Core JavaScript
Reference

October 29, 1998

Netscape Communications Corporation (“Netscape") and its licensors retain all ownership rights to the software
programs offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and
related documentation is governed by the license agreement accompanying the Software and applicable copyright
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED "AS 1S" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights
reserved.

The Software contains JavaScript software technology invented and implemented by Netscape Communications
Corporation. The JavaScript name is a trademark or registered trademark of Sun Microsystems, Inc. in the United
States and other countries and is used under license.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape
ONE, SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Other Netscape logos, product names, and service names are
also trademarks of Netscape Communications Corporation, which may be registered in other countries. Other product
and brand names are trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

@ Recycled and Recyclable Paper

Version 1.4
©1998 Netscape Communications Corporation. All Rights Reserved
Printed in the United States of America. 00 99 98 5432 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

New Features in this Release

JavaScript version 1.4 provides the following new features and enhancements:

Exception handling. You can throw and catch exceptions using the
throwand try. .. cat ch statements. See “throw” on page 243 and
“try...catch” on page 246.

New operatorsi n and i nst anceof . The i n operator returns true if the
specified property is in the specified object; see “in” on page 269. The

i nst anceof operator returns true if the specified object is of the specified
object type; see “instanceof” on page 270.

Changes to LiveConnect. Several changes to LiveConnect improve the
way Java and JavaScript code communicate:

= The methods of j ava. | ang. Qbj ect are inherited by JavaArr ay. In
addition, the JavaArrary. t oSt ri ng method now calls the method
java.l ang. Qbj ect.toString. See “JavaArray” on page 98.

= You can pass a JavaC ass object to a Java method which requires an
argument of type j ava. | ang. Cl ass instead of creating a wrapper
around an instance of j ava. | ang. d ass. See “JavaClass” on
page 102.

= You cannot construct an instance of JSExcept i on with a detail
message. The three original public constructors for the Java class
net scape. j avascri pt. JSExcepti on that supported this feature
are deprecated. See “JSException” on page 280.

= You cannot use the == operator to compare two instances of
JShj ect . Use JSOhj ect . equal s. See “Comparison Operators” on
page 256 and JSObj ect . equal s.

4 Core lavaScript Reference

= Changes to the eval method.

The top-level eval method cannot be called indirectly. In previous
versions, it was recommended that this method not be called indirectly;
starting with JavaScript 1.4, calling eval indirectly could result in a
runtime error. This change improves performance. See “eval” on

page 214.

The eval method is no longer available as a method of Cbj ect ; use
the top-level eval function instead. See “eval” on page 214.

= Changes to the Funct i on object.

You should no longer specify a function name when using the

ar gunent s array; the ar gument s array is a variable and is no longer
a property of Funct i on objects. This change improves performance.
See “Function” on page 79 and “arguments” on page 85.

Deprecated the Functi on. ari ty property. It has been replaced by
the Functi on. | engt h property. See “length” on page 92.

New Features in thiS REICASEcov oo 3

ABOUL thiS BOOKccoviiciicce s 9
New Features in this REIEASEcccceiiiieiiii e e 9
What You Should Already KNOWcccooovviiiiiic e 9
JAVASCIIPL VEISIONS ..ottt 10
Where to Find JavaScript INformationccccccoviiiiviini e 11
DocumMENt CONVENTIONScvviiiieiciieectiee e stie e stee e e stee e stre e e ste e e s ste e e s ne e e seeessreeesnreeens 12

Part 1 Object Reference

Chapter 1 Objects, Methods, and Propertiescccecevevvieinenenas 15
AATTY ettt ettt et s e e e et e et e e e e et e e et et e et e e e Rt e e et e e e et et e nee e e teeeanteeanreeeareeens 16
270 T0] [=T- o R PSPPSR 38
DALE it re e nres 43
FUNCLION ..ttt sttt e et e bbb e be e beesneen 79
2 LY PSP 97
JAVBATTAY ettt ettt b ettt e e sttt be e b e e st e e b e e e e be e e be e e nbr e e areeen 98
JAVACIASS ..veeieiiieiee e ettt e 102
JAVAODJECL ... e ea e 104
N \VZ: Lo Tod ¢ Lo [OSSR 106
IMAEN .o et 107
L] T o7= Y o = PR 126
NUMDEE .ttt et ettt st et e e st e e sbe e sneeenneenbeen 127
(] o] 1=t SRS 136
PACKAGES ... ettt ettt eaeas 147
=T | o T PSP URP T PPPPPPP 151
K] o [OOSR 173
KT o PO VTP RV PO PP OPRPPP 210

Contents v

Chapter 2 Top-Level Properties and Functionscccceceuenee. 211

LT or: | o1 PSP U TP UOTPRUPP 212
BV e 214
INFINIEY et 216
ISFINITE et 217
ISNBIN ettt e b e e e br e e are e e 218
INBN bbb s 218
NUMDEE .o 219
PASEFIOAL ... 220
72V 6= 1 | SO 221
K] 10T [OOSR PR TUPTOUR RPN 223
UNAETINEA ..o 223
(Lo T ot T oL U OP PRSPPI 224

Part 2 Language Elements

vi Core JavaScript Reference

Chapter 3 StatemeENts ... 229
o] =T 1SRRI 231
(o0] 1011001 o | (RO PRI 232
(o0 1 {11 1= ST 233
(o To VLY o 11 U SR 234
24 01 S 235
(0] USRS 235
L0 | S 236
10T o1 4 o] o PSSR 237
=Y 7= PR 238
(141 010] ¢ ST PP P PP UPRRRURRN 239
JADEI e ———————— 240
£ 10 1 T PP RP PP 241
531171 (o ST 241
118 0 PR 243
LYo | (o USSR 246
(2 LSO RRRRP 248
WHIHIE e 248
W Lttt e 249

Chapter 4 OPEratOrS ...t 251

ASSIGNMENT OPEIALOISeoiiiieiieiiie ettt ettt ettt st sbeenneesaeas 254
(0701101 oF- T TS0 0 @7 o 1=T - | (o] £ 256
Using the Equality OPeratorsocccooieiiriiieiee et 257
WA 110 L= (ol @ =T - | (o 259
90 (MOAUIUS) .ttt bbb 259
F4 (INCIEMENT) .ot 259
e (B L=To3 (]] 1 OSSR 260
= (UNary NEJALION)ooieiiiiiiie ettt st eees 260
BitWiSE OPEIALOISecvviiieieeeie e eeesee e e et e e et e e e enae e sneenneesneeenes 260
Bitwise LOgiCal OPEIratOrsoooieiiiiiiiiieiie ettt 261
Bitwise Shift OPEratorscccceviieiiiiii e 262
[WoTo[or: LI @] o] £-1 0] £ T RSP UPRR 263
R [T @] o] - (o] -SSP 266
SPECIAI OPEIALOIS ..ooeiiiiiitie ittt et sb e e 266
2 (Conditional OPEIALON)cccviiveiiiri st 266
(o] 00100 T W e o =] Lo) RSP UPRTR 267
EIBLE .o 267
] TSROSO U PP 269
INSEANCEOT ..o 270
LTS TP UPR PP 272
TN e 274
137/ 0110) SRR RR 275
VOIA ot 276

Part 3 LiveConnect Class Reference

Chapter 5 Java Classes, Constructors, and Methods 279
BT (e=T o] 1o o RO 280
] @] 1= SRR 282

Part 4 Appendixes
Appendix A Reserved WOrdS ... 289

Contents vii

viii Core JavaScript Reference

About this Book

JavaScript is Netscape’s cross-platform, object-based scripting language. This
book is a reference manual for the core JavaScript language.

This preface contains the following sections:

New Features in this Release

What You Should Already Know
JavaScript Versions

Where to Find JavaScript Information
Document Conventions

New Features in this Release

For a summary of JavaScript 1.4 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know

This book assumes you have the following basic background:

A general understanding of the Internet and the World Wide Web (WWW).

Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.

JavaScript Versions

JavaScript Versions

Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version
JavaScript 1.0 Navigator 2.0
JavaScript 1.1 Navigator 3.0
JavaScript 1.2 Navigator 4.0-4.05
JavaScript 1.3 Navigator 4.06-4.5

JavaScript 1.4

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version
NES 2.0 Netscape Enterprise Server 2.0
NES 3.0 Netscape Enterprise Server 3.0

10 Core JavaScript Reference

Where to Find JavaScript Information

Where to Find JavaScript Information

The core JavaScript documentation includes the following books:

The Core JavaScript Guide provides information about the core JavaScript
language and its objects.

The Core JavaScript Reference (this book) provides reference material for
the core JavaScript language.

If you are new to JavaScript, start with the Core JavaScript Guide. Once you
have a firm grasp of the fundamentals, you can use the Core JavaScript
Reference to get more details on individual objects and statements.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

http://devel oper. net scape. com | i brary/docunent ati on/
javascript. htnl

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

http://devel oper. net scape. com | i brary/docunent ati on/

The DevEdge library contains documentation on many Netscape products
and technologies.

http:// devel oper. net scape. com

The DevEdge home page gives you access to all DevEdge resources.

11

Document Conventions

Document Conventions

12 Core JavaScript Reference

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server. domai nl pathl/ file.htm

In these URLs, server represents the name of the server on which you run your
application, such as r esear chl or ww; domain represents your Internet
domain name, such as net scape. comor ui uc. edu; path represents the
directory structure on the server; and file. ht M represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use ht t ps instead of htt p in the URL.

This book uses the following font conventions:

< The nonospace font is used for sample code and code listings, APl and
language elements (such as method names and property hames), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Mbnospace italic font is used for placeholders
embedded in code.)

= ltalic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

Boldface type is used for glossary terms.

Object Reference

Objects, Methods, and
Properties

Top-Level Properties and
Functions

14 Core JavaScript Reference

Chapter

Objects, Methods, and Properties

This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

= Full entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Properties and Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

= Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.

Chapter 1, Objects, Methods, and Properties 15

Array

Array

Lets you work with arrays.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3; added t oSour ce method
ECMA version ECMA-262

Created by The Array object constructor:

new Array(arraylLength)
new Array(el enent0, elenentl, ..., elenentN

An array literal:
[elenentO, elenentl, ..., elenentN

JavaScript 1.2 when you specify LANGUAGE="JavaScri pt 1. 2" in the
<SCRI PT> tag:

new Array(el ementO, elenentl, ..., elenentN

JavaScript 1.2 when you do not specify LANGUAGE="JavaScri pt 1. 2" in the
<SCRI PT> tag:

new Array([arraylLength])
new Array([el ementO[, elenentl], ..., elenentN]])

JavaScript 1.1:

new Array([arrayLength])
new Array([el ementO[, elenentl], ..., elenentN]])

Parameters
arrayLength The initial length of the array. You can access this value using the
| engt h property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

el ement N A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s | engt h property is set to the number of arguments.

16 Core JavaScript Reference

Description

Array

An array is an ordered set of values associated with a single variable name.

The following example creates an Ar r ay object with an array literal; the
cof f ees array contains three elements and a length of three:

cof fees = ["French Roast", "Col unbian", "Kona"]

Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

nyArray = new Array("Wnd","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as nyArray[1] .

Specifying a single parameter. When you specify a single numeric parameter
with the Ar r ay constructor, you specify the initial length of the array. The
following code creates an array of five elements:

bi |l i ngMet hod = new Array(5)

The behavior of the Arr ay constructor depends on whether the single
parameter is a number.

= If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the | engt h
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

= |If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

nusi cTypes = new Array(25)
musi cTypes[0] = "R&B"

nmusi cTypes[1] "Bl ues"
nusi cTypes| 2] "Jazz"

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

nyArray = new Array("Hello", myvar, 3.14159)

Chapter 1, Objects, Methods, and Properties 17

Array

Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
col ors[99] = "m dni ght bl ue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp. exec, Stri ng. match, and Stri ng. repl ace.
To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRI PT LANGUAGE="JavaScript1.2">

// Match one d foll owed by one or nore b's foll owed by one d
/I Remenber matched b’s and the followi ng d

//1gnore case

nyRe=/d(b+) (d)/i;
nyArray = myRe. exec("cdbBdbsbz");

</ SCRI PT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

i nput A read-only property that reflects the cdbBdbsbz
original string against which the regular
expression was matched.

i ndex A read-only property that is the zero-based 1
index of the match in the string.

[0] A read-only element that specifies the last dbBd
matched characters.

[1], ...[n] Read-only elements that specify the [1]=bB
parenthesized substring matches, if [2]=d

included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

18 Core JavaScript Reference

Array

Backward JavaScript 1.2. When you specify a single parameter with the Ar r ay
Compatibility constructor, the behavior depends on whether you specify
LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag:

= If you specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You
cannot specify the | engt h property of an Ar r ay using a constructor with
one parameter.

< If you do not specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT>
tag, you specify the initial length of the array as with other JavaScript
versions.

JavaScript 1.1 and earlier. When you specify a single parameter with the
Ar r ay constructor, you specify the initial length of the array. The following
code creates an array of five elements:

bi | I'i ngMet hod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example

nyArray[0] .
Property
Summary Property Description
constructor Specifies the function that creates an object’s prototype.
i ndex For an array created by a regular expression match, the zero-based
index of the match in the string.
i nput For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.
| ength Reflects the number of elements in an array
pr ot ot ype Allows the addition of properties to all objects.

Chapter 1, Objects, Methods, and Properties 19

Array

Method Summary

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns the new
length of the array.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

t oSour ce Returns an array literal representing the specified array; you can use
this value to create a new array. Overrides the Obj ect . t oSour ce
method.

toString Returns a string representing the array and its elements. Overrides the
Ohj ect .t oSt ri ng method.

unshi ft Adds one or more elements to the front of an array and returns the
new length of the array.

val ueCf Returns the primitive value of the array. Overrides the
oj ect . val ueF method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Example 1. The following example creates an array, nsgArr ay, with a length
of 0, then assigns values to msgArray[0] and nsgAr ray[99], changing the
length of the array to 100.

nsgArray = new Array()
nsgArray[0] = "Hello"
nsgArray[99] = "world"
/1 The follow ng statenent is true,
/1 because defined msgArray[99] el enent.
if (msgArray.length == 100)
nmyVar="The length is 100."

20 Core JavaScript Reference

Array.concat

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to nyVar .

nyVar ="Ml ti di mensi onal array test;
a = new Array(4)
for (i=0; i < 4; i++) {
a[i] = new Array(4)
for (j=0; j <4 j++) {
alil[j] = "["+i+", "4 +]"
}
}
for (i=0; i < 4; i++) {
str = "Row "+ +":"
for (j=0; j <4 j++) {
str += a[i][j]
}
nmyVar += str +";

}

This example assigns the following string to nyVar (line breaks are used here
for readability):

Mul ti di mensional array test;
Row 0:[0,0][0,1][0,2][0O, 3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

concat

Syntax

Parameters

Joins two arrays and returns a new array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

concat (arrayNane2, arrayNane3, ..., arrayNaneN
arrayNane2. .. Arrays to concatenate to this array.
arrayNameN

Chapter 1, Objects, Methods, and Properties 21

Array.constructor

Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:
= Obiject references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

= Strings and numbers (not St ri hg and Numnber objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

al pha=new Array("a","b","c")

nuneri c=new Array(1, 2, 3)

al phaNuneri c=al pha. concat (nurmeric) // creates array ["a","b","c", 1,2, 3]

The following code concatenates three arrays:

numl=[1, 2, 3]

nunk=[4, 5, 6]

nunB=[7, 8, 9]

nuns=nunil. concat (nun®, nunB8) // creates array [1,2,3,4,5,6,7,8,9]

constructor

Specifies the function that creates an object’s prototype. Note that the value of

this property is a reference to the function itself, not a string containing the

function’s name.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description See Obj ect . const ruct or.

22 Core JavaScript Reference

Array.index

index

For an array created by a regular expression match, the zero-based index of the
match in the string.
Property of Array

Static
Implemented in JavaScript 1.2, NES 3.0

input

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.
Property of Array

Static
Implemented in JavaScript 1.2, NES 3.0

Syntax

Parameters

Description

join

Joins all elements of an array into a string.
Method of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

j oi n(separ at or)

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.

The string conversions of all array elements are joined into one string.

Chapter 1, Objects, Methods, and Properties 23

Array.length

Examples

See also

The following example creates an array, a, with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wnd","Rain","Fire")

nyVar 1=a. j oi n() // assigns "Wnd,Rain,Fire" to myVarl
nyVar2=a.join(", ") // assigns "Wnd, Rain, Fire" to myVarl
nyVar3=a.join(" + ") // assigns "Wnd + Rain + Fire" to nyVarl

Array.reverse

length

Description

Examples

24 Core JavaScript Reference

An unsigned, 32-bit integer that specifies the number of elements in an array.
Property of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: | engt h is an unsigned, 32-bit integer with a value
less than 2%,

ECMA version ECMA-262

The value of the | engt h property is an integer with a positive sign and a value
less than 2 to the 32 power (2%).

You can set the | engt h property to truncate an array at any time. When you
extend an array by changing its | engt h property, the number of actual
elements does not increase; for example, if you set | engt h to 3 when it is
currently 2, the array still contains only 2 elements.

In the following example, the get Choi ce function uses the | engt h property to
iterate over every element in the nusi cType array. nusi cType is a select
element on the nusi cFor mform.

function get Choice() {

for (var i = 0; i < docunent.nusicForm nusicType.length; i++) {
i f (docunment. nusi cForm nusi cType. options[i].selected == true) {
return docunent. nmusi cForm nusi cType. options[i].text
}
}

Array.pop

The following example shortens the array st at esUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
st at esUS. | engt h=50
}

pop

Syntax
Parameters

Example

See also

Removes the last element from an array and returns that element. This method
changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

pop()

None.

The following code creates the nmyFi sh array containing four elements, then
removes its last element.

nyFish = ["angel ", "clown", "nmandarin", "surgeon"];
popped = nyFi sh. pop();

push, shift,unshift

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 25

Array.push

push

Adds one or more elements to the end of an array and returns the new length
of the array. This method changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: push returns the new length of the array rather than
the last element added to the array.

Syntax push(elenentl, ..., elenentN

Parameters
element1, ..., The elements to add to the end of the array.
el ement N

Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Backward JavaScript 1.2. The push method returns the last element added to an array.
Compatibility
Example The following code creates the nyFi sh array containing two elements, then
adds two elements to it. After the code executes, pushed contains 4. (In
JavaScript 1.2, pushed contains “lion” after the code executes.)
myFish = ["angel", "clown"];
pushed = nyFi sh. push("drunm, "lion");
Seealso pop, shift,unshift
reverse
Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.
Method of Array
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax reverse()
Parameters None

26 Core JavaScript Reference

Array .shift

Description The r ever se method transposes the elements of the calling array object.
Examples The following example creates an array nyAr r ay, containing three elements,
then reverses the array.
nyArray = new Array("one", "two", "three")
nyArray. reverse()
This code changes nyArr ay so that:
e nyArray[0] is “three”
e nyArray[1] is “two”
e nyArray[2] is “one”
Seealso Array.join, Array.sort
shift
Removes the first element from an array and returns that element. This method
changes the length of the array.
Method of Array
Implemented in JavaScript 1.2, NES 3.0
Syntax shift()
Parameters None.
Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:
nyFish = ["angel", "clown", "mandarin", "surgeon"];
docunent.witel n("nyFish before: " + nyFish);
shifted = nyFish.shift();
docunent.witel n("nyFish after: " + nyFish);
docunent.witel n("Renoved this elenment: " + shifted);
This example displays the following:
nyFi sh before: ["angel", "clown", "mandarin", "surgeon"]
nyFish after: ["clown", "mandarin", "surgeon"]
Renoved this el ement: angel
See also pop, push, unshi ft

Chapter 1, Objects, Methods, and Properties 27

Array.slice

slice

Syntax

Parameters

Description

28 Core JavaScript Reference

Extracts a section of an array and returns a new array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

slice(begin[, end])

begi n Zero-based index at which to begin extraction.
end Zero-based index at which to end extraction:
= sli ce extracts up to but not including end. sl i ce(1, 4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)
= As a negative index, end indicates an offset from the end of the

sequence. sl i ce(2, -1) extracts the third element through the
second to last element in the sequence.

= If end is omitted, sl i ce extracts to the end of the sequence.

sl i ce does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

= For object references (and not the actual object), sl i ce copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

= For strings and numbers (not St ri ng and Nunber objects), sl i ce copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example

Array.sort

In the following example, sl i ce creates a new array, newCar , from nyCar .
Both include a reference to the object nyHonda. When the color of myHonda is
changed to pur pl e, both arrays reflect the change.

<SCRI PT LANGUAGE="JavaScri ptl.2">

//Using slice, create newCar from nyCar.

nyHonda = {col or:"red", wheel s: 4, engi ne: {cyl i nders: 4, si ze: 2. 2} }
nyCar = [nyHonda, 2, "cherry condition", "purchased 1997"]
newCar = nyCar.slice(0, 2)

//Wite the values of nyCar, newCar, and the color of nyHonda
/'l referenced fromboth arrays.

docunent.wite("nyCar = " + nmyCar + "
")

docunent.wite("newCar = " + newCar + "
")

docunent . wite("myCar[0].color =" + nyCar[0].color + "
")
docunent.wite("newCar[0].color =" + newCar[0].color + "

")

// Change the col or of nyHonda.

myHonda. col or = "purple"

docunent.wite("The new color of nmy Honda is " + myHonda.col or +
"

")

//'Wite the color of nyHonda referenced fromboth arrays.

docunent.wite("nyCar[0].color =" + nyCar[0].color + "
")
docunent.wite("newCar[0].color =" + newCar[0].color + "
")
</ SCRI PT>

This script writes:

nyCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
“cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]

nyCar[0].color = red newCar[0].color = red

The new col or of nmy Honda is purple

nyCar[0].color = purple

newCar [0] . col or = purple

sort

Sorts the elements of an array.
Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 29

Array.sort

Syntax

Parameters

Description

30 Core JavaScript Reference

sort (conpar eFuncti on)

conpar eFuncti on Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.

If conpar eFunct i on is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If conpar eFunct i on is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

e |f conpareFunction(a, b) islessthan 0, sort b to a lower index than a.

« |If conpar eFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

e If conpar eFunction(a, b) is greater than 0, sort b to a higher index than
a.
So, the compare function has the following form:

function conpare(a, b) {
if (ais less than b by sone ordering criterion)

return -1

if (ais greater than b by the ordering criterion)
return 1

/1 a must be equal to b

return O

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function conpareNunbers(a, b) {
return a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

Examples

Array.sort

The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you

have this script:

<SCRI PT>

a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function witeArray(x) {
for (i =0; i < x.length;
docunent.wite(x[i]);

i++) {

if (i <x.length-1) docunent.wite(", ");
}
}
witeArray(a);
a.sort();

docunent. wite("

");
witeArray(a);
</ SCRI PT>

In JavaScript 1.1, JavaScript prints:

zebra
zebra

nul |,
nul |,

nul |,
nul |,

nul |,
nul |,

nul |,
nul |,

ant,
ant,

In JavaScript 1.2, JavaScript prints:

undefined, undefined, undefined,
zebra, undefined, undefined,

ant,
ant,

undef i ned,
undefi ned,

zebra
undefi ned

The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare

function.

Chapter 1, Objects, Methods, and Properties 31

Array.sort

<SCRI PT>

stringArray = new Array("Bl ue", " Hunpback", " Bel uga")
nunericStringArray = new Array("80","9","700")

nunber Array = new Array(40, 1,5, 200)

m xedNuneri cArray = new Array("80","9","700", 40, 1, 5, 200)

function conpareNunbers(a, b) {
return a - b

}

docunent.wite("stringArray: " + stringArray.join() +"
")
docurment . write("Sorted: " + stringArray.sort() +"<P>")

docunent.wite("nunberArray: </ B> " + nunberArray.join() +"
")
docunent.wite("Sorted without a conmpare function: " + nunberArray.sort() +"
")
docunent.wite("Sorted with conpareNunbers: " + nunberArray. sort (conpar eNunber s)
+1<P>")

docunent.write("nunericStringArray: " + nunericStringArray.join() +"
")
docunent.wite("Sorted without a conpare function: " + nunericStringArray.sort()
+"
")

docunent . wite("Sorted with conpareNunbers: " +

nunmeri cStringArray. sort (conpareNunbers) +"<P>")

docunent. wite("m xedNumeri cArray: </ B> " + m xedNunericArray.join() +"
")
docunent . wite("Sorted without a conpare function: " + m xedNunericArray.sort()
+"
")

docunent.wite("Sorted with conpareNunbers: " +

m xedNumeri cArray. sort (conpar eNunbers) +"
")

</ SCRI PT>

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Bl ue, Hunpback, Bel uga
Sorted: Bel uga, Bl ue, Hunmpback

nunber Array: 40,1, 5,200
Sorted w thout a conpare function: 1,200,40,5
Sorted with conpareNunbers: 1,5, 40, 200

nunericStringArray: 80,9, 700
Sorted without a conpare function: 700, 80,9
Sorted with conpareNunbers: 9, 80, 700

m xedNumeri cArray: 80,9, 700, 40, 1, 5, 200
Sorted without a conpare function: 1,200,40,5, 700, 80,9
Sorted with conpareNunbers: 1,5, 9, 40, 80, 200, 700

Seealso Array.join, Array.reverse

32 Core JavaScript Reference

Array.splice

splice

Syntax

Parameters

Description

Backward
Compatibility

Changes the content of an array, adding new elements while removing old
elements.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

splice(index, howany, [elementl][, ..., elenentN)
i ndex Index at which to start changing the array.
howvany An integer indicating the number of old array elements to

remove. If howvany is 0, no elements are removed. In this
case, you should specify at least one new element.

elenentl, ..., The elements to add to the array. If you don't specify any
el ement N elements, splice simply removes elements from the array.

If you specify a different number of elements to insert than the number you're
removing, the array will have a different length at the end of the call.

The spl i ce method returns an array containing the removed elements. If only
one element is removed, an array of one element is returned

JavaScript 1.2. The spl i ce method returns the element removed, if only one
element is removed (howiVany parameter is 1); otherwise, the method returns
an array containing the removed elements.

Chapter 1, Objects, Methods, and Properties 33

Array.toSource

Examples The following script illustrate the use of spli ce:
<SCRI PT LANGUAGE="JavaScri ptl.2">

nyFish = ["angel", "clown", "mandarin", "surgeon"];
docunent.witeln("nyFish: " + nyFish + "
");

removed = nmyFish.splice(2, 0, "druni);
docunent.witeln("After adding 1: " + nyFish);
docunent.witeln("renoved is: " + renpved + "
");

renoved = nyFi sh.splice(3, 1)

docunent.witeln("After renmoving 1: " + myFish);
docunent.witeln("renmoved is: " + renpved + "
");
renoved = nyFi sh.splice(2, 1, "trunpet")
docunent.witeln("After replacing 1: " + myFish);
docunent.witeln("renmoved is: " + renpved + "
");
renoved = nyFi sh.splice(0, 2, "parrot", "anenone", "blue")
docunent.witeln("After replacing 2: " + myFish);
docunent.witeln("renmoved is: " + renoved);

</ SCRI PT>

This script displays:
nyFish: ["angel ", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drunmf, "mandarin", "surgeon"]
removed is: undefined

After removing 1. ["angel", "clown", "drunf, "surgeon"]
renoved is: nmandarin

After replacing 1: ["angel", "clown", "trunpet", "surgeon"]
renoved is: drum

After replacing 2: ["parrot", "anenone", "blue", "trunpet", "surgeon"]
removed is: ["angel", "clown"]
toSource

Returns a string representing the source code of the array.
Method of Array

Implemented in JavaScript 1.3

Syntax toSource()

Parameters None

34 Core JavaScript Reference

Array.toString

Description The t oSour ce method returns the following values:
= For the built-in Arr ay object, t oSour ce returns the following string
indicating that the source code is not available:
function Array() {
[native code]
}
= For instances of Arr ay, t oSour ce returns a string representing the source
code.
This method is usually called internally by JavaScript and not explicitly in code.
You can call t oSour ce while debugging to examine the contents of an array.
Examples To examine the source code of an array:
al pha = new Array("a", "b", "c")
al pha.toSource() //returns ["a", "b", "c"]
Seealso Array.toString
toString
Returns a string representing the specified array and its elements.
Method of Array
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.
Description The Ar r ay object overrides the t oSt ri ng method of Obj ect . For Arr ay

objects, the t oSt ri ng method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses t oSt ri ng to convert the array to a
string.

var nont hNames = new Array("Jan","Feb","Mar", "Apr")
nyVar =nont hNanes. toString() // assigns "Jan, Feb, Mar, Apr" to nyVar

JavaScript calls the t oSt ri ng method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

Chapter 1, Objects, Methods, and Properties 35

Array.unshift

Backward
Compatibility

See also

JavaScript 1.2. In JavaScript 1.2 and earlier versions, t oSt ri ng returns a
string representing the source code of the array. This value is the same as the
value returned by the t oSour ce method in JavaScript 1.3 and later versions.

Array.toSource

unshift

Syntax

Parameters

Example

See also

36 Core JavaScript Reference

Adds one or more elements to the beginning of an array and returns the new
length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

arrayName. unshift(elenent1,..., elenentN
elementl, ..., The elements to add to the front of the array.
el ement N

The following code displays the myFi sh array before and after adding elements
to it.

nyFish = ["angel", "clown"];

docunent.witel n("nyFish before: " + nyFish);
unshifted = nyFi sh.unshift("drunt, "lion");
docunent.witel n("nyFish after: " + nyFish);
docunent.witeln("New |l ength: " + unshifted);

This example displays the following:

nyFi sh before: ["angel", "clown"]
nyFish after: ["drunt, "lion", "angel", "clown"]
New | ength: 4

pop, push, shi ft

Array.valueOf

valueOf

Syntax
Parameters

Description

See also

Returns the primitive value of an array.

Method of Array
Implemented in JavaScript 1.1
ECMA version ECMA-262
val ue ()

None

The Ar r ay object inherits the val ueOf method of Cbj ect . The val ue
method of Ar r ay returns the primitive value of an array or the primitive value
of its elements as follows:

Obiject type of element Data type of returned value
Boolean Boolean

Number or Date number

All others string

This method is usually called internally by JavaScript and not explicitly in code.

bj ect. val ue

Chapter 1, Objects, Methods, and Properties 37

Boolean

Boolean

Created by

Parameters

Description

38 Core JavaScript Reference

The Bool ean object is an object wrapper for a boolean value.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3; added toSource method
ECMA version ECMA-262

The Bool ean constructor:

new Bool ean(val ue)

value The initial value of the Bool ean object. The value is converted to a
bool ean value, if necessary. If value is omitted or is 0, -0, null, false, NaN,
undefined, or the empty string (" "), the object has an initial value of false.
All other values, including any object or the string " f al se", create an
object with an initial value of true.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undef i ned
or nul |, including a Boolean object whose value is false, evaluates to true
when passed to a conditional statement. For example, the condition in the
following i f statement evaluates to t r ue:

X = new Bool ean(fal se);
if(x) //the condition is true

This behavior does not apply to Boolean primitives. For example, the condition
in the following i f statement evaluates to f al se:

x = fal se;
if(x) //the condition is false

Do not use a Bool ean object to convert a non-boolean value to a boolean
value. Instead, use Boolean as a function to perform this task:

x = Bool ean(expression) //preferred
X = new Boolean(expression) //don’t use

Backward
Compatibility

Property
Summary

Method Summary

Boolean

If you specify any object, including a Boolean object whose value is false, as
the initial value of a Boolean object, the new Boolean object has a value of
true.

nyFal se=new Bool ean(fal se) /1 initial value of false

g=new Bool ean(nyFal se) //initial value of true
nyString=new String("Hello") // string object
s=new Bool ean(nyStri ng) //initial value of true

In JavaScript 1.3 and later versions, do not use a Boolean object in place of a
Boolean primitive.

JavaScript 1.2 and earlier versions. When a Bool ean object is used as the
condition in a conditional test, JavaScript returns the value of the Bool ean
object. For example, a Bool ean object whose value is false is treated as the
primitive value false, and a Bool ean object whose value is true is treated as
the primitive value t r ue in conditional tests. If the Bool ean objectisaf al se
object, the conditional statement evaluates to f al se.

Property Description

constructor Specifies the function that creates an object’s prototype.

pr ot ot ype Defines a property that is shared by all Boolean objects.
Method Description

t oSour ce Returns an object literal representing the specified Boolean

object; you can use this value to create a new object. Overrides
the Obj ect . t oSour ce method.

toString Returns a string representing the specified object. Overrides the
oj ect.toStri ng method.

val ueCf Returns the primitive value of a Boolean object. Overrides the
oj ect . val uef method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Chapter 1, Objects, Methods, and Properties 39

Boolean.constructor

Examples

The following examples create Bool ean objects with an initial value of false:

bNoPar am = new Bool ean()

bZero = new Bool ean(0)

bNul | = new Bool ean(nul |)
bEmpt yString = new Bool ean("")
bf al se = new Bool ean(f al se)

The following examples create Bool ean objects with an initial value of true:

btrue = new Bool ean(true)
btrueString = new Bool ean("true")
bf al seString = new Bool ean("fal se")
bSuLi n = new Bool ean("Su Lin")

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Bool ean

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See (bj ect . constructor.

prototype

40 Core JavaScript Reference

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of Bool ean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Boolean.toSource

toSource

Returns a string representing the source code of the object..
Method of Bool ean

Implemented in JavaScript 1.3

Syntax toSource()
Parameters None
Description The t oSour ce method returns the following values:
= For the built-in Bool ean object, t oSour ce returns the following string
indicating that the source code is not available:
function Bool ean() {
[native code]
}
= For instances of Bool ean, t oSour ce returns a string representing the
source code.
This method is usually called internally by JavaScript and not explicitly in code.
Seealso (bj ect.toSource
toString
Returns a string representing the specified Boolean object.
Method of Bool ean
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.
Description The Bool ean object overrides the t oSt ri ng method of the Cbj ect object; it

does not inherit bj ect . t oSt ri ng. For Bool ean objects, the t oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.

Chapter 1, Objects, Methods, and Properties 41

Boolean.valueOf

See also

For Bool ean objects and values, the built-in t oSt ri ng method returns the
string "true" or "fal se" depending on the value of the boolean object. In the
following code, fl ag. t oSt ri ng returns "t rue".

var flag = new Bool ean(true)
var nmyVar=flag.toString()

hject.toString

valueOf

Syntax
Parameters

Description

Examples

See also

42 Core JavaScript Reference

Returns the primitive value of a Boolean object.
Method of Bool ean

Implemented in JavaScript 1.1
ECMA version ECMA-262

val ue ()
None

The val ueX method of Bool ean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

X = new Bool ean();
nyVar =x. val ueOr () //assigns false to nmyVar

bj ect. val ue™

Date

Created by

Parameters

Date

Lets you work with dates and times.

Core object
Implemented in

ECMA version

JavaScript 1.0, NES 2.0
JavaScript 1.1: added pr ot ot ype property

JavaScript 1.3: removed platform dependencies to provide a
uniform behavior across platforms; added ns_numparameter to
Dat e constructor; added get Ful | Year, set Ful | Year,

getM I Iliseconds,setMI|Iiseconds,toSource, and UTC
methods (such as get UTCDat e and set UTCDat e).

ECMA-262

The Dat e constructor:

new Dat e()

new Date(m//iseconds)
new Dat e(dat eSt ri ng)
new Date(yr_num no_num day_num
[, hr_num mn_num sec_num ns_num)

Versions prior to JavaScript 1.3:

new Dat e()

new Date(m//iseconds)
new Dat e(dat eSt ri ng)
new Date(yr_num no_num day_nunmj, hr_num nmin_num sec_num)

m | liseconds

dateString

yr_num no_num
day_num

hr _num m n_num
sec_num nms_num

Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

String value representing a date. The string should be in a
format recognized by the Dat e. par se method.

Integer values representing part of a date. As an integer value,
the month is represented by 0 to 11 with 0=January and
11=December.

Integer values representing part of a date.

Chapter 1, Objects, Methods, and Properties 43

Date

Description

Backward
Compatibility

Property
Summary

44 Core JavaScript Reference

If you supply no arguments, the constructor creates a Dat e object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. The Dat e object range is -100,000,000 days
to 100,000,000 days relative to 01 January, 1970 UTC.

The Dat e object provides uniform behavior across platforms.

The Dat e object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods get Ful | Year, set Ful | Year, get Ful | UTCYear , and
set Ful | UTCYear.

The following example returns the time elapsed betweenti meAand ti meBin
milliseconds.

timeA = new Date();

// Statenents here to take sonme action.
tinmeB = new Date();

tinmeDifference = tineB - tineA

JavaScript 1.2 and earlier. The Dat e object behaves as follows:
= Dates prior to 1970 are not allowed.

= JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Dat e object varies from platform to platform.

Property Description
const ruct or Specifies the function that creates an object’s prototype.
prot ot ype Allows the addition of properties to a Dat e object.

Method Summary

Date

Method Description

get Dat e Returns the day of the month for the specified date
according to local time.

get Day Returns the day of the week for the specified date
according to local time.

get Ful | Year Returns the year of the specified date according to
local time.

get Hour s Returns the hour in the specified date according to
local time.

getM I |iseconds Returns the milliseconds in the specified date

get M nut es

get Mont h

get Seconds

get Ti me

get Ti mezoneOr f set

get UTCDat e

get UTCDay

get UTCFul | Year

get UTCHour s

get UTCM | | i seconds

get UTCM nut es

get UTCWbnt h

according to local time.

Returns the minutes in the specified date according to
local time.

Returns the month in the specified date according to
local time.

Returns the seconds in the specified date according to
local time.

Returns the numeric value corresponding to the time
for the specified date according to local time.

Returns the time-zone offset in minutes for the current
locale.

Returns the day (date) of the month in the specified
date according to universal time.

Returns the day of the week in the specified date
according to universal time.

Returns the year in the specified date according to
universal time.

Returns the hours in the specified date according to
universal time.

Returns the milliseconds in the specified date
according to universal time.

Returns the minutes in the specified date according to
universal time.

Returns the month according in the specified date
according to universal time.

Chapter 1, Objects, Methods, and Properties 45

Date

46 Core JavaScript Reference

Method

Description

get UTCSeconds

get Year

parse

set Dat e

set Ful | Year

set Hour s

setM | Iliseconds

set M nut es

set Mont h

set Seconds

setTi me

set UTCDat e

set UTCFul | Year

set UTCHour s

set UTCM | | i seconds

set UTCM nut es

set UTCWont h

Returns the seconds in the specified date according to
universal time.

Returns the year in the specified date according to
local time.

Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

Sets the day of the month for a specified date
according to local time.

Sets the full year for a specified date according to local
time.

Sets the hours for a specified date according to local
time.

Sets the milliseconds for a specified date according to
local time.

Sets the minutes for a specified date according to local
time.

Sets the month for a specified date according to local
time.

Sets the seconds for a specified date according to local
time.

Sets the value of a Date object according to local time.

Sets the day of the month for a specified date
according to universal time.

Sets the full year for a specified date according to
universal time.

Sets the hour for a specified date according to
universal time.

Sets the milliseconds for a specified date according to
universal time.

Sets the minutes for a specified date according to
universal time.

Sets the month for a specified date according to
universal time.

Date

Method Description

set UTCSeconds Sets the seconds for a specified date according to
universal time.

set Year Sets the year for a specified date according to local
time.

t oGMTSt ri ng Converts a date to a string, using the Internet GMT

conventions.

toLocal eString Converts a date to a string, using the current locale’s
conventions.

t oSour ce Returns an object literal representing the specified
Date object; you can use this value to create a new
object. Overrides the Qbj ect . t oSour ce method.

toString Returns a string representing the specified Date object.
Overrides the Cbj ect . t oSt ri ng method.

t oUTCStri ng Converts a date to a string, using the universal time
convention.

utc Returns the number of milliseconds in a Dat e object

since January 1, 1970, 00:00:00, universal time.

val ueCf Returns the primitive value of a Date object. Overrides
the Obj ect . val ue™X method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples The following examples show several ways to assign dates:

today = new Date()

bi rthday = new Dat e("Decenber 17, 1995 03: 24:00")
bi rt hday new Dat e(95, 11, 17)

bi rt hday new Dat e(95, 11, 17, 3, 24, 0)

Chapter 1, Objects, Methods, and Properties 47

Date.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Dat e

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Cbj ect. constructor.

getDate

Syntax
Parameters
Description

Examples

See also

48 Core JavaScript Reference

Returns the day of the month for the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Dat e()
None
The value returned by get Dat e is an integer between 1 and 31.

The second statement below assigns the value 25 to the variable day, based on
the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
day = Xmas95. get Dat e()

Dat e. get UTCDat e, Dat e. get UTCDay, Dat e. set Dat e

Date.getDay

getDay

Syntax
Parameters

Description

Examples

See also

Returns the day of the week for the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Day()
None

The value returned by get Day is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

The second statement below assigns the value 1 to weekday, based on the
value of the Dat e object Xnmas95. December 25, 1995, is a Monday.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
weekday = Xmas95. get Day()

Dat e. get UTCDay, Dat e. set Dat e

getFullYear

Syntax
Parameters

Description

Returns the year of the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

get Ful | Year ()
None

The value returned by get Ful | Year is an absolute number. For dates
between the years 1000 and 9999, get Ful | Year returns a four-digit number,
for example, 1995. Use this function to make sure a year is compliant with
years after 2000.

Use this method instead of the get Year method.

Chapter 1, Objects, Methods, and Properties 49

Date.getHours

Examples The following example assigns the four-digit value of the current year to the
variable yr .

var yr;
Today = new Date();
yr = Today. get Ful | Year ();

See also Dat e. get Year, Dat e. get UTCFul | Year, Date. setFull Year

getHours

Returns the hour for the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax get Hour s()
Parameters None
Description The value returned by get Hour s is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hour s, based
on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
hours = Xmas95. get Hour s()

Seealso Date. get UTCHour s, Dat e. set Hour s

getMilliseconds

Returns the milliseconds in the specified date according to local time.

Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax getM I |iseconds()
Parameters None

Description The value returned by get M I | i seconds is a number between 0 and 999.

50 Core JavaScript Reference

Date.getMinutes

Examples The following example assigns the milliseconds portion of the current time to
the variable s.

var ms;
Today = new Date();
ns = Today.getM Il iseconds();

Seealso Date.getUTCM || iseconds, Date.setMIliseconds

getMinutes

Returns the minutes in the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax getM nutes()
Parameters None
Description The value returned by get M nut es is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable mi nut es,
based on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
m nutes = Xnas95. get M nut es()

See also Date. get UTCM nut es, Dat e. set M nut es

getMonth

Returns the month in the specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax get Mont h()
Parameters None

Description The value returned by get Mont h is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

Chapter 1, Objects, Methods, and Properties 51

Date.getSeconds

Examples

See also

The second statement below assigns the value 11 to the variable nont h, based
on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
nonth = Xmas95. get Mont h()

Dat e. get UTCWont h, Dat e. set Mont h

getSeconds

Syntax
Parameters
Description

Examples

See also

Returns the seconds in the current time according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Seconds()
None
The value returned by get Seconds is an integer between 0 and 59.

The second statement below assigns the value 30 to the variable secs, based
on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:30")
secs = Xmas95. get Seconds()

Dat e. get UTCSeconds, Dat e. set Seconds

getTime

Syntax

Parameters

52 Core JavaScript Reference

Returns the numeric value corresponding to the time for the specified date
according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

get Ti ne()

None

Date.getTimezoneOffset

Description The value returned by the get Ti me method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Dat e object.

Examples The following example assigns the date value of t heBi gDay to sameAsBi gDay:

t heBi gDay = new Date("July 1, 1999")
saneAsBi gDay = new Dat e()
sanmeAsBi gDay. set Ti ne(t heBi gDay. get Ti me())

See also Dat e. get UTCHour s, Dat e. set Ti ne
getTimezoneOffset
Returns the time-zone offset in minutes for the current locale.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax get Ti nezoneOf f set ()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
current Ti meZoneOf f set | nHours = x. get Ti nezoneOf f set () /60
getUTCDate
Returns the day (date) of the month in the specified date according to universal
time.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax get UTCDat e()
Parameters None
Description The value returned by get UTCDat e is an integer between 1 and 31.

Chapter 1, Objects, Methods, and Properties 53

Date.getUTCDay

Examples The following example assigns the day portion of the current date to the
variable d.
var d;
Today = new Date();
d = Today. get UTCDat e();
Seealso Date. getDate, Date.getUTCDay, Date.setUTCDate
getUTCDay
Returns the day of the week in the specified date according to universal time.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax get UTCDay/()
Parameters None
Description The value returned by get UTCDay is an integer corresponding to the day of
the week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.
Examples The following example assigns the weekday portion of the current date to the
variable ns.
var weekday;
Today = new Dat e()
weekday = Today. get UTCDay()
Seealso Date. getDay, Date.getUTCDate, Date.setUTCDate
getUTCFullYear
Returns the year in the specified date according to universal time.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax get UTCFul | Year ()
Parameters None

54 Core JavaScript Reference

Date.getUTCHours

Description The value returned by get UTCFul | Year is an absolute number that is
compliant with year-2000, for example, 1995.

Examples The following example assigns the four-digit value of the current year to the
variable yr .

var yr;
Today = new Date();
yr = Today. get UTCFul | Year ();

Seealso Date. get Ful | Year, Date.setFull Year

getUTCHours

Returns the hours in the specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax get UTCHour s()
Parameters None
Description The value returned by get UTCHour s is an integer between 0 and 23.

Examples The following example assigns the hours portion of the current time to the
variable hrs.

var hrs;
Today = new Date();
hrs = Today. get UTCHour s();

Seealso Date. getHours, Date.setUTCHours

Chapter 1, Objects, Methods, and Properties 55

Date.getUTCMilliseconds

getUTCMilliseconds

Returns the milliseconds in the specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

get UTCM | | i Seconds()

The value returned by get UTCM | | i seconds is an integer between 0 and

The following example assigns the milliseconds portion of the current time to
the variable ns.

Today = new Date();
ns = Today.get UTCM | | i seconds();

Date.getM | liseconds, Date.setUTCMIIiseconds

getUTCMinutes

Returns the minutes in the specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

get UTCM nut es()

Syntax
Parameters None
Description

999.
Examples
var ns;

See also

Syntax
Parameters None
Description

56 Core JavaScript Reference

The value returned by get UTCM nut es is an integer between 0 and 59.

Date.getUTCMonth

The following example assigns the minutes portion of the current time to the
variable ni n.

Today = new Date();
m n = Today. get UTCM nutes();

Dat e. get M nut es, Date. set UTCM nut es

getUTCMonth

Returns the month according in the specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

get UTCMont h()

The value returned by get UTCMont h is an integer between 0 and 11
corresponding to the month. 0 for January, 1 for February, 2 for March, and so

The following example assigns the month portion of the current date to the
variable non.

Today = new Date();
non = Today. get UTC\vbnt h() ;

Examples
var mn;
See also
Syntax
Parameters None
Description
on.
Examples
var non,;
See also

Dat e. get Mont h, Dat e. set UTCMVbnt h

Chapter 1, Objects, Methods, and Properties 57

Date.getUTCSeconds

getUTCSeconds

Returns the seconds in the specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3

ECMA version ECMA-262
Syntax get UTCSeconds()
Parameters None
Description The value returned by get UTCSeconds is an integer between 0 and 59.
Examples The following example assigns the seconds portion of the current time to the
variable sec.
var sec,
Today = new Date();
sec = Today. get UTCSeconds();
See also Dat e. get Seconds, Date. set UTCSeconds
getYear
Returns the year in the specified date according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: deprecated; also, get Year returns the year minus
1900 regardless of the year specified
ECMA version ECMA-262
Syntax get Year ()
Parameters None

58 Core JavaScript Reference

Description

Backward
Compatibility

Examples

Date.getYear

get Year is no longer used and has been replaced by the get Ful | Year
method.

The get Year method returns the year minus 1900; thus:

= For years above 2000, the value returned by get Year is 100 or greater. For
example, if the year is 2026, get Year returns 126.

= For years between and including 1900 and 1999, the value returned by
get Year is between 0 and 99. For example, if the year is 1976, get Year
returns 76.

= For years less than 1900 or greater than 1999, the value returned by
get Year is less than 0. For example, if the year is 1800, get Year returns -
100.

To take into account years before and after 2000, you should use
Dat e. get Ful | Year instead of get Year so that the year is specified in full.

JavaScript 1.2 and earlier versions. The get Year method returns either a
2-digit or 4-digit year:

= For years between and including 1900 and 1999, the value returned by
get Year is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

= For years less than 1900 or greater than 1999, the value returned by
get Year is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Example 1. The second statement assigns the value 95 to the variable year .

Xmas = new Dat e("Decenber 25, 1995 23:15:00")
year = Xnms.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year.

Xmas
year

new Dat e(" Decenber 25, 2000 23: 15:00")
Xmas. get Year () // returns 100

Example 3. The second statement assigns the value -100 to the variable year .

Xmas = new Dat e("Decenber 25, 1800 23:15:00")
year = Xnms.getYear() // returns -100

Chapter 1, Objects, Methods, and Properties 59

Date.parse

Example 4. The second statement assigns the value 95 to the variable year,
representing the year 1995.

Xmas. set Year (95)
year = Xnms.getYear() // returns 95

See also Dat e. get Ful | Year, Dat e. get UTCFul | Year, Dat e. set Year
parse
Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.
Method of Dat e
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax Dat e. parse(dateString)

Parameters
dateString A string representing a date.

Description The par se method takes a date string (such as "Dec 25, 1995") and returns

60 Core JavaScript Reference

the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the set Ti me method and the Dat e object.

Given a string representing a time, par se returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30: 00 GMI™. It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13: 30: 00
GMr+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because par se is a static method of Dat e, you always use it as Dat e. parse(),
rather than as a method of a Dat e object you created.

Examples

See also

Date.prototype

If | PQOdat e is an existing Dat e object, then you can set it to August 9, 1995 as
follows:

| PQdat e. set Ti ne(Dat e. parse("Aug 9, 1995"))

Dat e. UTC

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of Dat e

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

setDate

Syntax

Parameters

Examples

See also

Sets the day of the month for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

set Dat e(dayVal ue)

dayVal ue An integer from 1 to 31, representing the day of the month.

The second statement below changes the day for t heBi gDay to July 24 from its
original value.

t heBi gDay = new Date("July 27, 1962 23:30:00")
t heBi gDay. set Dat e(24)

Dat e. get Dat e, Dat e. set UTCDat e

Chapter 1, Objects, Methods, and Properties 61

Date.setFullYear

setFullYear

Syntax

Parameters

Description

Examples

See also

62 Core JavaScript Reference

Sets the full year for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

set Ful | Year (year Val ue[, nont hvVal ue, dayVal ue])

year Val ue An integer specifying the numeric value of the year, for example,
1995.

mont hval ue An integer between 0 and 11 representing the months January
through December.

dayVal ue An integer between 1 and 31 representing the day of the month. If
you specify the dayVal ue parameter, you must also specify the
nont hVal ue.

If you do not specify the mont hVal ue and dayVal ue parameters, the values
returned from the get Mont h and get Dat e methods are used.

If a parameter you specify is outside of the expected range, set Ful | Year
attempts to update the other parameters and the date information in the Dat e
object accordingly. For example, if you specify 15 for nont hVal ue, the year is
incremented by 1 (year + 1), and 3 is used for the month.

t heBi gDay = new Date();
t heBi gDay. set Ful | Year (1997);

Dat e. get UTCFul | Year, Dat e. set UTCFul | Year , Dat e. set Year

Date.setHours

setHours

Syntax

Parameters

Description

Examples

See also

Sets the hours for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added mi nut esVal ue, secondsVal ue, and
nsVal ue parameters

ECMA version ECMA-262
set Hour s(hour sVal ue[, m nut esVal ue, secondsVal ue, nsVal ue])
Versions prior to JavaScript 1.3:

set Hour s(hour sVal ue)

hour sVal ue An integer between 0 and 23, representing the hour.
m nut esVal ue An integer between 0 and 59, representing the minutes.
secondsVal ue An integer between 0 and 59, representing the seconds. If you

specify the secondsVal ue parameter, you must also specify the
m nut esVal ue.

msVal ue A number between 0 and 999, representing the milliseconds. If you
specify the msVal ue parameter, you must also specify the
m nut esVal ue and secondsVal ue.

If you do not specify the m nut esVal ue, secondsVal ue, and nsVal ue
parameters, the values returned from the get UTCM nut es, get UTCSeconds,
and get M | I i seconds methods are used.

If a parameter you specify is outside of the expected range, set Hour s
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

t heBi gDay. set Hour s(7)

Dat e. get Hour s, Dat e. set UTCHour s

Chapter 1, Objects, Methods, and Properties 63

Date.setMilliseconds

setMilliseconds

Syntax

Parameters

Description

Examples

See also

Sets the milliseconds for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

setM | liseconds(nil/lisecondsVal ue)

m | |isecondsVal ueA number between 0 and 999, representing the milliseconds.

If you specify a number outside the expected range, the date information in the
Dat e object is updated accordingly. For example, if you specify 1005, the
number of seconds is incremented by 1, and 5 is used for the milliseconds.

t heBi gDay = new Date();
t heBi gDay. set M | | i seconds(100);

Date.getM || iseconds, Date.setUTCMII|iseconds

setMinutes

Syntax

64 Core JavaScript Reference

Sets the minutes for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: Added secondsVal ue and nsVal ue parameters
ECMA version ECMA-262
set M nut es(m nut esVal ue[, secondsVal ue, nsVal ue])
Versions prior to JavaScript 1.3:

set M nut es(m nut esVal ue)

Parameters

Examples

Description

See also

Date.setMonth

m nut esVal ue An integer between 0 and 59, representing the minutes.

secondsVal ue An integer between 0 and 59, representing the seconds. If you
specify the secondsVal ue parameter, you must also specify the
m nut esVal ue.

msVal ue A number between 0 and 999, representing the milliseconds. If you
specify the msVal ue parameter, you must also specify the
m nut esVal ue and secondsVal ue.

t heBi gDay. set M nut es(45)

If you do not specify the secondsVal ue and nsVal ue parameters, the values
returned from get Seconds and get M | | i seconds methods are used.

If a parameter you specify is outside of the expected range, set M nut es
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes (m nut esVal ue)
will be incremented by 1 (m nut esVal ue + 1), and 40 will be used for
seconds.

Dat e. get M nut es, Date. set UTCM | | i seconds

setMonth

Syntax

Parameters

Sets the month for a specified date according to local time.

Method of

Implemented in

ECMA version

Dat e
JavaScript 1.0, NES 2.0

JavaScript 1.3: Added dayVal ue parameter
ECMA-262

set Mont h(nont hVal ue[, dayVal ue])

Versions prior to JavaScript 1.3:

set Mont h(nont hVal ue)

nont hVal ue

dayVal ue

An integer between 0 and 11 (representing the months January
through December).

An integer from 1 to 31, representing the day of the month.

Chapter 1, Objects, Methods, and Properties 65

Date.setSeconds

Description If you do not specify the dayVal ue parameter, the value returned from the
get Dat e method is used.
If a parameter you specify is outside of the expected range, set Mont h
attempts to update the date information in the Dat e object accordingly. For
example, if you use 15 for nont hVal ue, the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBi gDay. set Mont h(6)
See also Dat e. get Mont h, Dat e. set UTCVbnt h
setSeconds
Sets the seconds for a specified date according to local time.
Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: Added nsVal ue parameter
ECMA version ECMA-262
Syntax set Seconds(secondsVal ue[, nsVal ue])

Versions prior to JavaScript 1.3:
set Seconds(secondsVal ue)

Parameters
secondsVal ue An integer between 0 and 59.
msVal ue A number between 0 and 999, representing the milliseconds.

Description If you do not specify the nsVal ue parameter, the value returned from the
get M I | i seconds methods is used.
If a parameter you specify is outside of the expected range, set Seconds
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes stored in the Dat e
object will be incremented by 1, and 40 will be used for seconds.

Examples theBi gDay. set Seconds(30)
See also Dat e. get Seconds, Dat e. set UTCSeconds

66 Core JavaScript Reference

Date.setTime

setTime

Sets the value of a Dat e object according to local time.

Method of Dat e
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax set Ti ne(tineval ue)

Parameters
tineval ue An integer representing the number of milliseconds since 1 January

1970 00:00:00.
Description Use the set Ti me method to help assign a date and time to another Dat e object.
Examples theBigbay = new Date("July 1, 1999")
sanmeAsBi gDay = new Dat e()
saneAsBi gDay. set Ti me(t heBi gDay. get Ti ne())

See also Dat e. get Ti ne, Dat e. set UTCHour s

setUTCDate

Sets the day of the month for a specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax set UTCDat e(dayVal ue)

Parameters
dayVal ue An integer from 1 to 31, representing the day of the month.

Description If a parameter you specify is outside of the expected range, set UTCDat e
attempts to update the date information in the Dat e object accordingly. For
example, if you use 40 for dayVal ue, and the month stored in the Dat e
object is June, the day will be changed to 10 and the month will be
incremented to July.

Chapter 1, Objects, Methods, and Properties 67

Date.setUTCFullYear

Examples theBigDay = new Date();
t heBi gDay. set UTCDat e(20) ;
Seealso Date.getUTCDate, Date.setDate
setUTCFullYear
Sets the full year for a specified date according to universal time.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax set UTCFul | Year (year Val ue[, nont hVal ue, dayVal ue)])
Parameters
year Val ue An integer specifying the numeric value of the year, for example,
1995.
mont hval ue An integer between 0 and 11 representing the months January
through December.
dayVal ue An integer between 1 and 31 representing the day of the month. If
you specify the dayVal ue parameter, you must also specify the
nmont hVal ue.
Description If you do not specify the mont hVal ue and dayVal ue parameters, the values
returned from the get Mont h and get Dat e methods are used.
If a parameter you specify is outside of the expected range, set UTCFul | Year
attempts to update the other parameters and the date information in the Dat e
object accordingly. For example, if you specify 15 for nont hVal ue, the year is
incremented by 1 (year + 1), and 3 is used for the month.
Examples theBigDay = new Date();
t heBi gDay. set UTCFul | Year (1997) ;
See also Date. get UTCFul | Year, Date. setFull Year

68 Core JavaScript Reference

Date.setUTCHours

setUTCHours

Syntax

Parameters

Description

Examples

See also

Sets the hour for a specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

set UTCHour (hour sVal ue[, m nut esVal ue, secondsVal ue, nsVal ue])

hour sVal ue An integer between 0 and 23, representing the hour.
m nut esVal ue An integer between 0 and 59, representing the minutes.
secondsVal ue An integer between 0 and 59, representing the seconds. If you

specify the secondsVal ue parameter, you must also specify the
m nut esVal ue.

msVal ue A number between 0 and 999, representing the milliseconds. If you
specify the msVal ue parameter, you must also specify the
m nut esVal ue and secondsVal ue.

If you do not specify the m nut esVal ue, secondsVal ue, and nsVal ue
parameters, the values returned from the get UTCM nut es, get UTCSeconds,
and get UTCM | | i seconds methods are used.

If a parameter you specify is outside of the expected range, set UTCHour s
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

t heBi gDay = new Date();
t heBi gDay. set UTCHour (8) ;

Dat e. get UTCHour s, Dat e. set Hours

Chapter 1, Objects, Methods, and Properties 69

Date.setUTCMilliseconds

setUTCMilliseconds

Sets the milliseconds for a specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3

ECMA version ECMA-262
Syntax setUTCM | |iseconds(nmi/lisecondsVal ue)
Parameters
m | |isecondsVal ueA number between 0 and 999, representing the milliseconds.
Description If a parameter you specify is outside of the expected range,
set UTCM | | i seconds attempts to update the date information in the Dat e
object accordingly. For example, if you use 1100 for mi | | i secondsVal ue,
the seconds stored in the Dat e object will be incremented by 1, and 100 will
be used for milliseconds.
Examples theBigDay = new Date();
t heBi gDay. set UTCM | | i seconds(500);
Seealso Date.getUTCM I |iseconds, Date.setMIliseconds
setUTCMinutes
Sets the minutes for a specified date according to universal time.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax set UTCM nut es(m nut esVal ue[, secondsVal ue, nsVal ue])
Parameters

70 Core JavaScript Reference

m nut esVal ue An integer between 0 and 59, representing the minutes.

secondsVal ue An integer between 0 and 59, representing the seconds. If you
specify the secondsVal ue parameter, you must also specify the
m nut esVal ue.

msVal ue A number between 0 and 999, representing the milliseconds. If you
specify the msVal ue parameter, you must also specify the
m nut esVal ue and secondsVal ue.

Date.setUTCMonth

Description If you do not specify the secondsVal ue and nsVal ue parameters, the values
returned from get UTCSeconds and get UTCM | | i seconds methods are
used.

If a parameter you specify is outside of the expected range, set UTCM nut es
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes (m nut esVal ue)
will be incremented by 1 (m nut esVal ue + 1), and 40 will be used for
seconds.

Examples theBigDay = new Date();
t heBi gDay. set UTCM nut es(43);

See also Date. get UTCM nutes, Date.setM nutes

setUTCMonth

Sets the month for a specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax set UTCMont h(nont hVal ue[, dayVal ue])

Parameters
mont hval ue An integer between 0 and 11, representing the months January
through December.

dayVal ue An integer from 1 to 31, representing the day of the month.

Description If you do not specify the dayVal ue parameter, the value returned from the
get UTCDat e method is used.

If a parameter you specify is outside of the expected range, set UTCMont h
attempts to update the date information in the Dat e object accordingly. For
example, if you use 15 for nont hVal ue, the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigbDay = new Date();
t heBi gDay. set UTCVbnt h(11) ;

See also Date. get UTCWbnt h, Date. set Month

Chapter 1, Objects, Methods, and Properties 71

Date.setUTCSeconds

setUTCSeconds

Sets the seconds for a specified date according to universal time.
Method of Dat e

Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax set UTCSeconds(secondsVal ue[, nsVal ue])

Parameters
secondsVal ue An integer between 0 and 59.

msVal ue A number between 0 and 999, representing the milliseconds.

Description If you do not specify the nsVal ue parameter, the value returned from the
get UTCM | | i seconds methods is used.

If a parameter you specify is outside of the expected range, set UTCSeconds
attempts to update the date information in the Dat e object accordingly. For
example, if you use 100 for secondsVal ue, the minutes stored in the Dat e
object will be incremented by 1, and 40 will be used for seconds.

Examples theBigDay = new Date();
t heBi gDay. set UTCSeconds(20);

See also Dat e. get UTCSeconds, Date. set Seconds

setYear

Sets the year for a specified date according to local time.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3
ECMA version ECMA-262

Syntax set Year (year Val ue)

Parameters
year Val ue An integer.

72 Core JavaScript Reference

Date.toGMTString

Description set Year is no longer used and has been replaced by the set Ful | Year
method.

If year Val ue is a number between 0 and 99 (inclusive), then the year for
dat eCbj ect Nane is set to 1900 + year Val ue. Otherwise, the year for
dat eChj ect Name is set to year Val ue.

To take into account years before and after 2000, you should use
set Ful | Year instead of set Year so that the year is specified in full.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.
t heBi gDay. set Year (96)

Example 2. The year is set to 1996.

t heBi gDay. set Year (1996)

Example 3. The year is set to 2000.

t heBi gDay. set Year (2000)

See also Dat e. get Year, Dat e. set Ful | Year, Dat e. set UTCFul | Year

toGMTString

Converts a date to a string, using the Internet GMT conventions.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3
ECMA version ECMA-262

Syntax toGMIString()

Parameters None

Chapter 1, Objects, Methods, and Properties 73

Date.toLocaleString

t oGMTISt ri ng is no longer used and has been replaced by the t oUTCSt ri ng
The exact format of the value returned by t oGMTSt ri ng varies according to the

You should use Dat e. t oUTCSt ri ng instead of t o0GMI'STr i ng.
In the following example, t oday is a Dat e object:

t oday. t oGMTSt ri ng()

In this example, the t oGMTSt ri ng method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GV

Dat e. toLocal eString, Date.t oUTCStri ng

toLocaleString

Converts a date to a string, using the current locale’s conventions.
Method of Dat e

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

toLocal eString()

Description
method.
platform.
Examples
See also
Syntax
Parameters None
Description

74 Core JavaScript Reference

If you pass a date using t oLocal eStri ng, be aware that different platforms
assemble the string in different ways. Methods such as get Hour s,
get M nut es, and get Seconds give more portable results.

The t oLocal eSt ri ng method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, t oLocal eStri ng returns a string that is not year-2000 compliant.

t oLocal eSt ri ng behaves similarly to t oSt ri ng when converting a year
that the operating system does not properly format.

Date.toSource

Examples In the following example, t oday is a Dat e object:

today = new Date(95, 11, 18,17,28,35) //nonths are represented by 0 to 11

t oday. t oLocal eString()

In this example, t oLocal eStri ng returns a string value that is similar to the

following form. The exact format depends on the platform.

12/ 18/ 95 17:28: 35

Seealso Date.toGWIString, Date.toUTCString

toSource

Returns a string representing the source code of the object.

Method of Dat e

Implemented in JavaScript 1.3

ECMA version ECMA-262

Syntax toSource()
Parameters None
Description The t oSour ce method returns the following values:

= For the built-in Dat e object, t oSour ce returns the following string
indicating that the source code is not available:
function Date() {

[native code]

}

= For instances of Dat e, t oSour ce returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso (Obj ect.toSource

Chapter 1, Objects, Methods, and Properties 75

Date.toString

toString
Returns a string representing the specified Date object.
Method of Dat e
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()

Parameters None.

Description The Dat e object overrides the t oSt ri ng method of the Cbj ect object; it
does not inherit bj ect . t oSt ri ng. For Dat e objects, thet oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.
Examples The following example assigns the t oSt r i ng value of a Date object to myVar :
X = new Date();
nyVar=x.toString(); //assigns a value to nyVar simlar to:
//NMon Sep 28 14:36:22 GMI-0700 (Pacific Daylight Tinme) 1998
Seealso Object.toString
toUTCString
Converts a date to a string, using the universal time convention.
Method of Dat e
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax toUTCString()
Parameters None
Description The value returned by t oUTCSt ri ng is a readable string formatted according

76 Core JavaScript Reference

to UTC convention. The format of the return value may vary according to the
platform.

Date.UTC

Examples var UTCstring;
Today = new Date();
UTCstring = Today.toUTCString();
Seealso Date.tolLocal eString, Date.toUTCString
uTcC
Returns the number of milliseconds in a Dat e object since January 1, 1970,
00:00:00, universal time.
Method of Dat e
Static
Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: added ns parameter
ECMA version ECMA-262
Syntax Date. UTC(year, nonth, day[, hrs, nin, sec, ns])
Parameters
year A year after 1900.
mont h An integer between 0 and 11 representing the month.
date An integer between 1 and 31 representing the day of the month.
hrs An integer between 0 and 23 representing the hours.
mn An integer between 0 and 59 representing the minutes.
sec An integer between 0 and 59 representing the seconds.
ms An integer between 0 and 999 representing the milliseconds.
Description UTC takes comma-delimited date parameters and returns the number of

milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + year); for example, if you specify 95, the year 1995 is used.

Chapter 1, Objects, Methods, and Properties 77

Date.valueOf

The UTC method differs from the Dat e constructor in two ways.
e Dat e. UTC uses universal time instead of the local time.

= Dat e. UTCreturns a time value as a number instead of creating a Dat e
object.

If a parameter you specify is outside of the expected range, the UTC method
updates the other parameters to allow for your number. For example, if you
use 15 for nont h, the year will be incremented by 1 (year + 1), and 3 will be
used for the month.

Because UTC is a static method of Dat e, you always use it as Dat e. UTC(),
rather than as a method of a Dat e object you created.

Examples The following statement creates a Dat e object using GMT instead of local time:
gnt Date = new Date(Date. UTC(96, 11, 1, 0, 0, 0))
Seealso Date. parse
valueOf
Returns the primitive value of a Date object.
Method of Dat e
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax val ued ()
Parameters None
Description The val ueOf method of Dat e returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.
This method is usually called internally by JavaScript and not explicitly in code.
Examples x = new Date(56, 6,17);
nyVar =x. val ued () // assigns -424713600000 to myVar
Seealso (bj ect . val uetx

78 Core JavaScript Reference

Function

Created by

Parameters

Function

Specifies a string of JavaScript code to be compiled as a function.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added ar i ty, ar gunent s. cal | ee properties; added
ability to nest functions

JavaScript 1.3: added appl y, cal I , and t oSour ce methods;
deprecated ar gunent s. cal | er property

JavaScript 1.4: deprecated ar gunent s, ar gunent s. cal | ee,
argunent s. | engt h, and ari ty properties (ar gunent s
remains a variable local to a function rather than a property of
Functi on)

ECMA version ECMA-262

The Functi on constructor:
new Function ([argl[, arg2[, ... argN],] functionBody)
The f unct i on statement (see “function” on page 237 for details):

function name([parani, paranj, ... param]]) {
statenents

}

argl, arg2, (Optional) Names to be used by the function as formal argument
arghN names. Each must be a string that corresponds to a valid JavaScript
identifier; for example " x" or "t heVal ue".

functionBody A string containing the JavaScript statements comprising the function

definition.
name The function name.
par am The name of an argument to be passed to the function. A function can

have up to 255 arguments.
statenents The statements comprising the body of the function.

Chapter 1, Objects, Methods, and Properties 79

Function

Description

Funct i on objects created with the Funct i on constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have ar et ur n statement that specifies the
value to return.

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function nyFunc(theQbject) {
t heObj ect . make="Toyot a"

}

nycar = {make:"Honda", nodel:"Accord", year: 1998}

x=nycar . nake // returns Honda

nyFunc(nycar) /| pass object nycar to the function

y=nycar . nake /1 returns Toyota (prop was changed by the function)

The t hi s keyword does not refer to the currently executing function, so you
must refer to Funct i on objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the ar gunent s
array. See ar gunent s.

Specifying arguments with the Function constructor. The following code
creates a Funct i on object that takes two arguments.
var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "return x * y".

The preceding code assigns a function to the variable mul ti pl y. To call the
Funct i on object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = nultiply(7,6)

var nyAge = 50
if (myAge >=39) {nmyAge=multiply (nyAge,.5)}

80 Core JavaScript Reference

Function

Assigning a function to a variable with the Function constructor.

Suppose you create the variable mul t i pl y using the Funct i on constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Funct i on constructor is similar to
declaring a function with the f unct i on statement, but they have differences:

= When you assign a function to a variable using var multiply = new
Function("..."), mul tiply is a variable for which the current value is a
reference to the function created with new Function().

< When you create a function using function multiply() {...},
nmul ti ply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

= The inner function can be accessed only from statements in the outer
function.

= The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {
function square(x) {
return x*x

}

return square(a) + square(b)

}

a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41

When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:

Chapter 1, Objects, Methods, and Properties 81

Function

function outside(x) {
function inside(y) {
return x+y

}

return inside

}

resul t=outside(3)(5) // returns 8

Backward JavaScript 1.3 and earlier versions. In addition to being available as a local
Compatibility variable, the ar gunent s array is also a property of the Funct i on object and
can be preceded by the function name, as follows:

functi onNane. ar gunent s[i]

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.

Property
Summary Property Description
argunent s An array corresponding to the arguments passed to a
function.

argunents. cal l ee Specifies the function body of the currently executing
function.

argunents. cal ler Specifies the nhame of the function that invoked the currently
executing function.

argunents. |l ength Specifies the number of arguments passed to the function.

arity Specifies the number of arguments expected by the function.

constructor Specifies the function that creates an object’s prototype.

I ength Specifies the number of arguments expected by the function.

pr ot ot ype Allows the addition of properties to a Funct i on object.
Method Summary

Method Description

apply Allows you to apply a method of another object in the

context of a different object (the calling object).

cal | Allows you to call (execute) a method of another object in
the context of a different object (the calling object).

t oSour ce Returns a string representing the source code of the function.
Overrides the Obj ect . t oSour ce method.

82 Core JavaScript Reference

Function.apply

Method Description

toString Returns a string representing the source code of the function.
Overrides the Obj ect . t oSt ri ng method.

val ueCf Returns a string representing the source code of the function.
Overrides the Obj ect . val ueOf method.

Examples Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

/1 This function returns a string padded with | eadi ng zeros
function padZeros(num total Len) {

var nunStr = numtoString() // Initialize return val ue

/1 as string
var numn¥Zer os totalLen - nunBtr.length // Calculate no. of zeros
i f (nunZeros 0) {
for (var i = 1; i <= nunZeros; i++) {
nunStr = "0" + nunttr

AV

}
}

return nunttr

}

The following statements call the padZer os function.

resul t =padZeros(42,4) // returns "0042"
resul t =padZeros(42,2) // returns "42"
resul t =padZeros(5,4) // returns "0005"

apply

Allows you to apply a method of another object in the context of a different
object (the calling object).
Method of Functi on

Implemented in JavaScript 1.3

Syntax appl y(thi sArg[, argArray])

Parameters
thisArg Parameter for the calling object

ar gArr ay An argument array for the object

Chapter 1, Objects, Methods, and Properties 83

Function.apply

Description

Examples

See also

84 Core JavaScript Reference

You can assign a different t hi s object when calling an existing function. t hi s
refers to the current object, the calling object. With appl y, you can write a
method once and then inherit it in another object, without having to rewrite the
method for the new object.

appl y is very similar to cal | , except for the type of arguments it supports.
You can use an arguments array instead of a named set of parameters. With
appl! y, you can use an array literal, for example, appl y(thi s, [namne,
val ue]), or an Arr ay object, for example, appl y(t hi s, new
Array(nane, value)).

You can also use ar gunent s for the ar gAr r ay parameter. ar gunent s is a
local variable of a function. It can be used for all unspecified arguments of the
called object. Thus, you do not have to know the arguments of the called object
when you use the appl y method. You can use ar gurrent s to pass all the
arguments to the called object. The called object is then responsible for
handling the arguments.

You can use appl y to chain constructors for an object, similar to Java. In the
following example, the constructor for the pr oduct object is defined with two
parameters, nanme and val ue. Another object, pr od_dept , initializes its
unique variable (dept) and calls the constructor for pr oduct in its constructor
to initialize the other variables. In this example, the parameter ar gunent s is
used for all arguments of the pr oduct object’s constructor.

function product (name, val ue){
this. nane = nane;
i f(value > 1000)
this.value = 999;
el se
this.value = val ue;

}

function prod_dept (nane, value, dept){
this.dept = dept;
product . appl y(product, argunents);

}
prod_dept. prototype = new product();

// since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

/1 since 5000 is above 1000, value will be 999
car = new prod_dept ("honda", 5000, "auto");

Function. cal |

Function.arguments

arguments

Description

An array corresponding to the arguments passed to a function.
Local variable of All function objects

Property of Functi on (deprecated)
Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added ar gunent s. cal | ee property

JavaScript 1.3: deprecated ar gunent s. cal | er property; removed
support for argument names and local variable names as properties
of the ar gunent s array

JavaScript 1.4: deprecated ar gunent s, ar gunent s. cal | ee, and
argunent s. | engt h as properties of Funct i on; retained
argunent s as a local variable of a function and

argunent s. cal | ee and ar gunent s. | engt h as properties of
this variable

ECMA version ECMA-262

The ar gunent s array is a local variable available within all function objects;
argunent s as a property of Funct i on is no longer used.

You can refer to a function’s arguments within the function by using the

ar gunent s array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

ar gunent s[0]
argunent s[1]
ar gunent s[2]

The ar gunent s array is available only within a function body. Attempting to
access the ar gunment s array outside a function declaration results in an error.

You can use the ar gunent s array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use

argunent s. | engt h to determine the number of arguments passed to the
function, and then process each argument by using the ar gument s array. (To
determine the number of arguments declared when a function was defined, use
the Functi on. | engt h property.)

Chapter 1, Objects, Methods, and Properties 85

Function.arguments

The ar gunent s array has the following properties:

Property Description

argunent s. cal | ee Specifies the function body of the currently executing
function.

argunent s. cal | er Specifies the name of the function that invoked the
currently executing function. (Deprecated)

argunents. | ength Specifies the number of arguments passed to the function.

Backward JavaScript 1.3 and earlier versions. In addition to being available as a local
Compatibility variable, the ar gunent s array is also a property of the Funct i on object and
can be preceded by the function name. For example, if a function myFunc is
passed three arguments named ar g1, ar g2, and ar g3, you can refer to the
arguments as follows:

nyFunc. ar gunment s[0]
nyFunc. ar gunment s[1]
nyFunc. ar gunment s[2]

JavaScript 1.1 and 1.2. The following features that were available in
JavaScript 1.1 and JavaScript 1.2 have been removed:

= Each local variable of a function is a property of the ar gunent s array. For
example, if a function myFunc has a local variable named myLocal Var,
you can refer to the variable as ar gunent s. myLocal Var.

= Each formal argument of a function is a property of the ar gunent s array.
For example, if a function myFunc has two arguments named ar g1 and
ar g2, you can refer to the arguments as ar gunent s. ar g1 and
argunent s. arg2. (You can also refer to them as ar gunent s[0] and
argunent s[1] .)

86 Core JavaScript Reference

Function.arguments.callee

Examples Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:
function nyConcat (separator) {

result="" // initialize list
// iterate through argunents
for (var i=1; i<argunents.length; i++) {
result += argunents[i] + separator
}
return result
}
You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.
/'l returns "red, orange, blue
nyConcat (", ","red","orange", "bl ue")
/'l returns "elephant; giraffe; lion; cheetah;"
nyConcat ("; ","elephant","giraffe","lion", "cheetah")
/'l returns "sage. basil. oregano. pepper. parsley
myConcat (". ","sage","basil", "oregano", "pepper", "parsley")
arguments.callee
Specifies the function body of the currently executing function.
Property of ar gunent s local variable; Funct i on (deprecated)
Implemented in JavaScript 1.2
JavaScript 1.4: Deprecated cal | ee as a property of
Functi on. argunment s, retained it as a property of a function’s
local ar gunent s variable
ECMA version ECMA-262
Description argunents. cal | ee is a property of the ar gunent s local variable available

within all function objects; ar gunent s. cal | ee as a property of Functi on is
no longer used.

The cal | ee property is available only within the body of a function.

The t hi s keyword does not refer to the currently executing function. Use the
cal | ee property to refer to a function within the function body.

Chapter 1, Objects, Methods, and Properties 87

Function.arguments.caller

Examples

See also

The following function returns the value of the function’s cal | ee property.

function nyFunc() {
return argunents.call ee

}

The following value is returned:

function nyFunc() { return argunents.callee; }

Functi on. argunent s

arguments.caller

Description

88 Core JavaScript Reference

Specifies the name of the function that invoked the currently executing
function.
Property of Functi on

Implemented in JavaScript 1.1, NES 2.0

Deprecated in JavaScript 1.3

cal | er is no longer used.
The cal | er property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of cal I er is null.

The t hi s keyword does not refer to the currently executing function, so you
must refer to functions and Funct i on objects by name, even within the
function body.

The cal | er property is a reference to the calling function, so

< If you use it in a string context, you get the result of calling
functi onName. t oSt ri ng. That is, the decompiled canonical source form
of the function.

= You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

Function.arguments.length

Examples The following code checks the value of a function’s cal | er property.
function nyFunc() {
if (arguments.caller == null) {
return ("The function was called fromthe top!")
} else return ("This function's caller was " + argunents.caller)
}
Seealso Function. argunents
arguments.length
Specifies the number of arguments passed to the function.
Property of ar gurrent s local variable; Funct i on (deprecated)
Implemented in JavaScript 1.1
JavaScript 1.4: Deprecated | engt h as a property of
Functi on. ar gunment s, retained it as a property of a function’s
local ar gunent s variable
ECMA version ECMA-262
Description ar gunent s. | engt h is a property of the ar gunent s local variable available
within all function objects; ar gunent s. | engt h as a property of Funct i on is
no longer used.
argunent s. | engt h provides the number of arguments actually passed to a
function. By contrast, the Funct i on. | engt h property indicates how many
arguments a function expects.
Example The following example demonstrates the use of Functi on. | engt h and
argunent s. | engt h.
function addNunmbers(x,y){
if (argunments.|ength == addNunbers. | ength) {
return (x+y)
}
el se return 0
}
If you pass more than two arguments to this function, the function returns 0:
resul t =addNunber s(3, 4, 5) /Il returns O
resul t =addNunber s(3, 4) /'l returns 7
resul t =addNunber s(103, 104) // returns 207
Seealso Function. argunents

Chapter 1, Objects, Methods, and Properties 89

Function.arity

arity

Specifies the number of arguments expected by the function.
Property of Function

Implemented in JavaScript 1.2, NES 3.0

Deprecated in JavaScript 1.4

arity is no longer used and has been replaced by the | engt h property.

ari ty is external to the function, and indicates how many arguments a
function expects. By contrast, ar gunent s. | engt h provides the number of
arguments actually passed to a function.

The following example demonstrates the use of ari ty and
argunent s. | engt h.

functi on addNunmbers(x,y){
if (arguments.length == addNumbers. | ength) {
return (x+y)

else return 0

If you pass more than two arguments to this function, the function returns 0:

resul t =addNunber s(3, 4, 5) /Il returns O
resul t =addNunber s(3, 4) /'l returns 7
resul t =addNunber s(103, 104) // returns 207

argunents. | engt h, Function. |l ength

Allows you to call (execute) a method of another object in the context of a
different object (the calling object).
Method of Functi on

Implemented in JavaScript 1.3

Description
Example
}
}
See also
call
Syntax

90 Core JavaScript Reference

call (thisArg[, argll, arg2[, ...]111)

Parameters

Description

Examples

See also

Function.call

thi sArg Parameter for the calling object
argl, arg2, ... Arguments for the object

You can assign a different t hi s object when calling an existing function. t hi s
refers to the current object, the calling object.

With cal | , you can write a method once and then inherit it in another object,
without having to rewrite the method for the new object.

You can use cal | to chain constructors for an object, similar to Java. In the
following example, the constructor for the pr oduct object is defined with two
parameters, name and val ue. Another object, pr od_dept , initializes its
unique variable (dept) and calls the constructor for pr oduct in its constructor
to initialize the other variables.

function product (name, val ue){
this. nane = nane;
i f(value > 1000)
this.value = 999;
el se
this.value = val ue;

}

function prod_dept (nane, value, dept){
this.dept = dept;
product.call (this, nanme, value);

}
prod_dept. prototype = new product();

/] since 5 is less than 100 value is set
cheese = new prod_dept("feta", 5, "food");

/! since 5000 is above 1000, value wll be 999
car = new prod_dept ("honda", 5000, "auto");

Functi on. apply

Chapter 1, Objects, Methods, and Properties 91

Function.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Functi on

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Cbj ect. constructor.

length

Description

Example

See also

Specifies the number of arguments expected by the function.
Property of Function

Implemented in JavaScript 1.1
ECMA version ECMA-262

I engt h is external to a function, and indicates how many arguments the
function expects. By contrast, ar gunent s. | engt h is local to a function and
provides the number of arguments actually passed to the function.

See the example for ar gunent s. | engt h.

argunents. |l ength

prototype

92 Core JavaScript Reference

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated pr ot ot ype

property.
Property of Function

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description

Example

Function.prototype

You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun. prot otype. nane = val ue

where

fun The name of the constructor function object you want to change.
name The name of the property or method to be created.

val ue The value initially assigned to the new property or method.

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var arrayl = new Array();

var array2 = new Array(3);

Array. prototype.description=null;

arrayl. descri pti on="Contains sone stuff"
array2. descri pti on="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anot her Array=new Array()
anot her Array. descri ption="Currently enpty"

The following example creates a method, str _r ep, and uses the statement
String. prototype.rep = str_rep to add the method to all St ri ng objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the St ri ng objects using the statement s1.rep = fake_rep. The

st r_rep method of the remaining St ri ng objects is not altered.

Chapter 1, Objects, Methods, and Properties 93

Function.toSource

var sl = new String("a")
var s2 = new String("b")
var s3 new String("c")

/] Create a repeat-string-N-times nethod for all String objects
function str_rep(n) {

var s = "", t = this.toString()
while (--n >=0) s +=t
return s

}
String.prototype.rep = str_rep

sla=sl.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

// Create an alternate nmethod and assign it to only one String variable
function fake_rep(n) {
return "repeat " + this +" " +n + " tines."

}

sl.rep = fake_rep

slb=sl.rep(1l) // returns "repeat a 1 times."
s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "cccccc"

The function in this example also works on St ri ng objects not created with
the St ri ng constructor. The following code returns "zzz".

"z".rep(3)

toSource

Returns a string representing the source code of the function.
Method of Functi on

Implemented in JavaScript 1.3

Syntax toSource()

Parameters None

94 Core JavaScript Reference

Function.toString

Description The t oSour ce method returns the following values:
= For the built-in Funct i on object, t oSour ce returns the following string
indicating that the source code is not available:
function Function() {
[native code]
}
= For custom functions, t oSour ce returns the JavaScript source that defines
the object as a string.
This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.
Seealso Function.toString, Ooject. val ued
toString
Returns a string representing the source code of the function.
Method of Functi on
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.
Description The Funct i on object overrides the t oSt ri ng method of the Obj ect object;

it does not inherit Obj ect . t oSt ri ng. For Funct i on objects, thet oStri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a Funct i on is to be
represented as a text value or when a Funct i on is referred to in a string
concatenation.

For Funct i on objects, the built-in t oSt ri ng method decompiles the function
back into the JavaScript source that defines the function. This string includes
the f unct i on keyword, the argument list, curly braces, and function body.

Chapter 1, Objects, Methods, and Properties 95

Function.valueOf

For example, assume you have the following code that defines the Dog object
type and creates t heDog, an object of type Dog:

function Dog(nane, breed, col or, sex) {
t hi s. nane=nane
t hi s. breed=br eed
thi s. col or=col or
thi s. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
t oSt ri ng function, which returns the following string:

functi on Dog(nanme, breed, color, sex) { this.name = nanme; this.breed =
breed; this.color = color; this.sex = sex; }

Seealso Object.toString

valueOf

Returns a string representing the source code of the function.
Method of Functi on

Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ueOr ()
Parameters None

Description The val ueX method returns the following values:
= For the built-in Funct i on object, val ueO returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

= For custom functions, t oSour ce returns the JavaScript source that defines
the object as a string. The method is equivalent to the t oSt ri ng method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso Function.toString, Qoj ect. val ued™

96 Core JavaScript Reference

java

java

A top-level object used to access any Java class in the package j ava. *.
Core object

Implemented in JavaScript 1.1, NES 2.0

Created by The j ava object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.
Description The j ava object is a convenience synonym for the property Packages. j ava.

See also Packages, Packages. j ava

Chapter 1, Objects, Methods, and Properties 97

JavaArray

JavaArray

Created by

Description

98 Core JavaScript Reference

A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArr ay.
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an array. In addition, you can create a
JavaArr ay with an arbitrary data type using the newl nst ance method of
the Arr ay class:

public static Object new nstance(Cl ass conponent Type,
int |ength)
throws NegativeArraySi zeException

The JavaAr r ay object is an instance of a Java array that is created in or
passed to JavaScript. JavaAr r ay is a wrapper for the instance; all references
to the array instance are made through the JavaArr ay.

In JavaScript 1.4 and later, the conponent Type parameter is either a
Javad ass object representing the type of the array or class object, such as
one returned by j ava. | ang. d ass. f or Nane. In JavaScript 1.3 and earlier,
conponent Type must be a class object.

Use zero-based indexes to access the elements in a JavaAr r ay object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

byteArray[0] // returns 72

byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaAr r ay is passed back to Java, the array is unwrapped and can
be used by Java code. See the Core JavaScript Guide for more information
about data type conversions.

In JavaScript 1.4 and later, the methods of j ava. | ang. Obj ect are inherited
by JavaArray.

Backward
compatibility

Property
Summary

Method Summary

Examples

JavaArray

JavaScript 1.3 and earlier. The methods of j ava. | ang. Qbj ect are not
inherited by JavaAr r ay. In addition, the t oSt r i ng method is inherited from
the Obj ect object and returns the following value:

[obj ect JavaArray]

You must specify a class object, such as one returned by

j ava. |l ang. Qbj ect . f or Nane, for the conponent Type parameter of
newl nst ance when you use this method to create an array. You cannot use a
Javad ass object for the conponent Type parameter.

Property Description

I engt h The number of elements in the Java array represented by
JavaArray.

Method Description

toString In JavaScript 1.4, this method is overridden by the

inherited method j ava. | ang. Cbj ect. toStri ng.
In JavaScript 1.3 and earlier, this method returns a
string identifying the object as a JavaArr ay.

In JavaScript 1.4 and later, JavaAr r ay also inherits methods from the Java
array superclass, j ava. | ang. Obj ect .

Example 1. Instantiating a JavaAr r ay in JavaScript.

In this example, the JavaArr ay byt eArray is created by the
java.l ang. Stri ng. get Byt es method, which returns an array.

var javaString = new java.lang. String("Hello world!");
var byteArray = javaString.getBytes();

Chapter 1, Objects, Methods, and Properties 99

JavaArray.length

Example 2. Instantiating a JavaAr r ay in JavaScript with the newl nst ance
method.

In JavaScript 1.4, you can use a JavaCl ass object as the argument for the
newl nst ance method which creates the array, as shown in the following
code:

var dogs = java.lang.reflect. Array. new nstance(j ava. |l ang. String, 5)
In JavaScript 1.1, use a class object returned by j ava. | ang. Cl ass. f or Nane

as the argument for the newl nst ance method, as shown in the following
code:

Description

See also

var dataType = java.lang. C ass.forNanme("java.l ang. String")

var dogs = java.lang.reflect. Array. new nst ance(dat aType, 5)
length

The number of elements in the Java array represented by the JavaAr r ay
object.

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Unlike Array. | engt h, JavaArray. | engt h is a read-only property. You
cannot change the value of the JavaArr ay. | engt h property because Java
arrays have a fixed number of elements.

Array. |l ength

100 Core JavaScript Reference

JavaArray.toString

toString

Parameters

Description

Backward
compatibility

Returns a string representation of the JavaArray.
Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0

None

Calls the method j ava. | ang. Qbj ect. t oSt ri ng, which returns the value of
the following expression:

JavaArray.getd ass().getName() + '@ +
java.lang. | nteger.toHexString(JavaArray. hashCode())

JavaScript 1.3 and earlier. The t oSt ri ng method is inherited from the
hj ect object and returns the following value:

[obj ect JavaArray]

Chapter 1, Objects, Methods, and Properties 101

JavaClass

JavaClass

Created by

Description

Backward
compatibility

Property
Summary

Method Summary

Examples

A JavaScript reference to a Java class.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the class name used with the Packages object:

Packages. Javad ass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect j ava, sun, and net scape objects provide shortcuts for
commonly used Java packages and also create JavaC ass objects.

A Javad ass object is a reference to one of the classes in a Java package,
such as net scape. j avascri pt. JSObj ect . A JavaPackage object is a
reference to a Java package, such as net scape. j avascri pt. In JavaScript,
the JavaPackage and Javad ass hierarchy reflect the Java package and
class hierarchy.

You can pass a JavaCl ass object to a Java method which requires an
argument of type j ava. | ang. d ass.

JavaScript 1.3 and earlier. You must create a wrapper around an instance of
j ava. | ang. Cl ass before you pass it as a parameter to a Java method—
Javad ass objects are not automatically converted to instances of

j ava. |l ang. d ass.

The properties of a JavaCl ass object are the static fields of the Java class.

The methods of a JavaCl ass object are the static methods of the Java class.

Example 1. In the following example, x is a JavaC ass object referring to
j ava. awt . Font . Because BOLD is a static field in the Font class, it is also a
property of the JavaCl ass object.

X = java.awt . Font
nyFont = x("helv",x.BOLD, 10) // creates a Font object

The previous example omits the Packages keyword and uses the j ava
synonym because the Font class is in the j ava package.

102 Core JavaScript Reference

JavaClass

Example 2. In the following example, the JavaCd ass object

java.l ang. Stri ng is passed as an argument to the newl nst ance method
which creates an array:

var cars = java.lang.reflect. Array. newl nstance(java. |l ang. String, 15)

See also JavaArray, Java(bj ect, JavaPackage, Packages

Chapter 1, Objects, Methods, and Properties 103

JavaObiject

JavaObject

Created by

Parameters

Description

Property
Summary

Method Summary

The type of a wrapped Java object accessed from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an object type. In addition, you can explicitly
construct a JavaQbj ect using the object’s Java constructor with the
Packages keyword:

new Packages. Javad ass(paraneterlLi st)

where JavaClass is the fully-specified name of the object’s Java class.

par anet er Li st An optional list of parameters, specified by the constructor in
the Java class.

The JavaObj ect object is an instance of a Java class that is created in or
passed to JavaScript. JavaCbj ect is a wrapper for the instance; all references
to the class instance are made through the Javabj ect .

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObj ect is passed back to Java, it is unwrapped and can be
used by Java code. See the Core JavaScript Guide for more information about
data type conversions.

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Inherits public methods from the Java class of which it is an instance. The
Javanj ect also inherits methods from j ava. | ang. Obj ect and any other
superclass.

104 Core JavaScript Reference

Examples

See also

JavaObject

Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaCbj ect t heSt ri ng, which is an
instance of the class j ava. | ang. Stri ng:

var theString = new Packages.java.lang. String("Hello, world")

Because the St ri ng class is in the j ava package, you can also use the j ava
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang. String("Hello, world")
Example 2. Accessing methods of a Java object.

Because the JavaObj ect t heStri ng is an instance of

j ava. |l ang. Stri ng, it inherits all the public methods of

java. |l ang. Stri ng. The following example uses the st art sWt h method
to check whether t heSt ri ng begins with “Hello”.

var theString = new java.lang. String("Hello, world")
theString.startsWth("Hello") // returns true

Example 3. Accessing inherited methods.

Because get Cl ass is a method of Obj ect, and j ava. | ang. Stri ng
extends Obj ect , the St ri ng class inherits the get G ass method.
Consequently, get Cl ass is also a method of the JavaCbj ect which
instantiates St ri ng in JavaScript.

var theString = new java.lang. String("Hello, world")
theString.getClass() // returns java.lang.String

JavaArray, Javad ass, JavaPackage, Packages

Chapter 1, Objects, Methods, and Properties 105

JavaPackage

JavaPackage

Created by

Description

Property
Summary

Examples

See also

A JavaScript reference to a Java package.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the package name used with the Packages keyword:

Packages. JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the j ava, net scape, or sun packages, the Packages keyword is
optional.

In Java, a package is a collection of Java classes or other Java packages. For
example, the net scape package contains the package

net scape. j avascri pt;the net scape. j avascri pt package contains the
classes JShj ect and JSExcepti on.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to net scape is a JavaPackage. net scape. j avascri pt is both
a JavaPackage and a property of the net scape JavaPackage.

A JavadC ass obiject is a reference to one of the classes in a package, such as
net scape. j avascri pt. JSObj ect. The JavaPackage and JavaCl ass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a f or. . . i n statement to enumerate them as you
can enumerate the properties of other objects.

The properties of a JavaPackage are the JavaCl ass objects and any other
JavaPackage objects it contains.

Suppose the Redwood corporation uses the Java r edwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage r ed:

var red = Packages.redwood

JavaArray, Javad ass, Javabj ect , Packages

106 Core JavaScript Reference

Math

Created by

Description

Property
Summary

Math

A built-in object that has properties and methods for mathematical constants
and functions. For example, the Mat h object’'s Pl property has the value of pi.
Core object

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

The Mat h object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

All properties and methods of Mat h are static. You refer to the constant PI as
Mat h. Pl and you call the sine function as Mat h. si n(x), where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the wi t h statement when a section of code uses
several Mat h constants and methods, so you don't have to type “Math”
repeatedly. For example,

with (Math) {

a =P *r*r
y = r*sin(theta)
X = r*cos(theta)
}
Property Description
E Euler’'s constant and the base of natural logarithms, approximately
2.718.
LN1O Natural logarithm of 10, approximately 2.302.
LN2 Natural logarithm of 2, approximately 0.693.
LOGLOE Base 10 logarithm of E (approximately 0.434).
LOXRE Base 2 logarithm of E (approximately 1.442).
Pl Ratio of the circumference of a circle to its diameter, approximately
3.14159.
SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.
SQRT2 Square root of 2, approximately 1.414.

Chapter 1, Objects, Methods, and Properties 107

Math

Method Summary

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

at an2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns E™mer where nunber is the argument, and E is Euler’s
constant, the base of the natural logarithms.

fl oor Returns the largest integer less than or equal to a number.

| og Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

mn Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexrenent,

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

108 Core JavaScript Reference

Math.abs

abs

Syntax

Parameters

Examples

Description

Returns the absolute value of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

abs(x)

X A number

The following function returns the absolute value of the variable x:

function getAbs(x) {
return Math. abs(x)
}

Because abs is a static method of Mat h, you always use it as Mat h. abs(),
rather than as a method of a Mat h object you created.

acos

Syntax

Parameters

Description

Returns the arccosine (in radians) of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

acos(x)

X A number

The acos method returns a numeric value between 0 and pi radians. If the
value of nunber is outside this range, it returns NaN.

Because acos is a static method of Mat h, you always use it as Mat h. acos(),
rather than as a method of a Mat h object you created.

Chapter 1, Objects, Methods, and Properties 109

Math.asin

Examples The following function returns the arccosine of the variable x:

function get Acos(x) {
return Math. acos(x)

}

If you pass -1 to get Acos, it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

See also Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an

asin

Returns the arcsine (in radians) of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax asi n(x)

Parameters
X A number

Description The asi n method returns a numeric value between -pi/2 and pi/2 radians. If
the value of nunber is outside this range, it returns NaN.

Because asi n is a static method of Mat h, you always use it as Mat h. asi n(),
rather than as a method of a Mat h object you created.

Examples The following function returns the arcsine of the variable x:

function getAsin(x) {
return Math. asin(x)

}

If you pass get Asi n the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaN because 2 is out of range.

See also Mat h. acos, Mat h. at an, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an

110 Core JavaScript Reference

Math.atan

atan

Returns the arctangent (in radians) of a number.

Method of Mat h
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax at an(x)
Parameters
X A number
Description The at an method returns a numeric value between -pi/2 and pi/2 radians.
Because at an is a static method of Mat h, you always use it as Mat h. at an(),
rather than as a method of a Mat h object you created.
Examples The following function returns the arctangent of the variable x:
function get Atan(x) ({
return Math. at an(x)
}
If you pass get At an the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.
See also Mat h. acos, Mat h. asi n, Mat h. at an2, Mat h. cos, Mat h. si n, Mat h. t an
atan2
Returns the arctangent of the quotient of its arguments.
Method of Mat h
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax atan2(y, x)

Chapter 1, Objects, Methods, and Properties 111

Math.ceil

Parameters
y, X Number

Description The at an2 method returns a numeric value between -pi and pi representing the
angle theta of an (x, y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x, y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

at an2 is passed separate x and y arguments, and at an is passed the ratio of
those two arguments.

Because at an2 is a static method of Mat h, you always use it as Mat h. at an2(),
rather than as a method of a Mat h object you created.

Examples The following function returns the angle of the polar coordinate:

function get Atan2(x,y) {
return Math. atan2(x,y)
}

If you pass get At an2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. cos, Mat h. si n, Mat h. t an

ceil

Returns the smallest integer greater than or equal to a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax ceil (x)

Parameters
X A number

Description Because cei | is a static method of Mat h, you always use it as Mat h. cei | (),
rather than as a method of a Mat h object you created.

112 Core JavaScript Reference

Math.cos

Examples The following function returns the ceil value of the variable x:

function getCeil (x) {
return Math.ceil (x)
}
If you pass 45.95 to get Cei |, it returns 46; if you pass -45.95, it returns -45.

Seealso Math. fl oor

COS

Returns the cosine of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax cos(x)

Parameters
X A number

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Mat h, you always use it as Mat h. cos(),
rather than as a method of a Mat h object you created.

Examples The following function returns the cosine of the variable x:

function get Cos(x) {
return Math. cos(x)

}

If x equals 2*Mat h. Pl , get Cos returns 1; if x equals Mat h. PI, the get Cos
method returns -1.

See also Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. si n,
Mat h. t an

Chapter 1, Objects, Methods, and Properties 113

Math.E

E

Description

Examples

Euler’s constant and the base of natural logarithms, approximately 2.718.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Because E is a static property of Mat h, you always use it as Mat h. E, rather than
as a property of a Mat h object you created.

The following function returns Euler’s constant:

function getEuler() {
return Math. E

}

exp

Syntax

Parameters

Description

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

exp(x)

X A number

Because exp is a static method of Mat h, you always use it as Mat h. exp(),
rather than as a method of a Mat h object you created.

114 Core JavaScript Reference

Examples

See also

Math.floor

The following function returns the exponential value of the variable x:

function get Exp(x) {
return Math. exp(x)

}
If you pass get Exp the value 1, it returns 2.718281828459045.

Mat h. E, Mat h. | og, Mat h. pow

floor

Syntax

Parameters

Description

Examples

See also

Returns the largest integer less than or equal to a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

floor(x)

X A number
Because f | oor is a static method of Mat h, you always use it as Mat h. f | oor (),
rather than as a method of a Mat h object you created.

The following function returns the floor value of the variable x:

function getFl oor(x) {
return Math. floor(x)
}

If you pass 45.95 to get Fl oor, it returns 45; if you pass -45.95, it returns -46.
Mat h. cei |

Chapter 1, Objects, Methods, and Properties 115

Math.LN10

LN10

The natural logarithm of 10, approximately 2.302.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the natural log of 10:

function getNatLogl0() {
return Math. LN1O

}

Description Because LNL10 is a static property of Mat h, you always use it as Mat h. LN10,
rather than as a property of a Mat h object you created.

LN2

The natural logarithm of 2, approximately 0.693.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the natural log of 2:

function getNat Log2() {
return Math. LN2

}

Description Because LN2 is a static property of Mat h, you always use it as Mat h. LN2, rather
than as a property of a Mat h object you created.

116 Core JavaScript Reference

Math.log

Syntax

Parameters

Description

Examples

See also

log

Returns the natural logarithm (base E) of a number.
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

I og(x)

X A number

If the value of nunmber is negative, the return value is always NaN.

Because | og is a static method of Mat h, you always use it as Mat h. | og(),
rather than as a method of a Mat h object you created.

The following function returns the natural log of the variable x:

function getLog(x) {
return Math. |l og(x)
}

If you pass get Log the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns - | nfi ni ty; if you pass it the value -1, it returns NaN
because -1 is out of range.

Mat h. exp, Mat h. pow

LOG10E

The base 10 logarithm of E (approximately 0.434).
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 117

Math.LOG2E

Examples The following function returns the base 10 logarithm of E:

function getlLoglOe() {
return Math. LOGLOE

}

Description Because LOGLOE is a static property of Mat h, you always use it as
Mat h. LOGLOE, rather than as a property of a Mat h object you created.

LOG2E

The base 2 logarithm of E (approximately 1.442).
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math. LORZE

}

Description Because LOR2E is a static property of Mat h, you always use it as Mat h. LOGE,
rather than as a property of a Mat h object you created.

max

Returns the larger of two numbers.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax max(Xx, ¥)

Parameters
X, Yy Numbers.

Description Because max is a static method of Mat h, you always use it as Mat h. max(),
rather than as a method of a Mat h object you created.

118 Core JavaScript Reference

Examples

See also

Math.min

The following function evaluates the variables x and y:

function get Max(x,y) {
return Math. max(x,y)

}

If you pass get Max the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

Mat h. m n

min

Syntax

Parameters

Description

Examples

See also

Returns the smaller of two numbers.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

mn(x,y)

X, Y Numbers.
Because ni n is a static method of Mat h, you always use it as Mat h. mi n(),
rather than as a method of a Mat h object you created.

The following function evaluates the variables x and vy:

function getMn(x,y) {
return Math. mn(x,y)
}

If you pass get M n the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

Mat h. max

Chapter 1, Objects, Methods, and Properties 119

Math.PI

Pl

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the value of pi:

function getPi () {
return Math. Pl
}

Description Because Pl is a static property of Mat h, you always use it as Mat h. Pl , rather
than as a property of a Mat h object you created.

pow

Returns base to the exponent power, that is, baseseren,
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax pow X, ¥)

Parameters
base The base number

exponent The exponent to which to raise base

Description Because pow is a static method of Mat h, you always use it as Mat h. pow(),
rather than as a method of a Mat h object you created.

120 Core JavaScript Reference

Math.random

Examples function rai sePower(x,y) {
return Math. pow x,y)
}

If x is 7and y is 2, rai sePower returns 49 (7 to the power of 2).

See also Mat h. exp, Mat h. | og

random

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms
ECMA version ECMA-262

Syntax random()
Parameters None.

Description Because r andomis a static method of Mat h, you always use it as
Mat h. randon(), rather than as a method of a Mat h object you created.

Examples //Returns a random nunber between 0 and 1
function get Randon() {
return Math.randon()

}

round

Returns the value of a number rounded to the nearest integer.
Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax round(x)

Chapter 1, Objects, Methods, and Properties 121

Math.sin

Parameters

Description

Examples

X A number

If the fractional portion of nunber is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of nunber is less than .5, the
argument is rounded to the next lower integer.

Because r ound is a static method of Mat h, you always use it as Mat h. round(),
rather than as a method of a Mat h object you created.

// Returns the val ue 20
x=Mat h. round(20. 49)

// Returns the value 21
x=Mat h. r ound(20. 5)

// Returns the value -20
x=Mat h. round(- 20. 5)

/'l Returns the value -21
x=Mat h. round(- 20. 51)

sin

Syntax

Parameters

Description

Returns the sine of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

si n(x)

X A number

The si n method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because si n is a static method of Mat h, you always use it as Mat h. si n(),
rather than as a method of a Mat h object you created.

122 Core JavaScript Reference

Examples

See also

Math.sqrt

The following function returns the sine of the variable x:

function getSine(x) {
return Math. sin(x)

}
If you pass get Si ne the value Mat h. Pl / 2, it returns 1.

Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos,
Mat h. t an

sqrt

Syntax

Parameters

Description

Examples

Returns the square root of a number.
Method of Mat h

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

sqrt (x)

X A number

If the value of nunmber is negative, sqrt returns NaN.

Because sqrt is a static method of Mat h, you always use it as Mat h. sqrt (),
rather than as a method of a Mat h object you created.

The following function returns the square root of the variable x:

function getRoot (x) {
return Math.sqgrt(x)

}

If you pass get Root the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

Chapter 1, Objects, Methods, and Properties 123

Math.SQRT1_2

SQRT1. 2

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns 1 over the square root of 2:

function getRoot1l 2() {
return Math. SQRT1_2
}

Description Because SQRT1_2 is a static property of Mat h, you always use it as
Mat h. SQRT1_2, rather than as a property of a Mat h object you created.

SQRT?2

The square root of 2, approximately 1.414.
Property of Mat h

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the square root of 2:

function getRoot2() {
return Math. SQRT2

}

Description Because SQRT2 is a static property of Mat h, you always use it as Mat h. SQRT2,
rather than as a property of a Mat h object you created.

124 Core JavaScript Reference

Math.tan

tan

Syntax

Parameters

Description

Examples

See also

Returns the tangent of a number.

Method of Mat h

Static

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

tan(x)

X A number

The t an method returns a numeric value that represents the tangent of the
angle.

Because t an is a static method of Mat h, you always use it as Mat h. t an(),
rather than as a method of a Mat h object you created.

The following function returns the tangent of the variable x:

function get Tan(x) {
return Math.tan(x)

}

Mat h. acos, Mat h. asi n, Mat h. at an, Mat h. at an2, Mat h. cos,
Mat h. sin

Chapter 1, Objects, Methods, and Properties 125

netscape

netscape

A top-level object used to access any Java class in the package net scape. *.
Core object

Implemented in JavaScript 1.1, NES 2.0
Created by The net scape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The net scape object is a convenience synonym for the property
Packages. net scape.

See also Packages, Packages. net scape

126 Core JavaScript Reference

Number

Created by

Parameters

Description

Number

Lets you work with numeric values. The Nurber object is an object wrapper for
primitive numeric values.
Core object

Implemented in JavaScript 1.1, NES 2.0
JavaScript 1.2: modified behavior of Nunber constructor
JavaScript 1.3; added t oSour ce method

ECMA version ECMA-262

The Nunber constructor:

new Nunber (val ue)

val ue The numeric value of the object being created.

The primary uses for the Nunber object are:

= To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

= To create humeric objects that you can add properties to. Most likely, you
will rarely need to create a Nunber object.

The properties of Nunber are properties of the class itself, not of individual
Nunber objects.

JavaScript 1.2: Nunber (x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Nunber ("t hree");

docunent.wite(x + "
");
prints NaN

You can convert any object to a number using the top-level Nunber function.

Chapter 1, Objects, Methods, and Properties 127

Number

Property

Summary Property

Description

constructor
MAX_VALUE
M N_VALUE
NaN

NEGATI VE_I NFI NI TY

PGSl TI VE_I NFI NI TY

Specifies the function that creates an object’s prototype.
The largest representable number.

The smallest representable number.

Special “not a number” value.

Special value representing negative infinity; returned on
overflow.

Special value representing infinity; returned on overflow.

pr ot ot ype Allows the addition of properties to a Nunber object.
Method Summary

Method Description

t oSour ce Returns an object literal representing the specified Number object;
you can use this value to create a new object. Overrides the
oj ect . t oSour ce method.

toString Returns a string representing the specified object. Overrides the
bj ect.toStri ng method.

val ueCf Returns the primitive value of the specified object. Overrides the

oj ect . val ue method.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

Examples Example 1. The following example uses the Nunber object’s properties to
assign values to several numeric variables:

bi ggest Num = Nunber . MAX_VALUE

smal | est Num = Nunber. M N_VALUE

i nfiniteNum = Nunber. PCSITI VE_I NFINI TY
negl nfini teNum = Number. NEGATI VE_I NFI NI TY

not ANum = Nunber. NaN

128 Core JavaScript Reference

Number.constructor

Example 2. The following example creates a Number object, nyNum then adds
a descri ption property to all Nunber objects. Then a value is assigned to the
myNumobject’s descri pti on property.

nyNum = new Nunber (65)
Nunber . pr ot ot ype. descri pti on=nul
nyNum descri pti on="wi nd speed"

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Nunber

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Cbj ect. constructor.

MAX_VALUE

Description

Examples

The maximum numeric value representable in JavaScript.
Property of Nunmber

Static, Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "I nfinity".

Because MAX_VALLUE is a static property of Nunber, you always use it as
Nunber . MAX_VALUE, rather than as a property of a Nunber object you created.

The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the f unc2
function is called.

if (nunl * nunR <= Nunber. MAX_VALUE)
funcl()

el se
func2()

Chapter 1, Objects, Methods, and Properties 129

Number.MIN_VALUE

MIN_VALUE

The smallest positive numeric value representable in JavaScript.
Property of Nunmber

Static, Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description The M N_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

M N_VALUE has a value of approximately 5e-324. Values smaller than
M N_VALUE (“underflow values”) are converted to 0.

Because M N_VALLE is a static property of Nunber, you always use it as
Nunber . M N_VALUE, rather than as a property of a Nunber object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to M N_VALUE, the f unc1 function is called; otherwise, the f unc2
function is called.

if (nunl / nun2 >= Nunber.M N_VALUE)
funcl()

el se
func2()

NaN

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.
Property of Nunber

Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

130 Core JavaScript Reference

Description

Examples

See also

Number.NEGATIVE_INFINITY

JavaScript prints the value Nunber . NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Nunber . NaN. Use the
i sNaN function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

In the following example, if mont h has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var nmonth = 13
if (month <1 || month > 12) {
mont h = Nunber. NaN
alert("Month nmust be between 1 and 12.")

}
NaN, i sNaN, par seFl oat, par sel nt

NEGATIVE_INFINITY

Description

A special numeric value representing negative infinity. This value is represented
as the unquoted literal " - I nfini ty".

Property of Nunber

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

This value behaves slightly differently than mathematical infinity:

= Any positive value, including POSI TI VE_I NFI NI TY, multiplied by
NEGATI VE_I NFI NI TY is NEGATI VE_I NFI NI TY.

= Any negative value, including NEGATI VE_| NFI NI TY, multiplied by
NEGATI VE_I NFI NI TY is POSI TI VE_I NFI NI TY.

= Zero multiplied by NEGATI VE_I NFI NI TY is NaN.
= NaN multiplied by NEGATI VE_I NFI NI TY is NaN.

= NEGATI VE_I| NFI NI TY, divided by any negative value except
NEGATI VE_I NFI NI TY, is PCSI TI VE_I NFI NI TY.

= NEGATI VE_I NFI NI TY, divided by any positive value except
PCSI TI VE_I NFI NI TY, is NEGATI VE_I NFI NI TY.

Chapter 1, Objects, Methods, and Properties 131

Number.POSITIVE_INFINITY

= NEGATI VE_I NFI NI TY, divided by either NEGATI VE_I NFI NI TY or
POSI TI VE_I NFI NI TY, is NaN.

= Any number divided by NEGATI VE_| NFI NI TY is Zero.

Because NEGATI VE_I NFI NI TY is a static property of Nunber, you always use it
as Nunber . NEGATI VE_I NFI NI TY, rather than as a property of a Nunber object
you created.

Examples In the following example, the variable smal | Nunber is assigned a value that is
smaller than the minimum value. When the i f statement executes,
smal | Nunber has the value "- I nfinity", so the f uncl function is called.

var smal | Nunber = - Number. MAX_VALUE* 10

if (small Number == Nunber. NEGATI VE_I NFI NI TY)
funcl()

el se
func2()

Seealso Infinity,isFinite

POSITIVE_INFINITY

A special numeric value representing infinity. This value is represented as the
unquoted literal "I nfinity".

Property of Nunber

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description This value behaves slightly differently than mathematical infinity:

= Any positive value, including POSI TI VE_I NFI NI TY, multiplied by
PCSI TI VE_I NFI NI TY is POSI TI VE_I NFI NI TY.

= Any negative value, including NEGATI VE_I NFI NI TY, multiplied by
PCSI TI VE_I NFI NI TY is NEGATI VE_I NFI NI TY.

« Zero multiplied by PCSI TI VE_| NFI NI TY is NaN.
= NaN multiplied by POSI TI VE_I NFI NI TY is NaN.

< POSI TI VE_I NFI NI TY, divided by any negative value except
NEGATI VE_I NFI NI TY, is NEGATI VE_I NFI NI TY.

e POSI TI VE_I NFI NI TY, divided by any positive value except
POSI TI VE_I NFI NI TY, is PCSI TI VE_I NFI NI TY.

132 Core JavaScript Reference

Number.prototype

= POSI TI VE_I NFI NI TY, divided by either NEGATI VE_I NFI NI TY or
POSI TI VE_I NFI NI TY, is NaN.

= Any number divided by POSI Tl VE_I NFI NI TY is Zero.

Because PCSI Tl VE_I NFI NI TY is a static property of Nunber, you always use it
as Nunber . POSI TI VE_I NFI NI TY, rather than as a property of a Nunber object
you created.

Examples In the following example, the variable bi gNunber is assigned a value that is
larger than the maximum value. When the i f statement executes, bi gNunber
has the value "I nfinity", so the f uncl function is called.
var bi gNunber = Nunmber. MAX_VALUE * 10
i f (bigNunber == Nunber. POSI TI VE_I NFI NI TY)

funcl()
el se
func2()
Seealso Infinity,isFinite
prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.
Property of Nunber
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
toSource
Returns a string representing the source code of the object.
Method of Nunber
Implemented in JavaScript 1.3
Syntax toSource()
Parameters None

Chapter 1, Objects, Methods, and Properties 133

Number.toString

Description The t oSour ce method returns the following values:
= For the built-in Nunber object, t oSour ce returns the following string
indicating that the source code is not available:
function Nunber() {
[native code]
}
= For instances of Nunber, t oSour ce returns a string representing the
source code.
This method is usually called internally by JavaScript and not explicitly in code.
Seealso (bj ect.toSource
toString
Returns a string representing the specified Number object.
Method of Nunmber
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax toString()
toString(radix)
Parameters
r adi x (Optional) An integer between 2 and 36 specifying the base to use for
representing numeric values.
Description The Nunber object overrides the t oSt ri ng method of the Obj ect object; it

does not inherit Obj ect . t oSt ri ng. For Nunber objects, the t oSt ri ng
method returns a string representation of the object.

JavaScript calls the t oSt ri ng method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

For Nunmber objects and values, the built-in t oSt ri ng method returns the string
representing the value of the number.

134 Core JavaScript Reference

Number.valueOf

You can use t oSt ri ng on numeric values, but not on numeric literals:

// The next two lines are valid
var howhvany=10
al ert ("howMany.toString() is " + howMvany.toString())

/1 The next line causes an error
alert("45.toString() is " + 45.toString())

valueOf

Syntax
Parameters

Description

Examples

See also

Returns the primitive value of a Number object.

Method of Nurnber
Implemented in JavaScript 1.1
ECMA version ECMA-262
val ue ()

None

The val ueX method of Nunber returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

X = new Nunber();
al ert (x.valueOd()) //displays 0

bj ect . val ue™

Chapter 1, Objects, Methods, and Properties 135

Object

Object

(bj ect is the primitive JavaScript object type. All JavaScript objects are
descended from Obj ect . That is, all JavaScript objects have the methods
defined for Obj ect .

Core object
Implemented in

ECMA version

JavaScript 1.0: t oSt r i ng method

JavaScript 1.1, NES 2.0: added eval and val ueOf methods;
const ruct or property

JavaScript 1.2: deprecated eval method
JavaScript 1.3: added t 0Sour ce method

JavaScript 1.4: removed eval method
ECMA-262

Created by The Obj ect constructor:

new Obj ect ()

Parameters None

Property

Summary Property

Description

constructor

pr ot ot ype

Specifies the function that creates an object’s prototype.

Allows the addition of properties to all objects.

Method Summary

Method

Description

eval

t oSour ce

toString

unwat ch

Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.

Returns an object literal representing the specified object; you can
use this value to create a new object.

Returns a string representing the specified object.

Removes a watchpoint from a property of the object.

136 Core JavaScript Reference

Obiject.constructor

Method Description

val ueCf Returns the primitive value of the specified object.

wat ch Adds a watchpoint to a property of the object.
constructor

Description

Examples

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of hj ect

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

All objects inherit a construct or property from their pr ot ot ype:

o = new hject // or o ={} in JavaScript 1.2

0. constructor == Object

a = new Array // or a =[] in JavaScript 1.2
a.constructor == Array

n = new Numrber (3)

n.constructor == Nunber

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

docunent. construct or == Docunent
docunent. fornB. constructor == Form

The following example creates a prototype, Tr ee, and an object of that type,
t heTr ee. The example then displays the construct or property for the object
t heTr ee.

function Tree(name) {
t hi s. name=nane

}

theTree = new Tree(" Redwood")

docunent.witel n("theTree.constructor is" +
t heTree. constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(nane) { this.name = name; }

Chapter 1, Objects, Methods, and Properties 137

Object.eval

eval

Syntax

Parameters

Description

Backward
Compatibility

See also

Deprecated. Evaluates a string of JavaScript code in the context of an object.
Method of hj ect

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

JavaScript 1.4: removed as method of objects

eval (string)

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

The eval method is no longer available as a method of Cbj ect . Use the top-
level eval function.

JavaScript 1.2 and 1.3. eval as a method of Object and every object derived
from Obiject is deprecated (but still available).

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

eval

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Functi on. pr ot ot ype.

Property of hj ect

Implemented in JavaScript 1.1

ECMA version ECMA-262

138 Core JavaScript Reference

Object.toSource

toSource

Syntax
Parameters

Description

Examples

See also

Returns a string representing the source code of the object.
Method of hj ect

Implemented in JavaScript 1.3

t oSour ce()
None

The t oSour ce method returns the following values:

= For the built-in oj ect object, t oSour ce returns the following string
indicating that the source code is not available:

function Object() {
[native code]
}
= For instances of Obj ect , t oSour ce returns a string representing the
source code.

= For custom objects, t oSour ce returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call t oSour ce while debugging to examine the contents of an object.

The following code defines the Dog object type and creates t heDog, an object
of type Dog:
functi on Dog(nane, breed, col or, sex) {

t hi s. name=nane

t hi s. breed=br eed

this. col or=col or
t hi s. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

Calling the t oSour ce method of t heDog displays the JavaScript source that
defines the object:

t heDog. t oSour ce()
//returns "{nane: " Gabby", breed:"Lab", color:"chocolate", sex:"girl"}

hject.toString

Chapter 1, Objects, Methods, and Properties 139

Object.toString

Syntax

Description

toString

Returns a string representing the specified object.
Method of hj ect

Implemented in JavaScript 1.0

ECMA version ECMA-262

toString()

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require t heDog to be
represented as a string:

docunent.wite(theDog)
docunent.wite("The dog is " + theDog)

By default, the t oSt ri ng method is inherited by every object descended from
hj ect . You can override this method for custom objects that you create. If
you do not override t oSt ri ng in a custom object, t oSt ri ng returns

[obj ect type], where t ype is the object type or the name of the constructor
function that created the object.

For example:

var o = new Object()
o.toString // returns [object Object]

Built-in toString methods. Every built-in core JavaScript object overrides the
t oSt ri ng method of Gbj ect to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Overriding the default toString method. You can create a function to be
called in place of the default t oSt ri ng method. The t oSt ri ng method takes
no arguments and should return a string. The t oSt ri ng method you create can
be any value you want, but it will be most useful if it carries information about
the object.

140 Core JavaScript Reference

Object.toString

The following code defines the Dog object type and creates t heDog, an object
of type Dog:
functi on Dog(nane, breed, col or, sex) {

t hi s. nane=nane

thi s. breed=breed

this. col or=col or
thi s. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

If you call the t oSt ri ng method on this custom object, it returns the default
value inherited from Cbj ect :

theDog.toString() //returns [object Object]

The following code creates dogToSt ri ng, the function that will be used to
override the default t oSt ri ng method. This function generates a string
containing each property, of the form " property = val ue;".

function dogToString() {

var ret = "Dog " + this.nane + " is [\n"
for (var prop in this)
ret +=" " + prop + " is " + this[prop] + ";\n"

return ret + "]"

}

The following code assigns the user-defined function to the object’s t oSt ri ng
method:

Dog. prototype.toString = dogToString

With the preceding code in place, any time t heDog is used in a string context,
JavaScript automatically calls the dogToSt ri ng function, which returns the
following string:
Dog Gabby is [

name i s Gabby;

breed is Lab;

color is chocol ate;

sex is girl;

]

An object’s t oSt ri ng method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()

Chapter 1, Objects, Methods, and Properties 141

Object.toString

Backward
Compatibility

Examples

JavaScript 1.2. The behavior of the t oSt r i ng method depends on whether
you specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT> tag:

< If you specify LANGUAGE=" JavaScri pt 1. 2" in the <SCRI PT> tag, the
t oSt ri ng method returns an object literal.

= If you do not specify LANGUAGE="JavaScri pt 1. 2" in the <SCRI PT>
tag, the t oSt ri ng method returns [obj ect type], as with other
JavaScript versions.

Example 1: The location object. The following example prints the string
equivalent of the current location.

docunent.wite("location.toString() is " + location.toString() + "
")

The output is as follows:

| ocation.toString() is file:///C/TEMP/ nyprog. htnl

Example 2: Object with no string value. Assume you have an | mage object
named seal i f e defined as follows:

<I MG NAME="seal i fe" SRC="i nages\seaotter.gif" ALIGN="Ileft" VSPACE="10">

Because the | nage object itself has no special t oSt ri ng method,
seal ife.toString() returns the following:

[obj ect | nmage]
Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
docunent.wite("Decimal: ", x.toString(10), " Binary:
x.toString(2), "
")

}

The preceding example produces the following output:
Decimal: 0 Binary: O
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal : 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal : 8 Binary: 1000
Decimal : 9 Binary: 1001

142 Core JavaScript Reference

See also

Object.unwatch

hj ect . t oSour ce, vj ect . val uedr

unwatch

Removes a watchpoint set with the wat ch method.
Method of hj ect

Implemented in JavaScript 1.2, NES 3.0

Syntax unwat ch(prop)

Parameters
prop The name of a property of the object.

Description The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Obj ect .

Example See wat ch.
valueOf
Returns the primitive value of the specified object.
Method of hj ect
Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ued ()
Parameters None

Chapter 1, Objects, Methods, and Properties 143

Object.valueOf

Description

Note

See also

JavaScript calls the val ueOf method to convert an object to a primitive value.
You rarely need to invoke the val ue& method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the val ue method is inherited by every object descended from
hj ect . Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, val ueO returns the
object itself, which is displayed as:

[obj ect Onject]

You can use val uef within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override

hj ect. val uer to call a custom method instead of the default Obj ect
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default val ue&* method. Your function must take no
arguments.

Suppose you have an object type myNunber Type and you want to create a
val ued method for it. The following code assigns a user-defined function to
the object’s val ueOf method:

nyNunmber Type. pr ot ot ype. val ueOf = new Functi on(functionText)
With the preceding code in place, any time an object of type myNunber Type is

used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

An object’s val ueO method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

nyNunber . val ueOf ()
Obijects in string contexts convert via the t oSt r i ng method, which is different
from St ri ng objects converting to string primitives using val ueCf . All string

objects have a string conversion, if only "[obj ect type]". But many objects
do not convert to number, boolean, or function.

parselnt, hject.toString

144 Core JavaScript Reference

Object.watch

watch

Syntax

Parameters

Description

Watches for a property to be assigned a value and runs a function when that
occurs.
Method of hj ect

Implemented in JavaScript 1.2, NES 3.0

wat ch(prop, handl er)

prop The name of a property of the object.
handl er A function to call.

Watches for assignment to a property named pr op in this object, calling
handl er (prop, ol dval, newal) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or ol dval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwat ch method. By default, the wat ch
method is inherited by every object descended from Obj ect .

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

Chapter 1, Objects, Methods, and Properties 145

Object.watch

Example

<script |anguage="JavaScriptl.2">
o = {p:1}
0. wat ch("p",

function (id,oldval, newal) {

docunent.witeln("o." +id + "

+ oldval + " to " + newal)
return newal

b

0.p =2

o.p =3
delete o.p
o.p =4
o.unwat ch(’'p’)
o.p =5
</script>

This script displays the following:

0.p changed from 1 to 2
0.p changed from 2 to 3
0.p changed from 3 to 4

146 Core JavaScript Reference

changed from"

Packages

Created by

Description

Property
Summary

Packages

A top-level object used to access Java classes from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The j ava, net scape, and sun
properties represent the packages java.*, netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Fr anme class as
follows:

var theFrame = new Packages.java.awt.Frane();

For convenience, JavaScript provides the top-level net scape, sun, and j ava
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.aw . Frane();
The cl assNane property represents the fully qualified path name of any other

Java class that is available to JavaScript. You must use the Packages object to
access classes outside the net scape, sun, and j ava packages.

Property Description

cl assNane The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

j ava Any class in the Java package java.*.

net scape Any class in the Java package netscape.*.

sun Any class in the Java package sun.*.

Chapter 1, Objects, Methods, and Properties 147

Packages.className

Examples The following JavaScript function creates a Java dialog box:

function createWndow() {
var theOamner = new Packages.java.aw . Frame();
var theW ndow = new Packages. j ava. awt . Di al og(t heOaner) ;
t heW ndow. set Si ze(350, 200) ;
theW ndow. setTitle("Hello, World");
t heW ndow. set Vi si bl e(true);
}

In the previous example, the function instantiates t heW ndow as a new
Packages object. The set Si ze, set Ti tl e, and set Vi si bl e methods are
all available to JavaScript as public methods of j ava. awt . Di al og.

className

The fully qualified name of a Java class in a package other than net scape,
j ava, or sun that is available to JavaScript.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax Packages. c/ assNane
where ¢/ assnane is the fully qualified name of a Java class.

Description You must use the ¢/ assName property of the Packages object to access
classes outside the net scape, sun, and j ava packages.

Examples The following code accesses the constructor of the Cor baCbj ect class in the
my Conpany package from JavaScript:

var theCbject = new Packages. nyConpany. Cor baOhj ect ()

In the previous example, the value of the ¢/ assNane property is
my Conpany. Cor baObj ect, the fully qualified path name of the
Cor ba(nhj ect class.

148 Core JavaScript Reference

Packages.java

java

Syntax

Description

Examples

Any class in the Java package j ava. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Packages. j ava

Use the j ava property to access any class in the j ava package from within
JavaScript. Note that the top-level object j ava is a synonym for
Packages. j ava.

The following code accesses the constructor of the j ava. awt . Fr ane class:

var theOwner = new Packages.java.awt. Franme();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.aw . Franme();

netscape

Syntax

Description

Examples

Any class in the Java package net scape. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Packages. net scape

Use the net scape property to access any class in the net scape package
from within JavaScript. Note that the top-level object net scape is a synonym
for Packages. net scape.

See the example for .Packages. j ava

Chapter 1, Objects, Methods, and Properties 149

Packages.sun

sun

Any class in the Java package sun. *.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0

Syntax Packages. sun

Description Use the sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for
Packages. sun.

Examples See the example for .Packages. j ava

150 Core JavaScript Reference

RegEXxp

Created by

Parameters

RegExp

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Core object

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: added t 0Sour ce method

A literal text format or the RegExp constructor function.
The literal format is used as follows:

| pattern/ fl ags

The constructor function is used as follows:

new RegExp("pattern'[, "flags"])

pattern The text of the regular expression.

fl ags If specified, flags can have one of the following values:
= . global match
= i :ignore case
= @i : both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

[ab+c/i
new RegExp("ab+c", "i")

Chapter 1, Objects, Methods, and Properties 151

RegExp

Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re
re

new RegExp("\\w+")
I\ e/

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.1 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, / b/ matches the character 'b’. By placing a backslash in
front of b, that is by using / \ b/, the character becomes special to
mean match a word boundary.
Or
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, / a*/
means match 0 or more a’'s. To match * literally, precede the it with a
backslash; for example, / a\ */ matches 'a*'.

n Matches beginning of input or line.
For example, / *A/ does not match the 'A’ in "an A," but does match it
in "An A"

$ Matches end of input or line.
For example, / t $/ does not match the 't' in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.

For example, / bo*/ matches 'boooo’ in "A ghost booooed" and 'b’ in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalentto {1, }.
For example, / a+/ matches the 'a’ in "candy" and all the a’s in
"Caaaaaaandy."

? Matches the preceding character 0 or 1 time.

For example, / e?l e?/ matches the 'el’ in "angel" and the 'le’ in
"angle."

152 Core JavaScript Reference

RegExp

Table 1.1 Special characters in regular expressions. (Continued)

Character Meaning
(The decimal point) matches any single character except the newline
character.

For example, / . n/ matches 'an’ and 'on’ in "nay, an apple is on the
tree", but not 'nay’.

(x) Matches 'x’ and remembers the match.

For example, / (f oo) / matches and remembers 'foo’ in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
. $9.

x|y Matches either 'x' or 'y'.

For example, / gr een| r ed/ matches 'green’ in "green apple" and 'red’
in "red apple.”

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.

For example, / a{ 2}/ doesn't match the 'a’ in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy.’

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.

For example, / a{ 2, } doesn't match the 'a’ in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

{n, n Where n and mare positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, / a{ 1, 3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy”
Notice that when matching "caaaaaaandy”, the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a- c] . They match the 'b' in
"brisket" and the 'c' in "ache".

[*xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [“abc] is the same as [*a- c] . They initially match 'r'
in "brisket" and 'h" in "chop."’

[\b] Matches a backspace. (Not to be confused with \ b.)

Chapter 1, Objects, Methods, and Properties 153

RegExp

Table 1.1 Special characters in regular expressions. (Continued)

Character

Meaning

\b

\B

\cX

\d

\D

\ f
\n
\r

\'s

\'S

\ 't
\v

\'w

\W

Matches a word boundary, such as a space. (Not to be confused with

[\b].)
For example, / \ bn\ w matches the 'no’ in "noonday";/ \ wy\ b/
matches the 'ly’ in "possibly yesterday."

Matches a non-word boundary.
For example, /\ WA Bn/ matches 'on’ in "noonday", and / y\ B\ w/
matches 'ye' in "possibly yesterday."

Where X is a control character. Matches a control character in a string.
For example, /\ cM matches control-M in a string.

Matches a digit character. Equivalent to [0- 9] .
For example, /\ d/ or/[0-9]/ matches 2" in "B2 is the suite
number.”

Matches any non-digit character. Equivalent to [~0- 9] .
For example, /\ D/ or /[”~0-9]/ matches 'B’ in "B2 is the suite
number."

Matches a form-feed.
Matches a linefeed.
Matches a carriage return.

Matches a single white space character, including space, tab, form feed,
line feed. Equivalentto [\f\n\r\t\v].
for example, /\ s\ w*/ matches ' bar’ in "foo bar."

Matches a single character other than white space. Equivalent to [#
\fAn\r\it\v].
For example, / \ S/ \ w* matches ’foo’ in "foo bar."

Matches a tab
Matches a vertical tab.

Matches any alphanumeric character including the underscore.
Equivalent to [A- Za- z0-9_] .
For example, / \ W matches 'a’ in "apple,” '5" in "$5.28," and '3’ in "3D."

Matches any non-word character. Equivalent to [*A- Za-z0-9_] .
For example, /\W or /[*$A- Za- z0- 9_] / matches '%’ in "50%."

154 Core JavaScript Reference

RegExp

Table 1.1 Special characters in regular expressions. (Continued)

Character Meaning

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).

For example, / appl e(,)\ sorange\ 1/ matches 'apple, orange’, in
"apple, orange, cherry, peach.” A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the

next row.
\ooct al Where \ ooct al is an octal escape value or \ xhex is a hexadecimal
\ xhex escape value. Allows you to embed ASCII codes into regular

expressions.

The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example,

new RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don’t know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the conpi | e method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties i nput ,
multiline, |l astMatch,l|astParen,| eftContext,rightContext,
and $1 through $9. The i nput and nul ti | i ne properties can be preset. The
values for the other static properties are set after execution of the exec and

t est methods of an individual regular expression object, and after execution
of the mat ch and r epl ace methods of Stri ng.

Chapter 1, Objects, Methods, and Properties 155

RegExp

Property Note that several of the RegExp properties have both long and short (Perl-like)
Summary names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See i nput .

$* See mul tiline.

$& See | ast Mat ch.

$+ See | ast Par en.

$ See leftContext.

$ See rightContext.

constructor Specifies the function that creates an object’s prototype.

gl obal Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

i gnor eCase Whether or not to ignore case while attempting a match in a
string.

i nput The string against which a regular expression is matched.

| ast | ndex The index at which to start the next match.

| ast Mat ch The last matched characters.

| ast Par en The last parenthesized substring match, if any.

| ef t Cont ext The substring preceding the most recent match.

mul tiline Whether or not to search in strings across multiple lines.

pr ot ot ype Allows the addition of properties to all objects.

ri ght Cont ext The substring following the most recent match.

source The text of the pattern

156 Core JavaScript Reference

Method Summary

Examples

RegExp

Method Description

conpi l e Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

t est Tests for a match in its string parameter.

t oSour ce Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
oj ect . t oSour ce method.

toString Returns a string representing the specified object. Overrides the
oj ect.toStri ng method.

val ueCf Returns the primitive value of the specified object. Overrides

the Obj ect . val ueXf method.

In addition, this object inherits the wat ch and unwat ch methods from

hj ect.

Example 1. The following script uses the r epl ace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

<SCRI PT LANGUAGE="JavaScri pt1l.2">
re = /(\w+)\s(\w+)/;

str = "John Smth";
newstr=str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This displays "Smith, John".

Chapter 1, Objects, Methods, and Properties 157

RegExp.$1, ..., $9

Example 2. In the following example, RegExp. i nput is set by the Change
event. In the get I nf o function, the exec method uses the value of
RegExp. i nput as its argument. Note that RegExp is prepended to the $
properties.

<HTM_>

<SCRI PT LANGUAGE="JavaScri pt1l.2">
function getlnfo() {
re = /(\w)\s(\d+)/;
re.exec();
wi ndow. al ert (RegExp. $1 + ", your age is " + RegExp. $2);
}
</ SCRI PT>

Enter your first name and your age, and then press Enter.

<FORM>
<I NPUT TYPE: " TEXT" NAME="NaneAge" onChange="getlnfo(this);">
</ FORM>

</ HTML>

$1, ..., $9

Description

Properties that contain parenthesized substring matches, if any.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Because i nput is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp. i nput .

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array’s indexes.

These properties can be used in the replacement text for the

String. repl ace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n's literally (where n is a
positive integer).

158 Core JavaScript Reference

Examples

RegExp.$_

The following script uses the r epl ace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

<SCRI PT LANGUAGE="JavaScri ptl.2">
re = /(\wr)\s(\w+)/;

str = "John Smth";
newstr=str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This displays "Smith, John".

$

See i nput .

$*

See nul tiline.

$&

See | ast Mat ch.

S+

See | ast Par en.

$£

See | ef t Cont ext .

$1

See ri ght Cont ext .

Chapter 1, Objects, Methods, and Properties 159

RegExp.compile

compile

Syntax

Parameters

Description

Compiles a regular expression object during execution of a script.
Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

regexp. conmpi l e(pattern[, flags])

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.

flags If specified, flags can have one of the following values:

= "g":global match
= "i":ignore case

= "gi": both global match and ignore case

Use the conpi | e method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn’t compiled each time it is
encountered. Use the conpi | e method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the conpi | e method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
conpi | e method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s sour ce,
gl obal , and i gnor eCase properties.

160 Core JavaScript Reference

RegExp.constructor

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of RegExp
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Description See Obj ect . const ruct or.
exec
Executes the search for a match in a specified string. Returns a result array.
Method of RegExp
Implemented in JavaScript 1.2, NES 3.0
Syntax regexp. exec([str])
regexp([str])
Parameters
regexp The name of the regular expression. It can be a variable name or a
literal.
str The string against which to match the regular expression. If
omitted, the value of RegExp. i nput is used.
Description As shown in the syntax description, a regular expression’s exec method can be

called either directly, (with r egexp. exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find t rue or f al se, use the t est
method or the Stri ng sear ch method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns nul | .

Chapter 1, Objects, Methods, and Properties 161

RegExp.exec

Consider the following example:

<SCRI PT LANGUAGE="JavaScript1l.2">

//Match one d foll owed by one or nore b’s followed by one d
/I Remenber matched b’s and the follow ng d

//1gnore case

nyRe=/d(b+) (d)/i g;

nmyArray = myRe. exec("cdbBdbsbz");

</ SCRI PT>

The following table shows the results for this script:

Object Property/Index Description Example
myAr r ay The contents of myAr r ay [*dbBd", "bB", "d"]
i ndex The 0-based index of the match in the 1
string
i nput The original string cdbBdbsbz
[0] The last matched characters dbBd
[1, ...[m The parenthesized substring matches, if [1] = bB
any. The number of possible [2] =d
parenthesized substrings is unlimited.
nmyRe | ast | ndex The index at which to start the next 5
match.
i gnor eCase Indicates if the "i " flag was used to true
ignore case
gl obal Indicates if the " g" flag was used for a true
global match
sour ce The text of the pattern d(b+) (d)

162 Core JavaScript Reference

RegExp.exec

Object Property/Index Description Example
RegExp | ast Mat ch The last matched characters dbBd
$&
| ef t Cont ext The substring preceding the most recent ¢
$' match
ri ght Cont ext The substring following the most recent bsbz
$ match
$1, . $9 The parenthesized substring matches, if $1 = bB
any. The number of possible $2 =d
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.
| ast Paren The last parenthesized substring match, if d
$+

any.

If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of st r specified by the regular expression’s

| ast | ndex property. For example, assume you have this script:

<SCRI PT LANGUAGE="JavaScri ptl.2">
nyRe=/ ab*/ g;
str = "abbcdef abh"
nyArray = myRe.exec(str);
docunent.witel n("Found " + nmyArray[0] +
Next match starts at " + nyRe.lastl ndex)
nmySecondArray = nmyRe. exec(str);
docunent.witel n("Found " + nySecondArray[0] +
Next match starts at " + nyRe.lastl ndex)
</ SCRI PT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Chapter 1, Objects, Methods, and Properties 163

RegExp.global

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user’s name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTM_>

<SCRI PT LANGUAGE="JavaScri ptl.2">

A = ["Frank", "Emly", "Jane", "Harry", "N ck", "Beth", "Rick",
"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tont, "Fiona", "Jane", "WIIliant, "Joan", "Beth"]

function | ookup() {
firstName = /\w+/i();
if (!firstNane)

wi ndow. al ert (RegExp.input + " isn't a nane!");
el se {
count = 0;
for (i=0; i<A length; i++)
if (firstNane[O0].toLowerCase() == Ali].toLowerCase()) count++;
if (count ==1)
mdstring = " other has ";
el se
mdstring = " others have ";
wi ndow. al ert ("Thanks, " + count + midstring + "the sane nane!")
}
}
</ SCRI PT>

Enter your first nane and then press Enter.

<FORM> <I NPUT TYPE: " TEXT" NAME="Fir st Nane" onChange="I| ookup(this);"> </
FORM>

</ HTML>

global

Whether or not the " g" flag is used with the regular expression.
Property of RegExp

Read-only
Implemented in JavaScript 1.2, NES 3.0

164 Core JavaScript Reference

Description

RegExp.ignoreCase

gl obal is a property of an individual regular expression object.

The value of gl obal is true if the "g" flag was used; otherwise, f al se. The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the comnpi | e
method changes the value of this property.

ignoreCase

Description

Whether or not the "i " flag is used with the regular expression.
Property of RegExp

Read-only
Implemented in JavaScript 1.2, NES 3.0

i gnor eCase is a property of an individual regular expression object.

The value of i gnoreCase is true if the "i " flag was used; otherwise, f al se.
The "i " flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

input

The string against which a regular expression is matched. $_ is another name
for the same property.
Property of RegExp

Static
Implemented in JavaScript 1.2, NES 3.0

Chapter 1, Objects, Methods, and Properties 165

RegExp.lastindex

Description

Because i nput is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp. i nput .

If no string argument is provided to a regular expression’s exec or t est
methods, and if RegExp. i nput has a value, its value is used as the argument to
that method.

The script or the browser can preset the i nput property. If preset and if no
string argument is explicitly provided, the value of i nput is used as the string
argument to the exec or t est methods of the regular expression object. i nput
is set by the browser in the following cases:

= When an event handler is called for a TEXT form element, i nput is set to
the value of the contained text.

< When an event handler is called for a TEXTAREA form element, i nput is set
to the value of the contained text. Note that mul ti | i ne is also set to t rue
so that the match can be executed over the multiple lines of text.

< When an event handler is called for a SELECT form element, i nput is set to
the value of the selected text.

= When an event handler is called for a Li nk object, i nput is set to the value
of the text between and </ A>.

The value of the i nput property is cleared after the event handler completes.

lastindex

A read/write integer property that specifies the index at which to start the next
match.
Property of RegExp

Implemented in JavaScript 1.2, NES 3.0

166 Core JavaScript Reference

Description

RegExp.lastMatch

| ast | ndex is a property of an individual regular expression object.

This property is set only if the regular expression used the " g" flag to indicate
a global search. The following rules apply:

= If I ast | ndex is greater than the length of the string, r egexp. t est and
regexp. exec fail, and | ast | ndex is set to 0.

= If I ast I ndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at | ast | ndex.

= If I ast I ndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and | ast | ndex is reset to 0.

= Otherwise, | ast | ndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

re = /(hi)?/ Matches the empty string.
g

re("hi") Returns ["hi ", "hi"] with| ast| ndex equal to 2.
re("hi") Returns [" "], an empty array whose zeroth element is the match

string. In this case, the empty string because | ast | ndex was 2
(and still is 2) and " hi " has length 2.

lastMatch

Description

The last matched characters. $& is another name for the same property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Because | ast Mat ch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. | ast Mat ch.

Chapter 1, Objects, Methods, and Properties 167

RegExp.lastParen

lastParen

The last parenthesized substring match, if any. $+ is another name for the same
property.

Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Description Because | ast Par en is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. | ast Par en.

leftContext

The substring preceding the most recent match. $* is another name for the
same property.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext

multiline

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.
Property of RegExp

Static
Implemented in JavaScript 1.2, NES 3.0

168 Core JavaScript Reference

Description

RegExp.prototype

Because mul ti | i ne is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. nul ti | i ne.

The value of mul ti l'i ne is t rue if multiple lines are searched, f al se if
searches must stop at line breaks.

The script or the browser can preset the nul ti | i ne property. When an event
handler is called for a TEXTAREA form element, the browser sets nul ti | i ne to
true. nul tiline is cleared after the event handler completes. This means that,
if you've preset multiline to t r ue, it is reset to f al se after the execution of any
event handler.

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. pr ot ot ype.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

rightContext

Description

The substring following the most recent match. $' is another name for the
same property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Because ri ght Cont ext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. ri ght Cont ext .

Chapter 1, Objects, Methods, and Properties 169

RegExp.source

source

A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or"i" flags.
Property of RegExp

Read-only
Implemented in JavaScript 1.2, NES 3.0

Description sour ce is a property of an individual regular expression object.

You cannot change this property directly. However, calling the comnpi | e
method changes the value of this property.

test

Executes the search for a match between a regular expression and a specified
string. Returns true or f al se.
Method of RegExp

Implemented in JavaScript 1.2, NES 3.0

Syntax regexp.test([str])

Parameters
regexp The name of the regular expression. It can be a variable name or a literal.

str The string against which to match the regular expression. If omitted, the
value of RegExp. i nput is used.

Description When you want to know whether a pattern is found in a string use the t est
method (similar to the St ri ng. sear ch method); for more information (but
slower execution) use the exec method (similar to the St ri ng. mat ch
method).

170 Core JavaScript Reference

RegExp.toSource

Example The following example prints a message which depends on the success of the
test:
function testinput(re, str){
if (re.test(str))
mdstring = " contains "
el se
m dstring = " does not contain "
docunent.wite (str + midstring + re.source);
}
toSource
Returns a string representing the source code of the object.
Method of RegExp
Implemented in JavaScript 1.3
Syntax toSource()
Parameters None
Description The t oSour ce method returns the following values:
= For the built-in RegExp object, t oSour ce returns the following string
indicating that the source code is not available:
functi on Bool ean() {
[native code]
}
= For instances of RegExp, t oSour ce returns a string representing the
source code.
This method is usually called internally by JavaScript and not explicitly in code.
Seealso (Obj ect.toSource

toString

Returns a string representing the specified object.
Method of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Chapter 1, Objects, Methods, and Properties 171

RegExp.valueOf

Syntax toString()
Parameters None.

Description The RegExp object overrides the t oSt ri ng method of the Obj ect object; it
does not inherit Obj ect . t oSt ri ng. For RegExp objects, the t oSt ri ng
method returns a string representation of the object.

Examples The following example displays the string value of a RegExp object:

nyExp = new RegExp("a+b+c");
alert (nmyExp.toString()) di spl ays "/a+b+c/"

Seealso Object.toString

valueOf

Returns the primitive value of a RegExp object.

Method of RegExp
Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax val ueOr ()
Parameters None

Description The val ueOf method of RegExp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp. t oSt ri ng.

This method is usually called internally by JavaScript and not explicitly in code.

Examples nyExp = new RegExp("a+b+c");
al ert (myExp. val uet ()) di spl ays "/ a+b+c/"

See also RegExp.toString, Obj ect. val ue™

172 Core JavaScript Reference

String

Created by
Parameters

Description

String

An object representing a series of characters in a string.
Core object

Implemented in JavaScript 1.0: Create a St ri ng object only by quoting characters.

JavaScript 1.1, NES 2.0: added St ri ng constructor; added

pr ot ot ype property; added spl i t method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat, mat ch, repl ace,
sear ch, sli ce, and substr methods.

JavaScript 1.3: added t 0Sour ce method
ECMA version ECMA-262

The St ring constructor:

new String(string)

string Any string.

The St ri ng object is a wrapper around the string primitive data type. Do not
confuse a string literal with the St ri ng object. For example, the following
code creates the string literal s1 and also the St ri ng object s2:

"foo" //creates a string literal value
new String("foo") //creates a String object

sl
s2
You can call any of the methods of the St ri ng object on a string literal
value—JavaScript automatically converts the string literal to a temporary

St ri ng object, calls the method, then discards the temporary St ri ng object.
You can also use the Stri ng. | engt h property with a string literal.

Chapter 1, Objects, Methods, and Properties 173

String

You should use string literals unless you specifically need to use a Stri ng
object, because St ri ng objects can have counterintuitive behavior. For
example:

sl = "2 + 2" //creates a string literal value

s2 = new String("2 + 2")//creates a String object

eval (s1) //returns the nunber 4
eval (s2) //returns the string "2 + 2"

A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
St ri ng function.

Property
Summary Property Description
const ruct or Specifies the function that creates an object’s prototype.
I ength Reflects the length of the string.
pr ot ot ype Allows the addition of properties to a St ri ng object.
Method Summary
Method Description
anchor Creates an HTML anchor that is used as a hypertext target.
bi g Causes a string to be displayed in a big font as if it were in a
Bl Gtag.
bl i nk Causes a string to blink as if it were in a BLI NK tag.
bol d Causes a string to be displayed as if it were in a B tag.
char At Returns the character at the specified i ndex.
char CodeAt Returns a number indicating the Unicode value of the character
at the given index.
concat Combines the text of two strings and returns a new string.
fixed Causes a string to be displayed in fixed-pitch font as if it were in
aTT tag.
fontcol or Causes a string to be displayed in the specified color as if it

were in a tag.

174 Core JavaScript Reference

String

Method Description

fontsize Causes a string to be displayed in the specified font size as if it
were in a tag.

f r onChar Code Returns a string created by using the specified sequence of
Unicode values.

i ndexOf Returns the index within the calling St ri ng object of the first
occurrence of the specified value, or -1 if not found.

italics Causes a string to be italic, as if it were in an | tag.

| ast | ndexOf Returns the index within the calling St ri ng object of the last
occurrence of the specified value, or -1 if not found.

I'ink Creates an HTML hypertext link that requests another URL.

mat ch Used to match a regular expression against a string.

repl ace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

smal | Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a St r i ng object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRI KE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a

t oLower Case

SUP tag.

Returns the calling string value converted to lowercase.

Chapter 1, Objects, Methods, and Properties 175

String

Method Description

t oSour ce Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
oj ect . t oSour ce method.

toString Returns a string representing the specified object. Overrides the
bj ect.toStri ng method.

t oUpper Case Returns the calling string value converted to uppercase.

val ueCf Returns the primitive value of the specified object. Overrides the

oj ect . val ue method.

In addition, this object inherits the wat ch and unwat ch methods from
hj ect.

Examples Example 1: String literal. The following statement creates a string literal:

var | ast_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
" SCHAEFER, " and "schaefer":

| ast _nane. | ength
| ast _nane. t oUpper Case()
| ast _nane. t oLower Case()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H”:

var nyString = "Hello"
nyString[0] //returns "H'

176 Core JavaScript Reference

String.anchor

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var | ast Nane = "Schaefer"
var firstName = "Jesse"
enmpW ndow=wi ndow. open(’ string2. htm’,’wi ndowl’,’w dt h=300, hei ght =300")

If the HTML source for the second window (st ri ng2. ht nl) creates two string
variables, enpLast Nane and enpFi r st Nane, the following code in the first
window assigns values to the second window’s variables:

enpW ndow. enpFi r st Name=f i r st Nane
enpW ndow. enpLast Nane=| ast Nane

The following code in the first window displays the values of the second
window’s variables:

alert (' enpFirstNanme in enpWndow is ' + enpW ndow. enpFi r st Nane)
al ert (" enpLast Name in enpWndow is ' + enpW ndow. enpLast Nare)

anchor

Syntax

Parameters

Description

Creates an HTML anchor that is used as a hypertext target.
Method of String

Implemented in JavaScript 1.0, NES 2.0

anchor (naneAttri but e)

nameAttribute A string.

Use the anchor method with the docunent . wri t e or docunment. witeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then callwite orwiteln
to display the anchor in a document. In server-side JavaScript, use the wri t e
function to display the anchor.

In the syntax, the t ext string represents the literal text that you want the user
to see. The naneAt t ri but e string represents the NAVE attribute of the A tag.

Anchors created with the anchor method become elements in the
docunent . anchor s array.

Chapter 1, Objects, Methods, and Properties 177

String.big

Examples The following example opens the nsgW ndow window and creates an anchor
for the table of contents:

var nyString="Tabl e of Contents"
nsgW ndow. docunent. witel n(nyString. anchor ("contents_anchor"))

The previous example produces the same output as the following HTML:

Tabl e of Contents

Seealso String.link

big

Causes a string to be displayed in a big font as if it were in a Bl Gtag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax big()
Parameters None

Description Use the bi g method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

Examples The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.snmall())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SVALL>
<P><Bl G>Hel | 0o, worl d</BI G
<P><FONTSI ZE=7>Hel | o, wor| d</ FONTSI ZE>

Seealso String.fontsize, String.small

178 Core JavaScript Reference

String.blink

blink

Causes a string to blink as if it were in a BLI NK tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax bl i nk()

Parameters None

Description Use the bl i nk method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

Examples The following example uses st ri ng methods to change the formatting of a
string:
var worldString="Hello, world"
docunent.wite(worl dString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())
The previous example produces the same output as the following HTML:
<BLI NK>Hel | 0, wor | d</ BLI NK>
<P>Hel | 0, worl d
<P><|>Hel |l o, world</I>
<P><STRI KE>Hel | 0, wor| d</ STRI KE>
Seealso String.bold,String.italics,String.strike
bold
Causes a string to be displayed as bold as if it were in a B tag.
Method of String
Implemented in JavaScript 1.0, NES 2.0
Syntax bol d()
Parameters None

Chapter 1, Objects, Methods, and Properties 179

String.charAt

Description Use the bol d method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

Examples The following example uses st ri ng methods to change the formatting of a
string:

var worldString="Hello, world"
docunent.wite(worl dString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | 0, worl d</ B>

<P><I>Hel l o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

Seealso String.blink,String.italics,String.strike

charAt

Returns the specified character from the string.
Method of String

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax char At (i ndex)

Parameters
i ndex An integer between 0 and 1 less than the length of the string.

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called st ri ngNane
isstringNane. | ength - 1. If thei ndex you supply is out of range, JavaScript
returns an empty string.

180 Core JavaScript Reference

String.charCodeAt

Examples The following example displays characters at different locations in the string

"Brave new worl d":

var anyString="Brave new worl d"

docunent.witel n("The character at index O is " + anyString.charAt(0))

docunent.witel n("The character at index 1 is " + anyString.charAt(1))

docunent.witel n("The character at index 2 is " + anyString.charAt(2))

docunent.witel n("The character at index 3 is " + anyString.charAt(3))

docunent.witeln("The character at index 4 is " + anyString.charAt(4))

These lines display the following:

The character at index 0 is B

The character at index 1 isr

The character at index 2 is a

The character at index 3 is v

The character at index 4 is e

Seealso String.indexOf, String.|lastlndexOf,String.split

charCodeAt

Returns a number indicating the Unicode value of the character at the given

index.

Method of String

Implemented in JavaScript 1.2, NES 3.0
JavaScript 1.3: returns a Unicode value rather than an I1SO-Latin-1
value

ECMA version ECMA-262

Syntax char CodeAt ([i ndex])
Parameters

i ndex An integer between 0 and 1 less than the length of the string. The

default value is 0.
Description Unicode values range from 0 to 65,535. The first 128 Unicode values are a

direct match of the ASCII character set. For information on Unicode, see the
Core JavaScript Guide.

Chapter 1, Objects, Methods, and Properties 181

String.concat

Backward JavaScript 1.2. The char CodeAt method returns a number indicating the
Compatibility]SO-Latin-1 codeset value of the character at the given index. The 1SO-Latin-1
codeset ranges from 0 to 255. The first 0 to 127 are a direct match of the ASCII
character set.
Example The following example returns 65, the Unicode value for A.
"ABC". char CodeAt (0) // returns 65
concat
Combines the text of two or more strings and returns a new string.
Method of String
Implemented in JavaScript 1.2, NES 3.0
Syntax concat (string2, string3[, ..., stringN)

Parameters
string2... Strings to concatenate to this string.
stringN

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

s1="Ch "
s2="what a beauti ful
s3="nornin ."
s4=sl.concat(s2,s3) // returns "Ch what a beautiful nornin."
constructor
Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.
Property of String
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description See Obj ect . const ruct or.

182 Core JavaScript Reference

String.fixed

fixed

Syntax
Parameters

Description

Examples

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fixed()
None

Use the fi xed method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses the fi xed method to change the formatting of a
string:

var worldString="Hello, world"
docunent.wite(worl dString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hel | o, world</TT>

fontcolor

Syntax

Parameters

Causes a string to be displayed in the specified color as if it were in a tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fontcol or(col or)

col or A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in the Core JavaScript Guide.

Chapter 1, Objects, Methods, and Properties 183

String.fontcolor

Description

Examples

Use the f ont col or method with the wri t e or wri t el n methods to format
and display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

If you express col or as a hexadecimal RGB triplet, you must use the format
rrggbb. For example, the hexadecimal RGB values for salmon are r ed=FA,
gr een=80, and bl ue=72, so the RGB triplet for sal non is " FA8072" .

The f ont col or method overrides a value set in the f gCol or property.

The following example uses the f ont col or method to change the color of a
string:

var worldString="Hello, world"

docunent.wite(worldString.fontcol or("mroon") +
is maroon in this line")

docunent.wite("<P>" + worldString.fontcolor("sal non") +
is salnobn in this line")

docunent.wite("<P>" + worldString.fontcolor("red") +
isredin this line")

docunent.wite("<P>" + worldString.fontcol or("8000") +
is maroon in hexadecimal in this line")

docunent.wite("<P>" + worldString.fontcol or("FA8072") +
is salnon in hexadecimal in this line")

docunent.wite("<P>" + worldString.fontcol or("FF0O0") +
is red in hexadecinmal in this line")

The previous example produces the same output as the following HTML:

Hel |l o, world is maroon in this line
<P>Hell o, worl d is salnon in this line
<P>Hell o, world is red in this line

Hel | o, wor| d</ FONT>

is maroon in hexadecimal in this line
<P>Hel | o, worl d</ FONT>
is salnon in hexadecimal in this line
<P>Hel | o, worl d</ FONT>
is red in hexadecimal in this line

184 Core JavaScript Reference

String.fontsize

fontsize

Syntax

Parameters

Description

Examples

See also

Causes a string to be displayed in the specified font size as if it were in a tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

fontsize(size)

si ze An integer between 1 and 7, a string representing a signed integer between 1
and 7.

Use the f ont si ze method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use thewri t e
function to display the string.

When you specify si ze as an integer, you set the size of st ri ngNane to one of
the 7 defined sizes. When you specify si ze as a string such as " - 2", you adjust
the font size of st ri ngNane relative to the size set in the BASEFONT tag.

The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.small())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SMALL>
<P><BI G>Hel | 0o, worl d</BI &G
<P><FONTSI ZE=7>Hel | o, wor| d</ FONTSI ZE>

String. big, String.snall

Chapter 1, Objects, Methods, and Properties 185

String.fromCharCode

fromCharCode

Returns a string created by using the specified sequence of Unicode values.
Method of String

Static
Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: uses a Unicode value rather than an 1SO-Latin-1

value
ECMA version ECMA-262
Syntax frontChar Code(nunt, ..., nunN
Parameters
numl, ..., numV A sequence of numbers that are Unicode values.
Description This method returns a string and not a St ri ng object.

Because f r onChar Code is a static method of St ri ng, you always use it as
String. f ronChar Code(), rather than as a method of a St ri ng object you
created.

Backward JavaScript 1.2. The f r onChar Code method returns a string created by using

Compatibility the specified sequence of ISO-Latin-1 codeset values.

Examples The following example returns the string "ABC".
String. frontChar Code(65, 66, 67)
indexOf
Returns the index within the calling St ri ng object of the first occurrence of the
specified value, starting the search at f r om ndex, or -1 if the value is not found.
Method of String
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax i ndexOF (searchVal ue[, fronl ndex])

186 Core JavaScript Reference

Parameters

Description

Examples

String.indexOf

sear chval ue A string representing the value to search for.

from ndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is 0.

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called st ri ngNane
isstringNane.length - 1.

"Bl ue Wal e". i ndexOr ("Bl ue") /'l returns O
"Bl ue Wal e".indexOr ("Blute") // returns -1
"Bl ue Whal e".indexOF ("Whale",0) // returns 5
"Bl ue Whal e".indexOr("Whale",5) // returns 5
"Bl ue Wal e".indexOr("",9) /'l returns 9
"Bl ue Whal e".indexOF("", 10) /'l returns 10
"Bl ue Whal e".indexOF("", 11) /1 returns 10

The i ndexOf method is case sensitive. For example, the following expression
returns -1:

"Bl ue Whal e".indexOf ("bl ue")

Example 1. The following example uses i ndexOf and | ast | ndexCf to locate
values in the string " Brave new worl d."

var anyString="Brave new worl d"

//Displays 8

docunent.wite("<P>The index of the first wfromthe beginning is " +
anyString.indexCOf ("w'))

//Di splays 10

docunent.wite("<P>The index of the first wfromthe end is " +
anyString.lastlndexOf ("w'))

//Di spl ays 6

docunent.wite("<P>The index of 'new fromthe beginning is " +
anyString.indexCOf ("new'))

//Di spl ays 6

docunent.wite("<P>The index of 'new fromthe end is " +
anyString. | astlndexOf ("new'))

Chapter 1, Objects, Methods, and Properties 187

String.italics

See also

Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first wr i t el n method displays 19. But because the i ndexOf method is
case sensitive, the string " cheddar " is not found in nyCapSt ri ng, so the
second wr i t el n method displays -1.

nyString="brie, pepper jack, cheddar"

nyCapString="Brie, Pepper Jack, Cheddar"

docunent.witel n(’ nyString.indexO("cheddar") is ' +
nyString.indexOf ("cheddar"))

docunent.witel n(’ <P>nyCapString.indexOf("cheddar") is ' +
myCapSt ri ng. i ndexXf ("cheddar™))

Example 3. The following example sets count to the number of occurrences
of the letter x in the string str:

count = 0;

pos = str.indexOf ("x");

while (pos !'=-1) {
count ++;

pos = str.indexOf ("x", pos+1);

}
String.charAt, String.lastlndexOf, String.split

italics

Syntax
Parameters

Description

Causes a string to be italic, as if it were in an <I > tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

italics()
None

Use the i t al i cs method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use thewri t e
function to display the string.

188 Core JavaScript Reference

Examples

See also

String.lastindexOf

The following example uses st ri ng methods to change the formatting of a
string:

var worldString="Hello, world"

docunent.wite(worldString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>
<P><I>Hell o, world</I>

<P><STRI KE>Hel | o, wor| d</ STRI KE>

String. blink, String.bold, String.strike

lastindexOf

Syntax

Parameters

Returns the index within the calling St ri ng object of the last occurrence of the
specified value, or -1 if not found. The calling string is searched backward,
starting at f r om ndex.

Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

| ast | ndexOf (searchVal ue[, from ndex])

sear chval ue A string representing the value to search for.

from ndex The location within the calling string to start the search from. It can
be any integer between 0 and the length of the string. The default
value is the length of the string.

Chapter 1, Objects, Methods, and Properties 189

String.length

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is st ri ngNane.length - 1.

"canal ". | ast | ndexOf ("a") /'l returns 3
"canal ".lastlndexOf ("a",2) // returns 1
"canal ".lastlndexOr ("a",0) // returns -1
"canal ". | ast | ndexOf (" x") // returns -1

The | ast | ndexO method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastlndexOr("blue")

Examples The following example uses i ndexCf and | ast | ndexOf to locate values in the
string "Brave new world."

var anyString="Brave new worl d"

// Di splays 8

docunent.wite("<P>The index of the first wfromthe beginning is " +
anyString.indexOf ("w'))

//Di splays 10

docunent.wite("<P>The index of the first wfromthe end is " +
anyString.lastlndexOf("w'))

/1 Di splays 6

docunent.wite("<P>The index of 'new fromthe beginning is " +
anyString.indexOf ("new'))

/1 Di splays 6

docunent.wite("<P>The index of 'new fromthe end is " +
anyString. | astlndexOf ("new'))

Seealso String.charAt, String.indexOh, String.split

length

The length of the string.
Property of String
Read-only

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Description For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

190 Core JavaScript Reference

String.link

link

Syntax

Parameters

Description

Examples

Creates an HTML hypertext link that requests another URL.
Method of String

Implemented in JavaScript 1.0, NES 2.0

link(hrefAttribute)

href Attribute Any string that specifies the HREF attribute of the A tag; it should be
a valid URL (relative or absolute).

Use the | i nk method to programmatically create a hypertext link, and then call
writeorwitel n todisplay the link in a document. In server-side JavaScript,
use the wri t e function to display the link.

Links created with the I i nk method become elements in the | i nks array of the
docunent object. See docunent . | i nks.

The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hot Text =" Net scape"
var URL="http://hone. netscape. cont

docunent.wite("dick to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Net scape</ A>

match

Syntax

Parameters

Used to match a regular expression against a string.
Method of String

Implemented in JavaScript 1.2

mat ch(regexp)

regexp Name of the regular expression. It can be a variable name or a literal.

Chapter 1, Objects, Methods, and Properties 191

String.match

Description

Note

Examples

If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with mat ch.

If you execute a match simply to find true or false, use St ri ng. sear ch or the
regular expression t est method.

Example 1. In the following example, nat ch is used to find 'Chapter’ followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRI PT>

str = "For nore information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;

found = str.match(re);

docunent.wite(found);

</ SCRI PT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

" Chapter 3.4.5.1 is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

.1’ is the second value remembered from (\.\d).

Example 2. The following example demonstrates the use of the global and
ignore case flags with mat ch.

<SCRI PT>

str = "abcDdcbha";

newArray = str.match(/d/gi);
docunent.wite(newArray);

</ SCRI PT>

The returned array contains D, d.

192 Core JavaScript Reference

String.prototype

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Functi on. prot ot ype.

Property of String

Implemented in JavaScript 1.1, NES 3.0
ECMA version ECMA-262
replace

Syntax

Parameters

Description

Finds a match between a regular expression and a string, and replaces the
matched substring with a new substring.
Method of String

Implemented in JavaScript 1.2

repl ace(regexp, newSubStr)
repl ace(regexp, function)

Versions prior to JavaScript 1.3:

repl ace(regexp, newSubStr)

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr The string to put in place of the string found with r egexp. This string can
include the RegExp properties $1, ..., $9,1 ast Mat ch,
| ast Par en, | ef t Cont ext, and ri ght Cont ext .

function A function to be invoked after the match has been performed.

This method does not change the St ri ng object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with r epl ace.

Chapter 1, Objects, Methods, and Properties 193

String.replace

Examples

Specifying a function as a parameter. When you specify a function as the
second parameter, the function is invoked after the match has been performed.
(The use of a function in this manner is often called a lambda expression.)

In your function, you can dynamically generate the string that replaces the
matched substring. The result of the function call is used as the replacement
value.

The nested function can use the matched substrings to determine the new
string (newSubSt r) that replaces the found substring. You get the matched
substrings through the parameters of your function. The first parameter of your
function holds the complete matched substring. Other parameters can be used
for parenthetical matches, remembered submatch strings. For example, the
following r epl ace method returns XX.zzzz - XX , zzzz.
"XXzzzz".replace(/ (X*)(z*)/,

function (str, pl, p2) {

return str +" - " +pl +" | " + p2;
}
)

The array returned from the exec method of the RegExp object and the
subsequent match is available to your function. You can use the content of the
array plus the i nput and the i ndex (index of match in the input string)
properties of the array to perform additional tasks before the method replaces
the substring.

Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits r epl ace to replace each occurrence
of 'apples’ in the string with 'oranges.’

<SCRI PT>
re = /apples/qgi;
str = "Apples are round, and apples are juicy.";

newstr=str.replace(re, "oranges");
docunent.wite(newstr)
</ SCRI PT>

This prints "oranges are round, and oranges are juicy."

194 Core JavaScript Reference

String.replace

Example 2. In the following example, the regular expression is defined in
repl ace and includes the ignore case flag.

<SCRI PT>

str = "Twas the ni ght before Xmas...";
newstr=str.replace(/xmas/i, "Christms");
docunent.wite(newstr)

</ SCRI PT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRI PT LANGUAGE="JavaScri ptl.2">
re = /(\wr)\s(\w+)/;

str = "John Smth";

newstr = str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This prints "Smith, John".

Example 4. The following example replaces a Fahrenheit degree with its
equivalent Celsius degree. The Fahrenheit degree should be a number ending
with F. The function returns the Celsius number ending with C. For example, if
the input number is 212F, the function returns 100C. If the number is OF, the
function returns -17.77777777777778C.

The regular expression t est checks for any number that ends with F. The
number of Fahrenheit degree is accessible to your function through the
parameter $1. The function sets the Celsius number based on the Fahrenheit
degree passed in a string to the f 2c function. f 2¢ then returns the Celsius
number. This function approximates Perl’s s///e flag.

function f2c(x) {
var s = String(x)
var test = /(\d+(\.\d*)?)FR\b/g
return s.repl ace
(test,
nyfunction ($0, $1, $2) {
return (($1-32) * 5/9) + "C';
}

Chapter 1, Objects, Methods, and Properties 195

String.search

search

Syntax

Parameters

Description

Example

Executes the search for a match between a regular expression and this St ri ng
object.
Method of String

Implemented in JavaScript 1.2

sear ch(regexp)

regexp Name of the regular expression. It can be a variable name or a literal.

If successful, sear ch returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use sear ch
(similar to the regular expression t est method); for more information (but
slower execution) use mat ch (similar to the regular expression exec method).

The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) !'= -1)
mdstring = " contains ";
el se
m dstring = " does not contain "
docunent.wite (str + mdstring + re.source);

slice

Syntax

Extracts a section of a string and returns a new string.
Method of String

Implemented in JavaScript 1.0, NES 2.0

slice(beginslicel, endSlice])

196 Core JavaScript Reference

String.small

Parameters
begi nSlice The zero-based index at which to begin extraction.
endSlice The zero-based index at which to end extraction. If omitted, sl i ce

extracts to the end of the string.

Description sl i ce extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.
sl i ce extracts up to but not including endSl i ce. string. slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).
As a negative index, endSl i ce indicates an offset from the end of the string.
string. slice(2,-1) extracts the third character through the second to last
character in the string.

Example The following example uses sl i ce to create a new string.
<SCRI PT>
str1="The norning i s upon us.
str2=strl.slice(3,-5)
docunent.wite(str2)
</ SCRI PT>
This writes:
morning is upon
small
Causes a string to be displayed in a small font, as if it were in a <SMALL> tag.
Method of String
Implemented in JavaScript 1.0, NES 2.0
Syntax snall ()
Parameters None
Description Use the smal | method with the wri t e or wi t el n methods to format and

display a string in a document. In server-side JavaScript, use the wri te
function to display the string.

Chapter 1, Objects, Methods, and Properties 197

String.split

Examples The following example uses st ri ng methods to change the size of a string:
var worldString="Hello, world"

docunent.wite(worldString.snmall())
docunent.wite("<P>" + worldString.big())
docunent.wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hel | o, worl d</ SVALL>
<P><Bl G>Hel | 0o, worl d</BI G
<P><FONTSI ZE=7>Hel | o, wor| d</ FONTSI ZE>

Seealso String.big, String.fontsize

split

Splits a St ri ng object into an array of strings by separating the string into
substrings.

Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax split([separator][, linmt])

Parameters

separator Specifies the character to use for separating the string. The separ at or is
treated as a string. If separ at or is omitted, the array returned contains
one element consisting of the entire string.

limit Integer specifying a limit on the number of splits to be found.
Description The spl it method returns the new array.

When found, separ at or is removed from the string and the substrings are
returned in an array. If separ at or is omitted, the array contains one element
consisting of the entire string.

198 Core JavaScript Reference

String.split

In JavaScript 1.2, spl i t has the following additions:

= It can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separ at or is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

= |t can take a limit count so that the resulting array does not include trailing
empty elements.

= If you specify LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns. For this behavior,
LANGUAGE="JavaScri pt 1. 2" must be specified in the <SCRI PT> tag.

Examples Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the
function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

function splitString (stringToSplit, separator) {
arrayOr Strings = stringToSplit.split(separator)
docunent.wite (’'<P>The original string is: "' + stringToSplit + '"")
docunent.wite ('
The separator is: "' + separator + '"")
docunent.wite ("
The array has " + arrayOfStrings.length + " elenments: ")

for (var i=0; i < arrayOrStrings.length; i++) {
docunent.wite (arrayOf Strings[i] +" /[")
}
}

var tenpestString="Ch brave new world that has such people in it."
var nont hString="Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec"

var space=" "
var comma=","

splitString(tenpestString, space)
splitString(tenmpestString)
splitString(nonthString, comm)

Chapter 1, Objects, Methods, and Properties 199

String.split

This example produces the following output:

The original string is: "Oh brave new world that has such people init."

The separator is:

The array has 10 el ements: Ch / brave / new/ world / that / has / such / people / in/ it.
/

The original string is: "Oh brave new world that has such people init."
The separator is: "undefined"
The array has 1 elenments: Oh brave new world that has such people init. /

The original string is: "Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec"

The separator is: ","

The array has 12 elenents: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Cct / Nov
| Dec /

Example 2. Consider the following script:

<SCRI PT LANGUAGE="JavaScri pt1l.2">

str="She sells seashel | s \ nby t he\ n seashore”
docunent.wite(str + "
")

asstr.split(" ")

docunent.wite(a)

</ SCRI PT>

Using LANGUAGE="JavaScri pt 1. 2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScri pt 1. 2", this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"

Example 3. In the following example, spl it looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. naneLi st is the array returned as a result
of split.

<SCRI PT>

names = "Harry Trunp ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
docunent.wite (nanes + "
" + "
");

re = /\s*;\s*/;

naneLi st = nanes.split (re);

docunent. wite(nameList);

</ SCRI PT>

200 Core JavaScript Reference

See also

String.strike

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, spl it looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRI PT LANGUAGE="JavaScript1l.2">

nyVar =" Hello Wrld. How are you doi ng?
splits = nyVar.split(" ", 3);
docunent.wite(splits)

</ SCRI PT>

This script displays the following:
["Hello", "world.", "How']

String.charAt, String.indexOF, String. | astlndext

strike

Syntax
Parameters

Description

Examples

Causes a string to be displayed as struck-out text, as if it were in a <STRI KE>
tag.

Method of String

Implemented in JavaScript 1.0, NES 2.0

strike()
None

Use the st ri ke method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to display the string.

The following example uses st ri ng methods to change the formatting of a
string:
var worldString="Hello, world"

docunent.wite(worldString.blink())
docunent.wite("<P>" + worldString. bold())
docunent.wite("<P>" + worldString.italics())
docunent.wite("<P>" + worldString.strike())

Chapter 1, Objects, Methods, and Properties 201

String.sub

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>

<P><I>Hel l o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

Seealso String.blink,String.bold, String.italics

sub

Causes a string to be displayed as a subscript, as if it were in a <SUB> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

Syntax sub()
Parameters None

Description Use the sub method with the wri t e or wri t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to generate the HTML.

Examples The following example uses the sub and sup methods to format a string:

var super Text ="superscript"
var subText ="subscript"

docunent.wite("This is what a " + superText.sup() + " looks like.")
docunent.wite("<P>This is what a " + subText.sub() + " |ooks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} | ooks I|ike.
<P>This is what a _{subscri pt} | ooks |ike.

Seealso String.sup

202 Core JavaScript Reference

String.substr

substr

Syntax

Parameters

Description

Example

Returns the characters in a string beginning at the specified location through
the specified number of characters.
Method of String

Implemented in JavaScript 1.0, NES 2.0

substr(start[, [length])

start Location at which to begin extracting characters.
I engt h The number of characters to extract

start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. subst r begins
extracting characters at st art and collects | engt h number of characters.

If start is positive and is the length of the string or longer, subst r returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If st art is negative and abs(start) is larger than the length of the
string, subst r uses 0 is the start index.

If I engt h is O or negative, subst r returns no characters. If | engt h is omitted,
start extracts characters to the end of the string.

Consider the following script:
<SCRI PT LANGUAGE="JavaScri ptl.2">

str = "abcdefghij"

docunent.witeln("(1,2): ", str.substr(1,2))
docunent.witeln("(-2,2): ", str.substr(-2,2))
docunent.witeln("(1): ", str.substr(1))
docunent.witeln("(-20, 2): ", str.substr(1,20))
docunent.witeln(" (20, 2): ", str.substr(20,2))
</ SCRI PT>

Chapter 1, Objects, Methods, and Properties 203

String.substring

This script displays:

(1,2): bc

(-2,2): ij

(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

Seealso substring

substring

Returns a subset of a St ri ng object.
Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax substring(indexA, i ndexB)

Parameters
i ndexA An integer between 0 and 1 less than the length of the string.

i ndexB An integer between 0 and 1 less than the length of the string.

Description subst ri ng extracts characters from i ndexA up to but not including i ndexB. In
particular:

e |findexAis less than 0, i ndexA is treated as if it were 0.

= If i ndexB is greater than stri ngNane. | engt h, i ndexB is treated as if it
were stringNane. | engt h.

= If i ndexA equals i ndexB, subst ri ng returns an empty string.
= If i ndexB is omitted, i ndexA extracts characters to the end of the string.
In JavaScript 1.2, using LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,

< If i ndexA is greater than i ndexB, JavaScript produces a runtime error (out
of memory).

204 Core JavaScript Reference

String.substring

In JavaScript 1.2, without LANGUAGE="JavaScri pt 1. 2" in the SCRI PT tag,

< If i ndexA is greater than i ndexB, JavaScript returns a substring beginning
with i ndexB and ending with i ndexA - 1.

Examples Example 1. The following example uses subst ri ng to display characters from
the string " Net scape":

var anyString="Netscape"

//Displays "Net"
docunent.wite(anyString. substring(O0, 3))
docunent.wite(anyString.substring(3,0))
//Di splays "cap"
docunent.wite(anyString.substring(4,7))
docunent.wite(anyString.substring(7,4))
// Di spl ays "Netscap"
docunent.wite(anyString.substring(0,7))
/1 Di spl ays "Netscape"
docunent.wite(anyString.substring(O0,8))
docunent.wite(anyString. substring(0, 10))

Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string " Brave New Wor | d" into " Brave New Web".

function replaceString(oldS, news, fullS) {
/! Replaces oldS with newS in the string fullS
for (var i=0; i<fullS. length; i++) {
if (full S substring(i,i+oldS.length) == oldS) {
fullS = full S.substring(0,i)+newS+fullS. substring(i+oldS.length,fullS.|ength)
}
}

return fullS

}
replaceString("World","Web","Brave New Worl d")

Example 3. In JavaScript 1.2, using LANGUAGE="JavaScri pt 1. 2", the
following script produces a runtime error (out of memory).

<SCRI PT LANGUAGE="JavaScriptl.2">
str="Net scape"
docunent.wite(str.substring(0,3);
docunent.wite(str.substring(3,0);
</ SCRI PT>

Chapter 1, Objects, Methods, and Properties 205

String.sup

See also

Without LANGUAGE="JavaScri pt 1. 2", the above script prints the following:
Net Net
In the second wri t e, the index numbers are swapped.

substr

sup

Syntax
Parameters

Description

Examples

See also

Causes a string to be displayed as a superscript, as if it were in a <SUP> tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

sup()

None

Use the sup method with the wri t e or wi t el n methods to format and
display a string in a document. In server-side JavaScript, use the wri t e
function to generate the HTML.

The following example uses the sub and sup methods to format a string:

var super Text ="superscript"
var subText ="subscript"

docunent.wite("This is what a " + superText.sup() + " looks like.")
docunent.wite("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} | ooks |ike.
<P>This is what a _{subscri pt} | ooks I|ike.

String.sub

206 Core JavaScript Reference

String.toLowerCase

toLowerCase

Returns the calling string value converted to lowercase.

Method of String
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax tolLower Case()
Parameters None
Description The t oLower Case method returns the value of the string converted to
lowercase. t oLower Case does not affect the value of the string itself.
Examples The following example displays the lowercase string " al phabet " :
var upper Text =" ALPHABET"
docunent.wite(upper Text.toLower Case())
Seealso String.toUpperCase
toSource
Returns a string representing the source code of the object.
Method of String
Implemented in JavaScript 1.3
Syntax toSource()
Parameters None
Description The t oSour ce method returns the following values:

= For the built-in St ri ng object, t oSour ce returns the following string
indicating that the source code is not available:

function String() {
[native code]

}
= For instances of St ri ng or string literals, t oSour ce returns a string
representing the source code.

This method is usually called internally by JavaScript and not explicitly in code.

Chapter 1, Objects, Methods, and Properties 207

String.toString

toString

Returns a string representing the specified object.
Method of String

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Syntax toString()
Parameters None.

Description The St ri ng object overrides the t oSt ri ng method of the Obj ect object; it
does not inherit Obj ect . t oSt ri ng. For St ri ng objects, the t oSt ri ng
method returns a string representation of the object.

Examples The following example displays the string value of a String object:

X = new String("Hello world");
alert(x.toString()) di splays "Hello world"

Seealso Object.toString

toUpperCase

Returns the calling string value converted to uppercase.
Method of String

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax toUpper Case()
Parameters None

Description The t oUpper Case method returns the value of the string converted to
uppercase. t oUpper Case does not affect the value of the string itself.

Examples The following example displays the string " ALPHABET" :

var | ower Text ="al phabet "
docunent.wite(l ower Text.toUpperCase())

Seealso String.toLowerCase

208 Core JavaScript Reference

String.valueOf

Syntax
Parameters

Description

Examples

See also

valueOf

Returns the primitive value of a String object.
Method of String

Implemented in JavaScript 1.1

ECMA version ECMA-262

val ue ()

None

The val ueX method of St ri ng returns the primitive value of a String object
as a string data type. This value is equivalent to Stri ng.toStri ng.

This method is usually called internally by JavaScript and not explicitly in code.

X = new String("Hello world");
al ert (x.valueOd()) di splays "Hello world"

String.toString, Oject. val ued

Chapter 1, Objects, Methods, and Properties 209

sun

sun

A top-level object used to access any Java class in the package sun. *.
Core object

Implemented in JavaScript 1.1, NES 2.0

Created by The sun object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.
Description The sun object is a convenience synonym for the property Packages. sun.

See also Packages, Packages. sun

210 Core JavaScript Reference

Chapter

Top-Level Properties and Functions

This chapter contains all JavaScript properties and functions not associated with
any object. In the ECMA specification, these properties and functions are
referred to as properties and methods of the global object.

The following table summarizes the top-level properties.

Table 2.1 Top-level properties

Property Description

Infinity A numeric value representing infinity.
NaN A value representing Not-A-Number.
undef i ned The value undefined.

The following table summarizes the top-level functions.

Table 2.2 Top-level functions

Function Description

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.

eval Evaluates a string of JavaScript code without
reference to a particular object.

Chapter 2, Top-Level Properties and Functions 211

escape

Table 2.2 Top-level functions

Function Description

isFinite Evaluates an argument to determine whether it is a
finite number.

i sNaN Evaluates an argument to determine if it is not a
number.

Nunmber Converts an object to a number.

par seFl oat Parses a string argument and returns a floating-point
number.

par sel nt Parses a string argument and returns an integer.

String Converts an object to a string.

unescape Returns the ASCII string for the specified

hexadecimal encoding value.

escape

Returns the hexadecimal encoding of an argument in the 1SO-Latin-1 character
set.
Core function

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262 compatible, except for Unicode characters.

Syntax escape("string")

Parameters
string A string in the ISO-Latin-1 character set.

Description escape is a top-level function and is not associated with any object.

Use the escape and unescape functions to encode and decode (add property
values manually) a Uniform Resource Locator (URL), a Uniform Resource
Identifier (URI), or a URI-type string.

212 Core JavaScript Reference

Examples

See also

escape

The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

*@- + ./

Unicode. The escape and unescape functions do not use Unicode as
specified by the ECMA specification. Instead, they use the Internet Engineering
Task Force (IETF) guidelines for escaping characters. Within a URI, characters
use US-ASCII characters (ISO-Latin-1 character set). A URI is a sequence of
characters from the basic Latin alphabet, digits, and a few special characters (for
example, / and @). The escape sequences do not support \uXXXX as in
Unicode or %uXXXX as specified by ECMA, but %XX, where XX is a 2-digit
hexadecimal number (for example, %7E). In URI, characters are represented in
octets, as 8-bit bytes.

To allow the escape and unescape functions to work with Web server-
supported URLs and URIs, JavaScript does not use Unicode for these functions.

= escape returns the hexadecimal encoding of the specified string in the
ISO-Latin-1 character set.

= unescape returns the ASCII string, an I1SO-Latin-1 character set sequence.
Unicode-specific escape sequences, %uXXXX, are not supported.

Example 1. The following example returns " 926" :

escape("&") // returns "9%26"

Example 2. The following statement returns a string with encoded characters
for spaces, commas, and apostrophes.

// returns "The_rain. %0l n9%20Spai n%2C¥%20Ma%92ant
escape("The_rain. In Spain, M’ ant)

unescape

Chapter 2, Top-Level Properties and Functions 213

eval

Evaluates a string of JavaScript code without reference to a particular object.
Core function
Implemented in JavaScript 1.0
JavaScript 1.4: eval cannot be called indirectly
ECMA version ECMA-262
Syntax eval (string)
Parameters

string A string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

Description eval is a top-level function and is not associated with any object.

The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to a variable, and then calling eval ata
later point in your script.

If the argument of eval is not a string, eval returns the argument unchanged.
In the following example, the St ri ng constructor is specified, and eval
returns a St ri ng object rather than evaluating the string.

eval(new String("2+2")) // returns a String object containing "2+2"
eval("2+2") I/l returns 4

214 Core JavaScript Reference

Backward
Compatibility

Examples

eval

You cannot indirectly use the eval function by invoking it via a name other
than eval ; if you do, a runtime error might occur. For example, you should
not use the following code:

var x = 2
var y = 4
var nyEval = eval

nyEval ("x + y")

JavaScript 1.3 and earlier versions. You can use eval indirectly, although it
is discouraged.

JavaScript 1.1. eval is also a method of all objects. This method is described
for the Qbj ect class.

The following examples display output using docunent . wri t e. In server-side
JavaScript, you can display the same output by calling the wri t e function
instead of using document . wri te.

Example 1. In the following code, both of the statements containing eval
return 42. The first evaluates the string "x + y + 1"; the second evaluates the
string " 42".

var x = 2

var y = 39

var z = "42"

eval ("x +y + 1") // returns 42
eval (z) [/ returns 42

Example 2. In the following example, the get Fi el dName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable fi el d. The second
statement uses eval to display the value of the form element.

var field = getFiel dNane(3)
docunent.wite("The field named ", field, " has value of "
eval (field + ".value"))

Example 3. The following example uses eval to evaluate the string st r. This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
Z.

var str = "if (x ==5) {alert('z is 42"); z = 42;} else z = 0;
docunent.wite("<P>z is ", eval(str))

Chapter 2, Top-Level Properties and Functions 215

Infinity

Example 4. In the following example, the set Val ue function uses eval to
assign the value of the variable newval ue to the text field t ext Qbj ect :

function setVal ue (textObject, newval ue) {
eval ("docunent.fornms[0]." + textObject + ".value") = newal ue

}

Example 5. The following example creates br eed as a property of the object
nyDog, and also as a variable. The first write statement uses eval (' breed’)
without specifying an object; the string " br eed" is evaluated without regard to
any object, and the wri t e method displays " Shepher d", which is the value of
the br eed variable. The second write statement uses myDog. eval (’ breed’)
which specifies the object myDog; the string " br eed" is evaluated with regard
to the nyDog object, and the wri t e method displays " Lab", which is the value
of the br eed property of the nyDog object.

functi on Dog(nane, breed, color) {
t hi s. nane=nane
thi s. breed=breed
t hi s. col or=col or

}

nyDog = new Dog(" Gabby")

nmyDog. br eed="Lab"

var breed=' Shepherd’

docunent.wite("<P>" + eval ('breed'))
docunent.wite("
" + nyDog.eval ('breed))

See also (Obj ect . eval method

Infinity

A numeric value representing infinity.
Core property

Implemented in JavaScript 1.3 (In previous versions, | nfi ni t y was defined only as
a property of the Nunber object)

ECMA version ECMA-262

Syntax Infinity

216 Core JavaScript Reference

Description

See also

ISFinite

Syntax

Parameters

Description

Examples

See also

isFinite

I nfinity is atop-level property and is not associated with any object.

The initial value of | nfi ni ty is Nunber. PGSI TI VE_| NFI NI TY. The value
I nfinity (positive infinity) is greater than any other number including itself.
This value behaves mathematically like infinity; for example, anything
multiplied by I nfi nity is | nfinity, and anything divided by | nfini ty is
0.

Nunber . NEGATI VE_I NFI NI TY, Nunber . POSI TI VE_I NFI NI TY

Evaluates an argument to determine whether it is a finite number.
Core function

Implemented in JavaScript 1.3
ECMA version ECMA-262

i sFi nite(nunber)

nunmber The number to evaluate.

i sFi nite is a top-level function and is not associated with any object.

You can use this method to determine whether a number is a finite number.
The i sFi ni t e method examines the number in its argument. If the argument
is NaN, positive infinity or negative infinity, this method returns f al se,
otherwise it returns t r ue.

You can check a client input to determine whether it is a finite number.

if(isFinite(dientlnput) == true)
{

}
Nunber . NEGATI VE_I NFI NI TY, Nunber . POSI Tl VE_I NFI NI TY

/* take specific steps */

Chapter 2, Top-Level Properties and Functions 217

isNaN

ISNa

N

Syntax

Parameters

Description

Examples

NaN

See also

Evaluates an argument to determine if it is not a number.
Core function

Implemented in JavaScript 1.0: Unix only

JavaScript 1.1, NES 2.0: all platforms
ECMA version ECMA-262

i sNaN(t est Val ue)

t est Val ue The value you want to evaluate.

i sNaN is a top-level function and is not associated with any object.

On platforms that support NaN, the par seFl oat and par sel nt functions
return NaN when they evaluate a value that is not a number. i sNaN returns true
if passed NaN, and false otherwise.

The following example evaluates f | oat Val ue to determine if it is a number
and then calls a procedure accordingly:

f | oat Val ue=par seFl oat (t oFl oat)

if (isNaN(floatValue)) {
not Fl oat ()

} else {
i sFl oat ()

}

Number . NaN, par seFl oat , par sel nt

A value representing Not-A-Number.
Core property

Implemented in JavaScript 1.3 (In previous versions, NaN was defined only as a
property of the Nunber object)

ECMA version ECMA-262

218 Core JavaScript Reference

Syntax

Description

See also

Number

Syntax

Parameter

Description

Number

NaN
NaN is a top-level property and is not associated with any object.
The initial value of NaN is NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Nunber . NaN. Use the
i sNaN function instead.

Several JavaScript methods (such as the Nunber constructor, par seFl oat ,
and par sel nt) return NaN if the value specified in the parameter is not a
number.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

i sNaN, Nunmber . NaN

Converts the specified object to a number.
Core function

Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

Nunber (obj)

obj An object

Nunber is a top-level function and is not associated with any object.

When the object is a Dat e object, Nunber returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

Chapter 2, Top-Level Properties and Functions 219

parseFloat

Example The following example converts the Dat e object to a numerical value:

d = new Date ("Decenmber 17, 1995 03:24:00")
al ert (Nunber(d))

This displays a dialog box containing "819199440000."

See also Numnber

parseFloat

Parses a string argument and returns a floating point number.
Core function
Implemented in JavaScript 1.0: If the first character of the string specified in

parseFloat(st ri ng) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, NES 2.0: Returns NaN on all platforms if the first
character of the string specified in parseFloat(st ri ng) cannot be
converted to a number.

ECMA version ECMA-262

Syntax parseFl oat (string)

Parameters
string A string that represents the value you want to parse.

Description par seFl oat is a top-level function and is not associated with any object.

par seFl oat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, it returns the value up to that point and ignores that
character and all succeeding characters. Leading and trailing spaces are
allowed.

If the first character cannot be converted to a number, par seFl oat returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the i sNaN function to determine if the result of par seFl oat is NaN. If NaN
is passed on to arithmetic operations, the operation results will also be NaN.

220 Core JavaScript Reference

Examples

See also

parselnt

Syntax

Parameters

Description

parselnt

The following examples all return 3.14:

par seFl oat (" 3. 14")

par seFl oat ("314e-2")
par seFl oat (" 0. 0314E+2")
var x = "3.14"

par seFl oat (x)

The following example returns NaN:

par seFl oat (" FF2")

i sNaN, par sel nt

Parses a string argument and returns an integer of the specified radix or base.
Core function

Implemented in JavaScript 1.0: If the first character of the string specified in
parselnt(st r i ng) cannot be converted to a number, returns NaN
on Solaris and Irix and 0 on all other platforms.

JavaScript 1.1, LiveWire 2.0: Returns NaN on all platforms if the first
character of the string specified in parselnt(st ri ng) cannot be
converted to a number.

ECMA version ECMA-262

parselnt(string[, radix])

string A string that represents the value you want to parse.
radi x An integer that represents the radix of the return value.

par sel nt is a top-level function and is not associated with any object.

The par sel nt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

Chapter 2, Top-Level Properties and Functions 221

parseint

Examples

See also

If par sel nt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. par sel nt truncates numbers to integer values. Leading and
trailing spaces are allowed.

If the radix is not specified or is specified as 0, JavaScript assumes the
following:

< If the input st ri ng begins with " 0x", the radix is 16 (hexadecimal).

= If the input st ri ng begins with " 0", the radix is eight (octal).

< If the input st ri ng begins with any other value, the radix is 10 (decimal).
If the first character cannot be converted to a number, par sel nt returns NaN.

For arithmetic purposes, the NaN value is not a number in any radix. You can
call the i sNaN function to determine if the result of par sel nt is NaN. If NaN is
passed on to arithmetic operations, the operation results will also be NaN.

The following examples all return 15:

parselnt ("F", 16)
parselnt("17", 8)
parselnt ("15", 10)
parsel nt (15.99, 10)
parsel nt (" FXX123", 16)
parselnt("1111", 2)
parselnt ("15*3", 10)

The following examples all return NaN:

parselnt ("Hello", 8)
parsel nt ("0x7", 10)
parsel nt ("FFF", 10)

Even though the radix is specified differently, the following examples all return
17 because the input st ri ng begins with " 0x" .

parsel nt ("0x11", 16)
parsel nt ("0x11", 0)
parsel nt ("0x11")

i sNaN, par seFl oat , Obj ect . val ueCt

222 Core JavaScript Reference

String

Syntax

Parameter

Description

Example

See also

String

Converts the specified object to a string.
Core function

Implemented in JavaScript 1.2, NES 3.0
ECMA version ECMA-262

String(obj)

obj An obiject.

String is a top-level function and is not associated with any object.

The St ri ng method converts the value of any object into a string; it returns
the same value as the t oSt ri ng method of an individual object.

When the object is a Dat e object, St ri ng returns a more readable string
representation of the date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight
Time 1983.

The following example converts the Dat e object to a readable string.

D = new Date (430054663215)
alert (String(D))

This displays a dialog box containing "Thu Aug 18 04:37:43 GMT-0700 (Pacific
Daylight Time) 1983."

String

undefined

Syntax

The value undefined.
Core property

Implemented in JavaScript 1.3
ECMA version ECMA-262

undefi ned

Chapter 2, Top-Level Properties and Functions 223

unescape

Description

unescape

Syntax

Parameters

Description

undef i ned is a top-level property and is not associated with any object.

A variable that has not been assigned a value is of type undefined. A method or
statement also returns undef i ned if the variable that is being evaluated does
not have an assigned value.

You can use undef i ned to determine whether a variable has a value. In the
following code, the variable x is not defined, and the i f statement evaluates to
true.

var X
i f(x == undefined) {
/] these statenents execute

}

undef i ned is also a primitive value.

Returns the ASCII string for the specified hexadecimal encoding value.
Core function

Implemented in JavaScript 1.0, NES 1.0
ECMA version ECMA-262 compatible, except for Unicode characters.

unescape(string)

string A string containing characters in the form " %x" , where xx is a
2-digit hexadecimal number.

unescape is a top-level function and is not associated with any object.

The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set.

The escape and unescape methods do not use Unicode as specified by the
ECMA specification. For information, see the description of “Unicode” on
page 213.

224 Core JavaScript Reference

Examples

See also

The following example returns " &":

unescape(" %26")

The following example returns " ! #":

unescape("%19%23")

escape

unescape

Chapter 2, Top-Level Properties and Functions 225

unescape

226 Core JavaScript Reference

Language Elements

« Statements

+ Operators

228 Core JavaScript Reference

Chapter

Statements

This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in

square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

The following table lists statements available in JavaScript.

Table 3.1 JavaScript statements.

br eak Terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

conmment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

conti nue Terminates execution of the block of statements in a while or for
loop, and continues execution of the loop with the next iteration.

do...while Executes the specified statements until the test condition evaluates
to false. Statements execute at least once.

Chapter 3, Statements 229

Table 3.1 JavaScript statements. (Continued)

export

for

for...in

function

if...else

i mport

| abel

return

switch

t hr ow

try...catch

var

whi | e

Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

Creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a block
of statements executed in the loop.

Iterates a specified variable over all the properties of an object. For
each distinct property, JavaScript executes the specified statements.

Declares a function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

Executes a set of statements if a specified condition is true. If the
condition is false, another set of statements can be executed.

Allows a script to import properties, functions, and objects from a
signed script that has exported the information.

Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

Specifies the value to be returned by a function.

Allows a program to evaluate an expression and attempt to match
the expression’s value to a case label.

Throws a user-defined exception.

Marks a block of statements to try, and specifies a response should
an exception be thrown.

Declares a variable, optionally initializing it to a value.

Creates a loop that evaluates an expression, and if it is true,
executes a block of statements. The loop then repeats, as long as
the specified condition is true.

Establishes the default object for a set of statements.

230 Core JavaScript Reference

break

Syntax

Parameter

Description

Examples

break

Use the break statement to terminate a loop, swi t ch, or label statement.

Terminates the current loop, swi t ch, or label statement and transfers program
control to the statement following the terminated loop.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

break [/ abel]

| abel Identifier associated with the label of the statement.

The br eak statement includes an optional label that allows the program to
break out of a labeled statement. The statements in a labeled statement can be
of any type.

Example 1. The following function has a br eak statement that terminates the
whi | e loop when e is 3, and then returns the value 3 * x.

function testBreak(x) {
var i =0
while (i < 6) {
if (i == 3)
br eak
| ++
}

return i*x

}

Example 2. In the following example, a statement labeled checki andj
contains a statement labeled checkj . If br eak is encountered, the program
breaks out of the checkj statement and continues with the remainder of the
checki andj statement. If br eak had a label of checki andj , the program
would break out of the checki andj statement and continue at the statement
following checki andj .

Chapter 3, Statements 231

comment

checki andj
if (4==i) {
docunent.wite("You ve entered " + i + ".
");
checkj
if (2=5)) {
docunent.wite("You ve entered " +j + ".
");
break checkj ;
docunent.wite("The sumis " + (i+) + ".
");
}
docunent.wite(i + "-" +j + "=" + (i-j) + ".
");
}

Seealso continue, | abel,sw tch

comment

Notations by the author to explain what a script does. Comments are ignored
by the interpreter.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax // comment text
/* multiple Iine conment text */

Description JavaScript supports Java-style comments:
< Comments on a single line are preceded by a double-slash (//).

= Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line coment
/* This is a multiple-line cooment. It can be of any length, and

you can put whatever you want here. */

232 Core JavaScript Reference

continue

Syntax

Parameter

Description

Examples

continue

Restarts a whi | e, do-whi | e, for, or | abel statement.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

continue [/ abel]

| abel Identifier associated with the label of the statement.

In contrast to the br eak statement, cont i nue does not terminate the execution
of the loop entirely: instead,

< In awhil e loop, it jumps back to the condi ti on.
< Inafor loop, it jumps to the updat e expression.

The cont i nue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by conti nue.

Example 1. The following example shows a whi | e loop that has a cont i nue
statement that executes when the value of i is 3. Thus, n takes on the values 1,
3,7, and 12.
i =0
n=20
while (i < 5) {

i ++

if (i == 3)

conti nue
n +=i

}

Example 2. In the following example, a statement labeled checki andj
contains a statement labeled checkj . If cont i nue is encountered, the program
continues at the top of the checkj statement. Each time conti nue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checki andj statement is completed.

checki andj reiterates until its condition returns false. When false is returned,
the program continues at the statement following checkiand;.

Chapter 3, Statements 233

do...while

See also

If cont i nue had a label of checki andj , the program would continue at the top
of the checkiandj statement.

checki andj
while (i<4) {

docunent.wite(i + "
");

i +=1,;

checkj

while (j>4) {
docunent.wite(j + "
");
i-=1;
if ((j %) ==0)

continue checkj;
docunent.wite(j + " is odd.
");
}

docunent.wite("i
docunent.wite("]

}

br eak,

"+ o+ "
");
"h o+ t<brsty;

| abel

do...while

Syntax

Parameters

Executes the specified statements until the test condition evaluates to false.
Statements execute at least once.
Implemented in JavaScript 1.2, NES 3.0

do
statenents
while (condition);

Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

statenents

condi tion Evaluated after each pass through the loop. If condi ti on
evaluates to true, the statements in the preceding block are re-
executed. When condi t i on evaluates to false, control passes to

the statement following do whi | e.

234 Core JavaScript Reference

Examples

export

for

Syntax

Parameters

Description

See also

export

In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.
do {
i+=1
docunent.wite(i);
whil e (i<5);

Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.
Implemented in JavaScript 1.2, NES 3.0

export namel, name2, ..., nanmeN

export *

nameN List of properties, functions, and objects to be exported.

* Exports all properties, functions, and objects from the script.

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

i mport

Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Chapter 3, Statements 235

for...in

Syntax

Parameters

Examples

for...In

Syntax

for ([initial-expression]; [condition]; [increment-expression])

{
}

statenents

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword. These variables are local to
the function, not to the loop.

condi tion Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in st at enent s are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

i ncrement - expr essi on Generally used to update or increment the counter variable.

statenents Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the f or statement.

The following f or statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for (var i =0; i <9; i++) {
n +=i
nyfunc(n)

}

Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

for (variable in object) {
statenents

}

236 Core JavaScript Reference

function

Parameters
vari abl e Variable to iterate over every property, declared with the var
keyword. This variable is local to the function, not to the loop.
obj ect Object for which the properties are iterated.
statements Specifies the statements to execute for each property.

Examples The following function takes as its argument an object and the object’'s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function show_props(obj, objNanme) {
var result =""
for (var i in obj) {
result += objName + "." + i + " =" + obj[i] + "\n"

}

return result

function

Declares a function with the specified parameters. Acceptable parameters
include strings, numbers, and objects.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
Syntax function nanme([param} [, param} [..., param) {
statenents
}
You can also define functions using the Funct i on constructor; see “Function”
on page 79.
Parameters
name The function name.
par am The name of an argument to be passed to the function. A function
can have up to 255 arguments.
statenents The statements which comprise the body of the function.

Chapter 3, Statements 237

if...else

Description To return a value, the function must have a r et ur n statement that specifies the
value to return.

A function created with the f unct i on statement is a Funct i on object and
has all the properties, methods, and behavior of Funct i on objects. See
“Function” on page 79 for detailed information on functions.

Examples The following code declares a function that returns the total dollar amount of
sales, when given the number of units sold of products a, b, and c.

function calc_sales(units_a, units_b, units_c) {
return units_a*79 + units_b*129 + units_c*699

}

See also “Function” on page 79

if...else

Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax if (condition) {
statenentsl

}
[el se {
statenents2
}H
Parameters

condi tion Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition
evaluates to true, the statements in st at enment s1 are executed.

st at enent s1, Can be any JavaScript statements, including further nested i f

statements2 statements. Multiple statements must be enclosed in braces.

238 Core JavaScript Reference

Description

Backward
Compatibility

Examples

Import

Syntax

Parameters

import

You should not use simple assignments in a conditional statement. For
example, do not use the following code:

if(x =y

/* do the right thing */
}

If you need to use an assignment in a conditional statement, put additional
parentheses around the assignment. For example, use i f((x =y)).

JavaScript 1.2 and earlier versions. You can use simple assignments in a
conditional statement. An assignment operator in a conditional statement is
converted to an equality operator. For example, i f (x = y) is converted to

if(x ==y).

if (cipher_char == fromchar) {
result = result + to_char
X++}

el se

result = result + clear_char

Allows a script to import properties, functions, and objects from a signed script
that has exported the information.
Implemented in JavaScript 1.2, NES 3.0

i nport obj ect Nane. nanel, obj ect Nane. nane2, ..., object Nanme. naneN
i nport obj ect Nane. *

obj ect Name Name of the object that will receive the imported names.

nanmel, List of properties, functions, and objects to import from the export
namez, file.

nanmeN

* Imports all properties, functions, and objects from the export script.

Chapter 3, Statements 239

label

Description The obj ect Nane parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, the following code makes f and p accessible
in the importing script as properties of obj .

import obj.f, obj.p

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the i nport statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

label

Provides a statement with an identifier that lets you refer to it elsewhere in your
program.
Implemented in JavaScript 1.2, NES 3.0

For example, you can use a label to identify a loop, and then use the br eak or
cont i nue statements to indicate whether a program should interrupt the loop
or continue its execution.

Syntax [abel
statenents

Parameter
| abel Any JavaScript identifier that is not a reserved word.
statements Block of statements. br eak can be used with any labeled
statement, and continue can be used with looping labeled
statements.

Examples For an example of a label statement using br eak, see br eak. For an example
of a label statement using cont i nue, see conti nue.

See also break, conti nue

240 Core JavaScript Reference

return

return

Specifies the value to be returned by a function.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax return expression

Parameters
expressi on The expression to return.

Examples The following function returns the square of its argument, x, where x is a
number.

function square(x) {
return x * x

}

switch

Allows a program to evaluate an expression and attempt to match the
expression’s value to a case label.
Implemented in JavaScript 1.2, NES 3.0

Syntax switch (expression){
case [abel
st at enents;
br eak;
case | abel
statenents;
br eak;

default : statenents;

Chapter 3, Statements 241

switch

Parameters

Description

Examples

expressi on Value matched against label.

| abel Identifier used to match against expression.

statenments Block of statements that is executed once if expr essi on matches
| abel .

If a match is found, the program executes the associated statement. If multiple
cases match the provided value, the first case that matches is selected, even if
the cases are not equal to each other.

The program first looks for a label matching the value of expression and then

executes the associated statement. If no matching label is found, the program

looks for the optional default statement, and if found, executes the associated

statement. If no default statement is found, the program continues execution at
the statement following the end of swi t ch.

The optional br eak statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If br eak is omitted, the
program continues execution at the next statement in the swi t ch statement.

In the following example, if expr essi on evaluates to “Bananas”, the program
matches the value with case “Bananas” and executes the associated statement.
When br eak is encountered, the program breaks out of swi t ch and executes
the statement following swi t ch. If br eak were omitted, the statement for case
“Cherries” would also be executed.

switch (i) {

case "Oranges"
docunment.write("Oranges are $0.59 a pound.
");
br eak;

case "Appl es”
docunment. write("Apples are $0.32 a pound.
");
br eak;

case "Bananas"
docunment. wite("Bananas are $0.48 a pound.
");
br eak;

case "Cherries"
docunment.write("Cherries are $3.00 a pound.
");
br eak;

def aul t
docunent.wite("Sorry, we are out of " + i + ".
");

}

docunent.wite("ls there anything el se you'd |ike?
");

242 Core JavaScript Reference

throw

Syntax

Parameters

Description

Examples

throw

Throws a user-defined exception.
Implemented in JavaScript 1.4

t hrow expressi on

expressi on The value to throw.

Use the t hr ow statement to throw an exception. When you throw an
exception, an expression specifies the value of the exception. The following
code throws several exceptions.

throw "Error2" /] generates an exception with a string val ue
t hrow 42 // generates an exception with the value 42
throw true /'l generates an exception with the value true

Example 1: Throw an object. You can specify an object when you throw an
exception. You can then reference the object’s properties in the cat ch block.
The following example creates an object myUser Except i on of type

User Excepti on and uses it in a t hr ow statement.

function User Excepti on (nessage) {
t hi s. nessage=nessage
t hi s. nane="User Excepti on"
}
functi on get Mont hName (mo) {
nmo=no-1 // Adjust nonth nunber for array index (1=Jan, 12=Dec)
var nont hs=new Array("Jan","Feb","Mar", " Apr", " May", "Jun", "Jul",
"Aug", "Sep","Cct", "Nov", "Dec")

if (months[mo] !'= null) {
return nont hs[no]
} else {

nyUser Excepti on=new User Excepti on("I nval i dMont hNo")
t hrow nyUser Excepti on

}
}
try {
/] statements to try
nont hNane=get Mont hNanme(myMbnt h)
}
catch (e) {
nont hNane="unknown"
| ogMyErrors(e. message, e. nane) // pass exception object to err handler
}

Chapter 3, Statements 243

throw

Example 2: Throw an object. The following example tests an input string for
a U.S. zip code. If the zip code uses an invalid format, the t hr ow statement
throws an exception by creating an object of type

Zi pCodeFor mat Excepti on.

/
Creates a Zi pCode object.

Accepted formats for a zip code are:
12345
12345- 6789
123456789
12345 6789

. S

If the argunent passed to the ZipCode constructor does not
* conformto one of these patterns, an exception is thrown.
*/

function Zi pCode(zip) {
zip = new String(zip);
pattern = /[0-9]{5}([-]?[0-9]{4})?/;
if (pattern.test(zip)) {
/1 zip code value will be the first match in the string
this.value = zip. match(pattern)[0]
this.valueO = new Function("return this.value");
this.toString = new Function("return String(this.value)");
} else {
t hrow new Zi pCodeFor mat Excepti on(zi p);
}
}

function Zi pCodeFor mat Excepti on(val ue) {
this.value = val ue;
this. message =
"does not conformto the expected format for a zip code";
this.toString =
new Function("return this.value +\":\" + this.nessage");

}
/~k
* This could be in a script that validates address data

* for US addresses.
*/

var ZI PCODE_I NVALID = -1;
var ZI PCODE_UNKNOWN_ERROR = -2;

244 Core JavaScript Reference

See also

throw

function verifyZi pCode(z) {

try {
z = new Zi pCode(z);

catch (e) {
if (e instanceof Zi pCodeFormatException) {
return ZI PCODE_I NVALI D

}
el se {
return ZI PCODE_UNKNOWN_ERROR,
}
}
return z;
}
a=verifyZi pCode(95060) /1 returns 95060
b=veri fyZi pCode(9560) // returns -1
c=verifyZi pCode("a") // returns -1
d=veri fyZi pCode("95060") /1 returns 95060

e=verifyZi pCode("95060 1234") // returns 95060 1234

Example 3: Rethrow an exception. You can use t hr owto rethrow an
exception after you catch it. The following example catches an exception with
a numeric value and rethrows it if the value is over 50. The rethrown exception
propagates up to the enclosing function or to the top level so that the user sees
it.

try {
throw n // throws an exception with a nuneric val ue
}
catch (e) {
if (e <= 50) {
/'l statenents to handl e exceptions 1-50
}
el se {
/1 cannot handl e this exception, so rethrow
throw e
}
}

try...catch

Chapter 3, Statements 245

try...catch

try...catch

Syntax

Parameters

Description

Marks a block of statements to try, and specifies a response should an
exception be thrown.
Implemented in JavaScript 1.4

try {
statenents
}

[catch (catchlD {
statenents

}H
[finally {
statenents

}H

statenents Block of statements that executes once. The statements can be
declarative statements (such as var) or executable statements (such
as f or).

cat ch A block of statements to be executed if an exception is thrown in
the t ry block.

catchl D An identifier to hold an exception object.

finally A block of statements that is executed before the try. .. catch

statement completes. This block of statements executes whether or
not an exception was thrown or caught.

Thetry. .. cat ch statement consists of at ry block, which contains one or
more statements, and a cat ch block, containing statements that specify what
to do if an exception is thrown in the t ry block. That is, you want the t ry
block to succeed, and if it does not succeed, you want control to pass to the
cat ch block. If any statement within the t ry block (or in a function called
from within the t ry block) throws an exception, control immediately shifts to
the cat ch block. If no exception is thrown in the t ry block succeed, the
cat ch block is skipped. The fi nal | y block executes after the t ry and

cat ch blocks execute but before the statements following the try. . . cat ch
statement.

You can nest one or more try. .. catch statements. Ifaninnertry. .. catch
statement does not have a cat ch block, the enclosing try. .. catch
statement’s cat ch block is entered.

246 Core JavaScript Reference

Examples

See also

try...catch

You also use the try. . . cat ch statement to handle Java exceptions. See the
Core JavaScript Guide for information on Java exceptions.

The catch Block. The cat ch block is entered when any exception is thrown.
For example, the following code throws an exception. When the exception
occurs, control transfers to the cat ch block.

try {
throw "nyException"” // generates an exception

}
catch (e) {
/] statenments to handle any exceptions
| ogMyErrors(e) // pass exception object to error handler

}

The catch Block’s Identifier. When an exception is thrown in the t r y block,
the cat chl D holds the value specified by the t hr ow statement; you can use
this identifier to get information about the exception that was thrown.
JavaScript creates this identifier when the cat ch block is entered; the identifier
lasts only for the duration of the cat ch block; after the cat ch block finishes
executing, the identifier is no longer available.

The finally Block. The fi nal | y block contains statements to execute after
the t ry and cat ch blocks execute but before the statements following the
try...catch statement. The fi nal | y block executes whether or not an
exception is thrown. If an exception is thrown, the statements in the fi nal | y
block execute even if no cat ch block handles the exception.

You can use the fi nal | y block to make your script fail gracefully when an
exception occurs; for example, you may need to release a resource that your
script has tied up. The following example opens a file and then executes
statements that use the file (server-side JavaScript allows you to access files). If
an exception is thrown while the file is open, the fi nal | y block closes the
file before the script fails.

try {
openMyFile() // tie up a resource
writeMFil e(theData)

}
finally {
closeMyFile() // always close the resource

}

See the examples for t hr ow.

t hr ow

Chapter 3, Statements 247

var

var

Syntax

Parameters

Desc

ription

Examples

while

Syntax

Declares a variable, optionally initializing it to a value.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

var varnane [= value]l [..., varnane [= val ue]]

var nane Variable name. It can be any legal identifier.

val ue Initial value of the variable and can be any legal expression.

The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions in the following situations:

= If a global variable of the same name exists.
= If recursive or multiple functions use variables with the same name.

var numhits = 0, cust_no =0

Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

while (condition) {
statenents

}

248 Core JavaScript Reference

Parameters

Examples

with

Syntax

with

condi tion Evaluated before each pass through the loop. If this condition
evaluates to true, the statements in the succeeding block are
performed. When condi ti on evaluates to false, execution
continues with the statement following st at enent s.

statenments Block of statements that are executed as long as the condition
evaluates to true. Although not required, it is good practice to
indent these statements from the beginning of the statement.

The following whi | e loop iterates as long as n is less than three.

=0

=0
ile(n < 3) {
n ++

X +=n

}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

= After the first pass: n=1and x =1
= After the second pass: n =2 and x =3
= After the third pass: n=3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

Establishes the default object for a set of statements.
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

with (object){
statenents

}

Chapter 3, Statements 249

with

Parameters

Description

Examples

obj ect Specifies the default object to use for the statements. The
parentheses around object are required.

statenents Any block of statements.

JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

The following wi t h statement specifies that the Mat h object is the default
object. The statements following the wi t h statement refer to the Pl property
and the cos and si n methods, without specifying an object. JavaScript
assumes the Mat h object for these references.

var a, X, Yy
var r=10
with (Math) {
a Pl * 71 *r
X r * cos(Pl)
y r * sin(Pl/2)

250 Core JavaScript Reference

Chapter

Operators

JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

The following table summarizes the JavaScript operators.

Table 4.1 JavaScript operators.

Operator Operator Description
category
Arithmetic + (Addition) Adds 2 numbers.
Operators . . .
P ++ (Increment) Adds one to a variable representing a number (returning
either the new or old value of the variable)
- (Unary negation, subtraction) As a unary operator, negates the value of
its argument. As a binary operator, subtracts 2 numbers.
-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)
* (Multiplication) Multiplies 2 numbers.
/ (Division) Divides 2 numbers.
% (Modulus) Computes the integer remainder of dividing 2 numbers.
String + (String addition) Concatenates 2 strings.
Operators . . .
P += Concatenates 2 strings and assigns the result to the first operand.

Chapter 4, Operators 251

Table 4.1 JavaScript operators. (Continued)

Operator
category

Operator

Description

Logical
Operators

Bitwise
Operators

&&

<<

>>

>>>

(Logical AND) Returns the first operand if it can be converted to false;
otherwise, returns the second operand. Thus, when used with Boolean
values, && returns true if both operands are true; otherwise, returns false.

(Logical OR) Returns the first operand if it can be converted to true;
otherwise, returns the second operand. Thus, when used with Boolean
values, || returns true if either operand is true; if both are false, returns
false.

(Logical NOT) Returns false if its single operand can be converted to true;
otherwise, returns true.

(Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

(Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

(Bitwise OR) Returns a one in a bit if bits of either operand is one.
(Bitwise NOT) Flips the bits of its operand.

(Left shift) Shifts its first operand in binary representation the number of
bits to the left specified in the second operand, shifting in zeros from the
right.

(Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

(Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding
bits shifted off, and shifting in zeros from the left.

252 Core JavaScript Reference

Table 4.1 JavaScript operators. (Continued)

Operator Operator Description
category
Assignment = Assigns the value of the second operand to the first operand.
Operators . .

+= Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

% Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

N= Performs a bitwise XOR and assigns the result to the first operand.

= Performs a bitwise OR and assigns the result to the first operand.
<<= Performs a left shift and assigns the result to the first operand.
>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.
Comparison == Returns true if the operands are equal.
Operators

I= Returns true if the operands are not equal.
=== Returns true if the operands are equal and of the same type.

l== Returns true if the operands are not equal and/or not of the same type.

> Returns true if the left operand is greater than the right operand.

>= Returns true if the left operand is greater than or equal to the right
operand.

< Returns true if the left operand is less than the right operand.

<= Returns true if the left operand is less than or equal to the right operand.

Chapter 4, Operators 253

Assignment Operators

Table 4.1 JavaScript operators. (Continued)

Operator Operator Description
category
Special ?: Performs a simple "i f...then...el se"
Operators .
P , Evaluates two expressions and returns the result of the second
expression.
del ete Deletes an object, an object’s property, or an element at a specified index
in an array.
in Returns true if the specified property is in the specified object.

i nst anceof Returns true if the specified object is of the specified object type.

new Creates an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

t ypeof Returns a string indicating the type of the unevaluated operand.

voi d Specifies an expression to be evaluated without returning a value.

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of
its right operand.
Implemented in JavaScript 1.0

ECMA version ECMA-262

254 Core JavaScript Reference

Assignment Operators

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are usually shorthand for standard operations, as shown
in the following table.

Table 4.2 Assignment operators

Shorthand operator Meaning

X +=y X =X +y
X -=y X =X -y
X *=y X =X *y
xl=y x=x/ly
X %y X =X %y
X<<:y X:X<<y
X >>=y X =X >y
X >>>=y X = X >>>y
X &=y X =X &Yy
X "=y X =x "Ny
X |=y x=xly

In unusual situations, the assignment operator is not identical to the Meaning
expression in Table 4.2. When the left operand of an assignment operator itself
contains an assignment operator, the left operand is evaluated only once. For
example:

a[i++] += 5 //i is evaluated only once
a[i++] = a[i++] + 5 //i is evaluated tw ce

Chapter 4, Operators 255

Comparison Operators

Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true.
Implemented in JavaScript 1.0

JavaScript 1.3: Added the === and ! == operators.

JavaScript 1.4: Deprecated == for comparison of two JSCbj ect
objects. Use the JSChj ect . equal s method.

ECMA version ECMA-262 includes all comparison operators except === and !==.

The operands can be numerical or string values. Strings are compared based on
standard lexicographical ordering, using Unicode values.

A Boolean value is returned as the result of the comparison.

256 Core JavaScript Reference

Two strings are equal when they have the same sequence of characters,
same length, and same characters in corresponding positions.

Two numbers are equal when they are numerically equal (have the same
number value). NaN is not equal to anything, including NaN. Positive and
negative zeros are equal.

Two objects are equal if they refer to the same Object.
Two Boolean operands are equal if they are both t rue or f al se.

Null and Undefined types are equal.

Comparison Operators

The following table describes the comparison operators.

Table 4.3 Comparison operators

Operator Description Examples returning true?
Equal (==) Returns true if the operands are equal. If the two 3 ==varl

operands are not of the same type, JavaScript "3" == varl

attempts to convert the operands to an 3=="3

appropriate type for the comparison.
Not equal (! =) Returns true if the operands are not equal. If the varl !'= 4

Strict equal (===
Strict not equal (! ==
Greater than (>)
Greater than or equal

(>=)

Less than (<)

two operands are not of the same type, JavaScript varl !'= "3"
attempts to convert the operands to an
appropriate type for the comparison.

Returns true if the operands are equal and of the 3 === varl
same type.

Returns true if the operands are not equal and/or ~ varl !== "3"
not of the same type. 3 1=="3

Returns true if the left operand is greater than the var2 > varl
right operand.

Returns true if the left operand is greater than or var2 >= varl
equal to the right operand. varl >= 3

Returns true if the left operand is less than the varl < var2
right operand.

Less than or equal (<=) Returns true if the left operand is less than or varl <= var?2

equal to the right operand. var2 <= 5

a.

These examples assume tl

hat var 1 has been assigned the value 3 and var 2 has been assigned the value 4.

Using the Equality Operators

The standard equality operators (== and !=) compare two operands without
regard to their type. The strict equality operators (=== and '==) perform
equality comparisons on operands of the same type. Use strict equality
operators if the operands must be of a specific type as well as value or if the
exact type of the operands is important. Otherwise, use the standard equality
operators, which allow you to compare the identity of two operands even if
they are not of the same type.

Chapter 4, Operators 257

Comparison Operators

When type conversion is needed, JavaScript converts St ri ng, Nunber ,
Bool ean, or Cbj ect operands as follows.

= When comparing a number and a string, the string is converted to a number
value. JavaScript attempts to convert the string numeric literal to a Nunber
type value. First, a mathematical value is derived from the string numeric
literal. Next, this value is rounded to nearest Nurmber type value.

= If one of the operands is Bool ean, the Boolean operand is converted to 1
ifitistrue and +0 if it is f al se.

= If an object is compared with a number or string, JavaScript attempts to
return the default value for the object. Operators attempt to convert the
object to a primitive value, a St ri ng or Nunber value, using the val ueCf
and t oSt ri ng methods of the objects. If this attempt to convert the object
fails, a runtime error is generated.

Backward The behavior of the standard equality operators (== and !=) depends on the
Compatibility JavaScript version.

JavaScript 1.4 and later versions. You cannot use the standard equality
operator (==) to compare instances of JSObj ect . Use the

JShj ect . equal s method for such comparisons. JSbj ect . equal s is
available for this purpose in all previous versions of JavaScript.

JavaScript 1.2. The standard equality operators (== and !=) do not perform a
type conversion before the comparison is made. The strict equality operators
(=== and !==) are unavailable.

JavaScript 1.1 and earlier versions. The standard equality operators (== and
I=) perform a type conversion before the comparison is made. The strict
equality operators (=== and !==) are unavailable.

258 Core JavaScript Reference

Arithmetic Operators

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
Implemented in JavaScript 1.0

ECMA version ECMA-262

These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScri pt
1/2 //returns O in Java

% (Modulus)

The modulus operator is used as follows:

varl % var2

The modulus operator returns the first operand modulo the second operand,
that is, var 1 modulo var 2, in the preceding statement, where var 1 and var 2
are variables. The modulo function is the integer remainder of dividing var 1 by
var 2. For example, 12 % 5 returns 2.

++ (Increment)

The increment operator is used as follows:
var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

Chapter 4, Operators 259

Bitwise Operators

For example, if x is three, then the statementy = x++ setsy to 3 and
increments x to 4. If x is 3, then the statementy = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:
var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statementy = x-- setsy to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
setsy to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y; that is, if x were 3,y
would get the value -3 and x would retain the value 3.

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

260 Core JavaScript Reference

Bitwise Operators

The following table summarizes JavaScript's bitwise operators:

Table 4.4 Bitwise operators

Operator Usage Description

Bitwise AND aé&hb Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR al b Returns a one in each bit position for which

the corresponding bits of either or both
operands are ones.

Bitwise XOR a™b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~a Inverts the bits of its operand.

Left shift a<<b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right a >> b Shifts a in binary representation b bits to

shift right, discarding bits shifted off.

Zero-fill right shift a >>b Shifts a in binary representation b bits to

the right, discarding bits shifted off, and
shifting in zeros from the left.

Bitwise Logical Operators

Implemented in JavaScript 1.0
ECMA version ECMA-262

Conceptually, the bitwise logical operators work as follows:

= The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

= Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

= The operator is applied to each pair of bits, and the result is constructed
bitwise.

Chapter 4, Operators 261

Bitwise Operators

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

- 15& 9 yields 9 (1111 & 1001 = 1001)
- 15| 9 yields 15 (1111 | 1001 = 1111)
- 1579 yields 6 (1111 ~ 1001 = 0110)

Bitwise Shift Operators

Implemented in JavaScript 1.0
ECMA version ECMA-262

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

262 Core JavaScript Reference

Logical Operators

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and | | operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value.

Implemented in JavaScript 1.0

ECMA version ECMA-262

Chapter 4, Operators 263

Logical Operators

The logical operators are described in the following table.

Table 4.5 Logical operators

Operator Usage Description

&& exprl && expr2 (Logical AND) Returns expr 1 if it can be
converted to false; otherwise, returns expr 2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

11 exprl || expr2 (Logical OR) Returns expr 1 if it can be converted
to true; otherwise, returns expr 2. Thus, when
used with Boolean values, | | returns true if either
operand is true; if both are false, returns false.

! L expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string ("), or undefined.

Even though the && and || operators can be used with operands that are not
Boolean values, they can still be considered Boolean operators since their
return values can always be converted to Boolean values.

Short-Circuit Evaluation. As logical expressions are evaluated left to right,
they are tested for possible “short-circuit” evaluation using the following rules:

= fal se && anything is short-circuit evaluated to false.
= true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

264 Core JavaScript Reference

Backward
Compatibility

Examples

Logical Operators

JavaScript 1.0 and 1.1. The && and | | operators behave as follows:

Operator Behavior

&& If the first operand (expr 1) can be converted to false, the &&
operator returns false rather than the value of expr 1.

1 If the first operand (expr 1) can be converted to true, the ||
operator returns true rather than the value of expr 1.

The following code shows examples of the && (logical AND) operator.

al=true && true /1
a2=true && false /1
a3=fal se && true /1
ad=false && (3 == 4) [/
ab="Cat" && "Dog" /1
a6=fal se & "Cat" /1
a7="Cat" && false /1

returns
returns
returns
returns
returns
returns

t
t
f
f
t
f
t returns

EEREREEER

The following code shows examples of the

ol=true || true /1
o2=false || true /1
o3=true || false /1
o4=false || (3 ==4) [/
o5="Cat" || "Dog" /1
o6=false || "Cat" 11
o7="Cat" || false 11

returns
returns
returns
returns
returns
returns
returns

- —h o+ —h o~ —h —+
— o+ o+ —h —h o~ o+

The following code shows examples of the

nl=!true /1
n2=!fal se 11
n3=!"Cat" /1

true
fal se
fal se
fal se
Dog

fal se
fal se

|1 (logical OR) operator.

true
true
true
fal se
Cat
Cat
Cat

I (logical NOT) operator.

't returns false
I'f returns true
I't returns false

Chapter 4, Operators 265

String Operators

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "ny " + "string" returns the string "ny string".

Implemented in JavaScript 1.0

ECMA version ECMA-262

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable myst ri ng has the value “alpha,” then the
expression nystring += "bet" evaluates to “alphabet” and assigns this value
to nystring.

Special Operators

Syntax

Parameters

Description

?. (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the i f statement.
Implemented in JavaScript 1.0

ECMA version ECMA-262

condition ? exprl : expr2

condi tion An expression that evaluates to t rue or f al se
expril, expr2 Expressions with values of any type.

If condi tion is true, the operator returns the value of expr 1; otherwise, it
returns the value of expr 2. For example, to display a different message based
on the value of the i sMenber variable, you could use this statement:

document.wite ("The fee is " + (isMenber ? "$2.00" : "$10.00"))

266 Core JavaScript Reference

Syntax

Parameters

Description

Syntax

Parameters

Special Operators

, (Comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.
Implemented in JavaScript 1.0

ECMA version ECMA-262

exprl, expr2

exprl, expr2 Any expressions

You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a f or loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
docunent.writeln("a["+i +", "+ +"]1=" + a[i,j])
delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.
Implemented in JavaScript 1.2, NES 3.0

ECMA version ECMA-262

del et e obj ect Nane

del et e obj ect Nane. property

del et e obj ect Nane[i ndex]

del ete property /] legal only within a with statenent

obj ect Name The name of an object.
property The property to delete.
i ndex An integer representing the array index to delete.

Chapter 4, Operators 267

Special Operators

Description The fourth form is legal only within a wi t h statement, to delete a property from
an object.

You can use the del et e operator to delete variables declared implicitly but not
those declared with the var statement.

If the del et e operator succeeds, it sets the property or element to undef i ned.
The del et e operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42

var y= 43

nyobj =new Nunber ()

nyobj . h=4 /'l create property h

delete x /] returns true (can delete if declared inplicitly)
delete y /1 returns false (cannot delete if declared with var)

delete Math.Pl // returns false (cannot del ete predefined properties)
del ete nmyobj.h // returns true (can del ete user-defined properties)
del et e nyobj /1 returns true (can del ete objects)

Deleting array elements. When you delete an array element, the array length
is not affected. For example, if you delete a[3], a[4] is still a[4] and a[3] is
undefined.

When the del et e operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with del et e.

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
del ete trees[3]
if (3intrees) {

/1 this does not get executed

}

If you want an array element to exist but have an undefined value, use the
undef i ned keyword instead of the del et e operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
trees[3] =undef i ned
if (3intrees) {

// this gets executed

}

268 Core JavaScript Reference

Syntax

Parameters

Description

Special Operators

N

The i n operator returns true if the specified property is in the specified object.
Implemented in JavaScript 1.4

propNameQr Number i n obj ect Name

pr opNameQr Nunber A string or numeric expression representing a property name or
array index.

obj ect Name Name of an object.

The following examples show some uses of the i n operator.

/1 Arrays

trees=new Array("redwood", "bay", "cedar", "oak", "nmapl e")

0in trees /'l returns true

3in trees /'l returns true

6 in trees // returns false

"bay" in trees /1 returns false (you nust specify the index nunber,

/'l not the value at that index)
"length" in trees // returns true (length is an Array property)

/1 Predefined objects

"PI" in Math /'l returns true
nyString=new String("coral")

"length" in nmyString // returns true

/1 Custom objects

nycar = {make:"Honda", nodel : "Accord", year: 1998}
"make" in nmycar // returns true

"model " in nycar // returns true

You must specify an object on the right side of the i n operator. For example,
you can specify a string created with the St ri ng constructor, but you cannot
specify a string literal.

col or 1=new String("green")

"length" in colorl // returns true

col or2="coral "

"length" in color2 // generates an error (color is not a String object)

Chapter 4, Operators 269

Special Operators

Syntax

Parameters

Description

Using in with deleted or undefined properties. If you delete a property
with the del et e operator, the i n operator returns false for that property.

nycar = {make:"Honda", nodel : "Accord", year: 1998}
del ete mycar. make
"make" in nycar // returns false

trees=new Array("redwood", "bay", "cedar", "oak", "nmapl e")
del ete trees[3]
3intrees // returns false

If you set a property to undefined but do not delete it, the i n operator returns
true for that property.
nycar = {nmke:"Honda", nodel : " Accord", year: 1998}

nycar . make=undef i ned
"make" in nycar // returns true

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
trees[3] =undef i ned
3intrees // returns true

For additional information about using the i n operator with deleted array
elements, see “delete” on page 267.

Instanceof

The i nst anceof operator returns true if the specified object is of the
specified object type.
Implemented in JavaScript 1.4

obj ect Nane i nst anceof obj ect Type

obj ect Name Name of the object to compare to obj ect Type.

obj ect Type Object type.

Use i nst anceof when you need to confirm the type of an object at runtime.
For example, when catching exceptions, you can branch to different exception-
handling code depending on the type of exception thrown.

You must specify an object on the right side of the i nst anceof operator. For
example, you can specify a string created with the St ri ng constructor, but
you cannot specify a string literal.

270 Core JavaScript Reference

Examples

Special Operators

col or 1=new String("green")

colorl instanceof String // returns true

col or2="coral "

color2 instanceof String // returns false (color is not a String object)

See also the examples for t hr ow.

Example 1. The following code uses i nst anceof to determine whether
t heDay is a Dat e object. Because t heDay is a Dat e object, the statements in
the i f statement execute.

t heDay=new Dat e(1995, 12, 17)
if (theDay instanceof Date) {
/'l statements to execute

}

Example 2. The following code uses i nst anceof to demonstrate that
Stri ng and Dat e objects are also of type Obj ect (they are derived from
hj ect).

nyString=new String()
nyDat e=new Dat e()

nyString instanceof String // returns true
nyString instanceof Object // returns true
nyString instanceof Date /Il returns false

nyDat e i nstanceof Date // returns true
nyDat e i nstanceof Object // returns true
nyDat e i nstanceof String /Il returns false

Example 3. The following code creates an object type Car and an instance of
that object type, nycar . The i nst anceof operator demonstrates that the
mycar object is of type Car and of type Obj ect .

function Car(make, nodel, year) {

this. make = make

thi s. nodel = nodel

this.year = year
}
nycar = new Car ("Honda", "Accord", 1998)
a=nmycar instanceof Car // returns true
b=nycar instanceof Object // returns true

Chapter 4, Operators 271

Special Operators

Syntax

Parameters

Description

new

The new operator creates an instance of a user-defined object type or of one of
the built-in object types that has a constructor function.
Implemented in JavaScript 1.0

ECMA version ECMA-262

obj ect Nane = new obj ect Type (parand [, paran?] ...[, param\)

obj ect Name Name of the new object instance.
obj ect Type Obiject type. It must be a function that defines an object type.

parani. .. paranmN Property values for the object. These properties are parameters
defined for the obj ect Type function.

Creating a user-defined object type requires two steps:
1. Define the object type by writing a function.
2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car 1. col or = "bl ack" adds a property col or to car 1, and assigns
it a value of " bl ack". However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Functi on. pr ot ot ype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a col or property to all objects of type car, and
then assigns a value to the col or property of the object car 1. For more
information, see pr ot ot ype

Car . prot ot ype. col or =nul |
car 1. col or="bl ack"
bi rt hday. descri pti on="The day you were born"

272 Core JavaScript Reference

Special Operators

Examples Example 1: Object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, nodel, year) {
t hi s. make = make
this. rodel = nodel
this.year = year

}

Now you can create an object called nycar as follows:

nycar = new car ("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of nycar . make is the string " Eagl e", mycar . year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car ("N ssan", "300zX", 1992)

Example 2: Object property that is itself another object. Suppose you
define an object called per son as follows:

function person(nanme, age, sex) {
thi s. nane = nane
this.age = age
this.sex = sex

}

And then instantiate two new per son objects as follows:

rand = new person("Rand MNally", 33, "M)
ken = new person("Ken Jones", 39, "M)

Then you can rewrite the definition of car to include an owner property that
takes a per son object, as follows:

function car(make, nodel, year, owner) {
this. make = make;
t hi s. rodel = nodel;
this.year = year;
this. owner = owner;

}

To instantiate the new objects, you then use the following:

carl = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car ("N ssan", "300zZX", 1992, ken)

Chapter 4, Operators 273

Special Operators

Syntax

Examples

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects r and and ken as the parameters
for the owners. To find out the name of the owner of car 2, you can access the
following property:

car 2. owner. nane

this

The this keyword refers to the current object. In general, in a method t hi s
refers to the calling object.
Implemented in JavaScript 1.0

ECMA version ECMA-262

t hi s[. propertyNane]

Suppose a function called val i dat e validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowal, hival) {
if ((obj.value < lowal) || (obj.value > hival))
alert("lInvalid Value!")

}

You could call val i dat e in each form element’s onChange event handler,
using t hi s to pass it the form element, as in the following example:

Enter a nunber between 18 and 99: </ B>
<INPUT TYPE = "text" NAME = "age" SIZE = 3
onChange="val i date(this, 18, 99)">

274 Core JavaScript Reference

Special Operators

typeof

The t ypeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The t ypeof operator returns a string indicating the type of the unevaluated
operand. oper and is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Implemented in JavaScript 1.1

ECMA version ECMA-262

Suppose you define the following variables:

var nmyFun = new Function("5+2")
var shape="round"

var size=1

var today=new Date()

The t ypeof operator returns the following results for these variables:

typeof myFun is object

typeof shape is string

typeof size is nunber

typeof today is object

typeof dont Exi st is undefined

For the keywords t rue and nul |, the t ypeof operator returns the following
results:

typeof true is bool ean
typeof null is object

For a number or string, the t ypeof operator returns the following results:

typeof 62 is nunber
typeof "Hello world is string

For property values, the t ypeof operator returns the type of value the property
contains:

typeof docunent.lastMdified is string
typeof wi ndow. | ength is nunber
typeof Math.LN2 is nunber

Chapter 4, Operators 275

Special Operators

For methods and functions, the t ypeof operator returns results as follows:

typeof blur is function

typeof eval is function

typeof parselnt is function
typeof shape.split is function

For predefined objects, the t ypeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expr essi on is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.
Implemented in JavaScript 1.1

ECMA version ECMA-262

You can use the voi d operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, voi d(0) evaluates to 0, but that has no
effect in JavaScript.

Cick here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submt

276 Core JavaScript Reference

LiveConnect Class Reference

» Java Classes, Constructors, and
Methods

278 Core JavaScript Reference

Chapter

Java Classes, Constructors, and
Methods

This chapter documents the Java classes used for LiveConnect, along with their
constructors and methods. It is an alphabetical reference for the classes that
allow a Java object to access JavaScript code.

This reference is organized as follows:
= Full entries for each class appear in alphabetical order.

Tables included in the description of each class summarize the constructors
and methods of the class.

= Full entries for the constructors and methods of a class appear in
alphabetical order after the entry for the class.

Chapter 5, Java Classes, Constructors, and Methods 279

JSException

JSEXception

Description

Constructor
Summary

Method Summary

Backward
Compatibility

The public class JSExcept i on extends Runt i meExcepti on.

j ava. | ang. Obj ect

+----java.l ang. Throwabl e

+----java.l ang. Exception

+----java.l ang. Runti neExcepti on

+----netscape.javascript.JSException

JSExcept i on is an exception which is thrown when JavaScript code returns an
error.

The net scape. j avascri pt. JSExcept i on class has the following
constructors:

Constructor Description

JSException Deprecated constructors optionally let you specify a detail
message and other information.

The net scape. j avascri pt. JSExcept i on class has the following method:

Method Description

get W appedExcept i on Instance method getWrappedException.

The following sections show the declaration and usage of the constructors and
method.

JavaScript 1.1 through 1.3. JSExcept i on had three public constructors
which optionally took a string argument, specifying the detail message or other
information for the exception. The get W appedExcept i on method was not
available.

280 Core JavaScript Reference

JSException.JSException

JSException

Constructors, deprecated in JavaScript 1.4. Constructs a JSExcept i on with an
optional detail message.

Declaration 1. public JSException()
2. public JSException(String s)

3. public JSException(String s,
String fil enane,
int |ineno,
String source,
i nt tokenl ndex)

Arguments
s The detail message.
fil ename The URL of the file where the error occurred, if possible.
l'i neno The line number if the file, if possible.
source The string containing the JavaScript code being evaluated.
t okenl ndex The index into the source string where the error occurred.
getWrappedException

Instance method get W appedExcepti on.

Declaration public Ooject get WappedException()

Chapter 5, Java Classes, Constructors, and Methods 281

JSObject

JSODbject

Description

Method Summary

The public final class net scape. j avascri pt. JSCbj ect extends Obj ect .

j ava. | ang. Obj ect

+----netscape.javascri pt.JSObj ect

JavaScript objects are wrapped in an instance of the class
net scape. j avascri pt. JSCbj ect and passed to Java. JSObj ect allows
Java to manipulate JavaScript objects.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObj ect ; when a JSObj ect is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JShj ect class provides a way to invoke JavaScript methods and examine
JavaScript properties.

Any JavaScript data brought into Java is converted to Java data types. When the
JSObiject is passed back to JavaScript, the object is unwrapped and can be used
by JavaScript code. See the Core JavaScript Guide for more information about
data type conversions.

The net scape. j avascri pt. JSObj ect class has the following methods:

Method Description

cal | Calls a JavaScript method.

equal s Determines if two JSCbj ect objects refer to the same
instance.

eval Evaluates a JavaScript expression.

get Menber Retrieves the value of a property of a JavaScript object.

get Sl ot Retrieves the value of an array element of a JavaScript object.

r enoveMenber Removes a property of a JavaScript object.

set Menber Sets the value of a property of a JavaScript object.

set Sl ot Sets the value of an array element of a JavaScript object.

toString Converts a JSObj ect to a string.

282 Core JavaScript Reference

JSObject.call

The net scape. j avascri pt. JSObj ect class has the following static methods:

Method Description
get W ndow Gets a JSChj ect for the window containing the given
applet.

The following sections show the declaration and usage of these methods.

Method. Calls a JavaScript method. Equivalent to
“t hi s. met hodName(args[0], args[1], ...)”"inJavaScript.

public Object call(String methodNane,
oj ect args[])

equals

Method. Determines if two JSObj ect objects refer to the same instance.
Overrides: equal s in class j ava. | ang. Obj ect
publi ¢ bool ean equal s(Obj ect obj)

JavaScript 1.3. In JavaScript 1.3 and earlier versions, you can use either the
equal s method of j ava. | ang. Cbj ect or the == operator to evaluate two
JSOhj ect objects.

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

call
Declaration
Declaration
Backward
Compatibility
eval
Declaration

public Object eval (String s)

Chapter 5, Java Classes, Constructors, and Methods 283

JSObject.getMember

getMember

Declaration

Method. Retrieves the value of a property of a JavaScript object. Equivalent to
“t hi s. nane” in JavaScript.

public Object getMenber(String nane)

getSlot

Declaration

Method. Retrieves the value of an array element of a JavaScript object.
Equivalent to “t hi s[i ndex] ” in JavaScript.

public Object getSlot(int index)

getWindow

Declaration

Static method. Returns a JSQbj ect for the window containing the given applet.
This method is useful in client-side JavaScript only.

public static JSOhject get Wndow(Appl et appl et)

removeMember

Declaration

Method. Removes a property of a JavaScript object.

public void renoveMenber (String nane)

setMember

Declaration

Method. Sets the value of a property of a JavaScript object. Equivalent to
“t hi s. name = val ue” in JavaScript.

public void set Menber(String nane,
oj ect val ue)

284 Core JavaScript Reference

JSObject.setSlot

setSlot

Method. Sets the value of an array element of a JavaScript object. Equivalent to
“t hi s[i ndex] = val ue” in JavaScript.

Declaration public void setSlot(int index,
bj ect val ue)

toString

Method. Converts a JSObj ect to a Stri ng.
Overrides: t oSt ri ng in class j ava. | ang. Obj ect

Declaration public String toString()

Chapter 5, Java Classes, Constructors, and Methods 285

JSObject.toString

286 Core JavaScript Reference

Appendixes

* Reserved Words

288 Core JavaScript Reference

This appendix lists the reserved words in JavaScript.

Appendix

Reserved Words

The reserved words in this list cannot be used as JavaScript variables,
functions, methods, or object names. Some of these words are keywords used
in JavaScript; others are reserved for future use.

abstract
bool ean
br eak
byt e
case
catch
char

cl ass
const
conti nue
debugger
defaul t
del ete
do
doubl e

el se
enum
export
ext ends
fal se
final
finally
f1 oat
for
function
goto

if

i mpl enent s
i mport
in

i nst anceof
int
interface
| ong
native
new

nul
package
private
protected
public
return
short
static
super

switch
synchroni zed
this

t hr ow

t hr ows
transi ent
true

try

t ypeof
var

voi d

vol atile
whi | e
with

Appendix A, Reserved Words 289

290 Core JavaScript Reference

Symbols

- (bitwise NOT) operator 261

- (unary negation) operator 260
-- (decrement) operator 260

I (logical NOT) operator 264

I= (not equal) operator 257

I== (strict not equal) operator 257
$& property 159

$* property 159

$+ property 159

$_property 159

$* property 159

$’ property 159

$1, ..., $9 properties 158

% (modulus) operator 259

%= operator 255

&& (logical AND) operator 264

& (bitwise AND) operator 261
&= operator 255

) 283

*/ comment 232

*= operator 255

+ (string concatenation) operator 266
++ (increment) operator 259

+= (string concatenation) operator 266
+= operator 255

/* comment 232

// comment 232

/= operator 255

< (less than) operator 257

<< (left shift) operator 261, 262

<<= operator 255

<= (less than or equal) operator 257
== (equal) operator 257

=== (strict equal) operator 257

-= operator 255

> (greater than) operator 257

>= (greater than or equal) operator 257

>> (sign-propagating right shift) operator 261,

263
>>= gperator 255
>>> (zero-fill right shift) operator 261, 263
>>>= operator 255
2. (conditional) operator 266
" (bitwise XOR) operator 261
A= operator 255
| (bitwise OR) operator 261
| = operator 255
|| (logical OR) operator 264
, (comma) operator 267

A

abs method 109
acos method 109
anchor method 177

anchors
creating 177

AND (&&) logical operator 264
AND (&) bitwise operator 261
apply method 83

arguments array 85

Index 291

arithmetic operators 259 bitwise operators 260

% (modulus) 259 & (AND) 261

-- (decrement) 260 - (NOT) 261

- (unary negation) 260 << (left shift) 261, 262

++ (increment) 259 >> (sign-propagating right shift) 261, 263
arity property 90 >>> (zero-fill right shift) 261, 263
A biect 16 N (XOR) 261

rray objec | (OR) 261
arrays _ logical 261

Array object 16 shift 262

creating from strings 198

deleting elements 267 BITINK HTML tag 179

dense 17 blink method 179

increa_sing length of 18 BOLD HTML tag 179

!npl_eﬁl?g 1L 17 10 bold method 179

Initial ‘ength o ’ Boolean object 38

Java 98 ditional tests and 38

joining 23 conditional tests an

length of, determining 24, 190 break statement 231

referring to elements 17

sorting 29 C

asin method 110

] callee property 87
assignment operators 254

%= 255 caller property 88
&= 255 call method 90
*= 255 call method (LiveConnect) 283
;'_: 225’5’ ceil method 112
<<= 955 charAt method 180
-= 255 charCodeAt method 181
>>= 255 classes, accessing Java 102, 147
>>>= 255
N className property 148
|= 255 comma (,) operator 267
conditional statements and 239 comments 232
atan2 method 111 comment statement 232
atan method 111 comparison operators 256
I= (not equal) 257
B I== (strict not equal) 257
< (less than) 257
BIG HTML tag 178 <= (less than or equal) 257
big method 178 == (equal) 257

=== (strict equal) 257
> (greater than) 257
>= (greater than or equal) 257

292 Core JavaScript Reference

compile method 160

concat method
Array object 21
String object 182

conditional (?:) operator 266

conditional tests
assignment operators and 239
Boolean objects and 38

constructor property
Array object 22
Boolean object 40
Date object 48
Function object 92
Number object 129
Object object 137
RegExp object 161
String object 182

containership
specifying default object 249
with statement and 249

continue statement 233
conventions 229
cos method 113

D

Date object 43
dates
converting to string 74
Date object 43
day of week 49
defining 43
milliseconds since 1970 77
month 51
decrement (--) operator 260
default objects, specifying 249
delete operator 267
deleting
array elements 267
objects 267
properties 267

dense arrays 17

directories, conventions used 12
do...while statement 234
document conventions 12

E

E property 114
equals method (LiveConnect 283

escape function 212
Unicode and 213

Euler’s constant 114
raised to a power 114

eval function 214

eval method
LiveConnect 283
Object object 138

exceptions
catching 246
LiveConnect 280
throwing 243
throw statement 243
try...catch statement 246

exec method 161

exp method 114

export statement 235

expressions that return no value 276

F

fixed method 183
floor method 115
fontcolor method 183

fonts
big 178
blinking 179
bold 179
fontsize method 185

for...in statement 236

Index 293

for loops
continuation of 233
syntax of 235
termination of 231

for statement 235
fromCharCode method 186

Function object 79
specifying arguments for 80
as variable value 81

functions
arguments array 85
callee property 87
caller property 88
declaring 237
Function object 79
length property 89
list of 211
nesting 81, 82
number of arguments 190
return values of 241
top-level 211
as variable value 81

function statement 237

G

getDate method 48

getDay method 49

getFullYear method 49

getHours method 50

getMember method (LiveConnect) 284
getMilliseconds method 50
getMinutes method 51

getMonth method 51

getSeconds method 52

getSlot method (LiveConnect) 284
getTime method 52
getTimezoneOffset method 53
getUTCDate method 53
getUTCDay method 54

294 Core JavaScript Reference

getUTCFullYear method 54
getUTCHours method 55
getUTCMilliseconds method 56
getUTCMinutes method 56
getUTCMonth method 57
getUTCSeconds method 58

getwWindow method (LiveConnect) 284
getWrappedException (LiveConnect) 281
getYear method 58

global object 211

global property 164

GMT time, defined, local time, defined 44

H

HTML tags
BIG 178
BLINK 179
BOLD 179

if...else statement 238
ignoreCase property 165
import statement 239
increment (++) operator 259
indexOf method 186

index property 23

Infinity property 216

in keyword 236

in operator 269

input property
Array object 23
RegExp object 165

instanceof operator 270
isFinite function 217
isNaN function 218
italics method 188

J

JavaArray object 98
JavaClass object 102
java object 97
JavaObject object 104
JavaPackage object 106
java property 149
JavaScript

background for using 9

reserved words 289
versions and Navigator 10

join method 23

JSException class 280

JSException constructor (LiveConnect) 281
JSObiject class 282

K
keywords 289

L

label statement 240
lastindexOf method 189
lastindex property 166
lastMatch property 167
lastParen property 168
leftContext property 168
left shift (<<) operator 261, 262
length property
arguments array 89
Array object 24
Function object 92

JavaArray object 100
String object 190

link method 191

links
anchors for 177
with no destination 276

LiveConnect
JavaArray object 98
JavaClass object 102
java object 97
JavaObject object 104
JavaPackage object 106
JSException class 280
JSObiject class 282
netscape object 126
Packages object 147
sun object 210

LN10 property 116

LN2 property 116

LOGI0E property 117

LOG2E property 118

logarithms
base of natural 114
natural logarithm of 10 116

logical operators 263
I'(NOT) 264
&& (AND) 264
Il (OR) 264
short-circuit evaluation 264

log method 117

loops
continuation of 233
for 235
termination of 231
while 248

lowercase 175, 207

M

match method 191

Math object 107
MAX_VALUE property 129
max method 118
methods, top-level 211
MIN_VALUE property 130
min method 119

modulo function 259

Index 295

modulus (%) operator 259
multiline property 168

N

NaN property
Number object 130
top-level 218

natural logarithms
base of 114
e 114
e raised to a power 114
of 10 116

Navigator, JavaScript versions supported 10
NEGATIVE_INFINITY property 131
nesting functions 81, 82
netscape.javascript.JSException class 280
netscape.javascript.JSObject class 282
netscape object 126

netscape property 149

new operator 272

NOT (!) logical operator 264

NOT (-) bitwise operator 261

Number function 219

Number object 127

numbers
greater of two 118
identifying 218
Number object 127
obtaining integer 112
parsing from strings 220
square root 123

296 Core JavaScript Reference

@)

Object object 136
objects
confirming object type for 270
confirming property type for 269
creating new types 272
deleting 267
establishing default 249
getting list of properties for 237
iterating properties 236
Java, accessing 104
operators 251-276
arithmetic 259
assignment 254
bitwise 260
comparison 256
list of 251
logical 263
special 266
string 266

OR (]) bitwise operator 261
OR (]]) logical operator 264

P

packages, accessing Java 106
Packages object 147
parseFloat function 220
parselnt function 221

parse method 60

Pl property 120

pop method 25

POSITIVE_INFINITY property 132
pow method 120

properties
confirming object type for 269
deleting 267
getting list of for an object 237
iterating for an object 236
top-level 211
prototype property
Array object 25
Boolean object 40
Date object 61
Function object 92
Number object 133
Object object 138
RegExp object 169
String object 193

push method 26

R

random method 121
RegExp object 151
regular expressions 151

removeMember method (LiveConnect) 284

replace method 193
reserved words 289
return statement 241
reverse method 26
rightContext property 169
round method 121

S

search method 196

selection lists
number of options 190

setDate method 61

setFullYear method 62

setHours method 63

setMember method (LiveConnect) 284

setMilliseconds method 64
setMinutes method 64
setMonth method 65
setSeconds method 66

setSlot method (LiveConnect) 285
setTime method 67
setUTCDate method 67
setUTCFullYear method 68
setUTCHours method 69
setUTCMilliseconds method 70
setUTCMinutes method 70
setUTCMonth method 71
setUTCSeconds method 72
setYear method 72

shift method 27

short-circuit evaluation 264

sign-propagating right shift (>>) operator 261,
263

sin method 122

slice method 28, 196
small method 197
sort method 29
source property 170
special operators 266
splice method 33
split method 198
SQRT1_2 property 124
SQRT2 property 124
sqrt method 123
square roots 123

statements 229-250
syntax conventions 229

strike method 201
String function 223
String object 173
string operators 266

Index 297

strings
blinking 179
bold 179
character position within 174, 180, 186
concatenating 266
converting from date 74
converting to floating point 220
creating from arrays 23
defining 173
fontsize of 178
length of 190
lowercase 175, 207
parsing 220
splitting into arrays 198
String object 173

sub method 202
substring method 204
substr method 203

sun object 210

sun property 150

sup method 206
switch statement 241
syntax conventions 229

T

tan method 125

test method 170
this keyword 274
throw statement 243

times

Date object 43

defining 43

minutes 51
toGMTString method 73
toLocaleString method 74
toLowerCase method 207

top-level properties and functions 211

298 Core JavaScript Reference

toSource method
Array object 34
Boolean object 41
Date object 75
Function object 94
Number object 133
Object object 139
RegExp object 171
String object 207

toString method
Array object 35
Boolean object 41
built-in 140
Date object 76
Function object 95
JavaArray object 101
LiveConnect 285
Number object 134
Object object 140
RegExp object 171
String object 208
user-defined 140

toUpperCase method 208
toUTCString method 76
try...catch statement 246
typeof operator 275

U

unary negation (-) operator 260
undefined property 223

unescape function 224
unicode and 213

Unicode
charCodeAt method 181
escape function and 213
unescape function and 213

unshift method 36
unwatch method 143

URLs
conventions used 12
escaping characters in 212

UTC method 77
UTC time, defined 44

\

valueOf method
Array object 37
Boolean object 42
Date object 78
Function object 96
Number object 135
Object object 143
RegExp object 172
String object 209

variables
declaring 248
initializing 248
syntax for declaring 248

var statement 248

versions of JavaScript 10
void operator 276

W%

watch method 145

while loops
continuation of 233
syntax of 248
termination of 231

while statement 248
with statement 249

X
XOR (”) operator 261

Z

zero-fill right shift (>>>) operator 261, 263

Index 299

	Core JavaScript Reference
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	I. Object Reference
	1. Objects, Methods, and Properties
	Array
	concat
	constructor
	index
	input
	join
	length
	pop
	prototype
	push
	reverse
	shift
	slice
	sort
	splice
	toSource
	toString
	unshift
	valueOf

	Boolean
	constructor
	prototype
	toSource
	toString
	valueOf

	Date
	constructor
	getDate
	getDay
	getFullYear
	getHours
	getMilliseconds
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getUTCDate
	getUTCDay
	getUTCFullYear
	getUTCHours
	getUTCMilliseconds
	getUTCMinutes
	getUTCMonth
	getUTCSeconds
	getYear
	parse
	prototype
	setDate
	setFullYear
	setHours
	setMilliseconds
	setMinutes
	setMonth
	setSeconds
	setTime
	setUTCDate
	setUTCFullYear
	setUTCHours
	setUTCMilliseconds
	setUTCMinutes
	setUTCMonth
	setUTCSeconds
	setYear
	toGMTString
	toLocaleString
	toSource
	toString
	toUTCString
	UTC
	valueOf

	Function
	apply
	arguments
	arguments.callee
	arguments.caller
	arguments.length
	arity
	call
	constructor
	length
	prototype
	toSource
	toString
	valueOf

	java
	JavaArray
	length
	toString

	JavaClass
	JavaObject
	JavaPackage
	Math
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	E
	exp
	floor
	LN10
	LN2
	log
	LOG10E
	LOG2E
	max
	min
	PI
	pow
	random
	round
	sin
	sqrt
	SQRT1_2
	SQRT2
	tan

	netscape
	Number
	constructor
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	toSource
	toString
	valueOf

	Object
	constructor
	eval
	prototype
	toSource
	toString
	unwatch
	valueOf
	watch

	Packages
	className
	java
	netscape
	sun

	RegExp
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	compile
	constructor
	exec
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	prototype
	rightContext
	source
	test
	toSource
	toString
	valueOf

	String
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	constructor
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	length
	link
	match
	prototype
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toSource
	toString
	toUpperCase
	valueOf

	sun

	2. Top-Level Properties and Functions
	escape
	eval
	Infinity
	isFinite
	isNaN
	NaN
	Number
	parseFloat
	parseInt
	String
	undefined
	unescape

	II. Language Elements
	3. Statements
	break
	comment
	continue
	do...while
	export
	for
	for...in
	function
	if...else
	import
	label
	return
	switch
	throw
	try...catch
	var
	while
	with

	4. Operators
	Assignment Operators
	Comparison Operators
	Using the Equality Operators

	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	in
	instanceof
	new
	this
	typeof
	void

	III. LiveConnect Class Reference
	5. Java Classes, Constructors, and Methods
	JSException
	JSException
	getWrappedException

	JSObject
	call
	equals
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString

	IV. Appendixes
	A. Reserved Words

	Index

