by getUTCSeconds is an integer between 0 and 59.

Examples The following example assigns the seconds portion of the current time to the
variable sec.

var sec;
Today = new Date();
sec = Today.getUTCSeconds();

See also Date.getSeconds, Date.setUTCSeconds

getYear .

Returns the year in the specified date according to local time.

Syntax getYear()

Parameters None

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: deprecated; also, getYear returns the year minus
1900 regardless of the year specified

ECMA version ECMA-262
58 Core JavaScript Reference

Date.getYear
Description getYear is no longer used and has been replaced by the getFullYear
method.

The getYear method returns the year minus 1900; thus:

• For years above 2000, the value returned by getYear is 100 or greater. For
example, if the year is 2026, getYear returns 126.

• For years between and including 1900 and 1999, the value returned by
getYear is between 0 and 99. For example, if the year is 1976, getYear
returns 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is less than 0. For example, if the year is 1800, getYear returns -
100.

To take into account years before and after 2000, you should use
Date.getFullYear instead of getYear so that the year is specified in full.

Backward
Compatibility

JavaScript 1.2 and earlier versions. The getYear method returns either a
2-digit or 4-digit year:

• For years between and including 1900 and 1999, the value returned by
getYear is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Examples Example 1. The second statement assigns the value 95 to the variable year.

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year.

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100

Example 3. The second statement assigns the value -100 to the variable year.

Xmas = new Date("December 25, 1800 23:15:00")
year = Xmas.getYear() // returns -100
Chapter 1, Objects, Methods, and Properties 59

Date.parse
Example 4. The second statement assigns the value 95 to the variable year,
representing the year 1995.

Xmas.setYear(95)
year = Xmas.getYear() // returns 95

See also Date.getFullYear, Date.getUTCFullYear, Date.setYear

parse .

Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

Syntax Date.parse(dateString)

Parameters :

Description The parse method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT". It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00
GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date, you always use it as Date.parse(),
rather than as a method of a Date object you created.

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

dateString A string representing a date.
60 Core JavaScript Reference

Date.prototype
Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also Date.UTC

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

setDate .

Sets the day of the month for a specified date according to local time.

Syntax setDate(dayValue)

Parameters

Examples The second statement below changes the day for theBigDay to July 24 from its
original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also Date.getDate, Date.setUTCDate

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

dayValue An integer from 1 to 31, representing the day of the month.
Chapter 1, Objects, Methods, and Properties 61

Date.setFullYear
setFullYear .

Sets the full year for a specified date according to local time.

Syntax setFullYear(yearValue[, monthValue, dayValue])

Parameters

Description If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue, the year is
incremented by 1 (year + 1), and 3 is used for the month.

Examples theBigDay = new Date();
theBigDay.setFullYear(1997);

See also Date.getUTCFullYear,Date.setUTCFullYear, Date.setYear

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer specifying the numeric value of the year, for example,
1995.

monthValue An integer between 0 and 11 representing the months January
through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue.
62 Core JavaScript Reference

Date.setHours
setHours .

Sets the hours for a specified date according to local time.

Syntax setHours(hoursValue[, minutesValue, secondsValue, msValue])

Versions prior to JavaScript 1.3:

setHours(hoursValue)

Parameters

Description If you do not specify the minutesValue, secondsValue, and msValue
parameters, the values returned from the getUTCMinutes, getUTCSeconds,
and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

Examples theBigDay.setHours(7)

See also Date.getHours, Date.setUTCHours

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added minutesValue, secondsValue, and
msValue parameters

ECMA version ECMA-262

hoursValue An integer between 0 and 23, representing the hour.

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue.

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue.
Chapter 1, Objects, Methods, and Properties 63

Date.setMilliseconds
setMilliseconds .

Sets the milliseconds for a specified date according to local time.

Syntax setMilliseconds(millisecondsValue)

Parameters

Description If you specify a number outside the expected range, the date information in the
Date object is updated accordingly. For example, if you specify 1005, the
number of seconds is incremented by 1, and 5 is used for the milliseconds.

Examples theBigDay = new Date();
theBigDay.setMilliseconds(100);

See also Date.getMilliseconds, Date.setUTCMilliseconds

setMinutes .

Sets the minutes for a specified date according to local time.

Syntax setMinutes(minutesValue[, secondsValue, msValue])

Versions prior to JavaScript 1.3:

setMinutes(minutesValue)

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

millisecondsValueA number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added secondsValue and msValue parameters

ECMA version ECMA-262
64 Core JavaScript Reference

Date.setMonth
Parameters

Examples theBigDay.setMinutes(45)

Description If you do not specify the secondsValue and msValue parameters, the values
returned from getSeconds and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

See also Date.getMinutes, Date.setUTCMilliseconds

setMonth .

Sets the month for a specified date according to local time.

Syntax setMonth(monthValue[, dayValue])

Versions prior to JavaScript 1.3:

setMonth(monthValue)

Parameters

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue.

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added dayValue parameter

ECMA version ECMA-262

monthValue An integer between 0 and 11 (representing the months January
through December).

dayValue An integer from 1 to 31, representing the day of the month.
Chapter 1, Objects, Methods, and Properties 65

Date.setSeconds
Description If you do not specify the dayValue parameter, the value returned from the
getDate method is used.

If a parameter you specify is outside of the expected range, setMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue, the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigDay.setMonth(6)

See also Date.getMonth, Date.setUTCMonth

setSeconds .

Sets the seconds for a specified date according to local time.

Syntax setSeconds(secondsValue[, msValue])

Versions prior to JavaScript 1.3:

setSeconds(secondsValue)

Parameters

Description If you do not specify the msValue parameter, the value returned from the
getMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

Examples theBigDay.setSeconds(30)

See also Date.getSeconds, Date.setUTCSeconds

Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added msValue parameter

ECMA version ECMA-262

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.
66 Core JavaScript Reference

Date.setTime
setTime .

Sets the value of a Date object according to local time.

Syntax setTime(timevalue)

Parameters

Description Use the setTime method to help assign a date and time to another Date object.

Examples theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getTime, Date.setUTCHours

setUTCDate .

Sets the day of the month for a specified date according to universal time.

Syntax setUTCDate(dayValue)

Parameters

Description If a parameter you specify is outside of the expected range, setUTCDate
attempts to update the date information in the Date object accordingly. For
example, if you use 40 for dayValue, and the month stored in the Date
object is June, the day will be changed to 10 and the month will be
incremented to July.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

timevalue An integer representing the number of milliseconds since 1 January
1970 00:00:00.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

dayValue An integer from 1 to 31, representing the day of the month.
Chapter 1, Objects, Methods, and Properties 67

Date.setUTCFullYear
Examples theBigDay = new Date();
theBigDay.setUTCDate(20);

See also Date.getUTCDate, Date.setDate

setUTCFullYear .

Sets the full year for a specified date according to universal time.

Syntax setUTCFullYear(yearValue[, monthValue, dayValue])

Parameters

Description If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setUTCFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue, the year is
incremented by 1 (year + 1), and 3 is used for the month.

Examples theBigDay = new Date();
theBigDay.setUTCFullYear(1997);

See also Date.getUTCFullYear, Date.setFullYear

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer specifying the numeric value of the year, for example,
1995.

monthValue An integer between 0 and 11 representing the months January
through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue.
68 Core JavaScript Reference

Date.setUTCHours
setUTCHours .

Sets the hour for a specified date according to universal time.

Syntax setUTCHour(hoursValue[, minutesValue, secondsValue, msValue])

Parameters

Description If you do not specify the minutesValue, secondsValue, and msValue
parameters, the values returned from the getUTCMinutes, getUTCSeconds,
and getUTCMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setUTCHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

Examples theBigDay = new Date();
theBigDay.setUTCHour(8);

See also Date.getUTCHours, Date.setHours

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

hoursValue An integer between 0 and 23, representing the hour.

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue.

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue.
Chapter 1, Objects, Methods, and Properties 69

Date.setUTCMilliseconds
setUTCMilliseconds .

Sets the milliseconds for a specified date according to universal time.

Syntax setUTCMilliseconds(millisecondsValue)

Parameters

Description If a parameter you specify is outside of the expected range,
setUTCMilliseconds attempts to update the date information in the Date
object accordingly. For example, if you use 1100 for millisecondsValue,
the seconds stored in the Date object will be incremented by 1, and 100 will
be used for milliseconds.

Examples theBigDay = new Date();
theBigDay.setUTCMilliseconds(500);

See also Date.getUTCMilliseconds, Date.setMilliseconds

setUTCMinutes .

Sets the minutes for a specified date according to universal time.

Syntax setUTCMinutes(minutesValue[, secondsValue, msValue])

Parameters

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

millisecondsValueA number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue.

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue.
70 Core JavaScript Reference

Date.setUTCMonth
Description If you do not specify the secondsValue and msValue parameters, the values
returned from getUTCSeconds and getUTCMilliseconds methods are
used.

If a parameter you specify is outside of the expected range, setUTCMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

Examples theBigDay = new Date();
theBigDay.setUTCMinutes(43);

See also Date.getUTCMinutes, Date.setMinutes

setUTCMonth .

Sets the month for a specified date according to universal time.

Syntax setUTCMonth(monthValue[, dayValue])

Parameters

Description If you do not specify the dayValue parameter, the value returned from the
getUTCDate method is used.

If a parameter you specify is outside of the expected range, setUTCMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue, the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigDay = new Date();
theBigDay.setUTCMonth(11);

See also Date.getUTCMonth, Date.setMonth

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

monthValue An integer between 0 and 11, representing the months January
through December.

dayValue An integer from 1 to 31, representing the day of the month.
Chapter 1, Objects, Methods, and Properties 71

Date.setUTCSeconds
setUTCSeconds .

Sets the seconds for a specified date according to universal time.

Syntax setUTCSeconds(secondsValue[, msValue])

Parameters

Description If you do not specify the msValue parameter, the value returned from the
getUTCMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setUTCSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue, the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

Examples theBigDay = new Date();
theBigDay.setUTCSeconds(20);

See also Date.getUTCSeconds, Date.setSeconds

setYear .

Sets the year for a specified date according to local time.

Syntax setYear(yearValue)

Parameters

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3

ECMA version ECMA-262

yearValue An integer.
72 Core JavaScript Reference

Date.toGMTString
Description setYear is no longer used and has been replaced by the setFullYear
method.

If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue. Otherwise, the year for
dateObjectName is set to yearValue.

To take into account years before and after 2000, you should use
setFullYear instead of setYear so that the year is specified in full.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

See also Date.getYear, Date.setFullYear, Date.setUTCFullYear

toGMTString .

Converts a date to a string, using the Internet GMT conventions.

Syntax toGMTString()

Parameters None

Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 73

Date.toLocaleString
Description toGMTString is no longer used and has been replaced by the toUTCString
method.

The exact format of the value returned by toGMTString varies according to the
platform.

You should use Date.toUTCString instead of toGMTSTring.

Examples In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also Date.toLocaleString, Date.toUTCString

toLocaleString .

Converts a date to a string, using the current locale’s conventions.

Syntax toLocaleString()

Parameters None

Description If you pass a date using toLocaleString, be aware that different platforms
assemble the string in different ways. Methods such as getHours,
getMinutes, and getSeconds give more portable results.

The toLocaleString method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, toLocaleString returns a string that is not year-2000 compliant.
toLocaleString behaves similarly to toString when converting a year
that the operating system does not properly format.

Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
74 Core JavaScript Reference

Date.toSource
Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

See also Date.toGMTString, Date.toUTCString

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Date object, toSource returns the following string
indicating that the source code is not available:

function Date() {
[native code]

}

• For instances of Date, toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 75

Date.toString
toString .

Returns a string representing the specified Date object.

Syntax toString()

Parameters None.

Description The Date object overrides the toString method of the Object object; it
does not inherit Object.toString. For Date objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.

Examples The following example assigns the toString value of a Date object to myVar:

x = new Date();
myVar=x.toString(); //assigns a value to myVar similar to:

//Mon Sep 28 14:36:22 GMT-0700 (Pacific Daylight Time) 1998

See also Object.toString

toUTCString .

Converts a date to a string, using the universal time convention.

Syntax toUTCString()

Parameters None

Description The value returned by toUTCString is a readable string formatted according
to UTC convention. The format of the return value may vary according to the
platform.

Method of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262
76 Core JavaScript Reference

Date.UTC
Examples var UTCstring;
Today = new Date();
UTCstring = Today.toUTCString();

See also Date.toLocaleString, Date.toUTCString

UTC .

Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, universal time.

Syntax Date.UTC(year, month, day[, hrs, min, sec, ms])

Parameters

Description UTC takes comma-delimited date parameters and returns the number of
milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + year); for example, if you specify 95, the year 1995 is used.

Method of Date

Static

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: added ms parameter

ECMA version ECMA-262

year A year after 1900.

month An integer between 0 and 11 representing the month.

date An integer between 1 and 31 representing the day of the month.

hrs An integer between 0 and 23 representing the hours.

min An integer between 0 and 59 representing the minutes.

sec An integer between 0 and 59 representing the seconds.

ms An integer between 0 and 999 representing the milliseconds.
Chapter 1, Objects, Methods, and Properties 77

Date.valueOf
The UTC method differs from the Date constructor in two ways.

• Date.UTC uses universal time instead of the local time.

• Date.UTC returns a time value as a number instead of creating a Date
object.

If a parameter you specify is outside of the expected range, the UTC method
updates the other parameters to allow for your number. For example, if you
use 15 for month, the year will be incremented by 1 (year + 1), and 3 will be
used for the month.

Because UTC is a static method of Date, you always use it as Date.UTC(),
rather than as a method of a Date object you created.

Examples The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also Date.parse

valueOf .

Returns the primitive value of a Date object.

Syntax valueOf()

Parameters None

Description The valueOf method of Date returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Date(56,6,17);
myVar=x.valueOf() //assigns -424713600000 to myVar

See also Object.valueOf

Method of Date

Implemented in JavaScript 1.1

ECMA version ECMA-262
78 Core JavaScript Reference

Function
Function
Specifies a string of JavaScript code to be compiled as a function.

Created by The Function constructor:

new Function ([arg1[, arg2[, ... argN]],] functionBody)

The function statement (see “function” on page 237 for details):

function name([param[, param[, ... param]]]) {
statements

}

Parameters

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arity, arguments.callee properties; added
ability to nest functions

JavaScript 1.3: added apply, call, and toSource methods;
deprecated arguments.caller property

JavaScript 1.4: deprecated arguments, arguments.callee,
arguments.length, and arity properties (arguments
remains a variable local to a function rather than a property of
Function)

ECMA version ECMA-262

arg1, arg2,
... argN

(Optional) Names to be used by the function as formal argument
names. Each must be a string that corresponds to a valid JavaScript
identifier; for example "x" or "theValue".

functionBody A string containing the JavaScript statements comprising the function
definition.

name The function name.

param The name of an argument to be passed to the function. A function can
have up to 255 arguments.

statements The statements comprising the body of the function.
Chapter 1, Objects, Methods, and Properties 79

Function
Description Function objects created with the Function constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have a return statement that specifies the
value to return.

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

The this keyword does not refer to the currently executing function, so you
must refer to Function objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the arguments
array. See arguments.

Specifying arguments with the Function constructor. The following code
creates a Function object that takes two arguments.

var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "return x * y".

The preceding code assigns a function to the variable multiply. To call the
Function object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = multiply(7,6)

var myAge = 50
if (myAge >=39) {myAge=multiply (myAge,.5)}
80 Core JavaScript Reference

Function
Assigning a function to a variable with the Function constructor.

Suppose you create the variable multiply using the Function constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Function constructor is similar to
declaring a function with the function statement, but they have differences:

• When you assign a function to a variable using var multiply = new
Function("..."), multiply is a variable for which the current value is a
reference to the function created with new Function().

• When you create a function using function multiply() {...},
multiply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

• The inner function can be accessed only from statements in the outer
function.

• The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {
function square(x) {

return x*x
}
return square(a) + square(b)

}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41

When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:
Chapter 1, Objects, Methods, and Properties 81

Function
function outside(x) {
function inside(y) {

return x+y
}
return inside

}
result=outside(3)(5) // returns 8

Backward
Compatibility

JavaScript 1.3 and earlier versions. In addition to being available as a local
variable, the arguments array is also a property of the Function object and
can be preceded by the function name, as follows:

functionName.arguments[i]

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.

Property
Summary

Method Summary

Property Description

arguments An array corresponding to the arguments passed to a
function.

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the currently
executing function.

arguments.length Specifies the number of arguments passed to the function.

arity Specifies the number of arguments expected by the function.

constructor Specifies the function that creates an object’s prototype.

length Specifies the number of arguments expected by the function.

prototype Allows the addition of properties to a Function object.

Method Description

apply Allows you to apply a method of another object in the
context of a different object (the calling object).

call Allows you to call (execute) a method of another object in
the context of a different object (the calling object).

toSource Returns a string representing the source code of the function.
Overrides the Object.toSource method.
82 Core JavaScript Reference

Function.apply
Examples Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

// This function returns a string padded with leading zeros
function padZeros(num, totalLen) {

var numStr = num.toString() // Initialize return value
// as string

var numZeros = totalLen - numStr.length // Calculate no. of zeros
if (numZeros > 0) {

for (var i = 1; i <= numZeros; i++) {
numStr = "0" + numStr

}
}
return numStr

}

The following statements call the padZeros function.

result=padZeros(42,4) // returns "0042"
result=padZeros(42,2) // returns "42"
result=padZeros(5,4) // returns "0005"

apply .

Allows you to apply a method of another object in the context of a different
object (the calling object).

Syntax apply(thisArg[, argArray])

Parameters

toString Returns a string representing the source code of the function.
Overrides the Object.toString method.

valueOf Returns a string representing the source code of the function.
Overrides the Object.valueOf method.

Method Description

Method of Function

Implemented in JavaScript 1.3

thisArg Parameter for the calling object

argArray An argument array for the object
Chapter 1, Objects, Methods, and Properties 83

Function.apply
Description You can assign a different this object when calling an existing function. this
refers to the current object, the calling object. With apply, you can write a
method once and then inherit it in another object, without having to rewrite the
method for the new object.

apply is very similar to call, except for the type of arguments it supports.
You can use an arguments array instead of a named set of parameters. With
apply, you can use an array literal, for example, apply(this, [name,
value]), or an Array object, for example, apply(this, new
Array(name, value)).

You can also use arguments for the argArray parameter. arguments is a
local variable of a function. It can be used for all unspecified arguments of the
called object. Thus, you do not have to know the arguments of the called object
when you use the apply method. You can use arguments to pass all the
arguments to the called object. The called object is then responsible for
handling the arguments.

Examples You can use apply to chain constructors for an object, similar to Java. In the
following example, the constructor for the product object is defined with two
parameters, name and value. Another object, prod_dept, initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables. In this example, the parameter arguments is
used for all arguments of the product object’s constructor.

function product(name, value){
this.name = name;
if(value > 1000)

this.value = 999;
else

this.value = value;
}

function prod_dept(name, value, dept){
this.dept = dept;
product.apply(product, arguments);

}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

See also Function.call
84 Core JavaScript Reference

Function.arguments
arguments .

An array corresponding to the arguments passed to a function.

Description The arguments array is a local variable available within all function objects;
arguments as a property of Function is no longer used.

You can refer to a function’s arguments within the function by using the
arguments array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

arguments[0]
arguments[1]
arguments[2]

The arguments array is available only within a function body. Attempting to
access the arguments array outside a function declaration results in an error.

You can use the arguments array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use
arguments.length to determine the number of arguments passed to the
function, and then process each argument by using the arguments array. (To
determine the number of arguments declared when a function was defined, use
the Function.length property.)

Local variable of All function objects

Property of Function (deprecated)

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arguments.callee property

JavaScript 1.3: deprecated arguments.caller property; removed
support for argument names and local variable names as properties
of the arguments array

JavaScript 1.4: deprecated arguments, arguments.callee, and
arguments.length as properties of Function; retained
arguments as a local variable of a function and
arguments.callee and arguments.length as properties of
this variable

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 85

Function.arguments
The arguments array has the following properties:

Backward
Compatibility

JavaScript 1.3 and earlier versions. In addition to being available as a local
variable, the arguments array is also a property of the Function object and
can be preceded by the function name. For example, if a function myFunc is
passed three arguments named arg1, arg2, and arg3, you can refer to the
arguments as follows:

myFunc.arguments[0]
myFunc.arguments[1]
myFunc.arguments[2]

JavaScript 1.1 and 1.2. The following features that were available in
JavaScript 1.1 and JavaScript 1.2 have been removed:

• Each local variable of a function is a property of the arguments array. For
example, if a function myFunc has a local variable named myLocalVar,
you can refer to the variable as arguments.myLocalVar.

• Each formal argument of a function is a property of the arguments array.
For example, if a function myFunc has two arguments named arg1 and
arg2, you can refer to the arguments as arguments.arg1 and
arguments.arg2. (You can also refer to them as arguments[0] and
arguments[1].)

Property Description

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the
currently executing function. (Deprecated)

arguments.length Specifies the number of arguments passed to the function.
86 Core JavaScript Reference

Function.arguments.callee
Examples Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

arguments.callee .

Specifies the function body of the currently executing function.

Description arguments.callee is a property of the arguments local variable available
within all function objects; arguments.callee as a property of Function is
no longer used.

The callee property is available only within the body of a function.

The this keyword does not refer to the currently executing function. Use the
callee property to refer to a function within the function body.

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.2

JavaScript 1.4: Deprecated callee as a property of
Function.arguments, retained it as a property of a function’s
local arguments variable

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 87

Function.arguments.caller
Examples The following function returns the value of the function’s callee property.

function myFunc() {
return arguments.callee

}

The following value is returned:

function myFunc() { return arguments.callee; }

See also Function.arguments

arguments.caller .

Specifies the name of the function that invoked the currently executing
function.

Description caller is no longer used.

The caller property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

The caller property is a reference to the calling function, so

• If you use it in a string context, you get the result of calling
functionName.toString. That is, the decompiled canonical source form
of the function.

• You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

Property of Function

Implemented in JavaScript 1.1, NES 2.0

Deprecated in JavaScript 1.3
88 Core JavaScript Reference

Function.arguments.length
Examples The following code checks the value of a function’s caller property.

function myFunc() {
if (arguments.caller == null) {

return ("The function was called from the top!")
} else return ("This function’s caller was " + arguments.caller)

}

See also Function.arguments

arguments.length .

Specifies the number of arguments passed to the function.

Description arguments.length is a property of the arguments local variable available
within all function objects; arguments.length as a property of Function is
no longer used.

arguments.length provides the number of arguments actually passed to a
function. By contrast, the Function.length property indicates how many
arguments a function expects.

Example The following example demonstrates the use of Function.length and
arguments.length.

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also Function.arguments

Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.1

JavaScript 1.4: Deprecated length as a property of
Function.arguments, retained it as a property of a function’s
local arguments variable

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 89

Function.arity
arity .

Specifies the number of arguments expected by the function.

Description arity is no longer used and has been replaced by the length property.

arity is external to the function, and indicates how many arguments a
function expects. By contrast, arguments.length provides the number of
arguments actually passed to a function.

Example The following example demonstrates the use of arity and
arguments.length.

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {

return (x+y)
}
else return 0

}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) // returns 7
result=addNumbers(103,104) // returns 207

See also arguments.length, Function.length

call .

Allows you to call (execute) a method of another object in the context of a
different object (the calling object).

Syntax call(thisArg[, arg1[, arg2[, ...]]])

Property of Function

Implemented in JavaScript 1.2, NES 3.0

Deprecated in JavaScript 1.4

Method of Function

Implemented in JavaScript 1.3
90 Core JavaScript Reference

Function.call
Parameters

Description You can assign a different this object when calling an existing function. this
refers to the current object, the calling object.

With call, you can write a method once and then inherit it in another object,
without having to rewrite the method for the new object.

Examples You can use call to chain constructors for an object, similar to Java. In the
following example, the constructor for the product object is defined with two
parameters, name and value. Another object, prod_dept, initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables.

function product(name, value){
this.name = name;
if(value > 1000)

this.value = 999;
else

this.value = value;
}

function prod_dept(name, value, dept){
this.dept = dept;
product.call(this, name, value);

}

prod_dept.prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

// since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

See also Function.apply

thisArg Parameter for the calling object

arg1, arg2, ... Arguments for the object
Chapter 1, Objects, Methods, and Properties 91

Function.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

length .

Specifies the number of arguments expected by the function.

Description length is external to a function, and indicates how many arguments the
function expects. By contrast, arguments.length is local to a function and
provides the number of arguments actually passed to the function.

Example See the example for arguments.length.

See also arguments.length

prototype .

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype
property.

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262

Property of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
92 Core JavaScript Reference

Function.prototype
Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun.prototype.name = value

where

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example The following example creates a method, str_rep, and uses the statement
String.prototype.rep = str_rep to add the method to all String objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the String objects using the statement s1.rep = fake_rep. The
str_rep method of the remaining String objects is not altered.

fun The name of the constructor function object you want to change.

name The name of the property or method to be created.

value The value initially assigned to the new property or method.
Chapter 1, Objects, Methods, and Properties 93

Function.toSource
var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {

var s = "", t = this.toString()
while (--n >= 0) s += t
return s

}

String.prototype.rep = str_rep

s1a=s1.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

// Create an alternate method and assign it to only one String variable
function fake_rep(n) {

return "repeat " + this + " " + n + " times."
}

s1.rep = fake_rep
s1b=s1.rep(1) // returns "repeat a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on String objects not created with
the String constructor. The following code returns "zzz".

"z".rep(3)

toSource .

Returns a string representing the source code of the function.

Syntax toSource()

Parameters None

Method of Function

Implemented in JavaScript 1.3
94 Core JavaScript Reference

Function.toString
Description The toSource method returns the following values:

• For the built-in Function object, toSource returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

• For custom functions, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

See also Function.toString, Object.valueOf

toString .

Returns a string representing the source code of the function.

Syntax toString()

Parameters None.

Description The Function object overrides the toString method of the Object object;
it does not inherit Object.toString. For Function objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Function is to be
represented as a text value or when a Function is referred to in a string
concatenation.

For Function objects, the built-in toString method decompiles the function
back into the JavaScript source that defines the function. This string includes
the function keyword, the argument list, curly braces, and function body.

Method of Function

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 95

Function.valueOf
For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed =
breed; this.color = color; this.sex = sex; }

See also Object.toString

valueOf .

Returns a string representing the source code of the function.

Syntax valueOf()

Parameters None

Description The valueOf method returns the following values:

• For the built-in Function object, valueOf returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

• For custom functions, toSource returns the JavaScript source that defines
the object as a string. The method is equivalent to the toString method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

See also Function.toString, Object.valueOf

Method of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262
96 Core JavaScript Reference

Chapter 1, Objects, Methods, and Properties 97

java

java
A top-level object used to access any Java class in the package java.*.

Created by The java object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The java object is a convenience synonym for the property Packages.java.

See also Packages, Packages.java

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaArray
JavaArray
A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArray.

Created by Any Java method which returns an array. In addition, you can create a
JavaArray with an arbitrary data type using the newInstance method of
the Array class:

public static Object newInstance(Class componentType,
int length)
throws NegativeArraySizeException

Description The JavaArray object is an instance of a Java array that is created in or
passed to JavaScript. JavaArray is a wrapper for the instance; all references
to the array instance are made through the JavaArray.

In JavaScript 1.4 and later, the componentType parameter is either a
JavaClass object representing the type of the array or class object, such as
one returned by java.lang.Class.forName. In JavaScript 1.3 and earlier,
componentType must be a class object.

Use zero-based indexes to access the elements in a JavaArray object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();
byteArray[0] // returns 72
byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaArray is passed back to Java, the array is unwrapped and can
be used by Java code. See the Core JavaScript Guide for more information
about data type conversions.

In JavaScript 1.4 and later, the methods of java.lang.Object are inherited
by JavaArray.

Core object

Implemented in JavaScript 1.1, NES 2.0
98 Core JavaScript Reference

JavaArray
Backward
compatibility

JavaScript 1.3 and earlier. The methods of java.lang.Object are not
inherited by JavaArray. In addition, the toString method is inherited from
the Object object and returns the following value:

[object JavaArray]

You must specify a class object, such as one returned by
java.lang.Object.forName, for the componentType parameter of
newInstance when you use this method to create an array. You cannot use a
JavaClass object for the componentType parameter.

Property
Summary

Method Summary

In JavaScript 1.4 and later, JavaArray also inherits methods from the Java
array superclass, java.lang.Object.

Examples Example 1. Instantiating a JavaArray in JavaScript.

In this example, the JavaArray byteArray is created by the
java.lang.String.getBytes method, which returns an array.

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

Property Description

length The number of elements in the Java array represented by
JavaArray.

Method Description

toString In JavaScript 1.4, this method is overridden by the
inherited method java.lang.Object.toString.
In JavaScript 1.3 and earlier, this method returns a
string identifying the object as a JavaArray.
Chapter 1, Objects, Methods, and Properties 99

JavaArray.length
Example 2. Instantiating a JavaArray in JavaScript with the newInstance
method.

In JavaScript 1.4, you can use a JavaClass object as the argument for the
newInstance method which creates the array, as shown in the following
code:

var dogs = java.lang.reflect.Array.newInstance(java.lang.String, 5)

In JavaScript 1.1, use a class object returned by java.lang.Class.forName
as the argument for the newInstance method, as shown in the following
code:

var dataType = java.lang.Class.forName("java.lang.String")
var dogs = java.lang.reflect.Array.newInstance(dataType, 5)

length .

The number of elements in the Java array represented by the JavaArray
object.

Description Unlike Array.length, JavaArray.length is a read-only property. You
cannot change the value of the JavaArray.length property because Java
arrays have a fixed number of elements.

See also Array.length

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0
100 Core JavaScript Reference

JavaArray.toString
toString .

Returns a string representation of the JavaArray.

Parameters None

Description Calls the method java.lang.Object.toString, which returns the value of
the following expression:

JavaArray.getClass().getName() + ’@’ +
java.lang.Integer.toHexString(JavaArray.hashCode())

Backward
compatibility

JavaScript 1.3 and earlier. The toString method is inherited from the
Object object and returns the following value:

[object JavaArray]

Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 101

JavaClass
JavaClass
A JavaScript reference to a Java class.

Created by A reference to the class name used with the Packages object:

Packages.JavaClass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect java, sun, and netscape objects provide shortcuts for
commonly used Java packages and also create JavaClass objects.

Description A JavaClass object is a reference to one of the classes in a Java package,
such as netscape.javascript.JSObject. A JavaPackage object is a
reference to a Java package, such as netscape.javascript. In JavaScript,
the JavaPackage and JavaClass hierarchy reflect the Java package and
class hierarchy.

You can pass a JavaClass object to a Java method which requires an
argument of type java.lang.Class.

Backward
compatibility

JavaScript 1.3 and earlier. You must create a wrapper around an instance of
java.lang.Class before you pass it as a parameter to a Java method—
JavaClass objects are not automatically converted to instances of
java.lang.Class.

Property
Summary

The properties of a JavaClass object are the static fields of the Java class.

Method Summary The methods of a JavaClass object are the static methods of the Java class.

Examples Example 1. In the following example, x is a JavaClass object referring to
java.awt.Font. Because BOLD is a static field in the Font class, it is also a
property of the JavaClass object.

x = java.awt.Font
myFont = x("helv",x.BOLD,10) // creates a Font object

The previous example omits the Packages keyword and uses the java
synonym because the Font class is in the java package.

Core object

Implemented in JavaScript 1.1, NES 2.0
102 Core JavaScript Reference

JavaClass
Example 2. In the following example, the JavaClass object
java.lang.String is passed as an argument to the newInstance method
which creates an array:

var cars = java.lang.reflect.Array.newInstance(java.lang.String, 15)

See also JavaArray, JavaObject, JavaPackage, Packages
Chapter 1, Objects, Methods, and Properties 103

JavaObject
JavaObject
The type of a wrapped Java object accessed from within JavaScript code.

Created by Any Java method which returns an object type. In addition, you can explicitly
construct a JavaObject using the object’s Java constructor with the
Packages keyword:

new Packages.JavaClass(parameterList)

where JavaClass is the fully-specified name of the object’s Java class.

Parameters

Description The JavaObject object is an instance of a Java class that is created in or
passed to JavaScript. JavaObject is a wrapper for the instance; all references
to the class instance are made through the JavaObject.

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObject is passed back to Java, it is unwrapped and can be
used by Java code. See the Core JavaScript Guide for more information about
data type conversions.

Property
Summary

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Method Summary Inherits public methods from the Java class of which it is an instance. The
JavaObject also inherits methods from java.lang.Object and any other
superclass.

Core object

Implemented in JavaScript 1.1, NES 2.0

parameterList An optional list of parameters, specified by the constructor in
the Java class.
104 Core JavaScript Reference

JavaObject
Examples Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaObject theString, which is an
instance of the class java.lang.String:

var theString = new Packages.java.lang.String("Hello, world")

Because the String class is in the java package, you can also use the java
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang.String("Hello, world")

Example 2. Accessing methods of a Java object.

Because the JavaObject theString is an instance of
java.lang.String, it inherits all the public methods of
java.lang.String. The following example uses the startsWith method
to check whether theString begins with “Hello”.

var theString = new java.lang.String("Hello, world")
theString.startsWith("Hello") // returns true

Example 3. Accessing inherited methods.

Because getClass is a method of Object, and java.lang.String
extends Object, the String class inherits the getClass method.
Consequently, getClass is also a method of the JavaObject which
instantiates String in JavaScript.

var theString = new java.lang.String("Hello, world")
theString.getClass() // returns java.lang.String

See also JavaArray, JavaClass, JavaPackage, Packages
Chapter 1, Objects, Methods, and Properties 105

JavaPackage

106 Core JavaScript Reference

JavaPackage
A JavaScript reference to a Java package.

Created by A reference to the package name used with the Packages keyword:

Packages.JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the java, netscape, or sun packages, the Packages keyword is
optional.

Description In Java, a package is a collection of Java classes or other Java packages. For
example, the netscape package contains the package
netscape.javascript; the netscape.javascript package contains the
classes JSObject and JSException.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to netscape is a JavaPackage. netscape.javascript is both
a JavaPackage and a property of the netscape JavaPackage.

A JavaClass object is a reference to one of the classes in a package, such as
netscape.javascript.JSObject. The JavaPackage and JavaClass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a for...in statement to enumerate them as you
can enumerate the properties of other objects.

Property
Summary

The properties of a JavaPackage are the JavaClass objects and any other
JavaPackage objects it contains.

Examples Suppose the Redwood corporation uses the Java redwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage red:

var red = Packages.redwood

See also JavaArray, JavaClass, JavaObject, Packages

Core object

Implemented in JavaScript 1.1, NES 2.0

Math
Math
A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object’s PI property has the value of pi.

Created by The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description All properties and methods of Math are static. You refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x), where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Property
Summary

Core object

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property Description

E Euler’s constant and the base of natural logarithms, approximately
2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately
3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.
Chapter 1, Objects, Methods, and Properties 107

Math
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler’s
constant, the base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexponent.

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.
108 Core JavaScript Reference

Math.abs
abs .

Returns the absolute value of a number.

Syntax abs(x)

Parameters

Examples The following function returns the absolute value of the variable x:

function getAbs(x) {
return Math.abs(x)

}

Description Because abs is a static method of Math, you always use it as Math.abs(),
rather than as a method of a Math object you created.

acos .

Returns the arccosine (in radians) of a number.

Syntax acos(x)

Parameters

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns NaN.

Because acos is a static method of Math, you always use it as Math.acos(),
rather than as a method of a Math object you created.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 109

Math.asin
Examples The following function returns the arccosine of the variable x:

function getAcos(x) {
return Math.acos(x)

}

If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

See also Math.asin, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

asin .

Returns the arcsine (in radians) of a number.

Syntax asin(x)

Parameters

Description The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns NaN.

Because asin is a static method of Math, you always use it as Math.asin(),
rather than as a method of a Math object you created.

Examples The following function returns the arcsine of the variable x:

function getAsin(x) {
return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaN because 2 is out of range.

See also Math.acos, Math.atan, Math.atan2, Math.cos, Math.sin, Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
110 Core JavaScript Reference

Math.atan
atan .

Returns the arctangent (in radians) of a number.

Syntax atan(x)

Parameters

Description The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math, you always use it as Math.atan(),
rather than as a method of a Math object you created.

Examples The following function returns the arctangent of the variable x:

function getAtan(x) {
return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Math.acos, Math.asin, Math.atan2, Math.cos, Math.sin, Math.tan

atan2 .

Returns the arctangent of the quotient of its arguments.

Syntax atan2(y, x)

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 111

Math.ceil
Parameters

Description The atan2 method returns a numeric value between -pi and pi representing the
angle theta of an (x,y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

Because atan2 is a static method of Math, you always use it as Math.atan2(),
rather than as a method of a Math object you created.

Examples The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
return Math.atan2(x,y)

}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Math.acos, Math.asin, Math.atan, Math.cos, Math.sin, Math.tan

ceil .

Returns the smallest integer greater than or equal to a number.

Syntax ceil(x)

Parameters

Description Because ceil is a static method of Math, you always use it as Math.ceil(),
rather than as a method of a Math object you created.

y, x Number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
112 Core JavaScript Reference

Math.cos
Examples The following function returns the ceil value of the variable x:

function getCeil(x) {
return Math.ceil(x)

}

If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.

See also Math.floor

cos .

Returns the cosine of a number.

Syntax cos(x)

Parameters

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Math, you always use it as Math.cos(),
rather than as a method of a Math object you created.

Examples The following function returns the cosine of the variable x:

function getCos(x) {
return Math.cos(x)

}

If x equals 2*Math.PI, getCos returns 1; if x equals Math.PI, the getCos
method returns -1.

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.sin,
Math.tan

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 113

Math.E
E .

Euler’s constant and the base of natural logarithms, approximately 2.718.

Description Because E is a static property of Math, you always use it as Math.E, rather than
as a property of a Math object you created.

Examples The following function returns Euler’s constant:

function getEuler() {
return Math.E

}

exp .

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.

Syntax exp(x)

Parameters

Description Because exp is a static method of Math, you always use it as Math.exp(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
114 Core JavaScript Reference

Math.floor
Examples The following function returns the exponential value of the variable x:

function getExp(x) {
return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

See also Math.E, Math.log, Math.pow

floor .

Returns the largest integer less than or equal to a number.

Syntax floor(x)

Parameters

Description Because floor is a static method of Math, you always use it as Math.floor(),
rather than as a method of a Math object you created.

Examples The following function returns the floor value of the variable x:

function getFloor(x) {
return Math.floor(x)

}

If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.

See also Math.ceil

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 115

Math.LN10
LN10 .

The natural logarithm of 10, approximately 2.302.

Examples The following function returns the natural log of 10:

function getNatLog10() {
return Math.LN10

}

Description Because LN10 is a static property of Math, you always use it as Math.LN10,
rather than as a property of a Math object you created.

LN2 .

The natural logarithm of 2, approximately 0.693.

Examples The following function returns the natural log of 2:

function getNatLog2() {
return Math.LN2

}

Description Because LN2 is a static property of Math, you always use it as Math.LN2, rather
than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
116 Core JavaScript Reference

Math.log
log .

Returns the natural logarithm (base E) of a number.

Syntax log(x)

Parameters

Description If the value of number is negative, the return value is always NaN.

Because log is a static method of Math, you always use it as Math.log(),
rather than as a method of a Math object you created.

Examples The following function returns the natural log of the variable x:

function getLog(x) {
return Math.log(x)

}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns -Infinity; if you pass it the value -1, it returns NaN
because -1 is out of range.

See also Math.exp, Math.pow

LOG10E .

The base 10 logarithm of E (approximately 0.434).

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 117

Math.LOG2E
Examples The following function returns the base 10 logarithm of E:

function getLog10e() {
return Math.LOG10E

}

Description Because LOG10E is a static property of Math, you always use it as
Math.LOG10E, rather than as a property of a Math object you created.

LOG2E .

The base 2 logarithm of E (approximately 1.442).

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math.LOG2E

}

Description Because LOG2E is a static property of Math, you always use it as Math.LOG2E,
rather than as a property of a Math object you created.

max .

Returns the larger of two numbers.

Syntax max(x,y)

Parameters

Description Because max is a static method of Math, you always use it as Math.max(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.
118 Core JavaScript Reference

Math.min
Examples The following function evaluates the variables x and y:

function getMax(x,y) {
return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

See also Math.min

min .

Returns the smaller of two numbers.

Syntax min(x,y)

Parameters

Description Because min is a static method of Math, you always use it as Math.min(),
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y:

function getMin(x,y) {
return Math.min(x,y)

}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Math.max

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x, y Numbers.
Chapter 1, Objects, Methods, and Properties 119

Math.PI
PI .

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Examples The following function returns the value of pi:

function getPi() {
return Math.PI

}

Description Because PI is a static property of Math, you always use it as Math.PI, rather
than as a property of a Math object you created.

pow .

Returns base to the exponent power, that is, baseexponent.

Syntax pow(x,y)

Parameters

Description Because pow is a static method of Math, you always use it as Math.pow(),
rather than as a method of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

base The base number

exponent The exponent to which to raise base
120 Core JavaScript Reference

Math.random
Examples function raisePower(x,y) {
return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also Math.exp, Math.log

random .

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Syntax random()

Parameters None.

Description Because random is a static method of Math, you always use it as
Math.random(), rather than as a method of a Math object you created.

Examples //Returns a random number between 0 and 1
function getRandom() {

return Math.random()
}

round .

Returns the value of a number rounded to the nearest integer.

Syntax round(x)

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 121

Math.sin
Parameters

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lower integer.

Because round is a static method of Math, you always use it as Math.round(),
rather than as a method of a Math object you created.

Examples //Returns the value 20
x=Math.round(20.49)

//Returns the value 21
x=Math.round(20.5)

//Returns the value -20
x=Math.round(-20.5)

//Returns the value -21
x=Math.round(-20.51)

sin .

Returns the sine of a number.

Syntax sin(x)

Parameters

Description The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because sin is a static method of Math, you always use it as Math.sin(),
rather than as a method of a Math object you created.

x A number

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
122 Core JavaScript Reference

Math.sqrt
Examples The following function returns the sine of the variable x:

function getSine(x) {
return Math.sin(x)

}

If you pass getSine the value Math.PI/2, it returns 1.

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos,
Math.tan

sqrt .

Returns the square root of a number.

Syntax sqrt(x)

Parameters

Description If the value of number is negative, sqrt returns NaN.

Because sqrt is a static method of Math, you always use it as Math.sqrt(),
rather than as a method of a Math object you created.

Examples The following function returns the square root of the variable x:

function getRoot(x) {
return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 123

Math.SQRT1_2
SQRT1_2 .

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Examples The following function returns 1 over the square root of 2:

function getRoot1_2() {
return Math.SQRT1_2

}

Description Because SQRT1_2 is a static property of Math, you always use it as
Math.SQRT1_2, rather than as a property of a Math object you created.

SQRT2 .

The square root of 2, approximately 1.414.

Examples The following function returns the square root of 2:

function getRoot2() {
return Math.SQRT2

}

Description Because SQRT2 is a static property of Math, you always use it as Math.SQRT2,
rather than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
124 Core JavaScript Reference

Math.tan
tan .

Returns the tangent of a number.

Syntax tan(x)

Parameters

Description The tan method returns a numeric value that represents the tangent of the
angle.

Because tan is a static method of Math, you always use it as Math.tan(),
rather than as a method of a Math object you created.

Examples The following function returns the tangent of the variable x:

function getTan(x) {
return Math.tan(x)

}

See also Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos,
Math.sin

Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

x A number
Chapter 1, Objects, Methods, and Properties 125

netscape

126 Core JavaScript Reference

netscape
A top-level object used to access any Java class in the package netscape.*.

Created by The netscape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The netscape object is a convenience synonym for the property
Packages.netscape.

See also Packages, Packages.netscape

Core object

Implemented in JavaScript 1.1, NES 2.0

Number
Number
Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.

Created by The Number constructor:

new Number(value)

Parameters

Description The primary uses for the Number object are:

• To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

• To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

JavaScript 1.2: Number(x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

You can convert any object to a number using the top-level Number function.

Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior of Number constructor

JavaScript 1.3: added toSource method

ECMA version ECMA-262

value The numeric value of the object being created.
Chapter 1, Objects, Methods, and Properties 127

Number
Property
Summary

Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following example uses the Number object’s properties to
assign values to several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

Property Description

constructor Specifies the function that creates an object’s prototype.

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.

NaN Special “not a number” value.

NEGATIVE_INFINITY Special value representing negative infinity; returned on
overflow.

POSITIVE_INFINITY Special value representing infinity; returned on overflow.

prototype Allows the addition of properties to a Number object.

Method Description

toSource Returns an object literal representing the specified Number object;
you can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.
128 Core JavaScript Reference

Number.constructor
Example 2. The following example creates a Number object, myNum, then adds
a description property to all Number objects. Then a value is assigned to the
myNum object’s description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

MAX_VALUE .

The maximum numeric value representable in JavaScript.

Description The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "Infinity".

Because MAX_VALUE is a static property of Number, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you created.

Examples The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 * num2 <= Number.MAX_VALUE)
func1()

else
func2()

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 129

Number.MIN_VALUE
MIN_VALUE .

The smallest positive numeric value representable in JavaScript.

Description The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUE has a value of approximately 5e-324. Values smaller than
MIN_VALUE (“underflow values”) are converted to 0.

Because MIN_VALUE is a static property of Number, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 / num2 >= Number.MIN_VALUE)
func1()

else
func2()

NaN .

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of Number

 Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
130 Core JavaScript Reference

Number.NEGATIVE_INFINITY
Description JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN. Use the
isNaN function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Examples In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {

month = Number.NaN
alert("Month must be between 1 and 12.")

}

See also NaN, isNaN, parseFloat, parseInt

NEGATIVE_INFINITY .

A special numeric value representing negative infinity. This value is represented
as the unquoted literal "-Infinity".

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is NEGATIVE_INFINITY.

• Any negative value, including NEGATIVE_INFINITY, multiplied by
NEGATIVE_INFINITY is POSITIVE_INFINITY.

• Zero multiplied by NEGATIVE_INFINITY is NaN.

• NaN multiplied by NEGATIVE_INFINITY is NaN.

• NEGATIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is POSITIVE_INFINITY.

• NEGATIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is NEGATIVE_INFINITY.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 131

Number.POSITIVE_INFINITY
• NEGATIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

• Any number divided by NEGATIVE_INFINITY is Zero.

Because NEGATIVE_INFINITY is a static property of Number, you always use it
as Number.NEGATIVE_INFINITY, rather than as a property of a Number object
you created.

Examples In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value "-Infinity", so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)

func1()
else

func2()

See also Infinity, isFinite

POSITIVE_INFINITY .

A special numeric value representing infinity. This value is represented as the
unquoted literal "Infinity".

Description This value behaves slightly differently than mathematical infinity:

• Any positive value, including POSITIVE_INFINITY, multiplied by
POSITIVE_INFINITY is POSITIVE_INFINITY.

• Any negative value, including NEGATIVE_INFINITY, multiplied by
POSITIVE_INFINITY is NEGATIVE_INFINITY.

• Zero multiplied by POSITIVE_INFINITY is NaN.

• NaN multiplied by POSITIVE_INFINITY is NaN.

• POSITIVE_INFINITY, divided by any negative value except
NEGATIVE_INFINITY, is NEGATIVE_INFINITY.

• POSITIVE_INFINITY, divided by any positive value except
POSITIVE_INFINITY, is POSITIVE_INFINITY.

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
132 Core JavaScript Reference

Number.prototype
• POSITIVE_INFINITY, divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY, is NaN.

• Any number divided by POSITIVE_INFINITY is Zero.

Because POSITIVE_INFINITY is a static property of Number, you always use it
as Number.POSITIVE_INFINITY, rather than as a property of a Number object
you created.

Examples In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value "Infinity", so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)

func1()
else

func2()

See also Infinity, isFinite

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Property of Number

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of Number

Implemented in JavaScript 1.3
Chapter 1, Objects, Methods, and Properties 133

Number.toString
Description The toSource method returns the following values:

• For the built-in Number object, toSource returns the following string
indicating that the source code is not available:

function Number() {
[native code]

}

• For instances of Number, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified Number object.

Syntax toString()
toString(radix)

Parameters

Description The Number object overrides the toString method of the Object object; it
does not inherit Object.toString. For Number objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

For Number objects and values, the built-in toString method returns the string
representing the value of the number.

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262

radix (Optional) An integer between 2 and 36 specifying the base to use for
representing numeric values.
134 Core JavaScript Reference

Number.valueOf
You can use toString on numeric values, but not on numeric literals:

// The next two lines are valid
var howMany=10
alert("howMany.toString() is " + howMany.toString())

// The next line causes an error
alert("45.toString() is " + 45.toString())

valueOf .

Returns the primitive value of a Number object.

Syntax valueOf()

Parameters None

Description The valueOf method of Number returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Number();
alert(x.valueOf()) //displays 0

See also Object.valueOf

Method of Number

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 135

Object
Object
Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object. That is, all JavaScript objects have the methods
defined for Object.

Created by The Object constructor:

new Object()

Parameters None

Property
Summary

Method Summary

Core object

Implemented in JavaScript 1.0: toString method

JavaScript 1.1, NES 2.0: added eval and valueOf methods;
constructor property

JavaScript 1.2: deprecated eval method

JavaScript 1.3: added toSource method

JavaScript 1.4: removed eval method

ECMA version ECMA-262

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to all objects.

Method Description

eval Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.

toSource Returns an object literal representing the specified object; you can
use this value to create a new object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.
136 Core JavaScript Reference

Object.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description All objects inherit a constructor property from their prototype:

o = new Object // or o = {} in JavaScript 1.2
o.constructor == Object
a = new Array // or a = [] in JavaScript 1.2
a.constructor == Array
n = new Number(3)
n.constructor == Number

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

document.constructor == Document
document.form3.constructor == Form

Examples The following example creates a prototype, Tree, and an object of that type,
theTree. The example then displays the constructor property for the object
theTree.

function Tree(name) {
this.name=name

}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +

theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.

Method Description

Property of Object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 137

Object.eval
eval .

Deprecated. Evaluates a string of JavaScript code in the context of an object.

Syntax eval(string)

Parameters

Description The eval method is no longer available as a method of Object. Use the top-
level eval function.

Backward
Compatibility

JavaScript 1.2 and 1.3. eval as a method of Object and every object derived
from Object is deprecated (but still available).

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

See also eval

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype.

Method of Object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

JavaScript 1.4: removed as method of objects

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

Property of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
138 Core JavaScript Reference

Object.toSource
toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in Object object, toSource returns the following string
indicating that the source code is not available:

function Object() {
[native code]

}

• For instances of Object, toSource returns a string representing the
source code.

• For custom objects, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

Examples The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Calling the toSource method of theDog displays the JavaScript source that
defines the object:

theDog.toSource()
//returns "{name:"Gabby", breed:"Lab", color:"chocolate", sex:"girl"}

See also Object.toString

Method of Object

Implemented in JavaScript 1.3
Chapter 1, Objects, Methods, and Properties 139

Object.toString
toString .

Returns a string representing the specified object.

Syntax toString()

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

document.write(theDog)
document.write("The dog is " + theDog)

By default, the toString method is inherited by every object descended from
Object. You can override this method for custom objects that you create. If
you do not override toString in a custom object, toString returns
[object type], where type is the object type or the name of the constructor
function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

Built-in toString methods. Every built-in core JavaScript object overrides the
toString method of Object to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Overriding the default toString method. You can create a function to be
called in place of the default toString method. The toString method takes
no arguments and should return a string. The toString method you create can
be any value you want, but it will be most useful if it carries information about
the object.

Method of Object

Implemented in JavaScript 1.0

ECMA version ECMA-262
140 Core JavaScript Reference

Object.toString
The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

If you call the toString method on this custom object, it returns the default
value inherited from Object:

theDog.toString() //returns [object Object]

The following code creates dogToString, the function that will be used to
override the default toString method. This function generates a string
containing each property, of the form "property = value;".

function dogToString() {
var ret = "Dog " + this.name + " is [\n"
for (var prop in this)

ret += " " + prop + " is " + this[prop] + ";\n"
return ret + "]"

}

The following code assigns the user-defined function to the object’s toString
method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the
following string:

Dog Gabby is [
name is Gabby;
breed is Lab;
color is chocolate;
sex is girl;

]

An object’s toString method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()
Chapter 1, Objects, Methods, and Properties 141

Object.toString
Backward
Compatibility

JavaScript 1.2. The behavior of the toString method depends on whether
you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag:

• If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the
toString method returns an object literal.

• If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, the toString method returns [object type], as with other
JavaScript versions.

Examples Example 1: The location object. The following example prints the string
equivalent of the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.html

Example 2: Object with no string value. Assume you have an Image object
named sealife defined as follows:

Because the Image object itself has no special toString method,
sealife.toString() returns the following:

[object Image]

Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
document.write("Decimal: ", x.toString(10), " Binary: ",

x.toString(2), "
")
}

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001
142 Core JavaScript Reference

Object.unwatch
See also Object.toSource, Object.valueOf

unwatch .

Removes a watchpoint set with the watch method.

Syntax unwatch(prop)

Parameters

Description The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Object.

Example See watch.

valueOf .

Returns the primitive value of the specified object.

Syntax valueOf()

Parameters None

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.

Method of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 143

Object.valueOf
Description JavaScript calls the valueOf method to convert an object to a primitive value.
You rarely need to invoke the valueOf method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the valueOf method is inherited by every object descended from
Object. Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, valueOf returns the
object itself, which is displayed as:

[object Object]

You can use valueOf within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override
Object.valueOf to call a custom method instead of the default Object
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default valueOf method. Your function must take no
arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object’s valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is
used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

An object’s valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Note Objects in string contexts convert via the toString method, which is different
from String objects converting to string primitives using valueOf. All string
objects have a string conversion, if only "[object type]". But many objects
do not convert to number, boolean, or function.

See also parseInt, Object.toString
144 Core JavaScript Reference

Object.watch
watch .

Watches for a property to be assigned a value and runs a function when that
occurs.

Syntax watch(prop, handler)

Parameters

Description Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method. By default, the watch
method is inherited by every object descended from Object.

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

Method of Object

Implemented in JavaScript 1.2, NES 3.0

prop The name of a property of the object.

handler A function to call.
Chapter 1, Objects, Methods, and Properties 145

Object.watch
Example <script language="JavaScript1.2">
o = {p:1}
o.watch("p",

function (id,oldval,newval) {
document.writeln("o." + id + " changed from "

+ oldval + " to " + newval)
return newval

})

o.p = 2
o.p = 3
delete o.p
o.p = 4

o.unwatch(’p’)
o.p = 5

</script>

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4
146 Core JavaScript Reference

Packages
Packages
A top-level object used to access Java classes from within JavaScript code.

Created by The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The java, netscape, and sun
properties represent the packages java.*, netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Frame class as
follows:

var theFrame = new Packages.java.awt.Frame();

For convenience, JavaScript provides the top-level netscape, sun, and java
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.awt.Frame();

The className property represents the fully qualified path name of any other
Java class that is available to JavaScript. You must use the Packages object to
access classes outside the netscape, sun, and java packages.

Property
Summary

Core object

Implemented in JavaScript 1.1, NES 2.0

Property Description

className The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

java Any class in the Java package java.*.

netscape Any class in the Java package netscape.*.

sun Any class in the Java package sun.*.
Chapter 1, Objects, Methods, and Properties 147

Packages.className
Examples The following JavaScript function creates a Java dialog box:

function createWindow() {
var theOwner = new Packages.java.awt.Frame();
var theWindow = new Packages.java.awt.Dialog(theOwner);
theWindow.setSize(350,200);
theWindow.setTitle("Hello, World");
theWindow.setVisible(true);

}

In the previous example, the function instantiates theWindow as a new
Packages object. The setSize, setTitle, and setVisible methods are
all available to JavaScript as public methods of java.awt.Dialog.

className .

The fully qualified name of a Java class in a package other than netscape,
java, or sun that is available to JavaScript.

Syntax Packages.className

where classname is the fully qualified name of a Java class.

Description You must use the className property of the Packages object to access
classes outside the netscape, sun, and java packages.

Examples The following code accesses the constructor of the CorbaObject class in the
myCompany package from JavaScript:

var theObject = new Packages.myCompany.CorbaObject()

In the previous example, the value of the className property is
myCompany.CorbaObject, the fully qualified path name of the
CorbaObject class.

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
148 Core JavaScript Reference

Packages.java
java .

Any class in the Java package java.*.

Syntax Packages.java

Description Use the java property to access any class in the java package from within
JavaScript. Note that the top-level object java is a synonym for
Packages.java.

Examples The following code accesses the constructor of the java.awt.Frame class:

var theOwner = new Packages.java.awt.Frame();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.awt.Frame();

netscape .

Any class in the Java package netscape.*.

Syntax Packages.netscape

Description Use the netscape property to access any class in the netscape package
from within JavaScript. Note that the top-level object netscape is a synonym
for Packages.netscape.

Examples See the example for .Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
Chapter 1, Objects, Methods, and Properties 149

Packages.sun
sun .

Any class in the Java package sun.*.

Syntax Packages.sun

Description Use the sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for
Packages.sun.

Examples See the example for .Packages.java

Property of Packages

Implemented in JavaScript 1.1, NES 2.0
150 Core JavaScript Reference

RegExp
RegExp
A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Created by A literal text format or the RegExp constructor function.

The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

new RegExp("pattern"[, "flags"])

Parameters

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

/ab+c/i
new RegExp("ab+c", "i")

Core object

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: added toSource method

pattern The text of the regular expression.

flags If specified, flags can have one of the following values:

• g: global match

• i: ignore case

• gi: both global match and ignore case
Chapter 1, Objects, Methods, and Properties 151

RegExp
Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.1 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, /b/ matches the character ’b’. By placing a backslash in
front of b, that is by using /\b/, the character becomes special to
mean match a word boundary.
-or-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, /a*/
means match 0 or more a’s. To match * literally, precede the it with a
backslash; for example, /a*/ matches ’a*’.

^ Matches beginning of input or line.
For example, /^A/ does not match the ’A’ in "an A," but does match it
in "An A."

$ Matches end of input or line.
For example, /t$/ does not match the ’t’ in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.
For example, /bo*/ matches ’boooo’ in "A ghost booooed" and ’b’ in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}.
For example, /a+/ matches the ’a’ in "candy" and all the a’s in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the ’el’ in "angel" and the ’le’ in
"angle."
152 Core JavaScript Reference

RegExp
. (The decimal point) matches any single character except the newline
character.
For example, /.n/ matches ’an’ and ’on’ in "nay, an apple is on the
tree", but not ’nay’.

(x) Matches ’x’ and remembers the match.
For example, /(foo)/ matches and remembers ’foo’ in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
..., $9.

x|y Matches either 'x' or 'y'.
For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.
For example, /a{2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.
For example, /a{2,} doesn't match the 'a' in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.
For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c]. They match the 'b' in
"brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.
For example, [^abc] is the same as [^a-c]. They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

Table 1.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 1, Objects, Methods, and Properties 153

RegExp
\b Matches a word boundary, such as a space. (Not to be confused with
[\b].)
For example, /\bn\w/ matches the ’no’ in "noonday";/\wy\b/
matches the ’ly’ in "possibly yesterday."

\B Matches a non-word boundary.
For example, /\w\Bn/ matches ’on’ in "noonday", and /y\B\w/
matches ’ye’ in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.
For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9].
For example, /\d/ or /[0-9]/ matches ’2’ in "B2 is the suite
number."

\D Matches any non-digit character. Equivalent to [^0-9].
For example, /\D/ or /[^0-9]/ matches ’B’ in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v].
for example, /\s\w*/ matches ’ bar’ in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v].
For example, /\S/\w* matches ’foo’ in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_].
For example, /\w/ matches ’a’ in "apple," ’5’ in "$5.28," and ’3’ in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_].
For example, /\W/ or /[^$A-Za-z0-9_]/ matches ’%’ in "50%."

Table 1.1 Special characters in regular expressions. (Continued)

Character Meaning
154 Core JavaScript Reference

RegExp
The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won’t be recompiled on each
iteration.

The constructor of the regular expression object, for example,
new RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don’t know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input,
multiline, lastMatch, lastParen, leftContext, rightContext,
and $1 through $9. The input and multiline properties can be preset. The
values for the other static properties are set after execution of the exec and
test methods of an individual regular expression object, and after execution
of the match and replace methods of String.

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).
For example, /apple(,)\sorange\1/ matches ’apple, orange’, in
"apple, orange, cherry, peach." A more complete example follows this
table.
Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 1.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 1, Objects, Methods, and Properties 155

RegExp
Property
Summary

Note that several of the RegExp properties have both long and short (Perl-like)
names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$‘ See leftContext.

$’ See rightContext.

constructor Specifies the function that creates an object’s prototype.

global Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

ignoreCase Whether or not to ignore case while attempting a match in a
string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether or not to search in strings across multiple lines.

prototype Allows the addition of properties to all objects.

rightContext The substring following the most recent match.

source The text of the pattern.
156 Core JavaScript Reference

RegExp
Method Summary

In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Method Description

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

test Tests for a match in its string parameter.

toSource Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of the specified object. Overrides
the Object.valueOf method.
Chapter 1, Objects, Methods, and Properties 157

RegExp.$1, ..., $9
Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo() {

re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

$1, ..., $9 .

Properties that contain parenthesized substring matches, if any.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array’s indexes.

These properties can be used in the replacement text for the
String.replace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n’s literally (where n is a
positive integer).

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
158 Core JavaScript Reference

RegExp.$_
Examples The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

$_ .

See input.

$* .

See multiline.

$& .

See lastMatch.

$+ .

See lastParen.

$‘ .

See leftContext.

$’ .

See rightContext.
Chapter 1, Objects, Methods, and Properties 159

RegExp.compile
compile .

Compiles a regular expression object during execution of a script.

Syntax regexp.compile(pattern[, flags])

Parameters

Description Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn’t compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s source,
global, and ignoreCase properties.

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.

flags If specified, flags can have one of the following values:

• "g": global match

• "i": ignore case

• "gi": both global match and ignore case
160 Core JavaScript Reference

RegExp.constructor
constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

exec .

Executes the search for a match in a specified string. Returns a result array.

Syntax regexp.exec([str])
regexp([str])

Parameters

Description As shown in the syntax description, a regular expression’s exec method can be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false, use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a
literal.

str The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.
Chapter 1, Objects, Methods, and Properties 161

RegExp.exec
Consider the following example:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b’s followed by one d
//Remember matched b’s and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

The following table shows the results for this script:

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in the
string

1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex The index at which to start the next
match.

5

ignoreCase Indicates if the "i" flag was used to
ignore case

true

global Indicates if the "g" flag was used for a
global match

true

source The text of the pattern d(b+)(d)
162 Core JavaScript Reference

RegExp.exec
If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression’s
lastIndex property. For example, assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
document.writeln("Found " + myArray[0] +

". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Found " + mySecondArray[0] +

". Next match starts at " + myRe.lastIndex)
</SCRIPT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

RegExp lastMatch
$&

The last matched characters dbBd

leftContext
$‘

The substring preceding the most recent
match

c

rightContext
$’

The substring following the most recent
match

bsbz

$1, ...$9 The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.

$1 = bB
$2 = d

lastParen
$+

The last parenthesized substring match, if
any.

d

Object Property/Index Description Example
Chapter 1, Objects, Methods, and Properties 163

RegExp.global
Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user’s name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",

"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]

function lookup() {
firstName = /\w+/i();
if (!firstName)

window.alert (RegExp.input + " isn’t a name!");
else {

count = 0;
for (i=0; i<A.length; i++)

if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
if (count ==1)

midstring = " other has ";
else

midstring = " others have ";
window.alert ("Thanks, " + count + midstring + "the same name!")

}
}

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

global .

Whether or not the "g" flag is used with the regular expression.
Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0
164 Core JavaScript Reference

RegExp.ignoreCase
Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false. The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

ignoreCase .

Whether or not the "i" flag is used with the regular expression.

Description ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag was used; otherwise, false.
The "i" flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input .

The string against which a regular expression is matched. $_ is another name
for the same property.

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 165

RegExp.lastIndex
Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

If no string argument is provided to a regular expression’s exec or test
methods, and if RegExp.input has a value, its value is used as the argument to
that method.

The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object. input
is set by the browser in the following cases:

• When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

• When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

• When an event handler is called for a SELECT form element, input is set to
the value of the selected text.

• When an event handler is called for a Link object, input is set to the value
of the text between and .

The value of the input property is cleared after the event handler completes.

lastIndex .

A read/write integer property that specifies the index at which to start the next
match.
Property of RegExp

Implemented in JavaScript 1.2, NES 3.0
166 Core JavaScript Reference

RegExp.lastMatch
Description lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

• If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

• If lastIndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastIndex.

• If lastIndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastIndex is reset to 0.

• Otherwise, lastIndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

lastMatch .

The last matched characters. $& is another name for the same property.

Description Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch.

re = /(hi)?/
g

Matches the empty string.

re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.

re("hi") Returns [""], an empty array whose zeroth element is the match
string. In this case, the empty string because lastIndex was 2
(and still is 2) and "hi" has length 2.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 167

RegExp.lastParen
lastParen .

The last parenthesized substring match, if any. $+ is another name for the same
property.

Description Because lastParen is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastParen.

leftContext .

The substring preceding the most recent match. $‘ is another name for the
same property.

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext .

multiline .

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0
168 Core JavaScript Reference

RegExp.prototype
Description Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline.

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREA form element, the browser sets multiline to
true. multiline is cleared after the event handler completes. This means that,
if you’ve preset multiline to true, it is reset to false after the execution of any
event handler.

prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

rightContext .

The substring following the most recent match. $’ is another name for the
same property.

Description Because rightContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0
Chapter 1, Objects, Methods, and Properties 169

RegExp.source
source .

A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or "i" flags.

Description source is a property of an individual regular expression object.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

test .

Executes the search for a match between a regular expression and a specified
string. Returns true or false.

Syntax regexp.test([str])

Parameters

Description When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information (but
slower execution) use the exec method (similar to the String.match
method).

Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp The name of the regular expression. It can be a variable name or a literal.

str The string against which to match the regular expression. If omitted, the
value of RegExp.input is used.
170 Core JavaScript Reference

RegExp.toSource
Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in RegExp object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]

}

• For instances of RegExp, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

toString .

Returns a string representing the specified object.

Method of RegExp

Implemented in JavaScript 1.3

Method of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 171

RegExp.valueOf
Syntax toString()

Parameters None.

Description The RegExp object overrides the toString method of the Object object; it
does not inherit Object.toString. For RegExp objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a RegExp object:

myExp = new RegExp("a+b+c");
alert(myExp.toString()) displays "/a+b+c/"

See also Object.toString

valueOf .

Returns the primitive value of a RegExp object.

Syntax valueOf()

Parameters None

Description The valueOf method of RegExp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp.toString.

This method is usually called internally by JavaScript and not explicitly in code.

Examples myExp = new RegExp("a+b+c");
alert(myExp.valueOf()) displays "/a+b+c/"

See also RegExp.toString, Object.valueOf

Method of RegExp

Implemented in JavaScript 1.1

ECMA version ECMA-262
172 Core JavaScript Reference

String
String
An object representing a series of characters in a string.

Created by The String constructor:

new String(string)

Parameters

Description The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value
s2 = new String("foo") //creates a String object

You can call any of the methods of the String object on a string literal
value—JavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

Core object

Implemented in JavaScript 1.0: Create a String object only by quoting characters.

JavaScript 1.1, NES 2.0: added String constructor; added
prototype property; added split method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat, match, replace,
search, slice, and substr methods.

JavaScript 1.3: added toSource method

ECMA version ECMA-262

string Any string.
Chapter 1, Objects, Methods, and Properties 173

String
You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

s1 = "2 + 2" //creates a string literal value
s2 = new String("2 + 2")//creates a String object
eval(s1) //returns the number 4
eval(s2) //returns the string "2 + 2"

A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
String function.

Property
Summary

Method Summary

Property Description

constructor Specifies the function that creates an object’s prototype.

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a
BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index.

charCodeAt Returns a number indicating the Unicode value of the character
at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
a TT tag.

fontcolor Causes a string to be displayed in the specified color as if it
were in a tag.
174 Core JavaScript Reference

String
fontsize Causes a string to be displayed in the specified font size as if it
were in a tag.

fromCharCode Returns a string created by using the specified sequence of
Unicode values.

indexOf Returns the index within the calling String object of the first
occurrence of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an I tag.

lastIndexOf Returns the index within the calling String object of the last
occurrence of the specified value, or -1 if not found.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.

replace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a String object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a
SUP tag.

toLowerCase Returns the calling string value converted to lowercase.

Method Description
Chapter 1, Objects, Methods, and Properties 175

String
In addition, this object inherits the watch and unwatch methods from
Object.

Examples Example 1: String literal. The following statement creates a string literal:

var last_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer":

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H”:

var myString = "Hello"
myString[0] //returns "H"

toSource Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

toUpperCase Returns the calling string value converted to uppercase.

valueOf Returns the primitive value of the specified object. Overrides the
Object.valueOf method.

Method Description
176 Core JavaScript Reference

String.anchor
Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var lastName = "Schaefer"
var firstName = "Jesse"
empWindow=window.open(’string2.html’,’window1’,’width=300,height=300’)

If the HTML source for the second window (string2.html) creates two string
variables, empLastName and empFirstName, the following code in the first
window assigns values to the second window’s variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

The following code in the first window displays the values of the second
window’s variables:

alert(’empFirstName in empWindow is ’ + empWindow.empFirstName)
alert(’empLastName in empWindow is ’ + empWindow.empLastName)

anchor .

Creates an HTML anchor that is used as a hypertext target.

Syntax anchor(nameAttribute)

Parameters

Description Use the anchor method with the document.write or document.writeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then call write or writeln
to display the anchor in a document. In server-side JavaScript, use the write
function to display the anchor.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Method of String

Implemented in JavaScript 1.0, NES 2.0

nameAttribute A string.
Chapter 1, Objects, Methods, and Properties 177

String.big
Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also String.link

big .

Causes a string to be displayed in a big font as if it were in a BIG tag.

Syntax big()

Parameters None

Description Use the big method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.fontsize, String.small

Method of String

Implemented in JavaScript 1.0, NES 2.0
178 Core JavaScript Reference

String.blink
blink .

Causes a string to blink as if it were in a BLINK tag.

Syntax blink()

Parameters None

Description Use the blink method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.bold, String.italics, String.strike

bold .

Causes a string to be displayed as bold as if it were in a B tag.

Syntax bold()

Parameters None

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 179

String.charAt
Description Use the bold method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.italics, String.strike

charAt .

Returns the specified character from the string.

Syntax charAt(index)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called stringName
is stringName.length - 1. If the index you supply is out of range, JavaScript
returns an empty string.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string.
180 Core JavaScript Reference

String.charCodeAt
Examples The following example displays characters at different locations in the string
"Brave new world":

var anyString="Brave new world"

document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))

These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

See also String.indexOf, String.lastIndexOf, String.split

charCodeAt .

Returns a number indicating the Unicode value of the character at the given
index.

Syntax charCodeAt([index])

Parameters

Description Unicode values range from 0 to 65,535. The first 128 Unicode values are a
direct match of the ASCII character set. For information on Unicode, see the
Core JavaScript Guide.

Method of String

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns a Unicode value rather than an ISO-Latin-1
value

ECMA version ECMA-262

index An integer between 0 and 1 less than the length of the string. The
default value is 0.
Chapter 1, Objects, Methods, and Properties 181

String.concat
Backward
Compatibility

JavaScript 1.2. The charCodeAt method returns a number indicating the
ISO-Latin-1 codeset value of the character at the given index. The ISO-Latin-1
codeset ranges from 0 to 255. The first 0 to 127 are a direct match of the ASCII
character set.

Example The following example returns 65, the Unicode value for A.

"ABC".charCodeAt(0) // returns 65

concat .

Combines the text of two or more strings and returns a new string.

Syntax concat(string2, string3[, ..., stringN])

Parameters

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

s1="Oh "
s2="what a beautiful "
s3="mornin’."
s4=s1.concat(s2,s3) // returns "Oh what a beautiful mornin’."

constructor .

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description See Object.constructor.

Method of String

Implemented in JavaScript 1.2, NES 3.0

string2...
stringN

Strings to concatenate to this string.

Property of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262
182 Core JavaScript Reference

String.fixed
fixed .

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Syntax fixed()

Parameters None

Description Use the fixed method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses the fixed method to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

fontcolor .

Causes a string to be displayed in the specified color as if it were in a <FONT
COLOR=color> tag.

Syntax fontcolor(color)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

Method of String

Implemented in JavaScript 1.0, NES 2.0

color A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in the Core JavaScript Guide.
Chapter 1, Objects, Methods, and Properties 183

String.fontcolor
Description Use the fontcolor method with the write or writeln methods to format
and display a string in a document. In server-side JavaScript, use the write
function to display the string.

If you express color as a hexadecimal RGB triplet, you must use the format
rrggbb. For example, the hexadecimal RGB values for salmon are red=FA,
green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

The fontcolor method overrides a value set in the fgColor property.

Examples The following example uses the fontcolor method to change the color of a
string:

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") +
" is maroon in this line")

document.write("<P>" + worldString.fontcolor("salmon") +
" is salmon in this line")

document.write("<P>" + worldString.fontcolor("red") +
" is red in this line")

document.write("<P>" + worldString.fontcolor("8000") +
" is maroon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FA8072") +
" is salmon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FF00") +
" is red in hexadecimal in this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line
184 Core JavaScript Reference

String.fontsize
fontsize .

Causes a string to be displayed in the specified font size as if it were in a <FONT
SIZE=size> tag.

Syntax fontsize(size)

Parameters

Description Use the fontsize method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

When you specify size as an integer, you set the size of stringName to one of
the 7 defined sizes. When you specify size as a string such as "-2", you adjust
the font size of stringName relative to the size set in the BASEFONT tag.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big, String.small

Method of String

Implemented in JavaScript 1.0, NES 2.0

size An integer between 1 and 7, a string representing a signed integer between 1
and 7.
Chapter 1, Objects, Methods, and Properties 185

String.fromCharCode
fromCharCode .

Returns a string created by using the specified sequence of Unicode values.

Syntax fromCharCode(num1, ..., numN)

Parameters

Description This method returns a string and not a String object.

Because fromCharCode is a static method of String, you always use it as
String.fromCharCode(), rather than as a method of a String object you
created.

Backward
Compatibility

JavaScript 1.2. The fromCharCode method returns a string created by using
the specified sequence of ISO-Latin-1 codeset values.

Examples The following example returns the string "ABC".

String.fromCharCode(65,66,67)

indexOf .

Returns the index within the calling String object of the first occurrence of the
specified value, starting the search at fromIndex, or -1 if the value is not found.

Syntax indexOf(searchValue[, fromIndex])

Method of String

Static

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: uses a Unicode value rather than an ISO-Latin-1
value

ECMA version ECMA-262

num1, ..., numN A sequence of numbers that are Unicode values.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
186 Core JavaScript Reference

String.indexOf
Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called stringName
is stringName.length - 1.

"Blue Whale".indexOf("Blue") // returns 0
"Blue Whale".indexOf("Blute") // returns -1
"Blue Whale".indexOf("Whale",0) // returns 5
"Blue Whale".indexOf("Whale",5) // returns 5
"Blue Whale".indexOf("",9) // returns 9
"Blue Whale".indexOf("",10) // returns 10
"Blue Whale".indexOf("",11) // returns 10

The indexOf method is case sensitive. For example, the following expression
returns -1:

"Blue Whale".indexOf("blue")

Examples Example 1. The following example uses indexOf and lastIndexOf to locate
values in the string "Brave new world."

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of ’new’ from the beginning is " +

anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of ’new’ from the end is " +

anyString.lastIndexOf("new"))

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is 0.
Chapter 1, Objects, Methods, and Properties 187

String.italics
Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first writeln method displays 19. But because the indexOf method is
case sensitive, the string "cheddar" is not found in myCapString, so the
second writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln(’myString.indexOf("cheddar") is ’ +

myString.indexOf("cheddar"))
document.writeln(’<P>myCapString.indexOf("cheddar") is ’ +

myCapString.indexOf("cheddar"))

Example 3. The following example sets count to the number of occurrences
of the letter x in the string str:

count = 0;
pos = str.indexOf("x");
while (pos != -1) {

count++;
pos = str.indexOf("x",pos+1);

}

See also String.charAt, String.lastIndexOf, String.split

italics .

Causes a string to be italic, as if it were in an <I> tag.

Syntax italics()

Parameters None

Description Use the italics method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0
188 Core JavaScript Reference

String.lastIndexOf
Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.bold, String.strike

lastIndexOf .

Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found. The calling string is searched backward,
starting at fromIndex.

Syntax lastIndexOf(searchValue[, fromIndex])

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

searchValue A string representing the value to search for.

fromIndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is the length of the string.
Chapter 1, Objects, Methods, and Properties 189

String.length
Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is stringName.length - 1.

"canal".lastIndexOf("a") // returns 3
"canal".lastIndexOf("a",2) // returns 1
"canal".lastIndexOf("a",0) // returns -1
"canal".lastIndexOf("x") // returns -1

The lastIndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Examples The following example uses indexOf and lastIndexOf to locate values in the
string "Brave new world."

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of ’new’ from the beginning is " +

anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of ’new’ from the end is " +

anyString.lastIndexOf("new"))

See also String.charAt, String.indexOf, String.split

length .

The length of the string.

Description For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

Property of String

Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
190 Core JavaScript Reference

String.link
link .

Creates an HTML hypertext link that requests another URL.

Syntax link(hrefAttribute)

Parameters

Description Use the link method to programmatically create a hypertext link, and then call
write or writeln to display the link in a document. In server-side JavaScript,
use the write function to display the link.

Links created with the link method become elements in the links array of the
document object. See document.links.

Examples The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hotText="Netscape"
var URL="http://home.netscape.com"

document.write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Netscape

match .

Used to match a regular expression against a string.

Syntax match(regexp)

Parameters

Method of String

Implemented in JavaScript 1.0, NES 2.0

hrefAttribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.
Chapter 1, Objects, Methods, and Properties 191

String.match
Description If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match.

Note If you execute a match simply to find true or false, use String.search or the
regular expression test method.

Examples Example 1. In the following example, match is used to find ’Chapter’ followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

’Chapter 3.4.5.1’ is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

’.1’ is the second value remembered from (\.\d).

Example 2. The following example demonstrates the use of the global and
ignore case flags with match.

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>

The returned array contains D, d.
192 Core JavaScript Reference

String.prototype
prototype .

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype.

replace .

Finds a match between a regular expression and a string, and replaces the
matched substring with a new substring.

Syntax replace(regexp, newSubStr)
replace(regexp, function)

Versions prior to JavaScript 1.3:

replace(regexp, newSubStr)

Parameters

Description This method does not change the String object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with replace.

Property of String

Implemented in JavaScript 1.1, NES 3.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.2

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr The string to put in place of the string found with regexp. This string can
include the RegExp properties $1, ..., $9, lastMatch,
lastParen, leftContext, and rightContext.

function A function to be invoked after the match has been performed.
Chapter 1, Objects, Methods, and Properties 193

String.replace
Specifying a function as a parameter. When you specify a function as the
second parameter, the function is invoked after the match has been performed.
(The use of a function in this manner is often called a lambda expression.)

In your function, you can dynamically generate the string that replaces the
matched substring. The result of the function call is used as the replacement
value.

The nested function can use the matched substrings to determine the new
string (newSubStr) that replaces the found substring. You get the matched
substrings through the parameters of your function. The first parameter of your
function holds the complete matched substring. Other parameters can be used
for parenthetical matches, remembered submatch strings. For example, the
following replace method returns XX.zzzz - XX , zzzz.

"XXzzzz".replace(/(X*)(z*)/,
function (str, p1, p2) {

return str + " - " + p1 + " , " + p2;
}

)

The array returned from the exec method of the RegExp object and the
subsequent match is available to your function. You can use the content of the
array plus the input and the index (index of match in the input string)
properties of the array to perform additional tasks before the method replaces
the substring.

Examples Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits replace to replace each occurrence
of ’apples’ in the string with ’oranges.’

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>

This prints "oranges are round, and oranges are juicy."
194 Core JavaScript Reference

String.replace
Example 2. In the following example, the regular expression is defined in
replace and includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its
equivalent Celsius degree. The Fahrenheit degree should be a number ending
with F. The function returns the Celsius number ending with C. For example, if
the input number is 212F, the function returns 100C. If the number is 0F, the
function returns -17.77777777777778C.

The regular expression test checks for any number that ends with F. The
number of Fahrenheit degree is accessible to your function through the
parameter $1. The function sets the Celsius number based on the Fahrenheit
degree passed in a string to the f2c function. f2c then returns the Celsius
number. This function approximates Perl’s s///e flag.

function f2c(x) {
var s = String(x)
var test = /(\d+(\.\d*)?)F\b/g
return s.replace

(test,
myfunction ($0,$1,$2) {

return (($1-32) * 5/9) + "C";
}

)
}

Chapter 1, Objects, Methods, and Properties 195

String.search
search .

Executes the search for a match between a regular expression and this String
object.

Syntax search(regexp)

Parameters

Description If successful, search returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Example The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) != -1)

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

slice .

Extracts a section of a string and returns a new string.

Syntax slice(beginslice[, endSlice])

Method of String

Implemented in JavaScript 1.2

regexp Name of the regular expression. It can be a variable name or a literal.

Method of String

Implemented in JavaScript 1.0, NES 2.0
196 Core JavaScript Reference

String.small
Parameters

Description slice extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

slice extracts up to but not including endSlice. string.slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last
character in the string.

Example The following example uses slice to create a new string.

<SCRIPT>
str1="The morning is upon us. "
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>

This writes:

morning is upon

small .

Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.

Syntax small()

Parameters None

Description Use the small method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

beginSlice The zero-based index at which to begin extraction.

endSlice The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 197

String.split
Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big, String.fontsize

split .

Splits a String object into an array of strings by separating the string into
substrings.

Syntax split([separator][, limit])

Parameters

Description The split method returns the new array.

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

separator Specifies the character to use for separating the string. The separator is
treated as a string. If separator is omitted, the array returned contains
one element consisting of the entire string.

limit Integer specifying a limit on the number of splits to be found.
198 Core JavaScript Reference

String.split
In JavaScript 1.2, split has the following additions:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separator is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

• It can take a limit count so that the resulting array does not include trailing
empty elements.

• If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns. For this behavior,
LANGUAGE="JavaScript1.2" must be specified in the <SCRIPT> tag.

Examples Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the
function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

function splitString (stringToSplit,separator) {
arrayOfStrings = stringToSplit.split(separator)
document.write (’<P>The original string is: "’ + stringToSplit + ’"’)
document.write (’
The separator is: "’ + separator + ’"’)
document.write ("
The array has " + arrayOfStrings.length + " elements: ")

for (var i=0; i < arrayOfStrings.length; i++) {
document.write (arrayOfStrings[i] + " / ")

}
}

var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)
Chapter 1, Objects, Methods, and Properties 199

String.split
This example produces the following output:

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it.
/

The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /

The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct / Nov
/ Dec /

Example 2. Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Using LANGUAGE="JavaScript1.2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScript1.2", this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"

Example 3. In the following example, split looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. nameList is the array returned as a result
of split.

<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>
200 Core JavaScript Reference

String.strike
This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, split looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>

This script displays the following:

["Hello", "World.", "How"]

See also String.charAt, String.indexOf, String.lastIndexOf

strike .

Causes a string to be displayed as struck-out text, as if it were in a <STRIKE>
tag.

Syntax strike()

Parameters None

Description Use the strike method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

Method of String

Implemented in JavaScript 1.0, NES 2.0
Chapter 1, Objects, Methods, and Properties 201

String.sub
The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.bold, String.italics

sub .

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.

Syntax sub()

Parameters None

Description Use the sub method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sup

Method of String

Implemented in JavaScript 1.0, NES 2.0
202 Core JavaScript Reference

String.substr
substr .

Returns the characters in a string beginning at the specified location through
the specified number of characters.

Syntax substr(start[, length])

Parameters

Description start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. substr begins
extracting characters at start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If start is negative and abs(start) is larger than the length of the
string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is omitted,
start extracts characters to the end of the string.

Example Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">

str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))

</SCRIPT>

Method of String

Implemented in JavaScript 1.0, NES 2.0

start Location at which to begin extracting characters.

length The number of characters to extract
Chapter 1, Objects, Methods, and Properties 203

String.substring
This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also substring

substring .

Returns a subset of a String object.

Syntax substring(indexA, indexB)

Parameters

Description substring extracts characters from indexA up to but not including indexB. In
particular:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is greater than stringName.length, indexB is treated as if it
were stringName.length.

• If indexA equals indexB, substring returns an empty string.

• If indexB is omitted, indexA extracts characters to the end of the string.

In JavaScript 1.2, using LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB, JavaScript produces a runtime error (out
of memory).

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

indexA An integer between 0 and 1 less than the length of the string.

indexB An integer between 0 and 1 less than the length of the string.
204 Core JavaScript Reference

String.substring
In JavaScript 1.2, without LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB, JavaScript returns a substring beginning
with indexB and ending with indexA - 1.

Examples Example 1. The following example uses substring to display characters from
the string "Netscape":

var anyString="Netscape"

//Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
//Displays "Netscap"
document.write(anyString.substring(0,7))
//Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))

Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string "Brave New World" into "Brave New Web".

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS

for (var i=0; i<fullS.length; i++) {
if (fullS.substring(i,i+oldS.length) == oldS) {

fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
}

}
return fullS

}

replaceString("World","Web","Brave New World")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScript1.2", the
following script produces a runtime error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>
Chapter 1, Objects, Methods, and Properties 205

String.sup
Without LANGUAGE="JavaScript1.2", the above script prints the following:

Net Net

In the second write, the index numbers are swapped.

See also substr

sup .

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.

Syntax sup()

Parameters None

Description Use the sup method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to generate the HTML.

Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sub

Method of String

Implemented in JavaScript 1.0, NES 2.0
206 Core JavaScript Reference

String.toLowerCase
toLowerCase .

Returns the calling string value converted to lowercase.

Syntax toLowerCase()

Parameters None

Description The toLowerCase method returns the value of the string converted to
lowercase. toLowerCase does not affect the value of the string itself.

Examples The following example displays the lowercase string "alphabet":

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

See also String.toUpperCase

toSource .

Returns a string representing the source code of the object.

Syntax toSource()

Parameters None

Description The toSource method returns the following values:

• For the built-in String object, toSource returns the following string
indicating that the source code is not available:

function String() {
[native code]

}

• For instances of String or string literals, toSource returns a string
representing the source code.

This method is usually called internally by JavaScript and not explicitly in code.

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.3
Chapter 1, Objects, Methods, and Properties 207

String.toString
toString .

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description The String object overrides the toString method of the Object object; it
does not inherit Object.toString. For String objects, the toString
method returns a string representation of the object.

Examples The following example displays the string value of a String object:

x = new String("Hello world");
alert(x.toString()) displays "Hello world"

See also Object.toString

toUpperCase .

Returns the calling string value converted to uppercase.

Syntax toUpperCase()

Parameters None

Description The toUpperCase method returns the value of the string converted to
uppercase. toUpperCase does not affect the value of the string itself.

Examples The following example displays the string "ALPHABET":

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

See also String.toLowerCase

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
208 Core JavaScript Reference

String.valueOf
valueOf .

Returns the primitive value of a String object.

Syntax valueOf()

Parameters None

Description The valueOf method of String returns the primitive value of a String object
as a string data type. This value is equivalent to String.toString.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new String("Hello world");
alert(x.valueOf()) displays "Hello world"

See also String.toString, Object.valueOf

Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 1, Objects, Methods, and Properties 209

sun

210 Core JavaScript Reference

sun
A top-level object used to access any Java class in the package sun.*.

Created by The sun object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The sun object is a convenience synonym for the property Packages.sun.

See also Packages, Packages.sun

Core object

Implemented in JavaScript 1.1, NES 2.0

C h a p t e r

2
Chapter 2Top-Level Properties and Functions
This chapter contains all JavaScript properties and functions not associated with
any object. In the ECMA specification, these properties and functions are
referred to as properties and methods of the global object.

The following table summarizes the top-level properties.

The following table summarizes the top-level functions.

Table 2.1 Top-level properties

Property Description

Infinity A numeric value representing infinity.

NaN A value representing Not-A-Number.

undefined The value undefined.

Table 2.2 Top-level functions

Function Description

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.

eval Evaluates a string of JavaScript code without
reference to a particular object.
Chapter 2, Top-Level Properties and Functions 211

escape
escape
Returns the hexadecimal encoding of an argument in the ISO-Latin-1 character
set.

Syntax escape("string")

Parameters

Description escape is a top-level function and is not associated with any object.

Use the escape and unescape functions to encode and decode (add property
values manually) a Uniform Resource Locator (URL), a Uniform Resource
Identifier (URI), or a URI-type string.

isFinite Evaluates an argument to determine whether it is a
finite number.

isNaN Evaluates an argument to determine if it is not a
number.

Number Converts an object to a number.

parseFloat Parses a string argument and returns a floating-point
number.

parseInt Parses a string argument and returns an integer.

String Converts an object to a string.

unescape Returns the ASCII string for the specified
hexadecimal encoding value.

Table 2.2 Top-level functions

Function Description

Core function

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string in the ISO-Latin-1 character set.
212 Core JavaScript Reference

escape
The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

* @ - _ + . /

Unicode. The escape and unescape functions do not use Unicode as
specified by the ECMA specification. Instead, they use the Internet Engineering
Task Force (IETF) guidelines for escaping characters. Within a URI, characters
use US-ASCII characters (ISO-Latin-1 character set). A URI is a sequence of
characters from the basic Latin alphabet, digits, and a few special characters (for
example, / and @). The escape sequences do not support \uXXXX as in
Unicode or %uXXXX as specified by ECMA, but %XX, where XX is a 2-digit
hexadecimal number (for example, %7E). In URI, characters are represented in
octets, as 8-bit bytes.

To allow the escape and unescape functions to work with Web server-
supported URLs and URIs, JavaScript does not use Unicode for these functions.

• escape returns the hexadecimal encoding of the specified string in the
ISO-Latin-1 character set.

• unescape returns the ASCII string, an ISO-Latin-1 character set sequence.

Unicode-specific escape sequences, %uXXXX, are not supported.

Examples Example 1. The following example returns "%26":

escape("&") // returns "%26"

Example 2. The following statement returns a string with encoded characters
for spaces, commas, and apostrophes.

// returns "The_rain.%20In%20Spain%2C%20Ma%92am"
escape("The_rain. In Spain, Ma’am")

See also unescape
Chapter 2, Top-Level Properties and Functions 213

eval
eval
Evaluates a string of JavaScript code without reference to a particular object.

Syntax eval(string)

Parameters

Description eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to a variable, and then calling eval at a
later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged.
In the following example, the String constructor is specified, and eval
returns a String object rather than evaluating the string.

eval(new String("2+2”)) // returns a String object containing "2+2"
eval("2+2”) // returns 4

Core function

Implemented in JavaScript 1.0

JavaScript 1.4: eval cannot be called indirectly

ECMA version ECMA-262

string A string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.
214 Core JavaScript Reference

eval
You cannot indirectly use the eval function by invoking it via a name other
than eval; if you do, a runtime error might occur. For example, you should
not use the following code:

var x = 2
var y = 4
var myEval = eval
myEval("x + y")

Backward
Compatibility

JavaScript 1.3 and earlier versions. You can use eval indirectly, although it
is discouraged.

JavaScript 1.1. eval is also a method of all objects. This method is described
for the Object class.

Examples The following examples display output using document.write. In server-side
JavaScript, you can display the same output by calling the write function
instead of using document.write.

Example 1. In the following code, both of the statements containing eval
return 42. The first evaluates the string "x + y + 1"; the second evaluates the
string "42".

var x = 2
var y = 39
var z = "42"
eval("x + y + 1") // returns 42
eval(z) // returns 42

Example 2. In the following example, the getFieldName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable field. The second
statement uses eval to display the value of the form element.

var field = getFieldName(3)
document.write("The field named ", field, " has value of ",

eval(field + ".value"))

Example 3. The following example uses eval to evaluate the string str. This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
z.

var str = "if (x == 5) {alert(’z is 42’); z = 42;} else z = 0; "
document.write("<P>z is ", eval(str))
Chapter 2, Top-Level Properties and Functions 215

Infinity
Example 4. In the following example, the setValue function uses eval to
assign the value of the variable newValue to the text field textObject:

function setValue (textObject, newValue) {
eval ("document.forms[0]." + textObject + ".value") = newValue

}

Example 5. The following example creates breed as a property of the object
myDog, and also as a variable. The first write statement uses eval(’breed’)
without specifying an object; the string "breed" is evaluated without regard to
any object, and the write method displays "Shepherd", which is the value of
the breed variable. The second write statement uses myDog.eval(’breed’)
which specifies the object myDog; the string "breed" is evaluated with regard
to the myDog object, and the write method displays "Lab", which is the value
of the breed property of the myDog object.

function Dog(name,breed,color) {
this.name=name
this.breed=breed
this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed=’Shepherd’
document.write("<P>" + eval(’breed’))
document.write("
" + myDog.eval(’breed’))

See also Object.eval method

Infinity
A numeric value representing infinity.

Syntax Infinity

Core property

Implemented in JavaScript 1.3 (In previous versions, Infinity was defined only as
a property of the Number object)

ECMA version ECMA-262
216 Core JavaScript Reference

isFinite
Description Infinity is a top-level property and is not associated with any object.

The initial value of Infinity is Number.POSITIVE_INFINITY. The value
Infinity (positive infinity) is greater than any other number including itself.
This value behaves mathematically like infinity; for example, anything
multiplied by Infinity is Infinity, and anything divided by Infinity is
0.

See also Number.NEGATIVE_INFINITY,Number.POSITIVE_INFINITY

isFinite
Evaluates an argument to determine whether it is a finite number.

Syntax isFinite(number)

Parameters

Description isFinite is a top-level function and is not associated with any object.

You can use this method to determine whether a number is a finite number.
The isFinite method examines the number in its argument. If the argument
is NaN, positive infinity or negative infinity, this method returns false,
otherwise it returns true.

Examples You can check a client input to determine whether it is a finite number.

if(isFinite(ClientInput) == true)
{

/* take specific steps */
}

See also Number.NEGATIVE_INFINITY,Number.POSITIVE_INFINITY

Core function

Implemented in JavaScript 1.3

ECMA version ECMA-262

number The number to evaluate.
Chapter 2, Top-Level Properties and Functions 217

isNaN
isNaN
Evaluates an argument to determine if it is not a number.

Syntax isNaN(testValue)

Parameters

Description isNaN is a top-level function and is not associated with any object.

On platforms that support NaN, the parseFloat and parseInt functions
return NaN when they evaluate a value that is not a number. isNaN returns true
if passed NaN, and false otherwise.

Examples The following example evaluates floatValue to determine if it is a number
and then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

See also Number.NaN, parseFloat, parseInt

NaN
A value representing Not-A-Number.

Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms

ECMA version ECMA-262

testValue The value you want to evaluate.

Core property

Implemented in JavaScript 1.3 (In previous versions, NaN was defined only as a
property of the Number object)

ECMA version ECMA-262
218 Core JavaScript Reference

Number
Syntax NaN

Description NaN is a top-level property and is not associated with any object.

The initial value of NaN is NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN. Use the
isNaN function instead.

Several JavaScript methods (such as the Number constructor, parseFloat,
and parseInt) return NaN if the value specified in the parameter is not a
number.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

See also isNaN, Number.NaN

Number
Converts the specified object to a number.

Syntax Number(obj)

Parameter

Description Number is a top-level function and is not associated with any object.

When the object is a Date object, Number returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object
Chapter 2, Top-Level Properties and Functions 219

parseFloat
Example The following example converts the Date object to a numerical value:

d = new Date ("December 17, 1995 03:24:00")
alert (Number(d))

This displays a dialog box containing "819199440000."

See also Number

parseFloat
Parses a string argument and returns a floating point number.

Syntax parseFloat(string)

Parameters

Description parseFloat is a top-level function and is not associated with any object.

parseFloat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, it returns the value up to that point and ignores that
character and all succeeding characters. Leading and trailing spaces are
allowed.

If the first character cannot be converted to a number, parseFloat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseFloat is NaN. If NaN
is passed on to arithmetic operations, the operation results will also be NaN.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseFloat(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if the first
character of the string specified in parseFloat(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.
220 Core JavaScript Reference

parseInt
Examples The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns NaN:

parseFloat("FF2")

See also isNaN, parseInt

parseInt
Parses a string argument and returns an integer of the specified radix or base.

Syntax parseInt(string[, radix])

Parameters

Description parseInt is a top-level function and is not associated with any object.

The parseInt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parseInt(string) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all platforms if the first
character of the string specified in parseInt(string) cannot be
converted to a number.

ECMA version ECMA-262

string A string that represents the value you want to parse.

radix An integer that represents the radix of the return value.
Chapter 2, Top-Level Properties and Functions 221

parseInt
If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. parseInt truncates numbers to integer values. Leading and
trailing spaces are allowed.

If the radix is not specified or is specified as 0, JavaScript assumes the
following:

• If the input string begins with "0x", the radix is 16 (hexadecimal).

• If the input string begins with "0", the radix is eight (octal).

• If the input string begins with any other value, the radix is 10 (decimal).

If the first character cannot be converted to a number, parseInt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the isNaN function to determine if the result of parseInt is NaN. If NaN is
passed on to arithmetic operations, the operation results will also be NaN.

Examples The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return NaN:

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

Even though the radix is specified differently, the following examples all return
17 because the input string begins with "0x".

parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

See also isNaN, parseFloat, Object.valueOf
222 Core JavaScript Reference

String
String
Converts the specified object to a string.

Syntax String(obj)

Parameter

Description String is a top-level function and is not associated with any object.

The String method converts the value of any object into a string; it returns
the same value as the toString method of an individual object.

When the object is a Date object, String returns a more readable string
representation of the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight
Time 1983.

Example The following example converts the Date object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

See also String

undefined
The value undefined.

Syntax undefined

Core function

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

obj An object.

Core property

Implemented in JavaScript 1.3

ECMA version ECMA-262
Chapter 2, Top-Level Properties and Functions 223

unescape
Description undefined is a top-level property and is not associated with any object.

A variable that has not been assigned a value is of type undefined. A method or
statement also returns undefined if the variable that is being evaluated does
not have an assigned value.

You can use undefined to determine whether a variable has a value. In the
following code, the variable x is not defined, and the if statement evaluates to
true.

var x
if(x == undefined) {

// these statements execute
}

undefined is also a primitive value.

unescape
Returns the ASCII string for the specified hexadecimal encoding value.

Syntax unescape(string)

Parameters

Description unescape is a top-level function and is not associated with any object.

The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set.

The escape and unescape methods do not use Unicode as specified by the
ECMA specification. For information, see the description of “Unicode” on
page 213.

Core function

Implemented in JavaScript 1.0, NES 1.0

ECMA version ECMA-262 compatible, except for Unicode characters.

string A string containing characters in the form "%xx", where xx is a
2-digit hexadecimal number.
224 Core JavaScript Reference

unescape
Examples The following example returns "&":

unescape("%26")

The following example returns "!#":

unescape("%21%23")

See also escape
Chapter 2, Top-Level Properties and Functions 225

unescape
226 Core JavaScript Reference

2
Language Elements
• Statements

• Operators

228 Core JavaScript Reference

C h a p t e r

3
Chapter 3Statements
This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

The following table lists statements available in JavaScript.

Table 3.1 JavaScript statements.

break Terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

comment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

continue Terminates execution of the block of statements in a while or for
loop, and continues execution of the loop with the next iteration.

do...while Executes the specified statements until the test condition evaluates
to false. Statements execute at least once.
Chapter 3, Statements 229

export Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

for Creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a block
of statements executed in the loop.

for...in Iterates a specified variable over all the properties of an object. For
each distinct property, JavaScript executes the specified statements.

function Declares a function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

if...else Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

import Allows a script to import properties, functions, and objects from a
signed script that has exported the information.

label Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

return Specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match
the expression’s value to a case label.

throw Throws a user-defined exception.

try...catch Marks a block of statements to try, and specifies a response should
an exception be thrown.

var Declares a variable, optionally initializing it to a value.

while Creates a loop that evaluates an expression, and if it is true,
executes a block of statements. The loop then repeats, as long as
the specified condition is true.

with Establishes the default object for a set of statements.

Table 3.1 JavaScript statements. (Continued)
230 Core JavaScript Reference

break
break
Use the break statement to terminate a loop, switch, or label statement.

Terminates the current loop, switch, or label statement and transfers program
control to the statement following the terminated loop.

Syntax break [label]

Parameter

Description The break statement includes an optional label that allows the program to
break out of a labeled statement. The statements in a labeled statement can be
of any type.

Examples Example 1. The following function has a break statement that terminates the
while loop when e is 3, and then returns the value 3 * x.

function testBreak(x) {
var i = 0
while (i < 6) {

if (i == 3)
break

i++
}
return i*x

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj. If break is encountered, the program
breaks out of the checkj statement and continues with the remainder of the
checkiandj statement. If break had a label of checkiandj, the program
would break out of the checkiandj statement and continue at the statement
following checkiandj.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 3, Statements 231

comment
checkiandj :
if (4==i) {

document.write("You’ve entered " + i + ".
");
checkj :

if (2==j) {
document.write("You’ve entered " + j + ".
");
break checkj;
document.write("The sum is " + (i+j) + ".
");

}
document.write(i + "-" + j + "=" + (i-j) + ".
");

}

See also continue, label, switch

comment
Notations by the author to explain what a script does. Comments are ignored
by the interpreter.

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
232 Core JavaScript Reference

continue
continue
Restarts a while, do-while, for, or label statement.

Syntax continue [label]

Parameter

Description In contrast to the break statement, continue does not terminate the execution
of the loop entirely: instead,

• In a while loop, it jumps back to the condition.

• In a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue.

Examples Example 1. The following example shows a while loop that has a continue
statement that executes when the value of i is 3. Thus, n takes on the values 1,
3, 7, and 12.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Example 2. In the following example, a statement labeled checkiandj
contains a statement labeled checkj. If continue is encountered, the program
continues at the top of the checkj statement. Each time continue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checkiandj statement is completed.
checkiandj reiterates until its condition returns false. When false is returned,
the program continues at the statement following checkiandj.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

label Identifier associated with the label of the statement.
Chapter 3, Statements 233

do...while
If continue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;

checkj :
while (j>4) {

document.write(j + "
");
j-=1;
if ((j%2)==0)

continue checkj;
document.write(j + " is odd.
");

}
document.write("i = " + i + "
");
document.write("j = " + j + "
");

}

See also break, label

do...while
Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.

Syntax do
statements

while (condition);

Parameters

Implemented in JavaScript 1.2, NES 3.0

statements Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

condition Evaluated after each pass through the loop. If condition
evaluates to true, the statements in the preceding block are re-
executed. When condition evaluates to false, control passes to
the statement following do while.
234 Core JavaScript Reference

export
Examples In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.

do {
i+=1
document.write(i);

while (i<5);

export
Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

Syntax export name1, name2, ..., nameN
export *

Parameters

Description Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

See also import

for
Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Implemented in JavaScript 1.2, NES 3.0

nameN List of properties, functions, and objects to be exported.

* Exports all properties, functions, and objects from the script.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 3, Statements 235

for...in
Syntax for ([initial-expression]; [condition]; [increment-expression])
{

statements
}

Parameters

Examples The following for statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for (var i = 0; i < 9; i++) {
n += i
myfunc(n)

}

for...in
Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Syntax for (variable in object) {
statements

}

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword. These variables are local to
the function, not to the loop.

condition Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in statements are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

increment-expression Generally used to update or increment the counter variable.

statements Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
236 Core JavaScript Reference

function
Parameters

Examples The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function show_props(obj, objName) {
var result = ""
for (var i in obj) {

result += objName + "." + i + " = " + obj[i] + "\n"
}
return result

}

function
Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.

Syntax function name([param] [, param] [..., param]) {
statements

}

You can also define functions using the Function constructor; see “Function”
on page 79.

Parameters

variable Variable to iterate over every property, declared with the var
keyword. This variable is local to the function, not to the loop.

object Object for which the properties are iterated.

statements Specifies the statements to execute for each property.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

name The function name.

param The name of an argument to be passed to the function. A function
can have up to 255 arguments.

statements The statements which comprise the body of the function.
Chapter 3, Statements 237

if...else
Description To return a value, the function must have a return statement that specifies the
value to return.

A function created with the function statement is a Function object and
has all the properties, methods, and behavior of Function objects. See
“Function” on page 79 for detailed information on functions.

Examples The following code declares a function that returns the total dollar amount of
sales, when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
return units_a*79 + units_b*129 + units_c*699

}

See also “Function” on page 79

if...else
Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Syntax if (condition) {
statements1

}
[else {

statements2
}]

Parameters

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

condition Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition
evaluates to true, the statements in statements1 are executed.

statements1,
statements2

Can be any JavaScript statements, including further nested if
statements. Multiple statements must be enclosed in braces.
238 Core JavaScript Reference

import
Description You should not use simple assignments in a conditional statement. For
example, do not use the following code:

if(x = y)
{

/* do the right thing */
}

If you need to use an assignment in a conditional statement, put additional
parentheses around the assignment. For example, use if((x = y)).

Backward
Compatibility

JavaScript 1.2 and earlier versions. You can use simple assignments in a
conditional statement. An assignment operator in a conditional statement is
converted to an equality operator. For example, if(x = y) is converted to
if(x == y).

Examples if (cipher_char == from_char) {
result = result + to_char
x++}

else
result = result + clear_char

import
Allows a script to import properties, functions, and objects from a signed script
that has exported the information.

Syntax import objectName.name1, objectName.name2, ..., objectName.nameN
import objectName.*

Parameters

Implemented in JavaScript 1.2, NES 3.0

objectName Name of the object that will receive the imported names.

name1,
name2,
nameN

List of properties, functions, and objects to import from the export
file.

* Imports all properties, functions, and objects from the export script.
Chapter 3, Statements 239

label
Description The objectName parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, the following code makes f and p accessible
in the importing script as properties of obj.

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

label
Provides a statement with an identifier that lets you refer to it elsewhere in your
program.

For example, you can use a label to identify a loop, and then use the break or
continue statements to indicate whether a program should interrupt the loop
or continue its execution.

Syntax label :
statements

Parameter

Examples For an example of a label statement using break, see break. For an example
of a label statement using continue, see continue.

See also break, continue

Implemented in JavaScript 1.2, NES 3.0

label Any JavaScript identifier that is not a reserved word.

statements Block of statements. break can be used with any labeled
statement, and continue can be used with looping labeled
statements.
240 Core JavaScript Reference

return
return
Specifies the value to be returned by a function.

Syntax return expression

Parameters

Examples The following function returns the square of its argument, x, where x is a
number.

function square(x) {
return x * x

}

switch
Allows a program to evaluate an expression and attempt to match the
expression’s value to a case label.

Syntax switch (expression){
case label :
statements;
break;

case label :
statements;
break;

...
default : statements;

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

expression The expression to return.

Implemented in JavaScript 1.2, NES 3.0
Chapter 3, Statements 241

switch
Parameters

Description If a match is found, the program executes the associated statement. If multiple
cases match the provided value, the first case that matches is selected, even if
the cases are not equal to each other.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

Examples In the following example, if expression evaluates to “Bananas”, the program
matches the value with case “Bananas” and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch. If break were omitted, the statement for case
“Cherries” would also be executed.

switch (i) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}
document.write("Is there anything else you’d like?
");

expression Value matched against label.

label Identifier used to match against expression.

statements Block of statements that is executed once if expression matches
label.
242 Core JavaScript Reference

throw
throw
Throws a user-defined exception.

Syntax throw expression

Parameters

Description Use the throw statement to throw an exception. When you throw an
exception, an expression specifies the value of the exception. The following
code throws several exceptions.

throw "Error2" // generates an exception with a string value
throw 42 // generates an exception with the value 42
throw true // generates an exception with the value true

Examples Example 1: Throw an object. You can specify an object when you throw an
exception. You can then reference the object’s properties in the catch block.
The following example creates an object myUserException of type
UserException and uses it in a throw statement.

function UserException (message) {
this.message=message
this.name="UserException"

}
function getMonthName (mo) {

mo=mo-1 // Adjust month number for array index (1=Jan, 12=Dec)
var months=new Array("Jan","Feb","Mar","Apr","May","Jun","Jul",

"Aug","Sep","Oct","Nov","Dec")
if (months[mo] != null) {

return months[mo]
} else {

myUserException=new UserException("InvalidMonthNo")
throw myUserException

}
}

try {
// statements to try
monthName=getMonthName(myMonth)

}
catch (e) {

monthName="unknown"
logMyErrors(e.message,e.name) // pass exception object to err handler

}

Implemented in JavaScript 1.4

expression The value to throw.
Chapter 3, Statements 243

throw
Example 2: Throw an object. The following example tests an input string for
a U.S. zip code. If the zip code uses an invalid format, the throw statement
throws an exception by creating an object of type
ZipCodeFormatException.

/*
* Creates a ZipCode object.
*
* Accepted formats for a zip code are:
* 12345
* 12345-6789
* 123456789
* 12345 6789
*
* If the argument passed to the ZipCode constructor does not
* conform to one of these patterns, an exception is thrown.
*/

function ZipCode(zip) {
zip = new String(zip);
pattern = /[0-9]{5}([-]?[0-9]{4})?/;
if (pattern.test(zip)) {

// zip code value will be the first match in the string
this.value = zip.match(pattern)[0]
this.valueOf = new Function("return this.value");
this.toString = new Function("return String(this.value)");

} else {
throw new ZipCodeFormatException(zip);

}
}

function ZipCodeFormatException(value) {
this.value = value;
this.message =

"does not conform to the expected format for a zip code";
this.toString =

new Function("return this.value +\":\" + this.message");
}

/*
* This could be in a script that validates address data
* for US addresses.
*/

var ZIPCODE_INVALID = -1;
var ZIPCODE_UNKNOWN_ERROR = -2;
244 Core JavaScript Reference

throw
function verifyZipCode(z) {
try {

z = new ZipCode(z);
}
catch (e) {

if (e instanceof ZipCodeFormatException) {
return ZIPCODE_INVALID;

}
else {

return ZIPCODE_UNKNOWN_ERROR;
}

}
return z;

}

a=verifyZipCode(95060) // returns 95060
b=verifyZipCode(9560) // returns -1
c=verifyZipCode("a") // returns -1
d=verifyZipCode("95060") // returns 95060
e=verifyZipCode("95060 1234") // returns 95060 1234

Example 3: Rethrow an exception. You can use throw to rethrow an
exception after you catch it. The following example catches an exception with
a numeric value and rethrows it if the value is over 50. The rethrown exception
propagates up to the enclosing function or to the top level so that the user sees
it.

try {
throw n // throws an exception with a numeric value

}
catch (e) {

if (e <= 50) {
// statements to handle exceptions 1-50

}
else {

// cannot handle this exception, so rethrow
throw e

}
}

See also try...catch
Chapter 3, Statements 245

try...catch
try...catch
Marks a block of statements to try, and specifies a response should an
exception be thrown.

Syntax try {
statements

}
[catch (catchID) {

statements
}]
[finally {

statements
}]

Parameters

Description The try...catch statement consists of a try block, which contains one or
more statements, and a catch block, containing statements that specify what
to do if an exception is thrown in the try block. That is, you want the try
block to succeed, and if it does not succeed, you want control to pass to the
catch block. If any statement within the try block (or in a function called
from within the try block) throws an exception, control immediately shifts to
the catch block. If no exception is thrown in the try block succeed, the
catch block is skipped. The finally block executes after the try and
catch blocks execute but before the statements following the try...catch
statement.

You can nest one or more try...catch statements. If an inner try...catch
statement does not have a catch block, the enclosing try...catch
statement’s catch block is entered.

Implemented in JavaScript 1.4

statements Block of statements that executes once. The statements can be
declarative statements (such as var) or executable statements (such
as for).

catch A block of statements to be executed if an exception is thrown in
the try block.

catchID An identifier to hold an exception object.

finally A block of statements that is executed before the try...catch
statement completes. This block of statements executes whether or
not an exception was thrown or caught.
246 Core JavaScript Reference

try...catch
You also use the try...catch statement to handle Java exceptions. See the
Core JavaScript Guide for information on Java exceptions.

The catch Block. The catch block is entered when any exception is thrown.
For example, the following code throws an exception. When the exception
occurs, control transfers to the catch block.

try {
throw "myException" // generates an exception

}
catch (e) {

// statements to handle any exceptions
logMyErrors(e) // pass exception object to error handler

}

The catch Block’s Identifier. When an exception is thrown in the try block,
the catchID holds the value specified by the throw statement; you can use
this identifier to get information about the exception that was thrown.
JavaScript creates this identifier when the catch block is entered; the identifier
lasts only for the duration of the catch block; after the catch block finishes
executing, the identifier is no longer available.

The finally Block. The finally block contains statements to execute after
the try and catch blocks execute but before the statements following the
try...catch statement. The finally block executes whether or not an
exception is thrown. If an exception is thrown, the statements in the finally
block execute even if no catch block handles the exception.

You can use the finally block to make your script fail gracefully when an
exception occurs; for example, you may need to release a resource that your
script has tied up. The following example opens a file and then executes
statements that use the file (server-side JavaScript allows you to access files). If
an exception is thrown while the file is open, the finally block closes the
file before the script fails.

try {
openMyFile() // tie up a resource
writeMyFile(theData)

}
finally {

closeMyFile() // always close the resource
}

Examples See the examples for throw.

See also throw
Chapter 3, Statements 247

var
var
Declares a variable, optionally initializing it to a value.

Syntax var varname [= value] [..., varname [= value]]

Parameters

Description The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions in the following situations:

• If a global variable of the same name exists.

• If recursive or multiple functions use variables with the same name.

Examples var num_hits = 0, cust_no = 0

while
Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Syntax while (condition) {
statements

}

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

varname Variable name. It can be any legal identifier.

value Initial value of the variable and can be any legal expression.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
248 Core JavaScript Reference

with
Parameters

Examples The following while loop iterates as long as n is less than three.

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

with
Establishes the default object for a set of statements.

Syntax with (object){
statements

}

condition Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condition evaluates to false, execution
continues with the statement following statements.

statements Block of statements that are executed as long as the condition
evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Chapter 3, Statements 249

with
Parameters

Description JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

object Specifies the default object to use for the statements. The
parentheses around object are required.

statements Any block of statements.
250 Core JavaScript Reference

C h a p t e r

4
Chapter 4Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

The following table summarizes the JavaScript operators.

Table 4.1 JavaScript operators.

Operator
category

Operator Description

Arithmetic
Operators

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning
either the new or old value of the variable)

- (Unary negation, subtraction) As a unary operator, negates the value of
its argument. As a binary operator, subtracts 2 numbers.

-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)

* (Multiplication) Multiplies 2 numbers.

/ (Division) Divides 2 numbers.

% (Modulus) Computes the integer remainder of dividing 2 numbers.

String
Operators

+ (String addition) Concatenates 2 strings.

+= Concatenates 2 strings and assigns the result to the first operand.
Chapter 4, Operators 251

Logical
Operators

&& (Logical AND) Returns the first operand if it can be converted to false;
otherwise, returns the second operand. Thus, when used with Boolean
values, && returns true if both operands are true; otherwise, returns false.

|| (Logical OR) Returns the first operand if it can be converted to true;
otherwise, returns the second operand. Thus, when used with Boolean
values, || returns true if either operand is true; if both are false, returns
false.

! (Logical NOT) Returns false if its single operand can be converted to true;
otherwise, returns true.

Bitwise
Operators

& (Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

| (Bitwise OR) Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of
bits to the left specified in the second operand, shifting in zeros from the
right.

>> (Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding
bits shifted off, and shifting in zeros from the left.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description
252 Core JavaScript Reference

Assignment
Operators

= Assigns the value of the second operand to the first operand.

+= Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

%= Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

|= Performs a bitwise OR and assigns the result to the first operand.

<<= Performs a left shift and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Comparison
Operators

== Returns true if the operands are equal.

!= Returns true if the operands are not equal.

=== Returns true if the operands are equal and of the same type.

!== Returns true if the operands are not equal and/or not of the same type.

> Returns true if the left operand is greater than the right operand.

>= Returns true if the left operand is greater than or equal to the right
operand.

< Returns true if the left operand is less than the right operand.

<= Returns true if the left operand is less than or equal to the right operand.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description
Chapter 4, Operators 253

Assignment Operators
Assignment Operators
An assignment operator assigns a value to its left operand based on the value of
its right operand.

Special
Operators

?: Performs a simple "if...then...else"

, Evaluates two expressions and returns the result of the second
expression.

delete Deletes an object, an object’s property, or an element at a specified index
in an array.

in Returns true if the specified property is in the specified object.

instanceof Returns true if the specified object is of the specified object type.

new Creates an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator Description

Implemented in JavaScript 1.0

ECMA version ECMA-262
254 Core JavaScript Reference

Assignment Operators
The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are usually shorthand for standard operations, as shown
in the following table.

In unusual situations, the assignment operator is not identical to the Meaning
expression in Table 4.2. When the left operand of an assignment operator itself
contains an assignment operator, the left operand is evaluated only once. For
example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated twice

Table 4.2 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y
Chapter 4, Operators 255

Comparison Operators
Comparison Operators
A comparison operator compares its operands and returns a logical value based
on whether the comparison is true.

The operands can be numerical or string values. Strings are compared based on
standard lexicographical ordering, using Unicode values.

A Boolean value is returned as the result of the comparison.

• Two strings are equal when they have the same sequence of characters,
same length, and same characters in corresponding positions.

• Two numbers are equal when they are numerically equal (have the same
number value). NaN is not equal to anything, including NaN. Positive and
negative zeros are equal.

• Two objects are equal if they refer to the same Object.

• Two Boolean operands are equal if they are both true or false.

• Null and Undefined types are equal.

Implemented in JavaScript 1.0

JavaScript 1.3: Added the === and !== operators.

JavaScript 1.4: Deprecated == for comparison of two JSObject
objects. Use the JSObject.equals method.

ECMA version ECMA-262 includes all comparison operators except === and !==.
256 Core JavaScript Reference

Comparison Operators
The following table describes the comparison operators.

Using the Equality Operators

The standard equality operators (== and !=) compare two operands without
regard to their type. The strict equality operators (=== and !==) perform
equality comparisons on operands of the same type. Use strict equality
operators if the operands must be of a specific type as well as value or if the
exact type of the operands is important. Otherwise, use the standard equality
operators, which allow you to compare the identity of two operands even if
they are not of the same type.

Table 4.3 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. If the two
operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

3 == var1
"3" == var1
3 == ’3’

Not equal (!=) Returns true if the operands are not equal. If the
two operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

var1 != 4
var1 != "3"

Strict equal (===) Returns true if the operands are equal and of the
same type.

3 === var1

Strict not equal (!==) Returns true if the operands are not equal and/or
not of the same type.

var1 !== "3"
3 !== ’3’

Greater than (>) Returns true if the left operand is greater than the
right operand.

var2 > var1

Greater than or equal
(>=)

Returns true if the left operand is greater than or
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
Chapter 4, Operators 257

Comparison Operators
When type conversion is needed, JavaScript converts String, Number,
Boolean, or Object operands as follows.

• When comparing a number and a string, the string is converted to a number
value. JavaScript attempts to convert the string numeric literal to a Number
type value. First, a mathematical value is derived from the string numeric
literal. Next, this value is rounded to nearest Number type value.

• If one of the operands is Boolean, the Boolean operand is converted to 1
if it is true and +0 if it is false.

• If an object is compared with a number or string, JavaScript attempts to
return the default value for the object. Operators attempt to convert the
object to a primitive value, a String or Number value, using the valueOf
and toString methods of the objects. If this attempt to convert the object
fails, a runtime error is generated.

Backward
Compatibility

The behavior of the standard equality operators (== and !=) depends on the
JavaScript version.

JavaScript 1.4 and later versions. You cannot use the standard equality
operator (==) to compare instances of JSObject. Use the
JSObject.equals method for such comparisons. JSObject.equals is
available for this purpose in all previous versions of JavaScript.

JavaScript 1.2. The standard equality operators (== and !=) do not perform a
type conversion before the comparison is made. The strict equality operators
(=== and !==) are unavailable.

JavaScript 1.1 and earlier versions. The standard equality operators (== and
!=) perform a type conversion before the comparison is made. The strict
equality operators (=== and !==) are unavailable.
258 Core JavaScript Reference

Arithmetic Operators
Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).

These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

% (Modulus)

The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand,
that is, var1 modulo var2, in the preceding statement, where var1 and var2
are variables. The modulo function is the integer remainder of dividing var1 by
var2. For example, 12 % 5 returns 2.

++ (Increment)

The increment operator is used as follows:

var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 259

Bitwise Operators
For example, if x is three, then the statement y = x++ sets y to 3 and
increments x to 4. If x is 3, then the statement y = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
sets y to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y; that is, if x were 3, y
would get the value -3 and x would retain the value 3.

Bitwise Operators
Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.
260 Core JavaScript Reference

Bitwise Operators
The following table summarizes JavaScript’s bitwise operators:

Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

Table 4.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR a | b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.

Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 261

Bitwise Operators
For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

Implemented in JavaScript 1.0

ECMA version ECMA-262
262 Core JavaScript Reference

Logical Operators
>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.

Logical Operators
Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value.
Implemented in JavaScript 1.0

ECMA version ECMA-262
Chapter 4, Operators 263

Logical Operators
The logical operators are described in the following table.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

Even though the && and || operators can be used with operands that are not
Boolean values, they can still be considered Boolean operators since their
return values can always be converted to Boolean values.

Short-Circuit Evaluation. As logical expressions are evaluated left to right,
they are tested for possible “short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

Table 4.5 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be
converted to false; otherwise, returns expr2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted
to true; otherwise, returns expr2. Thus, when
used with Boolean values, || returns true if either
operand is true; if both are false, returns false.

! !expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.
264 Core JavaScript Reference

Logical Operators
Backward
Compatibility

JavaScript 1.0 and 1.1. The && and || operators behave as follows:

Examples The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Operator Behavior

&& If the first operand (expr1) can be converted to false, the &&
operator returns false rather than the value of expr1.

|| If the first operand (expr1) can be converted to true, the ||
operator returns true rather than the value of expr1.
Chapter 4, Operators 265

String Operators
String Operators
In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring.

Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Syntax condition ? expr1 : expr2

Parameters

Description If condition is true, the operator returns the value of expr1; otherwise, it
returns the value of expr2. For example, to display a different message based
on the value of the isMember variable, you could use this statement:

document.write ("The fee is " + (isMember ? "$2.00" : "$10.00"))

Implemented in JavaScript 1.0

ECMA version ECMA-262

Implemented in JavaScript 1.0

ECMA version ECMA-262

condition An expression that evaluates to true or false

expr1, expr2 Expressions with values of any type.
266 Core JavaScript Reference

Special Operators
, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.

Syntax expr1, expr2

Parameters

Description You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.

Syntax delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

Parameters

Implemented in JavaScript 1.0

ECMA version ECMA-262

expr1, expr2 Any expressions

Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

objectName The name of an object.

property The property to delete.

index An integer representing the array index to delete.
Chapter 4, Operators 267

Special Operators
Description The fourth form is legal only within a with statement, to delete a property from
an object.

You can use the delete operator to delete variables declared implicitly but not
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined.
The delete operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete objects)

Deleting array elements. When you delete an array element, the array length
is not affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is
undefined.

When the delete operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

If you want an array element to exist but have an undefined value, use the
undefined keyword instead of the delete operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

268 Core JavaScript Reference

Special Operators
in

The in operator returns true if the specified property is in the specified object.

Syntax propNameOrNumber in objectName

Parameters

Description The following examples show some uses of the in operator.

// Arrays
trees=new Array("redwood","bay","cedar","oak","maple")
0 in trees // returns true
3 in trees // returns true
6 in trees // returns false
"bay" in trees // returns false (you must specify the index number,

// not the value at that index)
"length" in trees // returns true (length is an Array property)

// Predefined objects
"PI" in Math // returns true
myString=new String("coral")
"length" in myString // returns true

// Custom objects
mycar = {make:"Honda",model:"Accord",year:1998}
"make" in mycar // returns true
"model" in mycar // returns true

You must specify an object on the right side of the in operator. For example,
you can specify a string created with the String constructor, but you cannot
specify a string literal.

color1=new String("green")
"length" in color1 // returns true
color2="coral"
"length" in color2 // generates an error (color is not a String object)

Implemented in JavaScript 1.4

propNameOrNumber A string or numeric expression representing a property name or
array index.

objectName Name of an object.
Chapter 4, Operators 269

Special Operators
Using in with deleted or undefined properties. If you delete a property
with the delete operator, the in operator returns false for that property.

mycar = {make:"Honda",model:"Accord",year:1998}
delete mycar.make
"make" in mycar // returns false

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
3 in trees // returns false

If you set a property to undefined but do not delete it, the in operator returns
true for that property.

mycar = {make:"Honda",model:"Accord",year:1998}
mycar.make=undefined
"make" in mycar // returns true

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
3 in trees // returns true

For additional information about using the in operator with deleted array
elements, see “delete” on page 267.

instanceof

The instanceof operator returns true if the specified object is of the
specified object type.

Syntax objectName instanceof objectType

Parameters

Description Use instanceof when you need to confirm the type of an object at runtime.
For example, when catching exceptions, you can branch to different exception-
handling code depending on the type of exception thrown.

You must specify an object on the right side of the instanceof operator. For
example, you can specify a string created with the String constructor, but
you cannot specify a string literal.

Implemented in JavaScript 1.4

objectName Name of the object to compare to objectType.

objectType Object type.
270 Core JavaScript Reference

Special Operators
color1=new String("green")
color1 instanceof String // returns true
color2="coral"
color2 instanceof String // returns false (color is not a String object)

Examples See also the examples for throw.

Example 1. The following code uses instanceof to determine whether
theDay is a Date object. Because theDay is a Date object, the statements in
the if statement execute.

theDay=new Date(1995, 12, 17)
if (theDay instanceof Date) {

// statements to execute
}

Example 2. The following code uses instanceof to demonstrate that
String and Date objects are also of type Object (they are derived from
Object).

myString=new String()
myDate=new Date()

myString instanceof String // returns true
myString instanceof Object // returns true
myString instanceof Date // returns false

myDate instanceof Date // returns true
myDate instanceof Object // returns true
myDate instanceof String // returns false

Example 3. The following code creates an object type Car and an instance of
that object type, mycar. The instanceof operator demonstrates that the
mycar object is of type Car and of type Object.

function Car(make, model, year) {
this.make = make
this.model = model
this.year = year

}
mycar = new Car("Honda", "Accord", 1998)
a=mycar instanceof Car // returns true
b=mycar instanceof Object // returns true
Chapter 4, Operators 271

Special Operators
new

The new operator creates an instance of a user-defined object type or of one of
the built-in object types that has a constructor function.

Syntax objectName = new objectType (param1 [,param2] ...[,paramN])

Parameters

Description Creating a user-defined object type requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1, and assigns
it a value of "black". However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a color property to all objects of type car, and
then assigns a value to the color property of the object car1. For more
information, see prototype

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Implemented in JavaScript 1.0

ECMA version ECMA-262

objectName Name of the new object instance.

objectType Object type. It must be a function that defines an object type.

param1...paramN Property values for the object. These properties are parameters
defined for the objectType function.
272 Core JavaScript Reference

Special Operators
Examples Example 1: Object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string "Eagle", mycar.year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: Object property that is itself another object. Suppose you
define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)
Chapter 4, Operators 273

Special Operators
Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2, you can access the
following property:

car2.owner.name

this

The this keyword refers to the current object. In general, in a method this
refers to the calling object.

Syntax this[.propertyName]

Examples Suppose a function called validate validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">

Implemented in JavaScript 1.0

ECMA version ECMA-262
274 Core JavaScript Reference

Special Operators
typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof ’Hello world’ is string

For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

Implemented in JavaScript 1.1

ECMA version ECMA-262
Chapter 4, Operators 275

Special Operators
For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit

Implemented in JavaScript 1.1

ECMA version ECMA-262
276 Core JavaScript Reference

3
LiveConnect Class Reference
• Java Classes, Constructors, and
Methods

278 Core JavaScript Reference

C h a p t e r

5
Chapter 5Java Classes, Constructors, and

Methods
This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that
allow a Java object to access JavaScript code.

This reference is organized as follows:

• Full entries for each class appear in alphabetical order.

Tables included in the description of each class summarize the constructors
and methods of the class.

• Full entries for the constructors and methods of a class appear in
alphabetical order after the entry for the class.
Chapter 5, Java Classes, Constructors, and Methods 279

JSException
JSException
The public class JSException extends RuntimeException.

java.lang.Object
|
+----java.lang.Throwable

|
+----java.lang.Exception

|
+----java.lang.RuntimeException

|
+----netscape.javascript.JSException

Description JSException is an exception which is thrown when JavaScript code returns an
error.

Constructor
Summary

The netscape.javascript.JSException class has the following
constructors:

Method Summary The netscape.javascript.JSException class has the following method:

The following sections show the declaration and usage of the constructors and
method.

Backward
Compatibility

JavaScript 1.1 through 1.3. JSException had three public constructors
which optionally took a string argument, specifying the detail message or other
information for the exception. The getWrappedException method was not
available.

Constructor Description

JSException Deprecated constructors optionally let you specify a detail
message and other information.

Method Description

getWrappedException Instance method getWrappedException.
280 Core JavaScript Reference

JSException.JSException
JSException .

Constructors, deprecated in JavaScript 1.4. Constructs a JSException with an
optional detail message.

Declaration 1. public JSException()

2. public JSException(String s)

3. public JSException(String s,
String filename,
int lineno,
String source,
int tokenIndex)

Arguments

getWrappedException .

Instance method getWrappedException.

Declaration public Object getWrappedException()

s The detail message.

filename The URL of the file where the error occurred, if possible.

lineno The line number if the file, if possible.

source The string containing the JavaScript code being evaluated.

tokenIndex The index into the source string where the error occurred.
Chapter 5, Java Classes, Constructors, and Methods 281

JSObject
JSObject
The public final class netscape.javascript.JSObject extends Object.

java.lang.Object
|
+----netscape.javascript.JSObject

Description JavaScript objects are wrapped in an instance of the class
netscape.javascript.JSObject and passed to Java. JSObject allows
Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObject; when a JSObject is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JSObject class provides a way to invoke JavaScript methods and examine
JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObject is passed back to JavaScript, the object is unwrapped and can be used
by JavaScript code. See the Core JavaScript Guide for more information about
data type conversions.

Method Summary The netscape.javascript.JSObject class has the following methods:

Method Description

call Calls a JavaScript method.

equals Determines if two JSObject objects refer to the same
instance.

eval Evaluates a JavaScript expression.

getMember Retrieves the value of a property of a JavaScript object.

getSlot Retrieves the value of an array element of a JavaScript object.

removeMember Removes a property of a JavaScript object.

setMember Sets the value of a property of a JavaScript object.

setSlot Sets the value of an array element of a JavaScript object.

toString Converts a JSObject to a string.
282 Core JavaScript Reference

JSObject.call
The netscape.javascript.JSObject class has the following static methods:

The following sections show the declaration and usage of these methods.

call .

Method. Calls a JavaScript method. Equivalent to
“this.methodName(args[0], args[1], ...)” in JavaScript.

Declaration public Object call(String methodName,
Object args[])

equals .

Method. Determines if two JSObject objects refer to the same instance.

Overrides: equals in class java.lang.Object

Declaration public boolean equals(Object obj)

Backward
Compatibility

JavaScript 1.3. In JavaScript 1.3 and earlier versions, you can use either the
equals method of java.lang.Object or the == operator to evaluate two
JSObject objects.

eval .

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

Declaration public Object eval(String s)

Method Description

getWindow Gets a JSObject for the window containing the given
applet.
Chapter 5, Java Classes, Constructors, and Methods 283

JSObject.getMember
getMember .

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
“this.name” in JavaScript.

Declaration public Object getMember(String name)

getSlot .

Method. Retrieves the value of an array element of a JavaScript object.
Equivalent to “this[index]” in JavaScript.

Declaration public Object getSlot(int index)

getWindow .

Static method. Returns a JSObject for the window containing the given applet.
This method is useful in client-side JavaScript only.

Declaration public static JSObject getWindow(Applet applet)

removeMember .

Method. Removes a property of a JavaScript object.

Declaration public void removeMember(String name)

setMember .

Method. Sets the value of a property of a JavaScript object. Equivalent to
“this.name = value” in JavaScript.

Declaration public void setMember(String name,
Object value)
284 Core JavaScript Reference

JSObject.setSlot
setSlot .

Method. Sets the value of an array element of a JavaScript object. Equivalent to
“this[index] = value” in JavaScript.

Declaration public void setSlot(int index,
Object value)

toString .

Method. Converts a JSObject to a String.

Overrides: toString in class java.lang.Object

Declaration public String toString()
Chapter 5, Java Classes, Constructors, and Methods 285

JSObject.toString
286 Core JavaScript Reference

4
Appendixes
• Reserved Words

288 Core JavaScript Reference

Appendix

A
Appendix A Reserved Words
This appendix lists the reserved words in JavaScript.

The reserved words in this list cannot be used as JavaScript variables,
functions, methods, or object names. Some of these words are keywords used
in JavaScript; others are reserved for future use.

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private
protected
public
return
short
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with
Appendix A, Reserved Words 289

290 Core JavaScript Reference

Index

Symbols
- (bitwise NOT) operator 261

- (unary negation) operator 260

-- (decrement) operator 260

! (logical NOT) operator 264

!= (not equal) operator 257

!== (strict not equal) operator 257

$& property 159

$* property 159

$+ property 159

$_ property 159

$‘ property 159

$’ property 159

$1, ..., $9 properties 158

% (modulus) operator 259

%= operator 255

&& (logical AND) operator 264

& (bitwise AND) operator 261

&= operator 255

) 283

*/ comment 232

*= operator 255

+ (string concatenation) operator 266

++ (increment) operator 259

+= (string concatenation) operator 266

+= operator 255

/* comment 232

// comment 232

/= operator 255

< (less than) operator 257

<< (left shift) operator 261, 262

<<= operator 255

<= (less than or equal) operator 257

== (equal) operator 257

=== (strict equal) operator 257

-= operator 255

> (greater than) operator 257

>= (greater than or equal) operator 257

>> (sign-propagating right shift) operator 261,
263

>>= operator 255

>>> (zero-fill right shift) operator 261, 263

>>>= operator 255

?: (conditional) operator 266

^ (bitwise XOR) operator 261

^= operator 255

| (bitwise OR) operator 261

|= operator 255

|| (logical OR) operator 264

‚ (comma) operator 267

A
abs method 109

acos method 109

anchor method 177

anchors
creating 177

AND (&&) logical operator 264

AND (&) bitwise operator 261

apply method 83

arguments array 85
Index 291

arithmetic operators 259
% (modulus) 259
-- (decrement) 260
- (unary negation) 260
++ (increment) 259

arity property 90

Array object 16

arrays
Array object 16
creating from strings 198
deleting elements 267
dense 17
increasing length of 18
indexing 17
initial length of 17, 19
Java 98
joining 23
length of, determining 24, 190
referring to elements 17
sorting 29

asin method 110

assignment operators 254
%= 255
&= 255
*= 255
+= 255
/= 255
<<= 255
-= 255
>>= 255
>>>= 255
^= 255
|= 255
conditional statements and 239

atan2 method 111

atan method 111

B
BIG HTML tag 178

big method 178

bitwise operators 260
& (AND) 261
- (NOT) 261
<< (left shift) 261, 262
>> (sign-propagating right shift) 261, 263
>>> (zero-fill right shift) 261, 263
^ (XOR) 261
| (OR) 261
logical 261
shift 262

BLINK HTML tag 179

blink method 179

BOLD HTML tag 179

bold method 179

Boolean object 38
conditional tests and 38

break statement 231

C
callee property 87

caller property 88

call method 90

call method (LiveConnect) 283

ceil method 112

charAt method 180

charCodeAt method 181

classes, accessing Java 102, 147

className property 148

comma (‚) operator 267

comments 232

comment statement 232

comparison operators 256
!= (not equal) 257
!== (strict not equal) 257
< (less than) 257
<= (less than or equal) 257
== (equal) 257
=== (strict equal) 257
> (greater than) 257
>= (greater than or equal) 257
292 Core JavaScript Reference

compile method 160

concat method
Array object 21
String object 182

conditional (?:) operator 266

conditional tests
assignment operators and 239
Boolean objects and 38

constructor property
Array object 22
Boolean object 40
Date object 48
Function object 92
Number object 129
Object object 137
RegExp object 161
String object 182

containership
specifying default object 249
with statement and 249

continue statement 233

conventions 229

cos method 113

D
Date object 43

dates
converting to string 74
Date object 43
day of week 49
defining 43
milliseconds since 1970 77
month 51

decrement (--) operator 260

default objects, specifying 249

delete operator 267

deleting
array elements 267
objects 267
properties 267

dense arrays 17

directories, conventions used 12

do...while statement 234

document conventions 12

E
E property 114

equals method (LiveConnect 283

escape function 212
Unicode and 213

Euler’s constant 114
raised to a power 114

eval function 214

eval method
LiveConnect 283
Object object 138

exceptions
catching 246
LiveConnect 280
throwing 243
throw statement 243
try...catch statement 246

exec method 161

exp method 114

export statement 235

expressions that return no value 276

F
fixed method 183

floor method 115

fontcolor method 183

fonts
big 178
blinking 179
bold 179

fontsize method 185

for...in statement 236
Index 293

for loops
continuation of 233
syntax of 235
termination of 231

for statement 235

fromCharCode method 186

Function object 79
specifying arguments for 80
as variable value 81

functions
arguments array 85
callee property 87
caller property 88
declaring 237
Function object 79
length property 89
list of 211
nesting 81, 82
number of arguments 190
return values of 241
top-level 211
as variable value 81

function statement 237

G
getDate method 48

getDay method 49

getFullYear method 49

getHours method 50

getMember method (LiveConnect) 284

getMilliseconds method 50

getMinutes method 51

getMonth method 51

getSeconds method 52

getSlot method (LiveConnect) 284

getTime method 52

getTimezoneOffset method 53

getUTCDate method 53

getUTCDay method 54

getUTCFullYear method 54

getUTCHours method 55

getUTCMilliseconds method 56

getUTCMinutes method 56

getUTCMonth method 57

getUTCSeconds method 58

getWindow method (LiveConnect) 284

getWrappedException (LiveConnect) 281

getYear method 58

global object 211

global property 164

GMT time, defined, local time, defined 44

H
HTML tags

BIG 178
BLINK 179
BOLD 179

I
if...else statement 238

ignoreCase property 165

import statement 239

increment (++) operator 259

indexOf method 186

index property 23

Infinity property 216

in keyword 236

in operator 269

input property
Array object 23
RegExp object 165

instanceof operator 270

isFinite function 217

isNaN function 218

italics method 188
294 Core JavaScript Reference

J
JavaArray object 98

JavaClass object 102

java object 97

JavaObject object 104

JavaPackage object 106

java property 149

JavaScript
background for using 9
reserved words 289
versions and Navigator 10

join method 23

JSException class 280

JSException constructor (LiveConnect) 281

JSObject class 282

K
keywords 289

L
label statement 240

lastIndexOf method 189

lastIndex property 166

lastMatch property 167

lastParen property 168

leftContext property 168

left shift (<<) operator 261, 262

length property
arguments array 89
Array object 24
Function object 92
JavaArray object 100
String object 190

link method 191

links
anchors for 177
with no destination 276

LiveConnect
JavaArray object 98
JavaClass object 102
java object 97
JavaObject object 104
JavaPackage object 106
JSException class 280
JSObject class 282
netscape object 126
Packages object 147
sun object 210

LN10 property 116

LN2 property 116

LOG10E property 117

LOG2E property 118

logarithms
base of natural 114
natural logarithm of 10 116

logical operators 263
! (NOT) 264
&& (AND) 264
|| (OR) 264
short-circuit evaluation 264

log method 117

loops
continuation of 233
for 235
termination of 231
while 248

lowercase 175, 207

M
match method 191

Math object 107

MAX_VALUE property 129

max method 118

methods, top-level 211

MIN_VALUE property 130

min method 119

modulo function 259
Index 295

modulus (%) operator 259

multiline property 168

N
NaN property

Number object 130
top-level 218

natural logarithms
base of 114
e 114
e raised to a power 114
of 10 116

Navigator, JavaScript versions supported 10

NEGATIVE_INFINITY property 131

nesting functions 81, 82

netscape.javascript.JSException class 280

netscape.javascript.JSObject class 282

netscape object 126

netscape property 149

new operator 272

NOT (!) logical operator 264

NOT (-) bitwise operator 261

Number function 219

Number object 127

numbers
greater of two 118
identifying 218
Number object 127
obtaining integer 112
parsing from strings 220
square root 123

O
Object object 136

objects
confirming object type for 270
confirming property type for 269
creating new types 272
deleting 267
establishing default 249
getting list of properties for 237
iterating properties 236
Java, accessing 104

operators 251–276
arithmetic 259
assignment 254
bitwise 260
comparison 256
list of 251
logical 263
special 266
string 266

OR (|) bitwise operator 261

OR (||) logical operator 264

P
packages, accessing Java 106

Packages object 147

parseFloat function 220

parseInt function 221

parse method 60

PI property 120

pop method 25
296 Core JavaScript Reference

POSITIVE_INFINITY property 132

pow method 120

properties
confirming object type for 269
deleting 267
getting list of for an object 237
iterating for an object 236
top-level 211

prototype property
Array object 25
Boolean object 40
Date object 61
Function object 92
Number object 133
Object object 138
RegExp object 169
String object 193

push method 26

R
random method 121

RegExp object 151

regular expressions 151

removeMember method (LiveConnect) 284

replace method 193

reserved words 289

return statement 241

reverse method 26

rightContext property 169

round method 121

S
search method 196

selection lists
number of options 190

setDate method 61

setFullYear method 62

setHours method 63

setMember method (LiveConnect) 284

setMilliseconds method 64

setMinutes method 64

setMonth method 65

setSeconds method 66

setSlot method (LiveConnect) 285

setTime method 67

setUTCDate method 67

setUTCFullYear method 68

setUTCHours method 69

setUTCMilliseconds method 70

setUTCMinutes method 70

setUTCMonth method 71

setUTCSeconds method 72

setYear method 72

shift method 27

short-circuit evaluation 264

sign-propagating right shift (>>) operator 261,
263

sin method 122

slice method 28, 196

small method 197

sort method 29

source property 170

special operators 266

splice method 33

split method 198

SQRT1_2 property 124

SQRT2 property 124

sqrt method 123

square roots 123

statements 229–250
syntax conventions 229

strike method 201

String function 223

String object 173

string operators 266
Index 297

strings
blinking 179
bold 179
character position within 174, 180, 186
concatenating 266
converting from date 74
converting to floating point 220
creating from arrays 23
defining 173
fontsize of 178
length of 190
lowercase 175, 207
parsing 220
splitting into arrays 198
String object 173

sub method 202

substring method 204

substr method 203

sun object 210

sun property 150

sup method 206

switch statement 241

syntax conventions 229

T
tan method 125

test method 170

this keyword 274

throw statement 243

times
Date object 43
defining 43
minutes 51

toGMTString method 73

toLocaleString method 74

toLowerCase method 207

top-level properties and functions 211

toSource method
Array object 34
Boolean object 41
Date object 75
Function object 94
Number object 133
Object object 139
RegExp object 171
String object 207

toString method
Array object 35
Boolean object 41
built-in 140
Date object 76
Function object 95
JavaArray object 101
LiveConnect 285
Number object 134
Object object 140
RegExp object 171
String object 208
user-defined 140

toUpperCase method 208

toUTCString method 76

try...catch statement 246

typeof operator 275

U
unary negation (-) operator 260

undefined property 223

unescape function 224
unicode and 213

Unicode
charCodeAt method 181
escape function and 213
unescape function and 213

unshift method 36

unwatch method 143
298 Core JavaScript Reference

URLs
conventions used 12
escaping characters in 212

UTC method 77

UTC time, defined 44

V
valueOf method

Array object 37
Boolean object 42
Date object 78
Function object 96
Number object 135
Object object 143
RegExp object 172
String object 209

variables
declaring 248
initializing 248
syntax for declaring 248

var statement 248

versions of JavaScript 10

void operator 276

W
watch method 145

while loops
continuation of 233
syntax of 248
termination of 231

while statement 248

with statement 249

X
XOR (^) operator 261

Z
zero-fill right shift (>>>) operator 261, 263
Index 299

	Core JavaScript Reference
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	I. Object Reference
	1. Objects, Methods, and Properties
	Array
	concat
	constructor
	index
	input
	join
	length
	pop
	prototype
	push
	reverse
	shift
	slice
	sort
	splice
	toSource
	toString
	unshift
	valueOf

	Boolean
	constructor
	prototype
	toSource
	toString
	valueOf

	Date
	constructor
	getDate
	getDay
	getFullYear
	getHours
	getMilliseconds
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getUTCDate
	getUTCDay
	getUTCFullYear
	getUTCHours
	getUTCMilliseconds
	getUTCMinutes
	getUTCMonth
	getUTCSeconds
	getYear
	parse
	prototype
	setDate
	setFullYear
	setHours
	setMilliseconds
	setMinutes
	setMonth
	setSeconds
	setTime
	setUTCDate
	setUTCFullYear
	setUTCHours
	setUTCMilliseconds
	setUTCMinutes
	setUTCMonth
	setUTCSeconds
	setYear
	toGMTString
	toLocaleString
	toSource
	toString
	toUTCString
	UTC
	valueOf

	Function
	apply
	arguments
	arguments.callee
	arguments.caller
	arguments.length
	arity
	call
	constructor
	length
	prototype
	toSource
	toString
	valueOf

	java
	JavaArray
	length
	toString

	JavaClass
	JavaObject
	JavaPackage
	Math
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	E
	exp
	floor
	LN10
	LN2
	log
	LOG10E
	LOG2E
	max
	min
	PI
	pow
	random
	round
	sin
	sqrt
	SQRT1_2
	SQRT2
	tan

	netscape
	Number
	constructor
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	toSource
	toString
	valueOf

	Object
	constructor
	eval
	prototype
	toSource
	toString
	unwatch
	valueOf
	watch

	Packages
	className
	java
	netscape
	sun

	RegExp
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	compile
	constructor
	exec
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	prototype
	rightContext
	source
	test
	toSource
	toString
	valueOf

	String
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	constructor
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	length
	link
	match
	prototype
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toSource
	toString
	toUpperCase
	valueOf

	sun

	2. Top-Level Properties and Functions
	escape
	eval
	Infinity
	isFinite
	isNaN
	NaN
	Number
	parseFloat
	parseInt
	String
	undefined
	unescape

	II. Language Elements
	3. Statements
	break
	comment
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	throw
	try...catch
	var
	while
	with

	4. Operators
	Assignment Operators
	Comparison Operators
	Using the Equality Operators

	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	in
	instanceof
	new
	this
	typeof
	void

	III. LiveConnect Class Reference
	5. Java Classes, Constructors, and Methods
	JSException
	JSException
	getWrappedException

	JSObject
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString

	IV. Appendixes
	A. Reserved Words

	Index

