Creating XPCOM
Components

Doug Turner & lan Oeschger

Creating XPCOM Components

Copyright (c) 2003 by Doug Turner and lan Oeschger. This material may be
distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.02 or later (the latest version is presently available at
http://www.opencontent.org/openpub/). Distribution of substantively modified
versions of this document is prohibited without the explicit permission of the
copyright holder. Distribution of the work or derivative of the work in any
standard (paper) book formis prohibited unless prior permission is obtained from
the copyright holder.

Published by Brownhen Publishing.

CHAPTER 1

CHAPTER 2

Preface il

Who Should Read ThisBook v
Organization of the Tutorial iv
Following Along with the Examples v
Conventions Vi

Acknowledgements vi

What s XPCOM? 7

The XPCOM Solution 8
Gecko 8
Components 9
Interfaces 10
Interfaces and Encapsulation 11
The nslSupports Base Interface 13
XPCOM Identifiers 18
CID 18
Contract ID 19
Factories 20
XPIDL and Type Libraries 21
XPCOM Services 23
XPCOM Types 24
Method Types 24
Reference Counting 24
Satus Codes 25
Variable mappings 25
Common XPCOM Error Codes 25

Using XPCOM Components

Component Examples 28
Cookie Manager 28
The WebBrowserFind Component 32
The WebLock Component 33
Component Usein Mozilla 33
Finding Mozlla Components 34

27

Creating XPCOM Components

CHAPTER 3

CHAPTER 4

CHAPTER 5

Using XPCOM Componentsin Your C++ 36
XPConnect: Using XPCOM Components From
Script 36

Component Internals 39

Creating Componentsin C++ 39
XPCOM Initialization 41
XPCOM Registry Manifests 42
Registration Methodsin XPCOM 44
Autoregistration 45
The Shutdown Process 45
Three parts of a XPCOM Component Library 47
XPCOM Glue 48
The Glue Library 49
XPCOM 8ring Classes 50

Tutorial :
Creating the Component Code 53

What We'll Be Working On 54
Component Registration 55
Theregxpcom Program 55
Registration Alternatives 55
Overview of the WebL ock Module Source 56
Digging In: Required Includes and Constants 58
Identifiersin XPCOM 60
Coding for the Registration Process 61
The Registration Methods 62
Creating an Instance of Your Component 65

webLockl.cpp 68

Tutorial: Using XPCOM Utilities To
Make Things Easier 75

XPCOM Macros 76
Generic XPCOM Module Macros 76

Creating XPCOM Components

Common Implementation Macros 80
Declaration Macros 81

weblock2.cpp 82

String Classesin XPCOM 84

Using Srings 84

nsEmbedSring and nsEmbedCSring 85
Smart Pointers 86

CHAPTER 6 Tutorial: Sarting WebLock 91

Getting Called at Startup 91
Registering for Notifications 94
Getting Access to the Category Manager 96

Providing Accessto WebLock 101
Creating the WebL ock Programming Interface 102

Defining the Weblock Interface in XPIDL 103
The XPIDL Syntax 103
Scriptable Interfaces 104
Subclassing nslSupports 105
TheWeb Locking Interface 105

Implementing WebLock 107
Declaration Macros 107
Representing Return Valuesin XPCOM 109
XPIDL Code Generation 109
Getting the WebLock Servicefroma Client 109
Implementing the i\ebLock Interface 110
The Directory Service 112
Modifying Paths with nsiFile 115
Manipulating Fileswith nsIFile 116
Using nslLocalFile for Reading Data 117
Processing the White List Data 119

iWebLock Method by Method 121
Lock and Unlock 121
AddSte 121
RemoveSite 122
SetStes 124
GetNext 125
GetStes 126

Creating XPCOM Components 3

HasMoreElements 126

CHAPTER 7 Tutorial:
Finishing the Component 131

Using Frozen Interfaces 131
Copying Interfacesinto Your Build Environment 134
Implementing the nsl ContentPolicy Interface 135
Receiving Notifications 136

Implementing the nslContentPolicy 138
Uniform Resource Locators 138
Checking the White List 139
Creating nsIURI Objects 140

CHAPTER 8 Tutorial:
Building the WebLock Ul 145

User Interface Package List 146
Client Code Overview 147
XUL 149
The XUL Document 149
TheLocking Ul 150
SteAdding Ul 151
weblock.xul 152

Overlaying New User Interface Into Mozilla 153
webLockOverlay.xul 153

Other Resources 154
weblock.css 155
Image Resources 156

CHAPTER 9 Tutorial:
Packaging WebLock 157

Component Installation Overview 158
Archiving Resources 159
The WebL ock Installation Script 160

Creating XPCOM Components

The WebL ock Trigger Script 162
Distributing Your Component 162

Appendix A: Setting up
the Gecko SDK 165

Downloading and Setting the SDK 165

Building a Microsoft Visual C++ Project 168
Creating a New Project 168
Adding the Gecko SDK to the Project Settings 169

A Makefilefor Unix 173

Appendix B:
XPCOM API Reference 175

XPCOM Core 175
nslSupports 176
nslInterfaceRequestor 178
nslWeakReference 179
nsiMemory 180
nslProgrammingLanguage 183

XPCOM Components 184
nslComponentManager 184
nslFactory 188
nsiModule 189
nslComponentRegistrar 192
nslServiceManager 200
nslClassinfo 202

XPCOM Data Structures 206
nslCategoryManager 207
nslObserver 210
nslObserverService 211
nslProperties 215
nslSmpleEnumerator 218
nsl SupportsPrimitives 219

XPCOM I/O0 221

nslDirectoryServiceProvider 221
nslDirectoryServiceProvider2 222

Creating XPCOM Components

nslDirectoryService 223
nsiFile 225
nslinputSream 240
nslLocalFile 243
nslOutput3ream 249

XPCOM Startup/Shutdown 253

Appendix C: Resources 259

WebL ock Resources 259

Gecko Resources 260

XPCOM Resources 260

General Development Resources 261

Creating XPCOM Components

Preface

* “Who Should Read This Book”

e “Organization of the Tutorial”

* “Following Along with the Examples”
* “Conventions’

e “Acknowledgements’

Thisis abook about Gecko, and about creating XPCOM components for Gecko-
based applications. Though the emphasisis on the practical stepsyou take to make
your C++ code into a component that can be used in Gecko, we hope that these
steps will also give us an occasion to discuss all of the tools, techniques, and tech-
nologies that make up XPCOM . Accordingly, the book is arranged so that you can
follow along and create your own components or learn about different XPCOM
topicsindividualy, asin areference work. For example, theintroduction includes a
discussion of components and what they are, and the first chapter—in which you
compile the basic code and register it with Mozilla—prompts a discussion of the
relationship between components and modules, of XPCOM interfaces, and of the
registration processin general.

Creating XPCOM Components i

Preface

The top of each chapter providesalist of the major topics covered. Sidebar sections
areincluded to highlight technical details. By the end of the book, if we've done
our job, you will have leaned how to build a component and you will know some-
thing about the framework for these componentsin Gecko, which is XPCOM.

Who Should Read This Book

Creating XPCOM Components is meant for C++ devel opers. Though you can cre-
ate XPCOM components in JavaScript and other languages, and though you might
be able to follow along as a C programmer, the component implementation codeis
written in C++, and much of the discussion of how to make your code into an
XPCOM component starts from C++. You don’t need to be a C++ expert, however.
Although basic ideas such as inheritance and encapsulation should be familar to
you, wherever possible they are explained in the book as they are used. Also many
of the examples are in JavaScript, which is used in Mozillato access XPCOM com-
ponents as scriptabl e objects, and so familiarity with that language is useful aswell.

XPCOM stands for the Cross Platform Component Object Model. As this name
implies, XPCOM is similar to Microsoft COM. If you have any experience with
this technology, much of it can be applied to XPCOM. However, this book does
not assume any prior knowledge of COM—all of the basic COM ideas will be
introduced.

This book provides atutorial about building an XPCOM component that controls
browsing behavior. Although, XPCOM can be used in many environments which
are unrelated to web browsing, XPCOM's main client is Gecko, an open source,
standards compliant, embeddable web browser, where it's easiest and most practi-
ca toillustrate XPCOM's functionality. A full description of the component in this
tutorial can be found in the “What We'll Be Working On” section of the tutorial.

Organization of the Tutorial

The following list provides an overview of the steps that we will take to build an
XPCOM component called WebL ock, which provides site blocking functionality
to Gecko-based browsers. Each one of these steps has its own chapter, in which a
number of topics associated with the step are discussed.

Creating XPCOM Components

Following Along with the Examples

* Create the generic module code for the component.

e Use C++ macros, special string classes and smart pointers to optimize your
code.

* Define the functionality for the component; create an XPIDL interface for that
functionality; create the implementation code specific to the
custom WebL ock component interface.

* Finish implementing the WebL ock component: nsl ContentPolicy, file 1/0,
locking, etc.

* Creating the user interface for the WebL ock component.
* Packaging WebL ock for distribution and installation.

Following Along with the Examples

There are a couple of different waysto get XPCOM onto your machine so you can
begin to create components. If you already have a Mozillabuild or the source from
Mozilla 1.2 or later, then you can use the XPCOM framework available there. If
you don't already have the Mozilla source, then an even easier way to get and use
XPCOM isto download the Gecko SDK, which is acollection of libraries and tools
that features the XPCOM component framework.

Whether you compile your code in the Mozilla source tree or use the Gecko SDK,
you can build your own components and which leverage components that already

exist in Gecko. The WebL ock component we describe in this tutorial is apractical
(and, we hope, genuinely useful) addition to the browser. In order to build it, your

Gecko SDK or Mozilla source tree needs to be version 1.2 or later. Releases prior
to Mozilla1.2 did not completely support XPCOM components with frozen inter-
faces, but changes since then have remedied this.

This book assumes you are using the SDK rather than compiling in aMozilla
source tree, though the difference between these two approachesis minimal.
Details about downloading the SDK, building, and getting programmatic access to
Gecko components are provided in the appendix to this book, Setting up the Gecko
Platform.

Creating XPCOM Components \"

Preface

Conventions

The formatting conventions listed in Table 1 are used to designate specific types of
information in the book and make things easier to scan. The goal isto use as few
formats as possible, but to distinguish the various different types of information
clearly.

TABLE 1. Formatting Conventions Used in This Book

Format Description
bold component names appear in bold in the text
nonospace code listings, interface nanesand

menber s of interfaces
(eg.,creat el nst ance()) appear in monospaced
font. Longer code listings appear in gray boxes.

italic variables, filenames and directory names terms appear
initalic. Important terms and new concepts are also
italicized the first time they appear in the text. Those
terms are either explained immediately after they are
cited, or else the reader isreferred to asection in the
book where they are described in detail. Referencesto
other chapters (e.g., Getting Social: Making Instances
of Your Component Available) are also italicized.

“quoted” References to other sections are double-quoted (e.g.
“Organization of the Tutoria”).

Acknowl edgements

Thanks to Peter Lubczynski, John Gaunt, Ellen Evans, and Alec Flett for technical
reviews. And aspecial thanksto Darin Fisher for his very acute observations, close
reading, and attention to detail.

Creating XPCOM Components

CHAPTER 1

What |s XPCOM?

Thisisabook about XPCOM. The book iswritten in the form of atutorial about
creating XPCOM components, but it covers all major aspects, concepts, and
terminology of the XPCOM component model along the way.

This chapter starts with a quick tour of XPCOM—an introduction to the basic
concepts and technologiesin XPCOM and component devel opment. The brief
sections in this chapter introduce the concepts at a very high-level, so that we can
discuss and use them with more familiarity in the tutorial itself, which describes the
creation of a Mozilla component called WebL ock.

* “The XPCOM Solution”

s “Components’

* “Interfaces’

* “Factories’

* “XPCOM Services’

Creating XPCOM Components 7

What Is XPCOM?

The XPCOM Solution

The Cross Platform Component Object Module (XPCOM) is a framework which
allows developersto break up monolitic software projectsinto smaller modularized
pieces. These pieces, known as components, are then assembled back together at
runtime.

The goal of XPCOM isto allow different pieces of software to be developed and
built independently of one another. In order to alow interoperability between
components within an application, XPCOM separates the implementation of a
component from the interface, which we discuss in the “ Interfaces’ section. But
XPCOM also provides several tools and libraries that enable the loading and
manipulation of these components, services that help the devel oper write modular
cross-platform code, and versioning support, so that components can be replaced or
upgraded without breaking or having to recreate the application. Using XPCOM,
devel opers create components that can be reused in different applications or that
can be replaced to change the functionality of existing applications.

XPCOM not only supports component software development, it also provides
much of the functionality that a development platform provides, such as:

* component management

» fileabstraction

* object message passing

* memory management

We will discuss the aboveitemsin detail in the coming chapters, but for now, it can

be useful to think of XPCOM as a platform for component development, in which
features such as those listed above are provided.

Gecko

Although it isin some ways structurally similar to Microsoft COM, XPCOM is
designed to be used principally at the application level. The most important use of
XPCOM iswithin Gecko, an open source, standards compliant, embeddable web
browser and toolkit for creating web browsers and other applications.

Creating XPCOM Components

Components

XPCOM isthe means of accessing Gecko library functionality and embedding or
extending Gecko. This book focuses on the |atter—extending Gecko—but the
fundamental ideas in the book will be important to devel opers embedding Gecko as
well.

Gecko is used in many internet applications, mostly browsers. Thelist includes
devices such as the Gateway/AOL Instant AOL device and the Nokia Media
Terminal. Gecko is also used in the latest Compuserve client, AOL for Mac OS X,
Netscape 7, and of coursethe Mozillaclient. At thistime, Gecko is the predominant
open source web browser.

Components

XPCOM alows you to build a system in which large software projects can be
broken up into smaller pieces. These pieces, known as components, are usually
delivered in small, reusable binary libraries (a DLL on Windows, for example, or a
DSO on Unix), which can include one or more components. When there are two or
more related components together in abinary library, thelibrary isreferred to asa
module.

Breaking software into different components can help make it less difficult to
develop and maintain. Beyond this, modular, component-based programming has
some well-known advantages, as Table 1 describes:

TABLE 1. Benefits from Modular Code

Benefit Description

Reuse Modular code can be reused in other applications
and other contexts

Updates You can update components without having to
recompile the whole application

Performance When code is modularized, modul es that are not
necessary right away can be “lazy loaded”, or not
loaded at all, which can improve the performance of
your application.

Maintenance Even when you are not updating a component,
designing your appication in amodular way can
make it easier for you to find and maintain the parts
of the application that you are interested in.

Creating XPCOM Components 9

What Is XPCOM?

Mozilla has over four million lines of code, and no single individual understands
the entire codebase. The best way to tackle a project of thissizeisto divideit into
smaller, more managabl e pieces, use a component programming model, and to
organize related sets of components into modules. The network library, for
example, consists of components for each of the protocols, HTTP, FTPR, and others,
which are bundled together and linked into asingle library. Thislibrary isthe
networking module, also known as “necko.”

But it's not always a good idea to divide things up. There are some things in the
world that just go together, and others that shouldn’t be apart. For example, one
author’s son will not eat a peanutbutter sandwich if thereisn’t jam on it, becausein
his world, peanut butter and jam form an indelible union. Some softwareis the
same. In areas of code that are tightly-coupled—in classes that are only used
internally, for example—the expensive work to divide things may not be worth the
effort.

The HTTP component in Gecko doesn’t expose private classes it uses as separate
components. The “stuff” that’s internal to the component staysinternal, and isn’t
exposed to XPCOM. In the haste of early Mozilla development, components were
created where they wereinappropriate, but there'sbeen an ongoing effort to remove
XPCOM from places like this.

Interfaces

It's generally a good ideato break software into components, but how exactly do
you do this? The basic ideais to identify the pieces of functionality that are related
and understand how they communicate with each other. The communication
channels between different component form boundaries between those
components, and when those boundaries are formalized they are known as
interfaces.

Interfaces aren’t anew ideain programming. We've all used interfaces since our
first “HellowWorld” program, where the interface was between the code we actually
wrote—the application code—and the printing code. The application code used an
interface from alibrary, st di o, to print the “hello world” string out to the screen.
The difference hereisthat a“HellowWorld” application in XPCOM finds this screen-
printing functionality at runtime and never has to know about st di o when it's
compiled.

10

Creating XPCOM Components

Interfaces

Interfaces allow devel opers to encapsulate the implementation and inner workings
of their software, and allow clients to ignore how things are made and just use that
software.

Interfaces and Programming by Contract

An interface forms a contractual agreement between components and
clients. Thereis no code that enforces these agreements, but ignoring
them can be fatal. In component-based programming, a component
guarantees that the interfaces it provides will be immutable—that they
will provide the same access to the same methods across different
versions of the component—establishing a contract with the software
clientsthat useit. In this respect, interface-based programming is often
referred to as programming by contract.

Interfaces and Encapsulation

Between component boundaries, abstraction is crucial for software maintainability
and reusability. Consider, for example, aclass that isn't well encapsulated. Using a
freely available public initialization method, as the example below suggests, can
cause problems.

cl ass Sonedl ass

{
publi c:
/] Constructor
Sonedl ass() ;

/1 Virtual Destructor
virtual ~Somed ass();

/1 init method
void Init();

voi d DoSonet hi ngUsef ul ();

Figure 1. SomeClass Class I nitialization

Creating XPCOM Components 11

What Is XPCOM?

For this system to work properly, the client programmer must pay close attention to
whatever rules the component programmer has established. Thisis the contractual
agreement of this unencapsulated class: a set of rulesthat define when each method
can be called and what it is expected to do. One rule might specify that

DoSorret hi ngUsef ul may only be called after acall tol nit (). The

DoSorret hi ngUsef ul method may do some kind of checking to ensure that the
condition—that I ni t has been called—has been satisfied.

In addition to writing well-commented code that tells the client devel oper the rules
about | ni t (), the developer can take a couple steps to make this contract even
clearer. First, the construction of an object can be encapsulated, and avirtual class
provided that defines the DoSonet hi ngUsef ul method. In thisway, construction
and initialization can be completely hidden from clients of the class. In this* semi-
encapsulated” situation, the only part of the class that is exposed is a well-defined
list of callable methods (i.e., the interface). Once the classis encapsul ated, the only
interface the client will seeisthis:

class Sonelnterface

{
publ i c:
virtual void DoSonet hi ngUseful () = 0;

b

Figure 2. Encapsulation of Somelnterface

The implementation can then derive from this class and implement the virtual
method. Clients of this code can then use afactory design pattern to create the
object (see “Factories’ on page 20) and further encapsulate the implementation. In
XPCOM, clients are shielded from the inner workings of components in this way
and rely on the interface to provide access to the needed functionality.

The nsl Supports Base | nterface

Two fundamental issuesin component and interface-based programming are
component lifetime, also called object ownership, and interface querying, or being
able to identify which interfaces a component supports at run-time. This section
introduces the base interface—the mother of all interfacesin XPCOM—

nsl| Suppor t s, which provides solutions to both of these issues for XPCOM
developers.

12

Creating XPCOM Components

Interfaces

Object Ownership. In XPCOM, since components may implement any number of
different interfaces, interfaces must be reference counted. Components must keep
track of how many referencesto it clients are maintaining and delete themselves
when that number reaches zero.

When a component gets created, an integer inside the component tracks this
reference count. The reference count is incremented automatically when the client
instanti ates the component; over the course of the component’slife, the reference
count goes up and down, always staying above zero. At some point, all clientslose
interest in the component, the reference count hits zero, and the component deletes
itself.

When clients use interfaces responsibly, this can be avery straightforward process.
XPCOM hastoolsto makeit even easier, aswe describe |ater. It can raise some real
housekeeping problems when, for example, a client uses an interface and forgets to
decrement the reference count. When this happens, interfaces may never be
released and will leak memory. The system of reference counting is, like many
things in XPCOM, a contract between clients and implementations. It works when
people agree to it, but when they don’t, things can go wrong. It is the responsibility
of the function that creates the interface pointer to add the initial reference, or
owning reference, to the count.

Pointersin XPCOM

In XPCOM, pointers refer to interface pointers. The difference is a subtle one,
since interface pointers and regular pointers are both just address in memory.
But an interface pointer is known to implement the ns1 Suppor t s base inter-
face, and so can be used to call methods such as AddRef , Rel ease, or Que-
rylnterface.

nsl Suppor t s, shown below, supplies the basic functionality for dealing with
interface discovery and reference counting. The members of thisinterface,

Queryl nterface, AddRef , and Rel ease, provide the basic meansfor getting the
right interface from an object, incrementing the reference count, and releasing
objects once they are not being used, respectively. Figure 3 shows the

nsl Support s interface.

Creating XPCOM Components 13

What Is XPCOM?

cl ass Sanpl e: public nslSupports {
private:

nsrefcnt nRef Cnt;
publ i c:

Sanpl e() ;

virtual ~Sample();

NS_| METHOD Queryl nterface(const nslID &l D, void **aResult);
NS_| METHOD (nsrefcnt) AddRef (void);
NS_| METHOD (nsrefcnt) Rel ease(void);

Figure 3. The nsl SupportsInterface

The various types used in this figure are described in the “XPCOM Types’ section
below. Figure 4 shows a complete (if spare) implementation of the nsl Support s
interface.

14

Creating XPCOM Components

Interfaces

Sanpl e: : Sanpl e()

{
/'l initialize the reference count to O
mRef Cnt = O;

}

Sanpl e: : ~Sanpl e()

{

}

/1 typical, generic inplenentation of Q
NS_| METHODI MP Sanpl e: : Queryl nterface(const nsl1D &allD,
voi d **aResul t)
{
if (aResult == NULL) {
return NS_ERROR NULL_PO NTER;
}
*aResult = NULL;
if (allD. Equal s(kl SupportslID)) {
*aResult = (void *) this;
}
if (*aResult !'= NULL) {
return NS_ERROR_NO_| NTERFACE;
}
/] add a reference
AddRef () ;
return NS_CK;

NS_| METHODI MP_(nsrefcnt) Sanpl e: : AddRef ()
{

return ++nmRef Cnt ;

}

NS_| METHODI MP_(nsrefcnt) Sanpl e: : Rel ease()
{
if (--nRefCnt == 0) {
del ete this;
return O;
}
/'l optional: return the reference count
return nRef Cnt;

Figure 4. Implementation of nsl Supports I nterface

Creating XPCOM Components 15

What Is XPCOM?

Object Interface Discovery. Inheritance is another very important topic in object
oriented programming. Inheritance is the means through which one classis derived
from another. When a class inherits from another class, the inheriting class may
override the default behaviors of the base class without having to copy all of that
class's code, in effect creating a more specific class, asin the following example:

cl ass Shape
{
private:
int mx;
int my;

publi c:
virtual void Drawm() = O;
Shape() ;
virtual ~Shape();

class Circle : public Shape

{

private:
int mradi us;
publi c:

virtual Draw);
Circle(int x, int y, int radius);
virtual ~Circle();

Figure5. Sinpl e C ass Inheritance

Gircl e isaderived class of Shape. A Ci rcl e isaShape, in other words, but a
Shape isnot necessarily aGi r cl e. In this case, Shape is the base class and Circle
is asubclass of Shape.

In XPCOM, all classes derive from the ns| Suppor t s interface, so al objects are
ns| Support s but they are aso other, more specific classes, which you need to be
ableto find out about at runtime. In Figure 5 above, for example, you'd like to be
able ask the Shape if it'saCircl e andto be ableto useit likeacircleif itis. In
XPCOM, thisiswhat the Quer yI nt er f ace feature of thens| Suppor t s interface
isfor: it allows clients to find and access different interfaces based on their needs.

16

Creating XPCOM Components

Interfaces

In C++, you can use afairly advanced feature known as adynani ¢_cast <>,
which throws an exception if the Shape object isnot abletobecasttoaCircl e.
But enabling exceptions and RTTI may not be an option because of performance
overhead and compatibility on many platforms, so XPCOM does things differently.

“Exceptions’ in XPCOM

C++ exceptions are not supported directly by XPCOM. Instead all exceptions
must be handled within a given component, before crossing interface bound-
aries. In XPCOM, dll interface methods should returnannsr esul t error value
(seethe XPCOM API in Appendix B for alisting of these error codes). These
error code results become the “exceptions’ that XPCOM handles.

Instead of leveraging C++ RTTI, XPCOM uses the special Quer yl nt er f ace
method that casts the object to the right interface if that interface is supported.

Every interface is assigned an identifier that gets generated from atool commonly
named “uuidgen”. Thisuniversally uniqueidentifier (UUID) is aunique, 128 bit

number. Used in the context of an interface (as opposed to a component, which is
what the contract ID isfor), thisnumber is called an 1ID.

When aclient wants to discover if an object supports a given interface, the client
passes the 11D assigned to that interface into the Quer yI nt er f ace method of that
object. If the object supports the requested interface, it adds areference to itself and
passes back a pointer to that interface. If the object does not support the interface an
error isreturned.

cl ass nsl Supports {
publi c:
| ong Querylnterface(const nslID & uuid,
void **result) = 0;
| ong AddRef (void) = 0;
| ong Rel ease(void) = 0;

}s

Thefirst parameter of Quer yI nt er f ace isareference to aclassnamed nsl | D,
which isabasic encapsulation of the lID. Of the three methods onthensl! | Dclass,
Equal s, Par se,and ToSt ri ng, Equal s isby far the most important, becauseitis
used to compare two nsl | Dsin thisinterface querying process.

Creating XPCOM Components 17

What Is XPCOM?

When you implement the ns! | D class (and you' Il seein the chapter “Tutorial:
Using XPCOM Utilities To Make Things Easier” how macros can make this
process much easier), you must make sure the class methods return a valid result
when the client calls Quer yI nt er f ace with thensl Support s IID.

Queryl nt er f ace should support all interfaces that the component supports.

In implementations of Quer yI nt er f ace, the 1D argument is checked against the
nsl | Dclass. If thereisamatch, the object’st hi s pointer is cast to voi d, the
reference count isincremented, and the interface returned to the caller. If thereisn’t
amatch, the class returns an error and sets the out valueto nul | .

In the example above, it's easy enough to use a C-style cast. But casting can
become more involved where you must first cast voic then to the requested type,
because you must return the interface pointer in the vtable corresponding to the
requested interface. Casting can become a problem when there is an ambiguous
inheritance hierarchy.

XPCOM Identifiers

Inaddition to the I1D interface identifier discussed in the previous section, XPCOM
uses two other very important identifiers to distinguish classes and components.

° " CI D”
e “Contract ID”

CID

A CID isa 128 bit number that uniquely identifies a class or component in much
the same way that an 11D uniquely identifies an interface. The CID for
nsl Support s lookslikethis:

00000000- 0000- 0000- c000- 000000000046

The length of a CID can make it cumbersome to deal with in the code, so very often
you see #defines for CIDs and other identifiers being used, asin this example:

#defi ne SAMPLE_CI D \
{ 0x777f7150, Ox4a2b, 0x4301, \
{ Oxad, 0x10, Ox5e, Oxab, 0x25, 0xb3, 0x22, Oxaa}}

18

Creating XPCOM Components

XPCOM Identifiers

You also see NS_DEFI NE_CI D used alot. This simple macro declares a constant
with the value of the CID:

static NS_DEFI NE_Cl D(kWebShel | CID, NS WEB_SHELL_CI D);

A CID issometimes also referred to asa classidentifier. If the classto whicha CID
refers implements more than one interface, that CID guarantees that the class
implements that whole set of interfaces when it's published or frozen.

Contract ID

A contract 1D is a human readable string used to access a component. A CID or a
contract 1D may be used to get a component from the component manager. Thisis
the contract 1D for the LDAP Operation component:

"@mozilla.org/ network/| dap-operation; 1"

The format of the contract ID is the domain of the component, the module, the
component name, and the version number, separated by slashes.

LikeaCID, acontract ID refersto an implementation rather than an interface, asan
[1D does. But acontract 1D is not bound to any specific implementation, asthe CID
is, and is thus more general. Instead, a contract 1D only specifies a given set of
interfaces that it wantsimplemented, and any number of different CIDs may step in
and fill that request. This difference between a contract ID and a CID iswhat makes
it possible to override components.

XPCOM Identifier Classes

Thensl | Dclassis actually atypedef for the ns| D class. The other typedefs of
nsl D, CID and I1D, refer to specific implementations of a concrete class and to
a specific interface, respectively.

The nslD class provides methods like Equals for comparing identifiersin the
code. See“Identifiersin XPCOM" on page 60 for more discussion of thens| D
classes.

Creating XPCOM Components 19

What Is XPCOM?

Factories

Once code is broken up into components, client code typically uses the new
constructor to instantiate objects for use:

Soned ass* conponent = new Soned ass();

This pattern requires that the client know something about the component,
however—how big it is at the very least. The factory design pattern can be used to
encapsulate object construction. The goa of factoriesis create objects without
exposing clients to the implementations and initializations of those objects. In the
Soned ass example, the construction and initialization of SomeCl ass, which
implements the Sonel nt er f ace abstract class, is contained within the
New_Sonel nt er f ace function, which follows the factory design pattern:

i nt New_Sonel nterface(Sonelnterface** ret)

{
Il create the object
SoneCl ass* out = new SoneCl ass();
if (lout) return -1;

[/l init the object
if (out->Init() == FALSE)
{

del ete out;

return -1;

}

/] cast to the interface
ret = static_cast<Sonel nterface>(out);
return O;

Figure 6. Encapsulating the Constructor

Thefactory isthe class that actually manages the creation of separate instances of a
component for use. In XPCOM, factories are implementations of the ns| Fact ory
interface, and they use a factory design pattern like the example above to abstract
and encapsulate object construction and initialization.

20

Creating XPCOM Components

Factories

The example in Figure 6 above is a simple and stateless version of factories, but
real world programming isn't usually so simple, and in general factories need to
store state. At a minimum, the factory needs to preserve information about what
objectsit has created. When a factory manages instances of aclassbuiltin a
dynamic shared library, for example, it needs to know when it can unload the
library. When the factory preserves state, you can ask if there are outstanding
references and find out if the factory created any objects.

Another state that a factory can save iswhether or not an object is a singleton. For
example, if afactory creates an object that is supposed to be a singleton, then
subsequent callsto the factory for the object should return the same object. Though
there are tools and better ways to handle singletons (which we'll discuss when we
talk about the nsl Ser vi ceManager), a developer may want to use this
information to ensure that only one singleton object can exist despite what the
calersdo.

The requirements of afactory class can be handled in astrictly functional way, with
state being held by global variables, but there are benefits to using classes for
factories. When you use a class to implement the functionality of afactory, for
example, you derive from the nsl| Suppor t s interface, which allows you to
manage the lifetime of the factory objects themselves. Thisisimportant when you
want to group sets of factories together and determine if they can be unloaded.
Another benefit of using the nsl Support s interfaceis that you can support other
interfaces as they areintroduced. Aswe'll show when we discussns! d assl nf o,
some factories support querying information about the underlying implementation,
such as what language the object is written in, interfaces that the object supports,
etc. Thiskind of “future-proofing” is a key advantage that comes along with
deriving from ns| Supports.

XPIDL and TypelLibraries

An easy and powerful way to define an interface—indeed, a requirement for
defining interfaces in a cross-platform, language neutral devel opment
environment—is to use an interface definition language (IDL). XPCOM usesits
own variant of the CORBA OMG Interface Definition Language (IDL) called
XPIDL, which allows you to specify methods, attributes and constants of a given
interface, and also to define interface inheritence.

Creating XPCOM Components 21

What Is XPCOM?

There are some drawbacks to defining your interface using XPIDL. Thereisno
support for multiple inheritence, for one thing. If you define anew interface, it
cannot derive from more than one interface. Another limitation of interfacesin
XPIDL isthat method names must be unique. You can not have two methods with
the same name that take different parameters, and the workaround—having

multiple function names—isn't pretty:

void FooWthint(in int x);
void FooWthString(in string x);
voi d FooWthURI (i n nslURl x).

However, these shortcomings pale in comparison to the functionality gained by
using XPIDL. XPIDL allows you to generate type libraries, or typelibs, which are
files with the extension .xpt. The type library is abinary representation of an
interface or interfaces. It provides programmatic control and access of the interface,
which is crucia for interfaces used in the non C++ world. When components are
accessed from other languages, as they can be in XPCOM, they use the binary type
library to access the interface, learn what methods it supports, and call those
methods. This aspect of XPCOM is called XPConnect. XPConnect is the layer of
XPCOM that provides access to XPCOM components from languages such as
JavaScript. See “Connecting to Components from the Interface” on page 30 for
more information about X PConnect.

When a component is accessible from alanguage other than C++, such as
JavaScript, itsinterfaceis said to be “reflected” into that language. Every reflected
interface must have a corresponding type library. Currently you can write
componentsin C, C++, JavaScript, or Python, and there are efforts underway to
build XPCOM bindings for Ruby and Perl aswell.

Writing Componentsin Other Languages

Though you do not have access to some of the tools that XPCOM provides for
C++ developers (such as macros, templates, smart pointers, and others) when
you create components in other languages, you may be so comfortable with the
language itself that you can eschew C++ altogether and build, for example,
Python-based XPCOM components that can be used from JavaScript or vice
versa.

Seethe “References’ section in Appendix C for more information about Python
and other languages for which support has been added in XPCOM.

22

Creating XPCOM Components

XPCOM Services

All of the public interfacesin XPCOM are defined using the XPIDL syntax. Type
libraries and C++ header files are generated from these IDL files, and the tool that
generates these filesis called the xpidl compiler. The section “Defining the
Weblock Interfacein XPIDL" on page 103 describes the XPIDL syntax in detail.

XPCOM Services

When clients use components, they typically instantiate a new object each time
they need the functionality the component provides. Thisis the case when, for
example, clients deal with files: each separate file is represented by a different
object, and several file objects may be being used at any one time.

But thereis also akind of object known as a service, of which thereis always only
one copy (though there may be many servicesrunning at any onetime). Eachtimea
client wants to access the functionality provided by a service, they talk to the same
instance of that service. When a user looks up a phone number in a company
database, for example, probably that database is being represented by an “ object”
that isthe samefor al co-workers. If it weren't, the application would need to keep
two copies of alarge database in memory, for one thing, and there might also be
inconsi stencies between records as the copies diverged.

Providing this single point of access to functionality is what the singleton design
pattern is for, and what services do in an application (and in a development
environment like XPCOM).

In XPCOM, in addition to the component support and management, there are a
number of servicesthat help the devel oper write cross platform components. These
services include a cross platform file abstraction which provides uniform and pow-
erful accessto files, directory services which maintain the location of application-
and system-specific locations, memory management to ensure everyone uses the
same memory allocator, and an event notification system that allows passing of
simple messages. The tutorial will show each of these component and servicesin
use, and Appendix B has a complete interface listing of these areas.

Creating XPCOM Components 23

What Is XPCOM?

XPCOM Types

There are many XPCOM declared types and simple macros that we will use in the
following samples. Most of these types are simple mappings. The most common
types are described in the following sections:

e “Method Types’

* “Reference Counting”

* “Status Codes’

* “Variable mappings’

e “Common XPCOM Error Codes’

Method Types

The following are a set of types for ensuring correct calling convention and return
time of XPCOM methods.

NS_I METHOD Method declaration return type. XPCOM method
declarations should use this as their return type.

NS_| METHODI WP Method |mplementation return type. XPCOM
method implementations should use this as their
return time.

NS_I METHODI MP_(t ype) Special case implementation return type. Some
methods such as AddRef and Release do not return
the default return type. This exception is regretta-
ble, but required for COM compliance.

NS_I MPORT Forced the method to be resolved internally by the
shared library.

NS_EXPORT Forces the method to be exported by the shared
library.

Reference Counting

Set of macros for managing reference counting.

Creating XPCOM Components

XPCOM Types

NS_ADDREF Calls AddRef on an nsl Supports object
NS_| F_ADDREF Same as above but checks for null before calling
AddRef
NS_RELEASE Calls Release on an nsl Supports object
NS | F_RELEASE Same as above but check for null before calling
Release
Satus Codes

These macros test status codes

NS_FAI LED Return true if the passed status code was a failure.

NS_SUCCEEDED Returnstrueisthe passed status code was a success.

Variable mappings

nsref cnt Default reference count type. Mapsto an
32 bit integer.

nsresul t Default error type. Mapsto a 32 bit integer.

nsnul | Default null value.

Common XPCOM Error Codes

NS_ERROR NOT_| NI Tl ALI ZED

Returned when an instance is not initial-
ized.

NS_ERROR_ALREADY_I NI TI ALI ZED

Returned when an instanceis already ini-
tialized

NS_ERROR_NOT_| MPLEMENTED

Returned by an unimplemented method

NS_ERROR _NO_| NTERFACE

Returned when a given interface is not
supported.

NS_ERROR_NULL_POI NTER

Returned when avalid pointer isfound to
be nsnull.

Creating XPCOM Components

25

What Is XPCOM?

NS_ERROR_FAI LURE

Returned when a method fails. Generic
error case.

NS_ERROR _UNEXPECTED

Returned when an unexpected error
occurs.

NS_ERROR_OUT_OF_MEMORY

Returned when amemory allocation fails.

NS_ERROR_FACTORY_NOT_REG STERED

Returned when a requested classis not
registered.

26

Creating XPCOM Components

CHAPTER 2 Using XPCOM Components

One of the best ways to begin working with XPCOM—especially when you are
designing the interface to a component that will be used by others, aswe do in the
chapter “Tutorial: Starting WebL ock”—isto look at how clients are already using
XPCOM components.

Applications like the Mozilla browser are sophisticated, modularized clients of
XPCOM components. In fact, virtually all of the functionality that you associate
with a browser—navigation, window management, managing cookies, bookmarks,
security, searching, rendering, and other features—is defined in XPCOM
components and accessed by means of those component interfaces. Mozillais made
of XPCOM components.

This chapter demonstrates how Mozilla uses some of these XPCOM abjects, such
asthe CookieM anager, and shows how access to the WebL ock component will be
defined.

Creating XPCOM Components 27

Using XPCOM Components

Component Examples

WEe'll say more about how you can use the particular components described here in
Appendix B, The XPCOM API Reference. For now, what's important to see is how
components like the onesin this section are obtained and used by the Mozilla
browser.

Cookie M anager

Cookie management is one of the many sets of functionality that is made available
to the browser in the form of an XPCOM component and that can be re-used by
developers who want similar functionality in their applications. Whenever a user
accesses the Cookie Manager dialog to view, organize, or remove cookies that have
been stored on the system, they are using the CookieM anager component behind

the scenes. Figure 1 shows user interface® that is presented to the user in Moxzilla
for working with the CookieM anager component.

1. Notethat the interfaceis not part of the component itself. XPCOM makes it easy to use
components like CookieManager from Mozilla's Cross Platform Front End (XPFE) and
other user interfaces, but the component itself doesn’t provideit's own Ul.

28

Creating XPCOM Components

Component Examples

Cookie Manager x|

Stored Cookies I Cookie Sites

‘Wiews and Remove Cookies that are stored on your computer,

Site | Cookig Mame i
blogger.com PyralD2 -

bluestreak.com id =
bofh-internat. .. Lastyisit

bugscape.mc... Bugzila_login

bugscape.me... Bugzila logincookie =

 Information about the selected Cookie

Mame: |Bugzilla_|0gin
Information: |oeschger@netscape.com
Host: |bugscape.mcom.com
Path: |.|’

Server Secure: |n0

Expires: |Friday, June 29, 2029 4:59:59 PM

Paolicy: |

[Remove Cookie] [Remove All Cookies]

[J Don't allow remaved cookies ta be reaccepted later

[OF][Cancel] [Help]

Figure 1. The Cookie Manager Dialog

Thisdialog iswritten in XUL and JavaScript, and uses a part of XPCOM called
XPConnect to seemlessly connect to the CookieM anager component (see
XPConnect sidebar below). XUL isjust one way to expose the functionality of the
CookieM anager component—but it's a particularly useful one in the Mozillaworld.

The functionality of the CookieM anager component is available through the

nsl Cooki eManager interface, which is comprised of the public methodsin
Table 1.

TABLE 1. The nsl CookieM anager | nterface

removeAl | Remove all cookies from the cookie list.
enuner at or Enumerate through the cookie list.
renove Remove a particular cookie from the list.

Creating XPCOM Components 29

Using XPCOM Components

In XPCOM the interface is guaranteed to stay the same even if the underlying
implementation changes. The interfaces are public, in other words, and the

implementations are private'. When a user selects one of the cookies displayed in
thelist and then clicks the Remove buton, the Renpve method in the

nsl Cooki eManager interfaceis called. The function is carried out by the
CookieM anager component, and the selected cookie is deleted from disk and
removed from the displayed list.

Connecting to Components from the I nterface

The Mozillauser interface uses JavaScript that has been given accessto
XPCOM components in the application core with a technology called
XPConnect.

XPConnect alows interface methods defined via XPIDL to be called
from JavaScript, as part of JavaScript objects that represent instances of
components like the CookieM anager.

XPConnect iswhat binds the application code to the user interface of
the Mozilla browser, to other Gecko-based XUL, and to JavaScript
environments like xpcshell, which is a command-line JavaScript
interpreter and XPCOM tool is built with Mozilla.

See http://mww.mozlla.org/scriptable for more information about
XPConnect and JavaScript.

The snippet in Figure 2 shows how the Renove() method from the XPCOM
CookieM anager component can be called from JavaScript:

1. There are exceptionsto this. Some XPCOM interfaces are also private and not made for
genera use. Private interfaces do not have the same reguirements as the ones that are
made available publicly in IDL.

30

Creating XPCOM Components

Component Examples

/] xpconnect to cooki emanager

/'l get the cookie nanager conponent in JavaScri pt

var cooki emanager = Conponents. cl asses[" @mzil | a. org/
cooki emanager; 1"] . get Servi ce();

cooki emanager = cooki emanager. Querylnterface
(Conponent s. i nt er f aces. nsl Cooki eManager) ;

/] called as part of a |argerDel et eAll Cooki es() function
function FinalizeCookieDel etions() {
for (var c=0; c<del etedCooki es.|ength; c++) {
cooki emanager . r enpve(del et edCooki es[c] . host
del et edCooki es[c] . nane,
del et edCooki es[c] . pat h) ;

}
del et edCooki es. | ength = 0;

}

Figure 2. Getting the CookieM anager Component in JavaScript

Thisisn't quite all thereisto it, of course, but this shows an important aspect of
XPCOM. The contractual arrangements that XPCOM enforces open up the way to
binary interoperability—to being able to access, use, and reuse XPCOM
components at run-time. And they make it possible to use components written in
other languages—such as JavaScript, Python, and others—and to use C++-based
XPCOM components from these other languages as well.

In the Mozilla browser, components are used as often from JavaScript in the
interface as they are from C++ or any other language. In fact, a search of the
Mozilla source code reveal s that this CookieM anager component is called only
from JavaScript. We' Il be using this component from JavaScript ourselves as part

of this tutorial®.

1. The CookieManager component is used to persist for the web locking functionality
described in thistutorial.

Creating XPCOM Components 31

Using XPCOM Components

JavaScript and Mozilla

JavaScript isthe lingua franca of the Mozilla browser front-end, and the
bindings between it and XPCOM are strong and well-defined.
Scriptability, this ability to get and use XPCOM components from
JavaScript and other languages for which XPConnect bindings have
been created, is a core feature of XPCOM.

The WebBrowser Find Component

Components are used all over—in high-level browser-like functionality such as
nsWebBrowser Find, which providesfi nd() andfi ndNext () methods for
finding content in web pages, and in low-level tasks such as the manipulation of
data. Though not every APl in Mozillais or should be “XPCOMified”, much if not
all of thetypical functionality that browsers provideis availablein components that
can be reused via browser extensions and/or gecko embedders.

In addition to the CookieM anager component, for example, the WebBrowser Find
component is another part of alarge set of web browsing interfacesyou can use. Its
ns| WebBr owser Fi nd interface is shown in Table 2. To use this component, you
access it through the ns1 WebBr owser Fi nd interface and call its methods.

TABLE 2. The nslWebBrowser Find I nterface

fi ndNext Find the next occurence of the search string

fi ndBackwar ds Boolean attribute that adjustsf i ndNext () to search
backwards up the document.

sear chFr anmes Boolean attribute that indicates whether to search sub-
frames of current document.

mat chCase Boolean attribute that indicates whether to match casein
the search.

entireWrd Boolean attribute that specifies whether the entire word
should be matched or not.

Once you use the interface to get to the component, you can ask the component
what other interfaces it supports. This service, which is defined in the basic
nsl Suppor t s interface and implemented by all XPCOM components, allows you

32

Creating XPCOM Components

Component Use in Mozilla

to query and switch interfaces on acomponent as part of the run-time object typing
capabilities of XPCOM. It is handled by the Quer yI nt er f ace method, which was
introduced in the chapter “What 1s XPCOM?’ Appendix B in this book provides a
full reference of the XPCOM components available in Mozilla.

The WebL ock Component

Now it'stime to look at the WebL ock component as another example of XPCOM
components (since you' |l be creating it shortly). In object-oriented programming,
it'stypical to design the interface first—to define the functionality that’s going to
be provided in the abstract, without worrying about how this functionality will be
achieved. Sowe'll put aside the details of the implementation until the next chapter
and look at the component from the outside—at the interface to the WebL ock
component (see Table 3).

TABLE 3. The IWebL ock Interface

| ock lock the browser to the current site (or to the
whitelist of approved sites read from disk).

unl ock unlock the browser for unrestricted use.

addSite add a new site to the whitelist.

removeSite remove a given site from the whitelist.

sites enumerator for the list of approved sites read
in the from the whitelist.

The WebL ock component is software that implements all of these methodsin the
way described by the interface definition. It registersitself for use when the
browser starts up, and provides a factory that creates an instance of it for use when
the user or administrator clicks the weblock icon in the browser’s user interface.

Component Usein Mozlla

So how are components obtained and used in Mozilla? You’ ve seen some enticing
snippets of JavaScript in earlier sections of this chapter, but we haven't explained
how XPCOM makes components available in general.

Creating XPCOM Components 33

Using XPCOM Components

This section discusses practical component use in Mozilla. It's divided into three
subsections: one about actually finding all these binary componentsin Mozillaand
two others corresponding to the two main ways that clients typically access
XPCOM components:

* “Finding Mozilla Components’
* “Using XPCOM Componentsin Your C++"
e “XPConnect: Using XPCOM Components From Script”

Finding M ozilla Components

This book attempts to provide reference information for XPCOM components and
their interfaces that are frozen as of the time of thiswriting. The Mozilla
embedding project (www.mozilla.org/projects/embedding) tracks the currently
frozen interfaces.

Mozilla also has some tools that can find and display information about the
interfaces available in Gecko such as the XPCOM Component Viewer, described
below, and LXR, which is aweb-based source code viewing tool you can access
from http://Ixr.mozlla.org.

The challenge to making good information about XPCOM components available to
prospective clients, however, isthat the process of freezing the interfaces that are
implemented by these componentsis still ongoing. The Component Viewer does
not distinguish between components that are frozen and those that are not. In the
source code you view in LXR, interfaces that have been frozen are marked at the
top with @t atus frozen.

The XPCOM Component Viewer. The Component Viewer is an add-on you can
install in your browser from www.hacksr us.com/~ginda/cview (see Figure 3),

Creating XPCOM Components

Component Use in Mozilla

E XPCOM Component Viewer [1]

P g @mozilla.org/yfdecidecontextpring 1
[g @mozilla.org/gfdevicecontest
P g @mozilla.org/yfdevicecontextspec;
P g @mozilla.org/yfdevicecontextspecfa...
= @ @mozilla.org/gtfontenumerator;1

<. nsIFontEnumerator
-m CGlueryinterface
-m EnumeratealIFonts
-m EnumerateF onts =

I nslFileTransportservice
I nsIFileURL

I nslFindandReplace

I nslFindComponent

I nzlFindService

I nsIFalder

I nsIFalderListener

I nsIFantEnumeratar

I nslFantList

X
. Wiew Tasks
(Components containing Yo’ (16/571) A1l interfaces (913/913)
Mame ||:= Mame 2
[g @mozilla.org/gfblender 1= I nsIFilePicker =
[g @mozilla.org/gfdecidecontext/ps I nslFilespec

-mHaveFontFor
-m updateFontList
BT nslSupports
[g @mozilla.org/gffontlist
[g @mozilla.org/gffontmetrics;1
= @ @mozillaorg/gfimageframe; 2
B’ ----- I gf<limageFrame
B’ ----- I nslinterfaceRequestor
b1 nslsupports ||
P g @mozilla.org/gfimage;
P g @mozilla.org/gfprintoptions;1
P g @mozilla.org/yfregion/gtk; =

I nszlFontPackageHandler
I nslFontPackageProxy

I nslFontPackageservice
I nslFarmatConverter

I nslForwarditeratar

I nsiGlaobalHistary

I nslGraphics

I nsIHTMLEditor

I nsIHTTPHeaderListener
I nsIHTTPIndex

I nslHelpers&pplauncher
I nslHelperspplauncherDialog

Kl

Contract ID

- Bmozilla. org/gfx/fonternmerator;1
Class ID

- {abcf9115-15k3-11d2-932e-00805£82dd32}
Interface name - nsIFontEmmerator
Interface ID - {a6cf9114-15b3-11d2-932e-00805£82dd32}

Figure 3. XPCOM Component Viewer

The left column shows the components—in this case a subset returned from a
search on ‘gfx’ as part of the contractc ID and the right column alist of the
interfaces. When you open a component on the left, you can see the interfacesiit
implements along with alist of the methods provided by each interface.

The XPCOM Component Viewer can be extremely useful for this sort of gross
interrogation, but again: it displays all of the components and interfacesin your
build, many of which are not practical for actual reuse or stable enough to be used
reliably in your own application development. Use comprehensive lists like this
with caution.

Creating XPCOM Components 35

Using XPCOM Components

Using XPCOM Componentsin Your C++

XPConnect makesit easy to acess XPCOM components as JavaScript objects, but
using XPCOM components in C++ is not much more difficult.

Figure 4 duplicates code from Figure 5, but in C++ instead of JavaScript.

nsCOWPt r <nsl Ser vi ceManager > ser vivan;
nsresult rv = NS _Cet Servi ceManager (getter_AddRef s(servMan));
if (NS_FAILED(rv))

return -1,

nsCOWPt r <ns| Cooki eManager > cooki eManager ;

rv = servhMan->Get Servi ceByContract | D(" @mzi | | a. or g/ cooki emanager ",
NS_GET_I | D(nsl Cooki eManager), getter_AddRef s(cooki eManager));

if (NS_FAILED(rv))
return -1;

PRUI nt 32 | en;
del et edCooki es- >Cet Lengt h(& en) ;

for (int c=0; c<len; c++)
cooki emanager - >Renpve(del et edCooki es[c] . host,
del et edCooki es[c] . nane,
del et edCooki es[c] . pat h) ;

Figure 4. Managing Cookies from C++

If your application written in C++, then Figure 4 showsthe stepsyou taketo get an
XPCOM component, specify the interface on that component you want to use, and
call methods on that interface.

XPConnect: Using XPCOM Components From Script

The CookieM anager component we discussed at the beginning of this chapter
provides a good opportunity to talk further about using components from
JavaScript. In the following code fragment from the Cookie Manager dialog in
Mozilla, you can see a singleton of the the CookieM anager component being
created with the get Ser vi ce() method and used to provide the functionality that
lets users load and remove cookies from the user interface.

36

Creating XPCOM Components

Component Use in Mozilla

var cooki emanager = Conponents. cl asses[" @mzill a. org/
cooki emanager; 1"] . get Servi ce();
cooki emanager = cooki emanager
. Queryl nterface(Conmponents.interfaces. nsl Cooki eManager) ;

functi on | oadCooki es() {

// | oad cookies into a table

var enunerator = cooki emanager. enunerator;

var count = 0

var showPolicyField = fal se

whi | e (enunerat or. hashWor eEl enents()) {
var next Cooki e = enuner at or. get Next () ;
next Cooki e = next Cooki e. Queryl nterface

(Conponent s. i nterfaces. nsl Cooki e) ;

}

function FinalizeCooki eDel etions() {
for (var c=0; c<del et edCooki es.|ength; c++) {
cooki emanager . renove(del et edCooki es[c] . host,
del et edCooki es[c] . nane,
del et edCooki es[c] . pat h,

}
del et edCooki es. | ength = 0;

}

Figure 5. Managing Cookies from JavaScript

Beyond the methods that are being called on the CookieM anager itself (e.g.,
cooki emanager . r enove, which mapsto ther enove() functionfromthelDL in
Table 1 above), note the special X PConnect objects and methods that reflect the
XPCOM component into JavaScript.

Conponent s isthe JavaScript object that controls the connection to components,
and cl asses isan array of al of the classes you can ask for by contract ID. To
instantiate an XPCOM component in JavaScript, you create a new Conponent
object and pass in the contract ID for the component you want and ask for either a
singleton or an instance of that component to be returned:

var cooki emanager = Conponents. cl asses
["@mzi |l | a. or g/ cooki emanager; 1"] . get Servi ce();

Creating XPCOM Components 37

Using XPCOM Components

The resulting cooki emanager object then provides access to al of the methods
for that component that have been defined in IDL and compiled into the type
library. Using the CookieM anager component, you could write code like thisto
delete all cookies from the system:

cmgr = Conponents. cl asses
["@mzill a. org/ cooki enmanager; 1"]
. get Servi ce();

cooki emanager = cooki emanager. Queryl nterface
(Conponents. i nterfaces. nsl Cooki eManager) ;

[/ delete all cookies
function trashEn() ({
crmgr. renmoveAl | ()

Another vital feature of the XPConnect glue this example shows is the availability
of the Quer yI nt er f ace method on all objects that are reflected into JavaScript
from XPCOM. Asin C++, you can use this method to ask for other interfaces that
are available on the given object.

Services Versus Regular Instances

Whether to have clients use your component as an instance or aserviceisa
design question, really, and something you should be clear about in the docu-
mentation for your component. Actually, theget Ser vi ce() method in the
example here callsthrough to the cr eat el nst ance() method that isaso
available from the Component object and caches the result, making it asingleton
rather than a normal instance.

The singleton design pattern that is used to create servicesis described in
“XPCOM Services’ on page 23.

Remember, Quer yI nt er f ace allows you to query an object for the interfaces it
supports. In the case of the snippet in Figure 5, the Quer yI nt er f ace method is
being used to get the ns1 Cooki e interface from the enumerator so that, for
instance, the JavaScript code can accessthe val ue and nane attributes for each
cookie.

38

Creating XPCOM Components

Component Use in Mozilla

Creating XPCOM Components

39

Using XPCOM Components

40

Creating XPCOM Components

CHAPTER 3

Component Internals

Where the previous chapter described components from the perspective of a client
of XPCOM components, this chapter discusses components from the perspective of
the software devel oper. Read on to see how components are generally implemented
in XPCOM, or you can skip to the next chapter, where the WebL ock component
tutorial takes you step by step through the component creation process.

Creating Componentsin C++

Let's start by examining how XPCOM components are written in C++. The most
common type of component is one that iswritten in C++ and compiled into a
shared library (aDLL on a Windows system or a DSO on Unix).

Theillustration below shows the basic relationship between the shared library
containing the component implementation code you write and the XPCOM
framework itself. In this diagram, the outer boundary is that of the module, the
shared library in which a component is defined.

Creating XPCOM Components 39

Component Internals

ziinga
Curnpserirl Spoiliv Cogly xpram glue

nsifladul=

p — M3 Gathlncule
. nElFsetary

-

- -

Figure 1. A Component in the XPCOM Framewor k

When you build acomponent or module and compileit into alibrary, it must export
asingle method named NSGet Modul e. This NSGet Modul e function is the entry
point for accessing the library. It gets called during registration and unregistration
of the component, and when XPCOM wants to discover what interfaces or classes
the module/library implements. In this chapter we will outline this entire process.

AsFigure 1 illustrates, in addition to the NSGet Modul e entry point, there are

ns| Modul e and nsl Fact or y interfaces that control the actual creation of the
component, and also the string and XPCOM glue parts, which we'll discussin
some detail in the next section (see “XPCOM Glug” on page 48”). These latter
supply ease-of-development utilites like smart pointers, generic modules support,
and simple string implementations. The largest and possibly most complex part of a
component is the code specific to the component itself.

40

Creating XPCOM Components

XPCOM Initialization

But Where Arethe Components?

Components reside in modules, and those modules are defined in shared library
filesthat typically sit in the components directory of an XPCOM application.

A set of default libraries stored in this components directory makes up atypical
Gecko installation, providing functionality that consists of networking, layout,
composition, a cross-platform user interface, and others.

Another, even more basic view of this relationship of components to the files
and interfaces that define them is shown in Figure 2 on page 57. The component
is an abstraction sitting between the actual module in which it isimplemented
and the objects that its factory code creates for use by clients.

XPCOM Initialization

To understand why and when your component library gets called, it isimportant to
understand the XPCOM initalization process. When an application starts up, that
application may initialize XPCOM. The sequence of events that kicks off this
XPCOM initialization may be triggered by user action or by the application startup
itself. A web browser that embeds Gecko, for example, may initialize XPCOM at
startup through the embedding APIs. Another application may delay this startup
until XPCOM is needed for the first time. In either case, the initialization sequence
within XPCOM is the same.

XPCOM starts when the application makes acall to initialize it. Parameters passed
to this startup call allow you to configure some aspects of XPCOM, including the
customization of location of specific directories. The main purpose of the API at
this point is to change which components directory XPCOM searcheswhen it looks
for XPCOM components. Thisis how the API is used, for example, in the Gecko
Run-time Environment (GRE).

Creating XPCOM Components 41

Component Internals

XPCOM Sartup

The six basic steps to XPCOM startup are as follows:

1. Application starts XPCOM.
2. XPCOM sends a natification that it's beginning startup.

3. XPCOM finds and processes the component manifest (see “ Compo-
nent Manifests’ below).

4. XPCOM finds and processes the type library manifest (see“ Type
Library Manifests’ below).

5. If there are new components, XPCOM registers them:
a. XPCOM calls autoregistration start.
b. XPCOM registers new components.
c. XPCOM calls autoregistration end.

6. Complete XPCOM startup: XPCOM notifies that it's begun.

Component manifests and type library manifests are described in the following
section, “ XPCOM Registry Manifests’.

XPCOM Registry Manifests

XPCOM uses special files called manifests to track and persist information about
the components to the local system. There are two types of manifests that XPCOM
uses to track components:

e “ Component Manifests’
e “TypelLibrary Manifests’

Component Manifests. When XPCOM first starts up, it looks for the component
manifest, which isafilethat lists al registered components, and stores details on
exactly what each component can do. XPCOM uses the component manifest to
determine which components have been overridden. Starting with Mozilla 1.2, this
fileis named compreg.dat and exists in the components directory, but there are
efforts to move it out of thislocation to aless application-centric (and thus more
user-centric) location. Any Gecko-based application may choose to locate it
elsawhere.

42

Creating XPCOM Components

XPCOM Initialization

XPCOM reads this fileinto an in-memory database.

Component M anifests

The component manifest isamapping of filesto components and components to
classes. It specifiesthe following information:

* Location on disk of registered components with file size.
* Class|D to Location Mapping
* Contract ID to Class ID Mapping

The component manifest maps component files to unique identifiers for the spe-
cificimplementations (class IDs), which in turn are mapped to more genera
component identifiers (contract I1Ds).

Type Library Manifests. Another important file that XPCOM reads in is the type
library manifest file. Thisfileis also located in the components directory and is
named Xpti.dat. It includes the location and search paths of all type library fileson
the system. Thisfilealsolistsall known interfaces and linksto the typelibrary files
that define these interface structures. These type library files are at the core of
XPCOM scriptablity and the binary component architecture of XPCOM.

TypelLibrary Manifests

Type library manifests contain the following information:

* |ocation of al typelibrary files

* mapping of al known interfaces to type libraries where these structures are
defined

Using the data in these two manifests, XPCOM knows exactly which component
libraries have been installed and what implementations go with which interfaces.
Additionally, it relates the components to the type libraries in which the binary
representations of the interfaces they support are defined.

The next section describes how to hook into the XPCOM startup and registration
process and make the data about your component available in these manifests, so
that your component will be found and registered at startup.

Creating XPCOM Components 43

Component Internals

Registration Methodsin XPCOM

What |s XPCOM Registration?

In anutshell, registration is the process that makes XPCOM aware of your com-
ponent(s). Asthis section and the next describe, you can register your compo-
nent explicitly during installation, or with the r egxpcomprogram, or you can
use the autoregistration methods in the Service Manager to find and register
componentsin a specified components directory:

e XPInstal APIs

e regxpcomcommand-line tool

* nsl Conponent Regi st rar APIsfrom Service Manager

The registration processis fairly involved. This section introduces it in terms of

XPCOM initialization, and the next chapter describes what you haveto doin
your component code to register your component with XPCOM.

Once the manifest files areread in, XPCOM checks to see if there are any
components that need to be registered. There are two supported ways to go about
registering your XPCOM component. Thefirst isto use XPInstall, whichisan
installation technology that may or may not come with a Gecko application and
provides interfaces for registering your component during installation. Another,
more explicit way to register your component is to run the application regxpcom,
which isbuilt as part of Mozillaand also available in the Gecko SDK. regxpcom
registers your component in the default component registry.

A Gecko embedding application may also provide its own way of registering
XPCOM components using the interface that isin fact used by both XPInstall and
regxpcom, nsl Conponent Regi st r ar. An application, for example, could
provide a"registration-less’ component directory whose components are
automatically registered at startup and unregistered at shutdown. Component
discovery does not currently happen automatically in non-debug builds of Gecko,
however.

When the registration process begins, XPCOM broadcaststo all registered
observers a notification that says XPCOM has begun the registration of new
components. After all components are registered, another notification is fired

Creating XPCOM Components

XPCOM Initialization

saying that XPCOM is done with theregistration step. Thens| Qoser ver interface
that handles this notification is discussed in the chapter “ Tutorial: Starting
WebL ock”.

Once registration is complete and the notifications have fired, XPCOM isready to
be used by the application. If XPCOM registered your component, then it will be
available to other parts of the XPCOM system. The “XPCOM Initialization”
section in this chapter describes registration in more detail.

Autoregistration

The term autoregistration is sometimes used synonymously with registration in
XPCOM. In the What is Registration? box on the previous page, we describe the
three ways you can register components with XPCOM. Sometimes, applications
use the ns| Conponent Regi st r ar interface and create their own code for
watching a particular directory and registering new components that are added
there, which iswhat’s often referred to as autoregistration. You should always
know what the installation and registration requirements are for the applications
that will be using your component.

The Shutdown Process

When the application isready to shutdown XPCOM, it callsNS_Shut downXPCOM
When that method is called, the following sequence of events occurs:

1. XPCOM fires a shutdown notification to all registered observers.

2. XPCOM closes down the Component Manager, the Service Manager and
associated services.

3. XPCOM frees all global services.
4. NS_Shut downXPCOMreturns and the application may exit normally.

Creating XPCOM Components 45

Component Internals

The Unstoppable Shutdown

Note that shutdown observation is unstoppable. In other words, the event you
observe cannot be used to implement something like a*Are you sure you want
to Quit?' dialog. Rather, the shutdown event gives the component or embedding
application alast chance to clean up any |eftovers before they are released. In
order to support something like an "Are you sure you want to quit” dialog, the
application needsto provide a higher-level event (e.g., st ar t Shut down())
which allows for cancellation.

Note also that XPCOM services may deny you access once you have received
the shutdown notification. It is possible that XPCOM will return an error if you
accessthens| Ser vi ceManager at that point, for example, so you may have
to keep areference-counted pointer to the service you are interested in using
during this notification.

Component L oaders

Components can be written in many languages. So far this book has been focusing
on “native components,” shared libraries exporting a NSGet Modul e symbol. But if
there is a component loader for Javascript installed, then you can also write a
JavaScript component.

To register, unregister, load and manage various component types, XPCOM
abstracts the interface between the XPCOM component and XPCOM with the
Component Loader. Thisloader isresponsible for initialization, |oading, unloading,
and supporting the ns1 Modul e interface on behalf of each component. Itisthe
Component Loader’s responsibility to provide scriptable component support.

When building a“native” component, the component loader |ooks for an exported
symbol from the components shared library. “Native” here includes any language
that can generate a platform native dynamically loaded library. Scripting languages
and other “non-native” languages usually have no way to build native libraries. In
order to have “non native” XPCOM components work, XPCOM must have a
special component loader which knows how to deal with these type of components.

XPConnect, for example, provides a component |oader that makes the various
types, including the interfaces and their parameters, available to JavaScript. Each
language supported by XPCOM must have a component |oader.

46

Creating XPCOM Components

XPCOM Initialization

Component Manager

‘ Component Loader Manager ‘
T

]
‘ Native Component Loader ‘ | JavaScript Component Loader |

| I
XPCOM XPCOM
Component Compongnt
{Native) (JavaScript)

Three partsof a XPCOM Component Library

XPCOM islike anonion. XPCOM components have at |east three layers. From the
innermost and moving outward these layers include:

* Thecore XPCOM object
e Thefactory code
* The module code

The core XPCOM abject is the object that will implement the functionality you
need. For example, thisis the object that may start a network download and
implement interfaces that will listen to the progress. Or the object may provide a
new content type handler. Whatever it does, thisobject is at the core of the XPCOM
component, and the other layers are supporting it, plugging it into the XPCOM
system. A single library may have many of these core objects.

One layer above the core abject is the factory code. The factory object provides a
basic abstraction of the core XPCOM object. Chapter 1 discussed the factory
design pattern that’s used in afactory object. At this layer of the XPCOM
Component Library, the factory objects are factories for the core XPCOM objects
of the layer below.

Creating XPCOM Components 47

Component Internals

One more layer outward is the module code. The module interface provides yet
another abstraction—thistime of the factories—and allows for multiple factory
objects. From the outside of the component library, there is only the single entry
point, NSGet Modul e() . This point of entry may fan out to any number of
factories, and from there, any number of XPCOM objects.

The following chapter details these layersin terms of the XPCOM interfaces that
represent them. Here we will just introduce them. The factory design patternin
XPCOM isrepresented by the nsl Fact ory interface. The module layer is
represented by thens| Mbdul e interface. Most component libraries only need these
two interfaces, along with the ns| Support interface, to have XPCOM load,
recognize, and use their core object code.

In the next section, we'll be writing the code that actually compilesinto a
component library, and you will see how each layer isimplemented and how each
interface is used. Following thisinitial, verbose demonstration of the API's, we will
introduce a faster more generic way of implementing the module and factory code
using macros, which can make components much easier to create.

XPCOM Glue

XPCOM contains alot of stuff. Most of the XPCOM interfaces are not frozen and
are meant to be used only by the Gecko internals, not by clients. XPCOM provides
many data structures from linked liststo AVL trees. Instead of writing your own
linked list, it'stempting to reuse nsVoi dAr r ay or another publicly available class,
but this might be afatal mistake. At any time the class can change and give you
unexpected behavior.

XPCOM makes for avery open environment. At runtime you can acquire any
service or component merely by knowing aCID, or Contract ID, and an 11D. At
last count there were over 1300 interfaces defined in XPIDL. Of those 1300
interfaces, less than 100 were frozen, which means that a developer has a good
chance of stumbling upon useful interfacesthat aren’t frozen. If an interface isn't
explicitly marked "FROZEN" in the IDL comments, however—and most of them
aren’t—it will cause your component to possibly break or crash when the version
changes.

48

Creating XPCOM Components

XPCOM Glue

TheGlueLibrary

In general you should avoid any unfrozen interfaces, any symbolsin XPCOM, or
any other part of Gecko librariesthat aren’t frozen. However, there are some
unfrozen toolsin XPCOM that are used so often they are practically required parts
of component programming.

The smart pointer class, ns COVPt 1, for example, which can make reference
counting alot lesstedious and error-prone, is not actually frozen, and neither are
nsDebug, aclassfor aiding in tracking down bugs, or nsMenor y, a class to ensure
that everyone uses the same heap, generic factory, and module. Instead of asking
every developer to find and copy these variousfiles into their own application,
XPCOM provides asingle library of “not-ready-to-freeze-but-really-hel pful”
classes that you can link into your application, as the following figure
demonstrates.

XPCOM

smart pointers weak reference support
do_Queryinterface() do_GetService()
do_Createlnstance() do_Getinterface()
nshemory nsDebug

nsiSupport support Generic module support

Figure 5. XPCOM Glue and Tools

Thisisthe glue library. It provides abridge, or “glue’ layer, between your
component and XPCOM.

A version of the glue library is built into XPCOM, and when your component uses
it, it links a snapshot of thislibrary: it includes a copy of these unfrozen classes
directly, which alows the XPCOM library version to change without affecting the
software. Thereis adlight footprint penalty to linking directly, but this gives your

Creating XPCOM Components 49

Component Internals

component freedom to work in any post Mozilla 1.2 environment. If footprint isa
big issue in your component or application, you can trim out the pieces you don’t
need.

XPCOM String Classes

The base string types that XPCOM usesarensASt ri ng and nsACSt ri ng. These
classes are described in the Mozilla String guide (see the “Resources’ section in
Appendix C).

The string classes that implement these abstract classes are another set of helpful,
unfrozen classesin XPCOM. Most components and embedding applications need
to link to some kind of string classesin order to utilize certain Gecko APIs, but the
string code that Mozilla usesis highly complex and even more expensive than the
glue code in terms of footprint (~100k). nsEnbedSt ri ng and nsEnbedCSt ri ng
are available as very light string class implementations for component
development, especially in small embedded applications. This string
implementation does the bare minimum to support nsASt ri ng/ nsACSt ri ng
string classes

In your own component, you can go “sim” and restrict yourself to the
nsEnbedSt ri ng or go “hog wild” and use al of the functionality of the other
strings. WebL ock restrictsitself to using the simple nsEnbedSt ri ng family of
classes.

[Glue | [strings

Component

Figure 6. Sring Classes and XPCOM

The gluelibrary provides stub functions for the public functions that XPCOM
provides (see xpconm/build/nsXPCOM.h). When the glue library isinitialized, it
dynamically loads these symbols from the XPCOM library, which allows the

50

Creating XPCOM Components

XPCOM Glue

component to avoid linking directly with the XPCOM library. You shouldn’t have
tolink to the XPCOM library to create a XPCOM component—in fact, if your
component has to, then something iswrong. .

Creating XPCOM Components 51

Component Internals

52

Creating XPCOM Components

CHAPTER 4

Tutorial :
Creating the Component Code

Topics covered in this chapter:

* “What We'll Be Working On”

e “Overview of the WebL ock Module Source”

e “Digging In: Required Includes and Constants’
* *“weblLockl.cpp”

This chapter goes over the basic code required to handle the relationship between
your component and X PCOM. Having the component found and registered
properly isthe goal of thisfirst chapter of the tutorial. In the subsequent chapters,
we can begin to work on the example WebL ock component functionality itself.

Creating XPCOM Components 53

Tutorial : Creating the Component Code

Usethe Calculator (After Learning Long Division)

You have to write afair amount of code to create a component library that gets
loaded into XPCOM. An XPCOM component needs to implement at least three
interfaces that XPCOM requires, and often othersaswell. Thereismore codein
this chapter than you'll eventually need, however. Chapter 5 shows some sim-
pler and more elegant ways to create an XPCOM component using generic mac-
ros, and this chapter is more about learning the basics. Asin grade school when
you learned long division, better tools like cal culators come after you figure out
what's actually happening. In this case, the long-hand implementation gives us
an opportunity to talk about various features of XPCOM.

What WE'll Be Working On

The component we'll be working on in this book controls a special modein your
browser that prevents users from leaving the current domain or a set of safe
domains. Once enabled, thisweblock mode is password protected and persists until
it isturned off by the password holder. It can be used to make the browser into a
safe viewer for children, or for targeted “kiosk browsing,” where the content is
restricted to a particular server. Figure 1 shows the icon that is used to activate the
web lock mode (leftmost in the status bar) once you have installed the WebL ock
component and the extra user interface.

B2 ===
Figure 1. Web Lock User Interface
Most of the actual work in the WebL ock component is preparing the component

itself, finding the XPCOM interfaces the component needs to use, and hooking into
existing functionality within the Gecko Browser.

Creating XPCOM Components

Component Registration

Component Registration

All XPCOM components—whether they’ re stored in shared libraries (DLLs or
DSOs), JavaScript files, or some other file—need to be registered before they can
be used. Registration isa process that happensin all XPCOM applications, whether
they’ re embedded Gecko clients, Mozilla, Netscape 7, Compuserve, or any other
software that uses XPCOM. Registration provides the information that applications
need in order to use components properly.

The WebL ock component must do a number of thingsto register itself.
Specifically, the component library hasto contain implementations for the
component-rel ated interfaces described in this chapter: nsl1 Mbdul e and
nsl Fact ory, which are entry points for your implementation code.

Once your component implements these interfaces, the rest of the registration
processitself issimple. Applicationstypically user egxpcom described in the next
section.

Theregxpcom Program

An explicit way to register acomponent is to run the application regxpcom. Without
any arguments passed to regxpcom, the program registers the component in the
default component registry. We suggest that when you are testing your component
inthe Mozilla or Netscape client, you copy your component into the “components”
directory in the client’s installation folder. When it is copied there, run regxpcom
from the command line to register that component and all the othersin that
directory.

Note: Several new options have been added to regxpcomin versions 1.4 and later.
You can run regxpcom with the -h option to see full usage options.

Registration Alternatives

A Gecko embedding application may provide other ways to register XPCOM components.
XPInstal, the cross-platform installation technology that Mozilla uses to install the browser
and other components, is one such alternative. It is described further in the chapter “ Tutorial:
Packaging WebL ock” on page 157. You should consult with the authors of the application
you wish to extend to see if there are other supported ways.

Creating XPCOM Components 55

Tutorial : Creating the Component Code

Overview of the WebLock Module Source

Aswe mentioned in the previous section, components have layers. There are three
main parts to every XPCOM Component. From the innermost and moving
outward, the first object is the XPCOM object. Thisisthe object that contains the
business logic, that implements functionality such as starting a network download,
implementing interfaces that listen to the download progress, or providing a new
content type handler. In Weblock, thisisthe part that brings together various Gecko
services and prevents users from leaving the list of acceptable domains. In away,
he factory and module layers are glue to plug the XPCOM object into the larger
XPCOM system.

One layer above the abject itself isthe nsl Fact or y object. This object provides
basic abstraction of the XPCOM object itself. Asyou can see in the diagram in
Figure 2, the main accessor for the XPCOM object is Cr eat el nst ance, whichis
expected to return the object that matches agiven CID and I1D pair.

Moving another layer outward isthe ns| Mbdul e. Thisinterface provides yet
another abstraction of the nsl Fact or y object, and may allow for multiple

nsl Fact ory objects. The key to thisinterfaceis that the return type of

get O assObj ect doesnot haveto beannsl Fact ory. Instead, the nsl Mbdul e
can ask for implementation details about the XPCOM object. Thisis very useful if
the caller is required to know information about the component like its threading
module, whether it’'s singleton or not, its implementation language, and so forth.
Theinterface used in this caseisns| O assl nf o. Starting from the outside in,
Figure 2 represents the sequence for constructing an XPCOM object.

56

Creating XPCOM Components

Overview of the WebLock Module Source

G’;om cbm

createinstance ;,

getClassObject

nslFactory

NSGetModule() nsiModule

XPCOM Component

Figure 2. Onion Pedl View of XPCOM Component Creation

Before we begin looking at the various parts of the component and how they’ Il be
implemented in the source, let’s ook at the module in weblock.cpp as awhole to
see where we' re going. The source we're referring to islisted in its entirety at the
end of this chapter (see “webL ockl.cpp” on page 68).

The source file for the WebL ock component contains three classes. In order to
make the WebL ock component work in Mozilla, you have to implement a new
interface to the WebL ock component, i WebLock, where the actual work specific
to the the web locking features happens. You also have to create WebLockModul e
to implement the necessary nsl Modul e interface, and you have to create
WebLockFact or y toimplement ns| Fact or y and create afactory that hands
instances of your component to clients. These three interface implementati ons—of
the component functionality, of the nsI Modul e interface, and of thensl Fact ory
interface that creates and manages instances for clients—are the basic sets of code
you need to write to create an XPCOM component.

Creating XPCOM Components 57

Tutorial : Creating the Component Code

Basic Structure of the WebL ock Component Source

The weblockl.cpp sourcefile that defines these classes and the code you need to
create a basic component has the following structure:

* required includes and constants

* WebL ock: publici WebLock

* WebL ockFactory: public nsl Fact ory

* WebL ockModule: public nsI Modul e

In XPCOM, dl of these classes also derive from thens| Support s baseinter-
face.

Digging In: Required Includes and Constants

Let'stake alook at thefirst several lines of code in the component and discuss what
they mean in XPCOM. The includes and definitions at the top of an XPCOM
source file can give you an idea about some of the data types and techniques we'll
be discussing more in the upcoming chapters.

For example, MOZI LLA_STRI CT_API isavariable that shields you from certain
private, non-XPCOM headers. For example, including nsl ComponentManager.idl
without MOZI LLA_STRI CT_API defined will include the following headers, which
are not supported across versions (unfrozen):

* nsComponentManagerUtils.h
* nsComponentManager Obsolete.h

These variables are picked up by files that do not specify themselves as
MZI LLA_STRI CT_API .

58

Creating XPCOM Components

Digging In: Required Includes and Constants

#i ncl ude <stdi o. h>

/'l may be defined at the project |evel
/1 in the nekefile
#defi ne MOZI LLA_STRI CT_API

#i ncl ude "nsl Modul e. h"
#i ncl ude "nsl Factory. h"

#i ncl ude "nsl Conponent Manager. h"
#i ncl ude "nsl Conponent Regi strar. h"

/] use classes to handle I|IDs
Il classes provide nmethods for conparison: Equals, etc.
static const nslID kl ModulelID = NS_| MODULE | I D
static const nslID kl FactorylID = NS_| FACTORY_I | D;
static const nslID kl Supportsl| D = NS_| SUPPORTS_I | D;
static const nslID

kl Conponent Regi strarl 1D = NS_| COWONENTREG STRAR | | D;

/] generate unique ID here with uuidgen

#defi ne SAMPLE_CI D \

{ 0x777f7150, Ox4a2b, 0x4301, \

{ Oxad, 0x10, Ox5e, Oxab, 0x25, 0xb3, 0x22, Oxaa}}

static const nsCl D kSanpl eCl D = SAMPLE_CI D;

Figure 3. Listing 1: Includes and Constantsin weblock1.cpp

nslModule.h and nslFactory.h are required to build your module successfully. They
define the module and factory interfaces, and they contain a couple of important
macros as well (see the following chapter for information about using these
macros). The two other includes, nslComponentManager.h and

nsl ComponentRegistrar.h, provide functions such as

Regi st er Fact or yLocat i on that are required to implement the module and
factory classesin your code.

Creating XPCOM Components 59

Tutorial : Creating the Component Code

Identifiersin XPCOM

The series of nsl | Dvariablesinitialized here are actually classes created for
handing the 128 bit identifiers that XPCOM uses to support contractual

rel ationships between the client and component interfaces. The variable

kl Fact oryI | D, for example, provides methods like Equal s() that can be used to
facilitate comparisons in the code, as in the following example from the Mozilla
sourcein Figure 4.

if (allD. Equal s(NS_GET I|ID(nsl Supports))) {
al nstancePtr = (voi d)(nsl Supports*)this;
NS_ADDREF_THI S() ;
return NS _OK;

}

Figure4. Listing 2: Using Class M ethodsto Handle I dentifiers

Finally, SAMPLE_CI Dis an example of the CID that uniquely identifies each
component. All of the 128 bit numbers used in XPCOM—the class and the
interface IDs—are examples of UUIDs, or universal unique identifiers, which were
discussed in the “Object Interface Discovery” section of the chapter “What Is
XPCOM?

60

Creating XPCOM Components

Digging In: Required Includes and Constants

Generating CIDs

To generate a CID for your component, you can use the uuidgen tool that comes
with most Unix distributions and with Microsoft Visual C++. uuidgen is a com-
mand-line tool that returns a unique 128 bit number when you call it with no
arguments:

$ uui dgen
ce32e3f f - 36f 8- 425f - 94be- d85b26e634ee

On Windows, a program called guidgen.exe does the same thing and also pro-
vides agraphical user interface if you'd rather point and click. Or you can use
one of the special "bots' on IRC at theirc.mozilla.org server
(irc:/lirc.mozilla.org/#mozilla), where you can also get help from human beings.

ircirc.nmozilla.org

/join #nmozilla

/ msg nozbot uuid

This command makes the bot generate and return a UUID, which you can then
copy into your component source code.

Now that we've looked at the preliminaries, it's time to discuss the classes that this
modul e provides and the way that they define the relationships of the component in
XPCOM.

Cading for the Registration Process

When XPCOM discovers your component for the first time (via XPInstall or

r egxpcom both of which are discussed in “Component Installation Overview”),
thefirst thing it tries to do isload your library and find the symbol NSGet Mbdul e.
When this special entry point iscalled, it is passed XPCOM's Component Manager
and the location of the shared library where the component lives.

The Component Manager is an interface implemented by XPCOM that
encapsulates the creation of objects and provides summary information about all
registered components. The location on disk is passed via another interface named
nsl Fi | e. Thisinterfaceis XPCOM's abstraction of files and directories. An

nsl Fi | e objectisusually afileor directory on alocal volume, but it may represent
something on a network volume as well.

Creating XPCOM Components 61

Tutorial : Creating the Component Code

nsresult NSGet Modul e(nsl Conponent Manager *servMr,
nsl File* |ocation,
nsl| Modul e** resul t);

XPCOM expects a successful call to NSGet Modul e to return an implementation of
the interface nsl Modul e. When you write a XPCOM component, you implement
ns| Modul e to do all of the necessary registration, unregistration, and object
creation. ns! Modul e has four methods that must be implemented.

The Registration M ethods
Two closely related registration methods are declared bel ow.

NS_| METHOD Regi st er Sel f (nsl Conponent Manager *aConpMr ,
nsl File *alocati on,
const char *alLoaderStr,
const char *aType) = O;

NS_I| METHOD Unr egi st er Sel f (nsl Conponent Manager *aConpMr,
nsl File *alLocati on,
const char *alLoaderStr) = 0;

Regi st er Sel f iscalled when acomponent isfirst registered with XPCOM. Itis
only called once, which gives you a chance to add any one time setup functionality.
The Regi st er Sel f call allows your component to tell XPCOM exactly what it
supports. Note that whatever you do in Regi st er Sel f should be undonein

Unr egi sterSel f.

First, the NSGet Modul e entry point is called in your component library, and it
returns an interface pointer to ans! Modul e implementation. Then XPCOM calls
Regi st er Sel f , passing parameters that we'll examine here.

The Register Self Method. The first parameter isthe ns| Conponent Manager,
which provides akind of entry point into managing the registration process. You
can Quer yl nt er f ace it to access to the other component management interfaces
described below.

62

Creating XPCOM Components

Digging In: Required Includes and Constants

TheMany Faces of the XPCOM Component M anager

The three core component management interfaces, ns| Comrponent Manager ,
nsl Servi ceManager, and nsl Conponent Regi st r ar, are described
below.

* nsl Conponent Manager - Creates objects and gets implementation
details about objects

* nsl Servi ceManager - Provides accessto singleton objects and
discovers singleton state

* nsl Conponent Regi strar - Registersand unregistersfactories and
components; handles autoregistration and the discovery and enumer-
ation of registered components.

Your Regi st er Sel f method may call Quer yl nt er f ace on the

ns| Conponent Manager interface parameter to obtain the

nsl Conponent Regi strar or nsl Servi ceManager. nsl Servi ceManager can
be used to obtain a singleton service, which can be useful if you have to register
with a service other than the ns| Conponent Regi st r ar if necessary. For
example, you may want to get the service that is responsible for an event you want
to be notified about. See the section “Getting Called at Startup” on page 91 for an
example of this.

The second parameter in Regi st er Sel f isthe location of the component being
registered. This parameter is useful when the component needs to know where it
has been installed or registered—as, for example, when other files must be stored or
accessed relative to the component. This method is only called once, so you haveto
persist the location if you are going to use it later.

The next two parameters are usually passed into the nsI Conponent Regi st rar
methods and used by XPCOM to determine how to handle the component's
registration. The aLoader St r parameter, which is opaque and should not be
modified, distinguishes components that are loaded from the same location
specified by the nsl Fi | e parameter. A single ZIP archive may store several
XPCOM components, where every component in the archive has the same

nsl Fi | e parameter but thealLoader St r parameter can be used to refer to the
location within the ZIP archive.

Creating XPCOM Components 63

Tutorial : Creating the Component Code

The last parameter specifies what kind of loader to use on the component. Thisis
reserved as an optimization, for the most part, but it can be a useful way to extend
XPCOM. Since XPCOM already knows internally what kind of file it has just
loaded and called Regi st er Sel f on, passing this valueto the registration methods
isashortcut for determining what kind of component is being registered.

nsl ComponentRegistrar Methods. To tell XPCOM what implementationisin the
component library, call this method:

NS_| METHOD Regi st er Fact oryLocati on(const nsCl D & ad ass,
const char *ad assNane,
const char *aContract! D,
nslFile *aFil e,
const char *alLoaderStr,
const char *aType) = O;

The last three parameters are the same as the three passed into the Regi st er Sel f
method of nsl Modul e objects. All you have to do is forward these parameters
from your Regi st er Sel f call into this method, leaving just the first three
parameters.

For any class that implements an XPCOM interface, the implementation must have
aclassidentifier if it isto be shared with other parts of code via XPCOM. This
identifier, called a CID, uniquely specifies the implementation. This CID can be
created viathe tool uuidgen on most operating systems, as in the sidebar above
(“The Many Faces of the XPCOM Component Manager”). Given aCID and an
I1D, you can refer to any classin XPCOM. Consider the following:

Implementation A —o nslSupports
ciD1
D
Implementation B —¢ hslSupports
ciD2

Figure 5. Figure X: Referencing Objectsby ID

Creating XPCOM Components

Digging In: Required Includes and Constants

In this case, you have two implementations of the ns| Support s interface. Each
implementation has a separate CID. The interface also asan |1D which is the same
for both implementations. When specifying implementation A, the two required
pieces of information are the CID of A and the IID of the interface that A supports.
The code to register such an object issimple:

NS_| METHODI MP

Sanpl eModul e: : Regi st er Sel f (nsl Conponent Manager *aConpMyr,
nsl Fil e* aPath,
const char* registrylLocation,
const char* conponent Type)

{
printf(“Hello Mozilla Registration!\n\n");
ns| Conponent Regi strar* conpReg = nsnul | ;
nsresult rv = aConpMyr->
Queryl nt erface(kl Conponent Regi strarl | D, (void**)& conp
if (NS_FAILED(rv))
return rv;
rv = conpReg- >Regi st er Fact oryLocati on(kSanpl eCl D,
"Sanpl e d ass",
nsnul |,
aPat h,
regi stryLocati on,
conmponent Type) ;
conpReg- >Rel ease();
return rv;
}

Unregistration follows the same logic. To unregister, all you haveto do is pass the
CID and the file which is passed into Unr egi st er Sel f .

Creating an I nstance of Your Component

The example above uses a CID, but after the component is registered, anyone that
uses XPCOM can access your classes if they know either the contract ID or CID.
(Notethat Regi st er Sel f method above does not register a contract | D—it simply
passes null. This prevents clients from ever accessing the component with a
contract ID.)

Creating XPCOM Components 65

Tutorial : Creating the Component Code

To be accessible to others, you need to publish the CID and/or contract ID of the
component along with the interfaces it supports. Given the example above,
someone could create the Sample object via the component manager as follows:

ns| Conponent Manager * conpManger; // assune initialized

nsl| Supports* sanpl e;

conpManager - >Cr eat el nst ance(kSanpl eCl D,
nsnul |,
kl Support sl | D,
(voi d**) &sanpl e) ;

In the above snippet, we assume that the component manager has been initialized.
In many cases thisvalue ispassed in or easily accessible. If not, it can always be
obtained by acall to NS_Get Conponent Manager () . A listing of this and other
global XPCOM functionsisin Appendix B: The XPCOM API Reference.

Thefirst parameter of the call to Cr eat el nst ance specifies the component the
client code is looking for, which is the same value passed to

Regi st er Fact or yLocat i on. The next parameter isfor aggregation, which the
WebL ock component does not support. Thethird parameter istheinterface used to
talk to the component. The last parameter is the out variable which will contain a

valid object if and only if the method succeeds. The implementation of

Createl nstance will ensure that the result will support the passed I1D,

kI Support sl | D. Thetype of thevariable sanpl e should matchthe lID passedin
askl Supportsl|ID.

When Cr eat el nst ance is called, XPCOM looks through all registered
components to find a match for the given CID. XPCOM then loads the component
library associated with the CID if it isn’t loaded already. XPCOM then callsthe
function NSGet Modul e on thelibrary. Finally, it calls the method

Get O assOhj ect onthe module. This method, which you must implement in your
component code, is expected to return an nsl Fact ory object for agive CID/IID
pair. To prepare your component code, you need to create a factory object for each
object that you have registered with XPCOM.

1. Note: the Cr eat el nst ance method guarantees that if the out variable is non-
null, itisvalid.

66

Creating XPCOM Components

Digging In: Required Includes and Constants

The main function that must be implemented in the nsl Fact ory interfaceis
Cr eat el nst ance. Theimplementation follows a simple algorithm:

Create the raw object.

If that fails, return an out of memory error code.

Cadl Queryl nt er f ace on the new object.

If that fails, null the out param and free the new object.

Return thensr esul t value from Queryl nt er f ace.

a > N e

Often, you don't have to create the object first because the factory implicitly knows
what 11Ds are supported. When thisis not the case, however, doing it this way
further abstracts the factories from their concrete classes. If you have afactory that
knows every 11D supported by the concrete base class, for example, then when you
go to add a new supported interface you add this 1D comparison in both the factory
and the Quer yI nt er f ace implementation in the concrete class.

NS_| METHODI MP
Sanpl eFact ory: : Cr eat el nst ance(
nsl Supports *aCuter,
const nslID & iid,
void * *result)

if (!result)
return NS_ERROR | NVALI D_ARG

Sanpl e* sanple = new Sanple();

if (!sanple)
return NS_ERROR OUT_CF_MEMORY;,

nsresult rv = sanple->Querylnterface(iid, result);
if (NS_FAILED(rv)) {
*result = nsnull;

del et e sanpl e;

}

return rv;

Creating XPCOM Components 67

Tutorial : Creating the Component Code

weblLockl.cpp

Before any of the improvements and XPCOM tools we describe in the following
chapter are brought in, the source code for the WebL ock component that imple-
ments all the necessary interfaces |ooks like this.

#include <stdio.h>
#defineMOZILLA_STRICT_API

#include "nsiModule.h"
#include "nsl Factory.h"

#include "nsl ComponentManager.h"
#include "nsl ComponentRegistrar.h"

static const nslID kiIModulelID =NS_IMODULE_IID;

static const nsl1D kIFactorylID =NS_IFACTORY_IID;

static const nslID klSupportslID = NS_ISUPPORTS_IID;

static const nsl1D kiComponentRegistrarlID = NS_|ICOMPONENTREGISTRAR_IID;

#define SAMPLE_CID \
{ Ox777f7150, Ox4a2b, 0x4301, \
{ Oxad, 0x10, Ox5e, Oxab, 0x25, 0xb3, 0x22, Oxaa} }

static const nsCID kSampleCID = SAMPLE_CID;
class Sample: public nslSupports{
private:
nsrefcnt mRefCnt;
public:
Sample();
virtual ~Sample();
NS _IMETHOD Querylnterface(const nslID &allD, void ** aResult);

NS_IMETHOD_(nsrefent) AddRef(void);
NS IMETHOD_(nsrefent) Release(void);

¥
Sample::Sample()
:mRefCnt(0);
Sample::~Sample()
|
NS_IMETHODIMP Sample::QueryInterface(const nslID &allD,
void **aResult)

if (aResult == NULL) {
return NS_ERROR_NULL_POINTER;
}
*aResult = NULL;
if (allD.Equa s(klSupportsl ID)) {
*aResult = (void *) this;

}
if (aResult 1= NULL) {

68

Creating XPCOM Components

webLockl.cpp

return NS ERROR_NO_INTERFACE;

}

AddRef();

return NS_OK;
}

NS_IMETHODIMP_(nsrefcnt) Sample::AddRef()

return ++mRefCnt;
}

NS_IMETHODIMP_(nsrefcnt) Sample::Rel ease()

{
if (--mRefCnt == 0) {
delete this;
return O;

return mRefCnt;
}

/I factory implementation class for component
class SampleFactory: public nslFactory{
private:

nsrefcnt mRefCnt;
public:

SampleFactory();

virtual ~SampleFactory();

NS_IMETHOD Querylnterface(const nslID &allD, void ** aResult);
NS_IMETHOD_(nsrefent) AddRef(void);
NS IMETHOD_(nsrefent) Release(void);

NS_IMETHOD Createl nstance(nsl Supports * aOuter, const nslID & iid, void * *result);
NS IMETHOD L ockFactory(PRBool lock);

¥
Sampl eFactory::SampleFactory()
{

mRefCnt = 0;

}
Sampl eFactory::~SampleFactory()

}
NS_IMETHODIMP SampleFactory::QueryInterface(const nslID &allD,
void **aResult)

if (aResult == NULL) {
return NS ERROR_NULL_POINTER;

}

*aResult = NULL;

if (allD.Equa s(klSupportsl ID)) {
*aResult = (void *) this;

}

else

if (al1D.Equa s(kIFactorylID)) {
*aResult = (void *) this;

}

Creating XPCOM Components

69

Tutorial : Creating the Component Code

if (aResult 1= NULL) {
return NS ERROR_NO_INTERFACE;

}

AddRef();

return NS_OK;
}

NS_IMETHODIMP_(nsrefcnt) SampleFactory::AddRef()
{

return ++mRefCnt;
}

NS_IMETHODIMP_(nsrefcnt) SampleFactory::Release()

{
if (--mRefCnt == 0) {
delete this;
return O;

return mRefCnt;
}

NS IMETHODIMP
Sampl eFactory::Createl nstance(nsl Supports * aOuter, const nsl 1D & iid, void * *result)

if ('result)
return NS_ERROR_INVALID_ARG;

Sample* sample = new Sample();
if (!sample)
return NS_ERROR_OUT_OF_MEMORY;;

nsresult rv = sample->Querylnterface(iid, result);

if (NS_FAILED(rv)) {
*result = nsnull;
delete sample;

}

returnrv;

NS IMETHODIMP
Sampl eFactory::LockFactory(PRBool lock)
{

return NS_ERROR_NOT_IMPLEMENTED;
}

/I Module implementation
class SampleModule : public nsiModule

public:
SampleModul&();
virtual ~SampleM odul&();

70

Creating XPCOM Components

webLockl.cpp

/I nsl Supports methods:

NS_IMETHOD QuerylInterface(const nsl1D & uuid, void * *result);
NS_IMETHOD_(nsrefcnt) AddRef (void);
NS_IMETHOD_(nsrefent) Release(void);

/I nsiModule methods:

NS_IMETHOD GetClassObject(nsl ComponentManager *aCompMgr, const nsCID & aClass, const nslID & allD,
void * *aResult);

NS_IMETHOD Regi sterSelf(nsl ComponentManager *aCompMgr, nslFile *al_ocation, const char *al_oaderStr,
const char *aType);

NS_IMETHOD UnregisterSelf(nsl ComponentManager *aCompMgr, nslFile *al ocation, const char * al_oaderStr);

NS_IMETHOD CanUnload(nsl ComponentManager *aCompMgr, PRBool * _retval);

private:

nsrefcnt mRefCnt;
b

I

SampleModule::SampleM odul ()

mRefCnt = 0;
}

SampleModul e::~SampleM odul &()
{
}

/I nsl Supports implemention
NS IMETHODIMP_(nsrefcnt)
SampleModule::AddRef(void)

++mRefCnt;
return mRefCnt;

}

NS_IMETHODIMP_(nsrefcnt)
SampleModule::Rel ease(void)

--mRefCnt;

if (mRefCnt == 0) {
mRefCnt = 1; /* stabilize*/
delete this;
return O;

}
return mRefCnt;
}

NS _IMETHODIMP
SampleModule::Querylnterface(REFNSIID alID, void** alnstancePtr)

{
if ('alnstancePtr)
return NS ERROR_NULL_POINTER;

nsl Supports* foundlnterface;

if (allD.Equals(kiModulelID))
foundinterface = (nsIModule*) this;

Creating XPCOM Components 71

Tutorial : Creating the Component Code

elseif (allD.Equals(klSupportslID))
foundinterface = (nslSupports*) this;

else
foundinterface = 0;

if (foundlinterface) {
foundinterface->AddRef();
*alnstancePtr = foundInterface;
return NS_ OK;

}

*alnstancePtr = foundInterface;
return NS_NOINTERFACE;
}

/I Create afactory object for creating instances of aClass.

NS IMETHODIMP

SampleM odul e:: GetCl assObj ect(nsl ComponentM anager *aCompMar,
const nsCID& aClass,
const nslID& allD,
void** result)

if ('kSampleCID.Equals(aClass))
return NS_ERROR_FACTORY_NOT_REGISTERED;

if ('result)
return NS_ERROR_INVALID_ARG;

SampleFactory* factory = new SampleFactory();
if (!factory)

return NS ERROR_OUT_OF MEMORY;
nsresult rv = factory->QuerylInterface(al 1D, result);
if (NS_FAILED(rv)) {

*result = nsnull;

delete factory;
}

returnrv;

Il

NS IMETHODIMP

SampleM odule:: RegisterSel f(nsl ComponentM anager *aCompMar,
nslFile* aPath,
const char* registryL ocation,
const char* componentType)

nslComponentRegistrar* compReg = nsnull;
nsresult rv = aCompMgr->Querylnterface(kl ComponentRegistrarlI D, (void**)& compReg);

if (NS_FAILED(rv))
returnrv;

72

Creating XPCOM Components

webLockl.cpp

rv = compReg->Regi sterFactoryL ocation(kSampleCID,
"Sample Class",
nsnull,
aPath,
registryLocation,
componentType);

compReg->Rel ease();

returnrv;
}
NS_IMETHODIMP
SampleModule::Unregi sterSel f (nsl ComponentM anager* aCompMagr,

nslFile* aPath,
const char* registryLocation)

nslComponentRegistrar* compReg = nsnull;
nsresult rv = aCompMgr->QueryInterface(kl ComponentRegistrarl 1 D, (void**)& compReg);
if (NS_FAILED(rv))

returnrv;

rv = compReg->UnregisterFactoryL ocation(kSampleCID, aPath);

compReg->Release();

returnrv;

}

NS IMETHODIMP
SampleM odule:: CanUnl oad(nsl ComponentM anager *aCompMgr, PRBool * ok ToUnload)

*okToUnload = PR_FALSE; // we do not know how to unload.
return NS_ OK;
}

Il

extern "C" NS_EXPORT nsresult NSGetM odule(nsl ComponentM anager *servMgr,
nslFile* location,
nsIModule** return_cobj)

nsresult rv = NS_OK;

/I Create and initialize the module instance
SampleModule *m = new SampleModul&();
if (!m) {

return NS_ERROR_OUT_OF MEMORY;
}

I Increase refent and store away nslModule interface to m in return_cobyj
rv = m->QuerylInterface(kiModulelID, (void**)return_cobj);
if (NS_FAILED(rv)) {
deletem;
}

return rv;

Creating XPCOM Components 73

Tutorial : Creating the Component Code

74

Creating XPCOM Components

CHAPTER 5

Tutorial: Usng XPCOM Utilities
ToMake ThingsEaser

Topics covered in this chapter:

* “Generic XPCOM Module Macros’
e “String Classesin XPCOM”

e “Smart Pointers’

* “weblock2.cpp”

This chapter goes back over the code you’' ve aready created in the first part of the
tutorial (see“weblLockl.cpp” in the previous chapter) and uses XPCOM tools that
make coding alot easier and more efficient. It also introduces a basic string type
that is used with many of the APIsin both XPCOM and Gecko.

To begin with, the first section describes C++ macros that can replace alot of the
codein the webLockl1.cpp. Much of the code created to get the software recognized
and registered as a component can be reduced to a small data structure and asingle
macro.

Creating XPCOM Components 75

Tutorial: Using XPCOM Utilities To Make Things Easier

XPCOM Macros

The XPCOM framework includes a number of macros for making C++ develop-
ment easier. Though they overlap somewhat (e.g., high-level macros expand to
other macros), they fal into the following general categories.

e “Generic XPCOM Module Macros’
e “Common Implementation Macros’
e “Declaration Macros’

Generic XPCOM Module Macros

The work in the Getting Sarted chapter was useful in setting up the generic
component code. But there are only afew placesin that code that are unique to the
WebL ock component, and it was alot of typing. To write a different component
library, you could copy thelisting at the end of the chapter, change very little, and
paste it into a new project. To avoid these kinds of redundancies, to regulate the
way generic codeiswritten, and to save typing, XPCOM provides generic module
macros that expand into the module code you’ ve already seen.

Since these macros expand into “generic” implementations, they may not offer as
much flexibility as you have when you are writing your own implementation. But
they have the advantage of allowing much more rapid development. To get an idea
about how much can be handled with the macros described in this section, compare
the code listing in the “weblock2.cpp” section at the end of the chapter with
“webLockl.cpp” in the previous.

The module macros include one set of macros that define the exported

NSGet Modul e entry point, the required ns| Modul e implementation code and
another that creates a generic factory for your implementation class. Used together,
these macros can take care of alot of the component implementation code and
leave you working on the actual logic for your component.

Note that all of the macros described in this section are similar, but used in
dlightly different situations. Some differ only in whether or not amethod is
called when the moduleis created and/or destroyed. Table 1 lists the macros
discussed in this section.

76

Creating XPCOM Components

XPCOM Macros

TABLE 1. XPCOM Module M acros

Macro

Description

NS_| MPL_NSGETMODULE
(nane, comnponents)

Implementsthe ns| Modul e
interface with the module name
of _name and the component
listin _components.

NS_| MPL_NSGETMODULE_W TH_CTOR
(nane, components, ctor)

Same as above but allows for a
specia function to be called
when the module is created.

NS_| MPL_NSGETMODULE_W TH_DTOR
(nane, components, dtor)

Same as the first macro but
alowsfor a special function to
be called when the module is
destroyed.

NS_| MPL_NSGETMODULE_W TH_CTOR_DTOR
(nane, components, ctor, dtor)

This combines the last to mac-
ros so that you can define func-
tionsto be called at the
construction and destruction of
the module object.

Module Implementation Macros. The general caseisto use

NS_| MPL_NSGETMODULE, which doesn’t take any callbacks, but all the macros
follow the same general pattern. All of these macros work on an array of structures
represented by the _conponent s parameter. Each structure describesa CID that is

to be registered with XPCOM.

Creating XPCOM Components

77

Tutorial: Using XPCOM Utilities To Make Things Easier

Thefirst parameter for each of these macrosis an arbitrary string that names the
module. In a debugging environment, this string will be printed to the screen when
the component library is loaded or unloaded. You should pick a name that makes

sense and helps you keep track of things. The four required partst of the structure
contain the following information:

* A human readable class name

* theclassID (CID)

* thecontract ID (Thisisan optional but recommended argument.)
* aconstructor for the given object

static const nsMdul eConponent | nfo conponents[] =

{
{ "Pretty Class Nanme",

CI D,
CONTRACT_I D,
Const ruct or

}

The important thing to note in the fictitious listing above is that it can support
multiple components in a module. Modules such as the networking librariesin
Gecko (“necko”) have over 50 components declared in asingle

nsModul eConponent | nf o array like this.

Thefirst entry of the nsModul eConponent | nf o above is the name of the
component. Thoughitisn't used that much internally at the present time, this name
should be something that meaningfully describes the module.

The second entry of the nsMbdul eConponent | nf o isthe CID. Theusual practice
isto put the class ID (CID) into a#def i ne and use the define to declarethe CID in
the components list. Many CIDs take the following form:

1. This section discusses the main parameters of this structure. For acomplete list-
ing of all available options you can look at the complete reference in Appendix
B.

78

Creating XPCOM Components

XPCOM Macros

#define NS_| OSERVI CE_CI D \
{ /* 9ac9e770-18bc-11d3- 9337-00104ba0f d40 */ \
0x9ac9e770, \
0x18bc, \
0x11d3, \
{0x93, 0x37, 0x00, 0x10, Ox4b, 0OxaO, Oxfd, 0x40} \

The next entry isthe Contract ID string, whichis also usually defined in a#def i ne
in a header file.

These three entries constitute the required parameters for the

Regi st er Fact or yLocat i on method welooked at in the prior chapter. When you
use these implementation macros, you must declare a constructor for the object, and
this keeps you from having to write a factory object.

Factory Macros. The factory macro makesit easy to write factory
implementations. Given the class name Concr et ed ass, the factory macro
declaration is:

NS_GENERI C_FACTORY_CONSTRUCTOR(Concr et eCl ass)

Thisresultsin afunction caled Concr et ed assConst r uct or that canbeusedin
the nsModul eConponent | nf o structure.

#i ncl ude "nsl GenericFactory. h"

stati c const nsMddul eConponent | nfo conponents[] =
{
{ "Pretty Cl ass Nanme",
SAVPLE_CI D,
" @onpany. coni sanpl e"
Sanpl eConst r uct or
}
}

NS_I MPL_NSGETMODULE(nsSanpl eModul e, conponent s)

Most of the componentsin the Mozilla browser client use this approach.

Creating XPCOM Components 79

Tutorial: Using XPCOM Utilities To Make Things Easier

Common Implementation Macros

Every XPCOM object implements ns| Suppor t s, but writing thisimplementation
over and over istedious. Unless you have very specia requirements for managing
reference counting or handling interface discovery, the implementation macros that
XPCOM provides can be used. Instead of implementing the ns| Support s
yourself, NS_| MPL_I SUPPORTS1 can expand to the implementation of AddRef ,
Rel ease, and Quer yI nt er f ace for any object.

NS _| MPL_I SUPPORTS1(cl assnane, interfacel)

Also, if you implement more than one interface, you can simply changethe 1’ in
the macro to the number of interfaces you support and list the interfaces, separated
by commas. For example:

NS_| MPL_I SUPPORTS2(cl assnane, interfacel, interface2)
NS _| MPL_I SUPPORTSNn(cl assnane, interfacel, .., interfacen)

These macros automatically add the ns| Support s entry for you, so you don’t
need to do something like this:

NS _| MPL_I SUPPORTS2(cl assnane, interfacel, nslSupports)

Take aclose look at the above example. Note that it uses the actual name of the
interface and not an I1D. Inside the macro, the interface name expands to
NS_GET_I I (), which is another macro that extracts the 11D from the generated
header of the interface. When an interfaceiswritten in XPIDL, the headersinclude
static declarations of their 11Ds. On any interface that generated with XPIDL, you
cancal NS_GET |1 D() to obtainthe lID which is associated with that interface.

/] returns a reference to a shared nsl| D object.
static const nslIDiidl = NS_GET_IID(nsl Supports);

/] constructs a new nsl|D object
static const nslID iid2 = NS_|I SUPPORTS | I D;

Inorder touseNS_I MPL_I SUPPORTSn, you must be sure that a member variable of
typensr ef cnt isdefined and named nRef Cnt in your class. But why even bother
when you can use another macro?

80

Creating XPCOM Components

XPCOM Macros

Declaration M acros

NS_DECL_NSI SUPPORTS declares AddRef , Rel ease, and Quer yl nt er f ace for
you, and it also defines the nRef Cnt required by NS_I| MPL_| SUPPORTS.
Furthermore, NS_DECL_ appended with any interface namein all capswill declare
all of the methods of that interface for you. For example, NS_DECL_NSI FOOwill
declare all of the methods of ns| Foo provided that it exists and that nslFoo.h was
generated by the XPIDL compiler. Consider the following real class:

cl ass myEnunmerator : public nslSinpl eEnuner at or

{

publ i c:
NS_DECL_| SUPPORTS
NS_DECL_NSI SI MPLEENUMERATOR

myEnuner ator () ;
virtual ~nyEnunerator() {}

The declaration of thisns| Si npl eEnuner at or classdoesn’t include any methods

other than the contructor and destructor. Instead, the class usesthe NS_DECL

macro?.

Using these declaration macros not only saves a tremendous amount of time when
you're writing the code, it can also savetime if you make changesto your IDL file,
since the C++ header file will then automatically include the updated list of
methods to be supported.

TheNS_I NI T_I SUPPORTS macro is aso ahit of aspecial case. Historically,
it gets called in the constructor for your class and sets nRef Cnt to zero. But a
change has goneinto XPCOM recently that makesNS_| NI T_| SUPPORTS no
longer necessary: The mRef Cnt type has been changed from an integer to a
class that provides its own auto-initialization. If you are building with versions
earilier than Mozilla 1.3, this macro is still required.

1. Notethat NS_DECL_| SUPPORTS doesn’t obey the general rulein which every interface
has a declaration macro of the form NS_DECL__ | NTERFACENAME, where | NTER-
FACENAME is the name of the interface being compiled.

Creating XPCOM Components 81

Tutorial: Using XPCOM Utilities To Make Things Easier

Table 2 summarizes the macro usage in this portion of the weblock.cpp source file:

TABLE 2. Common XPCOM Macros

NS_I MPL_| SUPPCORTSh Implements nsl Supportsfor agiven classwithn
number of interfaces.

NS_DECL_| SUPPORTS Declares methods of nsl Supports including
mRefCnt

NS_I NI T_I SUPPORTS Initalizes mRefCnt to zero. Must becaledin
classes constructor

NS GET IID Returnsthe 11D given the name of an interface.
Interface must be generated by XPIDL

Using the macros described here, the code for the WebL ock component has gone
from around 340 lines of code to just under 40. Clearly from a code maintenance
point of view, thiskind of reduction isoutstanding. The entire sourcefile with these
macros included appearsin the next section, “weblock2.cpp”.

weblock2.cpp

The listing below shows the generic module code from the “webL ock1.cpp” sec-
tion of the previous chapter using the macros described in this chapter.

Creating XPCOM Components

weblock2.cpp

#i ncl ude "nsl GenericFactory. h"

#define SAMPLE CI D \
{ Ox777f7150, Ox4a2b, 0x4301, \
{ Oxad, 0x10, Ox5e, Oxab, 0x25, O0xb3, 0x22, Oxaa}}

cl ass Sanpl e: public nslSupports {
publ i c:

Sanpl e() ;

virtual ~Sample();

NS_DECL_| SUPPORTS
}s

Sanpl e: : Sanpl e()

{
/1 note: in newer versions of Gecko (1.3 or later)
/'l you don't have to do this:
NS_I NI T_I SUPPORTS() ;

}

Sanpl e: : ~Sanpl e()

{

}

NS_| MPL_| SUPPORTS(Sanpl e, nsl Supports);
NS_GENERI C_FACTORY_CONSTRUCTOR(Sanpl €e) ;

static const nsMdul eConponent | nfo conponents[] =

{
{ "Pretty Cl ass Nanme",

SAVPLE_CI D,
" @onpany. conl sanpl e"
Sanpl eConst r uct or
}
IE

NS_I MPL_NSGETMODULE(nsSanpl eModul e, conponent s)

Figure 1. weblock?2.cpp

Creating XPCOM Components 83

Tutorial: Using XPCOM Utilities To Make Things Easier

Sring Classesin XPCOM

Strings are usually thought of as linear sequences of characters. In C++, the string
literal “XPCOM”, for example, consists of 6 consecutive bytes, where ‘X' isat byte
offset zero and anull character is at byte offset 5. Other kinds of strings like “wide”
strings use two bytes to represent each character, and are often used to deal with
Unicode strings.

The string classesin XPCOM are not just limited to representing a null terminated
sequence of characters, however. They are fairly complex because they support the
Gecko layout engine and other subsystems that manage large chucks of data. The
string classes can support sequences of characters broken up into multiple

fragments (fragments which may or may not be null terminated)®.

All string classes in XPCOM derive from one of two abstract classes® nsASt r i ng
and nsACSt ri ng. The former handles double byte characters, and the latter tends
to be used in more general circumstances, but both of these classes define the
functionality of a string. You can see these classes being passed as argumentsin
many of the XPCOM interfaceswe'll look at in the following chapters.

Using Srings

Explaining how all the string classes work is outside the scope of this book, but we
can show you how to use strings in the WebL ock component. The first thing to
note isthat the string classes themselves are not frozen, which means that you
should not link against them when you can avoid it.

Linking thefull string library (.lib or .a) into acomponent may raise its footprint by
more than 100k (on Windows), which in many casesis an unacceptable gain (see
the online string guide at http://mww.mozlla.org/projects/xpcom/string-
guide.html). For WebL ock, where the string classes need to be only wrappers
around already existing string data, trading advanced functionality for a much
smaller footprint is the right way to go. The WebL ock string classes don’'t need to

1. Thestring classes may also support embedded nulls.

2. There are other abstract string classes, but they are outside the scope of this
book.

Creating XPCOM Components

String Classes in XPCOM

append, concatenate, search, or do any other real work on the string data, they just
need to represent char * and other data and pass them to methods that expect an
nsACStri ng.

nsEmbedString and nsEmbedCString

The strings used in this tutorial are nsEnbedSt ri ng and nsEnbedCSt ri ng,
which implement the nsASt r i ng abstract class and the nsACSt ri ng abstract
classes, respectively. Thisfirst example shows an nsEnbedCSt ri ng being used to
pass an nsACSt ri ng to amethod that’s not expected to modify the string.

/[l in IDL: method(in ACString thing);
char* str = "How now brown cow?";

nsEnmbedCString data(str);
rv = obj ect->Method(data);

In this next example, the method is going to set the value of the string—as it might
need to do when it returns the name of the current user or the last viewed URL.

// in IDL: attribute ACString data;

nsEnbedCStri ng dat a;
met hod- >Get Dat a(dat a) ;

/'l now to extract the data fromthe url class:

const char* aStringURL = data.get();

Note that the memory pointed to by aSt ri ngURL after thecall tourl . get () is
owned by the URL string object. If you need to keep this string data around past the
lifetime of the string object, you must make a copy.

Creating XPCOM Components 85

Tutorial: Using XPCOM Utilities To Make Things Easier

Sring Size

The examples above illustrate the use of the single byte string class, nSEm
bedCSt ri ng. The double byte version, nsEnbedsSt r i ng, has the same
functionality but the constructor takes and the. get () method returns the type
PRUni char *. Notethat PRUni char isatwo bytevalue. Inthe coming chap-
ters, you'll see examples that use thisversion in the WebL ock component.

Smart Pointers

All of the interfaces that you’ ve seen so far are reference counted. Leaking a
reference by not releasing an object, as the code below demonstrates, can be a
major problem.

}

nsl| Supports* value = nsnul|;
obj ect - >net hod(&val ue) ;
if (!value) return;

if (NS_FAILED(error))
return; R | eaks | val ue|

NS_RELEASE(val ue); // release our reference

A method returns an ns| Support s interface pointer that has been reference
counted before it is returned (assuming it wasn't null). If you handle an error
condition by returning prematurely, whatever val ue points at will leak—it will
never be deleted. Thisisatrivia fix in thisexample, but in real code, this can
easily happen in “goto” constructs, or in deep nesting with early returns.

86

Creating XPCOM Components

Smart Pointers

Having more than one interface pointer that needs to be released when a block goes
out of scope begs for atool that can aid the developer. In XPCOM, this tool isthe
nsCOVPt r, or smart pointer class, which can save you countless hours and simplify
your code when you' re dealing with interface pointers. Using smart pointers, the
code above can be simplified to:

nsCOWPt r <ns| Support s> val ue;
obj ect - >net hod(get t er _AddRef s(val ue));
if (!value) return;

if (NS_FAILED(error))
return;

The style or syntax may be unfamilar, but smart pointers are worth learning and
using because they simplify the task of managing references. nsCOVPt r isa C++
template class that acts almost exactly like raw pointers, that can be compared and
tested, and so on. When you pass them to a getter, you must do something special,
however: You must wrap the variable with the function get t er _AddRef s, asin
the exampl e above.

You cannot call thensl Supports AddRef or Rel ease methodson ansCOVPLr ..
But thisrestriction is desirable, since the ns COVPt r is handling reference counting
for you. If for some reason you need to adjust the reference count, you must assign
the nsCOVPt r to anew variable and AddRef that. Thisisacommon pattern when
you have alocal nsCOVPt r in afunction and you must pass back areferencetoit,
asin the following:

Creating XPCOM Components 87

Tutorial: Using XPCOM Utilities To Make Things Easier

Somed ass: : Get (nsl Supports** aResul t)

{
if (! aResult)
return NS_ERROR NULL_PO NTER;

nsCOWPt r <nsl| Support s> val ue;
obj ect - >net hod(gett er _AddRef s(val ue));

*aResul t = val ue. get();
NS _| F_ADDREF(*aResul t);
return NS_CK;

}

Thefirst thing that this method does is check to see that the caller passed avalid
address. If not, it doesn’'t even try to continue. Next, it calls another method on an
object that is presumed to exist in this context. You can call a. get () method on
the nsCOVPt r and have it returned for use as araw pointer. Thisraw pointer can
then be assigned to a variable and have its reference updated by NS_| F_ADDREF.
Be very careful with the result of . get (), however. You should never call

Rel ease onthisresult becauseit may result in acrash. Instead, to explicitly release
the object being held by ansCOWPt r, you can assign zero to that pointer.

Another nice feature of smart pointers—the part that makes them smart—is that
you can Quer yI nt er f ace them quite easily. For example, there are two interfaces
for representing afile on afile system, thensl! Fi | e and nsl Local Fi | e, and they
are both implemented by an object. Although we haven't formally introduced these
two interfaces, the next code sample shows how simple it isto switch between
these two interface:

Sormed ass: : DoSornet hi ng(nsl Fil e* aFile)
{
if (! aResult)
return NS _ERROR NULL_PO NTER;

nsresult rv;
nsCOWPt r <nsl Local Fil e> | ocal File = do_Querylnterface(aFile, &v);

88

Creating XPCOM Components

Smart Pointers

If theQuer yl nt er f ace issuccessful, | ocal Fi | e will bennon-null, andr v will be
settoNS_OK. If Queryl nterface fails, | ocal Fi | e will benull, and r v will be
set to a specific error code corresponding to the reason for the failure. In this
construct, theresult coder v isan optional parameter. If you don’t care what the
error code is, you can simply drop it from the function call.

From this point on, we'll be using ns COVPt r s as much as possible in WebL ock.
For a complete listing of smart pointer functionality, see http://mww.mozilla.org/
proj ects/xpcom/nsCOMPtr /.

Creating XPCOM Components 89

Tutorial: Using XPCOM Utilities To Make Things Easier

90

Creating XPCOM Components

CHAPTER 6 TUtO”aI : Sartl ng \/\H:)ch:k

In this chapter, we begin to design and implement the web locking functionality
itself. We have aready created a module that implements most of the generic
component functionality (e.g,. registration). This chapter will focus on the
functionality that actually handles the web locking.

Topics covered in this chapter:

* “Getting Called at Startup”

* “Providing Accessto WebL ock”

* “Creating the WebL ock Programming I nterface”
* “Defining the Weblock Interfacein XPIDL”

e “Implementing WebL ock”

Getting Called at Sartup

No person is an island to themselves, and neither are components. The sample
component you' ve built up so far doesn’t do anything. After having its registration
procedure called, the component does nothing.

Creating XPCOM Components 91

Tutorial: Starting WebLock

In order to be started up or notified when some event happens, the sample
component has to hook into Mozilla, which it can do either by overriding an
existing component or by registering for some event that will causeit to start up.
WebL ock does the latter and gets called when a Gecko Profile Startup occurs.
When a Gecko application starts up, registered components are created and notified
viathe general purpose observer interface ns| Cbser ver.

Observers are objects that are notified when various events occur. Using themisa
good way for objects to pass messages to each other without the objects having
explicit knowledge of one another.

Usually, thereis one object notifying a group of observers. For example, an object
may be created and haveits obser ve method called at startup, or it may register to
be notified prior to XPCOM shutdown. The method at the core of thisinterfaceis
observe:

voi d observe(in nslSupports aSubject,
in string aTopic,
in wstring abData);

There aren't really any restrictions on what the parameters of the observer method
may be. These parameters are defined according to the event being observed. For
example, in the case of the XPCOM shutdown observation, aSubj ect and aDat a
are not defined, and aTopi c isdefined as the string "xpcom-shutdown". 1f your
object would like to register for this or other events, it first must implement the
nsl Obser ver interface. Once you do this, the observer service implementing

nsl Obser ver Ser vi ce can notify your object of registered events by means of
thisinterface, asin the figure below.

92

Creating XPCOM Components

Getting Called at Startup

Notifier

NotifyObservers()
NV

—o nslObserverService

[—onslObserver
Observel)
———— —onslObserver
S —onslObserver
Observers

Figure 1. The Observer Interfaces

The above figure shows the observer service maintaining alist of all registered
nsl Obser ver objects. When the notification is made the nsl Cbser ver Ser vi ce
broadcasts the notification from the caller of the Not i f yChser ver () tothe

nsl Cbser ver object’s Obser ve() method. Thisisavery useful decoupling of
different objects. Thensl Cbser ver isa generic interface for passing messages
between two or more objects without defining a specific frozen interface, and its
one of the ways in which extensibility is built into XPCOM.

The implementation of the ns| Cbser ver interfacein the WebL ock component is
similar to the implementation for the nsl Fact ory interface. Following Example
2, you change the class definition to support the ns| Obser ver interface and
change NS_| MPL_I| SUPPORTSL so that the Quer yI nt er f ace implementation
knows that the component also supports nsl Coser ver. The WebLock class
definition with support for start up observation is below.

Creating XPCOM Components 93

Tutorial: Starting WebLock

cl ass WebLock: public nsl Observer {
publi c:

WebLock() ;

virtual ~WebLock();

NS_DECL_| SUPPORTS
NS_DECL_NSI OBSERVER

h

NS_| MPL_| SUPPORTS1(WebLock, nsl Observer);

The standard implementation of Cbser ve() simply comparesthe aTopi ¢ string
with the value defined by the event the object is expecting. When thereis a match,
you can handle the event any way you seefit. If the object has only registered for
one notification, then you can ignore the aTopi ¢ string and simply handle the
event asit occurs. In other words, the Cobser ve method should never be called in
response to some event for which the object is not registered.

NS_| METHODI MP

WebLock: : Obser ve(nsl Supports *aSubj ect,
const char *aTopic,
const PRUni char *aDat a)

{
return NS OK;

}

Notification viathe observer serviceis somewhat indirect. The only way to register
directly for anotification viathe observer serviceisto instantiate an nsl Coser ver
object. Thisworks for most cases, but consider the case when you have this
notification create a component. Since the component hasn't been created yet, there
areno instantiated ns1 Coser ver objects that can be passed into the

nsl Cbser ver Ser vi ce, hor can the component code do anything until it is|oaded.

Registering for Natifications

Thensl Qoser ver Ser vi ce interface has methods for registering and
unregistering an nsl Coser ver object. These two methods are used to dynamically
add or remove an observer to a notification topic. But WebL ock needsto be

94

Creating XPCOM Components

Getting Called at Startup

instantiated and added to the observer service automatically, which also implies
some sort of persistent data (after all, we want to have the component start up every
time the application does).

Thisiswhere a new service that manages sets of related data comesin handy. This
service, the nsl Cat egor ySer vi ce, iswhat XPCOM and Gecko embedding
applications use to persist lists of nsl Chser ver components that want to have
startup notification.

Thensl Cat egor ySer vi ce maintains sets of name-value pairs like the onein
Figure 2.

Category Category Category

‘ Entry |Value ‘ ‘ Entry ‘Value ‘ ‘ Entry |Value ‘
‘ Entry |Value ‘ ‘ Entry ‘Value ‘ ‘ Entry |Value ‘
‘ Entry |Value ‘ ‘ Entry ‘Value ‘ ‘ Entry |Value ‘
‘ Entry |Value ‘ ‘ Entry ‘Value ‘ ‘ Entry |Value ‘

Figure 2. The Category Manager

Every category isidentified by astring that represents the name of the category.
Each category contains a set of name-value pairs. For example, you might have a
category named “Important Peopl€e”in which the name-value pairs would be names
and phone numbers. The format of the name-value pair is left up to you.

This data structure is more than enough to support the persisting of components that
what to be started up. The category name also maps nicely onto the notion of a
notification “topic.” The topic name could be something like “xpcom-startup”, for
instance, and the name-value pair could contain the Contract | Ds required to create
the components requesting startup. In fact, thisis exactly how categories are used to
handl e registration with XPCOM for startup notification. You will see the code
which does thisin the next section.

Creating XPCOM Components 95

Tutorial: Starting WebLock

Getting Accessto the Category Manager

Two fieldsin the nsMbdul eConponent | nf o structure introduced in the last
section are addresses for registration and unregistration callbacks. The first
callback is called when the component’s ns| Modul e: : Regi st er Sel f method is
called. This callback allows the component to execute any one-time registration
code it may need. Theinverse of this function is the unregistration callback, where
it'sagood idea to undo whatever the registration function did. The two functions
look likethis:

stati ¢ NS_METHOD
WebLockRegi strati on(nsl Component Manager *aConmpMr,
nsl File *aPat h,
const char *registrylocation,
const char *conponent Type,
const nsModul eConponent I nfo *i nf o)

stati c NS_METHOD

WebLockUnr egi strati on(nsl Conponent Manager *aConpMr,
nsl File *aPat h,
const char *registrylLocation,
const nsModul eConponent I nfo *i nf o)

The names of the functions can be anything you wish. Both functions are passed the
Component Manager and the path to the component, including the opague

regi strylLocati on. These are aso parametersin the ns| Modul e
implementation in Example 1. In addition to these parameters, the callback
functions are passed the nsMbdul eConponent | nf o struct, which is the same
structure initially passed into NS_| MPL_NSGETMODULE.

During registration, the registration callback is where you get the

nsl Cat egor yManager . Once you have it, you can add the component to the
category of componentsthat get started automatically. As a service, the

ns| Cat egor yManager isaccessibleviathensl Ser vi ceManager . Also notethat
the ns| Conponent Manager is passed into the callback. Since the object that
implements the ns1 Conponent Manager interface also implements

nsl Servi ceManager, al you haveto doisQueryl nt er f ace the

ns| Conponent Manager tonsl Servi ceManager to get the Service Manager.
You can then use the Service Manager to add the component to the category:

96

Creating XPCOM Components

Getting Called at Startup

nsresult rv;

nsCOWPt r <nsl| Ser vi ceManager > servman =
do_Queryl nterface((nsl Supports*)aConpMyr, &rv);

if (NS_FAILED(rv))
return rv;

do_Querylnterface

The previous code uses the special nsCOVPt r function

do_Queryl nterface that letsyou Quer ylI nt er f ace without having
to worry about reference counting, error handling, and other overhead.
Thedo_Queryl nt er f ace knows what interface to QI to based on the
nsCOMWPt r that is being assigned into. We could have just as easily have
used the raw Quer yl nt er f ace() method, but using nsCOVPtL 1 iS
much more economical (see “Smart Pointers’ on page 86).

Onceyou have ansl Ser vi ceManager reference, you can ask it for the service
you areinterested in. This processis similar to using Cr eat el nst ance from the
ns| Component Manager, but there is no aggregation parameter since the object
has already been constructed.

nsCOWPt r <nsl Cat egor yManager > cat man;
rv = servman- >Cet Ser vi ceByCont r act | D(NS_CATEGORYMANAGER_CONTRACTI D,
NS_CET_I | D(nsl Cat egor yManager),
getter_AddRef s(cat man));
if (NS_FAILED(rv))
return rv;

There aretwo service getterson thensi Ser vi ceManager interface: onethat takes
a CID and another interface that takes a Contract ID. Here we' |l use the latter. The
first parameter to the Get Ser vi ceByCont r act | Dis of course the contract 1D,
which is defined in the nsXPCOM.h header file. The next parameter is a nifty
macro that returns the [1D for the interface name that you passin. The last
parameter assigns an out interface pointer to ansCOVPt r. Assuming there weren't
any unexpected errors, the variable cat man holdsthe ns| Cat egor yManager
interface pointer, which you can use to add the component as a startup observer by
calling amethod on the ns| Cat egor yManager .

Creating XPCOM Components 97

Tutorial: Starting WebLock

The next step isto figure out which parameters to pass to the method. Thereisa
category name and a name-value pair, but since the name-value pair meaning is
category specific, you need to figure out which category to use.

There are two startup notifications, both of which create the observer if it isn't
already created. Thefirst is provided by XPCOM. This notification will occur
during initalization of XPCOM, where all XPCOM services are guaranteed to be
available during the calls. Embedding applications may provide other notifications.

TABLE 1. Common XPCOM Notifications

Category Name Value Creates Component
Xpcom-startup Any Contract ID Yes
xpcom-shutdown Any Contract ID No
Xpcom-autoregistration ~ Any Contract ID No
app-startup Any service, *

Contract ID

The table above summaries the popular persistent notifications registered through
the category manager. The name of the category itself is awell defined string, but
the name-value pairs can be anything.

When naming your component in the category, take care to use something that
means something and doesn't muddy up the namespace. In this case, "WebL ock" is
unique and provides context to anyone looking at the category. The value of the
name-value part is expected to be the contract 1D of the component.

Since every category can define the name-val ue pairs, the application “ app-startup”
category can support not only services but component instances aswell. For the
app-startup notification, you must explicitly pass the string "service," prior to the
component’s Contract ID. If you do not, the component will be created and then
released after the notification, which may cause the component to be deleted.

In short, to register the WebL ock component as an xpcom-startup observer, do the
following:

98

Creating XPCOM Components

Getting Called at Startup

nsEnbedCStri ng previous;

rv = cat man- >AddCat egor yEnt ry(" xpcom st ar t up",
"WebLock",
WebLock_Contract | D,
PR _TRUE, // persist category
PR _TRUE, // replace existing
previous) ;

The unregistration, which should occur in the unregistration callback, looks like
this:

rv = cat man->Del et eCat egor yEntry("xpcom st art up",
"WebLock",
PR TRUE); // persist

A complete code listing for registering WebL ock as a startup observer follows.

#defi ne MOZI LLA_STRI CT_API
#i ncl ude "nsl Generi cFactory. h"
#i ncl ude "nsCOVPtr. h"
#i ncl ude "nsXPCOM h"
#i ncl ude "nsl Servi ceManager . h"
#i ncl ude "nsl Cat egor yManager. h"
#i ncl ude "nsl Cbserver. h"
#i ncl ude "nsEnmbedString. h"
#defi ne WebLock_CID \
{ O0x777f7150, Ox4a2b, 0x4301, \
{ Oxad, 0x10, Ox5e, Oxab, 0x25, O0xb3, 0x22, Oxaa}}
#def i ne WebLock_Contract!| D " @ougt/ webl ock"
cl ass WebLock: public nslObserver {
public:
WebLock();
virtual ~WebLock();

NS_DECL_| SUPPORTS
NS_DECL_NSI OBSERVER

I
WebLock: : WebLock()

NS_I NI T_I SUPPORTS() ;
}

WebLock: : ~WebLock()

Creating XPCOM Components

99

Tutorial: Starting WebLock

{
}

NS_I MPL_I SUPPORTS1(WebLock, nsl Qobserver);

NS_I METHCDI MP
WebLock: : Observe(nsl Supports *aSubj ect, const char *aTopic, const PRUni char

*aDat a)
{

return NS_CK;
}

static NS_METHOD WebLockRegi strati on(nsl Conponent Manager *aConpMyr,
nslFile *aPath,
const char *registrylocation,
const char *conponent Type,
const nsModul eConponent I nfo *i nf o)

nsresult rv;

nsCOVPt r <nsl Ser vi ceManager > servnan =
do_Queryl nterface((nsl Supports*)aConpMyr, &rv);
if (NS_FAILED(rv))
return rv;

nsCOVPt r <nsl Cat egor yManager > cat nan;

ser viman- >Cet Ser vi ceByContract | D(NS_CATEGORYMANAGER_CONTRACTI D,
NS_GET_I | D(nsl Cat egor yManager),
getter_AddRef s(catman));

if (NS_FAILED(rv))
return rv;

char* previous = nsnull;

rv = cat man- >AddCat egor yEnt ry(" xpcom st artup",
"WebLock",
WebLock_Contract I D,
PR_TRUE,
PR_TRUE,
&previ ous) ;

if (previous)

nsMenory: : Free(previous);

return rv;

}

stati c NS_METHOD WebLockUnr egi strati on(nsl Conponent Manager *aConpMyr,
nsl File *aPath,
const char *registrylocation,
const nsModul eConponent | nfo *i nf o)

nsresult rv;

nsCOVPt r <nsl| Ser vi ceManager > servman =
do_Queryl nterface((nsl Supports*)aConpMyr, &rv);
if (NS_FAILED(rv))
return rv;

nsCOWPt r <ns| Cat egor yManager > cat nan;
servman- >Get Ser vi ceByCont r act | D{ NS_CATEGORYMANAGER CONTRACTI D,

100 Creating XPCOM Components

Providing Access to WebLock

NS_GET_I I D(nsl Cat egor yManager),
getter_AddRef s(catman));

if (NS_FAILED(rv))
return rv;

rv = catman->Del et eCat egor yEntry("xpcom st artup”,
"WebLock",
PR_TRUE) ;

return rv;

NS_GENERI C_FACTORY_CONSTRUCTOR(WebLock)
static const nsMbdul eConponent | nfo conmponents[] =

{ "WebLock",
WebLock_ClI D,
WebLock_Contract I D,
WebLockConst ruct or,
WebLockRegi strati on,
WebLockUnr egi stration

}

b

NS_| MPL_NSGETMODULE(WebLockMbdul e, conponents)

Providing Access to WebL ock

At this point, the component will be called when XPCOM starts up. WebL ock has
already implemented the nsl Support s, nsl Fact ory, nsl Modul e, and

nsl Obser ver interfaces that handle generic component functionality including
being initialized at startup. And it speaks to the Component Manager, Service
Manager, Category Manager, and the Component Registrar to register itself
properly with XPCOM.

The next step isto expose additional functionality to Gecko applications and other
clientsto query and control the WebL ock component. For example, the user
interface needs to be able to enable and disable the web locking functionality, see
what sites are in the whitelist, and add or remove sites from that list. WebL ock
needs to provide an API, and it needs to hook into Gecko in order to implement the
actual locking functionality.

Creating XPCOM Components 101

Tutorial: Starting WebLock

The WebL ock User Interface

The WebL ock component in this tutorial uses XUL to define the additional
browser Ul in across-platform way, and XUL uses JavaScript to access and con-
trol XPCOM components, but Gecko’s pluggable Ul allows any user interface to
call into Gecko and the components you create as easily as you can from XUL.
See “XUL" on page 149 for adiscussion of how XUL interacts with JavaScript
and XPCOM.

Creating the WebLock Programming Interface

Design is one of the hardest parts of any programming problem. The question the
interface for the WebL ock component must answer is: How should WebL ock |ook
to the outside world? What, in other words, is the interaction of clients with the
WebL ock component? In this section, we enumerate the basic functionality the
component should expose and create the single interface that organizes and
provides this functionality.

Instead of starting with the implementation, devel opers use XPIDL (see“XPIDL
and Type Libraries’ on page 21 for more information about XPIDL) to define the
interface to the component: how the functionality should be organized, expressed,
and exposed to its clients.

In general, the WebL ock serviceinterface needs to include the following
functionality.

* Lock - Enable web locking so that any browser in the Gecko application is
restricted to the white list of website domains.

* Unlock - Disable web locking. This should allow any browser in the Gecko
application to browse any website regardless of the white list.

¢ AddSite - Add the current URL to the white list.
¢ RemoveSite - Remove the current URL from the white list.

¢ EnumerateSites - Allows the enumeration of all sites in the white list. Enuner -
at eSi t es might be used in the user interface to provide something like an edit-
ablelistbox of dl sitesin the white list.

102

Creating XPCOM Components

Defining the Weblock Interface in XPIDL

Even this simple outline presents some ambiguity, however. It's certainly not
enough to spell out the interface for the WebL ock component in this way. For
example, AddSi t e is supposed to add the current URL to the white list, but isthe
URL an input parameter to the method, is it the topmost web page in the Gecko
application, or isit something more random—a URL picked from global history or
that's been given context in some other way?

Asastrongly typed and implementation-agnostic language, XPIDL requires that
you be quite specific about the APIs, the list of parameters, their order, and their
types. XPIDL requiresthat you spell it al out, in other words. And it’s this
formality that makes the interfacesin XPCOM effective contracts between services
and clients.

The next section shows the interface of the WebL ock component, i WebLock, in
XPIDL. Oncetheinterface has been described in the XPIDL language, the interface
file can be used to generate the header files needed for the implementation code,
the binary type library files that let you use the interface of the WebL ock
component from JavaScript, and even javadoc style HTML documentation.

Defining the Weblock Interface in XPIDL

Most interfaces in the XPCOM world are described in XPIDL. The XPIDL filefor
thei WebLock interface can be used to generate the C++ header file, which you'll
need to implement the interface in the component and also atype library that makes
the component accessible from JavaScript or other interpreted languages. In
Mozilla, JavaScript is the bridge between components and the X UL -based user
interface.

The XPIDL Syntax

The XPIDL syntax isamix of C++ and Java, and of courseit’s very much like the
OMG IDL upon whichitisclosely based. The XPIDL fori WebLock appearsin
Figure 3.

Creating XPCOM Components 103

Tutorial: Starting WebLock

#i ncl ude "nsl Supports.idl"

i nterface nsl Si npl eEnuner at or ;

[scriptabl e, uuid(ea54eee4-9548-4h63-hb94d-c519ffc91d09)]
interface i Webl ock : nsl Supports

{
voi d | ock();

voi d unl ock();

/1 assune strings are UTF-8

voi d addSite(in string url);

voi d renmoveSite(in string url);
attribute nsl Si npl eEnuner ator sites;

Figure 3. iWebL ock

Thefirst line includes the file nsl Supports.idl, which definesthe nsl Support s
interface from which all XPCOM interfaces must derive, and makes it possible for
thei WebLock interface to subclass that base interface.

#i ncl ude "nsl Supports.idl"
The next line of the XPIDL is aforward declaration of the interface

nsl Si npl eEnunrer at or . Again, thisissimilar to the forward declare in C++
(except that C++ does not have thei nt er f ace keyword seen here).

i nterface nsl Si npl eEnuner at or;

See the XPCOM referencesin Appendix C for more information about the XPIDL
syntax.

Scriptable Interfaces

Thethidlinein Figure 3ismore complex. Thefirst thing it saysisthat i WebLock
will be scriptable.

[scriptabl e, uuid(eab54eeed-9548-4b63-b94d-c519ffc91d09)]

Therest of the line provides a UUID for thisinterface. Recall that every interface
has a unique number that is assigned to it. In the case of interfaces, the identifier is
an I1D. In the case of the components, which also require unique identifiers, the
identifier isthe CID.

104

Creating XPCOM Components

Defining the Weblock Interface in XPIDL

Subclassing nsl Supports

The next line in Figure 3 names the interface and defines its base interface. i V-
bl ock derivesfrom nslI Supports. XPIDL has no way to define multiple inherit-
ance-something that all scriptable objects must deal with.

interface i Webl ock : nsl Supports

The Web Locking Interface

The body of the block (the stuff between the curly braces) defines the methods and
attributes of our interface. There are basically two functional sets on this interface.
The first section of the interface controls whether or not WebL ock checksto seeif
aweb page can be loaded. If locked, WebL ock will prevent sites not on the white
list from loading.

voi d | ock();

voi d unl ock();
This interface does not enforce any policy with respect to how the user enables or
disables this feature. This allows maximum flexibility in the implementation. Any
place in the application can acquire this interface via the Service Manager and call
unl ock or | ock. For example, the user interface may bring up a dialog asking the
user for a password before calling unl ock. Another area of code, such asa“Profile
Manager” that starts up and lets users choose which profileto use, may uncondition-
ally call unl ock on such a component when switching a profile.

The next set of functionality manages the white list where acceptable domains are
stored:

void addSite(in string url);
voi d renmoveSite(in string url);
attribute nsl Sinmpl eEnunerator sites;

Operationsin this set—add, r enmove, and enuner at e—will be called from auser
interface that manages the white list and adds the current website to the white list.
Thereisno policy applied to what sites get added or removed to thislist, or who
can remove asite.

The most interesting method definition is the enumerator. First of al, it does not
look like a method at all:

readonly attribute nslSinpl eEnunerator sites;

Creating XPCOM Components 105

Tutorial: Starting WebLock

Thisline defines an attribute in the interface. In C++, thisis considered a public
variable and “compiled” into a Get method (e.g., get Si t es). If an attribute is not
marked r eadonl y, then both Get and Set methods are generated.

The getter created by this attribute returnsans| Si npl eEnuner at or interface
pointer. This interface allows you to pass alist of elements between interfaces. It
has two methods. hasMor eEl enent s() and get Next () .

[scriptable, uuid(D1899240-F9D2-11D2- BDD6- 000064657374)]
interface nsl Sinpl eEnunerator : nsl Supports {
/**
* Called to determ ne whether or not the enunerator has
* any elenments that can be returned via getNext(). This nethod
* is generally used to determ ne whether or not to initiate or
* continue iteration over the enunerator, though it can be
* called without subsequent getNext() calls. Does not affect
* internal state of enunerator.

* @ee get Next()

* @eturn PR TRUE if there are remmining el enents

* in the enunerator.

* PR FALSE if there are no nore elenents in the enunerator.
*/

bool ean hasMor eEl enent s();

* Called to retrieve the next elenent in the enunerator. The "next"
* element is the first element upon the first call. Mist be

* pre-ceeded by a call to hasMoreEl enents() which returns PR_TRUE.
* This method is generally called within a loop to iterate over

* the elenents in the enunerator.

* @ee hasMoreEl enent s()
* @eturn NS OK if the call succeeded in returning a non-null

* val ue through the out paraneter.

* NS_ERRCR FAILURE if there are no nore el enents
* to enunerate.

* @eturn the next element in the enuneration.

*/

nsl Supports get Next();
s

106

Creating XPCOM Components

Implementing WebLock

I mplementing WebLock

Once you have defined the interfaces that the component will implement, you can
begin to write the implementation code that will actually carry out the web locking
functionality.

The WebL ock component implements three interfaces:

* nsl Supports
* nsl Gobserver
* jWebLock

nsl Suppor t s isthe base interface that all XPCOM objects must implement. The
nsl Obser ver interfaceisfor listening to various events that Gecko generates.
Andthei WebLock interfaceis the interface that actually controls the web locking
functionality. The first two have already been implemented as part of the generic
module code. Recall from the Tools chapter that implementing these basic
interfaces can be easy and straightforward if you use the macros and other utilities
that XPCOM provides.

Declaration M acros

The class declaration for the WebLock class that implements these three interfaces
isasfollows:

cl ass WebLock: public nslObserver, public i WbLock
{
publi c:
WebLock() ;
virtual ~WebLock();

NS_DECL_| SUPPORTS
NS_DECL_NS| OBSERVER
NS_DECL_| WEBLOCK

Creating XPCOM Components 107

Tutorial: Starting WebLock

Note that we derive from the nsl Cbser ver interface aswell asthei Webl ock
class. We do not need to explicitly derive from nsl Support s as both of these two
other interfaces are already subclasses of ns| Supports:

nsiSupports

=

IWeblock nslObserver

WebLock

Figure 4. Interface Hierarchy for WebL ock

The body of the class declaration uses declaration macros that are generated from
an XPIDL interfacefile. Every header generated from an XPIDL file hasasimilar
macro that defines all the methods in that interface. This makes changes to the
interface when designing a bit ssimpler, as you do not have to modify any class
declarations.

There are times, of course, when you cannot use these macros—as when two
interfaces share the same method signatures. In these cases you have to manually
declare the methods in your class. But in practice, manually declaring class
methodsin XPCOM is the exception and not the rule. The NS_DECL_ | WEBLOCK
declaration macro expandsinto the following:

108

Creating XPCOM Components

Implementing WebLock

NS_| METHOD Lock(voi d);

NS_| METHOD Unl ock(voi d);

NS_| METHOD AddSit e(const char *url);

NS_| METHOD RenpveSite(const char *url);

NS_| METHOD Get Sit es(nsl Si npl eEnunerator * *aSites);
NS_| METHOD Get Sit es(nsl Si npl eEnunerator * *aSites);
NS_| METHOD Set Sit es(nsl Si npl eEnunerator *aSites);

Representing Return Valuesin XPCOM

The code sample above isthe C++ version of thei WebLock interface methods.
Thereturn result of XPCOM methods generated from XPIDL is always of the type
nsresul t,and the small macro used in these expansions, NS_| METHOD,
actually represents that return type. nsr esul t isreturned even when in XPIDL
you specify that the method return avoi d. If you require the return result to be
something else, the methods are not truly XPCOM methods. If you really want to
change the return result type you can use a specia flag in your XPIDL that denotes
this (see the XPIDL reference at http://www.mozilla.org/scriptable/xpidl/).
However, we suggest that you simply add an out parameter to the method.

XPIDL Code Generation

The XPIDL compiler also generates a stub implementation of theinterfacein a
commented section of the generated header file, in which each method returns
NS_ERROR_NOT_| MPLEMENTED. If you copy the stub implementation from the
header file into the source, then rename the dummy classname (“_ MYCLASS ") to
theWebLock class name already defined, you should be able to compile the source
successfully.

Getting the WebL ock Service from a Client

At this paint, you can install the XPCOM component and have other systems useiit.
The component doesn’t do anything useful, of course, but you have written enough
of the code to have it recognized and accessed as a component in XPCOM. The
code snippet below illustrates how to get the WebL ock service when the
component is present:

Creating XPCOM Components 109

Tutorial: Starting WebLock

nsCOWPt r <nsl Ser vi ceManager > ser vian;
nsresult rv = NS _Cet Servi ceManager (getter_AddRef s(servMan));
if (NS_FAILED(rv))
{
printf("ERROR XPCOM error [%].\n", rv);
return -1;

}
nsCOVPt r <i WebLock> webl ock;

rv = servhMan- >Get Servi ceByContract | D(" @ougt/ webl ock",
NS _GET_|I | D(i Webl ock), getter_AddRef s(webl ock));

if (NS_FAILED(rv))

{
printf("ERROR XPCOM obt ai ni ng service [%].\n", rv);
return -1,

Implementing the iWebL ock Interface

Once the interface is defined, you can focus on implementing the web lock startup
functionality itself. The WebL ock component starts automatically when XPCOM
isstarted up becauseit’s been registered as a category in XPCOM. When WebL ock
iscalled, one of thefirst thingsit wantsto doisread in afilethat lists the URL s that
the browser is allowed to load. Thisfile can exist anywhere on thelocal system, but
we've placed it next to the application to keep things ssmple. The first step in this
implementation phase, then, is to create the functionality that accesses this

WebL ock white list and uses its data to determine which domains are alowed and
which are to be blocked. For this, we need to use the file interfaces available in
XPCOM.

File Interfaces. Files and directory are abstracted and encapsul ated by interfaces.
There are afew reasonsfor not using stringsto represent file locations, but the most
important oneisthat not al file systems can be represented by a series of characters
separated by a dash. On the Macintosh platform, for example, files are represented
as a triplet—two numbers and one string—so using a string on the Macintosh does
not adequately identify files on that operating system.

110

Creating XPCOM Components

Implementing WebLock

nsl Fi | e, thefileinterfacein XPCOM, provides most of the functionally that file
handling requires. That interface includes members representing the file name, file

attributes, permissions, existence, and others. A related interface called
nsl Local Fi | e provides access to operations specific to local files, but the
nsl Fi | e functionality is adequate for the WebL ock component.

nslLocalFile

I

nslFile

1

nsLocalFile

Figure5. FileInterface Hierarchy

Remote Filesand nslFile

It is not inconceivable for remote files to be represented by thens| Fi | e inter-
face. Someone could write an nsl Fi | e implementation that represented FTP
files on some server. The existing code would need to change very little for a
WebL ock implementation to take advantage of files that do not actually exists
on disk. Thiskind of implementation does not exist, but this expandability
shows some of the flexibility that interface-based programming can provide.

Appendix B, The XPCOM API Reference, contains detailed information on
nsl Fi | e and other XPCOM interfaces.

Creating XPCOM Components

11

Tutorial: Starting WebLock

TheDirectory Service

Thefile interfaces are most useful when you can use them to find and manipulate
filesthat are relative to the application. The Directory Service provides directory
and filelocationsin a cross platform uniform way to make this easier. This service,
availableasnsl! Di r ect or ySer vi ce, stores the location of various common
system locations, such as the the directory containing the running process, the
user’s HOME directory, and others. It can be expanded so that applications and
components can define and store their own special |ocations—an application plugin
directory, for example, preference files and/or directories, or other application
specific paths. For example, to expose the location of the “whitelist” file
containing all of the URL’s that are safe for WebL ock, you can add its location to
thensDi r ect or ySer vi ce, which clients can then query for this infomation.

The Directory Service implementsthe ns| Properti es interface, which alows
youto Get (), Set (), and Undef i ne() interface pointers. In the case of
WebL ock, these interface pointerswill bens! Fi | e objects.

12

Creating XPCOM Components

Implementing WebLock

[scriptabl e, uuid(78650582-4e93-4b60-8e85-26ebd3ebl4ca)]
interface nslProperties : nsl Supports

{
/**
* Cets a property with a given nane.
*
* @eturn NS_ERROR FAILURE if a property with that
* nane doesn’t exist.
* @eturn NS_ERROR _NO | NTERFACE if the
* found property fails to Q to the
* given iid.
*/
void get(in string prop, in nsllDRef iid,
[iid_is(iid),retval] out nsQ Result result);
/**
* Sets a property with a given name to a given val ue.
*/
void set(in string prop, in nslSupports val ue);
/**
* Returns true if the property with the given nane exists.
*/
bool ean has(in string prop);
/**
* Undefines a property.
* @eturn NS_ERROR FAILURE if a property with that name doesn’t
* already exist.
*/
voi d undefine(in string prop);
/**
* Returns an array of the keys.
*/
voi d get Keys(out PRU nt32 count, [array, size_is(count), retval]
out string keys);
IE

Creating XPCOM Components 113

Tutorial: Starting WebLock

nsIProperties nsiDirectoryService

nsDirectoryService|

Figure 6. Directory Service Hierarchy

There are two steps involved to find directories or files with the Directory Service
(nsl Di rect orySer vi ce). You must know the string key (or property) that refers
to the location you are interested in, which is published in the file
nsDirectoryServiceDefs.h that comes with the Gecko SDK (for alisting of these
locations, see Appendix B, the XPCOM API Reference). The string key for the
directory containing the application executable is
NS_XPCOM_CURRENT_PROCESS DI R. Given thiskey, you can acquire the
directory service, call Get (), and pass the key. In the example below, t heFi | e
will point to the directory that contains the executable.

nsCOWPt r <nsl Ser vi ceManager > ser vian;
nsresult rv = NS _Cet Servi ceManager (getter_AddRef s(servMan));
if (NS_FAILED(rv)) return -1;

nsCOWPt r <nsl| Properties> directoryService;

rv = servMan->Get Servi ceByContract | D(
NS_DI RECTORY_SERVI CE_CONTRACTI D,
NS_GET_| | D(nsl Properties),

getter_AddRef s(directoryService));

if (NS_FAILED(rv)) return -1;

nsCOWPt r<nsl Fi | e> t heFi |l e;

rv = directoryService->CGet (NS_XPCOM CURRENT_PROCESS_DI R,
NS GET_IID(nslFile),
getter_AddRefs(theFile));

if (NS_FAILED(rv)) return -1;

114

Creating XPCOM Components

Implementing WebLock

Most of the useful functionality is exposed by thens| Properti es interface, but
the directory service also implementsns| Di r ect or ySer vi ce. Thisinterface
allows you to extend and override ns| Fi | e objects registered with the directory
service. There are currently two waysto add afile location to the directory service:
directly and using the delayed method. The direct method isto add anew nsl Fi | e
object using thens| Proper ti es interface, in which case you passthens| Fi |l e
object asannsl Support s tothe Set () method of thensl Properti es interface.

In the delayed method, you register to be a callback that can provide an nsi Fi | e.
To do this, you must get the implementation like we did above. When you haveit,
Queryl nterface forthensl Di rect orySer vi ce interface. In thisinterface,
there is afunction which allows you to register an

nsl Di rect orySer vi ceProvi der interface. The interface callback looks like
this:

[scriptabl e, uuid(bbf8cab0-d43a-11d3-8cc2-00609792278c)]
interface nslDirectoryServiceProvider: nslSupports

{
/

*

getFile

Directory Service calls this when it gets the first request for
a prop or on every request if the prop is not persistent.

@ar am pr op The synbolic nane of the file.

@ar am per si st ent TRUE - The returned file will be cached by Directory
Servi ce. Subsequent requests for this prop will
bypass the provider and use the cache.

FALSE - The provider will be asked for this prop
each time it is requested.

* ok ok k% ok B ok %k ok ok ok ok

@eturn The file represented by the property.

*

*
/
nslFile getFile(in string prop, out PRBool persistent);

M odifying Pathswith nslFile

The directory servicereturnsan nsi Fi | e object, but that object points to the
application directory and not the fileitself. To modify thisns| Fi | e sothat it points
to thefile, you must call the Append method of thens! Fi | e. Append addsthe
input string to the path aready specified inthensi Fi | e. On Unix, for example,
caling Append(“b”) onannsl Fi | e modifiesthat ns| Fi | e representing /u/
home/dougt/a to point to /u/home/dougt/a/b. The next operation onthensi Fi | e

Creating XPCOM Components 115

Tutorial: Starting WebLock

returns results associated with the “b” path. If “a” wasn't adirectory, further
operations would fail, even if the initial Append was successful. Thisiswhy
Append is considered a string operation.

The WebL ock component manipulates a file named weblock.txt. The following
snippet adjuststhet heFi | e object representing that file:

nsEnmbedCString fil eName("webl ock.txt");
appDi r - >AppendNat i ve(fil eNare) ;

Manipulating Fileswith nslFile

Onceyou havean nsl Fi | e object pointing to the file that you' reinterested in, you
can open it and read its contents into memory. There are many waysto do this: You
can use Standard ANSI File I/O, or NSPR (see the sidebar “The Netscape Portable
Runtime Library” below for a brief description of NSPR), or you can use the
networking APIsthat Gecko provides.

The Netscape Portable Runtime Library

The Netscape Portable Runtime Library (NSPR) is a platform-independent
library that sits below XPCOM. As alayer of abstraction above the operating
system, the NSPR allows Gecko applications to be platform independent by pro-
viding the following system-level facilities:

e Threads

* Thread synchronization
* Fileand network 1/O

e Timing and intervals

* Memory management

e Shared library linking

The NSPR isincluded in the Gecko SDK.

To keep things as simple as possible, we'll read the file into memory using standard
ANSI filel/O, but for examples and information about how to use necko, the Gecko
networking libraries, see http://www.mozlla.org/projects/netlib/.

116

Creating XPCOM Components

Implementing WebLock

Using nsl L ocalFile for Reading Data

Annsl Fi | e object returned from the directory service may also implement the
nsl Local Fi | e interface, which has a method that will return aFl LE pointer that
canbeused infread() . Toimplement the actual read, you need to allocate a
buffer the length of the file, use the nsl Local Fi | e interface pointer to obtain a
FI LE *, usethisresult with f r ead, and close the file pointer.

The following code loads the contents of the file referenced by the nsi Fi | e object
t heFi | e into the buffer buf :

Creating XPCOM Components 117

Tutorial: Starting WebLock

nsCOWPt r <nsl Local Fil e> |l ocal File = do_Querylnterface(theFile);
if (!localFile) return -1;

PRBool exi sts;
rv = theFil e- >Exi st s(&exi sts);
if (NS_FAILED(rv)) return -1;

char *buf = NULL;

if (exists)
{
/]l determne file size:
PRU nt 32 fs, nunread;
PRI nt64 fileSize;
rv = theFile->GetFil eSi ze(&f il eSi ze);
if (NS_FAILED(rv)) return -1;

/] Converting 64 bit value to unsigned int
LL_L2Ul (fs, fileSize);

FI LE* openFil e;
rv = |l ocal Fil e->0penANSI Fi | eDesc("rw', &openFile);
if (NS_FAILED(rv)) return -1;

char *buf = (char *)malloc((fs+l) * sizeof(char));
if (! bug) return -1;

nunr ead = fread(buf, sizeof(char), fs, openFile);

if (nunread != fs)
;11 do sonet hing useful.

/1

if (buf)
free(buf);

Thefirst line of thecode callsQuer yl nt er f ace ont heFi | e, and if that succeeds
assigns the new interface pointer to | ocal Fi | e. If theQueryl nterface cal
fails, | ocal Fi | e will have avalue of NULL.

Creating XPCOM Components

Implementing WebLock

Note that the out parameter of the method Get Fi | eSi ze isa 64 bit
integer. Thetype of thisvariableis PRI nt 64, but thistypeis not
represented as a primitive on al platforms. On some platforms,

PRI nt 64 isastruct with two fields—a high and alow 32 bit integer. So
operations on this type must use special macros that do the right thing
on each platform. On windows or Linux, for example, it is possible to
multiply a PRI nt 64 by along like this:

PRInt64 x =1, y = 2;
y =X * 2;

However, this same snippet will not compile on a platform like
Macintosh OS 9, where you need to use macros to perform the
calculation:

PRI nt64 x, y, two,
LL_I2L(x, 1);
LL_I2L(y, 2);
LL_I2L(two, 2);
LL_MIL(y, x, two);

A full listing of NSPR’s| ong | ong support can be found at http://
www.moZzilla.org/projects/nspr.

The WebL ock component doesn’t have to deal with filesthat are longer
than 2/32 bytes. Truncating this value to whatever can fit into a 32 hit
unsigned integer may not work for every application, but in this case it
doesn’t really matter.

Processing the White List Data

There are various ways to process the file data itself. The file weblock.txt consists
of URL tokens separated by return characters, which makes them easy to read into
adata structure.

Creating XPCOM Components 119

Tutorial: Starting WebLock

The white list file can be read in as soon as the component starts up (i.e., as

WebL ock intercepts the startup notification in the Obser ve method of the

nsl Obser ver interface that we implement). Since we have only registered to
receive a notification when XPCOM starts up, it's a safe assumption that Cbser ve
will only called during the startup event, so we can read the file datain the callback.

After you' ve read the data into memory, you need to storeit in some way to make
data access quick and efficient.

URL Checking

The way in which URL checking isimplemented in the WebL ock component

isnot at al optimal. The WebL ock component manages a simple linked list of
URL strings. A linear search through the data in the white list may not be terri-
bly bad if the number of URLsis under a couple of dozen, but it decays as the

list grows. There's also alarge bottleneck in the network request. URL datais

accessed as in the diagram below:

mRootURLNode
‘ urlString ‘ .ﬂ'_\“ urlString ‘ cﬂﬂ

URL URL

You might construct hash values for each of the URL strings instead, or add
them to some kind of database. But we |eave optimizations and real-world per-
formance for web locking to the reader.

120

Creating XPCOM Components

iWebLock Method by Method

iIVWebLock Method by Method

The implementation of thei Wbl ock interfaceis straightforward. WebL ock is
designed so that the user interface notifies this service when we should go into lock
mode. During thistime, any new URL request that isnot in our list of “good” URLS
will be denied. Through scriptable accessto thei WebLock interface, the user
interface can also add, remove, and enumerate the list of URLs that it knows about.

L ock and Unlock

Thel ock and unl ock methods simply set a Boolean representing state in the
object. This Boolean value will be used later to determine if we should be denying
URL requests:

/* void lock (); */
NS_| METHODI MP WebLock: : Lock()
{

mLocked = PR TRUE;
return NS OK;

}

/* void unlock (); */
NS_| METHODI MP WebLock: : Unl ock()

{

m_.ocked = PR _FALSE;
return NS_CK;
}
AddSite

For AddSi t e, we add anew node to our linked list. The link list nodes contain a
char * which points to the string URL that we care about and, of course, a pointer
to the next element in thelist.

Creating XPCOM Components 121

Tutorial: Starting WebLock

nsMemory for Cross-component Boundaries

WebL ock maintains ownership of all the memory it aloates, so you can use just
about any allocator that you want for WebL ock, but thisis not aways the case.
In other places, where allocated buffers cross-interface boundaries, you must
ensure that the correct allocator is used—namely ns Menor y—so that the allo-
cators can match the alocation with the deall ocation.

Suppose you call mal | oc from object A and pass this buffer to another object
B, for example. But if object B is using a special allocator that does garbage col-
lection, then when object B deletes a buffer allocated by object A's alocator, the
results are unpredictable: probably an assertion will be raised, possibly amem-
ory leak, or acrash. ThensMenory classisawrapper around thens| Mem
ory interface, whose only implementation is part of XPCOM. When you use
nsMenor y, you are guaranteed to be using this same memory allocator in al
cases, and this avoids the problem described here.

RemoveSite

RenoveSi t e deletes anode from the linked list:

122

Creating XPCOM Components

iWebLock Method by Method

I/l a sinple link list.
struct url Node
{
char* url String;
struct url Node* next;

}s

/* void addSite (in string url); */
NS_| METHODI MP WebLock: : AddSi t e(const char *url)
{

/'l we don't special-case duplicates here

url Node* node = (url Node*) mall oc(sizeof (url Node));

node->url String = strdup(url);
node- >next = nRoot URLNode;
mRoot URLNode = node;

return NS_ERROR NOT_| MPLEMENTED;
}

/* void renpoveSite (in string url); */
NS_| METHODI MP WebLock: : RenbveSi t e(const char *url)
{

/1 find our entry.

url Node* node = mRoot URLNode;

url Node* prev = nsnull;

while (node) // test this!

{
if (strcnp(node->url String, url) == 0)
{
free(node->url String);
if (prev)
prev->next = node- >next;
free(node);
return NS CK;
}
prev = node;
node = node- >next;
}

return NS_ERROR_FAI LURE;

Creating XPCOM Components

123

Tutorial: Starting WebLock

SetSites

The purpose of Set Si t es isto allow clientsto pass an enumeration, or set, of URL
strings to add to the white list of URLS. Set Si t es uses an

nsl Si npl eEnurner at or and shows how primitive data can be passed as an

nsl Support object. Thensl Si npl eEnuner at or interface is shown in the
section “The Web Locking Interface” on page 105.

The first method returns a Boolean if there are more elements in the set. Internally,
the abject knows the number of elementsit hasin its enumeration, and every time a
client calls get Next , it decrements a counter—or adjusts a pointer to the next
element. When the counter goes to zero or the pointer pointsto a non-element,
hasMor eEl enent s will return false.

Thereisno way to reset annsl Si npl eEnuner at or . For example, you can’t re-
enumerate the set. If you need random access to the elementsin a

nsl Si npl eEnuner at or, you can read them from the ns| Si npl eEnuner at or,
store them in an array, and access them there. The get Next method returns a
nsl| Suppor t s interface pointer.

When you want to pass primitive data type like numbers, strings, a character, voi d
*, and others, the solution isto use nsl SupportsPrimitives, which is a set of
interfaces that wraps the primitive data types and derives from nsl Supports.
This allows types like the strings that represent URLs in the WebL ock component
to be passed though methods that take an ns1 Suppor t s interface pointer. This
becomes clear when when you see the implementation of Set Si t es:

124

Creating XPCOM Components

iWebLock Method by Method

NS_| METHODI MP WebLock: : Set Si t es(nsl Si npl eEnunerator * aSites)
{
PRBool nore = PR_TRUE;
while (nore) {
nsCOWPt r <nsl| Support s> supports;
aSi t es- >Cet Next (gett er _AddRef s(supports));

nsCOWPt r <nsl| Support sCStri ng> supportsString =
do_Queryl nterface(supports);

if (supportsString) {
nsEnbedCString url;
supportsString->CGet Data(url);
AddSite(url.get());

}
aSi t es- >HasMor eEl enent s(&or e) ;
}
return NS_CX;
}
GetNext

Get Next iscaled withthensCOWPt r of annsl Support sCString. nsCOVPtrs
are nice because they do whatever Quer yI nt er f ace calls are necessary under the
hood. For example, we know that the Get Next method takes an nsl Support s
object, but we may not be sure whether the return result supports the interface we
want, ns| Support sCSt ri ng. But after Get Next returns, the nsCOVPt r code
takes the out parameter from Get Next and triesto Quer yl nt er f ace ittothe
nsCOVPt r 'stype. In this case, if the out parameter of Get Dat a does not return
something that isQuer yl nt er f ace’ableto an nsl Suppor t sCSt ri ng, the
variable will be set to null. Once you know that you have an

nsl Support sCSt ri ng, you can grab the data from the primitive supports
interface.

To get something you can passinto the AddSi t e method, you need to convert from
annsEnbedCSt ri ngtoaconst char*. To do this, you can take advantage of the
nsEnbedCSt ri ng described in “ String Classes in XPCOM” on page 84.

Creating XPCOM Components 125

Tutorial: Starting WebLock

GetSites

The implementation of Get Si t es ismore involved. You must construct an
implementation of ns1 Si npl eEnuner at or and return it when Get Si t es is
called. The class needs to walk the list of ur | Node’sfor every call to Get Next , SO
it makes sense for the constructor itself to take an ur | Node:

cl ass myEnunmerator : public nslSinpl eEnuner at or
{
publi c:

NS_DECL_| SUPPORTS

NS_DECL_NSI S| MPLEENUVERATOR

nmyEnuner at or (ur | Node* node) { nmNode = node; }
virtual ~myEnunerator(void) {}

pr ot ect ed:

ur | Node* niNode;

nsCOWPt r <nsl| Conponent Manager > mConpMr ;
}s

The nyEnuner at or classisgoing to implement thens! Support s interface and
alsonsl Si npl eEnuner at or . The only state that it needs to maintain isthe current
URL node—the one that will be return on the next call to Get Next . Thereisalso
annsCOWVPt r to the nsl Conponent Manager , which isused in every call to

Get Next so that you can create nsl Suppor t sCSt ri ng objects and cache the
interface pointer as an optimization.

HasM or eElements

HasMor eEl enment s issimple. All you need to do is make sure that mNode isn't
null:

126

Creating XPCOM Components

iWebLock Method by Method

NS_| METHODI MP
myEnuner at or : : HasMor eEl enent s(PRBool * aResul t)
{
if (!aResult)
return NS_ERROR _NULL_PO NTER;

if (!nmNode) {
*aResult = PR_FALSE;
return NS_CK;

}

*aResult = PR _TRUE;
return NS _OK;

Get Next needsto create an nsl Support sCStri ng so that you can pass the URL
string out through the nsl Supports parameter. You must also move mNode to point
tothe next ur | Node.

Creating XPCOM Components 127

Tutorial: Starting WebLock

NS_I METHODI MP
myEnuner at or : : Get Next (nsl Supports** aResul t)

{
if (! aResult)
return NS_ERROR NULL_PO NTER;

*aResult = nsnull;

if (!mNode)
return NS_ERROR FAI LURE;

if (!mCompMyr) {
NS_GCet Conponent Manager (gett er _AddRef s(nConpMyr)) ;
if (!nCompMr)
return NS_ERROR_UNEXPECTED;

nsl| SupportsCString* stringSupports;
mConmpMyr - >Cr eat el nst ance(kSupport sCStri ngCl D,
nsnul |,
NS _GET_I | D(nsl SupportsCString),
(voi d**) &stri ngSupports);
if (!stringSupports)
return NS_ERROR_UNEXPECTED;

nsEnmbedCString str(nmNode->url String);
stringSupports->Set Dat a(str);

*aResult = stringSupports; // addref’ed above.
mNode = niNode- >next ;

return NS_CK;

In the actual Get Si t es call, all you haveto do is create an instance of
nyEnuner at or and return it.

128 Creating XPCOM Components

iWebLock Method by Method

Before, we created a class and registered it with the component manager. When a
client outside of the code wanted to acquire the implementation of an interface, the
actual object creation was hidden in the XPCOM code. Here, however, you
instantiate your own implementation of ansl Si npl eEnuner ator. Thisisa
simple thing to do, but it requires that you pay specia attention to the NS_ADDREF.

NS_| METHODI MP WebLock: : Get Si t es(nsl Si npl eEnunerator * *aSites)
{

nmyEnuner at or* enuner at or = new nyEnuner at or (mRoot URLNode) ;
if(!enunmerator) return NS_ERROR OUT_OF MEMORY;

NS_ADDREF(*aSites = enunerator);
return NS OK;

AddRef, Releasing, and Deleting Objects

Never forget to AddRef an XPCOM object which you instantiate vianew. All
code that uses or is based on XPCOM requires objects that are aliveto have a
reference count of at least one. Ignoring this fact can cause real trouble.

A related warning is that you should never delete an XPCOM object with
del et e. It can take hours to find the source of crashes that are caused when
one part of a system is deleting XPCOM objects instead of releasing them.

Note that in the implementation above, nyEnuner at or may becomeinvalid if
another thread concurrently accesses the linked list. The enumeration represents
only one way to walk the linked listed of URL strings. If you require that the
enumeration be a snapshot of thelist of URL strings, then you have to rework this
implementation so that the enumerator owns a copy of the linked list.

At component shutdown, you also need to write the linked list to disk and release
the memory occupied by the linked list. We leave these as exercises for the reader.

Creating XPCOM Components 129

Tutorial: Starting WebLock

130 Creating XPCOM Components

CHAPTER 7

Tutorial:
Finishing the Component

At this point you have created most of the infrastructure of the component. The
component will be recognized by XPCOM and registered with the Category
Manager so that it starts up when XPCOM initiaizes. When the component starts
up, it populates alist of URLsread in from afile stored next to the gecko binary on
the local system.

Using Frozen Interfaces

The core functionality of blocking sitesis still missing, however. The interfaces
needed to block certain URLs from loading are not frozen, and there is still some
debate about how exactly this functionality should be exposed to embedders and
component developers, so the APIs are not ready to be published. This putsyou in
the same situation as many developers using Mozilla—you want to use some
specific functionality, but the interfaces seem to change on adaily basis.

All of the Mozilla source code is publicly available, and interfaces can be used
easily enough. Grab the right headers, use the Component or Service Manager to
access the interface you want, and the XPCOM object(s) that implement that

Creating XPCOM Components 131

Tutorial: Finishing the Component

interface will do your bidding. With this huge amount of flexibility, however, you
lose compatibility. If you use ‘stuff’ that isn’t frozen, that stuff is subject to change
in future versions of Gecko.

If you want to be protected against changes in Gecko, you must only use interfaces
and APIsthat are clearly marked as FROZEN. The marking is made in the
comments above the interface declaration. For example, take alook at the
nsl Servi ceManager :
/**
* The nsl Servi ceManager nmanager interface provides a nmeans to obtain
* global services in an application. The service nanager depends

* on the repository to find and instantiate factories to obtain
* services.

* Users of the service manager nust first obtain a pointer to the

* gl obal service manager by calling NS_Get Servi ceManager. After that,
* they can request specific services by calling GetService.

* When they are finished they can NS_RELEASE() the service as usual.

* A user of a service may keep references to particular services
* indefinitely and only nust call Rel ease when it shuts down.

* @t atus FROZEN

These frozen interfaces and functions are part of the Gecko SDK. The rule of
thumb is that interfaces outside of the SDK are considered “ experimental” or
unfrozen. Seethe following sidebar for information about how frozen and unfrozen
interfaces can affect your component development, and for technical details about
how interface changes beneath your code can cause havoc.

132

Creating XPCOM Components

Using Frozen Interfaces

The Danger of Using Unfrozen I nterfaces

Suppose that you need to use the interface ns| Foo that isn’t frozen. You build
your component using this interface, and it works great with the version of
Gecko that you have tested against. However, some point in the future, the

nsl Foo interface requires amajor change, and methods are reordered, some
are added, others are removed. Moreover, since this interface was never sup-
posed to be used by clients other than Gecko or Mozilla, the maintainers of the
interface don’t know that it's being used, and don’t change the I1D of the inter-
face. When your component runsin aversion of Gecko inwhich thisinterfaceis
updated, your method calls will be routed through a different v-table than the
one the component expected, most likely resulting in a crash.

Below, the component is compiled against aversion of thens| Foo interface
that has three methods. The component calls the method Test A and passes an
integer, 10. Thisworks fine in any Gecko installation where a contract guaran-
tees that the interface that was compiled against has the same signature. How-
ever, when this same component is used in a Gecko installation where this
interface has changed, the method Test A does not exist inthensl Foo inter-
face, where thefirst entry inthe v-table | sPri me() . When this method call is
made, the code execution treats the | sPr i ne method as Test A. Needless to
say, thisisabad thing. Furthermore, thereis no way easy way to realize this
error at runtime.

nsiFoo

Before Interface Change

+TestA(aValue : int)
+IsPrime()
+ChewGum()

nslFoo* foo;
foo->TestA(10)

nsiFoo

After Interface Change

+IsPrime()
+lsComposite()

Creating XPCOM Components 133

Tutorial: Finishing the Component

Gecko devel opers could change the interface’s |1D, and some do. This can pre-

vent many errors like this. But unfrozen interfaces are not supported in any for-
mal way, and relying upon adifferent 11D for any changein theinterfaceisnot a
good idea either.

When using frozen interfaces, you are guaranteed compatibility with future ver-
sions of Gecko. The only trouble occurs when the compiler itself changesits v-
table layout, which can happen when the compiler changesits ABI. For exam-
ple, in 2002 the GNU Compiler Collection (GCC), version 3.2 changed the C++
ABI, and this caused problems between libraries compiled with GCC 3.2 and
applications compiled with an earlier version and vice versa.

Before attempting to use unfrozen interfaces, you should contact the developers
who are responsible for the code you' re trying to use (i.e., module owners) and ask
them how best to do what you are trying to do. Be as precise you possibly can.
They may be able to suggest a supported alternative, or they may be able to notify
you about pending changes. A complete listing of module owners can be found at
http: //mww.mozlla.org/owner s.html.

The interface that we need for this project is something called

nsl Cont ent Pol i cy. Thisinterfaceis currently under review. An interface
reaches this state when a group of module owners and peers are actively engaged in
discussion about how best to expose it. Usually there are only minor changes to
interfaces marked with such atag. Even with interfaces marked “under review,”
however, it's still agood ideato contact the module owners responsible for the
interfaces you are interested in using.

Copying Interfacesinto Your Build Environment

To get and implement interfaces that are not part of Gecko in your component,
simply create anew directory in the Gecko SDK named “unfrozen”. Copy the
headers and IDL files that you need from the mozlla/content/base/public source
directory of the Gecko build into this new directory. (For WebL ock, all you need
are the headers for nsl ContentPolicy and the nslContentPolicy.idl.) Then, using the
same steps you used to create the Weblock.h, create a header from this IDL file
using the xpidl compiler. Once you have these interface and header files, you can
modify the WebLock classto implement thensl Cont ent Pol i cy interface. The
Webl ock classwill then support four interfaces: nsl Support s, nsl Coser ver,
nsl Cont ent Pol i cy, andi Wbl ock.

134

Creating XPCOM Components

Using Frozen Interfaces

nsiSupports nslObserver nsiContentPolicy iWeblock

-sites : nsISimpleEnumerator

+Querylnterface() +observe() +shouldLoad() +lock()
+AddRef() +shouldProcess() +unlock()
+Release() +addSite()
\ +removeSite()
Weblock

Table 1: WebL ock I nterfaces

Interface Name Define by Status Summary

nsl Supports XPCOM Frozen Providesinterface
discovery, and object
reference counting

nsl Coserver XPCOM Frozen Allows messaging
passing between objects
nsl Content Policy Content Not Interface for policy
Frozen control mechanism
i Wbl ock Web Lock Not Enables and disables

Frozen Weblock. Also, provides
accessto the URL that
are whitelisted.

Implementing the nsl ContentPoalicy I nterface

To implement the new interface, you must #i ncl ude the unfrozen

nsl Cont ent Pol i cy, and you must also make sure the build system can find the
file you’'ve brought over. The location of the file and the steps for adding that
location to the build system vary depending on how you build this component.

Creating XPCOM Components 135

Tutorial: Finishing the Component

Once you have made sure that your component builds with the new header file, you
must derive the Webl ock classfrom theinterface ns| Cont ent Pol i cy, which you
can do by simply adding a public declaration when defining the class. At the same
time, you can add the macro NS_DECL_NSI CONTENTPCOLI CY to the class
declaration that provides al of the methods defined in the interface

nsl Cont ent Pol i cy. The updated WebLock class looks as follows:

cl ass WebLock: public nsl Observer,
publ i c iWebl ock,
publ i ¢ nsl Cont ent Pol i cy

{
publ i c:
WebLock() ;
virtual ~WebLock();

NS_DECL_| SUPPORTS
NS_DECL_NS| OBSERVER
NS_DECL_| WEBLOCK
NS_DECL_NS| CONTENTPOLI CY

private:
ur| Node* mRoot URLNode;
PRBool m_ocked;

}s

Remember to change the ns| Support implementation macro to include
nsl Cont ent Pol i cy so that other parts of Gecko will know WebL ock supports
the nsI Cont ent Pol i cy without modifying this macro.

NS_| MPL_| SUPPORTS3(WebLock, nsl Cbserver, i Wbl ock, nsl ContentPolicy);

Receiving Natifications

To receive notifications, you must register as a new category. You have aready
registered as a category to receive startup notification. Thistime, the category name
to useis“content-policy”. To add the WebL ock component to this category,
modify the WebLockRegi st r at i on callback function so that it looks like this:

136

Creating XPCOM Components

Using Frozen Interfaces

static NS_METHOD WebLockRegi strati on(
nsl Conponent Manager *aConpMyr,
nsl Fil e *aPat h,
const char *registrylLocation,
const char *component Type,
const nsMdul eConponent I nfo *info)

nsresult rv;
nsCOWPt r <nsl| Ser vi ceManager > servnman =
do_Queryl nterface((nsl Supports*)aConpMyr, &rv);
if (NS_FAILED(rv))
return rv;

nsCOWPt r <nsl Cat egor yManager > cat man;
servman- >CGet Ser vi ceByCont r act | D(NS_CATEGORYMANAGER CONTRACTI D,
NS_GET_I | D(nsl Cat egor yManager),
getter_AddRef s(cat man));
if (NS_FAILED(rv))
return rv;

char* previous = nsnull;

rv = cat man->AddCat egor yEnt ry(" xpcom st art up",
"WebLock",
WebLock_Contract| D,
PR_TRUE,
PR_TRUE,
&previ ous) ;

if (previous)

nsMenory: : Free(previous);

rv = cat man- >AddCat egor yEntry(" cont ent - pol i cy",
"WebLock",
WebLock_Contract | D,
PR TRUE,
PR _TRUE,
&previ ous) ;

if (previous)

nsMenory: : Free(previous);
return rv;

}

This code adds a new category entry under the topic “content-policy,” and it calls
AddCat egor yEnt ry in the sameway we did in “ Registering for Notifications’ on
page 94. A similar step isrequired for unregistration.

Creating XPCOM Components 137

Tutorial: Finishing the Component

Implementing the nsl ContentPolicy

At this point, you can take the WebL ock component and install it into a Gecko
installation. When the component isloaded, Gecko callsthe ns1 Cont ent Pol i cy
implementation in WebL ock on every page |oad, and this prevents pages from
displaying by returning the proper value when the load method is called.

The web locking policy that we are going to put into place is quite simple: For
every load request that comes through, we will ensure that the URI isin thelist of
“good” URLs on the white list.

If you care to extend this implementation so that the list of URLsis held
remotely on a server somewhere—as might be the case when the WebL ock
component is used in a corporate intranet, for example—there are Networking
APIsin Gecko that will support this. Or you could implement the web lock so
that instead of blocking any site, the component would simply log all URLsthat
areloaded. In any case, the process to make an XPCOM component is the same.

The method that handles the check before page loading and the only method we
care about in our own implementation of nsI Cont ent Pol i cy is Shoul dLoad() .
The other method on the ns1 Cont ent Pol i cy interfaceis for blocking processing
of specific elementsin adocument, but our policy is more restrictive: if the URL
isn't on the white list, the entire page should be blocked. In the WebL ock
component, Shoul dLoad method looks like this:

NS_| METHODI MP WebLock: : Shoul dLoad(PRI nt 32 cont ent Type,
nsl URI *contentLocati on,
nsl Supports *ctxt,
ns| DOMW ndow *wi ndow,
PRBool * _retval)

Uniform Resource L ocator s

The method passes in an interface pointer of typensl URI , which is based on the
Uniform Resource Identifier, or URI. Thistypeis defined by the World Wide Web
Consortium (http: //mww.w3.org) as.

e The naming scheme of the mechanism used to access the resource.

138

Creating XPCOM Components

Implementing the nsiContentPolicy

* The name of the machine hosting the resource.
e The name of the resource itself, given as a path.

In this context, URIs are the strings used refer to places or things on the web. This
specific form of URI is called a Uniform Resource Locator, or URL. For more
information about URIs and URLSs, see http://www.w3.0rg/ TR/REC-html40/intro/
intro.html

Gecko encapsul ates these identifiers into two interfaces, ns| URI and the nsl URL.
You can Quer yl nt er f ace between these two interfaces. The networking library,
Necko, deals only with these interfaces when handling requests. When you want to
download afile using Necko, for example, all you probably have is a string that
represents the URI of the file. But when you pass that string to Necko, it creates an
object that implements at least the ns1 URI interface (and perhaps other interfaces
aswedll).

Currently, the WebL ock implementation of the Shoul dLoad method compares the
in parameter with each string in the whitelist. But it only should do this comparison
for remote URLs, because we don’t want to block the application from loading
local content that it requires, likefilesit getsviather esour ce: // protocol. If
URIs of thiskind are blocked, then Gecko will not be able to start up, sowe'll
restrict the content policy to the HTTP and FTP protocols.

Instead of extracting the string spec out of thens| URI to do a string comparison,
which would requre you to do the parsing yourself, you can compare the ns URI
objects with each other, asin the following section. This ensures that the URLs are
canonical before they are compared.

Checking the White List

The WebL ock implementation of the Shoul dLoad method starts by extracting the
scheme of theincoming ns! URI . If the schemeisn’t “http”, “https’, or “ftp”, it
immediately returns true, which continues the loading process unblocked.

These three are the only kinds of URI that Weblock will try to block. When it has
one, it walksthelinked list and createsanew nsl URI object for each string URL in
the list. From each object, Shoul dLoad() extractsthe host and comparesit to the
URI. If they match, the component allows the load to continue by returning true. If
these two strings do not match, then the component returns return false and blocks
the load.

Creating XPCOM Components 139

Tutorial: Finishing the Component

URI Caching

Caching the URI would make this method implementation much faster by
avoiding the need to create and destroy so many objects. This points out an
important drawback of XPCOM, which isthat you cannot create an object on
the stack.

Creating this many objectsis OK in atight loop if the buffer of memory that
holds the contents of the URLs is guaranteed to be valid for the lifetime of the
object. But regardless of how optimized the implementation is with respect tois
memory usage, a heap allocation will be madefor every XPCOM object created.

The string comparison with the URL type “http”, “https’, and “ftp” looks like this:

nsEnmbedCStri ng schene;
cont ent Locat i on- >Get Schene(schene) ;

if (strcmp("http", schenme.get()) !=
strenp("https", schenme.get()) !=
strenp(“ftp", scheme.get()) !=0) {
I/l this isn't a type of URI that we deal with.
* retval = PR _TRUE;
return NS _OK;

0 &&
0 &&

Creating nslURI Objects

Tocreate annsl URI , usensl | OSer vi ce. nsl | OSer vi ce isthe part of the
networking library (“necko”) that’s responsible for kicking off network requests,
managing protocols such as http, ftp, or file, and creating ns| URI s. Necko offers
tremendous network functionality, but all the WebL ock component needs isto
createthensl URI object that can be compared with the URIs on the white list.

Use the Service Manager to acquire the nsi | OSer vi ce. Since this object is going
to be used for the life of the component, it can also be cached. A good place to get
annsl | GSer vi ce isin the component’s Coser ver () method, which already has
apointer to the Service Manager. The code for getting the O service from the
Service Manager looks like this:

140 Creating XPCOM Components

Implementing the nsiContentPolicy

/1l CGet a pointer to the | CService

rv = servMan->Get Servi ceByContract | D(
"@mzill a. org/ network/io-service; 1",
NS_GET_I | D(nsl | CServi ce),
getter_AddRefs(m OService));

Once you have thisinterface pointer, you can easily create ns| URI objectsfrom a
string, asin the following snippet:

nsCOWPt r <ns!| URI > uri ;
nsEnmbedCString url String(node->url String);
m OSer vi ce- >NewURI (url Stri ng,

nsnull, nsnull,

getter_AddRefs(uri));

This code wraps a C-string with ansEnbedCst ri ng, which you'll recall isastring
class that many of the Gecko APIs require. See “ String Classesin XPCOM” on
page 84 for more information about strings.

Once the URL string iswrapped in ansEnbedCSt ri ng, it can be passed to the
method NewURI . This method expects to parse the incoming string and create an
object which implementsans| URI interface. Thetwo nsnul | parameters passed
to NewURI are used to specify the charset of the string and any base URI to use,
respectively. We are assuming here that the charset of the URL string isUTF8, and
also assuming that every URL string is absolute. See http: //mmww.w3.0rg/ TR/REC-
html40/intro/intro.html for more information about relative URLS.

Creating XPCOM Components 141

Tutorial: Finishing the Component

Here is the complete implementation of the Shoul dLoad() method:

NS_| METHODI MP WebLock: : Shoul dLoad(PRI nt 32 cont ent Type,
nsl URI *contentLocati on,
nsl Supports *ctxt,
ns| DOMW ndow *wi ndow,
PRBool *_retval)

if (!contentLocation)
return NS_ERROR_FAI LURE;

nsEnmbedCString schene;
cont ent Locat i on->Get Schene(schene) ;

if (stremp("http", scheme.get()) !'= 0 &&
strenp("https", schenme.get()) != 0 &&
strenp("ftp", scheme.get()) !=0) {
/1 this isn't a type of URI that we deal with.
* retval = PR_TRUE;
return NS_CK;

nsEnbedCStri ng host ToLoad;
cont ent Locat i on- >Get Host (host ToLoad) ;

/1 Assunme failure. Do not allow this nslUR to |oad.
* retval = PR_FALSE;

nsresult rv;

url Node* node = nRoot URLNode;
PRBool match = PR_FALSE;

whi | e (node)
{
nsCOVPt r <ns!| URI > wuri ;
nsEnmbedCString url String(node->url String);
rv = m CService->NewURIl (url String, nsnull, nsnull,

142 Creating XPCOM Components

Implementing the nsiContentPolicy

getter_AddRefs(uri));

/1 if anything bad happens, just abort.
if (NS_FAILED(rv))
return rv;

nsEnbedCString host;
uri->Get Host (host);

if (strcnp(hostToLoad. get(), host.get()) == 0) {
/1 match found. Allowthis nsIUR to |oad.
* retval = PR_TRUE;
return NS_CK;

}

node = node- >next;

}
return NS_CK;

}

At this point, all of the backend work is complete. You can of courseimprove this
backend in many ways, but this example presents the basic creation of what is
commonly referred to asa“browser helper object” like WebL ock. The next
chapter looks at how to tie this into the front end—specifically how to use
XPConnect to access and control this component from Javascript in the user
interface.

Creating XPCOM Components 143

Tutorial: Finishing the Component

144

Creating XPCOM Components

CHAPTER 8

Tutorial:
Building the WebLock U

Up until now, we've been building a component that can be installed in any Gecko
application. The XPCOM interfaces and tools you’ ve used have been general,
cross-platform, and available in the Gecko Runtime Environment or in any Gecko-
based application after Mozilla 1.2 (when the GRE began to be used).

In this chapter, however, we are going to be building a user interface for the

WebL ock component that’s meant to be added to the existing Mozilla browser?. It
uses XUL, whichisan XML language that Gecko knows how to render as user
interface, but it also interacts with particular parts of the Mozilla user interface,
where it must install itself as an extension to the Ul. Specifically, the user interface
we createin this chapter will be overlaid into the statusbar of the browser
component, where it will provide a small icon the user can click to access the web
lock interface (see Figure 1).

1. Or onevery much likeit. There are Gecko-based browsers such as Beonex and the IBM
Web Browser that share alot of the structure of the Mozilla user interface, into which it
may be possibleto install both the WebL ock component and the user interface described
in this chapter.

Creating XPCOM Components 145

Tutorial: Building the WebLock Ul

B ==

Figure 1. WebL ock Indicator in Browser

User Interface Package List

The user interface described in this section is comprised of four files:

* webLockOverlay.xul isthe file that defines the little statusicon in the browser.
* weblock.xul defines the web lock manager dialog.

* weblock.css provides style rules for both of the XUL files.

* weblock.js provides JavaScript functions for both of the XUL files.

Each of thesefilesis described briefly in the sections below. In the following
chapter we'll describe how you can take these files and create a package, an
installable archive that includes the WebL ock component and the new UI.

Because this step (particularly the overlay section) is so dependent on Mozilla, the
chapter is divided up into a couple of different sections. The second section,
“XUL", describes the XML -based User Interface Language (XUL) and how you
can useit to create adialog that provides access to the WebL ock component and its
services. The third section, “Overlaying New User Interface Into Mozilla”,
describes how to create an overlay into the browser that will make this dialog
accessible from a Mozilla build. The overlay section, where we discuss how to
import scripts, images, and other resources from Mozillainto your own Ul, isby far
the more complicated of the two.

If the WebL ock component isbeing installed in Mozilla or another Gecko-based
browser, then this third section shows you how to create the entry point in the
browser for controlling the web locking. If you are planning on deploying the
WebL ock component in some other application, you'll have to devise a different
means of access (e.g., native widgetry that instantiates and controls the WebL ock
component).

¢ “Client Code Overview”

146

Creating XPCOM Components

Client Code Overview

e “XUL”
e “Overlaying New User Interface Into Mozilla”

Client Code Overview

Before we get started on the actual user interface, we should establish how the cli-
ent code is to access the WebL ock component and use its interfaces to control the
web locking of the browser.

First of all, it'simportant to be able to represent the basic state of the lock as soon
asit’sloaded. Like the secure page icon, the weblock icon that appearsin the lower
right corner of the browser should indicate whether the browser is currently locked
or unlocked. Since the WebL ock component is aways initialized as unlocked, we
can have the client code—the JavaScript code in the interface—represent this state
and track it as the user manipulatesthei WebLock interface. A boolean wLocked
variable can do this:

[/l initialize the wocked vari abl e as unl ocked
var wLocked = O0;

Then the functions that get called from the interface and call through to the | ock
and unl ock methods of the WebL ock component must also adjust this variable
accordingly:

functi on wiLock() {
/'l check to see if locking is on or off
webl ock. | ock()
wLocked = 1;

}

functi on wunLock() {
/] check to see if locking is on or off
webl ock. unl ock()
wLocked = O;

Creating XPCOM Components 147

Tutorial: Building the WebLock Ul

An important preliminary of these functionsis that the WebL ock component be
made available to the JavaScript in the form of the webl ock object being used in
the snippets above. Asyou can see, webl ock isinitialized as a global JavaScript
variable, available in the scope of these functions and others:

var webl ock = Conponents. cl asses|
" @lougt / webl ock"] . get Servi ce();
webl ock = webl ock. Queryl nterface
(Conponents.interfaces.i WbLock) ;

In addition to this basic setup, you must also write JavaScript that uses the

AddSi t e method to add new sites to the white list. Thisis abit more complicated,
becauseit requiresthat you work with the currently loaded page or provide other Ul

(e.g., atextfield where you can enter an arbitrary URL) for specifying URLSs. In the
“XUL" section below, we'll go into how the user interfaceis defined. This section

describes the functions that are called from the interface and how they interact with
the WebL ock component.

The URL that the AddSi t e method expectsis a string, so we can pass a string
directly in from the user interface, or we can do acheck on the string and verify that
it'savalid URL. Inthistutorial, focusing asit is on the WebL ock functionality
(rather than the UI), we'll assume the strings we get from the Ul itself are URLswe
actually want to write to the white list:

function addThisSite() {
tf = docunent. get El enent Byl d(“di al og. i nput”);
/1 webl ock is global and decl ared above
webl ock. AddSi te(tf. val ue);

}

This JavaScript function can be called directly from the XUL widget, where the
input string isretrieved asthe val ue attribute of thet ext box element.

You also need to create the function that displaysthe WebL ock window itself when
the user clicks the weblock icon in the statusbar. That function uses the

openDi al og method from thewi ndow object and takesthe URL to the XUL filein
which the dialog is defined:

function | oadWebLock() {
openDi al og(“chrone: //webl ock/ webl ock. xul ") ;

}

148

Creating XPCOM Components

XUL

XUL

The entire user interface of the Mozilla browser and all of the applications that go
with it, including the mail client, the IRC client, and others, have been defined in an
XML language called XUL. Elements in the XUL markup map to widgetsin the
interface that Gecko rendersin afairly straightforward way—so, for instance, the
root element of an application window is the element <wi ndow>, the root element
of the dialog we'll be creating hereis<di al og>, and so forth. Within a XUL appli-
cation file, elements like button, menu, checkbox can be hooked up to an event
model, to scripts, and to the XPCOM interfaces that carry out alot of the browser
functionality in Mozilla.

In the chapter Using Components, you saw how XPCOM objects are reflected into
the interface layer as JavaScript objects. In this chapter, now that we' ve created the
WebL ock component and made it available to XPCOM, we create the Ul that
actually instantiates the WebL ock component and uses its methods to control page
loading in the browser.

In the previous section, we outlined the JavaScript that interacts with the WebL ock
component. In this section, we are going to create the XUL interface that calls the
JavaScript methods when the user interacts with it.

The XUL Document

Thefirst thing to do is create the actual XUL document in which the user interface
for the dialog and the events that initiate interaction with the web locking are
defined. At the top of all XUL documents, an XML declaration is followed by the
root element for the document, which isusually <wi ndow> but for dial og boxes can
also be the element <di al og>. The “shell” for the XUL file, then, looks likethis:

<?xm version="1.0"?>
<?xm - styl esheet href="chrone://gl obal /skin/" type="text/css"?>

<di al og i d="webl ock_ui "
xm ns="http://ww. nozil | a. or g/ keynast er / gat ekeeper/
there.is.only.xul"
title="Web Lock Manager"
persi st ="screenX screenY"
screenX="24" screenY="24">

</ di al og>

Creating XPCOM Components 149

Tutorial: Building the WebLock Ul

Note that this part of the XUL file also contains a stylesheet declaration, which
imports CSS rules and applies them to particular parts of the interface. In Gecko,
CSSisused to do virtually al of the presentation of the XUL interface—its color,
position, style, and to some extent its behavior as well. The web lock manager
dialog does not deviate from the look of a standard dialog, so it can use asingle
declaration to import the “global” skin from the browser and make it available to
the widgets you define in weblock.xul.

You can save thisfirst, outermost part of the web lock dialog in afile called
weblock.xul, which you'll be adding to an installer archive in Appendix B in this
book.

Note that this file defines the dialog that displays when the user/administrator
clicks the web locking icon in the bottom right corner of the browser. That piece
of Ul—which needs to be dynamically inserted into the browser at run-time—is
described in the following section, “Overlaying New User Interface Into
Mozilla’.

The finished dialog appears in Figure 2 below.

[~| [[Add thisURL |

QO lock
O unlock

Figure 2. Web L ock Manager Dialog

Asyou can seg, it'sasimple interface, providing just enough widgetry to lock and
unlock the browser, and to add new sitesto thelist. The entire XUL file for the web
lock manager dialog is defined in the “weblock.xul” subsection below.

TheLocking Ul

Once you have the basic XUL wrapper set up for your interface, the next step isto
define that part of the interface that locks and unlocks the browser. One of the most
efficient ways to expose thisis to use radio buttons, which allow the user to toggle
aparticulart state, as the figure above illustrates.

150

Creating XPCOM Components

XUL

In XUL, individua radio elements are contained within a parent element called
radiogroup. Grouping radio elements together creates the toggling Ul by requiring
that one or another of the elements be selected, but not both.

The XUL that defines the radiogroup in the web lock manager dialog is this:

<r adi ogr oup>

<radi o | abel =" ock" />

<radi o | abel ="unl ock" sel ected="true” />
</radi ogr oup>

Since the WebL ock component always starts up in the unlocked position, you can
set the default sel ect ed="t r ue” property on the unlock radio button and reset it
dynamically as the user takes action.

Site Adding Ul

The next step isto create that part of the user interface that lets you add a new site
to the white list. There are other, more sophisticated waysto do this; you may also
want to include some Ul that lets you view the whitelist or edit it asalist. In this
part of the tutorial, however, we only provide the means of adding an URL pro-
vided as a string (and not checked for validity) and passing it through to the
AddSite API we defined in the earlier part of the tutorial.

<separator class="thin"/>

<hbox al i gn="center">

<textbox id="url.input" flex="1"/>

<button | abel ="Add this URL" oncommand="addThisSite();" />
</ hbox>

This snippet introduces a couple of new general layout widgetsin XUL. The
separator that appears at the top of this snippet creates alittle divider between
widgets like the kind you see in menus that divide sets of functionality available
there. The parent of the textbox that users enter an URL into is something called an
<hbox>, which is a layout widget—often invisible—that controls the way its child
elements are rendered. In this case, the hbox centers the textbox and the button
children, and it orients them horizontally (in contrast to the vbox, which orientsits
children veriticaly).

Creating XPCOM Components 151

Tutorial: Building the WebLock Ul

Notice also that when it’s clicked, the button executes a JavaScript function called
addThi sSi t e(), whichwe' ve already defined in the weblock.jsfilein the “ Client
Code Overview” section above.

weblock.xul

<?xm version="1.0"?>
<?xm - styl esheet href="chrome://gl obal /skin/" type="text/css"?>

<di al og i d="webl ock_ngg"
xm ns="ht t p: // ww. nozi | | a. or g/ keynast er / gat ekeeper/
there.is.only.xul"
title="Web Lock Manager"
styl e="w dth: 30em"’
persi st ="screenX screenY"
screenX="24" screenY="24">

<script src="chrone://webl ock/cont ent/webl ock.js" />

<hbox>
<separator orient="vertical" class="thin"/>
<vbox flex="1">
<separator class="thin"/>

<hbox al i gn="center">
<text box id="dial og.input” flex="1" />
<button | abel ="Add this URL"
oncommand="addThi sSite();”/>
</ hbox>
<hbox al i gn="center">
<r adi ogroup onchange="t oggl eLock() ;">
<radi o | abel =" ock" />
<radi o | abel ="unl ock" />
</radi ogr oup>

<spacer flex="1"/>
</ hbox>
</ vbox>
</ hbox>

</ di al og>

152 Creating XPCOM Components

Overlaying New User Interface Into Mozilla

Overlaying New User Interface Into Mozilla

You've got adialog that will interact with the WebL ock component, but how do
you install that dialog you' ve created into the browser? And how do you access it
onceit'sin? Onceit'sinstalled and registered, the WebL ock component itself is
ready to go: XPCOM findsit and adds it to the list of registered components, and
then WebL ock observes the XPCOM start up event and initializes itself.

But you still have to insinuate your new Ul into the browser so it can call the
component, and the Mozilla overlay mechanism is the way to do this. Overlays are
XUL filesthat register themselves to be dynamically inserted into the appropriate
parts of the browser Ul at runtime.

webL ock Overlay.xul

The XUL that definesthe new icon issmall: it's alittleicon that has an image asso-
ciated with it, and that calls a JavaScript function to loads the weblock.xul file we
defined in the previous section. Theicon is actually a separate <st at usbar > ele-
ment that gets overlaid into the main browser, along with some JavaScript and
some CSS to control the behavior and appearance of the element, respectively. Here
isthat XUL fileinits entirety:

Creating XPCOM Components 153

Tutorial: Building the WebLock Ul

<?xm version="1.0"?>

<?xm - styl esheet
hr ef =" chr one: // navi gat or/ cont ent / webl ock. css"
type="text/css"?>

<overl ay id="webl ockOverl ay"
xm ns="http://ww. nozil | a. or g/ keynast er / gat ekeeper /
there.is.only.xul">

<script type="application/x-javascript"
src="chrone://webl ock/ cont ent / webl ock.js" />

<st at usbar i d="st at us-bar">
<st at usbar panel cl ass="st at usbar panel -i coni c"
i d="webl ock- st at us"
i nsertbefore="of fl i ne-status"
onconmand="1 oadWebLock() ;"
st at us="none"/ >
</ st at usbar >

</ over| ay>

Figure 3. The WebL ock Overlay

Note that the root element for this fileis not awindow but an overlay. In overlays,
the ordinarily unique I D attributes that XUL elements use to distinguish themselves
are purposely made redundant with Ul in the existing browser with which they
should be merged. In this case, the weblock st at usbar panel appearsas achild
of the st at usbar element with ID “status-bar”. ThisID isthe same one used by
the st at usbar in navigator.xul, which means that the overlay mechanism will
merge the new Ul here (i.e., the weblock st at usbar panel) and the Ul already
defined within that browser st at usbar at runtime.

Other Resources

This chapter describes the remaining files that must be added to and packaged up
with the WebL ock component to provide user interface for web locking.

* “weblock.css’
* “Image Resources’

154 Creating XPCOM Components

Other Resources

Other Front End Resources

In some Ul packages, localization resources are also defined. These include
DTDsin which the language in which the Ul is labelled can be extracted into
externd files, which are swapped with DTDs for other languages. For example,
user interface packages often include an English DTD that defines labels and
strings for button and menus and other elements in the interface. When the user
selects adifferent language pack, all of the English that's been externalized in
these filesis dynamically replaced with the new choice.

In addition to DTDs, the localization parts of a user interface may also include
string bundles in which strings that are used in the interface JavaScript can be
similarly replaced.

There are also technologies, not discussed here, which may be used in separate,
installable files. These include bindingsin XML files, metadata in RDF files,
whole collections of CSS files called skins, and others.

weblock.css

Thefollowing style rules are defined in weblock.css, a CSSfilethat isloaded by the
overlay and applied to the icon in the browser that reflects the current status of the
web lock and provides access to the web lock manager dialog.

st at usbar panel #webl ock- st atus {
list-style-image: url ("chrone://webl ock/w ock.gif");

}

st at usbar panel #webl ock- st at us[st at us="1 ocked"] {
list-style-inmage: url ("chrone://webl ock/w -1l ock.gif");

}

st at usbar panel #webl ock- st at us[st at us="unl ocked"] {
list-style-image: url ("chrone://webl ock/wW -un.gif");

}

The stylerules are distinguished by the state of the st at us attribute on the element
inthe XUL with the ID “weblock-status.” Asyou can see above, when the status of
the element is set to “locked”, the image wi-lock.gif is used to show the state, and

when the web locking isunlocked, it useswl-un.gif. (Note: Weinclude three images

Creating XPCOM Components 155

Tutorial: Building the WebLock Ul

to represent the state of the weblock, but wlock.gif and wi-lock.gif are identical,
since weblock is presumed to be unlocked when it’sloaded. Thistutorial makes use
of only two different states, but you can further customize the look of the weblock
using the three imagesif you wish.)

Since the presentation of the weblock manager dialog itself doesn’t require any
special styles, these are all the rules you need in the weblock.css. Note that the
weblock.xul file in which the manager is defined imports only the global skin:

<?xm -styl esheet href="chrone://gl obal/skin/" type="text/css"?>
Save weblock.cssin your working directory.

You should now have the four files listed at the top of this chapter as the “ packing
list” for the WebL ock package (see “User Interface Package List”). Don't worry
for now about where these files are. In the next chapter, “ Tutorial: Packaging
WebL ock”, we'll describe how to organize and package them so that they can be
installed along with the WebL ock component itself and the other resources.

Image Resour ces

If you are following along with thistutorial and want to use the images we use here
for the states of the WebL ock component in the statusbar, you can download them
and the other resources for WebL ock from http: //wmww.brownhen.com/webl ock.
The GIF files that represent the various states are:

* wlock.gif
e wl-lock.gif
e wl-un.gif

156

Creating XPCOM Components

CHAPTER 9 TUtOrlal
Packaging W\eblLock

Inthisfinal part of the tutorial, we'll put al of the pieces of the web locking com-
ponent—the library itself, the type library, the header file, and the user interface
resources—into a package that can be installed on other systems. The first section,
“Component Installation Overview”, describes the general installation processin
Mozilla. The following sections describe the steps you can take to organize the
WebL ock component for distribution and installation.

Note: the emphasis of this tutorial is on the component devel opment
itself, so this section on packaging and installing extensions to Gecko is
necessarily brief. For more detailed information on packaging and
installation of components into Gecko-based applications, see http://
www.moZzilla.org/projects/xpinstall.

e “Component Installation Overview”
* “Archiving Resources’

* “The WebL ock Installation Script”
* “The WebL ock Trigger Script”

Creating XPCOM Components 157

Tutorial: Packaging WebLock

Component Installation Overview

XPInstall is aset of JavaScript APIsfor creating installation scripts. Using
XPIngtall, you can create web-based install ations for Gecko-based applications,
Mozilla extensions, or individual components. The installation script for the
WebL ock component can also be used to register the component with the browser
into which it isinstalled (see “ Registration Methodsin XPCOM” for more
information on registration).

The sample installation script shown below uses the Mozilla XPInstall technology
to manipulate an installer and talk to Mozilla's chrome registry as high-level
JavaScript objects.

What Isthe Chrome Registry?

Like the Windows registry, the chrome registry is a database of information
about applications, skins, and other extensions that have been installed in a
Gecko application. Since Mozilla and other Gecko-based applications are cross-
platform, this database is abstracted above the operating system or any particul ar
platform’s registry.

The chrome registry livesin a series of RDF/XML filesin the application direc-
tory of Mozilla and other Gecko-based browsers, where new installs, user con-
figurable data, skins, and other information are related to one another and the
application itself.

JavaScript APIsfrom the XPinstall I nst al | object download the JAR in which
theinstallable files appear and call registration methods that tell Mozilla about the
new component and the Ul it uses to access the WebL ock component. Figure 8 is
the complete trigger installation script, which can be launched from a web page.
Thefiles themselves are stored in the JAR file weblock.jar, whichissimplea ZIP
filewith the X Pl extension that sometimes also contains an interna installation file
caledinstall js.

Once you have the component and the other resources for Weblock packaged
properly (see the following section, “ Archiving Resources”), the installation script
for WebL ock isasimple one (see “ The WebL ock Installation Script”).

158

Creating XPCOM Components

Archiving Resources

Archiving Resources

Once you have compiled al the resources that make up the WebL ock component
and the files that make up the user interface that will be added to the browser, you
can place these within a subdirectory called weblock.

Place the entire subdirectory into a ZIP archive and name the archive weblock.xpi.
The archive, its subdirectory structure, and its contents should look like this:

-
&0 WinZip (Unregistered) - weblock. xpi
File Actions Options Help
e & 9
Mew Qpen Favorites Add Extract Wigw Checkout Wizard
ame: Type Modified | Size | Ratio | Packed | Path @y
{_@ contents.rdf RDF File 12f12... 918 60% 367
& install.js J5cript Script File 121102, 354 35% 229
@ block, #PT File: 114211, 268 34% 177
Application Extension 11721/, 167,990 &7% 22,660
__';"weblock.css Cascading Style Sh.., 4/22/2... 343 64% 122 weblock)
i@ weblock, xul Mozilla ¥UL File Doc... 4/22{2... 1,003 52% 479 weblock),
@ weblockOverlay, xul Mozilla ¥UL File Doc... 12f1/2... 529 45% 277 weblockl
ig wil-lock, gif Mozilla Graphics Int... 4/22/2... 1,204 9% 1,097 weblock)
{@ wlock. gif Mozilla Graphics Int... 4/22/2... 1,204 9% 1,097 weblock)
i@ wil-un. gif Mozilla Graphics Int... 4/22/2... 1,204 9% 1,097 weblock)
£ Il | (il
Selected O files, O bytes [Total 10 files, 171KB PP

Figure 1. weblock.xpi Archive Viewed in WinZIP

Note that the top level of the archive holdstheinstall.jsinstallation file, an RDF
manifest for the package as a whole, and the component files (weblock.xpt and
weblock4.dll). The component files are copied to the components directory of the
Gecko application, and the weblock subdirectory gets copied over into the chrome
subdirectory, where its Ul resources can be added dynamically to the XUL-based
Gecko application.

Creating XPCOM Components 159

Tutorial: Packaging WebLock

The next section shows how this process of downloading, copying and registering
the necessary files from the XPI can be achieved with an XPInstall installation
script.

The WebLock Installation Script

Theinstallation script is the JavaScript file that is stored within the XPI. It must
appear at the top level of the installation archive (i.e., weblock.xpi) itself. Once trig-
gered (see the next section, “The WebL ock Trigger Script”), the installation script:

* downloads the WebL ock component and placesit in the components directory
» copies the weblock subdirectory in the Mozilla chrome application subdirectory
* registers both the component and the Ul

The XPInstall API provides such essential methods! asi ni t I nstal | |
r egi st er Chr one, addFi | e, and others.

1. Themethodsare availableonthemain| nst al | object, whichisimplied in the
script below in the same way that the wi ndow object isimplied in JavaScript
manipulation of the DOM of aweb page. In other words, the fragment var
initlnstall () fromthescriptisequivalenttovar Install.initln-
stall ().

160

Creating XPCOM Components

The WebLock Installation Script

[/l initialize the installation
var err = initlnstall ("WbLock", "weblock", 1.0);

var conponentsDir = get Fol der (" Conponents");
var cf = getFol der (“Chrone”);

[/l add the DLL and say where it'll go
addFil e ("webl ock.dll", 1.0,
“webl ock.dl | ", conponentsDir, "");

/] add the typelib al so
addFi |l e ("webl ock.xpt", “1.0",
"webl ock. xpt", conponentsDir, "");

/1 add the webl ock subdirectory
/1 of the XPI and specify that it be
/] installed in the chrome application directory
err = addDirectory (“weblock”, “1.0",
“*, chromeDir, “*)

/'l ? have to register conponent here or with regxpconf
/'l register the new U with the nozilla chronme registry
regi st er Chr one(CONTENT, get Fol der (cf, "webl ock. xpi "), "webl ock") ;

regi ster Chrone(SKI N, get Fol der (cf, “webl ock.xpi”), ”webl ock™);

/] performthe installation if there are no errors
i f (err==SUCCESS)

perform nstall ();
el se

cancel I nstall (err);

Figure 2. WebL ock Installation Script

Creating XPCOM Components 161

Tutorial: Packaging WebLock

The WebLock Trigger Script

Thetrigger script isthe script placed on aweb page that actualy initiates an
XPIngtall installation and calls the installation script that appearsin the XPI.
Figure 3 is a complete webpage in which the trigger script is defined as a
JavaScript function, i nst al | WebLock, that gets called when the user clicks the
hyperlink.

<htm >
<titl e>WebLock Installation</title>
<scri pt >
/Il trigger function
/1 that downl oads the XPI
/! so the install.js file inside can be
/] read and executed
function installWbLock() {
webl ock_xpi = {‘ WebLock Extension’: ‘webl ock.xpi’};
Instal | Tri gger.install (webl ock_xpi);
</script>

<hl>Install WbLock</hil>

<p><a href="javascript:voi d”
onclick="instal |l WbLock();”>i nstall webl ock

</htm >

Figure 3. Trigger Script for WebL ock

Distributing Your Component

Once you have the component packaged properly and the necessary installation and
trigger scripts, you are ready to distribute your component so otherscaninstal it in
their Gecko applications.

In Mozillaand Netscape browsers, X PInstall makes this process especialy easy by
providing the file format (XPI) and the necessary installation scripts for doing a
web-based installation. As Figure 2 demonstrates, X PInstall uses special keywords
to refer to common installation directories such as components in a generalized,
cross-platform way.

162 Creating XPCOM Components

Distributing Your Component

If you areinstalling WebL ock in an Gecko-based application for which XPlInstall
is not available, then you will have to devise a separate installation scheme. We
leave this as an exercise for the reader.

Creating XPCOM Components 163

Tutorial: Packaging WebLock

164

Creating XPCOM Components

Appendix A: Setting up
the Gecko DK

This chapter provides basic setup information for the Gecko Software Devel opment
Kit (SDK) used to build the WebL ock component in this tutorial. The following
four sectionstell the devel oper how to download and organize the Gecko SDK and
create a new project in which components like WebL ock can be created:

* “Downloading and Setting the SDK”

e “Building a Microsoft Visual C++ Project”

e “A Makefile for Unix”

Downloading and Setting the SDK

The Gecko SDK provides all of the tools, headers, and libraries that you need to
build XPCOM Components. The SDK is available for Windows and Linux
operating systems, and versions for other operating systems are being devel oped,
and can be retrieved from as a single archive from the following platform-specific
locations:

e Linux: http://ftp.mozilla.org/pub/mozilla/rel eases/mozill al.4a/gecko-sdk-i686-
pc-linux-gnu-1.4a.tar.gz

Creating XPCOM Components 165

Appendix A: Setting up the Gecko SDK

* Windows: http://ftp.mozilla.org/pub/mozilla/rel eases/mozillal.4a/gecko-sdk-
win32-1.4a.zip

Note that the version number for the archives aboveis 1.4a. The WebL ock
component was built with this version, but you can always check for newer
versions at http://ftp.mozilla.org/pub/mozilla/rel eases/.

Once you download the SDK, you can expand it into any convenient location. In
this appendix, we set up the Windows Gecko SDK in c:\gecko-sdk. If you choose
some other location, remember to adjust the settings described here (e.g., in the
“Building a Microsoft Visual C++ Project” section below) to point to this new
location.

When you extract the SDK, it should have the layout seen in Figure 1.

=

AppComps conkent dom embed_base
SR o o o
embedstring find java necko nspr
S o o
plugin pref profile shistory skring
S
uriloader wiallet webbrwesr viehshel windowwate, ..

pataa] xpoonnect mozilla-conf... neBuldID b

Figure 1. Layout of the Extracted SDK

The directories represent different modules in the SDK. For example, the headers
for networking are al located in the "necko" directory, and the headers that
XPCOM requires are in the XPCOM directory. This directory structure makes
build scripts slightly more complicated (since there will be many different include
paths), but it helps to organize the parts of the SDK meaningfully.

166

Creating XPCOM Components

Downloading and Setting the SDK

The two top level header files are special. The file mozlla-config.h lists all of the
defines used in the SDK. Including this header file in your project ensures that the
component you create uses the same defines as the Gecko libraries themselves.
Note that mozlla-config.h may be need to be included before other includesin
your component’s source code.

Each module directory is divided into three subdirectories:

S T R

bin id include

Figure 2. Module Subdirectories

The bin directory contains static libraries, dynamic libraries, and in some cases
tools that may be useful in development. The idl directory contains the public IDL
files exported by the module. Theincludes directory contains C++ header files used
by your component.

XPCOM exports a number of binaries that should be mentioned at this point. The
table below refers to the Windows file names for the executables.

Application Name Description of functionality

regxpcom.exe Registers or Unregisters components with XPCOM
xpidl.exe Generates typelib and C++ headers from XPIDL
Xpt_dump.exe Prints out information about a given typelib
xpt_link.exe Combines multiple typelibsinto asingle typelib
Library Name Description of functionality

xpcomglue.lib XPCOM Glue library to be used by xpcom components.

Creating XPCOM Components 167

Appendix A: Setting up the Gecko SDK

Building a Microsoft Visual C++ Project

Once you setup the Gecko SDK, you can create a Microsoft Visual C++ project to
handle component development with the SDK.

Creating a New Project

After launching Visual C++, select New from the File menu. Then, from the New
diaog, select "Win32 Dynamic-Link Library. Use thefieldsto theright of the
dialog to name your project and set its location (This example uses
"SampleGeckoProject” as the Project name and C:\ asitslocation.).

Filez Projects wiortk spaces DOther Documents

i ATL COM Appiwizard Project name:
DevStudio Add-in wizard ISampIeG eckoProject
154P1 Extension \wizard)
i< M akefile Logation:
MFC dctiveX Controbwizard] [e]|

|8 MFC Appiwizard (dI)
MFC Appiwizard [exe)

' Utility Project * Create new workspace
E\:\u"in32 Application [to current work space
:W’in32 Console Application I pendency of:

%] Win32 Dynamic-Link Library | 7

5] win32 Static Library

Platfoms:
|Win32

Cancel

Figure 3. New Dialog

Select OK. Inthe Win32 Dynamic-Link Library dialog that displays (see Figure 4),
you can choose the default selection "An Empty DLL Project” asthe type of DLL.

168

Creating XPCOM Components

Building a Microsoft Visual C++ Project

‘what kind of DLL would you like to create 7

7____ T (% An empty DLL project.
== A simple DLL project.
" ADLL that exports some symbaols.
I S I

< Back | | Finizh | Cancel |

Figure 4. Win32 Dynamic-Link Library Dialog

Inthisdiaog, click Finish. Microsoft Studio creates a new project per your
specification and presents you with the standard Project view.

Adding the Gecko SDK to the Project Settings

In order to build anything that uses Gecko, you have to further modify the project
so that it knows where to find the Gecko SDK on the disk. To edit project settings,
select Settings from the Project menu (or press Alt-F7).

Most of the changes you make in the following steps apply to all configurations of
the project (both Debug and Optimized), so select “All Configurations” from the
Settings For dropdown menu (see Figure 5).

Creating XPCOM Components 169

Appendix A: Setting up the Gecko SDK

Seftings For. | 41l Configurations L[General | Debug I CAC++ I Link. | Hesourci Elz
Microsoft Foundation Classes:
|Mot Using MFC ~|
- Dutput directones
Intermediate files:
I
Dutput fles:
I
[~ Alow per-configuration dependencies
Cancel

Figure 5. Project Settings Dialog

On the C/C++ tab, select the Preprocessor category. Thiswindow iswhere you add
the include paths to the Gecko SDK aswell as two preprocessor defines:

e XPCOM GLUE
e MXILLA STRI CT_API

At aminimum, you must include the nspr, the embedstring and string include
directories, and to the xpcom include subdirectories. If your component will use
other parts of the SDK (e.g., necko), you will have to add these include directories
to thisfield aswell.

These paths are the following:

* c:\gecko-sdk\embedstring\include
* c:\gecko-sdk\xpcom\include

* c:\gecko-sdk\nspr\include

* c:\gecko-sdkistring\include

170

Creating XPCOM Components

Building a Microsoft Visual C++ Project

Project Settings

General I Debug C/C++ | Link. | Hesourci Elz

Categorr |Prepmc:essor - I ﬂ‘

Preproceszor definitions:

Seftings For. | 41l Configurations

il 5 ampleGeckoProject

MmN PLOM GLLE MOZILLA STRICT SF|

Undefined symbols: I Undefine all symbals

Additonal include directories:
|C:\ga:ko-sd(\:q:l:om\include,[l:\gecko-sdk\nspr\include,

I lgnore standard include paths

Common Opbions:
nologo M3 A "Chgecko-sdkhspoombinclude" /] e
- \vgecko-sdknepriinclude” /|)

“'c:vgecko-sdkvembedstingtinclude” /| |

Figure 6. Adding Includesto the Project

Under the C++ language category, disable exception handling. As described in the
section ““ Exceptions” in XPCOM" on page 17, exception handling isn't supported
across interface boundaries, so setting this option may catch problems during
development.

The WebL ock component needs to link against the appropriate libaries to uses
XPCOM Glue. To add these libraries, select the Link tab, then choose the Input
category. In this panel, instead of linking to the include subdirectories to the nspr,
embedstring, and xpcom directories, add the paths to the bin subdirectories.

We a'so link against a number of librariesin the Object/library modulesline:
* nsprd.lib

e pldsAlib

* plcdlib

* embedstring.lib

* xpcomgluellib

Both of these settings are shown in Figure 7.

Creating XPCOM Components 171

Appendix A: Setting up the Gecko SDK

Project Settings

General I Debug I C/C++ Link | Hesourci EI

Category: ||rm - [Bieset I
DyectMwary modules:

IZHJ reprd.ib plds4 lib embedstring lib xpcomglue.lib

lgnore Branes: [~ lgnore all default libraries
Force spmbol references:

Addibonal library pathc

IC:\gecko—sd(\mpt\hin,E:\gecko-sdk\xpcom\bin,c:\gecko
Common Opbions:

kemel32 b user32 ib odi32 lib winspool ib |
comdig32 b advapi32. lib shell32.fib ole32. lib -
oleaut32 ib uud ib odbe 32 lib odboep32 lib nzprd. lib |

Cancel I

Figure 7. Bin and Library Settings

The last change you need to make to set up the Gecko SDK in your project isto

change the “Use run-time library” setting to “Multithreaded DLL.” Since this

change is configuration dependent, you must make set the Release configuration

run-time library to the release multithreaded dil runtime and the Debug
configuration to the debug multithreaded dll runtime (see Figure 8).

172

Creating XPCOM Components

A Makefile for Unix

Proje ettings %

General I Debug | C/C++ | Link. | Hesourci Elz

Categony |[Zode Generation - I Reset

Processor Uze run-time Jibrary:
|Blend = | [MulitreadedDLL |

Seftings For. |'win32 Release
EREE S ampleGie: ject

Caling convention: Struct member alignment:

|_cdedt= ~| |eBytes> |

Project Dptions:
/nologo MMD Aw3 /02 A A

“C-\gecko-sdkwpcombinclude™ A =
“C-\gecko-sdkneprinclude™ A |

Cancel

Figure 8. Run-time Library Settings

After making these changes, press OK. Thisfinalizes the project settings and gives
you a project that will hold and compile XPCOM Components.

A Makefile for Unix

On Linux, the equivalent project settings are typically handled in a Makefile. The
Makefile allows you to specify any number of options for your build environment,
including the path and configuration updates you need to build with the Gecko
SDK.

Figure 9isalisting for a Makefile that configures your compiler to work with the
SDK. Explaining the details of the Makefile is outside the scope of this appendix,
but it modifies the same properties that are configured in the Visual C++ project
(see“Building aMicrosoft Visual C++ Project”). For alisting of the commandsthat
appear in thislisting, see the Make manual: http://mwww.gnu.org/manual/make/.

Creating XPCOM Components 173

Appendix A: Setting up the Gecko SDK

CXX = Cc++

CPPFLAGS += -fno-rtti \
-fno- excepti ons \
- shar ed

Change this to point at your Gecko SDK directory.
GECKO_SDK_PATH = / hone/ dougt / gecko- sdk

GCC only define which allows us to not have to #include nozill a-

config

#in every .cpp file. |If your not using GCC renpve this |line and
add

#include "nmozilla-config.h" to each of your .cpp files.
GECKO_CONFI G_| NCLUDE = -include nozilla-config.h

GECKO DEFI NES = - DXPCOM GLUE - DMXZI LLA STRI CT_API

GECKO | NCLUDES = -1 $(GECKO SDK_PATH) \
-1 $(GECKO_SDK_PATH) / xpconi i ncl ude \
-1 $(GECKO_SDK_PATH) / nspr/incl ude \
-1 $(GECKO_SDK_PATH)/ string/i ncl ude \

-1 $(GECKO_SDK_PATH) / embedst ri ng/ i ncl ude

GECKO_LDFLAGS = -L $(GECKO_SDK_PATH)/ xpconi bi n -1 xpcongl ue \
-L $(GECKO_SDK_PATH)/ nspr/bin -1 nspr4 \
-L $(GECKO_SDK_PATH) / nspr/bin -1 pl ds4 \

-L $(GECKO_SDK_PATH) / embedstri ng/ bi n/ -1 enbedstring

bui | d:
$(CXX) -0 MozShim so $(GECKO_CONFI G_| NCLUDE)
$(GECKO_DEFI NES) $(GECKO_I NCLUDES) $(GECK\
O LDFLAGS) $(CPPFLAGS) $(CXXFLAGS) MbzShi m cpp
chnmod +x Moz Shi m so

cl ean:
rm MbzShi m so

Figure 9. Sample M akefile for the Gecko SDK

174 Creating XPCOM Components

Appendix B:

XPCOM API Reference

XPCOM Core

XPCOM isMozilla's Cross Platform Component Object Model. It is used to unify
the creation, ownership, and deletion of objects and other data throughout Mozilla.
The following interfaces are the core interfaces associated with the functioning of

XPCOM.

Included Interfaces:

nsl Supports

nsl I nterfaceRequestor

nsl WeakReference
nslMemory

nsl ProgrammingL anguage

Creating XPCOM Components

175

Appendix B: XPCOM API Reference

nsl Supports

Thisistheinterface from which all other XPCOM interfacesinherit. It providesthe
foundation for XPCOM interface discovery and lifetime object management. In
most of our examples through the book, we used ns COvPt r which calls these
methods. For example, when we made callsto do_Quer yl nt er f ace, it made a
call to the method Quer yI nt er f ace on the target object.

Methods:

* Querylnterface
* AddRef

* Release

QuerylInterface

Provides a mechanism for requesting interfaces to which a given object might
provide access. The semanticsof Quer yl nt er f ace dictate that given an interface
A that you call Queryl nt er f ce onto get to interface B, you must be able to call
Queryl nterface onB to get back to A.

Syntax:

nsresult Querylnterface(const nslID & uuid, void *
*result);

Parameters:

uui d: The I | Dof the requested interface.

resul t: [out] Thereferenceto return. If this method call was successful, this
out parameter will have had its reference count increased by one, effectively
making the caller and owner of this object.

Result:

NS_K if the interface was successfully returned.
NS_NO NTERFACE if the object does not support the given interface.

176

Creating XPCOM Components

XPCOM Core

Example
#i ncl ude "nsl Conponent Regi strar. h"

ns| Conponent Regi strar* conpReg = nsnul | ;
nsresult rv =
aConpMyr - >Quer yl nt er f ace(kl Conponent Regi strarl | D, (voi d**) & conp) ;

You can also use nsCOMPt r helper method do_Quer ylI nt er f ace that calsthrough to
the Quer yI nt er f ace method of theaConpMyr object:

#i ncl ude "nsl Conponent Regi strar. h"

nsresult rv;

nsCOWPt r <ns| Conponent Regi strar> conpRef =
do_Queryl nterface(aConpMyr, &rv);

AddRef

Increments the internal refcount of the interface.
Syntax:

nsrefcnt AddRef ()

Parameters:

None.

Result:

The refcount.

Release

Decrements the internal refcount of the interface. When the count reaches zero, the
interface deletes itself. To prevent objects leaking, every reference count must be
accounted for. For example, if you call Quer yl nt er f ace on an object, the result
of this must be release at some point before the application shuts down. To release
an object you must either use ns COVPt r, a smart pointer which keeps track of
references, or you must manually called Rel ease on that object.

Syntax:

Creating XPCOM Components 177

Appendix B: XPCOM API Reference

nsrefcnt Rel ease()

Parameters:

None.

Result:

The refcount.

nsl I nterfaceRequestor

Thisinterface defines a generic interface for requesting interfaces to which a given
object might provide access. It isvery similar to Quer yl nt er f ace found in

nsl Suppor t s . The main difference is that interfaces returned from

Get | nt er f ace are not required to provide away back to the object implementing
thisinterface. The semantics of Q dictate that given an interface A that youQ on
to get to interface B, you must be ableto Q on B to get back to A. Thisinterface,
however, allows you to obtain an interface C from A that may or most likely will
not have the ability to get back to A.

Methods:

e Getlnterface

Getlnterface

Retrieves the specified interface pointer.
Syntax:

nsresult Getlnterface(const nslID & uuid, void *
*result);

Parameters:

uui d: ThelID of the interface being requested.
resul t: [out] Theinterface pointer to befilled in if the interfaceis accessible.

178

Creating XPCOM Components

XPCOM Core

Result:

NS_K if the interface was successfully returned.
NS_NO NTERFACE if the interface is not accessible.
NS_ERROR* if thereis method failure.

Example:

The interface that mMAébBr owser referencesisansl | nt er f aceRequest or. We
can ask thisinterface, if it knows anything about the ns1 WebBr owser . If it does, it
will return that object:

nsCOWPt r <ns| WebBr owser Fi nd> fi nder (do_Get | nt erface(mMAébBr owser));

nsl Weak Reference

Thisinterface gives accessto a proxy object that cooperateswith itsreferent to give
clients a non-owning, non-dangling reference. Clients own the proxy, and should
generally manage it with an nsCOWPt r as they would any other XPCOM object.
The Quer yRef er ent member function provides a owning reference on demand,
through which clients can get useful accessto the referent, while it still exists.

There are two common usage of thisinterface. The first is used for breaking a
shutdown problems where the implementing object may be deleted without the
owning object knowing about it. The second usage of thisinterfaceisto break
circular dependencies. A circular dependency iswhen object A refersto object B
and at the sametime, object B refersto abject A. In this case, special measures
must be taken to avoid memory leaks.

Methods:
* QueryReferent

Creating XPCOM Components 179

Appendix B: XPCOM API Reference

QueryReferent

Queriesthe referent, if it exists, and like Quer yI nt er f ace, returns an owning
reference to the desired interface.lt is designed to look and act exactly like (a
proxied) Quer yl nt er f ace. Don't hold on to the produced interface permanently;
that would defeat the purpose of using a non-owning nsl WeakRef er ence in the
first place.

Syntax:

nsresult QueryReferent(const nslID & uuid, void *
*result);

Parameters:

uui d: Thel I D of theinterface being requested.
resul t: [out] Theinterface pointer to befilled in if the interfaceis accessible.

Result:

NS K if successful.

Example

nsCOWPt r <ns| WeakRef er ence>
t hi sLi st ener (dont _AddRef (NS_Get WeakRef erence(l i stener)));

nslMemory

Thisinterface is used to allocate and deallocate memory. It also provides for
notifications in low-memory situations. This interface must be used to alocate all
memory that is passed between interface bountries. For example, if an interface
passes a memory buffer with the expectation that the buffer is now owned by the
caller, the assuption is that this memory buffer will be freed by the nsiMemory.
Thisrule need only apply to memory which passes through the interface boundry.
Internal component memory usage can use any allocator.

Thereisastatic helper class known as the nsMenor y which aidesin using the
ns| Menory. nsMenor y alows you to quickly obtain memory access without
having to aguire the pointer to the ns1 Menor y interface.

180

Creating XPCOM Components

XPCOM Core

A client that wishes to be notified of low memory situations (for example, because
the client maintains alarge memory cache that could be rel eased when memory is
tight) should register with the observer service (seens| Cbser ver Ser vi ce) using
the topic memory-pressure.

There are three specific types of notications that can occur. These types will be
passed as the aDat a parameter of the of the "memory-pressure” notification:

low-memory: Thiswill be passed as the extra data when the pressure observer
is being asked to flush for low-memory conditions.

heap-minimize: Thiswill be passed as the extra data when the pressure
observer is being asked to flush because of a heap minimize call.

alloc-failure: Thiswill be passed as the extra data when the pressure observer
has been asked to flush because amal | oc() orreal | oc() hasfailed.
Methods:

* Alloc

* Realloc

* Free

* HeapMinimize
* |IsLowMemory

Alloc

Allocates ablock of memory of aparticular size. If the memory cannot be allocated
(because of an out-of-memory condition), null is returned.

Syntax:

void * Alloc(size_ t size)
Parameters:

si ze: The size of the block to allocate.
Returns:

The block of memory.

Creating XPCOM Components 181

Appendix B: XPCOM API Reference

Realloc

Reallocates a block of memory to anew size.

Syntax:

void * Realloc(void * ptr, size_ t newsSize);
Parameters:

ptr: Theblock of memory to realocate.
si ze: The new size.

Returns:

Thereallocated block of memory

Note: If pt r isnull, thisfunction behaveslike mal | oc. If s isthe size of the block
towhich pt r points, thefirstmi n('s, si ze) bytesof pt r 'sblock are copied to the
new block. If the allocation succeeds, pt r isfreed and a pointer to the new block
returned. If the allocation fails, pt r is not freed and null isreturned. The returned
value may bethesameasptr .

Free

Frees ablock of memory. Null is a permissible value, in which case nothing
happens.

Syntax:
void Free(void * ptr);

Parameters:

ptr: Theblock of memory to free.
Returns:

None.

HeapMinimize

Attempts to shrink the heap. This method is scriptable.

182

Creating XPCOM Components

XPCOM Core

Syntax:

nsresult HeapM ni ni ze(PRBool i medi ate);

Parameters:

i mredi at e: If the valueistrue, heap minimization will occur immediately if
the call was made on the main thread. If the value is false, the flush will be
scheduled to happen when the app isidle.

Result:

NS_ERROR_FAI LURE if 'immediat€’ is set and the call was not on the
application’s main thread.

IsLowMemory

Indicates alow-memory situation (what constitutes low-memory is platform
dependent). This can be used to trigger the memory pressure observers.
Syntax:
nsresult |sLowMenory(PRBool * retval)
Parameters:

None.
Returns:

TRUE if memory islow.
FALSE otherwise.

nsl ProgrammingL anguage

Enumeration of programming languages. These values are used by the
nsl C assl nf o interface and indicate in what programming language the
component was implemented. Note that the ZX81_BASI C valueis ajoke.

Constants

* UNKNOWN
* CPLUSPLUS

Creating XPCOM Components 183

Appendix B: XPCOM API Reference

e JAVASCRI PT

e PYTHON

e PERL

o JAVA

e ZX81 BASIC

» JAVASCRI PT2

Thislist can grow indefinitely. Existing items, however, must not be changed.

XPCOM Components

These interfaces provide access to XPCOM's mechanisms for creating, managing
and destroying objects.

Included Interfaces:

* nslComponentM anager
* nslFactory

* nsiModule

* nslComponentRegistrar
* nslServiceManager

* nslClassinfo

nsl ComponentM anager

This interface accesses the mechanism used to organize and create objectsin
XPCOM.

Methods:

* GetClassObject
* GetClassObjectByContractl D
* Createlnstance
* CreatelnstanceByContract| D

184

Creating XPCOM Components

XPCOM Components

GetClassObject

Returns the class object represented by the CI D adl ass. Theresult is an object
that implementsthe nsl Fact or y interface. The result may also implement the
nsl d assl nf o interface.

Syntax:

nsresult Getd assObject(const nsClD & ad ass, const
nslID & allD, void * *result);

Parameters:
ad ass: TheclassID of the class whose factory is being requested.

al I D: Theinterface ID of the interface that the factory’s class implements.
resul t: [out] The referenceto return.

Result:

NS_OK if successful.

GetClassObjectByContractl D

This method is exactly the sameasget Cl assChj ect butinstead of aCl D
parameter, this method takes a contract ID string.

Syntax:

nsresult Getd assObj ect ByContractl D(const char
*aContract| D, const nslID & allD, void * *result);

Parameters:
aContract | D The contract ID of the class whose factory is being requested.

al I D: Theinterface ID of the interface that the factory’s class implements.
resul t: [out] The referenceto return.

Result:

NS K if successful.

Creating XPCOM Components 185

Appendix B: XPCOM API Reference

Createl nstance

Creates an instance of the classindicated by the class ID and returns the interface
indicated by the interface ID.

Syntax:

nsresult Createlnstance(const nsClD & ad ass,
nsl Supports *aDel egate, const nslID & allD, void *
*result);

Parameters:

ad ass: TheclassID of the requested class.
aDel egat e: Used for aggregation.

al I D: ThelD of the requested interface.
resul t: [out] Thereferenceto return.

Result:

NS K if successful
Example

#i ncl ude "nsXPCOMCI D. h"

#i ncl ude "nsXPCOM h"

#i ncl ude "nsl Conponent Manager . h"
#i ncl ude "nsl SupportsPrimtives.h"

static NS_DEFI NE_Cl D(kSupportsStringCl D, NS_SUPPORTS _CSTRI NG CI D);

nsCOWPt r <nsl| Conponent Manager > conpMyr ;
rv = NS_Get Conponent Manager (gett er _AddRef s(conpMyr));
if (NS_FAILED(rv)) return rv;

nsl| SupportsCString* stringSupports;

conpMyr - >Cr eat el nst ance(kSupportsStringCl D, nsnul |,
NS _GET_I | D(nsl SupportsCString),
(voi d**) &stri ngSupports);

if (!stringSupports)
return NS_ERROR_UNEXPECTED;

186 Creating XPCOM Components

XPCOM Components

Createl nstanceByContractl D

Creates an instance of the class indicated by the contract 1D string and returns the
interface indicated by the interface ID.

Syntax:

nsresult CreatelnstanceByContractl D(const char
*aContract| D, nslSupports *aDel egate, const nslID &
allD, void * *result);

Parameters:

aContract| D: The contract ID of the requested class.
aDel egat e: Used for aggregation.

al I D: ThelD of the requested interface.

resul t: [out] Thereferenceto return.

Result:

NS K if successful
Example

#i ncl ude "nsXPCOMCI D. h"

#i ncl ude "nsXPCOM h"

#i ncl ude "nsl Conponent Manager . h"
#i ncl ude "nsl SupportsPrimtives.h"

nsCOWPt r <nsl| Conponent Manager > conpMr ;
rv = NS_Get Conponent Manager (gett er _AddRef s(conpMyr));
if (NS_FAILED(rv)) return rv;

nsl| SupportsCString* stringSupports;

conpMyr -

>Cr eat el nst anceByCont ract | D{ NS_SUPPORTS_CSTRI NG_CONTRACTI D, nsnul |,
NS_GET_I | D(nsl SupportsCString),
(voi d**) &stri ngSupports);

if (!stringSupports)
return NS_ERROR_UNEXPECTED;

Creating XPCOM Components 187

Appendix B: XPCOM API Reference

nsl Factory

A class factory allowsthe creation of nsl Suppor t s derived components without
specifying a concrete base class.

See “webL ockl.cpp” on page 68 for acomplete listing of a sample ns| Modul e
implementation.

Methods:

¢ Createlnstance
* LockFactory

Createl nstance

Creates an instance of an object that implements the specified | | D.
Syntax:

nsresult Createlnstance(nsl Supports *aCQuter, const
nslID &iid, void * *result)

Parameters:

aQut er : Pointer to a component that wishes to be aggregated in the resulting
instance. Thiswill be nsnull if no aggregation is requested.

iid: ThellD of theinterface being requested in the component which isbeing
currently created.

resul t: [out] Pointer to the newly created instance, if successful.

Result:

NS_OK if the component was successfully created and the interface being
reguested was successfully returned in result.

NS_NO NTERFACE if the interface not accessible.

NS_ERROR_NO AGGREGATI ON if an'outer’ object is supplied, but the
component is not aggregatable.

NS_ERROR* if thereis amethod failure.

188

Creating XPCOM Components

XPCOM Components

L ockFactory

Provides the client away to keep the component in memory until the client is
finished with it. The client can call LockFactory(PR_TRUE) to lock the factory and
LockFactory(PR_FALSE) to release the factory.

In the generic factory code we used thorough our examples, this method is a noop.

Syntax:

nsresult LockFactory(PRBool | ock);
Parameters:

| ock must be PR_TRUE or PR_FALSE
Result:

NS_OK if the lock operation was successful.
NS_ERROR* if thereis a method failure.

nslModule

This interface handles modul e registration and management. A module isanon
empty set of factories. The main entry point of all XPCOM component librares are
expected to return ansl Modul e implementation. This interface is meant to be
implemented by acomponent and called only from inside XPCOM. Devel opers are
not encouraged to call on thisinterface directly, but instead use the Component and
Service Manager for component access and control.

See page “webL ock1.cpp” on page 68 for a complete listing of a sample
ns| Modul e implementation.

Methods:

* GetClassObject
* Register Self

* Unregister Self
e CanUnload

Creating XPCOM Components 189

Appendix B: XPCOM API Reference

GetClassObject

Obtains afactory object from an nsl Mbdul e for agiven Cl Dand | | D pair. This
method is called from XPCOM when XPCOM wants to discover a class object for
CID implementing agiven 11D in a component library.

Syntax:

nsresult Getd assbj ect (nsl Conponent Manager *aConpMyr,
const nsCID & ad ass, const nslID & allD, void *
*aResul t)

Parameters:
aConmpMyr : The component manager.
ad ass: TheclassID of the class for which aResult is the factory.

al I D. Theinterface ID of the requested interface.
aResul t: [out] The referenceto return.

Result:

NS K if successful.

RegisterSelf

registerSelf is called by XPCOM on a component giving the component time to
register with the Component M anager.

Syntax:

nsresult Regi sterSel f(nsl Conmponent Manager *aConmpMyr,
nslFile *alLocation, const char *alLoaderStr, const char
*aType)

190

Creating XPCOM Components

XPCOM Components

Parameters:

aConpMyr : The Component Manager. This interface may be queried to the
nsl ComponentRegistrar for registration needs.

aLocat i on : Thelocation of the module on disk .

alLoader St r: Opaque loader specific string. Thisvalue is meant to be passed
into the registration methods of nslComponentRegistrar unmodified.

aType: Loader Type being used to load this module. This value is meant to be
passed into the registration methods of nslComponentRegistrar unmodified.

Result:

NS_OK if successful.

UnregisterSelf

unregisterSelf is called by XPCOM on a component giving the component time to
unregister itself from the Component Manager.

Syntax:

nsresul t Unregi sterSel f(nsl Conponent Manager *aConpMr,
nsl File *alocation, const char *aloaderStr)

Parameters:

aConmpMyr : The component manager. This interface may be queried to the
nsl ComponentRegistrar for registration needs.

aLocat i on : Thelocation of the module on disk. This valueis meant to be
passed into the registration methods of nslComponentRegistrar unmodified.

aloader St r : Opaque loader specific string.This value is meant to be passed
into the registration methods of nslComponentRegistrar unmodified.

Result:

NS_OK if successful.

Creating XPCOM Components 191

Appendix B: XPCOM API Reference

CanUnload

Indicates that the moduleiswilling to be unloaded. This does not guarantee that the
module will be unloaded. Unless you know that you component can be unloaded
safely, you must return FALSE.

The generic module always returns false.

Syntax:

nsresult CanUnl oad(nsl Conponent Manager *aConpMyr,
PRBool * retval)

Parameters:

aConmpMyr : The component manager.
Return:
PR_TRUE if the moduleiswilling to be unloaded. It is very important to check

that no outstanding references to the modul€’ s code/data exist before returning
true.

PR_FALSE guarantees that the module will not be unloaded.

nsl ComponentRegistrar

Thisinterface handles all component registration and management in XPCOM.
There are basically four conceptual partsto thisinterface: (1) queries to see what
has been registered, (2) register methods that take an in-memory instance of

nsl Factory objects, (3) register componentsthat exist at a specific place, and finally
(4) callbacks that allow components to register themselves during nslModule
method RegisterSelf.

Methods:

* AutoRegister

e AutoUnregister

* RegisterFactory

e Unregister Factory

* Register FactoryL ocation

192

Creating XPCOM Components

XPCOM Components

* Unregister FactoryL ocation
* |IsCIDRegistered

e IsContractl DRegistered

* EnumerateClDs

* EnumerateContractl Ds

* CIDToContractID

* ContractIDToCID

AutoRegister

Registers a component file or all component filesin adirectory. Thismethod is
usually called by the application to register acomponent or all componentsin a
directory. If adirectory is pass, the directory will be recursively traversed. Each
component file must be valid as defined by acomponent’s loader. For example, if
the given fileisanative library, it must export the symbol NSGet Mbdul e. Other
loaders may have different semantics.

This method may only be called from the main thread.
Syntax:

nsrsult AutoRegister(nslFile *aSpec);

Parameters:

aSpec: Filename spec for component file's location. If aSpec isadirectory,
then every component file in the directory will be registered. If theaSpec is
null, then the application component's directory and the GRE components
directory, if one exists, will be registered. (see nsIDirectoryService.idl)

Creating XPCOM Components 193

Appendix B: XPCOM API Reference

Result:

NS_OK if registration was successful.
NS_ERRCR if not.

#i ncl ude " nsXPCOMCI D. h"
#i ncl ude "nsXPCOM h"
#i ncl ude "nsl Conponent Regi strar. h"

nsCOWPt r <ns| Conponent Regi strar> regi strar;
nsresult rv = NS_Cet Conponent Regi strar(getter_AddRefs(registrar));
if (NS_FAILED(rv)) return rv;

rv = registrar->Aut oRegi ster(nsnull);

AutoUnregister

Similar to aut oRegi st er, this method registers acomponent file or all component
filesin adirectory. This method is usually called by the application to unregister a
component or all componentsin adirectory.

This method may only be called from the main thread.
Syntax:

nsresult AutoUnregi ster(nslFile *aSpec)

Parameters:
aSpec: Filename spec for component file'slocation. If aSpec isadirectory,
then every component file in the directory will be registered. If the aSpec is

null, then the application component’s directory and the GRE components
directory, if one exists, will be registered. (see nsIDirectoryService.idl)

Result:

NS_OK if unregistration was successful.
NS_ERRCR if not.

194 Creating XPCOM Components

XPCOM Components

RegisterFactory

Registers ainstantiated ns| Fact or y factory object with a given ContractID, CID,
and Class Name. Thisns! Fact ory object will only be registered until XPCOM
shuts down.

Syntax:

nsresult Regi sterFactory(const nsClD & aCl ass, const
char *aC assNane, const char *aContractl D, nslFactory
*aFact ory)

Parameters:
aCl ass: TheCID.
aCl assNane: The Class Name associated with adl ass.

aContract| D The ContractlD associated with adl ass.
aFactory: Thefactory that will be registered for aCl ass.

Result:

NS_OK if registration was successful.
NS_ERRCR if not.

UnregisterFactory

Unregisters afactory associated with CID ad ass.
Syntax:

nsresult UnregisterFactory(const nsClD & ad ass,
nsl Factory *aFactory)

Parameters:

ad ass: The CID being unregistered.

aFactory: Thefactory that will be unregistered for adl ass.
Result:

NS_OK if unregistration was successful.
NS_ERRCR if not.

Creating XPCOM Components 195

Appendix B: XPCOM API Reference

RegisterFactoryL ocation

Thisisalow level method that allows registration of afactory object given
ContractID, CID and Class Name, location, and so forth. This call isusually maded
from the ns1 Modul e implementations of a component library to register its
factories.

Syntax:

nsresult Regi sterFactorylLocation(const nsClD & ad ass,
const char *aC assNane, const char *aContractI D, nslFile
*aFile, const char *alLoaderStr, const char *aType)

Parameters:

aCl ass: The CID of the class.
aCdl assNane: TheClass Name of adl ass.
aContract | D. The ContractlD associated with adl ass.

aFil e: The Component File. Thisfile must have an associated loader and
export the required symbols which thisloader specifies.

alLoader Str: An opaque loader specific string. Thisvalueis passed into the
nsl Modul e'sregi st er Sel f callback and must be fowarded unmodified
when registering factories via their location.

aType: The Component Type of aCl ass. Thisvalueis passed into the
nsl Modul e'sregi st er Sel f callback and must be fowarded unmodified
when registering factories viatheir location.

Result:

NS K if registration was successful.
NS_ERRCR if not.

See page “weblL ock1.cpp” on page 68 for a complete listing of a sample
ns| Modul e implementation which callsr egi st er Fact or yLocat i on.

UnregisterFactoryL ocation

Thisisalow level method that allows unregistering a factory associated with
ad ass. Thiscall isusually maded from the nslModule implementations of a
component library to unregister its factories.

196

Creating XPCOM Components

XPCOM Components

Syntax:

nsresult Unregi st erFactorylLocation(const nsCID &
aCl ass, nslFile *aFile)

Parameters:

ad ass: The CID being unregistered.
aFil e: The Component File previously registered.

Result:

NS_OK if unregistration was successful.
NS_ERRCR if not.

See page “weblL ock1.cpp” on page 68 for a complete listing of a sample
ns| Modul e implementation which calls unr egi st er Fact or yLocat i on.

|SCIDRegistered

Returnstrueif afactory is registered for aCID.

Syntax:

nsresult |sCl DRegi stered(const nsClD & aCl ass, PRBool
* retval)

Parameters:

ad ass: The CID queried for registration.
Returns:

TRUE if afactory isregistered for the CID
FALSE if not.

| sContractl DRegistered

Returnstrueif afactory is registered for a ContractID.

Syntax:

Creating XPCOM Components 197

Appendix B: XPCOM API Reference

nsresult |sContractl| DRegi stered(const char
*aContract| D, PRBool * _retval)

Parameters:

aContract| D The ContractlD queried for registration.
Returns:

TRUE if afactory isregistered for the ContractID.
FALSE if not.

EnumerateClDs

Enumerates the list of al registered CIDs. Elements of the enumeration can be
Queryl nterface'dforthensl Support sl Dinterface. From the
ns| Support sl D, you can obtain the actual CID.

Syntax:

nsresul t Enumer at eCl Ds(nsl Si npl eEnuner ator **_retval)

Parameters:

None.
Returns:

An enumerator for CIDs

EnumerateContractiDs

Enumerates the list of all registered ContractlDs. Elements of the enumeration can
be Queryl nt er f ace'd for thensl Support sCStri ng interface. From the
nsl Suppor t sCSt ri ng interface, you can obtain the actual Contract 1D string.

Syntax:

Enumer at eContract | Ds(nsl Si npl eEnunerator ** _retval)

Parameters:

None.

198

Creating XPCOM Components

XPCOM Components

Returns:

An enumerator for ContractIDs.

CIDToContractlD

Gets the ContractID for agiven CID, if one exists and is registered.
Syntax:

nsresult Cl DToContract!lD(const nsClD & aCl ass, char
** retval)

Parameters:

ad ass: The CID whose ContractlD is being sought.
Returns:

The Contract!D.

ContractiDToCID

Getsthe CID for agiven Contract 1D, if one exists and is registered.
Syntax:

nsresult Contractl DToCl D(const char *aContractl D, nsCI D
* * retval)

Parameters:

aCont ract | D: The ContractlD whose CID is being sought.
Returns:

The CID.

Creating XPCOM Components 199

Appendix B: XPCOM API Reference

nsl ServiceM anager

This interface provides a means to obtain global services (ie, accessto asingleton
object) in an application. . Users of the service manager must first obtain a pointer
to the global service manager by calling NS_Get Ser vi ceManager . After that, they
can request specific services by calling Get Ser vi ce. When they are finished they
should NS _REL EASE the service asusual. A user of a service may keep references
to particular services indefinitely and must call Release only when XPCOM shuts
down.

Methods:
e GetService
e GetServiceByContractl D

* |sServicel nstantiated
* IsServicel nstantiatedByContractl D

GetService

Returnsthe object that implementsad ass and theinterfaceal | D. This may result
in the object being created.

Syntax:

nsresult GetService(const nsClD & ad ass, const nslID &
allD, void * *result)

Parameters:
ad ass: TheclassID of the requested class.

al I D: Theinterface ID of the requested interface.
resul t :[out] Theresulting service

Result:

NS K if successful.
Example

200

Creating XPCOM Components

XPCOM Components

nsCOWPt r <nsl Ser vi ceManager > nor;
NS_Cet Ser vi ceManager (getter _AddRefs(ngr));

if (mgr)
rv = ngr->Cet Service(nCID, allD, (void**)alnstancePtr);

GetServiceByContractlD

Returns the object that implementsaCont r act | D and the interface al | D. This
may result in the instance being created.

Syntax:

voi d nsl Servi ceManager : : Get Servi ceByContract| D(in
string aContractl D, in nsll|DRef
allD [iid_is(allD),retval] out nsQ Result result)

Parameters:
aContract| D Thecontract ID of the requested class.

al I D: Theinterface ID of the requested interface.
resul t :[out] The referenceto return.

Result:

NS_OK if successful.

Example

nsCOWPt r <nsl Ser vi ceManager > ngr;
NS_GCet Ser vi ceManager (getter _AddRefs(ngr));

if (ngr)
rv = ngr->Cet Servi ceByCont ract | D(
mContractI D, allD, (void**)aServicePtr);

| sServicel nstantiated

Returns TRUE if the singleton service object has already been created.
Syntax:

Creating XPCOM Components 201

Appendix B: XPCOM API Reference

nsresult |sServicelnstantiated(const nsClD & ad ass,
const nslID & all D, PRBool * _retval)

Parameters:

ad ass: Theclass D of the requested class.
al I D: Theinterface ID of the requested interface.

Return:

PR_TRUE if the object has already been created.
PR_FALSE if the object has not been created.

| sServicel nstantiatedByContractl D

ReturnsTRUE if the singleton service object has already been created.
Syntax:

nsresult |sServicelnstantiatedByContract! D(const char
*aContract| D, const nslID & allD, PRBool * retval)

Parameters:

aCont ract | D: The contract ID of the requested class.
al I D: Theinterface ID of the requested interface.

Result:

PR_TRUE if the object has already been created.
PR_FALSE if the object has not been created.

nsl Classlnfo

This interface provides information about a specific implementation class.

Methods:

e Getlnterfaces
* GetHelperForLanguage
* GetContractlD

202

Creating XPCOM Components

XPCOM Components

* GetClassDescription

* GetClassID

* GetlmplementationL anguage
* GetClassIDNoAlloc

* GetFlags

Getlnterfaces

Returns an ordered list of the interface IDs that instances of the class promiseto
implement. Note that ns| Suppor t s isanimplicit member of any such list and

need not beincluded. Should set *count = O and*array = nul | and return
NS_CK if getting the list is not supported.

Syntax:

nsresult Getlnterfaces(PRU nt32 *count, nslID* **array)
Parameters:

count : [out] The number of implemented interfaces.

array: [out] Thelist of implemented interfaces.
Result:

NS_OK if successful, or if getting list is not supported.

GetHelperForL anguage

Gets a language mapping specific helper object that may assist in using objects of
this class in a specific lanaguage. For instance, if asked for the helper for

nsl| Progranm ngLanguage: : JAVASCRI PT this might return an object that can
be Ql'd into the ns| XPCScr i pt abl e interface to assist XPConnect in supplying
JavaScript specific behavior to callers of the instance object. Should return null if
no helper available for given language.

Syntax:

nsresul t Get Hel per For Language(PRUI nt 32 | anguage,
nsl Supports ** retval)

Creating XPCOM Components 203

Appendix B: XPCOM API Reference

Parameters:

| anguage: An integer representing the requested language.
Returns:

The helper object.

See also: nsl Progr ammi ngLanguage for language constants.

GetContractl D

Returnes a string contract 1D through which an instance of this class can be created
(or accessed asa service, if f1 ags & SI NGLETON), or null.

Syntax:

nsresult GetContractlD(char * *aContractl| D)

GetClassDescription

Gets a human readabl e string naming the class, or null.
Syntax:

nsresult GetC assDescription(char * *aC assDescri ption)

GetClassID

Getsthe class I D through which an instance of this class can be created (or accessed
asaservice, if fl ags & SI NGLETON), or null.

Syntax:

nsresult Getd asslD(nsCID * *ad asslID);

204

Creating XPCOM Components

XPCOM Components

GetlmplementationL anguage

Gets the language type from list in nsl Pr ogr anmi ngLanguage.

Syntax:

nsresult GCetlnpl enentati onLanguage(PRU nt 32
*al npl enent ati onLanguage) ;

GetClassi DNoAlloc

Getsaclass ID through which an instance of this class can be created (or accessed
asaservice, if f1 ags & SI NGLETON). If the class does not have a CID, it should
return NS ERROR_NOT_AVAILABLE. This attribute exists so C++ calers can
avoid allocating and freeing a CID, as would happen if they used class ID.

Syntax:
nsresult Getd assl DNoAl | oc(nsCl D *aCd ass| DNoAl | oc)

GetFlags

Returns implementation flags which made be ORed together of the values below.
Syntax:

nsresult GetFl ags(PRU nt 32 *aFl ags)

Flags:

Creating XPCOM Components 205

Appendix B: XPCOM API Reference

Note: The high order bit is RESERVED for consumers of these flags. No
implementor of this interface should ever return flags with this bit set.

SINGLETON

Flag specifies that the object is a singleton or service.

THREADSAFE

Flag specifies that the object is a threadsafe.

MAIN_THREAD_ONLY

Flag specifies that the object may only be called from the main (Ul) thread.
DOM_OBJECT

Flag specifies that the object is part of the DOM.

PLUGIN_OBJECT

Flag specifies that the object isa plugin object.

CONTENT_NODE

Flag specifies that the object is a content node.

EAGER_CLASSINFO

Flag tells the generic modul e code to construct afactory object during initialization.

RESERVED

Flags saved for future use.

XPCOM Data Sructures

These interfaces provide access to various utility mechanismsin XPCOM.

Included Interfaces:
* nslCategoryM anager

* nslObserver

* nslObserverService

* nslProperties

206 Creating XPCOM Components

XPCOM Data Structures

* nslSimpleEnumerator
* nslSupportsPrimitives

nsl CategoryM anager

Thisinterface isimplemented by an object that wants to observe an event
corresponding to atopic.

Methods:

* GetCategoryEntry

e AddCategoryEntry

* DeleteCategoryEntry
* DeleteCategory

* EnumerateCategory

* EnumerateCategories

GetCategoryEntry

Get the value for the given category’s entry.
Syntax:

nsresult Get CategoryEntry(const char *aCategory, const
char *aEntry, char ** retval)

Parameters:
aCat egor y: The name of the category (e.g. "protocol™).

akEnt ry: The entry you'relooking for (e.g. "http").

_retval : [out] returnsthe category entry corresponding to the category and
entry.

Result:

NS_OK if successful.

Creating XPCOM Components 207

Appendix B: XPCOM API Reference

AddCategoryEntry

Add an entry to a category.
Syntax:

nsresult AddCat egoryEntry(const char *aCategory, const
char *aEntry, const char *aVal ue, PRBool aPersi st,
PRBool aRepl ace, char ** retval)

Parameters:

aCat egor y: The name of the category (e.g. "protocal™).
akEnt ry: The entry you'relooking for (e.g. "http").
aval ue: Thevalue for the entry ("moz.httprulez.1")

aPer si st : Should we persist between invocations? This valueisignored in
some implementations.

aRepl ace: Should wereplace an existing entry? Thisvalueisignored in some
implementations.

_retval : [out] Returnsthe previous category entry corresponding to the
category and entry Previous entry, if any..

Result:

NS_OK if successful.

DeleteCategoryEntry

Delete an entry from the category.

Syntax:
nsresult Del et eCat egoryEntry(const char *aCategory,
const char *aEntry, PRBool aPersist)

Parameters:

aCat egor y: The name of the category (e.g. "protocol™).
akEnt ry: Theentry you'relooking for (e.g. "http").

aPer si st : Should we persist between invocations? This valueisignored in
some implementations.

208

Creating XPCOM Components

XPCOM Data Structures

Result:

NS K if successful.

DeleteCategory

Delete a category and al entries.
Syntax:

nsresult Del et eCat egory(const char *aCategory)
Parameters:

aCat egor y: The name of the category (e.g. "protocal™).
Result:

NS K if successful.

EnumerateCategory

Enumerate the entries in a category.

Syntax:

nsresul t Enumer at eCat egory(const char *aCat egory,
nsl Si npl eEnunerator **_retval)

Parameters:

aCat egor y: The name of the category (e.g. "protocaol™).

_retval : [out] returns an enumeration of all of the entriesin the given
category. The elements of the enumeration can be Querylnterface'd for the
nsl SupportsCString interface. From the nsl SupportsCString, you can obtain
the actual string of the entry.

Result:

NS K if successful.

Creating XPCOM Components 209

Appendix B: XPCOM API Reference

EnumerateCategories

Enumerate the entries in a category.

Syntax:

nsresult Enuner at eCat egori es(nsl Si npl eEnuner at or
** retval)

Parameters:

_retval : [out] returns an enumeration of all of the category. The elements of
the enumeration can be Querylnterface' d for the nsl SupportsCString interface.
From the nsl SupportsCString, you can obtain the actual string of the category
name.

Result:

NS K if successful.

nsl Obser ver

Thisinterface isimplemented by an object that wants to observe an event
corresponding to atopic.

See also: nsl Obser ver Ser vi ce.

Methods:

e Observe

Observe

Called when there is a notification for the topic aTopi ¢. The object implementing
thisinterface must have been registered with an observer service such asthe

nsl Obser ver Servi ce. If you expect multiple topics/subjects, your
implementation is responsible for filtering. You should not modify, add, remove, or
enumerate notifications in the implemention of observe.

Syntax:

210

Creating XPCOM Components

XPCOM Data Structures

nsresult Cbserve(nsl Supports *aSubj ect, const char
*aTopi ¢, const PRUni char *abDat a)

Parameters:

aSubj ect : Notification specific interface pointer.
aTopi c: The notification topic or subject.
abDat a: Notification specific wide string, depending on the subject event.

Result:

NS K if successful.

See page “ Getting Called at Startup” on page 91, where thisinterface is
implemented.

nsl Observer Service

Service alows aclient listener (ns| Obser ver) to register and unregister for
notifications of a specific string referenced topic. Service also provides away to
notify registered listeners and a way to enumerate registered client listeners
Methods:

* AddObserver

* RemoveObserver

* NotifyObservers

* EnumerateObservers

AddObserver

Registers a given listener for a notifications regarding the specified topic.
Syntax:

nsresult AddCbserver (nsl Gbserver *anCbserver, const
char *aTopi ¢, PRBool ownsWak)

Creating XPCOM Components 211

Appendix B: XPCOM API Reference

Parameters:

anQoser ver : Theinterface pointer to the object which will receive
notifications.
aTopi c: The natification topic or subject.

ownsWeak: If settofalse, thens!l Coser ver Ser vi ce will hold astrong
reference to anoser ver . If set to true and anCbser ver supportsthe

ns| WeakRef er ence interface, aweak reference will be held. Otherwise an
error will be returned.

Result:

NS K if successful.

Example:

nsCOWPt r <ns| Cbser ver Servi ce> observer Servi ce(
do_Get Servi ce(/" @mzill a. org/ observer-service; 1"/, &vV));
i f (NS_SUCCEEDED(rV))
rv = observer Servi ce->AddObser ver (
this,
NS_XPCOM _SHUTDOMWN_OBSERVER | D, PR _TRUE);

RemoveObserver

Unregisters agiven listener from notifications regarding the specified topic.

Syntax:

nsresult RemoveCbserver (nsl Gbserver *anCbserver, const
char *aTopi c)

Parameters:

anQoser ver : Theinterface pointer to the object which should stop receiving
notifications.

aTopi c: The natification topic or subject.
Result:

NS K if successful.
Example:

212 Creating XPCOM Components

XPCOM Data Structures

nsCOWPt r <ns| Cbser ver Ser vi ce> observer Servi ce(

do_Get Servi ce(/" @mzill a. org/ observer-service; 1"/, &v));

i f (NS_SUCCEEDED(rvV))
rv = observer Servi ce- >RenoveObser ver (
this,
NS_XPCOM_SHUTDOMN_OBSERVER | D) ;

NotifyObservers

Notifiesall registered listeners of the given topic.
Syntax:

nsresult NotifyCbservers(nsl Supports *aSubject, const
char *aTopi c, const PRUni char *soneDat a)
Parameters:
aSubj ect : Notification specific interface pointer.
aTopi c: The notification topic or subject.
soneDat a: Notification specific wide string.
Result:
NS_OK if successful.
Example:
Creating XPCOM Components 213

Appendix B: XPCOM API Reference

nsCOWPt r <nsl Ser vi ceManager > nor;
NS_GCet Ser vi ceManager (getter _AddRefs(ngr));

if (!nmgr)
return NS_ERROR_FAI LURE;

nsCOWPt r <ns| Cbser ver Servi ce> observer Servi ce;

rv = ngr->Get Servi ceByContract | D(" @mzi |l | a. or g/ obser ver-service; 1",
NS _GET_I | D(nsl Obser ver Servi ce),
getter _AddRef s(observer Service));

if (!observerService)
return NS_ERROR_FAI LURE;

char* string = "My Topic";
PRUni char* wstring = nsnull;

nsl Supports* context;

observer Servi ce->Noti f yObservers(context, string, wstring);

EnumerateObservers
Returns an enumeration of all registered listeners.

See also: nsl Si npl eEnuner at or .
Syntax:

nsresult Enunerat eCbservers(const char *aTopi c,
nsl Si npl eEnunerator ** _retval)

Parameters:

aTopi c: The natification topic or subject.

Result:

NS K if successful.

Example

214

Creating XPCOM Components

XPCOM Data Structures

nsCOWPt r <nsl Ser vi ceManager > nor;
NS_Cet Ser vi ceManager (getter _AddRefs(ngr));
if (!nmgr)

return NS_ERROR_FAI LURE;

nsCOWPt r <ns| Cbser ver Servi ce> observer Servi ce;

mgr - >Get Ser vi ceByCont ract | D(" @rozi | | a. or g/ obser ver - servi ce; 1",
NS _GET_I | D(nsl Obser ver Servi ce),
gett er _AddRef s(observer Service));

if (!observerService)
return NS_ERROR_FAI LURE;

nsCOWPt r <nsl Si npl eEnuner at or > t heEnum
rv = observer Servi ce- >Enuner at eObser ver s(<sonet opi c>,
getter _AddRef s(t heEnum));

if (theEnum
{
PRBool | oop = PR_TRUE
whi | e (NS_SUCCEEDED(t heEnum >HasMor eEl enment s(& oop)) && | oop)
{
nsCOWPt r <nsl Support s> inst;
t heEnum >Get Next (getter _AddRefs(inst));
if (inst) { do sonething useful }
}
}

nsl Properties

Thisinterfaceis.

See “The Directory Service” on page 112 for both an implementation of this
interface and a client usage example.

Methods:
e Get

* Set

* Has

Creating XPCOM Components 215

Appendix B: XPCOM API Reference

e Undefine
* GetKeys

Get

Gets a property with a given name.
Syntax:

nsresult Get(const char *prop, const nslID & iid, void *
*result)

Parameters:
prop: A property name string key.
i i d: ThellD to Querylnterface any result of the Get.
resul t: [out] The property with the given name, if any.

Result:

NS K if successful.
NS_ERROR_FAI LURE if a property with that name doesn't exist.
NS_ERROR_NO | NTERFACE if a property with that name doesn't exist.

Set

Sets a property with a given name to a given value.
Syntax:

nsresult Set(const char *prop, nslSupports *result)

Parameters:

prop: A property name string key.
resul t: The property with the given name.
Result:

NS_OK if successful.

216 Creating XPCOM Components

XPCOM Data Structures

Has
Returnstrue if the property with the given name exists.
Syntax:

nsresult Has(const char *prop, PRBool * retval)
Parameters:

prop: A property name string key.
_retval : Trueif the propery exists with the given string key.

Result:

NS K if successful.

Undefine
Undefines a property.
Syntax:

nsresult Undefine(const char *prop)
Parameters:

prop: A property name string key.
Result:

NS K if successful.
NS_ERROR_FAI LURE if a property with that name doesn't exist.

GetKeys

Returns an array of the keys.
Syntax:

nsresult GetKeys(PRU nt32 *count, char ***keys)

Creating XPCOM Components 217

Appendix B: XPCOM API Reference

Parameters:

count : If successful, count will contain the number of keys.

keys: Anarray of all keysin know by the object implementing the
nsl Properties interface.

Result:

NS_OK if successful.
NS_ERROR_FAI LURE if a property with that name doesn't exist.

nsl SimpleEnumer ator

Thisinterface is used to enumerate over elements defined by itsimplementor.
Although hasMor eEl ement s() can be called independently of get Next (),

get Next () must be preceded by acall to hasMor eEl enent s() . Thereis no way
to "reset" an enumerator, once you obtain one.

Thensl Si npl eEnuner at or interface is shown in the section “ The Web Locking
Interface” on page 105.

Methods:

* HasMoreElements

* GetNext
* GetType

HasM oreElements

Determines whether or not the enumerator has any elements that can be returned
viaget Next () . Thismethod is generally used to determine whether or not to
initiate or continue iteration over the enumerator, though it can be called without
subsequent get Next () calls. This does not affect internal state of enumerator.

Syntax:

nsresul t HasMor eEl enent s(PRBool *_retval)

218 Creating XPCOM Components

XPCOM Data Structures

Parameters:
None.
Result:

PR_TRUE if there are remaining elements in the enumerator.
PR_FALSE if there are no more elements in the enumerator.

GetNext

Called to retrieve the next element in the enumerator. The "next" element isthe first
element upon the first call. Must be preceded by acall to hasMor eEl enent s()
which returns PR_TRUE. This method is generally called within aloop to iterate
over the elementsin the enumerator.

Syntax:
nsresult Get Next(nsl Supports ** retval)
Parameters:
None.
Result:

NS_K if the call succeeded in returning a non-null value.
NS_ERROR_FAl LURE if there are no more elements to enumerate.

nsl Suppor tsPrimitives

This group of interfaces provide ways to wrap primiatives such as integers, floats,
doubles, chars, strings, etc. so that these values may be passed between interface
boundries using ans!| Support s parameter. The base class of these primitive
wrappersisthens! SupportsPrimitive.

These objects can be constructed by calling the Component Manager with the
appropriate Class ID or Contract ID listed in nsXPCOMCID.h.

Also see “ SetSites’ on page 124, where we create and use an
nsl Support sCSt ri ng object.

Creating XPCOM Components 219

Appendix B: XPCOM API Reference

GetType

Determines what kind of primative the nsl SupportsPrimimitive subclass supports..

Syntax:

nsresult GetType(PRU nt16 *aType)
Parameters:

aType: [out] Thetype of the primative. This value will be one of the following

constants.
TYPE_ID TYPE_CSTRI NG
TYPE_STRI NG TYPE_PRBOOL
TYPE_PRUI NT8 TYPE_PRUI NT16
TYPE_PRUI NT32 TYPE_PRUI NT64
TYPE_PRTI ME TYPE_CHAR
TYPE_PRI NT16 TYPE_PRI NT32
TYPE_PRI NT64 TYPE_FLOAT
TYPE_DOUBLE TYPE_I NTERFACE_PO NTER
TYPE_VO D

Thesefirst three are pointer types and do data copying using the ns1 Menory.

The derived classes implement a getter and setter for its data type and a ToString
method that returnsans| Menor y allocated string representative of the data. These

interfaces are:
nsl Supportsli D nsl SupportsString
nsl SupportsCStri ng nsl Support sPRBool
nsl Support sPRUI nt 8 nsl| Support sPRUI nt 16
nsl Suppor t sPRUI nt 32 nsl Suppor t sPRUI nt 64
nsl Support sPRTi ne nsl Support sChar

220 Creating XPCOM Components

XPCOM I/O

nsl Support sPRI nt 16 nsl Suppor t sPRI nt 32
nsl Support sPRI nt 64 nsl Support sFl oat
nsl Support sDoubl e nsl| Support sVoi d

nsl Support sl nt er f acePoi nt er

XPCOM 1/0

These interfaces provide access to various XPCOM 1/O related services.

Included Interfaces:

* nsIDirectoryServiceProvider
* nslDirectoryServiceProvider2
* nsIDirectoryService

* Well Known Locations

* nglFile

e nslinputStream

* nslLocdFile

* nslOutputStream

nsl DirectoryServiceProvider

Thisinterface is used by Directory Serviceto get file locations.

Methods:
e GetFile

GetFile

Provides DirectoryService with a prop on the first request or on every request if the
prop is not persistent.

Creating XPCOM Components 221

Appendix B: XPCOM API Reference

Syntax:

nsresult GetFile(const char *prop, PRBool *persistent,
nslFile ** retval)

Parameters:

prop: The symbolic name of thefile.

persi stent: [out] If true, the returned file will be cached by Directory
Service. Subsequent requests for this prop will bypass the provider and use the
cache. If false, the provider will be asked for this prop each timeit is requested.

Returns:

Thefile represented by the property.
Example:

nsCOWPt r <nsl| Properti es> dir Service;
rv = servMyr->Get Servi ceByContract | D(
NS_DI RECTORY_SERVI CE_CONTRACTI D,
NS _GET_| | D(nsl Properties),
getter_AddRef s(dirService));

if (NS_FAILED(rv))
return rv;

nsCOWPt r <nsl Fi | e> xpconDl | ;

rv = dirService->Cet (
NS_XPCOM LI BRARY_FILE, NS_GET_|1D(nslFile),
getter_AddRef s(xpconDl |));

if (NS_FAILED(rv))
return rv;

nsl DirectoryServiceProvider 2

Thisinterfaceisan extension of nsl Di r ect or ySer vi cePr ovi der which allows
multiple files to be returned for a given key.

Methods:
e GetFiles

222

Creating XPCOM Components

XPCOM I/O

GetFiles

Provides Directory Service with aprop when it gets a request for it and the
requested type isns! Si npl eEnuner at or.

Syntax:

nsresult GetFil es(const char *prop, nslSinpl eEnunerat or
** retval)

Parameters:

prop: The symbolic name of thefilelist.
Returns:

An enumerator for alist of file locations. The elements in the enumeration are
of thetypensl Fi | e.

nsl DirectoryService

This interface provides XPCOM'’s directory service.

Methods:

* Init

* RegisterProvider

e Unregister Provider

Init

Must be called. Thisfunction is used internally by XPCOM initialization and
developers are not required nor expected to call this method.

Syntax:

nsresult Init(void)

Parameters:

None.

Creating XPCOM Components 223

Appendix B: XPCOM API Reference

Result:

NS K if successful.

RegisterProvider

Registers a provider with the service.

Syntax:

nsresult Regi sterProvider(nslDirectoryServiceProvider
*
prov)

Parameters:

prov: The provider to be registered. The service will keep a strong reference
to this object. It will be released when the serviceis rel eased.

Result:

NS K if successful.

UnregisterProvider

Unregisters a provider with the service.

Syntax:

nsresult Unregi sterProvider(nslDirectoryServiceProvider
*
prov)

Parameters:

prov: The provider to be unregistered.

Result:

NS_OK if successful.

224

Creating XPCOM Components

XPCOM I/O

nslFile

There are many built in location which are known to XPCOM and are accessible
fromthensl! Di rect orySer vi ce. These values are defined in the
nsDirectoryServiceDefs.h.

Thisinterface isthe only correct cross-platform way to specify afile. Strings are
not such away. Despite the fact that they work on Windows or Unix, they will not
work here.

All methods with string parameters have two forms. The preferred form operates
on UCS-2 encoded characters strings. An aternate form operates on characters
strings encoded in the "native" charset. A string containing characters encoded in
the native charset cannot be safely passed to javascript viaxpconnect. Therefore,
the UCS-2 forms are scriptable, but the "native methods" are not.

Methods:

Append

AppendNative
Normalize

Create

CopyTo

CopyToNative
CopyToFollowingLinks
CopyToFollowingL inksNative
MoveTo

MoveToNative

Remove

Exists

IsWritable

I sReadable

| sExecutable

IsHidden

I sDirectory

Creating XPCOM Components 225

Appendix B: XPCOM API Reference

* |IsFile

* 1sSymlink

* |sSpecial

* CreateUnique
* Clone

* Equals

e Contains

Attributes and Constants:

* LeafName

* Permissions

* LastModificationTime
* FileSize

* Target

* Parent

* DirectoryEntries

Append

AppendNative

Makes a descendent of the current nsl Fi | e.

Syntax:
nsresult Append(const nsAString & node)
nsresult AppendNati ve(const nsACString & node)

Parameters:

node: A string which is intended to be a child node of thensl Fi | e. For the
appendNat i ve method, the node must be in the native filesystem charset.

226

Creating XPCOM Components

XPCOM I/O

Result:

NS K if successful.

Normalize

Normalizes the pathName (e.g. removing .. and . components on Unix).

Syntax:
nsresult Nornmalize(void)
Parameters:
None.
Result:

NS K if successful.

Create

Creates anew file or directory in the file system. Any nodes that have not been
created or resolved, will be. If thefile or directory already exists, cr eat e()
returnsNS_ERROR FI LE_ALREADY EXI STS.

The type flag must be either NORMAL_FI LE_TYPE or DI RECTORY_TYPE

Syntax:
nsresult Create(PRU nt32 type, PRU nt32 perni ssions)

Parameters:

t ype: This specifies the type of file system object to be made. The only two
types at thistime are file and directory which are defined below. If the typeis
unrecognized, returns (NS_ERROR_FI LE_UNKNOWN_TYPE).

per mi ssi ons: Unix style octal permissions. This may be ignored on systems
that do not need to do permissions.

Result:

NS K if successful.

Creating XPCOM Components 227

Appendix B: XPCOM API Reference

CopyTo

CopyToNative

Copiesthisfile to the specified newPar ent Di r. If anewNane is specified, thefile
will be renamed. If ’this' is not created, returns the error

(NS_ERROR_FI LE_TARGET_DOES_NOT_EXI ST). copyTo may fail if thefile
already existsin the destination directory. copy To will NOT resolve aliases/
shortcuts during the copy.

Syntax:

nsresult CopyTo(nslFile *newParentDir, const nsAString &
newNane)

nsresult CopyToNative(nslFile *newParentDir, const
NnsACSt ri ng & newNane)

Parameters:

newPar ent Di r : The destination directory. If the newPar ent Di r isempty,
copyTo() will usethe parent directory of thisfile. If the newPar ent Di r isnot
empty and is not adirectory, an error will be returned

(NS_ERROR_FI LE_DESTI NATI ON_NOT_DI R). For the CopyToNat i ve
method, the newNane must bein the native filesystem charset.

newNane: This param allows you to specify anew name for the file to be
copied. This param may be empty, in which case the current leaf name will be
used.

Result:

NS_OK if successful.

CopyToFollowingLinks

CopyToFollowingLinksNative

Isidentical to copyTo except, asthe name implies, it follows symbolic links. The
XP_UNIX implementation always follows symbolic links when copying.

228

Creating XPCOM Components

XPCOM I/O

Syntax:

nsresult CopyToFol | owi ngLi nks(nslFile *newParentDir,
const nsAString & newNane)

nsresult CopyToFol | owi ngLi nksNative(nslFile
*newParent Dir, const nsACString & newNane)

Parameters:

newPar ent Di r : The destination directory. If the newPar ent Di r isempty,
copyTo() will usethe parent directory of thisfile. If thenewPar ent Di r isnot
empty and is not adirectory, an error will be returned

(NS_ERROR_FI LE_DESTI NATI ON_NOT_DI R).

newNane: This param allows you to specify anew name for the file to be
copied. This param may be empty, in which case the current leaf name will be
used. For the copyToFol | owi ngLi nksNat i ve method, the newName must
be in the native filesystem charset.

Result:

NS K if successful.

MoveTo

MoveToNative

Movesthisfileto the specified newPar ent Di r. If a newNarre is specified, thefile
will be renamed. If 'this’ is not created, returns an error

(NS_ERROR_FI LE_TARGET_DCES_NOT_EXI ST). noveTo will NOT resolve
aliases/shortcuts during the copy. moveTo will do the right thing and allow copies
across volumes.

Syntax:

nsresult MoveTo(nslFile *newParentDir, const nsAString &
newNane)

nsresult MoveToNative(nslFile *newParentDir, const
NnsACSt ri ng & newNane)

Creating XPCOM Components 229

Appendix B: XPCOM API Reference

Parameters:

newPar ent Di r : This param isthe destination directory. If the newParentDir is
empty, noveTo() will rename thefile within its current directory. If the
newParentDir is not empty and does not name a directory, an error will be
returned (NS_ERROR_FI LE_DESTI NATI ON_NOT_DI R). For the

nmoveToNat i ve method, the newName must be in the native filesystem
charset.

newName: This param allows you to specify anew name for the file to be
moved. This param may be empty, in which case the current leaf name will be
used.For the noveToNat i ve method, the newName must be in the native
filesystem charset.

Result:

NS_OK if successful.

Remove

Triesto delete thisfile. The 'recursive’ flag must be PR_TRUE to delete directories
which are not empty. It will not resolve any symlinks.

Syntax:

nsresult Remove(PRBool recursive)

Parameters:

recur si ve: A boolean indicating whether or not to delete directories
recursively.

Result:

NS_OK if successful.

Exists
Determinesiif thisfile exists.

Syntax:

nsresult Exists(PRBool * retval)

230

Creating XPCOM Components

XPCOM I/O

Parameters:

None.
Returns:

TRUE if it exists.
FALSE otherwise.

[sSWritable

Determinesif thisfileiswritable.
Syntax:

nsresult |sWitabl e(PRBool

Parameters:

None.
Returns:

TRUE if it iswritable.
FALSE otherwise.

|sSReadable

Determinesif thisfileis readable.
Syntax:

* retval)

nsresult | sReadabl e(PRBool *_retval)

Parameters:

None.
Returns:

TRUE if it isreadable.
FALSE otherwise.

Creating XPCOM Components

231

Appendix B: XPCOM API Reference

| sSExecutable

Determines if thisfileis executable.

Syntax:

nsresult | sExecut abl e(PRBool

Parameters:

None.

Returns:

TRUE if it is executable.
FALSE otherwise.

IsHidden

Determines if thisfileis hidden.

Syntax:

* retval)

nsresult |sH dden(PRBool * retval)

Parameters:

None.

Returns:

TRUE if it is hidden.
FALSE otherwise.

IsDirectory

Determines if thisfileis adirectory.

Syntax:

nsresult |sDirectory(PRBool

Parameters:

None.

* retval)

232

Creating XPCOM Components

XPCOM I/O

Returns:

TRUE if itisadirectory.
FALSE otherwise.

IsFile
Determinesiif thisfileis afile.
Syntax:

nsresult |IsFile(PRBool * retval)

Parameters:

None.
Returns:

TRUE if itisafile.
FALSE otherwise.

|sSymlink
Determinesiif thisfileisasymbolic link.
Syntax:

nsresult 1sSym ink(PRBool * retval)
Parameters:

None.
Returns:

TRUE if itisasymlink.
FALSE otherwise.

| sSpecial

Determinesif thisfileis other than aregular file, adirectory, or a symbolic link.

Creating XPCOM Components 233

Appendix B: XPCOM API Reference

Syntax:

nsresult |sSpecial (PRBool * retval)

Parameters:

None.
Returns:

TRUE if itisnot afile, adirectory, or asymlink.
FALSE otherwise.

CreateUnique

Create anew file or directory in the file system. Any nodes that have not been
created or resolved, will be. If thisfile already exists, this tries variations on the
leaf name "suggestedName" until it finds one that does not already exist. If the
search for nonexistent files takes too long (thousands of the variants already exist),
it gives up and return NS_ERROR_FI LE_TOO BI G

The type flag must be either NORMAL_FI LE_TYPE or DI RECTORY_TYPE
Syntax:

nsresult CreateUni que(PRU nt32 type, PRU nt32
per m ssi ons)

Parameters:

t ype: The type of file system object to be made. The only two types at this
time are file and directory which are defined below. If the typeis
unrecongnized, returns an error (NS_ERROR_FI LE_UNKNOAN_TYPE).

per m ssi ons: Unix style octal permissions. This may beignored on systems
that do not need to do permissions.

Result:

NS_OK if successful.

Clone

Allocates and initializes an nslFile object to the exact location of t hi s nslFile

234

Creating XPCOM Components

XPCOM I/O

Syntax:

nsresult Clone(nslFile ** retval)

Parameters:

None.
Returns:

Annsl Fi | e with which this object will be initialized.

Equals

Determinesif i nFi | e equalsthis.
Syntax:

Equal s(nslFile *inFile, PRBool * retval)

Parameters:

i nFi | e: The comparison object.
Returns:

TRUE if thefilesare equal.
FALSE otherwise.

Contains

Determinesif i nFi | e isadescendant of thisfile. If r ecur istrue, it will also look
in subdirectories.

Syntax:

nsresult Contains(nslFile *inFile, PRBool recur, PRBool
* retval)

Parameters:

i nFi | e: Thefileto be evaluated.
recur : A boolean indicating whether subdirectories should be searched.

Creating XPCOM Components 235

Appendix B: XPCOM API Reference

Returns:

TRUE ifinfil e isadescendent of thisfile.
FALSE otherwise.

LeafName

Getters and setters for the leaf name of the fileitself. nat i veLeaf Name must bein
the native filesystem charset.

nsresult GetlLeaf Nane(nsAString & alLeaf Nane)
nsresult SetlLeaf Nane(const nsAString & alLeaf Nane)

nsresult GetNativelLeaf Nane(nsACString &
aNat i veLeaf Nane)

nsresult SetNativelLeaf Nane(const nsACString &
aNat i veLeaf Nane)

Permissions

Getters and setters for the permssion of the file or link.

nsresult GetPerm ssions(PRU nt 32 *aPer i ssi ons)
nsresult SetPerm ssi ons(PRU nt 32 aPerni ssi ons)

nsresult GetPerm ssi onsOf Li nk(PRU nt 32
*aPer m ssi onsOf Li nk)

nsresult SetPerm ssi onsOf Li nk(PRU nt 32
aPer m ssi onsCf Li nk)

LastModificationTime

Gets and sets time of the last file modification. Times are stored as milliseconds

236 Creating XPCOM Components

XPCOM I/O

from midnight (00:00:00), January 1, 1970 Greenwich Mean Time (GMT).
Syntax

nsresult GetlLast ModifiedTi ne(PRI nt 64
*alast Modi fi edTi ne)

nsresult SetLast ModifiedTi ne(PRI nt 64 alLast Modi fi edTi ne)

nsresult GetlLast ModifiedTi meCf Li nk(PRI nt 64
*alLast Modi fi edTi meX Li nk)

nsresult SetlLast ModifiedTi neCf Li nk(PRI nt 64
aLast Modi fi edTi meCf Li nk)

FileSize
Getters and setters for the file size.

Warning: On the Mac, getting/setting the file size with nsi Fi | e only deals with
the size of the datafork. If you need to know the size of the combined data and
resource forks use the Get Fi | eSi zeW t hResFor k() method defined on

nsl Local Fi | eMac.

Syntax

nsresult GetFileSize(PRINnt64 *aFileSize)

nsresult SetFileSize(PRInt64 aFil eSize)

nsresult GetFileSizeOLi nk(PRInt64 *aFil eSi zeXf Li nk)

Target

Getsthetarget, ie, what the symlink points at. Gives an error
(NS_ERROR_FI LE_| NVALI D_PATH) if not a symlink. Note that the ACSt ri ng
attribute is returned in the native filesystem charset.

Creating XPCOM Components 237

Appendix B: XPCOM API Reference

War ning:The native version of these strings are not guaranteed to be a usable path
to passto NSPR or the C stdlib. There are problemsthat affect platforms on which
a path does not fully specify afile because two volumes can have the same name
(eg., XP_MAC). Thisis solved by holding "private", native datain thens! Fi | e
implementation. This native datais lost when you convert to a string.

Note: NOT USE TO PASS TO NSPR OR STDLIB!

Syntax

nsresult GetTarget(nsAString & aTarget)

nsresult GetNativeTarget(nsACString & aNativeTarget)

Parent

Gets the parent of thisfile. Parent will be null when thisfileisat the top of the
volume.

Syntax

nsresult GetParent(nslFile * *aParent);

DirectoryEntries

Gets an enumeration of the elementsin adirectory. Each element in the enumerator
isan nslFile. If the current nsi Fi | e does not specify adirctory, returns an error
NS_ERROR_FI LE_NOT_DI RECTORY.

Syntax

nsresult GetDirectoryEntries(nslSi npl eEnunerator *
*aDirectoryEntries)

238

Creating XPCOM Components

XPCOM I/O

Example

PRBool RecursiveDirectories(nslFile* file)
{
nsresult rv;
nsCOWPt r <nsl Si npl eEnuner at or > entri es;
rv = file->CGetDirectoryEntries(getter_AddRefs(entries));
i f(NS_FAILED(rv) || !'entries)
return PR _FALSE;

PRU nt 32 count = O;
PRBool hasMor e;
whi | e(NS_SUCCEEDED(ent ri es- >HasMor eEl enent s(& asMore)) && hasMore)
{

nsCOWPt r <nsl Support s> sup;

entri es->Cet Next (getter_AddRef s(sup));

i f(!sup)

return PR_FALSE;

nsCOWPtr<nsl File> file = do_Querylnterface(sup);
if(lfile)
return PR _FALSE;

nsEnbedCStri ng nane;
i f (NS_FAI LED(fil e->Get Nati veLeaf Name(nane)))
return PR _FALSE;

PRBool isDir;

printf("%\n", nanme.get());

rv = file->IsDirectory(& sDir);

if (NS_FAILED(rv))

{
printf("lsDirectory Failed!!!\n");
return PR _FALSE;

if (isDir == PR_TRUE)
RecursiveDirectories(file);

}
return PR _TRUE;

Creating XPCOM Components 239

Appendix B: XPCOM API Reference

nsl I nputStream

This interface manages reading datain from an input stream. It is partially
scriptable.

Methods:

* close

e Available

* Read

* ReadSegments
* IsNonBlocking

close

Closes the stream.

Syntax:

nsresult C ose(void)
Parameters:

None.
Result:

NS K if successful.

Available

Gets number of bytes currently available in the stream.

Syntax:
nsresult Avail abl e(PRU nt32 * retval)

Parameters:

None.

240 Creating XPCOM Components

XPCOM I/O

Returns:

The number of bytes.

Read

Reads data from the stream.

Syntax:

nsresult Read(char * aBuf, PRU nt32 aCount, PRU nt32
* retval)

Parameters:
aBuf : The buffer into which the dataisto be read.
aCount : The maximum number of bytesto be read.
Returns:

The number of bytes read. Returns O if end of file has been reached.

Throws NS_BASE_STREAM WOULD_BLOCK if reading from the input stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

ReadSegments

Low-level read method that has access to the stream’s underlying buffer. The writer
function may be called multiple times for segmented buffers.

Syntax:

nsresult ReadSegments(nsWiteSegment Fun awiter, void *
ad osure, PRU nt32 aCount, PRU nt32 * retval)

Parameters:
awiter: The"consumer" of the datato beread. Thetypeisdescribed below.

ad osur e: Opague parameter passed to writer.
aCount : The maximum number of bytesto be read.

Creating XPCOM Components 241

Appendix B: XPCOM API Reference

typedef NS _CALLBACK(nsWiteSegment Fun) (nsl | nput St ream
*alnStream void *aC osure, const char *aFronSegnent,
PRUI nt 32 aToCOf fset, PRU nt32 aCount, PRU nt32
*aWiteCount);

al nStream The stream being read.

aCl osure: Opague parameter passed to ReadSegment s.

aFr onBegnent : A pointer to memory owned by the input stream.

aToOf f set : Theamount already read (since ReadSegnent s was called).
aCount : Thelength of fromSegment.

aWiteCount: Thenumber of bytesread.

Note: Implementers should return the following: NS_OK and (*aW i t eCount >
0) if consumed some data; NS_BASE STREAM WOULD BLOCK if not interested in
consuming any data; <other-error> on failure. Errors are passed to the caller of
ReadSegments, unless aToOf f set is greater than zero.

Returning NS_OK and (*aW i t eCount = 0) has undefined behavior.
Returns:

The number of bytes read. Returns O if end of file has been reached.

Throws NS_BASE_STREAM WOULD_BLOCK if reading from the input stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

Note: This method may be unimplemented if a stream has no underlying buffer
(e.g., socket input stream).

IsNonBlocking

Returns TRUE if stream is non-blocking.

242

Creating XPCOM Components

XPCOM I/O

Syntax:

nsresul t |sNonBl ocki ng(PRBool * _retval)

Parameters:

None.
Returns:

TRUE if stream is non-blocking.
FALSE otherwise.

nslLocalFile

This interface adds methodsto ns| Fi | e that are particular to afile that is
accessible viathe local file system. It follows the same string conventions as
nsl File.

Methods:

* |nitWithPath

e |nitWithNativePath

* InitWithFile

* OpenNSPRFileDesc

* OpenANSIFileDesc

* Load

* appendRelativePath

* appendRelativeNativePath
* Reveal

* Launch

* GetRelativeDescriptor
* SetReativeDescriptor

* FollowingLinks

* GetDiskSpaceAvailable

Creating XPCOM Components

243

Appendix B: XPCOM API Reference

InitWithPath

InitWithNativePath
Initializesthensl Local Fi | e object. Any internal state information will be reset.

Note: Thisfunction has a known bug on the macintosh and other operating systems
which do not represent file locations as paths. If you do use this function, be very
aware of this problem.

Syntax:
nsresult I nitWthPath(const nsAString & fil ePath)

nsresult I nitWthNativePath(const nsACString &
fil ePath)

Parameters:

fi | ePat h: A string which specifiesafull file path to alocation. Relative paths
will be treated as an error (NS_ERROR _FI LE_UNRECOGNI ZED_PATH). For
I nitWthNativePath, fil ePat h must bein the native filesystem charset.

Result:

NS K if successful.

InitWithFile

Initializes this object with another file.

Syntax:

nsresult InitWthFile(nslLocal File *aFile)

Parameters:

aFi | e: Thefiletowhicht hi s becomes equivalent.
Result:

NS_OK if successful.

244

Creating XPCOM Components

XPCOM I/O

OpenNSPRFileDesc

Opens the NSPR file descriptor.
Syntax:

nsresult OpenNSPRFi | eDesc(PRI nt32 flags, PRI nt32 node,

PRFi | eDesc * * retval)
Parameters:

f1 ags: The appropriate flags.
nmode: The appropriate mode.

Returns:

A pointer to the descriptor.

See NSPR’s documentation regarding PRFileDesc at http://www.mozilla.org/
projects/nspr.

OpenANSIFileDesc

Opensthe ANSI file descriptor.

Syntax:

nsresult OpenANSI Fi | eDesc(const char *node, FILE *
* retval)

Parameters:

nmode: The appropriate mode.
Returns:

A pointer to thefile.

Load

Loadst hi s file (alibrary).
Syntax:

Creating XPCOM Components

245

Appendix B: XPCOM API Reference

nsresult Load(PRLibrary * * retval)

Parameters:
None.

Returns:

A pointer to the library.

See NSPR’s documentation regarding PRLibrary at http://www/mozilla.org/
projects/nspr.

appendRelativePath

appendRel ativeNativePath

Appends arelative path to the current path of the nslLocalFile object.

Syntax:

nsresult AppendRel ati vePath(const nsAString &
rel ativeFi | ePat h)

nsresult AppendRel ati veNati vePat h(const nsACString &
rel ativeFi | ePat h)

Parameters:

rel ati veFi | ePat h: TherelativeFilePath. It is a native relative path. For
security reasons, it cannot contain .. or start with a directory separator. For the
appendRel at i veNat i vePat h method, the relativeFilePath must be in the
native filesystem charset.

Result:

NS K if successful.

246 Creating XPCOM Components

XPCOM I/O

Reveal

Asksthe operating system to open the folder which containsthisfile or folder. This
routine only works on platforms which support the ability to open afolder.

Syntax:

nsresult Reveal (void)
Parameters:

None.
Result:

NS K if successful.

Launch

Asks the operating system to attempt to open the file. Thisreally just simulates
"double clicking" thefile on your platform and thus only works on platforms which
support this functionality.

Syntax:

nsresult Launch(void)

Parameters:

None.

Result:

NS_OK if successful.

GetRelativeDescriptor
Gets arelative file path in an opaque, XP format. It is therefore not a native path.
Note: The character set of the string returned from this function is undefined.

DO NOT TRY TO INTERPRET IT ASHUMAN READABLE TEXT!
Syntax:

Creating XPCOM Components 247

Appendix B: XPCOM API Reference

nsresult GetPersistentDescriptor(nsACString &
aPer si st ent Descri ptor)

Parameters:

fronfi | e: The file from which the descriptor isrelative.
Returns:

The descriptor.

SetRel ativeDescriptor

Initializes the file to the location relative to fromFile using a string returned by
get Rel ati veDescriptor.

Syntax:

nsresult SetPersistentDescriptor(const nsACString &
aPer si st ent Descri ptor)

Parameters:
fronfi | e: Thefile to which the descriptor is relative.
rel ati veDesc: Therelative descriptor obtained from getRelativeDescriptor.

Result:

NS K if successful.

FollowingLinks

Getter and Setter for FollowingLinks attribute. Gets and sets whether the
nsLocal Fi | e will auto resolve symbolic links. By default, thisvalue will be false
on al non unix systems. On Unix, this attribute is effectively a no-op.

Be aware that changing this attribute from true to false after the nslLocal File has
been initialized may lead to errors. This could happen if there were resolved
symlink in theinitialized path. For example if you had /a/b/c where |b| was a
symlink, and you change this attribute to fal se, the next usage would mostlikely
fail.

Syntax:

248

Creating XPCOM Components

XPCOM I/O

nsresult GetFol | owLi nks(PRBool *aFol | owLi nks)

nsresult Set Fol | owLi nks(PRBool aFol | owLi nks)
Result:

NS K if successful.

GetDiskSpaceAvailable

Return the available disk space on the volume or drive reference by the
nsl Local Fi |l e.

Syntax:

nsresult Get D skSpaceAvai | abl e(PRI nt 64
*aDi skSpaceAvai | abl e)

Result:

NS K if successful.

nsl OutputStream

This interface manages writing data to an output stream. It is partially scriptable.

Methods:

* Close

* Flush

* Write

e WriteFrom

* WriteSegments
* IsNonBlocking

Close

Closes the stream. Forces the output stream to flush any buffered data.

Creating XPCOM Components 249

Appendix B: XPCOM API Reference

Syntax:

nsresult C ose(void)

Parameters:

None.

Result:

NS_OK if successful.

Throws NS_BASE_STREAM WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Flush

Flushes the stream.
Syntax:
nsresult Fl ush(void)

Parameters:

None.

Result:

NS_OK if successful.

Throws NS_BASE_STREAM WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only).

Write

Writes data into the stream from an input stream.

Syntax:

nsresult Wite(const char *aBuf, PRU nt32 aCount,
PRU nt32 * retval)

250

Creating XPCOM Components

XPCOM I/O

Parameters:

aBuf : The buffer containing the data to be written.
aCount : The maximum number of bytesto be written.

Returns:

The number of bytes written.

Throws NS_BASE_STREAM WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Throws <other-error> on failure.

WriteFrom

Writes data into the stream from an input stream.
Syntax:

nsresult WiteSegnent s(nsReadSegrment Fun aReader, void *
aCl osure, PRU nt32 aCount, PRU nt32 * retval)

Parameters:

aFr onBt r eam The stream containing the data to be written.
aCount : The maximum number of bytesto be written.

Returns:

The number of bytes written.

Throws NS_BASE_STREAM WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Throws <other-error> on failure

Note: Thismethod is defined by thisinterfacein order to allow the output stream to
efficiently copy the datafrom the input stream into itsinternal buffer (if any). If this
method was provided as an external facility, aseparate char * buffer would need to
be used in order to call the output stream’s other W i t e method.

Creating XPCOM Components 251

Appendix B: XPCOM API Reference

WriteSegments

Low-level write method that has access to the stream’s underlying buffer. The
reader function may be called multiple times for segmented buffers.

Syntax:

nsresult WiteSegnent s(nsReadSegrment Fun aReader, void *
aCl osure, PRU nt32 aCount, PRU nt32 * retval)

Parameters:

aReader: The"provider" of the data to be written. The type is described
below.

ad osur e: Opague parameter passed to reader.
aCount : The maximum number of bytesto be written.

typedef NS _CALLBACK(nsReadSegnent Fun) (nsl Qut put St ream
*aQut Stream void *aCl osure, char *aToSegnent, PRU nt32
aFronOf fset, PRU nt32 aCount, PRU nt32 *aReadCount)

aQut St ream The stream being written to.

ad osur e: Opague parameter passed to WriteSegments.

aToSegnent : A pointer to memory owned by the output stream.

aFr ontX f set : The amount already written (since WriteSegments was called).
aCount : Thelength of toSegment.

aReadCount : The number of byteswritten.

Note: Implementers should return the following: NS_OK and (* aReadCount > 0)
if successfully provided some data; NS_OK and (*aReadCount = 0); or
NS_BASE_STREAM WOULD_BLOCK if not interested in providing any data;<other-

error> on failure

Errorsare passed to the caller of Wi t eSegnent s, unlessaFr onX f set isgreater
than zero.

252

Creating XPCOM Components

XPCOM Startup/Shutdown

Returns:

The number of bytes written.

Throws NS_BASE_STREAM WOULD_BLOCK if writing to the output stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

Note: this function may be unimplemented if a stream has no underlying buffer
(e.g., socket output stream).

IsNonBlocking

Returns TRUE if stream is non-blocking.
Syntax:

nsresul t |sNonBl ocki ng(PRBool * _retval)
Parameters:
None.

Returns:

TRUE if stream is non-blocking.
FALSE otherwise.

XPCOM Sartup/Shutdown

These C++ functions serve to initialize and terminate XPCOM. (In an embedding
situation, thisis usually taken care of by embedding initialization.) Also included
are anumber of global functions that provide access to the main XPCOM
components.

Note: These are C++ functions only, and are therefore not scriptable.

* NS_I ni t XPCOVR
* NS_Shut downXPCOM
* NS_GCet Servi ceManager

Creating XPCOM Components 253

Appendix B: XPCOM API Reference

* NS_GCet Conmponent Manager

* NS_Get Conponent Regi strar
* NS_Get Menor yManager

* NS NewlLocal File

* NS _NewNativelLocal File

NS [nitXPCOM2

Initializes XPCOM. This function must be called by the application before using
XPCOM. Components should not call this function. The one exception isthat you
may call NS_Newl_ocal Fi | e to create an nsl Fi | e object to supply asthe bin
directory path in this call.

Syntax:

nsresult NS | ni t XPCOVR(nsl Servi ceManager **
result, nslFile*

bi nDirectory, nsl Di rect oryServiceProvi der*
appFi | eLocati onProvi der)

Parameters:

resul t: Theservice manager. You may pass null.

bi nDi rect ory: Thedirectory containing the component registry and
runtime libraries. You can usensnul | to use the working directory.

appFi | eLocProvi der: The object to be used by Gecko that specifiesto
Gecko where to find profiles, the component registry preferences and so on.
You can usensnul | for the default behaviour.

nsresult

NS_OK if successful.
Other error codes indicate failure during initialization.

See also: see NS_Newlocal Fi | e, nsl Local Fi | e, and
nsl Di rectoryServi ceProvi der.

254

Creating XPCOM Components

XPCOM Startup/Shutdown

NS_ShutdownXPCOM

Shuts down XPCOM. Thisfunction must be called by the application when you are

finished using XPCOM.
Syntax:

nsresult NS_Shut downXPCOM nsl Ser vi ceManager* servMyr)

Parameters:

servMr: The service manager which was returned by NS_I ni t XPCOMR. This

will release the service manager. Y ou may pass null.
Result:

NS_OK if successful.
Other error codes indicate failure.

NS GetServiceManager

Accesses the Service Manager.

Syntax:

nsresult NS_Cet Servi ceManager (nsl Servi ceManager * *
result)

Parameters:

resul t: Aninterface pointer to the service manager.
Result:

NS_OK if successful.

NS_GetComponentM anager

Accesses the Component Manager.
Syntax:

Creating XPCOM Components

255

Appendix B: XPCOM API Reference

NS COM nsresul t
NS_Get Conponent Manager (nsl Conponent Manager ** result)

Parameters:

resul t: An interface pointer to the component manager.

Result:

NS K if successful.

NS _GetComponentRegistrar

Accesses the Component Registration Manager.

Syntax:

NS _COM nsresul t
NS_Get Conponent Regi strar (nsl Conponent Regi strar**
result)

Parameters:

resul t: Aninterface pointer to the component registration manager.

Result:

NS K if successful.

NS _GetMemoryM anager

Accesses the memory manager.

Syntax:
NS_COM nsresult NS_Get MenoryManager (nsl Menory** result)

Parameters:

resul t: Aninterface pointer to the memory manager

Result:

NS_OK if successful.

256

Creating XPCOM Components

XPCOM Startup/Shutdown

NS NewLocaFile

NS NewNativelL ocalFile

Creates a new instanstance of an object implementating the nslFile and

nsl Local Fi | e interfaces. (On the Macintosh platform, this object also implments
thensl Local Fi | eMac interface). If using the native form of this call, pat h must
be in the native filesystem charset.

Syntax:
nsresul t
NS NewLocal Fil e(const nsAString &path,
PRBool foll owLi nks,
nsl Local Fil e* *result);
nsresul t
NS NewNat i veLocal Fil e(const nsACString &path,
PRBool fol | owLi nks,
nsl Local Fil e* *result);

Parameters:

pat h: A string which specifiesafull file path to alocation. Relative pathswill
be treated as an error (NS_ERROR _FI LE_UNRECOGNI ZED_PATH). For

i ni tWthNativePath, thefi | ePat h must bein the native filesystem
charset.

fol | owLi nks: Setswhether thensLocal Fi | e will auto resolve symbolic
links. On Unix, this parameter isignored

resul t: [out] Aninterface pointer tothe new nsl Local Fi | e.
Result:

NS_OK if successful.

Creating XPCOM Components 257

Appendix B: XPCOM API Reference

258 Creating XPCOM Components

Appendix C. Resources

This last section of the book provides alist of resources referred to in the tutorial
and other links that may be useful to the Gecko devel oper. The resources are
divided into the following categories:

* WebL ock Resources

* Gecko Resources

* XPCOM Resources

* General Development Resources

WebL ock Resources

* WebL ock installer and information: http://www.brownhen.com/weblock
* The SDK download:

Linux: http://ftp.moZlla.org/pub/mozilla/rel eases/mozll al.4a/gecko-sdk-i686-
pc-linux-gnu-1.4a.tar.gz

Windows: http://ftp.mozilla.org/pub/mozilla/rel eases/mozillal.4a/gecko-
sdkwin32-1.4a.zip

Creating XPCOM Components 259

Appendix C: Resources

Other Mozilla downloads: http://ftp.mozlla.org/pub/mozlla/rel eases .

Gecko Resources

Guide to the Mozilla string classes. www.mozilla.org/projects/xpconvstring-
guide.html

The Gecko networking library (“necko”): www.mozilla.org/projects/netlib
The Netscape Portable Runtime Environment: www.mozilla.org/projects/nspr
Embedding Mozilla: www.mozilla.org/projects/embedding

A list of module owners: www.mozlla.org/owner s.html

XPInstall: www.mozilla.org/projects/xpinstall

XUL: www.mozilla.org/projects/xul

XPCOM Resources

The XPCOM project page: www.mozilla.org/projects/xpcom

XULPlanet's online XPCOM reference: http://mww.xul planet.convreferences/
xpcomref/

Information on X PConnect and scriptable components: http:/Amwww.mozlla.org/
scriptable

The Smart Pointer Guide: http://www.mozilla.org/projects/xpcom/nsCOMPtr/.
XPIDL Reference: http://www.mozlla.org/scriptable/xpidl/

260

Creating XPCOM Components

General Development Resources

General Development Resources

e The World Wide Web Consoritum: www.w3.0rg
* URL specification at the W3: www.w3.org/ TR/REC-html 40/intro/intro.html
* Make: http://www.gnu.org/manual /make/

Creating XPCOM Components 261

Appendix C: Resources

262 Creating XPCOM Components

| ndex

A

AddSite 121
archives 158
autoregistration 45

B
base class 16
binary interoperability 31
building
copying interfaces into your build environment 134

C
Chrome Registry, the 158
CID 18
client code 147
Component examples
Cookie Manager 28
component loader 46
Component Manager 47
component manifest 42
Component object 37
Component Registration 55
Component Viewer, the 34
component-based programming 11
Components 9
Component Manager 47
finding 34
packaging 146
parts 47
Registration 55
scriptable 37
the Component Viewer 34
using from JavaScript 37
WebL ock 33
components 48
components and JavaScript 37
components directory 41
compreg.dat 42
constants 58
Contract 19
contract 11
Cookie Manager 28

Creating XPCOM Components 263

Copying Interfacesinto Your Build Environment 134
CORBA 21

Createl nstance 66

Creating an Instance of Your Component 65

Cross Platform Component Object Module 8

D
dialog widget 149
Directory Service, the 112
Distributing Your Component 162
DLL

WindowsDLLs 39
DSO 39

E
encapsulate 11
error code macros 25
error codes 25
Examples

Cookie Manager 28
exceptions 17

F
Factories 20
factories 48
factory design pattern 20
factory macros 79
fileinterface 61
File Interfaces 110
file paths 115
files
remote files 111
finding components 34
finding components with the Component Viewer 34
framework 8
frozen interfaces 34, 49
using 131

G

Gecko 8

Gecko Run-time Environment 41
Gecko Ul 149

GetNext 125

GetSites 126

glue code 49

Glue Library, the 49

GRE 41

264

Creating XPCOM Components

H
HasMoreElements 126

|
identifiers 18
11D 17
implementation 8
Implementing the nsl ContentPolicy Interface 135
includes 58
Inheritance 16
initialization 41
initialize 41
instances and services 38
instantiate 23
interface 8
interface definition language (IDL) 21
interface pointers 14
Interfaces 10
interfaces
frozen 34
public 30
IRC 61
ircmozilla.org 61
iWebLock 121
AddSite 121
GetNext 125
GetSites 126
HasMoreElements 126
lock 121
RemoveSite 122
SetSites 124
iWeblock 121

J

JAR files 158

JavaScript 22, 29, 148
JavaScript component loaders 46

L
LXR 34

M

macros 76
error codes 25
factory macros 79
module implementation macros 77
NS_IMIPL_NSGETMODULE 77
status codes 25
variable mappings 25

Creating XPCOM Components 265

malloc 122

manifests 42

Microsoft COM 8

Modular Code 9

module 9

modules 48

MOZILLA 58
Mozillachrome registry 158
Mozillauser interface 145

N

native languages 46

Netscape 9

Netscape Portable Runtime Library, the 116
new constructor and factories 20
notifications 136

NS 45
NS_GetComponentManager 255
NS _GetComponentRegistrar 256
NS _GetMemoryManager 256

NS _GetServiceManager 255
NS_IMPL_NSGETMODULE 77
NS_InitXPCOM2 254
NS_ShutdownXPCOM 255
nsACString 50

nsAString 50

nsComponentM anagerObsolete 58
nsComponentManagerUtils 58
nsEmbedCString 50
nsEmbedString 50
NSGetModule 40

nslClassinfo 202
nslComponentManager 184
nslComponentRegistrar 44, 192
nslContentPolicy 135
nslDirectoryService 112, 115, 223
nslDirectoryServiceProvider 221
nsl DirectoryServiceProvider2 222
nslFactory 20, 59, 188

nsiFile 61, 115, 225

nslID 18, 19, 60

nslInputStream 240
nslInterfaceRequestor 178
nsl1OService 140

nslLocaFile 243

nsiMemory 180

nsiModule 40, 59, 189
nslObserver 210
nslObserverService 211

266 Creating XPCOM Components

nslOutputStream 249

nsl ProgramminglLanguage 183
nslProperties 115

nsl ServiceManager 63, 200
nslSimpleEnumerator 218
nsl Supports 14, 176

nsl SupportsPrimitives 124
nslURI 140
nslWeakReference 179
nsMemory 122

NSPR 116
nsWebBrowserFind 32

O
Object Interface Discovery 16
objects

reference counting 13
override 16
owning reference 13

P
package 146
paths
modifying paths 115
nsiFile 115
pointers 14
interface pointers 14
processing data 119
Programming by Contract 11
public 30

public interfaces versus private interfaces 30

Python 22

Q
Querylnterface 16

R

RDF/ XML 158

receiving notifications 136

Reference Counting 24

reference counting 13

RegisterFactorylL ocation 59, 66

RegisterSelf 64

Registration 44
aternatives 55
autoregistration 45
Components 55
Createlnstance 66
RegisterSelf 66

Creating XPCOM Components

267

registration methods 44
regxpcom 44, 55

Remote Filesand nsIFile 111
RemoveSite 122

RTTI 17

S
scriptability 37
service 23
Services
versus regular instances 38
services and singleton objects 23
Servicesin XPCOM 23
Services Versus Regular Instances 38
SetSites 124
shared libraries
DLL 39
DSO 39
shared library files 41
shutdown observation 46
Shutdown Process, the 45
singleton 21
singleton objects and services 23
singletons 38
software development 8
status codes 25
String classes 50
string classes
nsACString 50
nsAString 50
nsEmbedCString 50
nsEmbedString 50
strings 50
subclass 16

T
trigger installation 158
type library files 43

type library manifest 42, 43

)

Ul 145

uniform resource locators 138
universal unique identifiers 60
Unix 39

unlock 121

URI Caching 140

URL Checking 120

URLs 138

268 Creating XPCOM Components

user interface 54, 145
Using Frozen Interfaces 131
uuID 17

UUIDs 60

\%
Variables 25
virtual class 12

w

WebBrowserFind 32

WebLock 27,120
distributing 162
installing 162
Interfaces 135

Weblock 134

weblock 146

WebL ock Component, the 33

WebL ock data 139

WebL ock Interfaces 135

WebL ock source 56

weblock.jar 158

weblock.txt 119

webLockOverlay 146

whitelist 119

white list data 139

X
XML-based User Interface Language (XUL) 149
XPCOM 8§, 23,41

autoregistration 45

client code 147

Component Manager 47

constants 58

error codes 25

errors 25

glue 49

identifiers 18, 60

includes 58

Macros 76

manifests 42

notifications 136

registration 44

shutdown 46

status codes 25

variable mappings 25
XPCOM Component Viewer 34
XPCOM Components 184
XPCOM Data Structures 206

Creating XPCOM Components

269

XPCOM glue 40

XPCOM 1/0 221

XPCOM Identifier Classes 19
XPCOM ldentifiers 18
XPCOM Registry Manifests 42
XPCOM Startup/Shutdown 253
XPCOM String Classes 50
XPCOM Types 24

XPConnect 29, 30, 37
XPConnect objects 37

xpcshell 30

XPIDL 21

XPinstall APIs 44

Xpti.dat 43

XUL 29, 148, 149

XUL widgets 149

270 Creating XPCOM Components

	Creating XPCOM Components
	Preface
	Who Should Read This Book
	Organization of the Tutorial
	Following Along with the Examples
	Conventions
	Acknowledgements

	CHAPTER 1 What Is XPCOM?
	The XPCOM Solution
	Gecko
	Components
	Interfaces
	Interfaces and Encapsulation
	The nsISupports Base Interface

	XPCOM Identifiers
	CID
	Contract ID

	Factories
	XPIDL and Type Libraries

	XPCOM Services
	XPCOM Types
	Method Types
	Reference Counting
	Status Codes
	Variable mappings
	Common XPCOM Error Codes

	CHAPTER 2 Using XPCOM Components
	Component Examples
	Cookie Manager
	The WebBrowserFind Component
	The WebLock Component

	Component Use in Mozilla
	Finding Mozilla Components
	Using XPCOM Components in Your C++
	XPConnect: Using XPCOM Components From Script

	CHAPTER 3 Component Internals
	Creating Components in C++
	XPCOM Initialization
	XPCOM Registry Manifests
	Registration Methods in XPCOM
	Autoregistration
	The Shutdown Process
	Three parts of a XPCOM Component Library

	XPCOM Glue
	The Glue Library
	XPCOM String Classes

	CHAPTER 4 Tutorial : Creating the Component Code
	What We’ll Be Working On
	Component Registration
	The regxpcom Program
	Registration Alternatives

	Overview of the WebLock Module Source
	Digging In: Required Includes and Constants
	Identifiers in XPCOM
	Coding for the Registration Process
	The Registration Methods
	Creating an Instance of Your Component

	webLock1.cpp

	CHAPTER 5 Tutorial: Using XPCOM Utilities To Make Things Easier
	XPCOM Macros
	Generic XPCOM Module Macros
	Common Implementation Macros
	Declaration Macros

	weblock2.cpp
	String Classes in XPCOM
	Using Strings
	nsEmbedString and nsEmbedCString

	Smart Pointers

	CHAPTER 6 Tutorial: Starting WebLock
	Getting Called at Startup
	Registering for Notifications
	Getting Access to the Category Manager

	Providing Access to WebLock
	Creating the WebLock Programming Interface
	Defining the Weblock Interface in XPIDL
	The XPIDL Syntax
	Scriptable Interfaces
	Subclassing nsISupports
	The Web Locking Interface

	Implementing WebLock
	Declaration Macros
	Representing Return Values in XPCOM
	XPIDL Code Generation
	Getting the WebLock Service from a Client
	Implementing the iWebLock Interface
	The Directory Service
	Modifying Paths with nsIFile
	Manipulating Files with nsIFile
	Using nsILocalFile for Reading Data
	Processing the White List Data

	iWebLock Method by Method
	Lock and Unlock
	AddSite
	RemoveSite
	SetSites
	GetNext
	GetSites
	HasMoreElements

	CHAPTER 7 Tutorial: Finishing the Component
	Using Frozen Interfaces
	Copying Interfaces into Your Build Environment
	Implementing the nsIContentPolicy Interface
	Receiving Notifications

	Implementing the nsIContentPolicy
	Uniform Resource Locators
	Checking the White List
	Creating nsIURI Objects

	CHAPTER 8 Tutorial: Building the WebLock UI
	User Interface Package List
	Client Code Overview
	XUL
	The XUL Document
	The Locking UI
	Site Adding UI
	weblock.xul

	Overlaying New User Interface Into Mozilla
	webLockOverlay.xul

	Other Resources
	weblock.css
	Image Resources

	CHAPTER 9 Tutorial: Packaging WebLock
	Component Installation Overview
	Archiving Resources
	The WebLock Installation Script
	The WebLock Trigger Script
	Distributing Your Component

	Appendix A: Setting up the Gecko SDK
	Downloading and Setting the SDK
	Building a Microsoft Visual C++ Project
	Creating a New Project
	Adding the Gecko SDK to the Project Settings

	A Makefile for Unix

	Appendix B: XPCOM API Reference
	XPCOM Core
	nsISupports
	nsIInterfaceRequestor
	nsIWeakReference
	nsIMemory
	nsIProgrammingLanguage

	XPCOM Components
	nsIComponentManager
	nsIFactory
	nsIModule
	nsIComponentRegistrar
	nsIServiceManager
	nsIClassInfo

	XPCOM Data Structures
	nsICategoryManager
	nsIObserver
	nsIObserverService
	nsIProperties
	nsISimpleEnumerator
	nsISupportsPrimitives

	XPCOM I/O
	nsIDirectoryServiceProvider
	nsIDirectoryServiceProvider2
	nsIDirectoryService
	nsIFile
	nsIInputStream
	nsILocalFile
	nsIOutputStream

	XPCOM Startup/Shutdown

	Appendix C: Resources
	WebLock Resources
	Gecko Resources
	XPCOM Resources
	General Development Resources

	Index

