
Creating XPCOM
Components

Doug Turner & Ian Oeschger

Creating XPCOM Components
Copyright (c) 2003 by Doug Turner and Ian Oeschger. This material may be
distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.02 or later (the latest version is presently available at
http://www.opencontent.org/openpub/). Distribution of substantively modified
versions of this document is prohibited without the explicit permission of the
copyright holder. Distribution of the work or derivative of the work in any
standard (paper) book form is prohibited unless prior permission is obtained from
the copyright holder.

Published by Brownhen Publishing.

 Preface iii

Who Should Read This Book iv

Organization of the Tutorial iv

Following Along with the Examples v

Conventions vi

Acknowledgements vi

CHAPTER 1 What Is XPCOM? 7

The XPCOM Solution 8

Gecko 8

Components 9

Interfaces 10
Interfaces and Encapsulation 11
The nsISupports Base Interface 13

XPCOM Identifiers 18
CID 18
Contract ID 19

Factories 20
XPIDL and Type Libraries 21

XPCOM Services 23

XPCOM Types 24
Method Types 24
Reference Counting 24
Status Codes 25
Variable mappings 25
Common XPCOM Error Codes 25

CHAPTER 2 Using XPCOM Components 27

Component Examples 28
Cookie Manager 28
The WebBrowserFind Component 32
The WebLock Component 33

Component Use in Mozilla 33
Finding Mozilla Components 34
Creating XPCOM Components 1

2

Using XPCOM Components in Your C++ 36
XPConnect: Using XPCOM Components From
Script 36

CHAPTER 3 Component Internals 39

Creating Components in C++ 39

XPCOM Initialization 41
XPCOM Registry Manifests 42
Registration Methods in XPCOM 44
Autoregistration 45
The Shutdown Process 45
Three parts of a XPCOM Component Library 47

XPCOM Glue 48
The Glue Library 49
XPCOM String Classes 50

CHAPTER 4 Tutorial :
Creating the Component Code 53

What We’ll Be Working On 54

Component Registration 55
The regxpcom Program 55
Registration Alternatives 55

Overview of the WebLock Module Source 56

Digging In: Required Includes and Constants 58
Identifiers in XPCOM 60
Coding for the Registration Process 61
The Registration Methods 62
Creating an Instance of Your Component 65

webLock1.cpp 68

CHAPTER 5 Tutorial: Using XPCOM Utilities To
Make Things Easier 75

XPCOM Macros 76
Generic XPCOM Module Macros 76
Creating XPCOM Components

Common Implementation Macros 80
Declaration Macros 81

weblock2.cpp 82

String Classes in XPCOM 84
Using Strings 84
nsEmbedString and nsEmbedCString 85

Smart Pointers 86

CHAPTER 6 Tutorial: Starting WebLock 91

Getting Called at Startup 91
Registering for Notifications 94
Getting Access to the Category Manager 96

Providing Access to WebLock 101

Creating the WebLock Programming Interface 102

Defining the Weblock Interface in XPIDL 103
The XPIDL Syntax 103
Scriptable Interfaces 104
Subclassing nsISupports 105
The Web Locking Interface 105

Implementing WebLock 107
Declaration Macros 107
Representing Return Values in XPCOM 109
XPIDL Code Generation 109
Getting the WebLock Service from a Client 109
Implementing the iWebLock Interface 110
The Directory Service 112
Modifying Paths with nsIFile 115
Manipulating Files with nsIFile 116
Using nsILocalFile for Reading Data 117
Processing the White List Data 119

iWebLock Method by Method 121
Lock and Unlock 121
AddSite 121
RemoveSite 122
SetSites 124
GetNext 125
GetSites 126
Creating XPCOM Components 3

4

HasMoreElements 126

CHAPTER 7 Tutorial:
Finishing the Component 131

Using Frozen Interfaces 131
Copying Interfaces into Your Build Environment 134
Implementing the nsIContentPolicy Interface 135
Receiving Notifications 136

Implementing the nsIContentPolicy 138
Uniform Resource Locators 138
Checking the White List 139
Creating nsIURI Objects 140

CHAPTER 8 Tutorial:
Building the WebLock UI 145

User Interface Package List 146

Client Code Overview 147

XUL 149
The XUL Document 149
The Locking UI 150
Site Adding UI 151
weblock.xul 152

Overlaying New User Interface Into Mozilla 153
webLockOverlay.xul 153

Other Resources 154
weblock.css 155
Image Resources 156

CHAPTER 9 Tutorial:
Packaging WebLock 157

Component Installation Overview 158

Archiving Resources 159

The WebLock Installation Script 160
Creating XPCOM Components

The WebLock Trigger Script 162

Distributing Your Component 162

 Appendix A: Setting up
the Gecko SDK 165

Downloading and Setting the SDK 165

Building a Microsoft Visual C++ Project 168
Creating a New Project 168
Adding the Gecko SDK to the Project Settings 169

A Makefile for Unix 173

 Appendix B:
XPCOM API Reference 175

XPCOM Core 175
nsISupports 176
nsIInterfaceRequestor 178
nsIWeakReference 179
nsIMemory 180
nsIProgrammingLanguage 183

XPCOM Components 184
nsIComponentManager 184
nsIFactory 188
nsIModule 189
nsIComponentRegistrar 192
nsIServiceManager 200
nsIClassInfo 202

XPCOM Data Structures 206
nsICategoryManager 207
nsIObserver 210
nsIObserverService 211
nsIProperties 215
nsISimpleEnumerator 218
nsISupportsPrimitives 219

XPCOM I/O 221
nsIDirectoryServiceProvider 221
nsIDirectoryServiceProvider2 222
Creating XPCOM Components 5

6

nsIDirectoryService 223
nsIFile 225
nsIInputStream 240
nsILocalFile 243
nsIOutputStream 249

XPCOM Startup/Shutdown 253

 Appendix C: Resources 259

WebLock Resources 259

Gecko Resources 260

XPCOM Resources 260

General Development Resources 261
Creating XPCOM Components

Preface
• “Who Should Read This Book”

• “Organization of the Tutorial”

• “Following Along with the Examples”

• “Conventions”

• “Acknowledgements”

This is a book about Gecko, and about creating XPCOM components for Gecko-
based applications. Though the emphasis is on the practical steps you take to make
your C++ code into a component that can be used in Gecko, we hope that these
steps will also give us an occasion to discuss all of the tools, techniques, and tech-
nologies that make up XPCOM. Accordingly, the book is arranged so that you can
follow along and create your own components or learn about different XPCOM
topics individually, as in a reference work. For example, the introduction includes a
discussion of components and what they are, and the first chapter—in which you
compile the basic code and register it with Mozilla—prompts a discussion of the
relationship between components and modules, of XPCOM interfaces, and of the
registration process in general.
Creating XPCOM Components iii

Preface

iv
The top of each chapter provides a list of the major topics covered. Sidebar sections
are included to highlight technical details. By the end of the book, if we’ve done
our job, you will have leaned how to build a component and you will know some-
thing about the framework for these components in Gecko, which is XPCOM.

Who Should Read This Book

Creating XPCOM Components is meant for C++ developers. Though you can cre-
ate XPCOM components in JavaScript and other languages, and though you might
be able to follow along as a C programmer, the component implementation code is
written in C++, and much of the discussion of how to make your code into an
XPCOM component starts from C++. You don’t need to be a C++ expert, however.
Although basic ideas such as inheritance and encapsulation should be familar to
you, wherever possible they are explained in the book as they are used. Also many
of the examples are in JavaScript, which is used in Mozilla to access XPCOM com-
ponents as scriptable objects, and so familiarity with that language is useful as well.

XPCOM stands for the Cross Platform Component Object Model. As this name
implies, XPCOM is similar to Microsoft COM. If you have any experience with
this technology, much of it can be applied to XPCOM. However, this book does
not assume any prior knowledge of COM—all of the basic COM ideas will be
introduced.

This book provides a tutorial about building an XPCOM component that controls
browsing behavior. Although, XPCOM can be used in many environments which
are unrelated to web browsing, XPCOM’s main client is Gecko, an open source,
standards compliant, embeddable web browser, where it’s easiest and most practi-
cal to illustrate XPCOM’s functionality. A full description of the component in this
tutorial can be found in the “What We’ll Be Working On” section of the tutorial.

Organization of the Tutorial

The following list provides an overview of the steps that we will take to build an
XPCOM component called WebLock, which provides site blocking functionality
to Gecko-based browsers. Each one of these steps has its own chapter, in which a
number of topics associated with the step are discussed.
Creating XPCOM Components

Following Along with the Examples
• Create the generic module code for the component.

• Use C++ macros, special string classes and smart pointers to optimize your
code.

• Define the functionality for the component; create an XPIDL interface for that
functionality; create the implementation code specific to the
custom WebLock component interface.

• Finish implementing the WebLock component: nsIContentPolicy, file I/O,
locking, etc.

• Creating the user interface for the WebLock component.

• Packaging WebLock for distribution and installation.

Following Along with the Examples

There are a couple of different ways to get XPCOM onto your machine so you can
begin to create components. If you already have a Mozilla build or the source from
Mozilla 1.2 or later, then you can use the XPCOM framework available there. If
you don’t already have the Mozilla source, then an even easier way to get and use
XPCOM is to download the Gecko SDK, which is a collection of libraries and tools
that features the XPCOM component framework.

Whether you compile your code in the Mozilla source tree or use the Gecko SDK,
you can build your own components and which leverage components that already
exist in Gecko. The WebLock component we describe in this tutorial is a practical
(and, we hope, genuinely useful) addition to the browser. In order to build it, your
Gecko SDK or Mozilla source tree needs to be version 1.2 or later. Releases prior
to Mozilla 1.2 did not completely support XPCOM components with frozen inter-
faces, but changes since then have remedied this.

This book assumes you are using the SDK rather than compiling in a Mozilla
source tree, though the difference between these two approaches is minimal.
Details about downloading the SDK, building, and getting programmatic access to
Gecko components are provided in the appendix to this book, Setting up the Gecko
Platform.
Creating XPCOM Components v

Preface

vi
Conventions

The formatting conventions listed in Table 1 are used to designate specific types of
information in the book and make things easier to scan. The goal is to use as few
formats as possible, but to distinguish the various different types of information
clearly.

Acknowledgements

Thanks to Peter Lubczynski, John Gaunt, Ellen Evans, and Alec Flett for technical
reviews. And a special thanks to Darin Fisher for his very acute observations, close
reading, and attention to detail.

TABLE 1. Formatting Conventions Used in This Book

Format Description

bold component names appear in bold in the text

monospace code listings, interface names and
members of interfaces
(e.g., createInstance()) appear in monospaced
font. Longer code listings appear in gray boxes.

italic variables, filenames and directory names terms appear
in italic. Important terms and new concepts are also
italicized the first time they appear in the text. Those
terms are either explained immediately after they are
cited, or else the reader is referred to a section in the
book where they are described in detail. References to
other chapters (e.g., Getting Social: Making Instances
of Your Component Available) are also italicized.

“quoted” References to other sections are double-quoted (e.g.
“Organization of the Tutorial”).
Creating XPCOM Components

CHAPTER 1 What Is XPCOM?
This is a book about XPCOM. The book is written in the form of a tutorial about
creating XPCOM components, but it covers all major aspects, concepts, and
terminology of the XPCOM component model along the way.

This chapter starts with a quick tour of XPCOM—an introduction to the basic
concepts and technologies in XPCOM and component development. The brief
sections in this chapter introduce the concepts at a very high-level, so that we can
discuss and use them with more familiarity in the tutorial itself, which describes the
creation of a Mozilla component called WebLock.

• “The XPCOM Solution”

• “Components”

• “Interfaces”

• “Factories”

• “XPCOM Services”
Creating XPCOM Components 7

What Is XPCOM?

8

The XPCOM Solution

The Cross Platform Component Object Module (XPCOM) is a framework which
allows developers to break up monolitic software projects into smaller modularized
pieces. These pieces, known as components, are then assembled back together at
runtime.

The goal of XPCOM is to allow different pieces of software to be developed and
built independently of one another. In order to allow interoperability between
components within an application, XPCOM separates the implementation of a
component from the interface, which we discuss in the “Interfaces” section. But
XPCOM also provides several tools and libraries that enable the loading and
manipulation of these components, services that help the developer write modular
cross-platform code, and versioning support, so that components can be replaced or
upgraded without breaking or having to recreate the application. Using XPCOM,
developers create components that can be reused in different applications or that
can be replaced to change the functionality of existing applications.

XPCOM not only supports component software development, it also provides
much of the functionality that a development platform provides, such as:

• component management

• file abstraction

• object message passing

• memory management

We will discuss the above items in detail in the coming chapters, but for now, it can
be useful to think of XPCOM as a platform for component development, in which
features such as those listed above are provided.

Gecko

Although it is in some ways structurally similar to Microsoft COM, XPCOM is
designed to be used principally at the application level. The most important use of
XPCOM is within Gecko, an open source, standards compliant, embeddable web
browser and toolkit for creating web browsers and other applications.
Creating XPCOM Components

Components
XPCOM is the means of accessing Gecko library functionality and embedding or
extending Gecko. This book focuses on the latter—extending Gecko—but the
fundamental ideas in the book will be important to developers embedding Gecko as
well.

Gecko is used in many internet applications, mostly browsers. The list includes
devices such as the Gateway/AOL Instant AOL device and the Nokia Media
Terminal. Gecko is also used in the latest Compuserve client, AOL for Mac OS X,
Netscape 7, and of course the Mozilla client. At this time, Gecko is the predominant
open source web browser.

Components

XPCOM allows you to build a system in which large software projects can be
broken up into smaller pieces. These pieces, known as components, are usually
delivered in small, reusable binary libraries (a DLL on Windows, for example, or a
DSO on Unix), which can include one or more components. When there are two or
more related components together in a binary library, the library is referred to as a
module.

Breaking software into different components can help make it less difficult to
develop and maintain. Beyond this, modular, component-based programming has
some well-known advantages, as Table 1 describes:

TABLE 1. Benefits from Modular Code

Benefit Description

Reuse Modular code can be reused in other applications
and other contexts

Updates You can update components without having to
recompile the whole application

Performance When code is modularized, modules that are not
necessary right away can be “lazy loaded”, or not
loaded at all, which can improve the performance of
your application.

Maintenance Even when you are not updating a component,
designing your appication in a modular way can
make it easier for you to find and maintain the parts
of the application that you are interested in.
Creating XPCOM Components 9

What Is XPCOM?

10
Mozilla has over four million lines of code, and no single individual understands
the entire codebase. The best way to tackle a project of this size is to divide it into
smaller, more managable pieces, use a component programming model, and to
organize related sets of components into modules. The network library, for
example, consists of components for each of the protocols, HTTP, FTP, and others,
which are bundled together and linked into a single library. This library is the
networking module, also known as “necko.”

But it’s not always a good idea to divide things up. There are some things in the
world that just go together, and others that shouldn’t be apart. For example, one
author’s son will not eat a peanutbutter sandwich if there isn’t jam on it, because in
his world, peanut butter and jam form an indelible union. Some software is the
same. In areas of code that are tightly-coupled—in classes that are only used
internally, for example—the expensive work to divide things may not be worth the
effort.

The HTTP component in Gecko doesn’t expose private classes it uses as separate
components. The “stuff” that’s internal to the component stays internal, and isn’t
exposed to XPCOM. In the haste of early Mozilla development, components were
created where they were inappropriate, but there’s been an ongoing effort to remove
XPCOM from places like this.

Interfaces

It’s generally a good idea to break software into components, but how exactly do
you do this? The basic idea is to identify the pieces of functionality that are related
and understand how they communicate with each other. The communication
channels between different component form boundaries between those
components, and when those boundaries are formalized they are known as
interfaces.

Interfaces aren’t a new idea in programming. We’ve all used interfaces since our
first “HelloWorld” program, where the interface was between the code we actually
wrote—the application code—and the printing code. The application code used an
interface from a library, stdio, to print the “hello world” string out to the screen.
The difference here is that a “HelloWorld” application in XPCOM finds this screen-
printing functionality at runtime and never has to know about stdio when it’s
compiled.
Creating XPCOM Components

Interfaces
Interfaces allow developers to encapsulate the implementation and inner workings
of their software, and allow clients to ignore how things are made and just use that
software.

Interfaces and Encapsulation

Between component boundaries, abstraction is crucial for software maintainability
and reusability. Consider, for example, a class that isn’t well encapsulated. Using a
freely available public initialization method, as the example below suggests, can
cause problems.

Figure 1. SomeClass Class Initialization

Interfaces and Programming by Contract

An interface forms a contractual agreement between components and
clients. There is no code that enforces these agreements, but ignoring
them can be fatal. In component-based programming, a component
guarantees that the interfaces it provides will be immutable—that they
will provide the same access to the same methods across different
versions of the component—establishing a contract with the software
clients that use it. In this respect, interface-based programming is often
referred to as programming by contract.

class SomeClass

{

public:

// Constructor

SomeClass();

// Virtual Destructor

virtual ~SomeClass();

// init method

void Init();

void DoSomethingUseful();

};
Creating XPCOM Components 11

What Is XPCOM?

12
For this system to work properly, the client programmer must pay close attention to
whatever rules the component programmer has established. This is the contractual
agreement of this unencapsulated class: a set of rules that define when each method
can be called and what it is expected to do. One rule might specify that
DoSomethingUseful may only be called after a call to Init(). The
DoSomethingUseful method may do some kind of checking to ensure that the
condition—that Init has been called—has been satisfied.

In addition to writing well-commented code that tells the client developer the rules
about Init(), the developer can take a couple steps to make this contract even
clearer. First, the construction of an object can be encapsulated, and a virtual class
provided that defines the DoSomethingUseful method. In this way, construction
and initialization can be completely hidden from clients of the class. In this “semi-
encapsulated” situation, the only part of the class that is exposed is a well-defined
list of callable methods (i.e., the interface). Once the class is encapsulated, the only
interface the client will see is this:

Figure 2. Encapsulation of SomeInterface

The implementation can then derive from this class and implement the virtual
method. Clients of this code can then use a factory design pattern to create the
object (see “Factories” on page 20) and further encapsulate the implementation. In
XPCOM, clients are shielded from the inner workings of components in this way
and rely on the interface to provide access to the needed functionality.

The nsISupports Base Interface

Two fundamental issues in component and interface-based programming are
component lifetime, also called object ownership, and interface querying, or being
able to identify which interfaces a component supports at run-time. This section
introduces the base interface—the mother of all interfaces in XPCOM—
nsISupports, which provides solutions to both of these issues for XPCOM
developers.

class SomeInterface

{

public:

virtual void DoSomethingUseful() = 0;

};
Creating XPCOM Components

Interfaces
Object Ownership. In XPCOM, since components may implement any number of
different interfaces, interfaces must be reference counted. Components must keep
track of how many references to it clients are maintaining and delete themselves
when that number reaches zero.

When a component gets created, an integer inside the component tracks this
reference count. The reference count is incremented automatically when the client
instantiates the component; over the course of the component’s life, the reference
count goes up and down, always staying above zero. At some point, all clients lose
interest in the component, the reference count hits zero, and the component deletes
itself.

When clients use interfaces responsibly, this can be a very straightforward process.
XPCOM has tools to make it even easier, as we describe later. It can raise some real
housekeeping problems when, for example, a client uses an interface and forgets to
decrement the reference count. When this happens, interfaces may never be
released and will leak memory. The system of reference counting is, like many
things in XPCOM, a contract between clients and implementations. It works when
people agree to it, but when they don’t, things can go wrong. It is the responsibility
of the function that creates the interface pointer to add the initial reference, or
owning reference, to the count.

nsISupports, shown below, supplies the basic functionality for dealing with
interface discovery and reference counting. The members of this interface,
QueryInterface, AddRef, and Release, provide the basic means for getting the
right interface from an object, incrementing the reference count, and releasing
objects once they are not being used, respectively. Figure 3 shows the
nsISupports interface.

Pointers in XPCOM

In XPCOM, pointers refer to interface pointers. The difference is a subtle one,
since interface pointers and regular pointers are both just address in memory.
But an interface pointer is known to implement the nsISupports base inter-
face, and so can be used to call methods such as AddRef, Release, or Que-
ryInterface.
Creating XPCOM Components 13

What Is XPCOM?

14
Figure 3. The nsISupports Interface

The various types used in this figure are described in the “XPCOM Types” section
below. Figure 4 shows a complete (if spare) implementation of the nsISupports
interface.

class Sample: public nsISupports {

private:

 nsrefcnt mRefCnt;

public:

 Sample();

 virtual ~Sample();

 NS_IMETHOD QueryInterface(const nsIID &aIID, void **aResult);

 NS_IMETHOD_(nsrefcnt) AddRef(void);

 NS_IMETHOD_(nsrefcnt) Release(void);

};
Creating XPCOM Components

Interfaces
Figure 4. Implementation of nsISupports Interface

Sample::Sample()

{

 // initialize the reference count to 0

 mRefCnt = 0;

}

Sample::~Sample()

{

}

// typical, generic implementation of QI

NS_IMETHODIMP Sample::QueryInterface(const nsIID &aIID,

 void **aResult)

{

 if (aResult == NULL) {

 return NS_ERROR_NULL_POINTER;

 }

 *aResult = NULL;

 if (aIID.Equals(kISupportsIID)) {

 *aResult = (void *) this;

 }

 if (*aResult != NULL) {

 return NS_ERROR_NO_INTERFACE;

 }

 // add a reference

 AddRef();

 return NS_OK;
}

NS_IMETHODIMP_(nsrefcnt) Sample::AddRef()

{

 return ++mRefCnt;

}

NS_IMETHODIMP_(nsrefcnt) Sample::Release()

{

 if (--mRefCnt == 0) {

 delete this;

 return 0;

 }

 // optional: return the reference count

 return mRefCnt;

}

Creating XPCOM Components 15

What Is XPCOM?

16
Object Interface Discovery. Inheritance is another very important topic in object
oriented programming. Inheritance is the means through which one class is derived
from another. When a class inherits from another class, the inheriting class may
override the default behaviors of the base class without having to copy all of that
class’s code, in effect creating a more specific class, as in the following example:

Figure 5. Simple Class Inheritance

Circle is a derived class of Shape. A Circle is a Shape, in other words, but a
Shape is not necessarily a Circle. In this case, Shape is the base class and Circle
is a subclass of Shape.

In XPCOM, all classes derive from the nsISupports interface, so all objects are
nsISupports but they are also other, more specific classes, which you need to be
able to find out about at runtime. In Figure 5 above, for example, you’d like to be
able ask the Shape if it’s a Circle and to be able to use it like a circle if it is. In
XPCOM, this is what the QueryInterface feature of the nsISupports interface
is for: it allows clients to find and access different interfaces based on their needs.

class Shape

{

private:

 int m_x;

 int m_y;

public:

 virtual void Draw() = 0;

 Shape();

 virtual ~Shape();

};

class Circle : public Shape

{

private:

 int m_radius;

public:

 virtual Draw();

 Circle(int x, int y, int radius);

 virtual ~Circle();

};
Creating XPCOM Components

Interfaces
In C++, you can use a fairly advanced feature known as a dynamic_cast<>,
which throws an exception if the Shape object is not able to be cast to a Circle.
But enabling exceptions and RTTI may not be an option because of performance
overhead and compatibility on many platforms, so XPCOM does things differently.

Instead of leveraging C++ RTTI, XPCOM uses the special QueryInterface
method that casts the object to the right interface if that interface is supported.

Every interface is assigned an identifier that gets generated from a tool commonly
named “uuidgen”. This universally unique identifier (UUID) is a unique, 128 bit
number. Used in the context of an interface (as opposed to a component, which is
what the contract ID is for), this number is called an IID.

When a client wants to discover if an object supports a given interface, the client
passes the IID assigned to that interface into the QueryInterface method of that
object. If the object supports the requested interface, it adds a reference to itself and
passes back a pointer to that interface. If the object does not support the interface an
error is returned.

The first parameter of QueryInterface is a reference to a class named nsIID,
which is a basic encapsulation of the IID. Of the three methods on the nsIID class,
Equals, Parse, and ToString, Equals is by far the most important, because it is
used to compare two nsIIDs in this interface querying process.

“Exceptions” in XPCOM

C++ exceptions are not supported directly by XPCOM. Instead all exceptions
must be handled within a given component, before crossing interface bound-
aries. In XPCOM, all interface methods should return an nsresult error value
(see the XPCOM API in Appendix B for a listing of these error codes). These
error code results become the “exceptions” that XPCOM handles.

class nsISupports {

 public:

long QueryInterface(const nsIID & uuid,
void **result) = 0;

long AddRef(void) = 0;

long Release(void) = 0;

};
Creating XPCOM Components 17

What Is XPCOM?

18
When you implement the nsIID class (and you’ll see in the chapter “Tutorial:
Using XPCOM Utilities To Make Things Easier” how macros can make this
process much easier), you must make sure the class methods return a valid result
when the client calls QueryInterface with the nsISupports IID.
QueryInterface should support all interfaces that the component supports.

In implementations of QueryInterface, the IID argument is checked against the
nsIID class. If there is a match, the object’s this pointer is cast to void, the
reference count is incremented, and the interface returned to the caller. If there isn’t
a match, the class returns an error and sets the out value to null.

In the example above, it’s easy enough to use a C-style cast. But casting can
become more involved where you must first cast voic then to the requested type,
because you must return the interface pointer in the vtable corresponding to the
requested interface. Casting can become a problem when there is an ambiguous
inheritance hierarchy.

XPCOM Identifiers

In addition to the IID interface identifier discussed in the previous section, XPCOM
uses two other very important identifiers to distinguish classes and components.

• “CID”

• “Contract ID”

CID

A CID is a 128 bit number that uniquely identifies a class or component in much
the same way that an IID uniquely identifies an interface. The CID for
nsISupports looks like this:

00000000-0000-0000-c000-000000000046

The length of a CID can make it cumbersome to deal with in the code, so very often
you see #defines for CIDs and other identifiers being used, as in this example:

#define SAMPLE_CID \

{ 0x777f7150, 0x4a2b, 0x4301, \

{ 0xad, 0x10, 0x5e, 0xab, 0x25, 0xb3, 0x22, 0xaa}}
Creating XPCOM Components

XPCOM Identifiers
You also see NS_DEFINE_CID used a lot. This simple macro declares a constant
with the value of the CID:

static NS_DEFINE_CID(kWebShellCID, NS_WEB_SHELL_CID);

A CID is sometimes also referred to as a class identifier. If the class to which a CID
refers implements more than one interface, that CID guarantees that the class
implements that whole set of interfaces when it’s published or frozen.

Contract ID

A contract ID is a human readable string used to access a component. A CID or a
contract ID may be used to get a component from the component manager. This is
the contract ID for the LDAP Operation component:

"@mozilla.org/network/ldap-operation;1"

The format of the contract ID is the domain of the component, the module, the
component name, and the version number, separated by slashes.

Like a CID, a contract ID refers to an implementation rather than an interface, as an
IID does. But a contract ID is not bound to any specific implementation, as the CID
is, and is thus more general. Instead, a contract ID only specifies a given set of
interfaces that it wants implemented, and any number of different CIDs may step in
and fill that request. This difference between a contract ID and a CID is what makes
it possible to override components.

XPCOM Identifier Classes

The nsIID class is actually a typedef for the nsID class. The other typedefs of
nsID, CID and IID, refer to specific implementations of a concrete class and to
a specific interface, respectively.

The nsID class provides methods like Equals for comparing identifiers in the
code. See “Identifiers in XPCOM” on page 60 for more discussion of the nsID
classes.
Creating XPCOM Components 19

What Is XPCOM?

20
Factories

Once code is broken up into components, client code typically uses the new
constructor to instantiate objects for use:

SomeClass* component = new SomeClass();

This pattern requires that the client know something about the component,
however—how big it is at the very least. The factory design pattern can be used to
encapsulate object construction. The goal of factories is create objects without
exposing clients to the implementations and initializations of those objects. In the
SomeClass example, the construction and initialization of SomeClass, which
implements the SomeInterface abstract class, is contained within the
New_SomeInterface function, which follows the factory design pattern:

Figure 6. Encapsulating the Constructor

The factory is the class that actually manages the creation of separate instances of a
component for use. In XPCOM, factories are implementations of the nsIFactory
interface, and they use a factory design pattern like the example above to abstract
and encapsulate object construction and initialization.

int New_SomeInterface(SomeInterface** ret)

{

// create the object

SomeClass* out = new SomeClass();

if (!out) return -1;

// init the object

if (out->Init() == FALSE)

{

delete out;

return -1;

}

// cast to the interface

ret = static_cast<SomeInterface>(out);

return 0;

}

Creating XPCOM Components

Factories
The example in Figure 6 above is a simple and stateless version of factories, but
real world programming isn’t usually so simple, and in general factories need to
store state. At a minimum, the factory needs to preserve information about what
objects it has created. When a factory manages instances of a class built in a
dynamic shared library, for example, it needs to know when it can unload the
library. When the factory preserves state, you can ask if there are outstanding
references and find out if the factory created any objects.

Another state that a factory can save is whether or not an object is a singleton. For
example, if a factory creates an object that is supposed to be a singleton, then
subsequent calls to the factory for the object should return the same object. Though
there are tools and better ways to handle singletons (which we’ll discuss when we
talk about the nsIServiceManager), a developer may want to use this
information to ensure that only one singleton object can exist despite what the
callers do.

The requirements of a factory class can be handled in a strictly functional way, with
state being held by global variables, but there are benefits to using classes for
factories. When you use a class to implement the functionality of a factory, for
example, you derive from the nsISupports interface, which allows you to
manage the lifetime of the factory objects themselves. This is important when you
want to group sets of factories together and determine if they can be unloaded.
Another benefit of using the nsISupports interface is that you can support other
interfaces as they are introduced. As we’ll show when we discuss nsIClassInfo,
some factories support querying information about the underlying implementation,
such as what language the object is written in, interfaces that the object supports,
etc. This kind of “future-proofing” is a key advantage that comes along with
deriving from nsISupports.

XPIDL and Type Libraries

An easy and powerful way to define an interface—indeed, a requirement for
defining interfaces in a cross-platform, language neutral development
environment—is to use an interface definition language (IDL). XPCOM uses its
own variant of the CORBA OMG Interface Definition Language (IDL) called
XPIDL, which allows you to specify methods, attributes and constants of a given
interface, and also to define interface inheritence.
Creating XPCOM Components 21

What Is XPCOM?

22
There are some drawbacks to defining your interface using XPIDL. There is no
support for multiple inheritence, for one thing. If you define a new interface, it
cannot derive from more than one interface. Another limitation of interfaces in
XPIDL is that method names must be unique. You can not have two methods with
the same name that take different parameters, and the workaround—having
multiple function names—isn’t pretty:

void FooWithInt(in int x);

void FooWithString(in string x);

void FooWithURI(in nsIURI x).

However, these shortcomings pale in comparison to the functionality gained by
using XPIDL. XPIDL allows you to generate type libraries, or typelibs, which are
files with the extension .xpt. The type library is a binary representation of an
interface or interfaces. It provides programmatic control and access of the interface,
which is crucial for interfaces used in the non C++ world. When components are
accessed from other languages, as they can be in XPCOM, they use the binary type
library to access the interface, learn what methods it supports, and call those
methods. This aspect of XPCOM is called XPConnect. XPConnect is the layer of
XPCOM that provides access to XPCOM components from languages such as
JavaScript. See “Connecting to Components from the Interface” on page 30 for
more information about XPConnect.

When a component is accessible from a language other than C++, such as
JavaScript, its interface is said to be “reflected” into that language. Every reflected
interface must have a corresponding type library. Currently you can write
components in C, C++, JavaScript, or Python, and there are efforts underway to
build XPCOM bindings for Ruby and Perl as well.

Writing Components in Other Languages

Though you do not have access to some of the tools that XPCOM provides for
C++ developers (such as macros, templates, smart pointers, and others) when
you create components in other languages, you may be so comfortable with the
language itself that you can eschew C++ altogether and build, for example,
Python-based XPCOM components that can be used from JavaScript or vice
versa.

See the “References” section in Appendix C for more information about Python
and other languages for which support has been added in XPCOM.
Creating XPCOM Components

XPCOM Services
All of the public interfaces in XPCOM are defined using the XPIDL syntax. Type
libraries and C++ header files are generated from these IDL files, and the tool that
generates these files is called the xpidl compiler. The section “Defining the
Weblock Interface in XPIDL” on page 103 describes the XPIDL syntax in detail.

XPCOM Services

When clients use components, they typically instantiate a new object each time
they need the functionality the component provides. This is the case when, for
example, clients deal with files: each separate file is represented by a different
object, and several file objects may be being used at any one time.

But there is also a kind of object known as a service, of which there is always only
one copy (though there may be many services running at any one time). Each time a
client wants to access the functionality provided by a service, they talk to the same
instance of that service. When a user looks up a phone number in a company
database, for example, probably that database is being represented by an “object”
that is the same for all co-workers. If it weren’t, the application would need to keep
two copies of a large database in memory, for one thing, and there might also be
inconsistencies between records as the copies diverged.

Providing this single point of access to functionality is what the singleton design
pattern is for, and what services do in an application (and in a development
environment like XPCOM).

In XPCOM, in addition to the component support and management, there are a
number of services that help the developer write cross platform components. These
services include a cross platform file abstraction which provides uniform and pow-
erful access to files, directory services which maintain the location of application-
and system-specific locations, memory management to ensure everyone uses the
same memory allocator, and an event notification system that allows passing of
simple messages. The tutorial will show each of these component and services in
use, and Appendix B has a complete interface listing of these areas.
Creating XPCOM Components 23

What Is XPCOM?

24
XPCOM Types

There are many XPCOM declared types and simple macros that we will use in the
following samples. Most of these types are simple mappings. The most common
types are described in the following sections:

• “Method Types”

• “Reference Counting”

• “Status Codes”

• “Variable mappings”

• “Common XPCOM Error Codes”

Method Types

The following are a set of types for ensuring correct calling convention and return
time of XPCOM methods.

Reference Counting

Set of macros for managing reference counting.

NS_IMETHOD Method declaration return type. XPCOM method
declarations should use this as their return type.

NS_IMETHODIMP Method Implementation return type. XPCOM
method implementations should use this as their
return time.

NS_IMETHODIMP_(type) Special case implementation return type. Some
methods such as AddRef and Release do not return
the default return type. This exception is regretta-
ble, but required for COM compliance.

NS_IMPORT Forced the method to be resolved internally by the
shared library.

NS_EXPORT Forces the method to be exported by the shared
library.
Creating XPCOM Components

XPCOM Types
Status Codes

These macros test status codes

Variable mappings

Common XPCOM Error Codes

NS_ADDREF Calls AddRef on an nsISupports object

NS_IF_ADDREF Same as above but checks for null before calling
AddRef

NS_RELEASE Calls Release on an nsISupports object

NS_IF_RELEASE Same as above but check for null before calling
Release

NS_FAILED Return true if the passed status code was a failure.

NS_SUCCEEDED Returns true is the passed status code was a success.

nsrefcnt Default reference count type. Maps to an
32 bit integer.

nsresult Default error type. Maps to a 32 bit integer.

nsnull Default null value.

NS_ERROR_NOT_INITIALIZED Returned when an instance is not initial-
ized.

NS_ERROR_ALREADY_INITIALIZED Returned when an instance is already ini-
tialized

NS_ERROR_NOT_IMPLEMENTED Returned by an unimplemented method

NS_ERROR_NO_INTERFACE Returned when a given interface is not
supported.

NS_ERROR_NULL_POINTER Returned when a valid pointer is found to
be nsnull.
Creating XPCOM Components 25

What Is XPCOM?

26
NS_ERROR_FAILURE Returned when a method fails. Generic
error case.

NS_ERROR_UNEXPECTED Returned when an unexpected error
occurs.

NS_ERROR_OUT_OF_MEMORY Returned when a memory allocation fails.

NS_ERROR_FACTORY_NOT_REGISTERED Returned when a requested class is not
registered.
Creating XPCOM Components

CHAPTER 2 Using XPCOM Components
One of the best ways to begin working with XPCOM—especially when you are
designing the interface to a component that will be used by others, as we do in the
chapter “Tutorial: Starting WebLock”—is to look at how clients are already using
XPCOM components.

Applications like the Mozilla browser are sophisticated, modularized clients of
XPCOM components. In fact, virtually all of the functionality that you associate
with a browser—navigation, window management, managing cookies, bookmarks,
security, searching, rendering, and other features—is defined in XPCOM
components and accessed by means of those component interfaces. Mozilla is made
of XPCOM components.

This chapter demonstrates how Mozilla uses some of these XPCOM objects, such
as the CookieManager, and shows how access to the WebLock component will be
defined.
Creating XPCOM Components 27

Using XPCOM Components

28
Component Examples

We’ll say more about how you can use the particular components described here in
Appendix B, The XPCOM API Reference. For now, what’s important to see is how
components like the ones in this section are obtained and used by the Mozilla
browser.

Cookie Manager

Cookie management is one of the many sets of functionality that is made available
to the browser in the form of an XPCOM component and that can be re-used by
developers who want similar functionality in their applications. Whenever a user
accesses the Cookie Manager dialog to view, organize, or remove cookies that have
been stored on the system, they are using the CookieManager component behind

the scenes. Figure 1 shows user interface1 that is presented to the user in Mozilla
for working with the CookieManager component.

1. Note that the interface is not part of the component itself. XPCOM makes it easy to use
components like CookieManager from Mozilla’s Cross Platform Front End (XPFE) and
other user interfaces, but the component itself doesn’t provide it’s own UI.
Creating XPCOM Components

Component Examples
Figure 1. The Cookie Manager Dialog

This dialog is written in XUL and JavaScript, and uses a part of XPCOM called
XPConnect to seemlessly connect to the CookieManager component (see
XPConnect sidebar below). XUL is just one way to expose the functionality of the
CookieManager component—but it’s a particularly useful one in the Mozilla world.

The functionality of the CookieManager component is available through the
nsICookieManager interface, which is comprised of the public methods in
Table 1.

TABLE 1. The nsICookieManager Interface

removeAll Remove all cookies from the cookie list.

enumerator Enumerate through the cookie list.

remove Remove a particular cookie from the list.
Creating XPCOM Components 29

Using XPCOM Components

30
In XPCOM the interface is guaranteed to stay the same even if the underlying
implementation changes. The interfaces are public, in other words, and the

implementations are private1. When a user selects one of the cookies displayed in
the list and then clicks the Remove buton, the Remove method in the
nsICookieManager interface is called. The function is carried out by the
CookieManager component, and the selected cookie is deleted from disk and
removed from the displayed list.

The snippet in Figure 2 shows how the Remove() method from the XPCOM
CookieManager component can be called from JavaScript:

1. There are exceptions to this. Some XPCOM interfaces are also private and not made for
general use. Private interfaces do not have the same requirements as the ones that are
made available publicly in IDL.

Connecting to Components from the Interface

The Mozilla user interface uses JavaScript that has been given access to
XPCOM components in the application core with a technology called
XPConnect.

XPConnect allows interface methods defined via XPIDL to be called
from JavaScript, as part of JavaScript objects that represent instances of
components like the CookieManager.

XPConnect is what binds the application code to the user interface of
the Mozilla browser, to other Gecko-based XUL, and to JavaScript
environments like xpcshell, which is a command-line JavaScript
interpreter and XPCOM tool is built with Mozilla.

See http://www.mozilla.org/scriptable for more information about
XPConnect and JavaScript.
Creating XPCOM Components

Component Examples
Figure 2. Getting the CookieManager Component in JavaScript

This isn’t quite all there is to it, of course, but this shows an important aspect of
XPCOM. The contractual arrangements that XPCOM enforces open up the way to
binary interoperability—to being able to access, use, and reuse XPCOM
components at run-time. And they make it possible to use components written in
other languages—such as JavaScript, Python, and others—and to use C++-based
XPCOM components from these other languages as well.

In the Mozilla browser, components are used as often from JavaScript in the
interface as they are from C++ or any other language. In fact, a search of the
Mozilla source code reveals that this CookieManager component is called only
from JavaScript. We’ll be using this component from JavaScript ourselves as part

of this tutorial1.

// xpconnect to cookiemanager

// get the cookie manager component in JavaScript

var cookiemanager = Components.classes["@mozilla.org/

cookiemanager;1"].getService();

cookiemanager = cookiemanager.QueryInterface
(Components.interfaces.nsICookieManager);

// called as part of a largerDeleteAllCookies() function

function FinalizeCookieDeletions() {

 for (var c=0; c<deletedCookies.length; c++) {

 cookiemanager.remove(deletedCookies[c].host,

 deletedCookies[c].name,

 deletedCookies[c].path);

 }

 deletedCookies.length = 0;

}

1. The CookieManager component is used to persist for the web locking functionality
described in this tutorial.
Creating XPCOM Components 31

Using XPCOM Components

32
The WebBrowserFind Component

Components are used all over—in high-level browser-like functionality such as
nsWebBrowserFind, which provides find() and findNext() methods for
finding content in web pages, and in low-level tasks such as the manipulation of
data. Though not every API in Mozilla is or should be “XPCOMified”, much if not
all of the typical functionality that browsers provide is available in components that
can be reused via browser extensions and/or gecko embedders.

In addition to the CookieManager component, for example, the WebBrowserFind
component is another part of a large set of web browsing interfaces you can use. Its
nsIWebBrowserFind interface is shown in Table 2. To use this component, you
access it through the nsIWebBrowserFind interface and call its methods.

Once you use the interface to get to the component, you can ask the component
what other interfaces it supports. This service, which is defined in the basic
nsISupports interface and implemented by all XPCOM components, allows you

JavaScript and Mozilla

JavaScript is the lingua franca of the Mozilla browser front-end, and the
bindings between it and XPCOM are strong and well-defined.
Scriptability, this ability to get and use XPCOM components from
JavaScript and other languages for which XPConnect bindings have
been created, is a core feature of XPCOM.

TABLE 2. The nsIWebBrowserFind Interface

findNext Find the next occurence of the search string

findBackwards Boolean attribute that adjusts findNext() to search
backwards up the document.

searchFrames Boolean attribute that indicates whether to search sub-
frames of current document.

matchCase Boolean attribute that indicates whether to match case in
the search.

entireWord Boolean attribute that specifies whether the entire word
should be matched or not.
Creating XPCOM Components

Component Use in Mozilla
to query and switch interfaces on a component as part of the run-time object typing
capabilities of XPCOM. It is handled by the QueryInterface method, which was
introduced in the chapter “What Is XPCOM?” Appendix B in this book provides a
full reference of the XPCOM components available in Mozilla.

The WebLock Component

Now it’s time to look at the WebLock component as another example of XPCOM
components (since you’ll be creating it shortly). In object-oriented programming,
it’s typical to design the interface first—to define the functionality that’s going to
be provided in the abstract, without worrying about how this functionality will be
achieved. So we’ll put aside the details of the implementation until the next chapter
and look at the component from the outside—at the interface to the WebLock
component (see Table 3).

The WebLock component is software that implements all of these methods in the
way described by the interface definition. It registers itself for use when the
browser starts up, and provides a factory that creates an instance of it for use when
the user or administrator clicks the weblock icon in the browser’s user interface.

Component Use in Mozilla

So how are components obtained and used in Mozilla? You’ve seen some enticing
snippets of JavaScript in earlier sections of this chapter, but we haven’t explained
how XPCOM makes components available in general.

TABLE 3. The IWebLock Interface

lock lock the browser to the current site (or to the
whitelist of approved sites read from disk).

unlock unlock the browser for unrestricted use.

addSite add a new site to the whitelist.

removeSite remove a given site from the whitelist.

sites enumerator for the list of approved sites read
in the from the whitelist.
Creating XPCOM Components 33

Using XPCOM Components

34
This section discusses practical component use in Mozilla. It’s divided into three
subsections: one about actually finding all these binary components in Mozilla and
two others corresponding to the two main ways that clients typically access
XPCOM components:

• “Finding Mozilla Components”

• “Using XPCOM Components in Your C++”

• “XPConnect: Using XPCOM Components From Script”

Finding Mozilla Components

This book attempts to provide reference information for XPCOM components and
their interfaces that are frozen as of the time of this writing. The Mozilla
embedding project (www.mozilla.org/projects/embedding) tracks the currently
frozen interfaces.

Mozilla also has some tools that can find and display information about the
interfaces available in Gecko such as the XPCOM Component Viewer, described
below, and LXR, which is a web-based source code viewing tool you can access
from http://lxr.mozilla.org.

The challenge to making good information about XPCOM components available to
prospective clients, however, is that the process of freezing the interfaces that are
implemented by these components is still ongoing. The Component Viewer does
not distinguish between components that are frozen and those that are not. In the
source code you view in LXR, interfaces that have been frozen are marked at the
top with @status frozen.

The XPCOM Component Viewer. The Component Viewer is an add-on you can
install in your browser from www.hacksrus.com/~ginda/cview (see Figure 3),
Creating XPCOM Components

Component Use in Mozilla
Figure 3. XPCOM Component Viewer

The left column shows the components—in this case a subset returned from a
search on ‘gfx’ as part of the contractc ID and the right column a list of the
interfaces. When you open a component on the left, you can see the interfaces it
implements along with a list of the methods provided by each interface.

The XPCOM Component Viewer can be extremely useful for this sort of gross
interrogation, but again: it displays all of the components and interfaces in your
build, many of which are not practical for actual reuse or stable enough to be used
reliably in your own application development. Use comprehensive lists like this
with caution.
Creating XPCOM Components 35

Using XPCOM Components

36
Using XPCOM Components in Your C++

XPConnect makes it easy to acess XPCOM components as JavaScript objects, but
using XPCOM components in C++ is not much more difficult.

Figure 4 duplicates code from Figure 5, but in C++ instead of JavaScript.

Figure 4. Managing Cookies from C++

If your application written in C++, then Figure 4 shows the steps you take to get an
XPCOM component, specify the interface on that component you want to use, and
call methods on that interface.

XPConnect: Using XPCOM Components From Script

The CookieManager component we discussed at the beginning of this chapter
provides a good opportunity to talk further about using components from
JavaScript. In the following code fragment from the Cookie Manager dialog in
Mozilla, you can see a singleton of the the CookieManager component being
created with the getService() method and used to provide the functionality that
lets users load and remove cookies from the user interface.

nsCOMPtr<nsIServiceManager> servMan;

nsresult rv = NS_GetServiceManager(getter_AddRefs(servMan));

if (NS_FAILED(rv))

 return -1;

nsCOMPtr<nsICookieManager> cookieManager;

rv = servMan->GetServiceByContractID("@mozilla.org/cookiemanager",
NS_GET_IID(nsICookieManager), getter_AddRefs(cookieManager));

if (NS_FAILED(rv))

 return -1;

PRUint32 len;

deletedCookies->GetLength(&len);

for (int c=0; c<len; c++)

 cookiemanager->Remove(deletedCookies[c].host,

 deletedCookies[c].name,

 deletedCookies[c].path);
Creating XPCOM Components

Component Use in Mozilla
Figure 5. Managing Cookies from JavaScript

Beyond the methods that are being called on the CookieManager itself (e.g.,
cookiemanager.remove, which maps to the remove() function from the IDL in
Table 1 above), note the special XPConnect objects and methods that reflect the
XPCOM component into JavaScript.

Components is the JavaScript object that controls the connection to components,
and classes is an array of all of the classes you can ask for by contract ID. To
instantiate an XPCOM component in JavaScript, you create a new Component
object and pass in the contract ID for the component you want and ask for either a
singleton or an instance of that component to be returned:

var cookiemanager = Components.classes["@mozilla.org/
cookiemanager;1"].getService();

cookiemanager = cookiemanager
.QueryInterface(Components.interfaces.nsICookieManager);

function loadCookies() {

 // load cookies into a table

 var enumerator = cookiemanager.enumerator;

 var count = 0;

 var showPolicyField = false;

 while (enumerator.hasMoreElements()) {

 var nextCookie = enumerator.getNext();

 nextCookie = nextCookie.QueryInterface
(Components.interfaces.nsICookie);

....

}

function FinalizeCookieDeletions() {

 for (var c=0; c<deletedCookies.length; c++) {

 cookiemanager.remove(deletedCookies[c].host,

 deletedCookies[c].name,

 deletedCookies[c].path,

 }

 deletedCookies.length = 0;

}

var cookiemanager = Components.classes
["@mozilla.org/cookiemanager;1"].getService();
Creating XPCOM Components 37

Using XPCOM Components

38
The resulting cookiemanager object then provides access to all of the methods
for that component that have been defined in IDL and compiled into the type
library. Using the CookieManager component, you could write code like this to
delete all cookies from the system:

Another vital feature of the XPConnect glue this example shows is the availability
of the QueryInterface method on all objects that are reflected into JavaScript
from XPCOM. As in C++, you can use this method to ask for other interfaces that
are available on the given object.

Remember, QueryInterface allows you to query an object for the interfaces it
supports. In the case of the snippet in Figure 5, the QueryInterface method is
being used to get the nsICookie interface from the enumerator so that, for
instance, the JavaScript code can access the value and name attributes for each
cookie.

cmgr = Components.classes
["@mozilla.org/cookiemanager;1"]
.getService();

cookiemanager = cookiemanager.QueryInterface
(Components.interfaces.nsICookieManager);

// delete all cookies

function trashEm() {

cmgr.removeAll()

}

Services Versus Regular Instances

Whether to have clients use your component as an instance or a service is a
design question, really, and something you should be clear about in the docu-
mentation for your component. Actually, the getService() method in the
example here calls through to the createInstance() method that is also
available from the Component object and caches the result, making it a singleton
rather than a normal instance.

The singleton design pattern that is used to create services is described in
“XPCOM Services” on page 23.
Creating XPCOM Components

Component Use in Mozilla
Creating XPCOM Components 39

Using XPCOM Components

40
 Creating XPCOM Components

CHAPTER 3 Component Internals
Where the previous chapter described components from the perspective of a client
of XPCOM components, this chapter discusses components from the perspective of
the software developer. Read on to see how components are generally implemented
in XPCOM, or you can skip to the next chapter, where the WebLock component
tutorial takes you step by step through the component creation process.

Creating Components in C++

Let’s start by examining how XPCOM components are written in C++. The most
common type of component is one that is written in C++ and compiled into a
shared library (a DLL on a Windows system or a DSO on Unix).

The illustration below shows the basic relationship between the shared library
containing the component implementation code you write and the XPCOM
framework itself. In this diagram, the outer boundary is that of the module, the
shared library in which a component is defined.
Creating XPCOM Components 39

Component Internals

40
Figure 1. A Component in the XPCOM Framework

When you build a component or module and compile it into a library, it must export
a single method named NSGetModule. This NSGetModule function is the entry
point for accessing the library. It gets called during registration and unregistration
of the component, and when XPCOM wants to discover what interfaces or classes
the module/library implements. In this chapter we will outline this entire process.

As Figure 1 illustrates, in addition to the NSGetModule entry point, there are
nsIModule and nsIFactory interfaces that control the actual creation of the
component, and also the string and XPCOM glue parts, which we’ll discuss in
some detail in the next section (see “XPCOM Glue” on page 48”). These latter
supply ease-of-development utilites like smart pointers, generic modules support,
and simple string implementations. The largest and possibly most complex part of a
component is the code specific to the component itself.
Creating XPCOM Components

XPCOM Initialization
XPCOM Initialization

To understand why and when your component library gets called, it is important to
understand the XPCOM initalization process. When an application starts up, that
application may initialize XPCOM. The sequence of events that kicks off this
XPCOM initialization may be triggered by user action or by the application startup
itself. A web browser that embeds Gecko, for example, may initialize XPCOM at
startup through the embedding APIs. Another application may delay this startup
until XPCOM is needed for the first time. In either case, the initialization sequence
within XPCOM is the same.

XPCOM starts when the application makes a call to initialize it. Parameters passed
to this startup call allow you to configure some aspects of XPCOM, including the
customization of location of specific directories. The main purpose of the API at
this point is to change which components directory XPCOM searches when it looks
for XPCOM components. This is how the API is used, for example, in the Gecko
Run-time Environment (GRE).

But Where Are the Components?

Components reside in modules, and those modules are defined in shared library
files that typically sit in the components directory of an XPCOM application.

A set of default libraries stored in this components directory makes up a typical
Gecko installation, providing functionality that consists of networking, layout,
composition, a cross-platform user interface, and others.

Another, even more basic view of this relationship of components to the files
and interfaces that define them is shown in Figure 2 on page 57. The component
is an abstraction sitting between the actual module in which it is implemented
and the objects that its factory code creates for use by clients.
Creating XPCOM Components 41

Component Internals

42
XPCOM Registry Manifests

XPCOM uses special files called manifests to track and persist information about
the components to the local system. There are two types of manifests that XPCOM
uses to track components:

• “ Component Manifests”

• “ Type Library Manifests”

Component Manifests. When XPCOM first starts up, it looks for the component
manifest, which is a file that lists all registered components, and stores details on
exactly what each component can do. XPCOM uses the component manifest to
determine which components have been overridden. Starting with Mozilla 1.2, this
file is named compreg.dat and exists in the components directory, but there are
efforts to move it out of this location to a less application-centric (and thus more
user-centric) location. Any Gecko-based application may choose to locate it
elsewhere.

XPCOM Startup

The six basic steps to XPCOM startup are as follows:

1. Application starts XPCOM.

2. XPCOM sends a notification that it’s beginning startup.

3. XPCOM finds and processes the component manifest (see “Compo-
nent Manifests” below).

4. XPCOM finds and processes the type library manifest (see “Type
Library Manifests” below).

5. If there are new components, XPCOM registers them:
a. XPCOM calls autoregistration start.
b. XPCOM registers new components.
c. XPCOM calls autoregistration end.

6. Complete XPCOM startup: XPCOM notifies that it’s begun.

Component manifests and type library manifests are described in the following
section, “ XPCOM Registry Manifests”.
Creating XPCOM Components

XPCOM Initialization
XPCOM reads this file into an in-memory database.

Type Library Manifests. Another important file that XPCOM reads in is the type
library manifest file. This file is also located in the components directory and is
named xpti.dat. It includes the location and search paths of all type library files on
the system. This file also lists all known interfaces and links to the type library files
that define these interface structures. These type library files are at the core of
XPCOM scriptablity and the binary component architecture of XPCOM.

Using the data in these two manifests, XPCOM knows exactly which component
libraries have been installed and what implementations go with which interfaces.
Additionally, it relates the components to the type libraries in which the binary
representations of the interfaces they support are defined.

The next section describes how to hook into the XPCOM startup and registration
process and make the data about your component available in these manifests, so
that your component will be found and registered at startup.

Component Manifests

The component manifest is a mapping of files to components and components to
classes. It specifies the following information:

• Location on disk of registered components with file size.

• Class ID to Location Mapping

• Contract ID to Class ID Mapping

The component manifest maps component files to unique identifiers for the spe-
cific implementations (class IDs), which in turn are mapped to more general
component identifiers (contract IDs).

Type Library Manifests

Type library manifests contain the following information:

• location of all type library files

• mapping of all known interfaces to type libraries where these structures are
defined
Creating XPCOM Components 43

Component Internals

44
Registration Methods in XPCOM

Once the manifest files are read in, XPCOM checks to see if there are any
components that need to be registered. There are two supported ways to go about
registering your XPCOM component. The first is to use XPInstall, which is an
installation technology that may or may not come with a Gecko application and
provides interfaces for registering your component during installation. Another,
more explicit way to register your component is to run the application regxpcom,
which is built as part of Mozilla and also available in the Gecko SDK. regxpcom
registers your component in the default component registry.

A Gecko embedding application may also provide its own way of registering
XPCOM components using the interface that is in fact used by both XPInstall and
regxpcom, nsIComponentRegistrar. An application, for example, could
provide a "registration-less" component directory whose components are
automatically registered at startup and unregistered at shutdown. Component
discovery does not currently happen automatically in non-debug builds of Gecko,
however.

When the registration process begins, XPCOM broadcasts to all registered
observers a notification that says XPCOM has begun the registration of new
components. After all components are registered, another notification is fired

What Is XPCOM Registration?

In a nutshell, registration is the process that makes XPCOM aware of your com-
ponent(s). As this section and the next describe, you can register your compo-
nent explicitly during installation, or with the regxpcom program, or you can
use the autoregistration methods in the Service Manager to find and register
components in a specified components directory:

• XPInstall APIs

• regxpcom command-line tool

• nsIComponentRegistrar APIs from Service Manager

The registration process is fairly involved. This section introduces it in terms of
XPCOM initialization, and the next chapter describes what you have to do in
your component code to register your component with XPCOM.
Creating XPCOM Components

XPCOM Initialization
saying that XPCOM is done with the registration step. The nsIObserver interface
that handles this notification is discussed in the chapter “Tutorial: Starting
WebLock”.

Once registration is complete and the notifications have fired, XPCOM is ready to
be used by the application. If XPCOM registered your component, then it will be
available to other parts of the XPCOM system. The “XPCOM Initialization”
section in this chapter describes registration in more detail.

Autoregistration

The term autoregistration is sometimes used synonymously with registration in
XPCOM. In the What is Registration? box on the previous page, we describe the
three ways you can register components with XPCOM. Sometimes, applications
use the nsIComponentRegistrar interface and create their own code for
watching a particular directory and registering new components that are added
there, which is what’s often referred to as autoregistration. You should always
know what the installation and registration requirements are for the applications
that will be using your component.

The Shutdown Process

When the application is ready to shutdown XPCOM, it calls NS_ShutdownXPCOM.
When that method is called, the following sequence of events occurs:

1. XPCOM fires a shutdown notification to all registered observers.

2. XPCOM closes down the Component Manager, the Service Manager and

associated services.

3. XPCOM frees all global services.

4. NS_ShutdownXPCOM returns and the application may exit normally.
Creating XPCOM Components 45

Component Internals

46
Component Loaders

Components can be written in many languages. So far this book has been focusing
on “native components,” shared libraries exporting a NSGetModule symbol. But if
there is a component loader for Javascript installed, then you can also write a
JavaScript component.

To register, unregister, load and manage various component types, XPCOM
abstracts the interface between the XPCOM component and XPCOM with the
Component Loader. This loader is responsible for initialization, loading, unloading,
and supporting the nsIModule interface on behalf of each component. It is the
Component Loader’s responsibility to provide scriptable component support.

When building a “native” component, the component loader looks for an exported
symbol from the components shared library. “Native” here includes any language
that can generate a platform native dynamically loaded library. Scripting languages
and other “non-native” languages usually have no way to build native libraries. In
order to have “non native” XPCOM components work, XPCOM must have a
special component loader which knows how to deal with these type of components.

XPConnect, for example, provides a component loader that makes the various
types, including the interfaces and their parameters, available to JavaScript. Each
language supported by XPCOM must have a component loader.

The Unstoppable Shutdown

Note that shutdown observation is unstoppable. In other words, the event you
observe cannot be used to implement something like a "Are you sure you want
to Quit?" dialog. Rather, the shutdown event gives the component or embedding
application a last chance to clean up any leftovers before they are released. In
order to support something like an "Are you sure you want to quit" dialog, the
application needs to provide a higher-level event (e.g., startShutdown())
which allows for cancellation.

Note also that XPCOM services may deny you access once you have received
the shutdown notification. It is possible that XPCOM will return an error if you
access the nsIServiceManager at that point, for example, so you may have
to keep a reference-counted pointer to the service you are interested in using
during this notification.
Creating XPCOM Components

XPCOM Initialization
Three parts of a XPCOM Component Library

XPCOM is like an onion. XPCOM components have at least three layers. From the
innermost and moving outward these layers include:

• The core XPCOM object

• The factory code

• The module code

The core XPCOM object is the object that will implement the functionality you
need. For example, this is the object that may start a network download and
implement interfaces that will listen to the progress. Or the object may provide a
new content type handler. Whatever it does, this object is at the core of the XPCOM
component, and the other layers are supporting it, plugging it into the XPCOM
system. A single library may have many of these core objects.

One layer above the core object is the factory code. The factory object provides a
basic abstraction of the core XPCOM object. Chapter 1 discussed the factory
design pattern that’s used in a factory object. At this layer of the XPCOM
Component Library, the factory objects are factories for the core XPCOM objects
of the layer below.
Creating XPCOM Components 47

Component Internals

48
One more layer outward is the module code. The module interface provides yet
another abstraction—this time of the factories—and allows for multiple factory
objects. From the outside of the component library, there is only the single entry
point, NSGetModule(). This point of entry may fan out to any number of
factories, and from there, any number of XPCOM objects.

The following chapter details these layers in terms of the XPCOM interfaces that
represent them. Here we will just introduce them. The factory design pattern in
XPCOM is represented by the nsIFactory interface. The module layer is
represented by the nsIModule interface. Most component libraries only need these
two interfaces, along with the nsISupport interface, to have XPCOM load,
recognize, and use their core object code.

In the next section, we’ll be writing the code that actually compiles into a
component library, and you will see how each layer is implemented and how each
interface is used. Following this initial, verbose demonstration of the API’s, we will
introduce a faster more generic way of implementing the module and factory code
using macros, which can make components much easier to create.

XPCOM Glue

XPCOM contains a lot of stuff. Most of the XPCOM interfaces are not frozen and
are meant to be used only by the Gecko internals, not by clients. XPCOM provides
many data structures from linked lists to AVL trees. Instead of writing your own
linked list, it’s tempting to reuse nsVoidArray or another publicly available class,
but this might be a fatal mistake. At any time the class can change and give you
unexpected behavior.

XPCOM makes for a very open environment. At runtime you can acquire any
service or component merely by knowing a CID, or Contract ID, and an IID. At
last count there were over 1300 interfaces defined in XPIDL. Of those 1300
interfaces, less than 100 were frozen, which means that a developer has a good
chance of stumbling upon useful interfaces that aren’t frozen. If an interface isn't
explicitly marked "FROZEN" in the IDL comments, however—and most of them
aren’t—it will cause your component to possibly break or crash when the version
changes.
Creating XPCOM Components

XPCOM Glue
The Glue Library

In general you should avoid any unfrozen interfaces, any symbols in XPCOM, or
any other part of Gecko libraries that aren’t frozen. However, there are some
unfrozen tools in XPCOM that are used so often they are practically required parts
of component programming.

The smart pointer class, nsCOMPtr, for example, which can make reference
counting a lot less tedious and error-prone, is not actually frozen, and neither are
nsDebug, a class for aiding in tracking down bugs, or nsMemory, a class to ensure
that everyone uses the same heap, generic factory, and module. Instead of asking
every developer to find and copy these various files into their own application,
XPCOM provides a single library of “not-ready-to-freeze-but-really-helpful”
classes that you can link into your application, as the following figure
demonstrates.

Figure 5. XPCOM Glue and Tools

This is the glue library. It provides a bridge, or “glue” layer, between your
component and XPCOM.

A version of the glue library is built into XPCOM, and when your component uses
it, it links a snapshot of this library: it includes a copy of these unfrozen classes
directly, which allows the XPCOM library version to change without affecting the
software. There is a slight footprint penalty to linking directly, but this gives your
Creating XPCOM Components 49

Component Internals

50
component freedom to work in any post Mozilla 1.2 environment. If footprint is a
big issue in your component or application, you can trim out the pieces you don’t
need.

XPCOM String Classes

The base string types that XPCOM uses are nsAString and nsACString. These
classes are described in the Mozilla String guide (see the “Resources” section in
Appendix C).

The string classes that implement these abstract classes are another set of helpful,
unfrozen classes in XPCOM. Most components and embedding applications need
to link to some kind of string classes in order to utilize certain Gecko APIs, but the
string code that Mozilla uses is highly complex and even more expensive than the
glue code in terms of footprint (~100k). nsEmbedString and nsEmbedCString
are available as very light string class implementations for component
development, especially in small embedded applications. This string
implementation does the bare minimum to support nsAString/nsACString
string classes

In your own component, you can go “slim” and restrict yourself to the
nsEmbedString or go “hog wild” and use all of the functionality of the other
strings. WebLock restricts itself to using the simple nsEmbedString family of
classes.

Figure 6. String Classes and XPCOM

The glue library provides stub functions for the public functions that XPCOM
provides (see xpcom/build/nsXPCOM.h). When the glue library is initialized, it
dynamically loads these symbols from the XPCOM library, which allows the
Creating XPCOM Components

XPCOM Glue
component to avoid linking directly with the XPCOM library. You shouldn’t have
to link to the XPCOM library to create a XPCOM component—in fact, if your
component has to, then something is wrong. .
Creating XPCOM Components 51

Component Internals

52
 Creating XPCOM Components

CHAPTER 4 Tutorial :
Creating the Component Code
Topics covered in this chapter:

• “What We’ll Be Working On”

• “Overview of the WebLock Module Source”

• “Digging In: Required Includes and Constants”

• “webLock1.cpp”

This chapter goes over the basic code required to handle the relationship between
your component and XPCOM. Having the component found and registered
properly is the goal of this first chapter of the tutorial. In the subsequent chapters,
we can begin to work on the example WebLock component functionality itself.
Creating XPCOM Components 53

Tutorial : Creating the Component Code

54
‘

What We’ll Be Working On

The component we’ll be working on in this book controls a special mode in your
browser that prevents users from leaving the current domain or a set of safe
domains. Once enabled, this weblock mode is password protected and persists until
it is turned off by the password holder. It can be used to make the browser into a
safe viewer for children, or for targeted “kiosk browsing,” where the content is
restricted to a particular server. Figure 1 shows the icon that is used to activate the
web lock mode (leftmost in the status bar) once you have installed the WebLock
component and the extra user interface.

Figure 1. Web Lock User Interface

Most of the actual work in the WebLock component is preparing the component
itself, finding the XPCOM interfaces the component needs to use, and hooking into
existing functionality within the Gecko Browser.

Use the Calculator (After Learning Long Division)

You have to write a fair amount of code to create a component library that gets
loaded into XPCOM. An XPCOM component needs to implement at least three
interfaces that XPCOM requires, and often others as well. There is more code in
this chapter than you’ll eventually need, however. Chapter 5 shows some sim-
pler and more elegant ways to create an XPCOM component using generic mac-
ros, and this chapter is more about learning the basics. As in grade school when
you learned long division, better tools like calculators come after you figure out
what’s actually happening. In this case, the long-hand implementation gives us
an opportunity to talk about various features of XPCOM.
Creating XPCOM Components

Component Registration
Component Registration

All XPCOM components—whether they’re stored in shared libraries (DLLs or
DSOs), JavaScript files, or some other file—need to be registered before they can
be used. Registration is a process that happens in all XPCOM applications, whether
they’re embedded Gecko clients, Mozilla, Netscape 7, Compuserve, or any other
software that uses XPCOM. Registration provides the information that applications
need in order to use components properly.

The WebLock component must do a number of things to register itself.
Specifically, the component library has to contain implementations for the
component-related interfaces described in this chapter: nsIModule and
nsIFactory, which are entry points for your implementation code.

Once your component implements these interfaces, the rest of the registration
process itself is simple. Applications typically use regxpcom, described in the next
section.

The regxpcom Program

An explicit way to register a component is to run the application regxpcom. Without
any arguments passed to regxpcom, the program registers the component in the
default component registry. We suggest that when you are testing your component
in the Mozilla or Netscape client, you copy your component into the “components”
directory in the client’s installation folder. When it is copied there, run regxpcom
from the command line to register that component and all the others in that
directory.

Note: Several new options have been added to regxpcom in versions 1.4 and later.
You can run regxpcom with the -h option to see full usage options.

Registration Alternatives

A Gecko embedding application may provide other ways to register XPCOM components.
XPInstall, the cross-platform installation technology that Mozilla uses to install the browser
and other components, is one such alternative. It is described further in the chapter “Tutorial:
Packaging WebLock” on page 157. You should consult with the authors of the application
you wish to extend to see if there are other supported ways.
Creating XPCOM Components 55

Tutorial : Creating the Component Code

56
Overview of the WebLock Module Source

As we mentioned in the previous section, components have layers. There are three
main parts to every XPCOM Component. From the innermost and moving
outward, the first object is the XPCOM object. This is the object that contains the
business logic, that implements functionality such as starting a network download,
implementing interfaces that listen to the download progress, or providing a new
content type handler. In Weblock, this is the part that brings together various Gecko
services and prevents users from leaving the list of acceptable domains. In a way,
he factory and module layers are glue to plug the XPCOM object into the larger
XPCOM system.

One layer above the object itself is the nsIFactory object. This object provides
basic abstraction of the XPCOM object itself. As you can see in the diagram in
Figure 2, the main accessor for the XPCOM object is CreateInstance, which is
expected to return the object that matches a given CID and IID pair.

Moving another layer outward is the nsIModule. This interface provides yet
another abstraction of the nsIFactory object, and may allow for multiple
nsIFactory objects. The key to this interface is that the return type of
getClassObject does not have to be an nsIFactory. Instead, the nsIModule
can ask for implementation details about the XPCOM object. This is very useful if
the caller is required to know information about the component like its threading
module, whether it’s singleton or not, its implementation language, and so forth.
The interface used in this case is nsIClassInfo. Starting from the outside in,
Figure 2 represents the sequence for constructing an XPCOM object.
Creating XPCOM Components

Overview of the WebLock Module Source
Figure 2. Onion Peel View of XPCOM Component Creation

Before we begin looking at the various parts of the component and how they’ll be
implemented in the source, let’s look at the module in weblock.cpp as a whole to
see where we’re going. The source we’re referring to is listed in its entirety at the
end of this chapter (see “webLock1.cpp” on page 68).

The source file for the WebLock component contains three classes. In order to
make the WebLock component work in Mozilla, you have to implement a new
interface to the WebLock component, iWebLock, where the actual work specific
to the the web locking features happens. You also have to create WebLockModule
to implement the necessary nsIModule interface, and you have to create
WebLockFactory to implement nsIFactory and create a factory that hands
instances of your component to clients. These three interface implementations—of
the component functionality, of the nsIModule interface, and of the nsIFactory
interface that creates and manages instances for clients—are the basic sets of code
you need to write to create an XPCOM component.
Creating XPCOM Components 57

Tutorial : Creating the Component Code

58
Digging In: Required Includes and Constants

Let’s take a look at the first several lines of code in the component and discuss what
they mean in XPCOM. The includes and definitions at the top of an XPCOM
source file can give you an idea about some of the data types and techniques we’ll
be discussing more in the upcoming chapters.

For example, MOZILLA_STRICT_API is a variable that shields you from certain
private, non-XPCOM headers. For example, including nsIComponentManager.idl
without MOZILLA_STRICT_API defined will include the following headers, which
are not supported across versions (unfrozen):

• nsComponentManagerUtils.h

• nsComponentManagerObsolete.h

These variables are picked up by files that do not specify themselves as
MOZILLA_STRICT_API.

Basic Structure of the WebLock Component Source

The weblock1.cpp source file that defines these classes and the code you need to
create a basic component has the following structure:

• required includes and constants

• WebLock: public iWebLock

• WebLockFactory: public nsIFactory

• WebLockModule: public nsIModule

In XPCOM, all of these classes also derive from the nsISupports base inter-
face.
Creating XPCOM Components

Digging In: Required Includes and Constants
Figure 3. Listing 1: Includes and Constants in weblock1.cpp

nsIModule.h and nsIFactory.h are required to build your module successfully. They
define the module and factory interfaces, and they contain a couple of important
macros as well (see the following chapter for information about using these
macros). The two other includes, nsIComponentManager.h and
nsIComponentRegistrar.h, provide functions such as
RegisterFactoryLocation that are required to implement the module and
factory classes in your code.

#include <stdio.h>

// may be defined at the project level

// in the makefile

#define MOZILLA_STRICT_API

#include "nsIModule.h"

#include "nsIFactory.h"

#include "nsIComponentManager.h"

#include "nsIComponentRegistrar.h"

// use classes to handle IIDs

// classes provide methods for comparison: Equals, etc.

static const nsIID kIModuleIID = NS_IMODULE_IID;

static const nsIID kIFactoryIID = NS_IFACTORY_IID;

static const nsIID kISupportsIID = NS_ISUPPORTS_IID;

static const nsIID
kIComponentRegistrarIID = NS_ICOMPONENTREGISTRAR_IID;

// generate unique ID here with uuidgen

#define SAMPLE_CID \

{ 0x777f7150, 0x4a2b, 0x4301, \

{ 0xad, 0x10, 0x5e, 0xab, 0x25, 0xb3, 0x22, 0xaa}}

static const nsCID kSampleCID = SAMPLE_CID;
Creating XPCOM Components 59

Tutorial : Creating the Component Code

60
Identifiers in XPCOM

The series of nsIID variables initialized here are actually classes created for
handing the 128 bit identifiers that XPCOM uses to support contractual
relationships between the client and component interfaces. The variable
kIFactoryIID, for example, provides methods like Equals() that can be used to
facilitate comparisons in the code, as in the following example from the Mozilla
source in Figure 4.

Figure 4. Listing 2: Using Class Methods to Handle Identifiers

Finally, SAMPLE_CID is an example of the CID that uniquely identifies each
component. All of the 128 bit numbers used in XPCOM—the class and the
interface IDs—are examples of UUIDs, or universal unique identifiers, which were
discussed in the “Object Interface Discovery” section of the chapter “What Is
XPCOM?”

if (aIID.Equals(NS_GET_IID(nsISupports))) {

aInstancePtr = (void)(nsISupports*)this;

NS_ADDREF_THIS();

return NS_OK;
}

Creating XPCOM Components

Digging In: Required Includes and Constants
Now that we’ve looked at the preliminaries, it’s time to discuss the classes that this
module provides and the way that they define the relationships of the component in
XPCOM.

Coding for the Registration Process

When XPCOM discovers your component for the first time (via XPInstall or
regxpcom, both of which are discussed in “Component Installation Overview”),
the first thing it tries to do is load your library and find the symbol NSGetModule.
When this special entry point is called, it is passed XPCOM's Component Manager
and the location of the shared library where the component lives.

The Component Manager is an interface implemented by XPCOM that
encapsulates the creation of objects and provides summary information about all
registered components. The location on disk is passed via another interface named
nsIFile. This interface is XPCOM's abstraction of files and directories. An
nsIFile object is usually a file or directory on a local volume, but it may represent
something on a network volume as well.

Generating CIDs

To generate a CID for your component, you can use the uuidgen tool that comes
with most Unix distributions and with Microsoft Visual C++. uuidgen is a com-
mand-line tool that returns a unique 128 bit number when you call it with no
arguments:

$ uuidgen

ce32e3ff-36f8-425f-94be-d85b26e634ee

On Windows, a program called guidgen.exe does the same thing and also pro-
vides a graphical user interface if you’d rather point and click. Or you can use
one of the special "bots" on IRC at the irc.mozilla.org server
(irc://irc.mozilla.org/#mozilla), where you can also get help from human beings.

irc irc.mozilla.org

/join #mozilla

/msg mozbot uuid

This command makes the bot generate and return a UUID, which you can then
copy into your component source code.
Creating XPCOM Components 61

Tutorial : Creating the Component Code

62
XPCOM expects a successful call to NSGetModule to return an implementation of
the interface nsIModule. When you write a XPCOM component, you implement
nsIModule to do all of the necessary registration, unregistration, and object
creation. nsIModule has four methods that must be implemented.

The Registration Methods

Two closely related registration methods are declared below.

RegisterSelf is called when a component is first registered with XPCOM. It is
only called once, which gives you a chance to add any one time setup functionality.
The RegisterSelf call allows your component to tell XPCOM exactly what it
supports. Note that whatever you do in RegisterSelf should be undone in
UnregisterSelf.

First, the NSGetModule entry point is called in your component library, and it
returns an interface pointer to a nsIModule implementation. Then XPCOM calls
RegisterSelf, passing parameters that we’ll examine here.

The RegisterSelf Method. The first parameter is the nsIComponentManager,
which provides a kind of entry point into managing the registration process. You
can QueryInterface it to access to the other component management interfaces
described below.

nsresult NSGetModule(nsIComponentManager *servMgr,

 nsIFile* location,

 nsIModule** result);

NS_IMETHOD RegisterSelf(nsIComponentManager *aCompMgr,

 nsIFile *aLocation,

const char *aLoaderStr,

const char *aType) = 0;

NS_IMETHOD UnregisterSelf(nsIComponentManager *aCompMgr,

 nsIFile *aLocation,

 const char *aLoaderStr) = 0;
Creating XPCOM Components

Digging In: Required Includes and Constants
Your RegisterSelf method may call QueryInterface on the
nsIComponentManager interface parameter to obtain the
nsIComponentRegistrar or nsIServiceManager. nsIServiceManager can
be used to obtain a singleton service, which can be useful if you have to register
with a service other than the nsIComponentRegistrar if necessary. For
example, you may want to get the service that is responsible for an event you want
to be notified about. See the section “Getting Called at Startup” on page 91 for an
example of this.

The second parameter in RegisterSelf is the location of the component being
registered. This parameter is useful when the component needs to know where it
has been installed or registered—as, for example, when other files must be stored or
accessed relative to the component. This method is only called once, so you have to
persist the location if you are going to use it later.

The next two parameters are usually passed into the nsIComponentRegistrar
methods and used by XPCOM to determine how to handle the component's
registration. The aLoaderStr parameter, which is opaque and should not be
modified, distinguishes components that are loaded from the same location
specified by the nsIFile parameter. A single ZIP archive may store several
XPCOM components, where every component in the archive has the same
nsIFile parameter but the aLoaderStr parameter can be used to refer to the
location within the ZIP archive.

The Many Faces of the XPCOM Component Manager

The three core component management interfaces, nsIComponentManager,
nsIServiceManager, and nsIComponentRegistrar, are described
below.

• nsIComponentManager - Creates objects and gets implementation
details about objects

• nsIServiceManager - Provides access to singleton objects and
discovers singleton state

• nsIComponentRegistrar - Registers and unregisters factories and
components; handles autoregistration and the discovery and enumer-
ation of registered components.
Creating XPCOM Components 63

Tutorial : Creating the Component Code

64
The last parameter specifies what kind of loader to use on the component. This is
reserved as an optimization, for the most part, but it can be a useful way to extend
XPCOM. Since XPCOM already knows internally what kind of file it has just
loaded and called RegisterSelf on, passing this value to the registration methods
is a shortcut for determining what kind of component is being registered.

nsIComponentRegistrar Methods. To tell XPCOM what implementation is in the
component library, call this method:

The last three parameters are the same as the three passed into the RegisterSelf
method of nsIModule objects. All you have to do is forward these parameters
from your RegisterSelf call into this method, leaving just the first three
parameters.

For any class that implements an XPCOM interface, the implementation must have
a class identifier if it is to be shared with other parts of code via XPCOM. This
identifier, called a CID, uniquely specifies the implementation. This CID can be
created via the tool uuidgen on most operating systems, as in the sidebar above
(“The Many Faces of the XPCOM Component Manager”). Given a CID and an
IID, you can refer to any class in XPCOM. Consider the following:

Figure 5. Figure X: Referencing Objects by ID

NS_IMETHOD RegisterFactoryLocation(const nsCID & aClass,

const char *aClassName,

const char *aContractID,

nsIFile *aFile,

const char *aLoaderStr,

const char *aType) = 0;
Creating XPCOM Components

Digging In: Required Includes and Constants
In this case, you have two implementations of the nsISupports interface. Each
implementation has a separate CID. The interface also as an IID which is the same
for both implementations. When specifying implementation A, the two required
pieces of information are the CID of A and the IID of the interface that A supports.
The code to register such an object is simple:

Unregistration follows the same logic. To unregister, all you have to do is pass the
CID and the file which is passed into UnregisterSelf.

Creating an Instance of Your Component

The example above uses a CID, but after the component is registered, anyone that
uses XPCOM can access your classes if they know either the contract ID or CID.
(Note that RegisterSelf method above does not register a contract ID—it simply
passes null. This prevents clients from ever accessing the component with a
contract ID.)

NS_IMETHODIMP

SampleModule::RegisterSelf(nsIComponentManager *aCompMgr,

nsIFile* aPath,

const char* registryLocation,

const char* componentType)

{

 printf("Hello Mozilla Registration!\n\n");

 nsIComponentRegistrar* compReg = nsnull;

 nsresult rv = aCompMgr->

 QueryInterface(kIComponentRegistrarIID,(void**)& comp

 if (NS_FAILED(rv))

 return rv;

 rv = compReg->RegisterFactoryLocation(kSampleCID,

 "Sample Class",

 nsnull,

 aPath,

 registryLocation,

 componentType);

 compReg->Release();

 return rv;

}

Creating XPCOM Components 65

Tutorial : Creating the Component Code

66
To be accessible to others, you need to publish the CID and/or contract ID of the
component along with the interfaces it supports. Given the example above,
someone could create the Sample object via the component manager as follows:

In the above snippet, we assume that the component manager has been initialized.
In many cases this value is passed in or easily accessible. If not, it can always be
obtained by a call to NS_GetComponentManager(). A listing of this and other
global XPCOM functions is in Appendix B: The XPCOM API Reference.

The first parameter of the call to CreateInstance specifies the component the
client code is looking for, which is the same value passed to
RegisterFactoryLocation. The next parameter is for aggregation, which the
WebLock component does not support. The third parameter is the interface used to
talk to the component. The last parameter is the out variable which will contain a

valid object if and only if the method succeeds1. The implementation of
CreateInstance will ensure that the result will support the passed IID,
kISupportsIID. The type of the variable sample should match the IID passed in
as kISupportsIID.

When CreateInstance is called, XPCOM looks through all registered
components to find a match for the given CID. XPCOM then loads the component
library associated with the CID if it isn’t loaded already. XPCOM then calls the
function NSGetModule on the library. Finally, it calls the method
GetClassObject on the module. This method, which you must implement in your
component code, is expected to return an nsIFactory object for a give CID/IID
pair. To prepare your component code, you need to create a factory object for each
object that you have registered with XPCOM.

nsIComponentManager* compManger; // assume initialized

nsISupports* sample;

compManager->CreateInstance(kSampleCID,

 nsnull,

 kISupportsIID,

 (void**)&sample);

1. Note: the CreateInstance method guarantees that if the out variable is non-
null, it is valid.
Creating XPCOM Components

Digging In: Required Includes and Constants
The main function that must be implemented in the nsIFactory interface is
CreateInstance. The implementation follows a simple algorithm:

1. Create the raw object.

2. If that fails, return an out of memory error code.

3. Call QueryInterface on the new object.

4. If that fails, null the out param and free the new object.

5. Return the nsresult value from QueryInterface.

Often, you don’t have to create the object first because the factory implicitly knows
what IIDs are supported. When this is not the case, however, doing it this way
further abstracts the factories from their concrete classes. If you have a factory that
knows every IID supported by the concrete base class, for example, then when you
go to add a new supported interface you add this IID comparison in both the factory
and the QueryInterface implementation in the concrete class.

NS_IMETHODIMP

SampleFactory::CreateInstance(
nsISupports *aOuter,

const nsIID & iid,

 void * *result)

{

 if (!result)

 return NS_ERROR_INVALID_ARG;

 Sample* sample = new Sample();

 if (!sample)

 return NS_ERROR_OUT_OF_MEMORY;

 nsresult rv = sample->QueryInterface(iid, result);

 if (NS_FAILED(rv)) {

 *result = nsnull;

 delete sample;

 }

 return rv;

}

Creating XPCOM Components 67

Tutorial : Creating the Component Code

68
webLock1.cpp

Before any of the improvements and XPCOM tools we describe in the following
chapter are brought in, the source code for the WebLock component that imple-
ments all the necessary interfaces looks like this.

#include <stdio.h>

#define MOZILLA_STRICT_API

#include "nsIModule.h"
#include "nsIFactory.h"

#include "nsIComponentManager.h"
#include "nsIComponentRegistrar.h"

static const nsIID kIModuleIID = NS_IMODULE_IID;
static const nsIID kIFactoryIID = NS_IFACTORY_IID;
static const nsIID kISupportsIID = NS_ISUPPORTS_IID;
static const nsIID kIComponentRegistrarIID = NS_ICOMPONENTREGISTRAR_IID;

#define SAMPLE_CID \
{ 0x777f7150, 0x4a2b, 0x4301, \
{ 0xad, 0x10, 0x5e, 0xab, 0x25, 0xb3, 0x22, 0xaa}}

static const nsCID kSampleCID = SAMPLE_CID;

class Sample: public nsISupports {
private:
 nsrefcnt mRefCnt;
public:
 Sample();
 virtual ~Sample();

 NS_IMETHOD QueryInterface(const nsIID &aIID, void **aResult);
 NS_IMETHOD_(nsrefcnt) AddRef(void);
 NS_IMETHOD_(nsrefcnt) Release(void);

};

Sample::Sample()
{
 :mRefCnt(0);
}
Sample::~Sample()
{
}
NS_IMETHODIMP Sample::QueryInterface(const nsIID &aIID,
 void **aResult)
{
 if (aResult == NULL) {
 return NS_ERROR_NULL_POINTER;
 }
 *aResult = NULL;
 if (aIID.Equals(kISupportsIID)) {
 *aResult = (void *) this;
 }
 if (aResult != NULL) {
Creating XPCOM Components

webLock1.cpp
 return NS_ERROR_NO_INTERFACE;
 }
 AddRef();
 return NS_OK;
}

NS_IMETHODIMP_(nsrefcnt) Sample::AddRef()
{
 return ++mRefCnt;
}

NS_IMETHODIMP_(nsrefcnt) Sample::Release()
{
 if (--mRefCnt == 0) {
 delete this;
 return 0;
 }
 return mRefCnt;
}

// factory implementation class for component
class SampleFactory: public nsIFactory{
private:
 nsrefcnt mRefCnt;
public:
 SampleFactory();
 virtual ~SampleFactory();

 NS_IMETHOD QueryInterface(const nsIID &aIID, void **aResult);
 NS_IMETHOD_(nsrefcnt) AddRef(void);
 NS_IMETHOD_(nsrefcnt) Release(void);

 NS_IMETHOD CreateInstance(nsISupports *aOuter, const nsIID & iid, void * *result);
 NS_IMETHOD LockFactory(PRBool lock);

};

SampleFactory::SampleFactory()
{
 mRefCnt = 0;
}
SampleFactory::~SampleFactory()
{
}
NS_IMETHODIMP SampleFactory::QueryInterface(const nsIID &aIID,
 void **aResult)
{
 if (aResult == NULL) {
 return NS_ERROR_NULL_POINTER;
 }
 *aResult = NULL;
 if (aIID.Equals(kISupportsIID)) {
 *aResult = (void *) this;
 }
 else
 if (aIID.Equals(kIFactoryIID)) {
 *aResult = (void *) this;
 }
Creating XPCOM Components 69

Tutorial : Creating the Component Code

70
 if (aResult != NULL) {
 return NS_ERROR_NO_INTERFACE;
 }
 AddRef();
 return NS_OK;
}

NS_IMETHODIMP_(nsrefcnt) SampleFactory::AddRef()
{
 return ++mRefCnt;
}

NS_IMETHODIMP_(nsrefcnt) SampleFactory::Release()
{
 if (--mRefCnt == 0) {
 delete this;
 return 0;
 }
 return mRefCnt;
}

NS_IMETHODIMP
SampleFactory::CreateInstance(nsISupports *aOuter, const nsIID & iid, void * *result)
{
 if (!result)
 return NS_ERROR_INVALID_ARG;

 Sample* sample = new Sample();
 if (!sample)
 return NS_ERROR_OUT_OF_MEMORY;

 nsresult rv = sample->QueryInterface(iid, result);

 if (NS_FAILED(rv)) {
 *result = nsnull;
 delete sample;
 }

 return rv;
}

NS_IMETHODIMP
SampleFactory::LockFactory(PRBool lock)
{
 return NS_ERROR_NOT_IMPLEMENTED;
}

// Module implementation
class SampleModule : public nsIModule
{
public:
 SampleModule();
 virtual ~SampleModule();
Creating XPCOM Components

webLock1.cpp
 // nsISupports methods:
 NS_IMETHOD QueryInterface(const nsIID & uuid, void * *result);
 NS_IMETHOD_(nsrefcnt) AddRef(void);
 NS_IMETHOD_(nsrefcnt) Release(void);

 // nsIModule methods:
 NS_IMETHOD GetClassObject(nsIComponentManager *aCompMgr, const nsCID & aClass, const nsIID & aIID,
void * *aResult);
 NS_IMETHOD RegisterSelf(nsIComponentManager *aCompMgr, nsIFile *aLocation, const char *aLoaderStr,
const char *aType);
 NS_IMETHOD UnregisterSelf(nsIComponentManager *aCompMgr, nsIFile *aLocation, const char *aLoaderStr);
 NS_IMETHOD CanUnload(nsIComponentManager *aCompMgr, PRBool *_retval);

private:
 nsrefcnt mRefCnt;
};

//--

SampleModule::SampleModule()
{
 mRefCnt = 0;
}

SampleModule::~SampleModule()
{
}

// nsISupports implemention
NS_IMETHODIMP_(nsrefcnt)
SampleModule::AddRef(void)
{
 ++mRefCnt;
 return mRefCnt;
}

NS_IMETHODIMP_(nsrefcnt)
SampleModule::Release(void)
{
 --mRefCnt;
 if (mRefCnt == 0) {
 mRefCnt = 1; /* stabilize */
 delete this;
 return 0;
 }
 return mRefCnt;
}

NS_IMETHODIMP
SampleModule::QueryInterface(REFNSIID aIID, void** aInstancePtr)
{
 if (!aInstancePtr)
 return NS_ERROR_NULL_POINTER;

 nsISupports* foundInterface;

 if (aIID.Equals(kIModuleIID))
 foundInterface = (nsIModule*) this;
Creating XPCOM Components 71

Tutorial : Creating the Component Code

72
 else if (aIID.Equals(kISupportsIID))
 foundInterface = (nsISupports*) this;

 else
 foundInterface = 0;

 if (foundInterface) {
 foundInterface->AddRef();
 *aInstancePtr = foundInterface;
 return NS_OK;
 }

 *aInstancePtr = foundInterface;
 return NS_NOINTERFACE;
}

// Create a factory object for creating instances of aClass.
NS_IMETHODIMP
SampleModule::GetClassObject(nsIComponentManager *aCompMgr,
 const nsCID& aClass,
 const nsIID& aIID,
 void** result)
{

 if (!kSampleCID.Equals(aClass))
 return NS_ERROR_FACTORY_NOT_REGISTERED;

 if (!result)
 return NS_ERROR_INVALID_ARG;

 SampleFactory* factory = new SampleFactory();
 if (!factory)
 return NS_ERROR_OUT_OF_MEMORY;

 nsresult rv = factory->QueryInterface(aIID, result);

 if (NS_FAILED(rv)) {
 *result = nsnull;
 delete factory;
 }

 return rv;
}

//--

NS_IMETHODIMP
SampleModule::RegisterSelf(nsIComponentManager *aCompMgr,
 nsIFile* aPath,
 const char* registryLocation,
 const char* componentType)
{

 nsIComponentRegistrar* compReg = nsnull;

 nsresult rv = aCompMgr->QueryInterface(kIComponentRegistrarIID, (void**)&compReg);
 if (NS_FAILED(rv))
 return rv;
Creating XPCOM Components

webLock1.cpp
 rv = compReg->RegisterFactoryLocation(kSampleCID,
 "Sample Class",
 nsnull,
 aPath,
 registryLocation,
 componentType);

 compReg->Release();

 return rv;
}

NS_IMETHODIMP
SampleModule::UnregisterSelf(nsIComponentManager* aCompMgr,
 nsIFile* aPath,
 const char* registryLocation)
{

 nsIComponentRegistrar* compReg = nsnull;

 nsresult rv = aCompMgr->QueryInterface(kIComponentRegistrarIID, (void**)&compReg);
 if (NS_FAILED(rv))
 return rv;

 rv = compReg->UnregisterFactoryLocation(kSampleCID, aPath);

 compReg->Release();

 return rv;
}

NS_IMETHODIMP
SampleModule::CanUnload(nsIComponentManager *aCompMgr, PRBool *okToUnload)
{
 *okToUnload = PR_FALSE; // we do not know how to unload.
 return NS_OK;
}

//--

extern "C" NS_EXPORT nsresult NSGetModule(nsIComponentManager *servMgr,
 nsIFile* location,
 nsIModule** return_cobj)
{
 nsresult rv = NS_OK;

 // Create and initialize the module instance
 SampleModule *m = new SampleModule();
 if (!m) {
 return NS_ERROR_OUT_OF_MEMORY;
 }

 // Increase refcnt and store away nsIModule interface to m in return_cobj
 rv = m->QueryInterface(kIModuleIID, (void**)return_cobj);
 if (NS_FAILED(rv)) {
 delete m;
 }
 return rv;
}

Creating XPCOM Components 73

Tutorial : Creating the Component Code

74
 Creating XPCOM Components

CHAPTER 5 Tutorial: Using XPCOM Utilities
To Make Things Easier
Topics covered in this chapter:

• “Generic XPCOM Module Macros”

• “String Classes in XPCOM”

• “Smart Pointers”

• “weblock2.cpp”

This chapter goes back over the code you’ve already created in the first part of the
tutorial (see “webLock1.cpp” in the previous chapter) and uses XPCOM tools that
make coding a lot easier and more efficient. It also introduces a basic string type
that is used with many of the APIs in both XPCOM and Gecko.

To begin with, the first section describes C++ macros that can replace a lot of the
code in the webLock1.cpp. Much of the code created to get the software recognized
and registered as a component can be reduced to a small data structure and a single
macro.
Creating XPCOM Components 75

Tutorial: Using XPCOM Utilities To Make Things Easier

76
XPCOM Macros

The XPCOM framework includes a number of macros for making C++ develop-
ment easier. Though they overlap somewhat (e.g., high-level macros expand to
other macros), they fall into the following general categories.

• “Generic XPCOM Module Macros”

• “Common Implementation Macros”

• “Declaration Macros”

Generic XPCOM Module Macros

The work in the Getting Started chapter was useful in setting up the generic
component code. But there are only a few places in that code that are unique to the
WebLock component, and it was a lot of typing. To write a different component
library, you could copy the listing at the end of the chapter, change very little, and
paste it into a new project. To avoid these kinds of redundancies, to regulate the
way generic code is written, and to save typing, XPCOM provides generic module
macros that expand into the module code you’ve already seen.

Since these macros expand into “generic” implementations, they may not offer as
much flexibility as you have when you are writing your own implementation. But
they have the advantage of allowing much more rapid development. To get an idea
about how much can be handled with the macros described in this section, compare
the code listing in the “weblock2.cpp” section at the end of the chapter with
“webLock1.cpp” in the previous.

The module macros include one set of macros that define the exported
NSGetModule entry point, the required nsIModule implementation code and
another that creates a generic factory for your implementation class. Used together,
these macros can take care of a lot of the component implementation code and
leave you working on the actual logic for your component.

Note that all of the macros described in this section are similar, but used in
slightly different situations. Some differ only in whether or not a method is
called when the module is created and/or destroyed. Table 1 lists the macros
discussed in this section.
Creating XPCOM Components

XPCOM Macros
Module Implementation Macros. The general case is to use
NS_IMPL_NSGETMODULE, which doesn’t take any callbacks, but all the macros
follow the same general pattern. All of these macros work on an array of structures
represented by the _components parameter. Each structure describes a CID that is
to be registered with XPCOM.

TABLE 1. XPCOM Module Macros

Macro Description

NS_IMPL_NSGETMODULE
(name, components)

Implements the nsIModule
interface with the module name
of _name and the component
list in _components.

NS_IMPL_NSGETMODULE_WITH_CTOR
(name, components, ctor)

Same as above but allows for a
special function to be called
when the module is created.

NS_IMPL_NSGETMODULE_WITH_DTOR
(name, components, dtor)

Same as the first macro but
allows for a special function to
be called when the module is
destroyed.

NS_IMPL_NSGETMODULE_WITH_CTOR_DTOR
(name, components, ctor, dtor)

This combines the last to mac-
ros so that you can define func-
tions to be called at the
construction and destruction of
the module object.
Creating XPCOM Components 77

Tutorial: Using XPCOM Utilities To Make Things Easier

78
The first parameter for each of these macros is an arbitrary string that names the
module. In a debugging environment, this string will be printed to the screen when
the component library is loaded or unloaded. You should pick a name that makes

sense and helps you keep track of things. The four required parts1 of the structure
contain the following information:

• A human readable class name

• the class ID (CID)

• the contract ID (This is an optional but recommended argument.)

• a constructor for the given object

The important thing to note in the fictitious listing above is that it can support
multiple components in a module. Modules such as the networking libraries in
Gecko (“necko”) have over 50 components declared in a single
nsModuleComponentInfo array like this.

The first entry of the nsModuleComponentInfo above is the name of the
component. Though it isn’t used that much internally at the present time, this name
should be something that meaningfully describes the module.

The second entry of the nsModuleComponentInfo is the CID. The usual practice
is to put the class ID (CID) into a #define and use the define to declare the CID in
the components list. Many CIDs take the following form:

1. This section discusses the main parameters of this structure. For a complete list-
ing of all available options you can look at the complete reference in Appendix
B.

static const nsModuleComponentInfo components[] =

{

 { "Pretty Class Name",

 CID,

 CONTRACT_ID,

 Constructor

 },

}

Creating XPCOM Components

XPCOM Macros
The next entry is the Contract ID string, which is also usually defined in a #define
in a header file.

These three entries constitute the required parameters for the
RegisterFactoryLocation method we looked at in the prior chapter. When you
use these implementation macros, you must declare a constructor for the object, and
this keeps you from having to write a factory object.

Factory Macros. The factory macro makes it easy to write factory
implementations. Given the class name ConcreteClass, the factory macro
declaration is:

NS_GENERIC_FACTORY_CONSTRUCTOR(ConcreteClass)

This results in a function called ConcreteClassConstructor that can be used in
the nsModuleComponentInfo structure.

Most of the components in the Mozilla browser client use this approach.

#define NS_IOSERVICE_CID \

{ /* 9ac9e770-18bc-11d3-9337-00104ba0fd40 */ \

 0x9ac9e770, \

 0x18bc, \

 0x11d3, \

 {0x93, 0x37, 0x00, 0x10, 0x4b, 0xa0, 0xfd, 0x40} \

}

#include "nsIGenericFactory.h"

static const nsModuleComponentInfo components[] =

{

 { "Pretty Class Name",

 SAMPLE_CID,

 "@company.com/sample"

 SampleConstructor
 }

}

NS_IMPL_NSGETMODULE(nsSampleModule, components)
Creating XPCOM Components 79

Tutorial: Using XPCOM Utilities To Make Things Easier

80
Common Implementation Macros

Every XPCOM object implements nsISupports, but writing this implementation
over and over is tedious. Unless you have very special requirements for managing
reference counting or handling interface discovery, the implementation macros that
XPCOM provides can be used. Instead of implementing the nsISupports
yourself, NS_IMPL_ISUPPORTS1 can expand to the implementation of AddRef,
Release, and QueryInterface for any object.

NS_IMPL_ISUPPORTS1(classname, interface1)

Also, if you implement more than one interface, you can simply change the ’1’ in
the macro to the number of interfaces you support and list the interfaces, separated
by commas. For example:

NS_IMPL_ISUPPORTS2(classname, interface1, interface2)

NS_IMPL_ISUPPORTSn(classname, interface1, …, interfacen)

These macros automatically add the nsISupports entry for you, so you don’t
need to do something like this:

NS_IMPL_ISUPPORTS2(classname, interface1, nsISupports)

Take a close look at the above example. Note that it uses the actual name of the
interface and not an IID. Inside the macro, the interface name expands to
NS_GET_IID(), which is another macro that extracts the IID from the generated
header of the interface. When an interface is written in XPIDL, the headers include
static declarations of their IIDs. On any interface that generated with XPIDL, you
can call NS_GET_IID() to obtain the IID which is associated with that interface.

In order to use NS_IMPL_ISUPPORTSn, you must be sure that a member variable of
type nsrefcnt is defined and named mRefCnt in your class. But why even bother
when you can use another macro?

 // returns a reference to a shared nsIID object.

 static const nsIID iid1 = NS_GET_IID(nsISupports);

 // constructs a new nsIID object

 static const nsIID iid2 = NS_ISUPPORTS_IID;
Creating XPCOM Components

XPCOM Macros
Declaration Macros

NS_DECL_NSISUPPORTS declares AddRef, Release, and QueryInterface for
you, and it also defines the mRefCnt required by NS_IMPL_ISUPPORTS.
Furthermore, NS_DECL_ appended with any interface name in all caps will declare
all of the methods of that interface for you. For example, NS_DECL_NSIFOO will
declare all of the methods of nsIFoo provided that it exists and that nsIFoo.h was
generated by the XPIDL compiler. Consider the following real class:

The declaration of this nsISimpleEnumerator class doesn’t include any methods
other than the contructor and destructor. Instead, the class uses the NS_DECL_

macro1.

Using these declaration macros not only saves a tremendous amount of time when
you’re writing the code, it can also save time if you make changes to your IDL file,
since the C++ header file will then automatically include the updated list of
methods to be supported.

class myEnumerator : public nsISimpleEnumerator

{

public:

 NS_DECL_ISUPPORTS

 NS_DECL_NSISIMPLEENUMERATOR

 myEnumerator();

 virtual ~myEnumerator() {}

};

1. Note that NS_DECL_ISUPPORTS doesn’t obey the general rule in which every interface
has a declaration macro of the form NS_DECL_INTERFACENAME, where INTER-
FACENAME is the name of the interface being compiled.

The NS_INIT_ISUPPORTS macro is also a bit of a special case. Historically,
it gets called in the constructor for your class and sets mRefCnt to zero. But a
change has gone into XPCOM recently that makes NS_INIT_ISUPPORTS no
longer necessary: The mRefCnt type has been changed from an integer to a
class that provides its own auto-initialization. If you are building with versions
earilier than Mozilla 1.3, this macro is still required.
Creating XPCOM Components 81

Tutorial: Using XPCOM Utilities To Make Things Easier

82
Table 2 summarizes the macro usage in this portion of the weblock.cpp source file:

Using the macros described here, the code for the WebLock component has gone
from around 340 lines of code to just under 40. Clearly from a code maintenance
point of view, this kind of reduction is outstanding. The entire source file with these
macros included appears in the next section, “weblock2.cpp”.

weblock2.cpp

The listing below shows the generic module code from the “webLock1.cpp” sec-
tion of the previous chapter using the macros described in this chapter.

TABLE 2. Common XPCOM Macros

NS_IMPL_ISUPPORTSn Implements nsISupports for a given class with n
number of interfaces.

NS_DECL_ISUPPORTS Declares methods of nsISupports including
mRefCnt

NS_INIT_ISUPPORTS Initalizes mRefCnt to zero. Must be called in
classes constructor

NS_GET_IID Returns the IID given the name of an interface.
Interface must be generated by XPIDL
Creating XPCOM Components

weblock2.cpp
Figure 1. weblock2.cpp

#include "nsIGenericFactory.h"

#define SAMPLE_CID \

{ 0x777f7150, 0x4a2b, 0x4301, \

{ 0xad, 0x10, 0x5e, 0xab, 0x25, 0xb3, 0x22, 0xaa}}

class Sample: public nsISupports {

public:

 Sample();

 virtual ~Sample();

 NS_DECL_ISUPPORTS

};

Sample::Sample()

{

 // note: in newer versions of Gecko (1.3 or later)

 // you don’t have to do this:

 NS_INIT_ISUPPORTS();

}

Sample::~Sample()

{

}

NS_IMPL_ISUPPORTS(Sample, nsISupports);

NS_GENERIC_FACTORY_CONSTRUCTOR(Sample);

static const nsModuleComponentInfo components[] =

{

 { "Pretty Class Name",

 SAMPLE_CID,

 "@company.com/sample"

 SampleConstructor
 }

};

NS_IMPL_NSGETMODULE(nsSampleModule, components)
Creating XPCOM Components 83

Tutorial: Using XPCOM Utilities To Make Things Easier

84
String Classes in XPCOM

Strings are usually thought of as linear sequences of characters. In C++, the string
literal “XPCOM”, for example, consists of 6 consecutive bytes, where ‘X’ is at byte
offset zero and a null character is at byte offset 5. Other kinds of strings like “wide”
strings use two bytes to represent each character, and are often used to deal with
Unicode strings.

The string classes in XPCOM are not just limited to representing a null terminated
sequence of characters, however. They are fairly complex because they support the
Gecko layout engine and other subsystems that manage large chucks of data. The
string classes can support sequences of characters broken up into multiple

fragments (fragments which may or may not be null terminated)1.

All string classes in XPCOM derive from one of two abstract classes2: nsAString
and nsACString. The former handles double byte characters, and the latter tends
to be used in more general circumstances, but both of these classes define the
functionality of a string. You can see these classes being passed as arguments in
many of the XPCOM interfaces we’ll look at in the following chapters.

Using Strings

Explaining how all the string classes work is outside the scope of this book, but we
can show you how to use strings in the WebLock component. The first thing to
note is that the string classes themselves are not frozen, which means that you
should not link against them when you can avoid it.

Linking the full string library (.lib or .a) into a component may raise its footprint by
more than 100k (on Windows), which in many cases is an unacceptable gain (see
the online string guide at http://www.mozilla.org/projects/xpcom/string-
guide.html). For WebLock, where the string classes need to be only wrappers
around already existing string data, trading advanced functionality for a much
smaller footprint is the right way to go. The WebLock string classes don’t need to

1. The string classes may also support embedded nulls.

2. There are other abstract string classes, but they are outside the scope of this
book.
Creating XPCOM Components

String Classes in XPCOM
append, concatenate, search, or do any other real work on the string data, they just
need to represent char* and other data and pass them to methods that expect an
nsACString.

nsEmbedString and nsEmbedCString

The strings used in this tutorial are nsEmbedString and nsEmbedCString,
which implement the nsAString abstract class and the nsACString abstract
classes, respectively. This first example shows an nsEmbedCString being used to
pass an nsACString to a method that’s not expected to modify the string.

In this next example, the method is going to set the value of the string—as it might
need to do when it returns the name of the current user or the last viewed URL.

Note that the memory pointed to by aStringURL after the call to url.get() is
owned by the URL string object. If you need to keep this string data around past the
lifetime of the string object, you must make a copy.

 // in IDL: method(in ACString thing);

 char* str = "How now brown cow?";

 nsEmbedCString data(str);

 rv = object->Method(data);

 // in IDL: attribute ACString data;

 nsEmbedCString data;

 method->GetData(data);

 // now to extract the data from the url class:

 const char* aStringURL = data.get();
Creating XPCOM Components 85

Tutorial: Using XPCOM Utilities To Make Things Easier

86
Smart Pointers

All of the interfaces that you’ve seen so far are reference counted. Leaking a
reference by not releasing an object, as the code below demonstrates, can be a
major problem.

A method returns an nsISupports interface pointer that has been reference
counted before it is returned (assuming it wasn’t null). If you handle an error
condition by returning prematurely, whatever value points at will leak—it will
never be deleted. This is a trivial fix in this example, but in real code, this can
easily happen in “goto” constructs, or in deep nesting with early returns.

String Size

The examples above illustrate the use of the single byte string class, nsEm-
bedCString. The double byte version, nsEmbedString, has the same
functionality but the constructor takes and the .get() method returns the type
PRUnichar*. Note that PRUnichar is a two byte value. In the coming chap-
ters, you’ll see examples that use this version in the WebLock component.

{

 nsISupports* value = nsnull;

 object->method(&value);

 if (!value) return;

 ...

 if (NS_FAILED(error))

 return; // <------------ leaks |value|

 ...

 NS_RELEASE(value); // release our reference

}

Creating XPCOM Components

Smart Pointers
Having more than one interface pointer that needs to be released when a block goes
out of scope begs for a tool that can aid the developer. In XPCOM, this tool is the
nsCOMPtr, or smart pointer class, which can save you countless hours and simplify
your code when you’re dealing with interface pointers. Using smart pointers, the
code above can be simplified to:

The style or syntax may be unfamilar, but smart pointers are worth learning and
using because they simplify the task of managing references. nsCOMPtr is a C++
template class that acts almost exactly like raw pointers, that can be compared and
tested, and so on. When you pass them to a getter, you must do something special,
however: You must wrap the variable with the function getter_AddRefs, as in
the example above.

You cannot call the nsISupports AddRef or Release methods on a nsCOMPtr..
But this restriction is desirable, since the nsCOMPtr is handling reference counting
for you. If for some reason you need to adjust the reference count, you must assign
the nsCOMPtr to a new variable and AddRef that. This is a common pattern when
you have a local nsCOMPtr in a function and you must pass back a reference to it,
as in the following:

{

 nsCOMPtr<nsISupports> value;

 object->method(getter_AddRefs(value));

 if (!value) return;

 ...

 if (NS_FAILED(error))

 return;

 ...

}

Creating XPCOM Components 87

Tutorial: Using XPCOM Utilities To Make Things Easier

88
The first thing that this method does is check to see that the caller passed a valid
address. If not, it doesn’t even try to continue. Next, it calls another method on an
object that is presumed to exist in this context. You can call a .get() method on
the nsCOMPtr and have it returned for use as a raw pointer. This raw pointer can
then be assigned to a variable and have its reference updated by NS_IF_ADDREF.
Be very careful with the result of .get(), however. You should never call
Release on this result because it may result in a crash. Instead, to explicitly release
the object being held by a nsCOMPtr, you can assign zero to that pointer.

Another nice feature of smart pointers—the part that makes them smart—is that
you can QueryInterface them quite easily. For example, there are two interfaces
for representing a file on a file system, the nsIFile and nsILocalFile, and they
are both implemented by an object. Although we haven’t formally introduced these
two interfaces, the next code sample shows how simple it is to switch between
these two interface:

SomeClass::Get(nsISupports** aResult)

{

 if (! aResult)

 return NS_ERROR_NULL_POINTER;

 nsCOMPtr<nsISupports> value;

 object->method(getter_AddRefs(value));

 *aResult = value.get();

 NS_IF_ADDREF(*aResult);

 return NS_OK;
}

SomeClass::DoSomething(nsIFile* aFile)

{

 if (! aResult)

 return NS_ERROR_NULL_POINTER;

 nsresult rv;

 nsCOMPtr<nsILocalFile> localFile = do_QueryInterface(aFile, &rv);
Creating XPCOM Components

Smart Pointers
If the QueryInterface is successful, localFile will be non-null, and rv will be
set to NS_OK. If QueryInterface fails, localFile will be null, and rv will be
set to a specific error code corresponding to the reason for the failure. In this
construct, the result code rv is an optional parameter. If you don’t care what the
error code is, you can simply drop it from the function call.

From this point on, we’ll be using nsCOMPtrs as much as possible in WebLock.
For a complete listing of smart pointer functionality, see http://www.mozilla.org/
projects/xpcom/nsCOMPtr/.
Creating XPCOM Components 89

Tutorial: Using XPCOM Utilities To Make Things Easier

90
 Creating XPCOM Components

CHAPTER 6 Tutorial: Starting WebLock
In this chapter, we begin to design and implement the web locking functionality
itself. We have already created a module that implements most of the generic
component functionality (e.g,. registration). This chapter will focus on the
functionality that actually handles the web locking.

Topics covered in this chapter:

• “Getting Called at Startup”

• “Providing Access to WebLock”

• “Creating the WebLock Programming Interface”

• “Defining the Weblock Interface in XPIDL”

• “Implementing WebLock”

Getting Called at Startup

No person is an island to themselves, and neither are components. The sample
component you’ve built up so far doesn’t do anything. After having its registration
procedure called, the component does nothing.
Creating XPCOM Components 91

Tutorial: Starting WebLock

92
In order to be started up or notified when some event happens, the sample
component has to hook into Mozilla, which it can do either by overriding an
existing component or by registering for some event that will cause it to start up.
WebLock does the latter and gets called when a Gecko Profile Startup occurs.
When a Gecko application starts up, registered components are created and notified
via the general purpose observer interface nsIObserver.

Observers are objects that are notified when various events occur. Using them is a
good way for objects to pass messages to each other without the objects having
explicit knowledge of one another.

Usually, there is one object notifying a group of observers. For example, an object
may be created and have its observe method called at startup, or it may register to
be notified prior to XPCOM shutdown. The method at the core of this interface is
observe:

There aren’t really any restrictions on what the parameters of the observer method
may be. These parameters are defined according to the event being observed. For
example, in the case of the XPCOM shutdown observation, aSubject and aData
are not defined, and aTopic is defined as the string "xpcom-shutdown". If your
object would like to register for this or other events, it first must implement the
nsIObserver interface. Once you do this, the observer service implementing
nsIObserverService can notify your object of registered events by means of
this interface, as in the figure below.

void observe(in nsISupports aSubject,

in string aTopic,

in wstring aData);
Creating XPCOM Components

Getting Called at Startup
Figure 1. The Observer Interfaces

The above figure shows the observer service maintaining a list of all registered
nsIObserver objects. When the notification is made the nsIObserverService
broadcasts the notification from the caller of the NotifyObserver() to the
nsIObserver object’s Observe() method. This is a very useful decoupling of
different objects. The nsIObserver is a generic interface for passing messages
between two or more objects without defining a specific frozen interface, and its
one of the ways in which extensibility is built into XPCOM.

The implementation of the nsIObserver interface in the WebLock component is
similar to the implementation for the nsIFactory interface. Following Example
2, you change the class definition to support the nsIObserver interface and
change NS_IMPL_ISUPPORTS1 so that the QueryInterface implementation
knows that the component also supports nsIObserver. The WebLock class
definition with support for start up observation is below.
Creating XPCOM Components 93

Tutorial: Starting WebLock

94
The standard implementation of Observe() simply compares the aTopic string
with the value defined by the event the object is expecting. When there is a match,
you can handle the event any way you see fit. If the object has only registered for
one notification, then you can ignore the aTopic string and simply handle the
event as it occurs. In other words, the Observe method should never be called in
response to some event for which the object is not registered.

Notification via the observer service is somewhat indirect. The only way to register
directly for a notification via the observer service is to instantiate an nsIObserver
object. This works for most cases, but consider the case when you have this
notification create a component. Since the component hasn’t been created yet, there
are no instantiated nsIObserver objects that can be passed into the
nsIObserverService, nor can the component code do anything until it is loaded.

Registering for Notifications

The nsIObserverService interface has methods for registering and
unregistering an nsIObserver object. These two methods are used to dynamically
add or remove an observer to a notification topic. But WebLock needs to be

class WebLock: public nsIObserver {

public:

 WebLock();

 virtual ~WebLock();

 NS_DECL_ISUPPORTS

 NS_DECL_NSIOBSERVER

};

NS_IMPL_ISUPPORTS1(WebLock, nsIObserver);

NS_IMETHODIMP

WebLock::Observe(nsISupports *aSubject,

 const char *aTopic,

 const PRUnichar *aData)

{

 return NS_OK;
}

Creating XPCOM Components

Getting Called at Startup
instantiated and added to the observer service automatically, which also implies
some sort of persistent data (after all, we want to have the component start up every
time the application does).

This is where a new service that manages sets of related data comes in handy. This
service, the nsICategoryService, is what XPCOM and Gecko embedding
applications use to persist lists of nsIObserver components that want to have
startup notification.

The nsICategoryService maintains sets of name-value pairs like the one in
Figure 2.

Figure 2. The Category Manager

Every category is identified by a string that represents the name of the category.
Each category contains a set of name-value pairs. For example, you might have a
category named “Important People”in which the name-value pairs would be names
and phone numbers. The format of the name-value pair is left up to you.

This data structure is more than enough to support the persisting of components that
what to be started up. The category name also maps nicely onto the notion of a
notification “topic.” The topic name could be something like “xpcom-startup”, for
instance, and the name-value pair could contain the Contract IDs required to create
the components requesting startup. In fact, this is exactly how categories are used to
handle registration with XPCOM for startup notification. You will see the code
which does this in the next section.
Creating XPCOM Components 95

Tutorial: Starting WebLock

96
Getting Access to the Category Manager

Two fields in the nsModuleComponentInfo structure introduced in the last
section are addresses for registration and unregistration callbacks. The first
callback is called when the component’s nsIModule::RegisterSelf method is
called. This callback allows the component to execute any one-time registration
code it may need. The inverse of this function is the unregistration callback, where
it’s a good idea to undo whatever the registration function did. The two functions
look like this:

The names of the functions can be anything you wish. Both functions are passed the
Component Manager and the path to the component, including the opaque
registryLocation. These are also parameters in the nsIModule
implementation in Example 1. In addition to these parameters, the callback
functions are passed the nsModuleComponentInfo struct, which is the same
structure initially passed into NS_IMPL_NSGETMODULE.

During registration, the registration callback is where you get the
nsICategoryManager. Once you have it, you can add the component to the
category of components that get started automatically. As a service, the
nsICategoryManager is accessible via the nsIServiceManager. Also note that
the nsIComponentManager is passed into the callback. Since the object that
implements the nsIComponentManager interface also implements
nsIServiceManager, all you have to do is QueryInterface the
nsIComponentManager to nsIServiceManager to get the Service Manager.
You can then use the Service Manager to add the component to the category:

static NS_METHOD

WebLockRegistration(nsIComponentManager *aCompMgr,

 nsIFile *aPath,

 const char *registryLocation,

 const char *componentType,

 const nsModuleComponentInfo *info)

static NS_METHOD

WebLockUnregistration(nsIComponentManager *aCompMgr,

 nsIFile *aPath,

 const char *registryLocation,

 const nsModuleComponentInfo *info)
Creating XPCOM Components

Getting Called at Startup
Once you have a nsIServiceManager reference, you can ask it for the service
you are interested in. This process is similar to using CreateInstance from the
nsIComponentManager, but there is no aggregation parameter since the object
has already been constructed.

There are two service getters on the nsIServiceManager interface: one that takes
a CID and another interface that takes a Contract ID. Here we’ll use the latter. The
first parameter to the GetServiceByContractID is of course the contract ID,
which is defined in the nsXPCOM.h header file. The next parameter is a nifty
macro that returns the IID for the interface name that you pass in. The last
parameter assigns an out interface pointer to a nsCOMPtr. Assuming there weren't
any unexpected errors, the variable catman holds the nsICategoryManager
interface pointer, which you can use to add the component as a startup observer by
calling a method on the nsICategoryManager.

nsresult rv;

nsCOMPtr<nsIServiceManager> servman =

 do_QueryInterface((nsISupports*)aCompMgr, &rv);

if (NS_FAILED(rv))

 return rv;

do_QueryInterface

The previous code uses the special nsCOMPtr function
do_QueryInterface that lets you QueryInterface without having
to worry about reference counting, error handling, and other overhead.
The do_QueryInterface knows what interface to QI to based on the
nsCOMPtr that is being assigned into. We could have just as easily have
used the raw QueryInterface() method, but using nsCOMPtr is
much more economical (see “Smart Pointers” on page 86).

nsCOMPtr<nsICategoryManager> catman;

rv = servman->GetServiceByContractID(NS_CATEGORYMANAGER_CONTRACTID,

 NS_GET_IID(nsICategoryManager),

 getter_AddRefs(catman));

if (NS_FAILED(rv))

 return rv;
Creating XPCOM Components 97

Tutorial: Starting WebLock

98
The next step is to figure out which parameters to pass to the method. There is a
category name and a name-value pair, but since the name-value pair meaning is
category specific, you need to figure out which category to use.

There are two startup notifications, both of which create the observer if it isn’t
already created. The first is provided by XPCOM. This notification will occur
during initalization of XPCOM, where all XPCOM services are guaranteed to be
available during the calls. Embedding applications may provide other notifications.

The table above summaries the popular persistent notifications registered through
the category manager. The name of the category itself is a well defined string, but
the name-value pairs can be anything.

When naming your component in the category, take care to use something that
means something and doesn’t muddy up the namespace. In this case, "WebLock" is
unique and provides context to anyone looking at the category. The value of the
name-value part is expected to be the contract ID of the component.

Since every category can define the name-value pairs, the application “app-startup”
category can support not only services but component instances as well. For the
app-startup notification, you must explicitly pass the string "service," prior to the
component’s Contract ID. If you do not, the component will be created and then
released after the notification, which may cause the component to be deleted.

In short, to register the WebLock component as an xpcom-startup observer, do the
following:

TABLE 1. Common XPCOM Notifications

Category Name Value Creates Component

xpcom-startup Any Contract ID Yes

xpcom-shutdown Any Contract ID No

xpcom-autoregistration Any Contract ID No

app-startup Any service,
Contract ID

*

Creating XPCOM Components

Getting Called at Startup
The unregistration, which should occur in the unregistration callback, looks like
this:

A complete code listing for registering WebLock as a startup observer follows.

#define MOZILLA_STRICT_API

#include "nsIGenericFactory.h"

#include "nsCOMPtr.h"
#include "nsXPCOM.h"
#include "nsIServiceManager.h"
#include "nsICategoryManager.h"

#include "nsIObserver.h"

#include "nsEmbedString.h"

#define WebLock_CID \
{ 0x777f7150, 0x4a2b, 0x4301, \
{ 0xad, 0x10, 0x5e, 0xab, 0x25, 0xb3, 0x22, 0xaa}}

#define WebLock_ContractID "@dougt/weblock"

class WebLock: public nsIObserver {
public:
 WebLock();
 virtual ~WebLock();

 NS_DECL_ISUPPORTS
 NS_DECL_NSIOBSERVER
};

WebLock::WebLock()
{
 NS_INIT_ISUPPORTS();
}

WebLock::~WebLock()

nsEmbedCString previous;

rv = catman->AddCategoryEntry("xpcom-startup",

 "WebLock",

 WebLock_ContractID,

 PR_TRUE, // persist category

 PR_TRUE, // replace existing

 previous);

rv = catman->DeleteCategoryEntry("xpcom-startup",

 "WebLock",

 PR_TRUE); // persist
Creating XPCOM Components 99

Tutorial: Starting WebLock

100
{
}

NS_IMPL_ISUPPORTS1(WebLock, nsIObserver);

NS_IMETHODIMP
WebLock::Observe(nsISupports *aSubject, const char *aTopic, const PRUnichar
*aData)
{
 return NS_OK;
}

static NS_METHOD WebLockRegistration(nsIComponentManager *aCompMgr,
 nsIFile *aPath,
 const char *registryLocation,
 const char *componentType,
 const nsModuleComponentInfo *info)
{
 nsresult rv;

 nsCOMPtr<nsIServiceManager> servman =
do_QueryInterface((nsISupports*)aCompMgr, &rv);
 if (NS_FAILED(rv))
 return rv;

 nsCOMPtr<nsICategoryManager> catman;
 servman->GetServiceByContractID(NS_CATEGORYMANAGER_CONTRACTID,
 NS_GET_IID(nsICategoryManager),
 getter_AddRefs(catman));

 if (NS_FAILED(rv))
 return rv;

 char* previous = nsnull;
 rv = catman->AddCategoryEntry("xpcom-startup",
 "WebLock",
 WebLock_ContractID,
 PR_TRUE,
 PR_TRUE,
 &previous);
 if (previous)
 nsMemory::Free(previous);

 return rv;
}

static NS_METHOD WebLockUnregistration(nsIComponentManager *aCompMgr,
 nsIFile *aPath,
 const char *registryLocation,
 const nsModuleComponentInfo *info)
{
 nsresult rv;

 nsCOMPtr<nsIServiceManager> servman =
do_QueryInterface((nsISupports*)aCompMgr, &rv);
 if (NS_FAILED(rv))
 return rv;

 nsCOMPtr<nsICategoryManager> catman;
 servman->GetServiceByContractID(NS_CATEGORYMANAGER_CONTRACTID,
Creating XPCOM Components

Providing Access to WebLock
 NS_GET_IID(nsICategoryManager),
 getter_AddRefs(catman));

 if (NS_FAILED(rv))
 return rv;

 rv = catman->DeleteCategoryEntry("xpcom-startup",
 "WebLock",
 PR_TRUE);

 return rv;
}

NS_GENERIC_FACTORY_CONSTRUCTOR(WebLock)

static const nsModuleComponentInfo components[] =
{
 { "WebLock",
 WebLock_CID,
 WebLock_ContractID,
 WebLockConstructor,
 WebLockRegistration,
 WebLockUnregistration
 }
};

NS_IMPL_NSGETMODULE(WebLockModule, components)

Providing Access to WebLock

At this point, the component will be called when XPCOM starts up. WebLock has
already implemented the nsISupports, nsIFactory, nsIModule, and
nsIObserver interfaces that handle generic component functionality including
being initialized at startup. And it speaks to the Component Manager, Service
Manager, Category Manager, and the Component Registrar to register itself
properly with XPCOM.

The next step is to expose additional functionality to Gecko applications and other
clients to query and control the WebLock component. For example, the user
interface needs to be able to enable and disable the web locking functionality, see
what sites are in the whitelist, and add or remove sites from that list. WebLock
needs to provide an API, and it needs to hook into Gecko in order to implement the
actual locking functionality.
Creating XPCOM Components 101

Tutorial: Starting WebLock

102
Creating the WebLock Programming Interface

Design is one of the hardest parts of any programming problem. The question the
interface for the WebLock component must answer is: How should WebLock look
to the outside world? What, in other words, is the interaction of clients with the
WebLock component? In this section, we enumerate the basic functionality the
component should expose and create the single interface that organizes and
provides this functionality.

Instead of starting with the implementation, developers use XPIDL (see “XPIDL
and Type Libraries” on page 21 for more information about XPIDL) to define the
interface to the component: how the functionality should be organized, expressed,
and exposed to its clients.

In general, the WebLock service interface needs to include the following
functionality.

• Lock - Enable web locking so that any browser in the Gecko application is
restricted to the white list of website domains.

• Unlock - Disable web locking. This should allow any browser in the Gecko
application to browse any website regardless of the white list.

• AddSite - Add the current URL to the white list.

• RemoveSite - Remove the current URL from the white list.

• EnumerateSites - Allows the enumeration of all sites in the white list. Enumer-
ateSites might be used in the user interface to provide something like an edit-
able listbox of all sites in the white list.

The WebLock User Interface

The WebLock component in this tutorial uses XUL to define the additional
browser UI in a cross-platform way, and XUL uses JavaScript to access and con-
trol XPCOM components, but Gecko’s pluggable UI allows any user interface to
call into Gecko and the components you create as easily as you can from XUL.
See “XUL” on page 149 for a discussion of how XUL interacts with JavaScript
and XPCOM.
Creating XPCOM Components

Defining the Weblock Interface in XPIDL
Even this simple outline presents some ambiguity, however. It’s certainly not
enough to spell out the interface for the WebLock component in this way. For
example, AddSite is supposed to add the current URL to the white list, but is the
URL an input parameter to the method, is it the topmost web page in the Gecko
application, or is it something more random—a URL picked from global history or
that's been given context in some other way?

As a strongly typed and implementation-agnostic language, XPIDL requires that
you be quite specific about the APIs, the list of parameters, their order, and their
types. XPIDL requires that you spell it all out, in other words. And it’s this
formality that makes the interfaces in XPCOM effective contracts between services
and clients.

The next section shows the interface of the WebLock component, iWebLock, in
XPIDL. Once the interface has been described in the XPIDL language, the interface
file can be used to generate the header files needed for the implementation code,
the binary type library files that let you use the interface of the WebLock
component from JavaScript, and even javadoc style HTML documentation.

Defining the Weblock Interface in XPIDL

Most interfaces in the XPCOM world are described in XPIDL. The XPIDL file for
the iWebLock interface can be used to generate the C++ header file, which you’ll
need to implement the interface in the component and also a type library that makes
the component accessible from JavaScript or other interpreted languages. In
Mozilla, JavaScript is the bridge between components and the XUL-based user
interface.

The XPIDL Syntax

The XPIDL syntax is a mix of C++ and Java, and of course it’s very much like the
OMG IDL upon which it is closely based. The XPIDL for iWebLock appears in
Figure 3.
Creating XPCOM Components 103

Tutorial: Starting WebLock

104
Figure 3. iWebLock

The first line includes the file nsISupports.idl, which defines the nsISupports
interface from which all XPCOM interfaces must derive, and makes it possible for
the iWebLock interface to subclass that base interface.

#include "nsISupports.idl"

The next line of the XPIDL is a forward declaration of the interface
nsISimpleEnumerator. Again, this is similar to the forward declare in C++
(except that C++ does not have the interface keyword seen here).

interface nsISimpleEnumerator;

See the XPCOM references in Appendix C for more information about the XPIDL
syntax.

Scriptable Interfaces

The thid line in Figure 3 is more complex. The first thing it says is that iWebLock
will be scriptable.

[scriptable, uuid(ea54eee4-9548-4b63-b94d-c519ffc91d09)]

The rest of the line provides a UUID for this interface. Recall that every interface
has a unique number that is assigned to it. In the case of interfaces, the identifier is
an IID. In the case of the components, which also require unique identifiers, the
identifier is the CID.

#include "nsISupports.idl"
interface nsISimpleEnumerator;
[scriptable, uuid(ea54eee4-9548-4b63-b94d-c519ffc91d09)]
interface iWeblock : nsISupports
{
 void lock();
 void unlock();

 // assume strings are UTF-8

 void addSite(in string url);
 void removeSite(in string url);
 attribute nsISimpleEnumerator sites;
};
Creating XPCOM Components

Defining the Weblock Interface in XPIDL
Subclassing nsISupports

The next line in Figure 3 names the interface and defines its base interface. iWe-
block derives from nsISupports. XPIDL has no way to define multiple inherit-
ance–something that all scriptable objects must deal with.

interface iWeblock : nsISupports

The Web Locking Interface

The body of the block (the stuff between the curly braces) defines the methods and
attributes of our interface. There are basically two functional sets on this interface.
The first section of the interface controls whether or not WebLock checks to see if
a web page can be loaded. If locked, WebLock will prevent sites not on the white
list from loading.

 void lock();

 void unlock();

This interface does not enforce any policy with respect to how the user enables or
disables this feature. This allows maximum flexibility in the implementation. Any
place in the application can acquire this interface via the Service Manager and call
unlock or lock. For example, the user interface may bring up a dialog asking the
user for a password before calling unlock. Another area of code, such as a “Profile
Manager” that starts up and lets users choose which profileto use, may uncondition-
ally call unlock on such a component when switching a profile.

The next set of functionality manages the white list where acceptable domains are
stored:

 void addSite(in string url);

 void removeSite(in string url);

 attribute nsISimpleEnumerator sites;

Operations in this set—add, remove, and enumerate—will be called from a user
interface that manages the white list and adds the current website to the white list.
There is no policy applied to what sites get added or removed to this list, or who
can remove a site.

The most interesting method definition is the enumerator. First of all, it does not
look like a method at all:

readonly attribute nsISimpleEnumerator sites;
Creating XPCOM Components 105

Tutorial: Starting WebLock

106
This line defines an attribute in the interface. In C++, this is considered a public
variable and “compiled” into a Get method (e.g., getSites). If an attribute is not
marked readonly, then both Get and Set methods are generated.

The getter created by this attribute returns a nsISimpleEnumerator interface
pointer. This interface allows you to pass a list of elements between interfaces. It
has two methods: hasMoreElements() and getNext().

[scriptable, uuid(D1899240-F9D2-11D2-BDD6-000064657374)]

interface nsISimpleEnumerator : nsISupports {

 /**

 * Called to determine whether or not the enumerator has

 * any elements that can be returned via getNext(). This method

 * is generally used to determine whether or not to initiate or

 * continue iteration over the enumerator, though it can be

 * called without subsequent getNext() calls. Does not affect

 * internal state of enumerator.

 *

 * @see getNext()

 * @return PR_TRUE if there are remaining elements

 * in the enumerator.

 * PR_FALSE if there are no more elements in the enumerator.

 */

 boolean hasMoreElements();

 /**

 * Called to retrieve the next element in the enumerator. The "next"

 * element is the first element upon the first call. Must be

 * pre-ceeded by a call to hasMoreElements() which returns PR_TRUE.

 * This method is generally called within a loop to iterate over

 * the elements in the enumerator.

 *

 * @see hasMoreElements()

 * @return NS_OK if the call succeeded in returning a non-null
 * value through the out parameter.

 * NS_ERROR_FAILURE if there are no more elements

 * to enumerate.

 * @return the next element in the enumeration.

 */

 nsISupports getNext();

};
Creating XPCOM Components

Implementing WebLock
Implementing WebLock

Once you have defined the interfaces that the component will implement, you can
begin to write the implementation code that will actually carry out the web locking
functionality.

The WebLock component implements three interfaces:

• nsISupports

• nsIObserver

• iWebLock

nsISupports is the base interface that all XPCOM objects must implement. The
nsIObserver interface is for listening to various events that Gecko generates.
And the iWebLock interface is the interface that actually controls the web locking
functionality. The first two have already been implemented as part of the generic
module code. Recall from the Tools chapter that implementing these basic
interfaces can be easy and straightforward if you use the macros and other utilities
that XPCOM provides.

Declaration Macros

The class declaration for the WebLock class that implements these three interfaces
is as follows:

class WebLock: public nsIObserver, public iWebLock

{

 public:

 WebLock();

 virtual ~WebLock();

 NS_DECL_ISUPPORTS

 NS_DECL_NSIOBSERVER

 NS_DECL_IWEBLOCK

};
Creating XPCOM Components 107

Tutorial: Starting WebLock

108
Note that we derive from the nsIObserver interface as well as the iWeblock
class. We do not need to explicitly derive from nsISupports as both of these two
other interfaces are already subclasses of nsISupports:

Figure 4. Interface Hierarchy for WebLock

The body of the class declaration uses declaration macros that are generated from
an XPIDL interface file. Every header generated from an XPIDL file has a similar
macro that defines all the methods in that interface. This makes changes to the
interface when designing a bit simpler, as you do not have to modify any class
declarations.

There are times, of course, when you cannot use these macros—as when two
interfaces share the same method signatures. In these cases you have to manually
declare the methods in your class. But in practice, manually declaring class
methods in XPCOM is the exception and not the rule. The NS_DECL_IWEBLOCK
declaration macro expands into the following:

nsISupports

IWeblock nsIObserver

WebLock
Creating XPCOM Components

Implementing WebLock
Representing Return Values in XPCOM

The code sample above is the C++ version of the iWebLock interface methods.
The return result of XPCOM methods generated from XPIDL is always of the type
nsresult, and the small macro used in these expansions, NS_IMETHOD,
actually represents that return type. nsresult is returned even when in XPIDL
you specify that the method return a void. If you require the return result to be
something else, the methods are not truly XPCOM methods. If you really want to
change the return result type you can use a special flag in your XPIDL that denotes
this (see the XPIDL reference at http://www.mozilla.org/scriptable/xpidl/).
However, we suggest that you simply add an out parameter to the method.

XPIDL Code Generation

The XPIDL compiler also generates a stub implementation of the interface in a
commented section of the generated header file, in which each method returns
NS_ERROR_NOT_IMPLEMENTED. If you copy the stub implementation from the
header file into the source, then rename the dummy class name (“_MYCLASS_”) to
the WebLock class name already defined, you should be able to compile the source
successfully.

Getting the WebLock Service from a Client

At this point, you can install the XPCOM component and have other systems use it.
The component doesn’t do anything useful, of course, but you have written enough
of the code to have it recognized and accessed as a component in XPCOM. The
code snippet below illustrates how to get the WebLock service when the
component is present:

 NS_IMETHOD Lock(void);

 NS_IMETHOD Unlock(void);

 NS_IMETHOD AddSite(const char *url);

 NS_IMETHOD RemoveSite(const char *url);

 NS_IMETHOD GetSites(nsISimpleEnumerator * *aSites);

 NS_IMETHOD GetSites(nsISimpleEnumerator * *aSites);

 NS_IMETHOD SetSites(nsISimpleEnumerator *aSites);
Creating XPCOM Components 109

Tutorial: Starting WebLock

110
Implementing the iWebLock Interface

Once the interface is defined, you can focus on implementing the web lock startup
functionality itself. The WebLock component starts automatically when XPCOM
is started up because it’s been registered as a category in XPCOM. When WebLock
is called, one of the first things it wants to do is read in a file that lists the URLs that
the browser is allowed to load. This file can exist anywhere on the local system, but
we’ve placed it next to the application to keep things simple. The first step in this
implementation phase, then, is to create the functionality that accesses this
WebLock white list and uses its data to determine which domains are allowed and
which are to be blocked. For this, we need to use the file interfaces available in
XPCOM.

File Interfaces. Files and directory are abstracted and encapsulated by interfaces.
There are a few reasons for not using strings to represent file locations, but the most
important one is that not all file systems can be represented by a series of characters
separated by a slash. On the Macintosh platform, for example, files are represented
as a triplet—two numbers and one string—so using a string on the Macintosh does
not adequately identify files on that operating system.

nsCOMPtr<nsIServiceManager> servMan;

nsresult rv = NS_GetServiceManager(getter_AddRefs(servMan));

if (NS_FAILED(rv))

{

 printf("ERROR: XPCOM error [%x].\n", rv);

 return -1;

}

nsCOMPtr<iWebLock> weblock;

rv = servMan->GetServiceByContractID("@dougt/weblock",
NS_GET_IID(iWeblock), getter_AddRefs(weblock));

if (NS_FAILED(rv))

{

 printf("ERROR: XPCOM obtaining service [%x].\n", rv);

 return -1;

}

Creating XPCOM Components

Implementing WebLock
nsIFile, the file interface in XPCOM, provides most of the functionally that file
handling requires. That interface includes members representing the file name, file
attributes, permissions, existence, and others. A related interface called
nsILocalFile provides access to operations specific to local files, but the
nsIFile functionality is adequate for the WebLock component.

Figure 5. File Interface Hierarchy

Remote Files and nsIFile

It is not inconceivable for remote files to be represented by the nsIFile inter-
face. Someone could write an nsIFile implementation that represented FTP
files on some server. The existing code would need to change very little for a
WebLock implementation to take advantage of files that do not actually exists
on disk. This kind of implementation does not exist, but this expandability
shows some of the flexibility that interface-based programming can provide.

Appendix B, The XPCOM API Reference, contains detailed information on
nsIFile and other XPCOM interfaces.

nsIFile

nsILocalFile

nsLocalFile
Creating XPCOM Components 111

Tutorial: Starting WebLock

112
The Directory Service

The file interfaces are most useful when you can use them to find and manipulate
files that are relative to the application. The Directory Service provides directory
and file locations in a cross platform uniform way to make this easier. This service,
available as nsIDirectoryService, stores the location of various common
system locations, such as the the directory containing the running process, the
user’s HOME directory, and others. It can be expanded so that applications and
components can define and store their own special locations—an application plugin
directory, for example, preference files and/or directories, or other application
specific paths. For example, to expose the location of the “white list” file
containing all of the URL’s that are safe for WebLock, you can add its location to
the nsDirectoryService, which clients can then query for this infomation.

The Directory Service implements the nsIProperties interface, which allows
you to Get(), Set(), and Undefine() interface pointers. In the case of
WebLock, these interface pointers will be nsIFile objects.
Creating XPCOM Components

Implementing WebLock
[scriptable, uuid(78650582-4e93-4b60-8e85-26ebd3eb14ca)]

interface nsIProperties : nsISupports

{

 /**

 * Gets a property with a given name.

 *

 * @return NS_ERROR_FAILURE if a property with that

 * name doesn’t exist.

 * @return NS_ERROR_NO_INTERFACE if the

 * found property fails to QI to the

 * given iid.

 */

 void get(in string prop, in nsIIDRef iid,

 [iid_is(iid),retval] out nsQIResult result);

 /**

 * Sets a property with a given name to a given value.

 */

 void set(in string prop, in nsISupports value);

 /**

 * Returns true if the property with the given name exists.

 */

 boolean has(in string prop);

 /**

 * Undefines a property.

 * @return NS_ERROR_FAILURE if a property with that name doesn’t

 * already exist.

 */

 void undefine(in string prop);

 /**

 * Returns an array of the keys.

 */

 void getKeys(out PRUint32 count, [array, size_is(count), retval]
out string keys);

};
Creating XPCOM Components 113

Tutorial: Starting WebLock

114
Figure 6. Directory Service Hierarchy

There are two steps involved to find directories or files with the Directory Service
(nsIDirectoryService). You must know the string key (or property) that refers
to the location you are interested in, which is published in the file
nsDirectoryServiceDefs.h that comes with the Gecko SDK (for a listing of these
locations, see Appendix B, the XPCOM API Reference). The string key for the
directory containing the application executable is
NS_XPCOM_CURRENT_PROCESS_DIR. Given this key, you can acquire the
directory service, call Get(), and pass the key. In the example below, theFile
will point to the directory that contains the executable.

nsCOMPtr<nsIServiceManager> servMan;

nsresult rv = NS_GetServiceManager(getter_AddRefs(servMan));

if (NS_FAILED(rv)) return -1;

nsCOMPtr<nsIProperties> directoryService;

rv = servMan->GetServiceByContractID(
NS_DIRECTORY_SERVICE_CONTRACTID,

 NS_GET_IID(nsIProperties),

getter_AddRefs(directoryService));

if (NS_FAILED(rv)) return -1;

nsCOMPtr<nsIFile> theFile;

rv = directoryService->Get(NS_XPCOM_CURRENT_PROCESS_DIR,

 NS_GET_IID(nsIFile),

 getter_AddRefs(theFile));

if (NS_FAILED(rv)) return -1;

nsDirectoryService

nsIProperties nsIDirectoryService
Creating XPCOM Components

Implementing WebLock
Most of the useful functionality is exposed by the nsIProperties interface, but
the directory service also implements nsIDirectoryService. This interface
allows you to extend and override nsIFile objects registered with the directory
service. There are currently two ways to add a file location to the directory service:
directly and using the delayed method. The direct method is to add a new nsIFile
object using the nsIProperties interface, in which case you pass the nsIFile
object as an nsISupports to the Set() method of the nsIProperties interface.

In the delayed method, you register to be a callback that can provide an nsIFile.
To do this, you must get the implementation like we did above. When you have it,
QueryInterface for the nsIDirectoryService interface. In this interface,
there is a function which allows you to register an
nsIDirectoryServiceProvider interface. The interface callback looks like
this:

Modifying Paths with nsIFile

The directory service returns an nsIFile object, but that object points to the
application directory and not the file itself. To modify this nsIFile so that it points
to the file, you must call the Append method of the nsIFile. Append adds the
input string to the path already specified in the nsIFile. On Unix, for example,
calling Append(“b”) on an nsIFile modifies that nsIFile representing /u/
home/dougt/a to point to /u/home/dougt/a/b. The next operation on the nsIFile

[scriptable, uuid(bbf8cab0-d43a-11d3-8cc2-00609792278c)]
interface nsIDirectoryServiceProvider: nsISupports
{
 /**
 * getFile
 *
 * Directory Service calls this when it gets the first request for
 * a prop or on every request if the prop is not persistent.
 *
 * @param prop The symbolic name of the file.
 * @param persistent TRUE - The returned file will be cached by Directory
 * Service. Subsequent requests for this prop will
 * bypass the provider and use the cache.
 * FALSE - The provider will be asked for this prop
 * each time it is requested.
 *
 * @return The file represented by the property.
 *
 */
 nsIFile getFile(in string prop, out PRBool persistent);
};
Creating XPCOM Components 115

Tutorial: Starting WebLock

116
returns results associated with the “b” path. If “a” wasn’t a directory, further
operations would fail, even if the initial Append was successful. This is why
Append is considered a string operation.

The WebLock component manipulates a file named weblock.txt. The following
snippet adjusts the theFile object representing that file:

Manipulating Files with nsIFile

Once you have an nsIFile object pointing to the file that you’re interested in, you
can open it and read its contents into memory. There are many ways to do this: You
can use Standard ANSI File I/O, or NSPR (see the sidebar “The Netscape Portable
Runtime Library” below for a brief description of NSPR), or you can use the
networking APIs that Gecko provides.

To keep things as simple as possible, we’ll read the file into memory using standard
ANSI file I/O, but for examples and information about how to use necko, the Gecko
networking libraries, see http://www.mozilla.org/projects/netlib/.

nsEmbedCString fileName("weblock.txt");

appDir->AppendNative(fileName);

The Netscape Portable Runtime Library

The Netscape Portable Runtime Library (NSPR) is a platform-independent
library that sits below XPCOM. As a layer of abstraction above the operating
system, the NSPR allows Gecko applications to be platform independent by pro-
viding the following system-level facilities:

• Threads

• Thread synchronization

• File and network I/O

• Timing and intervals

• Memory management

• Shared library linking

The NSPR is included in the Gecko SDK.
Creating XPCOM Components

Implementing WebLock
Using nsILocalFile for Reading Data

An nsIFile object returned from the directory service may also implement the
nsILocalFile interface, which has a method that will return a FILE pointer that
can be used in fread(). To implement the actual read, you need to allocate a
buffer the length of the file, use the nsILocalFile interface pointer to obtain a
FILE *, use this result with fread, and close the file pointer.

The following code loads the contents of the file referenced by the nsIFile object
theFile into the buffer buf:
Creating XPCOM Components 117

Tutorial: Starting WebLock

118
The first line of the code calls QueryInterface on theFile, and if that succeeds
assigns the new interface pointer to localFile. If the QueryInterface call
fails, localFile will have a value of NULL.

nsCOMPtr<nsILocalFile> localFile = do_QueryInterface(theFile);

 if (!localFile) return -1;

 PRBool exists;

 rv = theFile->Exists(&exists);

 if (NS_FAILED(rv)) return -1;

 char *buf = NULL;

 if (exists)

 {

 // determine file size:

 PRUint32 fs, numread;

 PRInt64 fileSize;

 rv = theFile->GetFileSize(&fileSize);

 if (NS_FAILED(rv)) return -1;

 // Converting 64 bit value to unsigned int

 LL_L2UI(fs, fileSize);

 FILE* openFile;

 rv = localFile->OpenANSIFileDesc("rw", &openFile);

 if (NS_FAILED(rv)) return -1;

 char *buf = (char *)malloc((fs+1) * sizeof(char));

 if (! bug) return -1;

 numread = fread(buf, sizeof(char), fs, openFile);

 if (numread != fs)

 ;// do something useful.

 // ...

 }

 if (buf)

 free(buf);
Creating XPCOM Components

Implementing WebLock
Processing the White List Data

There are various ways to process the file data itself. The file weblock.txt consists
of URL tokens separated by return characters, which makes them easy to read into
a data structure.

Note that the out parameter of the method GetFileSize is a 64 bit
integer. The type of this variable is PRInt64, but this type is not
represented as a primitive on all platforms. On some platforms,
PRInt64 is a struct with two fields—a high and a low 32 bit integer. So
operations on this type must use special macros that do the right thing
on each platform. On windows or Linux, for example, it is possible to
multiply a PRInt64 by a long like this:

PRInt64 x = 1, y = 2;

y = x * 2;

However, this same snippet will not compile on a platform like
Macintosh OS 9, where you need to use macros to perform the
calculation:

PRInt64 x, y, two;

LL_I2L(x, 1);

LL_I2L(y, 2);

LL_I2L(two, 2);

LL_MUL(y, x, two);

A full listing of NSPR’s long long support can be found at http://
www.mozilla.org/projects/nspr.

The WebLock component doesn’t have to deal with files that are longer
than 2^32 bytes. Truncating this value to whatever can fit into a 32 bit
unsigned integer may not work for every application, but in this case it
doesn’t really matter.
Creating XPCOM Components 119

Tutorial: Starting WebLock

120
The white list file can be read in as soon as the component starts up (i.e., as
WebLock intercepts the startup notification in the Observe method of the
nsIObserver interface that we implement). Since we have only registered to
receive a notification when XPCOM starts up, it’s a safe assumption that Observe
will only called during the startup event, so we can read the file data in the callback.

After you’ve read the data into memory, you need to store it in some way to make
data access quick and efficient.

URL Checking

The way in which URL checking is implemented in the WebLock component
is not at all optimal. The WebLock component manages a simple linked list of
URL strings. A linear search through the data in the white list may not be terri-
bly bad if the number of URLs is under a couple of dozen, but it decays as the
list grows. There’s also a large bottleneck in the network request. URL data is
accessed as in the diagram below:

You might construct hash values for each of the URL strings instead, or add
them to some kind of database. But we leave optimizations and real-world per-
formance for web locking to the reader.

urlString urlString

URL URL

mRootURLNode
Creating XPCOM Components

iWebLock Method by Method
iWebLock Method by Method

The implementation of the iWeblock interface is straightforward. WebLock is
designed so that the user interface notifies this service when we should go into lock
mode. During this time, any new URL request that is not in our list of “good” URLs
will be denied. Through scriptable access to the iWebLock interface, the user
interface can also add, remove, and enumerate the list of URLs that it knows about.

Lock and Unlock

The lock and unlock methods simply set a Boolean representing state in the
object. This Boolean value will be used later to determine if we should be denying
URL requests:

AddSite

For AddSite, we add a new node to our linked list. The link list nodes contain a
char* which points to the string URL that we care about and, of course, a pointer
to the next element in the list.

/* void lock (); */

NS_IMETHODIMP WebLock::Lock()

{

 mLocked = PR_TRUE;

 return NS_OK;
}

/* void unlock (); */

NS_IMETHODIMP WebLock::Unlock()

{

 mLocked = PR_FALSE;

 return NS_OK;
}

Creating XPCOM Components 121

Tutorial: Starting WebLock

122
RemoveSite

RemoveSite deletes a node from the linked list:

nsMemory for Cross-component Boundaries

WebLock maintains ownership of all the memory it alloates, so you can use just
about any allocator that you want for WebLock, but this is not always the case.
In other places, where allocated buffers cross-interface boundaries, you must
ensure that the correct allocator is used—namely nsMemory—so that the allo-
cators can match the allocation with the deallocation.

Suppose you call malloc from object A and pass this buffer to another object
B, for example. But if object B is using a special allocator that does garbage col-
lection, then when object B deletes a buffer allocated by object A’s allocator, the
results are unpredictable: probably an assertion will be raised, possibly a mem-
ory leak, or a crash. The nsMemory class is a wrapper around the nsIMem-
ory interface, whose only implementation is part of XPCOM. When you use
nsMemory, you are guaranteed to be using this same memory allocator in all
cases, and this avoids the problem described here.
Creating XPCOM Components

iWebLock Method by Method
// a simple link list.

struct urlNode

{

 char* urlString;

 struct urlNode* next;

};

/* void addSite (in string url); */

NS_IMETHODIMP WebLock::AddSite(const char *url)

{

 // we don’t special-case duplicates here

 urlNode* node = (urlNode*) malloc(sizeof(urlNode));

 node->urlString = strdup(url);

 node->next = mRootURLNode;

 mRootURLNode = node;

 return NS_ERROR_NOT_IMPLEMENTED;

}

/* void removeSite (in string url); */

NS_IMETHODIMP WebLock::RemoveSite(const char *url)

{

 // find our entry.

 urlNode* node = mRootURLNode;

 urlNode* prev = nsnull;

 while (node) // test this!

 {

 if (strcmp(node->urlString, url) == 0)

 {

 free(node->urlString);

 if (prev)

 prev->next = node->next;

 free(node);

 return NS_OK;
 }

 prev = node;

 node = node->next;

 }

 return NS_ERROR_FAILURE;

}

Creating XPCOM Components 123

Tutorial: Starting WebLock

124
SetSites

The purpose of SetSites is to allow clients to pass an enumeration, or set, of URL
strings to add to the white list of URLs. SetSites uses an
nsISimpleEnumerator and shows how primitive data can be passed as an
nsISupport object. The nsISimpleEnumerator interface is shown in the
section “The Web Locking Interface” on page 105.

The first method returns a Boolean if there are more elements in the set. Internally,
the object knows the number of elements it has in its enumeration, and every time a
client calls getNext, it decrements a counter—or adjusts a pointer to the next
element. When the counter goes to zero or the pointer points to a non-element,
hasMoreElements will return false.

There is no way to reset an nsISimpleEnumerator. For example, you can’t re-
enumerate the set. If you need random access to the elements in a
nsISimpleEnumerator, you can read them from the nsISimpleEnumerator,
store them in an array, and access them there. The getNext method returns a
nsISupports interface pointer.

When you want to pass primitive data type like numbers, strings, a character, void
*, and others, the solution is to use nsISupportsPrimitives, which is a set of
interfaces that wraps the primitive data types and derives from nsISupports.
This allows types like the strings that represent URLs in the WebLock component
to be passed though methods that take an nsISupports interface pointer. This
becomes clear when when you see the implementation of SetSites:
Creating XPCOM Components

iWebLock Method by Method
GetNext

GetNext is called with the nsCOMPtr of an nsISupportsCString. nsCOMPtrs
are nice because they do whatever QueryInterface calls are necessary under the
hood. For example, we know that the GetNext method takes an nsISupports
object, but we may not be sure whether the return result supports the interface we
want, nsISupportsCString. But after GetNext returns, the nsCOMPtr code
takes the out parameter from GetNext and tries to QueryInterface it to the
nsCOMPtr’s type. In this case, if the out parameter of GetData does not return
something that is QueryInterface’able to an nsISupportsCString, the
variable will be set to null. Once you know that you have an
nsISupportsCString, you can grab the data from the primitive supports
interface.

To get something you can pass into the AddSite method, you need to convert from
an nsEmbedCString to a const char*. To do this, you can take advantage of the
nsEmbedCString described in “String Classes in XPCOM” on page 84.

NS_IMETHODIMP WebLock::SetSites(nsISimpleEnumerator * aSites)

{

 PRBool more = PR_TRUE;

 while (more) {

 nsCOMPtr<nsISupports> supports;

 aSites->GetNext(getter_AddRefs(supports));

 nsCOMPtr<nsISupportsCString> supportsString =
do_QueryInterface(supports);

 if (supportsString) {

 nsEmbedCString url;

 supportsString->GetData(url);

 AddSite(url.get());

 }

 aSites->HasMoreElements(&more);

 }

 return NS_OK;

}

Creating XPCOM Components 125

Tutorial: Starting WebLock

126
GetSites

The implementation of GetSites is more involved. You must construct an
implementation of nsISimpleEnumerator and return it when GetSites is
called. The class needs to walk the list of urlNode’s for every call to GetNext, so
it makes sense for the constructor itself to take an urlNode:

The myEnumerator class is going to implement the nsISupports interface and
also nsISimpleEnumerator. The only state that it needs to maintain is the current
URL node—the one that will be return on the next call to GetNext. There is also
an nsCOMPtr to the nsIComponentManager, which is used in every call to
GetNext so that you can create nsISupportsCString objects and cache the
interface pointer as an optimization.

HasMoreElements

HasMoreElements is simple. All you need to do is make sure that mNode isn’t
null:

class myEnumerator : public nsISimpleEnumerator

{

public:

 NS_DECL_ISUPPORTS

 NS_DECL_NSISIMPLEENUMERATOR

 myEnumerator(urlNode* node) { mNode = node; }

 virtual ~myEnumerator(void) {}

protected:

 urlNode* mNode;

 nsCOMPtr<nsIComponentManager> mCompMgr;

};
Creating XPCOM Components

iWebLock Method by Method
GetNext needs to create an nsISupportsCString so that you can pass the URL
string out through the nsISupports parameter. You must also move mNode to point
to the next urlNode.

NS_IMETHODIMP

myEnumerator::HasMoreElements(PRBool* aResult)

{

 if (!aResult)

 return NS_ERROR_NULL_POINTER;

 if (!mNode) {

 *aResult = PR_FALSE;

 return NS_OK;
 }

 *aResult = PR_TRUE;

 return NS_OK;
}

Creating XPCOM Components 127

Tutorial: Starting WebLock

128
In the actual GetSites call, all you have to do is create an instance of
myEnumerator and return it.

NS_IMETHODIMP

myEnumerator::GetNext(nsISupports** aResult)

{

 if (! aResult)

 return NS_ERROR_NULL_POINTER;

 *aResult = nsnull;

 if (!mNode)

 return NS_ERROR_FAILURE;

 if (!mCompMgr) {

 NS_GetComponentManager(getter_AddRefs(mCompMgr));

 if (!mCompMgr)

 return NS_ERROR_UNEXPECTED;

 }

 nsISupportsCString* stringSupports;

 mCompMgr->CreateInstance(kSupportsCStringCID,

 nsnull,

 NS_GET_IID(nsISupportsCString),

 (void**)&stringSupports);

 if (!stringSupports)

 return NS_ERROR_UNEXPECTED;

 nsEmbedCString str(mNode->urlString);

 stringSupports->SetData(str);

 *aResult = stringSupports; // addref’ed above.

 mNode = mNode->next;

 return NS_OK;
}

Creating XPCOM Components

iWebLock Method by Method
Before, we created a class and registered it with the component manager. When a
client outside of the code wanted to acquire the implementation of an interface, the
actual object creation was hidden in the XPCOM code. Here, however, you
instantiate your own implementation of a nsISimpleEnumerator. This is a
simple thing to do, but it requires that you pay special attention to the NS_ADDREF.

Note that in the implementation above, myEnumerator may become invalid if
another thread concurrently accesses the linked list. The enumeration represents
only one way to walk the linked listed of URL strings. If you require that the
enumeration be a snapshot of the list of URL strings, then you have to rework this
implementation so that the enumerator owns a copy of the linked list.

At component shutdown, you also need to write the linked list to disk and release
the memory occupied by the linked list. We leave these as exercises for the reader.

NS_IMETHODIMP WebLock::GetSites(nsISimpleEnumerator * *aSites)

{

 myEnumerator* enumerator = new myEnumerator(mRootURLNode);

 if(!enumerator) return NS_ERROR_OUT_OF_MEMORY;

 NS_ADDREF(*aSites = enumerator);

 return NS_OK;
}

AddRef, Releasing, and Deleting Objects

Never forget to AddRef an XPCOM object which you instantiate via new. All
code that uses or is based on XPCOM requires objects that are alive to have a
reference count of at least one. Ignoring this fact can cause real trouble.

A related warning is that you should never delete an XPCOM object with
delete. It can take hours to find the source of crashes that are caused when
one part of a system is deleting XPCOM objects instead of releasing them.
Creating XPCOM Components 129

Tutorial: Starting WebLock

130
 Creating XPCOM Components

CHAPTER 7 Tutorial:
Finishing the Component
At this point you have created most of the infrastructure of the component. The
component will be recognized by XPCOM and registered with the Category
Manager so that it starts up when XPCOM initializes. When the component starts
up, it populates a list of URLs read in from a file stored next to the gecko binary on
the local system.

Using Frozen Interfaces

The core functionality of blocking sites is still missing, however. The interfaces
needed to block certain URLs from loading are not frozen, and there is still some
debate about how exactly this functionality should be exposed to embedders and
component developers, so the APIs are not ready to be published. This puts you in
the same situation as many developers using Mozilla—you want to use some
specific functionality, but the interfaces seem to change on a daily basis.

All of the Mozilla source code is publicly available, and interfaces can be used
easily enough. Grab the right headers, use the Component or Service Manager to
access the interface you want, and the XPCOM object(s) that implement that
Creating XPCOM Components 131

Tutorial: Finishing the Component

132
interface will do your bidding. With this huge amount of flexibility, however, you
lose compatibility. If you use ‘stuff’ that isn’t frozen, that stuff is subject to change
in future versions of Gecko.

If you want to be protected against changes in Gecko, you must only use interfaces
and APIs that are clearly marked as FROZEN. The marking is made in the
comments above the interface declaration. For example, take a look at the
nsIServiceManager:

/**

 * The nsIServiceManager manager interface provides a means to obtain

 * global services in an application. The service manager depends

 * on the repository to find and instantiate factories to obtain

 * services.

 *

 * Users of the service manager must first obtain a pointer to the

 * global service manager by calling NS_GetServiceManager. After that,

 * they can request specific services by calling GetService.

 * When they are finished they can NS_RELEASE() the service as usual.

 *

 * A user of a service may keep references to particular services

 * indefinitely and only must call Release when it shuts down.

 *

 * @status FROZEN

 */

These frozen interfaces and functions are part of the Gecko SDK. The rule of
thumb is that interfaces outside of the SDK are considered “experimental” or
unfrozen. See the following sidebar for information about how frozen and unfrozen
interfaces can affect your component development, and for technical details about
how interface changes beneath your code can cause havoc.
Creating XPCOM Components

Using Frozen Interfaces
The Danger of Using Unfrozen Interfaces

Suppose that you need to use the interface nsIFoo that isn’t frozen. You build
your component using this interface, and it works great with the version of
Gecko that you have tested against. However, some point in the future, the
nsIFoo interface requires a major change, and methods are reordered, some
are added, others are removed. Moreover, since this interface was never sup-
posed to be used by clients other than Gecko or Mozilla, the maintainers of the
interface don’t know that it’s being used, and don’t change the IID of the inter-
face. When your component runs in a version of Gecko in which this interface is
updated, your method calls will be routed through a different v-table than the
one the component expected, most likely resulting in a crash.

Below, the component is compiled against a version of the nsIFoo interface
that has three methods. The component calls the method TestA and passes an
integer, 10. This works fine in any Gecko installation where a contract guaran-
tees that the interface that was compiled against has the same signature. How-
ever, when this same component is used in a Gecko installation where this
interface has changed, the method TestA does not exist in the nsIFoo inter-
face, where the first entry in the v-table IsPrime(). When this method call is
made, the code execution treats the IsPrime method as TestA. Needless to
say, this is a bad thing. Furthermore, there is no way easy way to realize this
error at runtime.

nsIFoo

+TestA(aValue : int)
+IsPrime()
+ChewGum()

nsIFoo

+IsPrime()
+IsComposite()

nsIFoo* foo;
foo->TestA(10)

Before Interface Change

After Interface Change
Creating XPCOM Components 133

Tutorial: Finishing the Component

134
Before attempting to use unfrozen interfaces, you should contact the developers
who are responsible for the code you’re trying to use (i.e., module owners) and ask
them how best to do what you are trying to do. Be as precise you possibly can.
They may be able to suggest a supported alternative, or they may be able to notify
you about pending changes. A complete listing of module owners can be found at
http://www.mozilla.org/owners.html.

The interface that we need for this project is something called
nsIContentPolicy. This interface is currently under review. An interface
reaches this state when a group of module owners and peers are actively engaged in
discussion about how best to expose it. Usually there are only minor changes to
interfaces marked with such a tag. Even with interfaces marked “under review,”
however, it’s still a good idea to contact the module owners responsible for the
interfaces you are interested in using.

Copying Interfaces into Your Build Environment

To get and implement interfaces that are not part of Gecko in your component,
simply create a new directory in the Gecko SDK named “unfrozen”. Copy the
headers and IDL files that you need from the mozilla/content/base/public source
directory of the Gecko build into this new directory. (For WebLock, all you need
are the headers for nsIContentPolicy and the nsIContentPolicy.idl.) Then, using the
same steps you used to create the Weblock.h, create a header from this IDL file
using the xpidl compiler. Once you have these interface and header files, you can
modify the WebLock class to implement the nsIContentPolicy interface. The
Weblock class will then support four interfaces: nsISupports, nsIObserver,
nsIContentPolicy, and iWeblock.

Gecko developers could change the interface’s IID, and some do. This can pre-
vent many errors like this. But unfrozen interfaces are not supported in any for-
mal way, and relying upon a different IID for any change in the interface is not a
good idea either.

When using frozen interfaces, you are guaranteed compatibility with future ver-
sions of Gecko. The only trouble occurs when the compiler itself changes its v-
table layout, which can happen when the compiler changes its ABI. For exam-
ple, in 2002 the GNU Compiler Collection (GCC), version 3.2 changed the C++
ABI, and this caused problems between libraries compiled with GCC 3.2 and
applications compiled with an earlier version and vice versa.
Creating XPCOM Components

Using Frozen Interfaces
Implementing the nsIContentPolicy Interface

To implement the new interface, you must #include the unfrozen
nsIContentPolicy, and you must also make sure the build system can find the
file you’ve brought over. The location of the file and the steps for adding that
location to the build system vary depending on how you build this component.

Table 1: WebLock Interfaces

Interface Name Define by Status Summary

nsISupports XPCOM Frozen Provides interface
discovery, and object
reference counting

nsIObserver XPCOM Frozen Allows messaging
passing between objects

nsIContentPolicy Content Not
Frozen

Interface for policy
control mechanism

iWeblock Web Lock Not
Frozen

Enables and disables
Weblock. Also, provides
access to the URL that
are whitelisted.

nsISupports

+QueryInterface()
+AddRef()
+Release()

nsIObserver

+observe()

nsIContentPolicy

+shouldLoad()
+shouldProcess()

Weblock

iWeblock

+lock()
+unlock()
+addSite()
+removeSite()

-sites : nsISimpleEnumerator
Creating XPCOM Components 135

Tutorial: Finishing the Component

136
Once you have made sure that your component builds with the new header file, you
must derive the Weblock class from the interface nsIContentPolicy, which you
can do by simply adding a public declaration when defining the class. At the same
time, you can add the macro NS_DECL_NSICONTENTPOLICY to the class
declaration that provides all of the methods defined in the interface
nsIContentPolicy. The updated WebLock class looks as follows:

Remember to change the nsISupport implementation macro to include
nsIContentPolicy so that other parts of Gecko will know WebLock supports
the nsIContentPolicy without modifying this macro.

NS_IMPL_ISUPPORTS3(WebLock, nsIObserver, iWeblock, nsIContentPolicy);

Receiving Notifications

To receive notifications, you must register as a new category. You have already
registered as a category to receive startup notification. This time, the category name
to use is “content-policy”. To add the WebLock component to this category,
modify the WebLockRegistration callback function so that it looks like this:

class WebLock: public nsIObserver,

 public iWeblock,

 public nsIContentPolicy

 {

public:

 WebLock();

 virtual ~WebLock();

 NS_DECL_ISUPPORTS

 NS_DECL_NSIOBSERVER

 NS_DECL_IWEBLOCK

 NS_DECL_NSICONTENTPOLICY

private:

 urlNode* mRootURLNode;

 PRBool mLocked;

};
Creating XPCOM Components

Using Frozen Interfaces
static NS_METHOD WebLockRegistration(

nsIComponentManager *aCompMgr,

 nsIFile *aPath,

 const char *registryLocation,

 const char *componentType,

 const nsModuleComponentInfo *info)

{

 nsresult rv;

 nsCOMPtr<nsIServiceManager> servman =
do_QueryInterface((nsISupports*)aCompMgr, &rv);

 if (NS_FAILED(rv))

 return rv;

 nsCOMPtr<nsICategoryManager> catman;

 servman->GetServiceByContractID(NS_CATEGORYMANAGER_CONTRACTID,

 NS_GET_IID(nsICategoryManager),

 getter_AddRefs(catman));

 if (NS_FAILED(rv))

 return rv;

 char* previous = nsnull;

 rv = catman->AddCategoryEntry("xpcom-startup",

 "WebLock",

 WebLock_ContractID,

 PR_TRUE,

 PR_TRUE,

 &previous);

 if (previous)

 nsMemory::Free(previous);

 rv = catman->AddCategoryEntry("content-policy",

 "WebLock",

 WebLock_ContractID,

 PR_TRUE,

 PR_TRUE,

 &previous);

 if (previous)

 nsMemory::Free(previous);

 return rv;

}

This code adds a new category entry under the topic “content-policy,” and it calls
AddCategoryEntry in the same way we did in “Registering for Notifications” on
page 94. A similar step is required for unregistration.
Creating XPCOM Components 137

Tutorial: Finishing the Component

138
Implementing the nsIContentPolicy

At this point, you can take the WebLock component and install it into a Gecko
installation. When the component is loaded, Gecko calls the nsIContentPolicy
implementation in WebLock on every page load, and this prevents pages from
displaying by returning the proper value when the load method is called.

The web locking policy that we are going to put into place is quite simple: For
every load request that comes through, we will ensure that the URI is in the list of
“good” URLs on the white list.

The method that handles the check before page loading and the only method we
care about in our own implementation of nsIContentPolicy is ShouldLoad().
The other method on the nsIContentPolicy interface is for blocking processing
of specific elements in a document, but our policy is more restrictive: if the URL
isn’t on the white list, the entire page should be blocked. In the WebLock
component, ShouldLoad method looks like this:

Uniform Resource Locators

The method passes in an interface pointer of type nsIURI, which is based on the
Uniform Resource Identifier, or URI. This type is defined by the World Wide Web
Consortium (http://www.w3.org) as:

• The naming scheme of the mechanism used to access the resource.

If you care to extend this implementation so that the list of URLs is held
remotely on a server somewhere—as might be the case when the WebLock
component is used in a corporate intranet, for example—there are Networking
APIs in Gecko that will support this. Or you could implement the web lock so
that instead of blocking any site, the component would simply log all URLs that
are loaded. In any case, the process to make an XPCOM component is the same.

NS_IMETHODIMP WebLock::ShouldLoad(PRInt32 contentType,

 nsIURI *contentLocation,

 nsISupports *ctxt,

 nsIDOMWindow *window,

 PRBool *_retval)
Creating XPCOM Components

Implementing the nsIContentPolicy
• The name of the machine hosting the resource.

• The name of the resource itself, given as a path.

In this context, URIs are the strings used refer to places or things on the web. This
specific form of URI is called a Uniform Resource Locator, or URL. For more
information about URIs and URLs, see http://www.w3.org/TR/REC-html40/intro/
intro.html

Gecko encapsulates these identifiers into two interfaces, nsIURI and the nsIURL.
You can QueryInterface between these two interfaces. The networking library,
Necko, deals only with these interfaces when handling requests. When you want to
download a file using Necko, for example, all you probably have is a string that
represents the URI of the file. But when you pass that string to Necko, it creates an
object that implements at least the nsIURI interface (and perhaps other interfaces
as well).

Currently, the WebLock implementation of the ShouldLoad method compares the
in parameter with each string in the white list. But it only should do this comparison
for remote URLs, because we don’t want to block the application from loading
local content that it requires, like files it gets via the resource:// protocol. If
URIs of this kind are blocked, then Gecko will not be able to start up, so we’ll
restrict the content policy to the HTTP and FTP protocols.

Instead of extracting the string spec out of the nsIURI to do a string comparison,
which would requre you to do the parsing yourself, you can compare the nsURI
objects with each other, as in the following section. This ensures that the URLs are
canonical before they are compared.

Checking the White List

The WebLock implementation of the ShouldLoad method starts by extracting the
scheme of the incoming nsIURI. If the scheme isn’t “http”, “https”, or “ftp”, it
immediately returns true, which continues the loading process unblocked.

These three are the only kinds of URI that Weblock will try to block. When it has
one, it walks the linked list and creates a new nsIURI object for each string URL in
the list. From each object, ShouldLoad() extracts the host and compares it to the
URI. If they match, the component allows the load to continue by returning true. If
these two strings do not match, then the component returns return false and blocks
the load.
Creating XPCOM Components 139

Tutorial: Finishing the Component

140
The string comparison with the URL type “http”, “https”, and “ftp” looks like this:

Creating nsIURI Objects

To create an nsIURI, use nsIIOService. nsIIOService is the part of the
networking library (“necko”) that’s responsible for kicking off network requests,
managing protocols such as http, ftp, or file, and creating nsIURIs. Necko offers
tremendous network functionality, but all the WebLock component needs is to
create the nsIURI object that can be compared with the URIs on the white list.

Use the Service Manager to acquire the nsIIOService. Since this object is going
to be used for the life of the component, it can also be cached. A good place to get
an nsIIOService is in the component’s Observer() method, which already has
a pointer to the Service Manager. The code for getting the IO service from the
Service Manager looks like this:

URI Caching

Caching the URI would make this method implementation much faster by
avoiding the need to create and destroy so many objects. This points out an
important drawback of XPCOM, which is that you cannot create an object on
the stack.

Creating this many objects is OK in a tight loop if the buffer of memory that
holds the contents of the URLs is guaranteed to be valid for the lifetime of the
object. But regardless of how optimized the implementation is with respect to is
memory usage, a heap allocation will be made for every XPCOM object created.

nsEmbedCString scheme;

contentLocation->GetScheme(scheme);

if (strcmp("http", scheme.get()) != 0 &&

strcmp("https", scheme.get()) != 0 &&

strcmp("ftp", scheme.get()) != 0) {

// this isn’t a type of URI that we deal with.

*_retval = PR_TRUE;

return NS_OK;
}

Creating XPCOM Components

Implementing the nsIContentPolicy
Once you have this interface pointer, you can easily create nsIURI objects from a
string, as in the following snippet:

This code wraps a C-string with a nsEmbedCString, which you’ll recall is a string
class that many of the Gecko APIs require. See “String Classes in XPCOM” on
page 84 for more information about strings.

Once the URL string is wrapped in a nsEmbedCString, it can be passed to the
method NewURI. This method expects to parse the incoming string and create an
object which implements a nsIURI interface. The two nsnull parameters passed
to NewURI are used to specify the charset of the string and any base URI to use,
respectively. We are assuming here that the charset of the URL string is UTF8, and
also assuming that every URL string is absolute. See http://www.w3.org/TR/REC-
html40/intro/intro.html for more information about relative URLs.

// Get a pointer to the IOService
rv = servMan->GetServiceByContractID(
 "@mozilla.org/network/io-service;1",

 NS_GET_IID(nsIIOService),

 getter_AddRefs(mIOService));

nsCOMPtr<nsIURI> uri;

nsEmbedCString urlString(node->urlString);

mIOService->NewURI(urlString,

 nsnull, nsnull,

 getter_AddRefs(uri));
Creating XPCOM Components 141

Tutorial: Finishing the Component

142
Here is the complete implementation of the ShouldLoad() method:

NS_IMETHODIMP WebLock::ShouldLoad(PRInt32 contentType,

 nsIURI *contentLocation,

 nsISupports *ctxt,

 nsIDOMWindow *window,

 PRBool *_retval)

{

 if (!contentLocation)

 return NS_ERROR_FAILURE;

nsEmbedCString scheme;

contentLocation->GetScheme(scheme);

if (strcmp("http", scheme.get()) != 0 &&

strcmp("https", scheme.get()) != 0 &&

strcmp("ftp", scheme.get()) != 0) {

// this isn’t a type of URI that we deal with.

*_retval = PR_TRUE;

return NS_OK;
}

 nsEmbedCString hostToLoad;

contentLocation->GetHost(hostToLoad);

// Assume failure. Do not allow this nsIURI to load.

*_retval = PR_FALSE;

nsresult rv;

 urlNode* node = mRootURLNode;

PRBool match = PR_FALSE;

while (node)

 {

nsCOMPtr<nsIURI> uri;

 nsEmbedCString urlString(node->urlString);

 rv = mIOService->NewURI(urlString, nsnull, nsnull,
Creating XPCOM Components

Implementing the nsIContentPolicy
getter_AddRefs(uri));

// if anything bad happens, just abort.

if (NS_FAILED(rv))

return rv;

nsEmbedCString host;

uri->GetHost(host);

if (strcmp(hostToLoad.get(), host.get()) == 0) {

// match found. Allow this nsIURI to load.

*_retval = PR_TRUE;

return NS_OK;
}

 node = node->next;

 }

 return NS_OK;
}

At this point, all of the backend work is complete. You can of course improve this
backend in many ways, but this example presents the basic creation of what is
commonly referred to as a “browser helper object” like WebLock. The next
chapter looks at how to tie this into the front end—specifically how to use
XPConnect to access and control this component from Javascript in the user
interface.
Creating XPCOM Components 143

Tutorial: Finishing the Component

144
 Creating XPCOM Components

CHAPTER 8 Tutorial:
Building the WebLock UI
Up until now, we’ve been building a component that can be installed in any Gecko
application. The XPCOM interfaces and tools you’ve used have been general,
cross-platform, and available in the Gecko Runtime Environment or in any Gecko-
based application after Mozilla 1.2 (when the GRE began to be used).

In this chapter, however, we are going to be building a user interface for the

WebLock component that’s meant to be added to the existing Mozilla browser1. It
uses XUL, which is an XML language that Gecko knows how to render as user
interface, but it also interacts with particular parts of the Mozilla user interface,
where it must install itself as an extension to the UI. Specifically, the user interface
we create in this chapter will be overlaid into the statusbar of the browser
component, where it will provide a small icon the user can click to access the web
lock interface (see Figure 1).

1. Or one very much like it. There are Gecko-based browsers such as Beonex and the IBM
Web Browser that share a lot of the structure of the Mozilla user interface, into which it
may be possible to install both the WebLock component and the user interface described
in this chapter.
Creating XPCOM Components 145

Tutorial: Building the WebLock UI

146
Figure 1. WebLock Indicator in Browser

User Interface Package List

The user interface described in this section is comprised of four files:

• webLockOverlay.xul is the file that defines the little status icon in the browser.

• weblock.xul defines the web lock manager dialog.

• weblock.css provides style rules for both of the XUL files.

• weblock.js provides JavaScript functions for both of the XUL files.

Each of these files is described briefly in the sections below. In the following
chapter we’ll describe how you can take these files and create a package, an
installable archive that includes the WebLock component and the new UI.

Because this step (particularly the overlay section) is so dependent on Mozilla, the
chapter is divided up into a couple of different sections. The second section,
“XUL”, describes the XML-based User Interface Language (XUL) and how you
can use it to create a dialog that provides access to the WebLock component and its
services. The third section, “Overlaying New User Interface Into Mozilla”,
describes how to create an overlay into the browser that will make this dialog
accessible from a Mozilla build. The overlay section, where we discuss how to
import scripts, images, and other resources from Mozilla into your own UI, is by far
the more complicated of the two.

If the WebLock component is being installed in Mozilla or another Gecko-based
browser, then this third section shows you how to create the entry point in the
browser for controlling the web locking. If you are planning on deploying the
WebLock component in some other application, you’ll have to devise a different
means of access (e.g., native widgetry that instantiates and controls the WebLock
component).

• “Client Code Overview”
Creating XPCOM Components

Client Code Overview
• “XUL”

• “Overlaying New User Interface Into Mozilla”

Client Code Overview

Before we get started on the actual user interface, we should establish how the cli-
ent code is to access the WebLock component and use its interfaces to control the
web locking of the browser.

First of all, it’s important to be able to represent the basic state of the lock as soon
as it’s loaded. Like the secure page icon, the weblock icon that appears in the lower
right corner of the browser should indicate whether the browser is currently locked
or unlocked. Since the WebLock component is always initialized as unlocked, we
can have the client code—the JavaScript code in the interface—represent this state
and track it as the user manipulates the iWebLock interface. A boolean wLocked
variable can do this:

Then the functions that get called from the interface and call through to the lock
and unlock methods of the WebLock component must also adjust this variable
accordingly:

// initialize the wLocked variable as unlocked

var wLocked = 0;

function wLock() {

 // check to see if locking is on or off

 weblock.lock()

 wLocked = 1;

}

function wUnLock() {

 // check to see if locking is on or off

 weblock.unlock()

 wLocked = 0;

}

Creating XPCOM Components 147

Tutorial: Building the WebLock UI

148
An important preliminary of these functions is that the WebLock component be
made available to the JavaScript in the form of the weblock object being used in
the snippets above. As you can see, weblock is initialized as a global JavaScript
variable, available in the scope of these functions and others:

In addition to this basic setup, you must also write JavaScript that uses the
AddSite method to add new sites to the white list. This is a bit more complicated,
because it requires that you work with the currently loaded page or provide other UI
(e.g., a textfield where you can enter an arbitrary URL) for specifying URLs. In the
“XUL” section below, we’ll go into how the user interface is defined. This section
describes the functions that are called from the interface and how they interact with
the WebLock component.

The URL that the AddSite method expects is a string, so we can pass a string
directly in from the user interface, or we can do a check on the string and verify that
it’s a valid URL. In this tutorial, focusing as it is on the WebLock functionality
(rather than the UI), we’ll assume the strings we get from the UI itself are URLs we
actually want to write to the white list:

This JavaScript function can be called directly from the XUL widget, where the
input string is retrieved as the value attribute of the textbox element.

You also need to create the function that displays the WebLock window itself when
the user clicks the weblock icon in the statusbar. That function uses the
openDialog method from the window object and takes the URL to the XUL file in
which the dialog is defined:

var weblock = Components.classes[
"@dougt/weblock"].getService();

weblock = weblock.QueryInterface
(Components.interfaces.iWebLock);

function addThisSite() {

 tf = document.getElementById(“dialog.input”);

 // weblock is global and declared above

 weblock.AddSite(tf.value);

}

function loadWebLock() {

 openDialog(“chrome://weblock/weblock.xul”);

}

Creating XPCOM Components

XUL
XUL

The entire user interface of the Mozilla browser and all of the applications that go
with it, including the mail client, the IRC client, and others, have been defined in an
XML language called XUL. Elements in the XUL markup map to widgets in the
interface that Gecko renders in a fairly straightforward way—so, for instance, the
root element of an application window is the element <window>, the root element
of the dialog we’ll be creating here is <dialog>, and so forth. Within a XUL appli-
cation file, elements like button, menu, checkbox can be hooked up to an event
model, to scripts, and to the XPCOM interfaces that carry out a lot of the browser
functionality in Mozilla.

In the chapter Using Components, you saw how XPCOM objects are reflected into
the interface layer as JavaScript objects. In this chapter, now that we’ve created the
WebLock component and made it available to XPCOM, we create the UI that
actually instantiates the WebLock component and uses its methods to control page
loading in the browser.

In the previous section, we outlined the JavaScript that interacts with the WebLock
component. In this section, we are going to create the XUL interface that calls the
JavaScript methods when the user interacts with it.

The XUL Document

The first thing to do is create the actual XUL document in which the user interface
for the dialog and the events that initiate interaction with the web locking are
defined. At the top of all XUL documents, an XML declaration is followed by the
root element for the document, which is usually <window> but for dialog boxes can
also be the element <dialog>. The “shell” for the XUL file, then, looks like this:

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog id="weblock_ui"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul"

title="Web Lock Manager"

 persist="screenX screenY"

 screenX="24" screenY="24">

</dialog>
Creating XPCOM Components 149

Tutorial: Building the WebLock UI

150
Note that this part of the XUL file also contains a stylesheet declaration, which
imports CSS rules and applies them to particular parts of the interface. In Gecko,
CSS is used to do virtually all of the presentation of the XUL interface—its color,
position, style, and to some extent its behavior as well. The web lock manager
dialog does not deviate from the look of a standard dialog, so it can use a single
declaration to import the “global” skin from the browser and make it available to
the widgets you define in weblock.xul.

You can save this first, outermost part of the web lock dialog in a file called
weblock.xul, which you’ll be adding to an installer archive in Appendix B in this
book.

The finished dialog appears in Figure 2 below.

Figure 2. Web Lock Manager Dialog

As you can see, it’s a simple interface, providing just enough widgetry to lock and
unlock the browser, and to add new sites to the list. The entire XUL file for the web
lock manager dialog is defined in the “weblock.xul” subsection below.

The Locking UI

Once you have the basic XUL wrapper set up for your interface, the next step is to
define that part of the interface that locks and unlocks the browser. One of the most
efficient ways to expose this is to use radio buttons, which allow the user to toggle
a particulart state, as the figure above illustrates.

Note that this file defines the dialog that displays when the user/administrator
clicks the web locking icon in the bottom right corner of the browser. That piece
of UI—which needs to be dynamically inserted into the browser at run-time—is
described in the following section, “Overlaying New User Interface Into
Mozilla”.
Creating XPCOM Components

XUL
In XUL, individual radio elements are contained within a parent element called
radiogroup. Grouping radio elements together creates the toggling UI by requiring
that one or another of the elements be selected, but not both.

The XUL that defines the radiogroup in the web lock manager dialog is this:

Since the WebLock component always starts up in the unlocked position, you can
set the default selected=”true” property on the unlock radio button and reset it
dynamically as the user takes action.

Site Adding UI

The next step is to create that part of the user interface that lets you add a new site
to the white list. There are other, more sophisticated ways to do this; you may also
want to include some UI that lets you view the whitelist or edit it as a list. In this
part of the tutorial, however, we only provide the means of adding an URL pro-
vided as a string (and not checked for validity) and passing it through to the
AddSite API we defined in the earlier part of the tutorial.

This snippet introduces a couple of new general layout widgets in XUL. The
separator that appears at the top of this snippet creates a little divider between
widgets like the kind you see in menus that divide sets of functionality available
there. The parent of the textbox that users enter an URL into is something called an
<hbox>, which is a layout widget—often invisible—that controls the way its child
elements are rendered. In this case, the hbox centers the textbox and the button
children, and it orients them horizontally (in contrast to the vbox, which orients its
children veritically).

<radiogroup>

 <radio label="lock" />

 <radio label="unlock" selected=”true” />

</radiogroup>

<separator class="thin"/>

<hbox align="center">

 <textbox id="url.input" flex="1"/>

 <button label="Add this URL" oncommand="addThisSite();" />

</hbox>
Creating XPCOM Components 151

Tutorial: Building the WebLock UI

152
Notice also that when it’s clicked, the button executes a JavaScript function called
addThisSite(), which we’ve already defined in the weblock.js file in the “Client
Code Overview” section above.

weblock.xul

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<dialog id="weblock_mgg"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul"

title="Web Lock Manager"

 style="width: 30em;"

 persist="screenX screenY"

 screenX="24" screenY="24">

<script src="chrome://weblock/content/weblock.js" />

 <hbox>

 <separator orient="vertical" class="thin"/>

 <vbox flex="1">

 <separator class="thin"/>

 <hbox align="center">

 <textbox id="dialog.input" flex="1" />

 <button label="Add this URL"

 oncommand=”addThisSite();”/>

 </hbox>

 <hbox align="center">

 <radiogroup onchange=”toggleLock();”>

 <radio label="lock" />

 <radio label="unlock" />

 </radiogroup>

 <spacer flex="1"/>

 </hbox>

 </vbox>

 </hbox>

 </dialog>
Creating XPCOM Components

Overlaying New User Interface Into Mozilla
Overlaying New User Interface Into Mozilla

You’ve got a dialog that will interact with the WebLock component, but how do
you install that dialog you’ve created into the browser? And how do you access it
once it’s in? Once it’s installed and registered, the WebLock component itself is
ready to go: XPCOM finds it and adds it to the list of registered components, and
then WebLock observes the XPCOM start up event and initializes itself.

But you still have to insinuate your new UI into the browser so it can call the
component, and the Mozilla overlay mechanism is the way to do this. Overlays are
XUL files that register themselves to be dynamically inserted into the appropriate
parts of the browser UI at runtime.

webLockOverlay.xul

The XUL that defines the new icon is small: it’s a little icon that has an image asso-
ciated with it, and that calls a JavaScript function to loads the weblock.xul file we
defined in the previous section. The icon is actually a separate <statusbar> ele-
ment that gets overlaid into the main browser, along with some JavaScript and
some CSS to control the behavior and appearance of the element, respectively. Here
is that XUL file in its entirety:
Creating XPCOM Components 153

Tutorial: Building the WebLock UI

154
Figure 3. The WebLock Overlay

Note that the root element for this file is not a window but an overlay. In overlays,
the ordinarily unique ID attributes that XUL elements use to distinguish themselves
are purposely made redundant with UI in the existing browser with which they
should be merged. In this case, the weblock statusbarpanel appears as a child
of the statusbar element with ID “status-bar”. This ID is the same one used by
the statusbar in navigator.xul, which means that the overlay mechanism will
merge the new UI here (i.e., the weblock statusbarpanel) and the UI already
defined within that browser statusbar at runtime.

Other Resources

This chapter describes the remaining files that must be added to and packaged up
with the WebLock component to provide user interface for web locking.

• “weblock.css”

• “Image Resources”

<?xml version="1.0"?>

<?xml-stylesheet

 href="chrome://navigator/content/weblock.css"

 type="text/css"?>

<overlay id="weblockOverlay"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul">

 <script type="application/x-javascript"

 src="chrome://weblock/content/weblock.js" />

 <statusbar id="status-bar">

 <statusbarpanel class="statusbarpanel-iconic"

 id="weblock-status"

 insertbefore="offline-status"

 oncommand=”loadWebLock();”

 status="none"/>

 </statusbar>

</overlay>
Creating XPCOM Components

Other Resources
weblock.css

The following style rules are defined in weblock.css, a CSS file that is loaded by the
overlay and applied to the icon in the browser that reflects the current status of the
web lock and provides access to the web lock manager dialog.

The style rules are distinguished by the state of the status attribute on the element
in the XUL with the ID “weblock-status.” As you can see above, when the status of
the element is set to “locked”, the image wl-lock.gif is used to show the state, and
when the web locking is unlocked, it uses wl-un.gif. (Note: We include three images

Other Front End Resources

In some UI packages, localization resources are also defined. These include
DTDs in which the language in which the UI is labelled can be extracted into
external files, which are swapped with DTDs for other languages. For example,
user interface packages often include an English DTD that defines labels and
strings for button and menus and other elements in the interface. When the user
selects a different language pack, all of the English that’s been externalized in
these files is dynamically replaced with the new choice.

In addition to DTDs, the localization parts of a user interface may also include
string bundles in which strings that are used in the interface JavaScript can be
similarly replaced.

There are also technologies, not discussed here, which may be used in separate,
installable files. These include bindings in XML files, metadata in RDF files,
whole collections of CSS files called skins, and others.

statusbarpanel#weblock-status {

 list-style-image: url("chrome://weblock/wlock.gif");

}

statusbarpanel#weblock-status[status="locked"] {

 list-style-image: url("chrome://weblock/wl-lock.gif");

}

statusbarpanel#weblock-status[status="unlocked"] {

 list-style-image: url("chrome://weblock/wl-un.gif");

}

Creating XPCOM Components 155

Tutorial: Building the WebLock UI

156
to represent the state of the weblock, but wlock.gif and wl-lock.gif are identical,
since weblock is presumed to be unlocked when it’s loaded. This tutorial makes use
of only two different states, but you can further customize the look of the weblock
using the three images if you wish.)

Since the presentation of the weblock manager dialog itself doesn’t require any
special styles, these are all the rules you need in the weblock.css. Note that the
weblock.xul file in which the manager is defined imports only the global skin:

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

Save weblock.css in your working directory.

You should now have the four files listed at the top of this chapter as the “packing
list” for the WebLock package (see “User Interface Package List”). Don’t worry
for now about where these files are. In the next chapter, “Tutorial: Packaging
WebLock”, we’ll describe how to organize and package them so that they can be
installed along with the WebLock component itself and the other resources.

Image Resources

If you are following along with this tutorial and want to use the images we use here
for the states of the WebLock component in the statusbar, you can download them
and the other resources for WebLock from http://www.brownhen.com/weblock.
The GIF files that represent the various states are:

• wlock.gif

• wl-lock.gif

• wl-un.gif
Creating XPCOM Components

CHAPTER 9 Tutorial:
Packaging WebLock
In this final part of the tutorial, we’ll put all of the pieces of the web locking com-
ponent—the library itself, the type library, the header file, and the user interface
resources—into a package that can be installed on other systems. The first section,
“Component Installation Overview”, describes the general installation process in
Mozilla. The following sections describe the steps you can take to organize the
WebLock component for distribution and installation.

• “Component Installation Overview”

• “Archiving Resources”

• “The WebLock Installation Script”

• “The WebLock Trigger Script”

Note: the emphasis of this tutorial is on the component development
itself, so this section on packaging and installing extensions to Gecko is
necessarily brief. For more detailed information on packaging and
installation of components into Gecko-based applications, see http://
www.mozilla.org/projects/xpinstall.
Creating XPCOM Components 157

Tutorial: Packaging WebLock

158
Component Installation Overview

XPInstall is a set of JavaScript APIs for creating installation scripts. Using
XPInstall, you can create web-based installations for Gecko-based applications,
Mozilla extensions, or individual components. The installation script for the
WebLock component can also be used to register the component with the browser
into which it is installed (see “Registration Methods in XPCOM” for more
information on registration).

The sample installation script shown below uses the Mozilla XPInstall technology
to manipulate an installer and talk to Mozilla’s chrome registry as high-level
JavaScript objects.

JavaScript APIs from the XPInstall Install object download the JAR in which
the installable files appear and call registration methods that tell Mozilla about the
new component and the UI it uses to access the WebLock component. Figure 8 is
the complete trigger installation script, which can be launched from a web page.
The files themselves are stored in the JAR file weblock.jar, which is simple a ZIP
file with the XPI extension that sometimes also contains an internal installation file
called install.js.

Once you have the component and the other resources for Weblock packaged
properly (see the following section, “Archiving Resources”), the installation script
for WebLock is a simple one (see “The WebLock Installation Script”).

What Is the Chrome Registry?

Like the Windows registry, the chrome registry is a database of information
about applications, skins, and other extensions that have been installed in a
Gecko application. Since Mozilla and other Gecko-based applications are cross-
platform, this database is abstracted above the operating system or any particular
platform’s registry.

The chrome registry lives in a series of RDF/XML files in the application direc-
tory of Mozilla and other Gecko-based browsers, where new installs, user con-
figurable data, skins, and other information are related to one another and the
application itself.
Creating XPCOM Components

Archiving Resources
Archiving Resources

Once you have compiled all the resources that make up the WebLock component
and the files that make up the user interface that will be added to the browser, you
can place these within a subdirectory called weblock.

Place the entire subdirectory into a ZIP archive and name the archive weblock.xpi.
The archive, its subdirectory structure, and its contents should look like this:

Figure 1. weblock.xpi Archive Viewed in WinZIP

Note that the top level of the archive holds the install.js installation file, an RDF
manifest for the package as a whole, and the component files (weblock.xpt and
weblock4.dll). The component files are copied to the components directory of the
Gecko application, and the weblock subdirectory gets copied over into the chrome
subdirectory, where its UI resources can be added dynamically to the XUL-based
Gecko application.
Creating XPCOM Components 159

Tutorial: Packaging WebLock

160
The next section shows how this process of downloading, copying and registering
the necessary files from the XPI can be achieved with an XPInstall installation
script.

The WebLock Installation Script

The installation script is the JavaScript file that is stored within the XPI. It must
appear at the top level of the installation archive (i.e., weblock.xpi) itself. Once trig-
gered (see the next section, “The WebLock Trigger Script”), the installation script:

• downloads the WebLock component and places it in the components directory

• copies the weblock subdirectory in the Mozilla chrome application subdirectory

• registers both the component and the UI

The XPInstall API provides such essential methods1 as initInstall,
registerChrome, addFile, and others.

1. The methods are available on the main Install object, which is implied in the
script below in the same way that the window object is implied in JavaScript
manipulation of the DOM of a web page. In other words, the fragment var
initInstall() from the script is equivalent to var Install.initIn-
stall().
Creating XPCOM Components

The WebLock Installation Script
Figure 2. WebLock Installation Script

// initialize the installation

var err = initInstall("WebLock", "weblock", 1.0);

var componentsDir = getFolder("Components");

var cf = getFolder(“Chrome”);

// add the DLL and say where it’ll go

addFile ("weblock.dll", 1.0,

"weblock.dll", componentsDir, "");

// add the typelib also

addFile ("weblock.xpt", “1.0",

"weblock.xpt", componentsDir, "");

// add the weblock subdirectory

// of the XPI and specify that it be

// installed in the chrome application directory

err = addDirectory (“weblock”, “1.0”,

“”, chromeDir, ““)

// ? have to register component here or with regxpcom?

// register the new UI with the mozilla chrome registry

registerChrome(CONTENT, getFolder(cf,"weblock.xpi"),"weblock");

registerChrome(SKIN, getFolder(cf, “weblock.xpi”),”weblock”);

// perform the installation if there are no errors

if (err==SUCCESS)

 performInstall();

else

 cancelInstall(err);
Creating XPCOM Components 161

Tutorial: Packaging WebLock

162
The WebLock Trigger Script

The trigger script is the script placed on a web page that actually initiates an
XPInstall installation and calls the installation script that appears in the XPI.
Figure 3 is a complete webpage in which the trigger script is defined as a
JavaScript function, installWebLock, that gets called when the user clicks the
hyperlink.

Figure 3. Trigger Script for WebLock

Distributing Your Component

Once you have the component packaged properly and the necessary installation and
trigger scripts, you are ready to distribute your component so others can install it in
their Gecko applications.

In Mozilla and Netscape browsers, XPInstall makes this process especially easy by
providing the file format (XPI) and the necessary installation scripts for doing a
web-based installation. As Figure 2 demonstrates, XPInstall uses special keywords
to refer to common installation directories such as components in a generalized,
cross-platform way.

<html>

<title>WebLock Installation</title>

<script>

// trigger function

// that downloads the XPI

// so the install.js file inside can be

// read and executed

function installWebLock() {

 weblock_xpi = {‘WebLock Extension’: ‘weblock.xpi’};

 InstallTrigger.install(weblock_xpi);

</script>

<h1>Install WebLock</h1>

<p><a href=”javascript:void”

 onclick=”installWebLock();”>install weblock

</html>
Creating XPCOM Components

Distributing Your Component
If you are installing WebLock in an Gecko-based application for which XPInstall
is not available, then you will have to devise a separate installation scheme. We
leave this as an exercise for the reader.
Creating XPCOM Components 163

Tutorial: Packaging WebLock

164
 Creating XPCOM Components

Appendix A: Setting up
the Gecko SDK
This chapter provides basic setup information for the Gecko Software Development
Kit (SDK) used to build the WebLock component in this tutorial. The following
four sections tell the developer how to download and organize the Gecko SDK and
create a new project in which components like WebLock can be created:

• “Downloading and Setting the SDK”

• “Building a Microsoft Visual C++ Project”

• “A Makefile for Unix”

Downloading and Setting the SDK

The Gecko SDK provides all of the tools, headers, and libraries that you need to
build XPCOM Components. The SDK is available for Windows and Linux
operating systems, and versions for other operating systems are being developed,
and can be retrieved from as a single archive from the following platform-specific
locations:

• Linux: http://ftp.mozilla.org/pub/mozilla/releases/mozilla1.4a/gecko-sdk-i686-
pc-linux-gnu-1.4a.tar.gz
Creating XPCOM Components 165

Appendix A: Setting up the Gecko SDK

166
• Windows: http://ftp.mozilla.org/pub/mozilla/releases/mozilla1.4a/gecko-sdk-
win32-1.4a.zip

Note that the version number for the archives above is 1.4a. The WebLock
component was built with this version, but you can always check for newer
versions at http://ftp.mozilla.org/pub/mozilla/releases/.

Once you download the SDK, you can expand it into any convenient location. In
this appendix, we set up the Windows Gecko SDK in c:\gecko-sdk. If you choose
some other location, remember to adjust the settings described here (e.g., in the
“Building a Microsoft Visual C++ Project” section below) to point to this new
location.

When you extract the SDK, it should have the layout seen in Figure 1.

Figure 1. Layout of the Extracted SDK

The directories represent different modules in the SDK. For example, the headers
for networking are all located in the "necko" directory, and the headers that
XPCOM requires are in the XPCOM directory. This directory structure makes
build scripts slightly more complicated (since there will be many different include
paths), but it helps to organize the parts of the SDK meaningfully.
Creating XPCOM Components

Downloading and Setting the SDK
The two top level header files are special. The file mozilla-config.h lists all of the
defines used in the SDK. Including this header file in your project ensures that the
component you create uses the same defines as the Gecko libraries themselves.
Note that mozilla-config.h may be need to be included before other includes in
your component’s source code.

Each module directory is divided into three subdirectories:

Figure 2. Module Subdirectories

The bin directory contains static libraries, dynamic libraries, and in some cases
tools that may be useful in development. The idl directory contains the public IDL
files exported by the module. The includes directory contains C++ header files used
by your component.

XPCOM exports a number of binaries that should be mentioned at this point. The
table below refers to the Windows file names for the executables.

Application Name Description of functionality

regxpcom.exe Registers or Unregisters components with XPCOM

xpidl.exe Generates typelib and C++ headers from XPIDL

xpt_dump.exe Prints out information about a given typelib

xpt_link.exe Combines multiple typelibs into a single typelib

Library Name Description of functionality

xpcomglue.lib XPCOM Glue library to be used by xpcom components.
Creating XPCOM Components 167

Appendix A: Setting up the Gecko SDK

168
Building a Microsoft Visual C++ Project

Once you setup the Gecko SDK, you can create a Microsoft Visual C++ project to
handle component development with the SDK.

Creating a New Project

After launching Visual C++, select New from the File menu. Then, from the New
dialog, select "Win32 Dynamic-Link Library. Use the fields to the right of the
dialog to name your project and set its location (This example uses
"SampleGeckoProject" as the Project name and C:\ as its location.).

Figure 3. New Dialog

Select OK. In the Win32 Dynamic-Link Library dialog that displays (see Figure 4),
you can choose the default selection "An Empty DLL Project" as the type of DLL.
Creating XPCOM Components

Building a Microsoft Visual C++ Project
Figure 4. Win32 Dynamic-Link Library Dialog

In this dialog, click Finish. Microsoft Studio creates a new project per your
specification and presents you with the standard Project view.

Adding the Gecko SDK to the Project Settings

In order to build anything that uses Gecko, you have to further modify the project
so that it knows where to find the Gecko SDK on the disk. To edit project settings,
select Settings from the Project menu (or press Alt-F7).

Most of the changes you make in the following steps apply to all configurations of
the project (both Debug and Optimized), so select “All Configurations” from the
Settings For dropdown menu (see Figure 5).
Creating XPCOM Components 169

Appendix A: Setting up the Gecko SDK

170
Figure 5. Project Settings Dialog

On the C/C++ tab, select the Preprocessor category. This window is where you add
the include paths to the Gecko SDK as well as two preprocessor defines:

• XPCOM_GLUE

• MOZILLA_STRICT_API

At a minimum, you must include the nspr, the embedstring and string include
directories, and to the xpcom include subdirectories. If your component will use
other parts of the SDK (e.g., necko), you will have to add these include directories
to this field as well.

These paths are the following:

• c:\gecko-sdk\embedstring\include

• c:\gecko-sdk\xpcom\include

• c:\gecko-sdk\nspr\include

• c:\gecko-sdk\string\include
Creating XPCOM Components

Building a Microsoft Visual C++ Project
Figure 6. Adding Includes to the Project

Under the C++ language category, disable exception handling. As described in the
section ““Exceptions” in XPCOM” on page 17, exception handling isn't supported
across interface boundaries, so setting this option may catch problems during
development.

The WebLock component needs to link against the appropriate libaries to uses
XPCOM Glue. To add these libraries, select the Link tab, then choose the Input
category. In this panel, instead of linking to the include subdirectories to the nspr,
embedstring, and xpcom directories, add the paths to the bin subdirectories.

We also link against a number of libraries in the Object/library modules line:

• nspr4.lib

• plds4.lib

• plc4.lib

• embedstring.lib

• xpcomglue.lib

Both of these settings are shown in Figure 7.
Creating XPCOM Components 171

Appendix A: Setting up the Gecko SDK

172
Figure 7. Bin and Library Settings

The last change you need to make to set up the Gecko SDK in your project is to
change the “Use run-time library” setting to “Multithreaded DLL.” Since this
change is configuration dependent, you must make set the Release configuration
run-time library to the release multithreaded dll runtime and the Debug
configuration to the debug multithreaded dll runtime (see Figure 8).
Creating XPCOM Components

A Makefile for Unix
Figure 8. Run-time Library Settings

After making these changes, press OK. This finalizes the project settings and gives
you a project that will hold and compile XPCOM Components.

A Makefile for Unix

On Linux, the equivalent project settings are typically handled in a Makefile. The
Makefile allows you to specify any number of options for your build environment,
including the path and configuration updates you need to build with the Gecko
SDK.

Figure 9 is a listing for a Makefile that configures your compiler to work with the
SDK. Explaining the details of the Makefile is outside the scope of this appendix,
but it modifies the same properties that are configured in the Visual C++ project
(see “Building a Microsoft Visual C++ Project”). For a listing of the commands that
appear in this listing, see the Make manual: http://www.gnu.org/manual/make/.
Creating XPCOM Components 173

Appendix A: Setting up the Gecko SDK

174
Figure 9. Sample Makefile for the Gecko SDK

CXX = c++

CPPFLAGS += -fno-rtti \

 -fno-exceptions \

 -shared

Change this to point at your Gecko SDK directory.

GECKO_SDK_PATH = /home/dougt/gecko-sdk

GCC only define which allows us to not have to #include mozilla-
config

in every .cpp file. If your not using GCC remove this line and
add

#include "mozilla-config.h" to each of your .cpp files.

GECKO_CONFIG_INCLUDE = -include mozilla-config.h

GECKO_DEFINES = -DXPCOM_GLUE -DMOZILLA_STRICT_API

GECKO_INCLUDES = -I $(GECKO_SDK_PATH) \

 -I $(GECKO_SDK_PATH)/xpcom/include \

 -I $(GECKO_SDK_PATH)/nspr/include \

 -I $(GECKO_SDK_PATH)/string/include \

 -I $(GECKO_SDK_PATH)/embedstring/include

GECKO_LDFLAGS = -L $(GECKO_SDK_PATH)/xpcom/bin -lxpcomglue \

 -L $(GECKO_SDK_PATH)/nspr/bin -lnspr4 \

 -L $(GECKO_SDK_PATH)/nspr/bin -lplds4 \

 -L $(GECKO_SDK_PATH)/embedstring/bin/ -lembedstring

build:

 $(CXX) -o MozShim.so $(GECKO_CONFIG_INCLUDE)
$(GECKO_DEFINES) $(GECKO_INCLUDES) $(GECK\

O_LDFLAGS) $(CPPFLAGS) $(CXXFLAGS) MozShim.cpp

 chmod +x MozShim.so

clean:

 rm MozShim.so
Creating XPCOM Components

Appendix B:
XPCOM API Reference
XPCOM Core

XPCOM is Mozilla’s Cross Platform Component Object Model. It is used to unify
the creation, ownership, and deletion of objects and other data throughout Mozilla.
The following interfaces are the core interfaces associated with the functioning of
XPCOM.

Included Interfaces:

• nsISupports

• nsIInterfaceRequestor

• nsIWeakReference

• nsIMemory

• nsIProgrammingLanguage
Creating XPCOM Components 175

Appendix B: XPCOM API Reference

176
nsISupports

This is the interface from which all other XPCOM interfaces inherit. It provides the
foundation for XPCOM interface discovery and lifetime object management. In
most of our examples through the book, we used nsCOMPtr which calls these
methods. For example, when we made calls to do_QueryInterface, it made a
call to the method QueryInterface on the target object.

Methods:

• QueryInterface

• AddRef

• Release

QueryInterface

Provides a mechanism for requesting interfaces to which a given object might
provide access. The semantics of QueryInterface dictate that given an interface
A that you call QueryInterfce on to get to interface B, you must be able to call
QueryInterface on B to get back to A.

Syntax:

nsresult QueryInterface(const nsIID & uuid, void *
*result);

Parameters:

uuid: The IID of the requested interface.

result: [out] The reference to return. If this method call was successful, this
out parameter will have had its reference count increased by one, effectively
making the caller and owner of this object.

Result:

NS_OK if the interface was successfully returned.

NS_NOINTERFACE if the object does not support the given interface.
Creating XPCOM Components

XPCOM Core
Example

You can also use nsCOMPtr helper method do_QueryInterface that calls through to
the QueryInterface method of the aCompMgr object:

AddRef

Increments the internal refcount of the interface.

Syntax:

nsrefcnt AddRef()

Parameters:

None.

Result:

The refcount.

Release

Decrements the internal refcount of the interface. When the count reaches zero, the
interface deletes itself. To prevent objects leaking, every reference count must be
accounted for. For example, if you call QueryInterface on an object, the result
of this must be release at some point before the application shuts down. To release
an object you must either use nsCOMPtr, a smart pointer which keeps track of
references, or you must manually called Release on that object.

Syntax:

#include "nsIComponentRegistrar.h"

nsIComponentRegistrar* compReg = nsnull;

nsresult rv =
aCompMgr->QueryInterface(kIComponentRegistrarIID,(void**)& comp);

#include "nsIComponentRegistrar.h"

nsresult rv;

nsCOMPtr<nsIComponentRegistrar> compRef =
do_QueryInterface(aCompMgr, &rv);
Creating XPCOM Components 177

Appendix B: XPCOM API Reference

178
nsrefcnt Release()

Parameters:

None.

Result:

The refcount.

nsIInterfaceRequestor

This interface defines a generic interface for requesting interfaces to which a given
object might provide access. It is very similar to QueryInterface found in
nsISupports . The main difference is that interfaces returned from
GetInterface are not required to provide a way back to the object implementing
this interface. The semantics of QI dictate that given an interface A that you QI on
to get to interface B, you must be able to QI on B to get back to A. This interface,
however, allows you to obtain an interface C from A that may or most likely will
not have the ability to get back to A.

Methods:

• GetInterface

GetInterface

Retrieves the specified interface pointer.

Syntax:

nsresult GetInterface(const nsIID & uuid, void *
*result);

Parameters:

uuid: The IID of the interface being requested.

result: [out] The interface pointer to be filled in if the interface is accessible.
Creating XPCOM Components

XPCOM Core
Result:

NS_OK if the interface was successfully returned.

NS_NOINTERFACE if the interface is not accessible.

NS_ERROR* if there is method failure.

Example:

The interface that mWebBrowser references is a nsIInterfaceRequestor. We
can ask this interface, if it knows anything about the nsIWebBrowser. If it does, it
will return that object:

nsIWeakReference

This interface gives access to a proxy object that cooperates with its referent to give
clients a non-owning, non-dangling reference. Clients own the proxy, and should
generally manage it with an nsCOMPtr as they would any other XPCOM object.
The QueryReferent member function provides a owning reference on demand,
through which clients can get useful access to the referent, while it still exists.

There are two common usage of this interface. The first is used for breaking a
shutdown problems where the implementing object may be deleted without the
owning object knowing about it. The second usage of this interface is to break
circular dependencies. A circular dependency is when object A refers to object B
and at the same time, object B refers to object A. In this case, special measures
must be taken to avoid memory leaks.

Methods:

• QueryReferent

 nsCOMPtr<nsIWebBrowserFind> finder(do_GetInterface(mWebBrowser));
Creating XPCOM Components 179

Appendix B: XPCOM API Reference

180
QueryReferent

Queries the referent, if it exists, and like QueryInterface, returns an owning
reference to the desired interface.It is designed to look and act exactly like (a
proxied) QueryInterface. Don’t hold on to the produced interface permanently;
that would defeat the purpose of using a non-owning nsIWeakReference in the
first place.

Syntax:

nsresult QueryReferent(const nsIID & uuid, void *
*result);

Parameters:

uuid: The IID of the interface being requested.

result: [out] The interface pointer to be filled in if the interface is accessible.

Result:

NS_OK if successful.

Example

nsIMemory

This interface is used to allocate and deallocate memory. It also provides for
notifications in low-memory situations. This interface must be used to allocate all
memory that is passed between interface bountries. For example, if an interface
passes a memory buffer with the expectation that the buffer is now owned by the
caller, the assuption is that this memory buffer will be freed by the nsIMemory.
This rule need only apply to memory which passes through the interface boundry.
Internal component memory usage can use any allocator.

There is a static helper class known as the nsMemory which aides in using the
nsIMemory. nsMemory allows you to quickly obtain memory access without
having to aquire the pointer to the nsIMemory interface.

 nsCOMPtr<nsIWeakReference>
 thisListener(dont_AddRef(NS_GetWeakReference(listener)));
Creating XPCOM Components

XPCOM Core
A client that wishes to be notified of low memory situations (for example, because
the client maintains a large memory cache that could be released when memory is
tight) should register with the observer service (see nsIObserverService) using
the topic memory-pressure.

There are three specific types of notications that can occur. These types will be
passed as the aData parameter of the of the "memory-pressure" notification:

low-memory: This will be passed as the extra data when the pressure observer
is being asked to flush for low-memory conditions.

heap-minimize: This will be passed as the extra data when the pressure
observer is being asked to flush because of a heap minimize call.

alloc-failure: This will be passed as the extra data when the pressure observer
has been asked to flush because a malloc() or realloc() has failed.

Methods:

• Alloc

• Realloc

• Free

• HeapMinimize

• IsLowMemory

Alloc

Allocates a block of memory of a particular size. If the memory cannot be allocated
(because of an out-of-memory condition), null is returned.

Syntax:

void * Alloc(size_t size)

Parameters:

size: The size of the block to allocate.

Returns:

The block of memory.
Creating XPCOM Components 181

Appendix B: XPCOM API Reference

182
Realloc

Reallocates a block of memory to a new size.

Syntax:

void * Realloc(void * ptr, size_t newSize);

Parameters:

 ptr: The block of memory to reallocate.

 size: The new size.

Returns:

The reallocated block of memory

Note: If ptr is null, this function behaves like malloc. If s is the size of the block
to which ptr points, the first min(s, size) bytes of ptr’s block are copied to the
new block. If the allocation succeeds, ptr is freed and a pointer to the new block
returned. If the allocation fails, ptr is not freed and null is returned. The returned
value may be the same as ptr.

Free

Frees a block of memory. Null is a permissible value, in which case nothing
happens.

Syntax:

void Free(void * ptr);

Parameters:

ptr: The block of memory to free.

Returns:

None.

HeapMinimize

Attempts to shrink the heap. This method is scriptable.
Creating XPCOM Components

XPCOM Core
Syntax:

nsresult HeapMinimize(PRBool immediate);

Parameters:

immediate: If the value is true, heap minimization will occur immediately if
the call was made on the main thread. If the value is false, the flush will be
scheduled to happen when the app is idle.

Result:

NS_ERROR_FAILURE if ’immediate’ is set and the call was not on the
application’s main thread.

IsLowMemory

Indicates a low-memory situation (what constitutes low-memory is platform
dependent). This can be used to trigger the memory pressure observers.

Syntax:

nsresult IsLowMemory(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if memory is low.

FALSE otherwise.

nsIProgrammingLanguage

Enumeration of programming languages. These values are used by the
nsIClassInfo interface and indicate in what programming language the
component was implemented. Note that the ZX81_BASIC value is a joke.

Constants

• UNKNOWN

• CPLUSPLUS
Creating XPCOM Components 183

Appendix B: XPCOM API Reference

184
• JAVASCRIPT

• PYTHON

• PERL

• JAVA

• ZX81_BASIC

• JAVASCRIPT2

This list can grow indefinitely. Existing items, however, must not be changed.

XPCOM Components

These interfaces provide access to XPCOM’s mechanisms for creating, managing
and destroying objects.

Included Interfaces:
• nsIComponentManager

• nsIFactory

• nsIModule

• nsIComponentRegistrar

• nsIServiceManager

• nsIClassInfo

nsIComponentManager

This interface accesses the mechanism used to organize and create objects in
XPCOM.

Methods:

• GetClassObject

• GetClassObjectByContractID

• CreateInstance

• CreateInstanceByContractID
Creating XPCOM Components

XPCOM Components
GetClassObject

Returns the class object represented by the CID aClass. The result is an object
that implements the nsIFactory interface. The result may also implement the
nsIClassInfo interface.

Syntax:

nsresult GetClassObject(const nsCID & aClass, const
nsIID & aIID, void * *result);

Parameters:

aClass: The class ID of the class whose factory is being requested.

aIID: The interface ID of the interface that the factory’s class implements.

result: [out] The reference to return.

Result:

NS_OK if successful.

GetClassObjectByContractID

This method is exactly the same as getClassObject but instead of a CID
parameter, this method takes a contract ID string.

Syntax:

nsresult GetClassObjectByContractID(const char
*aContractID, const nsIID & aIID, void * *result);

Parameters:

aContractID: The contract ID of the class whose factory is being requested.

aIID: The interface ID of the interface that the factory’s class implements.

result: [out] The reference to return.

Result:

NS_OK if successful.
Creating XPCOM Components 185

Appendix B: XPCOM API Reference

186
CreateInstance

Creates an instance of the class indicated by the class ID and returns the interface
indicated by the interface ID.

Syntax:

nsresult CreateInstance(const nsCID & aClass,
nsISupports *aDelegate, const nsIID & aIID, void *
*result);

Parameters:

aClass: The class ID of the requested class.

aDelegate: Used for aggregation.

aIID: The ID of the requested interface.

result: [out] The reference to return.

Result:

NS_OK if successful

Example

#include "nsXPCOMCID.h"

#include "nsXPCOM.h"

#include "nsIComponentManager.h"

#include "nsISupportsPrimitives.h"

static NS_DEFINE_CID(kSupportsStringCID, NS_SUPPORTS_CSTRING_CID);

nsCOMPtr<nsIComponentManager> compMgr;

rv = NS_GetComponentManager(getter_AddRefs(compMgr));

if (NS_FAILED(rv)) return rv;

nsISupportsCString* stringSupports;

compMgr->CreateInstance(kSupportsStringCID, nsnull,

 NS_GET_IID(nsISupportsCString),

 (void**)&stringSupports);

if (!stringSupports)

 return NS_ERROR_UNEXPECTED;
Creating XPCOM Components

XPCOM Components
CreateInstanceByContractID

Creates an instance of the class indicated by the contract ID string and returns the
interface indicated by the interface ID.

Syntax:

nsresult CreateInstanceByContractID(const char
*aContractID, nsISupports *aDelegate, const nsIID &
aIID, void * *result);

Parameters:

aContractID: The contract ID of the requested class.

aDelegate: Used for aggregation.

aIID: The ID of the requested interface.

result: [out] The reference to return.

Result:

NS_OK if successful

Example

#include "nsXPCOMCID.h"

#include "nsXPCOM.h"

#include "nsIComponentManager.h"

#include "nsISupportsPrimitives.h"

nsCOMPtr<nsIComponentManager> compMgr;

rv = NS_GetComponentManager(getter_AddRefs(compMgr));

if (NS_FAILED(rv)) return rv;

nsISupportsCString* stringSupports;

compMgr-
>CreateInstanceByContractID(NS_SUPPORTS_CSTRING_CONTRACTID, nsnull,

 NS_GET_IID(nsISupportsCString),

 (void**)&stringSupports);

if (!stringSupports)

 return NS_ERROR_UNEXPECTED;
Creating XPCOM Components 187

Appendix B: XPCOM API Reference

188
nsIFactory

A class factory allows the creation of nsISupports derived components without
specifying a concrete base class.

See “webLock1.cpp” on page 68 for a complete listing of a sample nsIModule
implementation.

Methods:

• CreateInstance

• LockFactory

CreateInstance

Creates an instance of an object that implements the specified IID.

Syntax:

nsresult CreateInstance(nsISupports *aOuter, const
nsIID & iid, void * *result)

Parameters:

aOuter: Pointer to a component that wishes to be aggregated in the resulting
instance. This will be nsnull if no aggregation is requested.

iid: The IID of the interface being requested in the component which is being
currently created.

result: [out] Pointer to the newly created instance, if successful.

Result:

NS_OK if the component was successfully created and the interface being
requested was successfully returned in result.

NS_NOINTERFACE if the interface not accessible.

NS_ERROR_NO_AGGREGATION if an ’outer’ object is supplied, but the
component is not aggregatable.

NS_ERROR* if there is a method failure.
Creating XPCOM Components

XPCOM Components
LockFactory

Provides the client a way to keep the component in memory until the client is
finished with it. The client can call LockFactory(PR_TRUE) to lock the factory and
LockFactory(PR_FALSE) to release the factory.

In the generic factory code we used thorough our examples, this method is a noop.

Syntax:

nsresult LockFactory(PRBool lock);

Parameters:

lock must be PR_TRUE or PR_FALSE

Result:

NS_OK if the lock operation was successful.

NS_ERROR* if there is a method failure.

nsIModule

This interface handles module registration and management. A module is a non
empty set of factories. The main entry point of all XPCOM component librares are
expected to return a nsIModule implementation. This interface is meant to be
implemented by a component and called only from inside XPCOM. Developers are
not encouraged to call on this interface directly, but instead use the Component and
Service Manager for component access and control.

See page “webLock1.cpp” on page 68 for a complete listing of a sample
nsIModule implementation.

Methods:

• GetClassObject

• RegisterSelf

• UnregisterSelf

• CanUnload
Creating XPCOM Components 189

Appendix B: XPCOM API Reference

190
GetClassObject

Obtains a factory object from an nsIModule for a given CID and IID pair. This
method is called from XPCOM when XPCOM wants to discover a class object for
CID implementing a given IID in a component library.

Syntax:

nsresult GetClassObject(nsIComponentManager *aCompMgr,
const nsCID & aClass, const nsIID & aIID, void *
*aResult)

Parameters:

aCompMgr: The component manager.

aClass: The class ID of the class for which aResult is the factory.

aIID: The interface ID of the requested interface.

aResult: [out] The reference to return.

Result:

NS_OK if successful.

RegisterSelf

registerSelf is called by XPCOM on a component giving the component time to
register with the Component Manager.

Syntax:

nsresult RegisterSelf(nsIComponentManager *aCompMgr,
nsIFile *aLocation, const char *aLoaderStr, const char
*aType)
Creating XPCOM Components

XPCOM Components
Parameters:

aCompMgr: The Component Manager. This interface may be queried to the
nsIComponentRegistrar for registration needs.

aLocation : The location of the module on disk .

aLoaderStr: Opaque loader specific string. This value is meant to be passed
into the registration methods of nsIComponentRegistrar unmodified.

aType: Loader Type being used to load this module. This value is meant to be
passed into the registration methods of nsIComponentRegistrar unmodified.

Result:

NS_OK if successful.

UnregisterSelf

unregisterSelf is called by XPCOM on a component giving the component time to
unregister itself from the Component Manager.

Syntax:

nsresult UnregisterSelf(nsIComponentManager *aCompMgr,
nsIFile *aLocation, const char *aLoaderStr)

Parameters:

aCompMgr : The component manager. This interface may be queried to the
nsIComponentRegistrar for registration needs.

aLocation : The location of the module on disk. This value is meant to be
passed into the registration methods of nsIComponentRegistrar unmodified.

aLoaderStr: Opaque loader specific string.This value is meant to be passed
into the registration methods of nsIComponentRegistrar unmodified.

Result:

NS_OK if successful.
Creating XPCOM Components 191

Appendix B: XPCOM API Reference

192
CanUnload

Indicates that the module is willing to be unloaded. This does not guarantee that the
module will be unloaded. Unless you know that you component can be unloaded
safely, you must return FALSE.

The generic module always returns false.

Syntax:

nsresult CanUnload(nsIComponentManager *aCompMgr,
PRBool *_retval)

Parameters:

aCompMgr: The component manager.

Return:

PR_TRUE if the module is willing to be unloaded. It is very important to check
that no outstanding references to the module’s code/data exist before returning
true.

PR_FALSE guarantees that the module will not be unloaded.

nsIComponentRegistrar

This interface handles all component registration and management in XPCOM.
There are basically four conceptual parts to this interface: (1) queries to see what
has been registered, (2) register methods that take an in-memory instance of
nsIFactory objects, (3) register components that exist at a specific place, and finally
(4) callbacks that allow components to register themselves during nsIModule
method RegisterSelf.

Methods:

• AutoRegister

• AutoUnregister

• RegisterFactory

• UnregisterFactory

• RegisterFactoryLocation
Creating XPCOM Components

XPCOM Components
• UnregisterFactoryLocation

• IsCIDRegistered

• IsContractIDRegistered

• EnumerateCIDs

• EnumerateContractIDs

• CIDToContractID

• ContractIDToCID

AutoRegister

Registers a component file or all component files in a directory. This method is
usually called by the application to register a component or all components in a
directory. If a directory is pass, the directory will be recursively traversed. Each
component file must be valid as defined by acomponent’s loader. For example, if
the given file is a native library, it must export the symbol NSGetModule. Other
loaders may have different semantics.

This method may only be called from the main thread.

Syntax:

nsrsult AutoRegister(nsIFile *aSpec);

Parameters:

aSpec: Filename spec for component file's location. If aSpec is a directory,
then every component file in the directory will be registered. If the aSpec is
null, then the application component's directory and the GRE components
directory, if one exists, will be registered. (see nsIDirectoryService.idl)
Creating XPCOM Components 193

Appendix B: XPCOM API Reference

194
Result:

NS_OK if registration was successful.

NS_ERROR if not.

AutoUnregister

Similar to autoRegister, this method registers a component file or all component
files in a directory. This method is usually called by the application to unregister a
component or all components in a directory.

This method may only be called from the main thread.

Syntax:

nsresult AutoUnregister(nsIFile *aSpec)

Parameters:

aSpec: Filename spec for component file’s location. If aSpec is a directory,
then every component file in the directory will be registered. If the aSpec is
null, then the application component’s directory and the GRE components
directory, if one exists, will be registered. (see nsIDirectoryService.idl)

Result:

NS_OK if unregistration was successful.

NS_ERROR if not.

#include "nsXPCOMCID.h"

#include "nsXPCOM.h"

#include "nsIComponentRegistrar.h"

nsCOMPtr<nsIComponentRegistrar> registrar;

nsresult rv = NS_GetComponentRegistrar(getter_AddRefs(registrar));

if (NS_FAILED(rv)) return rv;

rv = registrar->AutoRegister(nsnull);
Creating XPCOM Components

XPCOM Components
RegisterFactory

Registers a instantiated nsIFactory factory object with a given ContractID, CID,
and Class Name. This nsIFactory object will only be registered until XPCOM
shuts down.

Syntax:

nsresult RegisterFactory(const nsCID & aClass, const
char *aClassName, const char *aContractID, nsIFactory
*aFactory)

Parameters:

aClass: The CID.

aClassName: The Class Name associated with aClass.

aContractID: The ContractID associated with aClass.

aFactory: The factory that will be registered for aClass.

Result:

NS_OK if registration was successful.

NS_ERROR if not.

UnregisterFactory

Unregisters a factory associated with CID aClass.

Syntax:

nsresult UnregisterFactory(const nsCID & aClass,
nsIFactory *aFactory)

Parameters:

aClass: The CID being unregistered.

aFactory: The factory that will be unregistered for aClass.

Result:

NS_OK if unregistration was successful.

NS_ERROR if not.
Creating XPCOM Components 195

Appendix B: XPCOM API Reference

196
RegisterFactoryLocation

This is a low level method that allows registration of a factory object given
ContractID, CID and Class Name, location, and so forth. This call is usually maded
from the nsIModule implementations of a component library to register its
factories.

Syntax:

nsresult RegisterFactoryLocation(const nsCID & aClass,
const char *aClassName, const char *aContractID, nsIFile
*aFile, const char *aLoaderStr, const char *aType)

Parameters:

aClass: The CID of the class.

aClassName: The Class Name of aClass.

aContractID: The ContractID associated with aClass.

aFile: The Component File. This file must have an associated loader and
export the required symbols which this loader specifies.

aLoaderStr: An opaque loader specific string. This value is passed into the
nsIModule’s registerSelf callback and must be fowarded unmodified
when registering factories via their location.

aType: The Component Type of aClass. This value is passed into the
nsIModule’s registerSelf callback and must be fowarded unmodified
when registering factories via their location.

Result:

NS_OK if registration was successful.

NS_ERROR if not.

See page “webLock1.cpp” on page 68 for a complete listing of a sample
nsIModule implementation which calls registerFactoryLocation.

UnregisterFactoryLocation

This is a low level method that allows unregistering a factory associated with
aClass. This call is usually maded from the nsIModule implementations of a
component library to unregister its factories.
Creating XPCOM Components

XPCOM Components
Syntax:

nsresult UnregisterFactoryLocation(const nsCID &
aClass, nsIFile *aFile)

Parameters:

aClass: The CID being unregistered.

aFile: The Component File previously registered.

Result:

NS_OK if unregistration was successful.

NS_ERROR if not.

See page “webLock1.cpp” on page 68 for a complete listing of a sample
nsIModule implementation which calls unregisterFactoryLocation.

IsCIDRegistered

Returns true if a factory is registered for a CID.

Syntax:

nsresult IsCIDRegistered(const nsCID & aClass, PRBool
*_retval)

Parameters:

aClass: The CID queried for registration.

Returns:

TRUE if a factory is registered for the CID

FALSE if not.

IsContractIDRegistered

Returns true if a factory is registered for a ContractID.

Syntax:
Creating XPCOM Components 197

Appendix B: XPCOM API Reference

198
nsresult IsContractIDRegistered(const char
*aContractID, PRBool *_retval)

Parameters:

aContractID: The ContractID queried for registration.

Returns:

TRUE if a factory is registered for the ContractID.

FALSE if not.

EnumerateCIDs

Enumerates the list of all registered CIDs. Elements of the enumeration can be
QueryInterface’d for the nsISupportsID interface. From the
nsISupportsID, you can obtain the actual CID.

Syntax:

nsresult EnumerateCIDs(nsISimpleEnumerator **_retval)

Parameters:

None.

Returns:

An enumerator for CIDs

EnumerateContractIDs

Enumerates the list of all registered ContractIDs. Elements of the enumeration can
be QueryInterface'd for the nsISupportsCString interface. From the
nsISupportsCString interface, you can obtain the actual Contract ID string.

Syntax:

EnumerateContractIDs(nsISimpleEnumerator **_retval)

Parameters:

None.
Creating XPCOM Components

XPCOM Components
Returns:

An enumerator for ContractIDs.

CIDToContractID

Gets the ContractID for a given CID, if one exists and is registered.

Syntax:

nsresult CIDToContractID(const nsCID & aClass, char
**_retval)

Parameters:

aClass: The CID whose ContractID is being sought.

Returns:

The ContractID.

ContractIDToCID

Gets the CID for a given Contract ID, if one exists and is registered.

Syntax:

nsresult ContractIDToCID(const char *aContractID, nsCID
* *_retval)

Parameters:

aContractID: The ContractID whose CID is being sought.

Returns:

The CID.
Creating XPCOM Components 199

Appendix B: XPCOM API Reference

200
nsIServiceManager

This interface provides a means to obtain global services (ie, access to a singleton
object) in an application. . Users of the service manager must first obtain a pointer
to the global service manager by calling NS_GetServiceManager. After that, they
can request specific services by calling GetService. When they are finished they
should NS_RELEASE the service as usual. A user of a service may keep references
to particular services indefinitely and must call Release only when XPCOM shuts
down.

Methods:

• GetService

• GetServiceByContractID

• IsServiceInstantiated

• IsServiceInstantiatedByContractID

GetService

Returns the object that implements aClass and the interface aIID. This may result
in the object being created.

Syntax:

nsresult GetService(const nsCID & aClass, const nsIID &
aIID, void * *result)

Parameters:

aClass: The class ID of the requested class.

aIID : The interface ID of the requested interface.

result :[out] The resulting service

Result:

NS_OK if successful.

Example
Creating XPCOM Components

XPCOM Components
GetServiceByContractID

Returns the object that implements aContractID and the interface aIID. This
may result in the instance being created.

Syntax:

void nsIServiceManager::GetServiceByContractID(in
string aContractID, in nsIIDRef
aIID,[iid_is(aIID),retval] out nsQIResult result)

Parameters:

aContractID: The contract ID of the requested class.

aIID : The interface ID of the requested interface.

result :[out] The reference to return.

Result:

NS_OK if successful.

Example

IsServiceInstantiated

Returns TRUE if the singleton service object has already been created.

Syntax:

nsCOMPtr<nsIServiceManager> mgr;

NS_GetServiceManager(getter_AddRefs(mgr));

if (mgr)

rv = mgr->GetService(mCID, aIID, (void**)aInstancePtr);

nsCOMPtr<nsIServiceManager> mgr;

NS_GetServiceManager(getter_AddRefs(mgr));

if (mgr)

rv = mgr->GetServiceByContractID(
mContractID, aIID, (void**)aServicePtr);
Creating XPCOM Components 201

Appendix B: XPCOM API Reference

202
nsresult IsServiceInstantiated(const nsCID & aClass,
const nsIID & aIID, PRBool *_retval)

Parameters:

aClass: The class ID of the requested class.

aIID : The interface ID of the requested interface.

Return:

PR_TRUE if the object has already been created.

PR_FALSE if the object has not been created.

IsServiceInstantiatedByContractID

ReturnsTRUE if the singleton service object has already been created.

Syntax:

nsresult IsServiceInstantiatedByContractID(const char
*aContractID, const nsIID & aIID, PRBool *_retval)

Parameters:

aContractID: The contract ID of the requested class.

aIID : The interface ID of the requested interface.

Result:

PR_TRUE if the object has already been created.

PR_FALSE if the object has not been created.

nsIClassInfo

This interface provides information about a specific implementation class.

Methods:

• GetInterfaces

• GetHelperForLanguage

• GetContractID
Creating XPCOM Components

XPCOM Components
• GetClassDescription

• GetClassID

• GetImplementationLanguage

• GetClassIDNoAlloc

• GetFlags

GetInterfaces

Returns an ordered list of the interface IDs that instances of the class promise to
implement. Note that nsISupports is an implicit member of any such list and
need not be included. Should set *count = 0 and *array = null and return
NS_OK if getting the list is not supported.

Syntax:

nsresult GetInterfaces(PRUint32 *count, nsIID * **array)

Parameters:

count: [out]The number of implemented interfaces.

array: [out] The list of implemented interfaces.

Result:

NS_OK if successful, or if getting list is not supported.

GetHelperForLanguage

Gets a language mapping specific helper object that may assist in using objects of
this class in a specific lanaguage. For instance, if asked for the helper for
nsIProgrammingLanguage::JAVASCRIPT this might return an object that can
be QI’d into the nsIXPCScriptable interface to assist XPConnect in supplying
JavaScript specific behavior to callers of the instance object. Should return null if
no helper available for given language.

Syntax:

nsresult GetHelperForLanguage(PRUint32 language,
nsISupports **_retval)
Creating XPCOM Components 203

Appendix B: XPCOM API Reference

204
Parameters:

language: An integer representing the requested language.

Returns:

The helper object.

See also: nsIProgrammingLanguage for language constants.

GetContractID

Returnes a string contract ID through which an instance of this class can be created
(or accessed as a service, if flags & SINGLETON), or null.

Syntax:

nsresult GetContractID(char * *aContractID)

GetClassDescription

Gets a human readable string naming the class, or null.

Syntax:

nsresult GetClassDescription(char * *aClassDescription)

GetClassID

Gets the class ID through which an instance of this class can be created (or accessed
as a service, if flags & SINGLETON), or null.

Syntax:

nsresult GetClassID(nsCID * *aClassID);
Creating XPCOM Components

XPCOM Components
GetImplementationLanguage

Gets the language type from list in nsIProgrammingLanguage.

Syntax:

nsresult GetImplementationLanguage(PRUint32
*aImplementationLanguage);

GetClassIDNoAlloc

Gets a class ID through which an instance of this class can be created (or accessed
as a service, if flags & SINGLETON). If the class does not have a CID, it should
return NS_ERROR_NOT_AVAILABLE. This attribute exists so C++ callers can
avoid allocating and freeing a CID, as would happen if they used class ID.

Syntax:

nsresult GetClassIDNoAlloc(nsCID *aClassIDNoAlloc)

GetFlags

Returns implementation flags which made be ORed together of the values below.

Syntax:

nsresult GetFlags(PRUint32 *aFlags)

Flags:
Creating XPCOM Components 205

Appendix B: XPCOM API Reference

206
Note: The high order bit is RESERVED for consumers of these flags. No
implementor of this interface should ever return flags with this bit set.

SINGLETON

Flag specifies that the object is a singleton or service.

THREADSAFE

Flag specifies that the object is a threadsafe.

MAIN_THREAD_ONLY

Flag specifies that the object may only be called from the main (UI) thread.

DOM_OBJECT

Flag specifies that the object is part of the DOM.

PLUGIN_OBJECT

Flag specifies that the object is a plugin object.

CONTENT_NODE

Flag specifies that the object is a content node.

EAGER_CLASSINFO

Flag tells the generic module code to construct a factory object during initialization.

RESERVED

Flags saved for future use.

XPCOM Data Structures

These interfaces provide access to various utility mechanisms in XPCOM.

Included Interfaces:
• nsICategoryManager

• nsIObserver

• nsIObserverService

• nsIProperties
Creating XPCOM Components

XPCOM Data Structures
• nsISimpleEnumerator

• nsISupportsPrimitives

nsICategoryManager

This interface is implemented by an object that wants to observe an event
corresponding to a topic.

Methods:

• GetCategoryEntry

• AddCategoryEntry

• DeleteCategoryEntry

• DeleteCategory

• EnumerateCategory

• EnumerateCategories

GetCategoryEntry

Get the value for the given category’s entry.

Syntax:

nsresult GetCategoryEntry(const char *aCategory, const
char *aEntry, char **_retval)

Parameters:

aCategory: The name of the category (e.g. "protocol").

aEntry: The entry you’re looking for (e.g. "http").

_retval: [out] returns the category entry corresponding to the category and
entry.

Result:

NS_OK if successful.
Creating XPCOM Components 207

Appendix B: XPCOM API Reference

208
AddCategoryEntry

Add an entry to a category.

Syntax:

nsresult AddCategoryEntry(const char *aCategory, const
char *aEntry, const char *aValue, PRBool aPersist,
PRBool aReplace, char **_retval)

Parameters:

aCategory: The name of the category (e.g. "protocol").

aEntry: The entry you’re looking for (e.g. "http").

aValue: The value for the entry ("moz.httprulez.1")

aPersist: Should we persist between invocations? This value is ignored in
some implementations.

aReplace: Should we replace an existing entry? This value is ignored in some
implementations.

_retval: [out] Returns the previous category entry corresponding to the
category and entry Previous entry, if any..

Result:

NS_OK if successful.

DeleteCategoryEntry

Delete an entry from the category.

Syntax:

nsresult DeleteCategoryEntry(const char *aCategory,
const char *aEntry, PRBool aPersist)

Parameters:

aCategory: The name of the category (e.g. "protocol").

aEntry: The entry you’re looking for (e.g. "http").

aPersist: Should we persist between invocations? This value is ignored in
some implementations.
Creating XPCOM Components

XPCOM Data Structures
Result:

NS_OK if successful.

DeleteCategory

Delete a category and all entries.

Syntax:

nsresult DeleteCategory(const char *aCategory)

Parameters:

aCategory: The name of the category (e.g. "protocol").

Result:

NS_OK if successful.

EnumerateCategory

Enumerate the entries in a category.

Syntax:

nsresult EnumerateCategory(const char *aCategory,
nsISimpleEnumerator **_retval)

Parameters:

aCategory: The name of the category (e.g. "protocol").

_retval: [out] returns an enumeration of all of the entries in the given
category. The elements of the enumeration can be QueryInterface’d for the
nsISupportsCString interface. From the nsISupportsCString, you can obtain
the actual string of the entry.

Result:

NS_OK if successful.
Creating XPCOM Components 209

Appendix B: XPCOM API Reference

210
EnumerateCategories

Enumerate the entries in a category.

Syntax:

nsresult EnumerateCategories(nsISimpleEnumerator
**_retval)

Parameters:

_retval: [out] returns an enumeration of all of the category. The elements of
the enumeration can be QueryInterface’d for the nsISupportsCString interface.
From the nsISupportsCString, you can obtain the actual string of the category
name.

Result:

NS_OK if successful.

nsIObserver

This interface is implemented by an object that wants to observe an event
corresponding to a topic.

See also: nsIObserverService.

Methods:

• Observe

Observe

Called when there is a notification for the topic aTopic. The object implementing
this interface must have been registered with an observer service such as the
nsIObserverService. If you expect multiple topics/subjects, your
implementation is responsible for filtering. You should not modify, add, remove, or
enumerate notifications in the implemention of observe.

Syntax:
Creating XPCOM Components

XPCOM Data Structures
nsresult Observe(nsISupports *aSubject, const char
*aTopic, const PRUnichar *aData)

Parameters:

aSubject: Notification specific interface pointer.

aTopic: The notification topic or subject.

aData: Notification specific wide string, depending on the subject event.

Result:

NS_OK if successful.

See page “Getting Called at Startup” on page 91, where this interface is
implemented.

nsIObserverService

Service allows a client listener (nsIObserver) to register and unregister for
notifications of a specific string referenced topic. Service also provides a way to
notify registered listeners and a way to enumerate registered client listeners

Methods:

• AddObserver

• RemoveObserver

• NotifyObservers

• EnumerateObservers

AddObserver

Registers a given listener for a notifications regarding the specified topic.

Syntax:

nsresult AddObserver(nsIObserver *anObserver, const
char *aTopic, PRBool ownsWeak)
Creating XPCOM Components 211

Appendix B: XPCOM API Reference

212
Parameters:

anObserver: The interface pointer to the object which will receive
notifications.

aTopic: The notification topic or subject.

ownsWeak: If set to false, the nsIObserverService will hold a strong
reference to anObserver. If set to true and anObserver supports the
nsIWeakReference interface, a weak reference will be held. Otherwise an
error will be returned.

Result:

NS_OK if successful.

Example:

RemoveObserver

Unregisters a given listener from notifications regarding the specified topic.

Syntax:

nsresult RemoveObserver(nsIObserver *anObserver, const
char *aTopic)

Parameters:

anObserver: The interface pointer to the object which should stop receiving
notifications.

aTopic: The notification topic or subject.

Result:

NS_OK if successful.

Example:

nsCOMPtr<nsIObserverService> observerService(

 do_GetService(/"@mozilla.org/observer-service;1"/, &rv));

if (NS_SUCCEEDED(rv))

 rv = observerService->AddObserver(

 this,

 NS_XPCOM_SHUTDOWN_OBSERVER_ID, PR_TRUE);
Creating XPCOM Components

XPCOM Data Structures
NotifyObservers

Notifies all registered listeners of the given topic.

Syntax:

nsresult NotifyObservers(nsISupports *aSubject, const
char *aTopic, const PRUnichar *someData)

Parameters:

aSubject: Notification specific interface pointer.

aTopic: The notification topic or subject.

someData: Notification specific wide string.

Result:

NS_OK if successful.

Example:

nsCOMPtr<nsIObserverService> observerService(
 do_GetService(/"@mozilla.org/observer-service;1"/, &rv));

if (NS_SUCCEEDED(rv))

 rv = observerService->RemoveObserver(
this,

 NS_XPCOM_SHUTDOWN_OBSERVER_ID);
Creating XPCOM Components 213

Appendix B: XPCOM API Reference

214
EnumerateObservers

Returns an enumeration of all registered listeners.

See also: nsISimpleEnumerator.

Syntax:

nsresult EnumerateObservers(const char *aTopic,
nsISimpleEnumerator **_retval)

Parameters:

aTopic: The notification topic or subject.

Result:

NS_OK if successful.

Example

nsCOMPtr<nsIServiceManager> mgr;

NS_GetServiceManager(getter_AddRefs(mgr));

if (!mgr)

 return NS_ERROR_FAILURE;

nsCOMPtr<nsIObserverService> observerService;

rv = mgr->GetServiceByContractID("@mozilla.org/observer-service;1",

 NS_GET_IID(nsIObserverService),

 getter_AddRefs(observerService));

if (!observerService)

 return NS_ERROR_FAILURE;

char* string = "My Topic";

PRUnichar* wstring = nsnull;

nsISupports* context;

observerService->NotifyObservers(context, string, wstring);
Creating XPCOM Components

XPCOM Data Structures
nsIProperties

This interface is .

See “The Directory Service” on page 112 for both an implementation of this
interface and a client usage example.

Methods:

• Get

• Set

• Has

nsCOMPtr<nsIServiceManager> mgr;

NS_GetServiceManager(getter_AddRefs(mgr));

if (!mgr)

 return NS_ERROR_FAILURE;

nsCOMPtr<nsIObserverService> observerService;

mgr->GetServiceByContractID("@mozilla.org/observer-service;1",

 NS_GET_IID(nsIObserverService),

 getter_AddRefs(observerService));

if (!observerService)

 return NS_ERROR_FAILURE;

nsCOMPtr<nsISimpleEnumerator> theEnum;

rv = observerService->EnumerateObservers(<sometopic>,

 getter_AddRefs(theEnum));

if (theEnum)

{

 PRBool loop = PR_TRUE

 while (NS_SUCCEEDED(theEnum->HasMoreElements(&loop)) && loop)

 {

 nsCOMPtr<nsISupports> inst;

 theEnum->GetNext(getter_AddRefs(inst));

 if (inst) { do something useful }

 }

}

Creating XPCOM Components 215

Appendix B: XPCOM API Reference

216
• Undefine

• GetKeys

Get

Gets a property with a given name.

Syntax:

nsresult Get(const char *prop, const nsIID & iid, void *
*result)

Parameters:

prop: A property name string key.

iid: The IID to QueryInterface any result of the Get.

result: [out] The property with the given name, if any.

Result:

NS_OK if successful.

NS_ERROR_FAILURE if a property with that name doesn’t exist.

NS_ERROR_NO_INTERFACE if a property with that name doesn’t exist.

Set

Sets a property with a given name to a given value.

Syntax:

nsresult Set(const char *prop, nsISupports *result)

Parameters:

prop: A property name string key.

result: The property with the given name.

Result:

NS_OK if successful.
Creating XPCOM Components

XPCOM Data Structures
Has

Returns true if the property with the given name exists.

Syntax:

nsresult Has(const char *prop, PRBool *_retval)

Parameters:

prop: A property name string key.

_retval: True if the propery exists with the given string key.

Result:

NS_OK if successful.

Undefine

Undefines a property.

Syntax:

nsresult Undefine(const char *prop)

Parameters:

prop: A property name string key.

Result:

NS_OK if successful.

NS_ERROR_FAILURE if a property with that name doesn’t exist.

GetKeys

Returns an array of the keys.

Syntax:

nsresult GetKeys(PRUint32 *count, char ***keys)
Creating XPCOM Components 217

Appendix B: XPCOM API Reference

218
Parameters:

count: If successful, count will contain the number of keys.

keys: An array of all keys in know by the object implementing the
nsIProperties interface.

Result:

NS_OK if successful.

NS_ERROR_FAILURE if a property with that name doesn’t exist.

nsISimpleEnumerator

This interface is used to enumerate over elements defined by its implementor.
Although hasMoreElements() can be called independently of getNext(),
getNext() must be preceded by a call to hasMoreElements(). There is no way
to "reset" an enumerator, once you obtain one.

The nsISimpleEnumerator interface is shown in the section “The Web Locking
Interface” on page 105.

Methods:

• HasMoreElements

• GetNext

• GetType

HasMoreElements

Determines whether or not the enumerator has any elements that can be returned
via getNext(). This method is generally used to determine whether or not to
initiate or continue iteration over the enumerator, though it can be called without
subsequent getNext() calls. This does not affect internal state of enumerator.

Syntax:

nsresult HasMoreElements(PRBool *_retval)
Creating XPCOM Components

XPCOM Data Structures
Parameters:

None.

Result:

PR_TRUE if there are remaining elements in the enumerator.

PR_FALSE if there are no more elements in the enumerator.

GetNext

Called to retrieve the next element in the enumerator. The "next" element is the first
element upon the first call. Must be preceded by a call to hasMoreElements()
which returns PR_TRUE. This method is generally called within a loop to iterate
over the elements in the enumerator.

Syntax:

nsresult GetNext(nsISupports **_retval)

Parameters:

None.

Result:

NS_OK if the call succeeded in returning a non-null value.

NS_ERROR_FAILURE if there are no more elements to enumerate.

nsISupportsPrimitives

This group of interfaces provide ways to wrap primiatives such as integers, floats,
doubles, chars, strings, etc. so that these values may be passed between interface
boundries using a nsISupports parameter. The base class of these primitive
wrappers is the nsISupportsPrimitive.

These objects can be constructed by calling the Component Manager with the
appropriate Class ID or Contract ID listed in nsXPCOMCID.h.

Also see “SetSites” on page 124, where we create and use an
nsISupportsCString object.
Creating XPCOM Components 219

Appendix B: XPCOM API Reference

220
GetType

Determines what kind of primative the nsISupportsPrimimitive subclass supports..

Syntax:

nsresult GetType(PRUint16 *aType)

Parameters:

aType: [out] The type of the primative. This value will be one of the following
constants:

These first three are pointer types and do data copying using the nsIMemory.

The derived classes implement a getter and setter for its data type and a ToString
method that returns a nsIMemory allocated string representative of the data. These
interfaces are:

TYPE_ID TYPE_CSTRING

TYPE_STRING TYPE_PRBOOL

TYPE_PRUINT8 TYPE_PRUINT16

TYPE_PRUINT32 TYPE_PRUINT64

TYPE_PRTIME TYPE_CHAR

TYPE_PRINT16 TYPE_PRINT32

TYPE_PRINT64 TYPE_FLOAT

TYPE_DOUBLE TYPE_INTERFACE_POINTER

TYPE_VOID

nsISupportsID nsISupportsString

nsISupportsCString nsISupportsPRBool

nsISupportsPRUint8 nsISupportsPRUint16

nsISupportsPRUint32 nsISupportsPRUint64

nsISupportsPRTime nsISupportsChar
Creating XPCOM Components

XPCOM I/O
XPCOM I/O

These interfaces provide access to various XPCOM I/O related services.

Included Interfaces:
• nsIDirectoryServiceProvider

• nsIDirectoryServiceProvider2

• nsIDirectoryService

• Well Known Locations

• nsIFile

• nsIInputStream

• nsILocalFile

• nsIOutputStream

nsIDirectoryServiceProvider

This interface is used by Directory Service to get file locations.

Methods:

• GetFile

•

GetFile

Provides DirectoryService with a prop on the first request or on every request if the
prop is not persistent.

nsISupportsPRInt16 nsISupportsPRInt32

nsISupportsPRInt64 nsISupportsFloat

nsISupportsDouble nsISupportsVoid

nsISupportsInterfacePointer
Creating XPCOM Components 221

Appendix B: XPCOM API Reference

222
Syntax:

nsresult GetFile(const char *prop, PRBool *persistent,
nsIFile **_retval)

Parameters:

prop: The symbolic name of the file.

persistent: [out] If true, the returned file will be cached by Directory
Service. Subsequent requests for this prop will bypass the provider and use the
cache. If false, the provider will be asked for this prop each time it is requested.

Returns:

The file represented by the property.

Example:

nsIDirectoryServiceProvider2

This interface is an extension of nsIDirectoryServiceProvider which allows
multiple files to be returned for a given key.

Methods:

• GetFiles

nsCOMPtr<nsIProperties> dirService;

rv = servMgr->GetServiceByContractID(
NS_DIRECTORY_SERVICE_CONTRACTID,

NS_GET_IID(nsIProperties),

getter_AddRefs(dirService));

if (NS_FAILED(rv))

 return rv;

nsCOMPtr<nsIFile> xpcomDll;

rv = dirService->Get(
NS_XPCOM_LIBRARY_FILE, NS_GET_IID(nsIFile),
getter_AddRefs(xpcomDll));

if (NS_FAILED(rv))

 return rv;
Creating XPCOM Components

XPCOM I/O
GetFiles

Provides Directory Service with a prop when it gets a request for it and the
requested type is nsISimpleEnumerator.

Syntax:

nsresult GetFiles(const char *prop, nsISimpleEnumerator
**_retval)

Parameters:

prop: The symbolic name of the file list.

Returns:

An enumerator for a list of file locations. The elements in the enumeration are
of the type nsIFile.

nsIDirectoryService

This interface provides XPCOM’s directory service.

Methods:

• Init

• RegisterProvider

• UnregisterProvider

Init

Must be called. This function is used internally by XPCOM initialization and
developers are not required nor expected to call this method.

Syntax:

nsresult Init(void)

Parameters:

None.
Creating XPCOM Components 223

Appendix B: XPCOM API Reference

224
Result:

NS_OK if successful.

RegisterProvider

Registers a provider with the service.

Syntax:

nsresult RegisterProvider(nsIDirectoryServiceProvider
*prov)

Parameters:

prov: The provider to be registered. The service will keep a strong reference
to this object. It will be released when the service is released.

Result:

NS_OK if successful.

UnregisterProvider

Unregisters a provider with the service.

Syntax:

nsresult UnregisterProvider(nsIDirectoryServiceProvider
*prov)

Parameters:

prov: The provider to be unregistered.

Result:

NS_OK if successful.
Creating XPCOM Components

XPCOM I/O
nsIFile

There are many built in location which are known to XPCOM and are accessible
from the nsIDirectoryService. These values are defined in the
nsDirectoryServiceDefs.h.

This interface is the only correct cross-platform way to specify a file. Strings are
not such a way. Despite the fact that they work on Windows or Unix, they will not
work here.

All methods with string parameters have two forms. The preferred form operates
on UCS-2 encoded characters strings. An alternate form operates on characters
strings encoded in the "native" charset. A string containing characters encoded in
the native charset cannot be safely passed to javascript via xpconnect. Therefore,
the UCS-2 forms are scriptable, but the "native methods" are not.

Methods:

• Append

• AppendNative

• Normalize

• Create

• CopyTo

• CopyToNative

• CopyToFollowingLinks

• CopyToFollowingLinksNative

• MoveTo

• MoveToNative

• Remove

• Exists

• IsWritable

• IsReadable

• IsExecutable

• IsHidden

• IsDirectory
Creating XPCOM Components 225

Appendix B: XPCOM API Reference

226
• IsFile

• IsSymlink

• IsSpecial

• CreateUnique

• Clone

• Equals

• Contains

Attributes and Constants:

• LeafName

• Permissions

• LastModificationTime

• FileSize

• Target

• Parent

• DirectoryEntries

Append

AppendNative

Makes a descendent of the current nsIFile.

Syntax:

nsresult Append(const nsAString & node)

nsresult AppendNative(const nsACString & node)

Parameters:

node: A string which is intended to be a child node of the nsIFile. For the
appendNative method, the node must be in the native filesystem charset.
Creating XPCOM Components

XPCOM I/O
Result:

NS_OK if successful.

Normalize

Normalizes the pathName (e.g. removing .. and . components on Unix).

Syntax:

nsresult Normalize(void)

Parameters:

None.

Result:

NS_OK if successful.

Create

Creates a new file or directory in the file system. Any nodes that have not been
created or resolved, will be. If the file or directory already exists, create()
returns NS_ERROR_FILE_ALREADY_EXISTS.

The type flag must be either NORMAL_FILE_TYPE or DIRECTORY_TYPE

Syntax:

nsresult Create(PRUint32 type, PRUint32 permissions)

Parameters:

type: This specifies the type of file system object to be made. The only two
types at this time are file and directory which are defined below. If the type is
unrecognized, returns (NS_ERROR_FILE_UNKNOWN_TYPE).

permissions: Unix style octal permissions. This may be ignored on systems
that do not need to do permissions.

Result:

NS_OK if successful.
Creating XPCOM Components 227

Appendix B: XPCOM API Reference

228
CopyTo

CopyToNative

Copies this file to the specified newParentDir. If a newName is specified, the file
will be renamed. If ’this’ is not created, returns the error
(NS_ERROR_FILE_TARGET_DOES_NOT_EXIST). copyTo may fail if the file
already exists in the destination directory. copyTo will NOT resolve aliases/
shortcuts during the copy.

Syntax:

nsresult CopyTo(nsIFile *newParentDir, const nsAString &
newName)

nsresult CopyToNative(nsIFile *newParentDir, const
nsACString & newName)

Parameters:

newParentDir: The destination directory. If the newParentDir is empty,
copyTo() will use the parent directory of this file. If the newParentDir is not
empty and is not a directory, an error will be returned
(NS_ERROR_FILE_DESTINATION_NOT_DIR). For the CopyToNative
method, the newName must be in the native filesystem charset.

newName: This param allows you to specify a new name for the file to be
copied. This param may be empty, in which case the current leaf name will be
used.

Result:

NS_OK if successful.

CopyToFollowingLinks

CopyToFollowingLinksNative

Is identical to copyTo except, as the name implies, it follows symbolic links. The
XP_UNIX implementation always follows symbolic links when copying.
Creating XPCOM Components

XPCOM I/O
Syntax:

nsresult CopyToFollowingLinks(nsIFile *newParentDir,
const nsAString & newName)

 nsresult CopyToFollowingLinksNative(nsIFile
*newParentDir, const nsACString & newName)

Parameters:

newParentDir: The destination directory. If the newParentDir is empty,
copyTo() will use the parent directory of this file. If the newParentDir is not
empty and is not a directory, an error will be returned
(NS_ERROR_FILE_DESTINATION_NOT_DIR).

newName: This param allows you to specify a new name for the file to be
copied. This param may be empty, in which case the current leaf name will be
used. For the copyToFollowingLinksNative method, the newName must
be in the native filesystem charset.

Result:

NS_OK if successful.

MoveTo

MoveToNative

Moves this file to the specified newParentDir. If a newName is specified, the file
will be renamed. If ’this’ is not created, returns an error
(NS_ERROR_FILE_TARGET_DOES_NOT_EXIST). moveTo will NOT resolve
aliases/shortcuts during the copy. moveTo will do the right thing and allow copies
across volumes.

Syntax:

nsresult MoveTo(nsIFile *newParentDir, const nsAString &
newName)

nsresult MoveToNative(nsIFile *newParentDir, const
nsACString & newName)
Creating XPCOM Components 229

Appendix B: XPCOM API Reference

230
Parameters:

newParentDir: This param is the destination directory. If the newParentDir is
empty, moveTo() will rename the file within its current directory. If the
newParentDir is not empty and does not name a directory, an error will be
returned (NS_ERROR_FILE_DESTINATION_NOT_DIR). For the
moveToNative method, the newName must be in the native filesystem
charset.

newName: This param allows you to specify a new name for the file to be
moved. This param may be empty, in which case the current leaf name will be
used.For the moveToNative method, the newName must be in the native
filesystem charset.

Result:

NS_OK if successful.

Remove

Tries to delete this file. The ’recursive’ flag must be PR_TRUE to delete directories
which are not empty. It will not resolve any symlinks.

Syntax:

nsresult Remove(PRBool recursive)

Parameters:

recursive: A boolean indicating whether or not to delete directories
recursively.

Result:

NS_OK if successful.

Exists

Determines if this file exists.

Syntax:

nsresult Exists(PRBool *_retval)
Creating XPCOM Components

XPCOM I/O
Parameters:

None.

Returns:

TRUE if it exists.

FALSE otherwise.

IsWritable

Determines if this file is writable.

Syntax:

nsresult IsWritable(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is writable.

FALSE otherwise.

IsReadable

Determines if this file is readable.

Syntax:

nsresult IsReadable(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is readable.

FALSE otherwise.
Creating XPCOM Components 231

Appendix B: XPCOM API Reference

232
IsExecutable

Determines if this file is executable.

Syntax:

nsresult IsExecutable(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is executable.

FALSE otherwise.

IsHidden

Determines if this file is hidden.

Syntax:

nsresult IsHidden(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is hidden.

FALSE otherwise.

IsDirectory

Determines if this file is a directory.

Syntax:

nsresult IsDirectory(PRBool *_retval)

Parameters:

None.
Creating XPCOM Components

XPCOM I/O
Returns:

TRUE if it is a directory.

FALSE otherwise.

IsFile

Determines if this file is a file.

Syntax:

nsresult IsFile(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is a file.

FALSE otherwise.

IsSymlink

Determines if this file is a symbolic link.

Syntax:

nsresult IsSymlink(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is a symlink.

FALSE otherwise.

IsSpecial

Determines if this file is other than a regular file, a directory, or a symbolic link.
Creating XPCOM Components 233

Appendix B: XPCOM API Reference

234
Syntax:

nsresult IsSpecial(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if it is not a file, a directory, or a symlink.

FALSE otherwise.

CreateUnique

Create a new file or directory in the file system. Any nodes that have not been
created or resolved, will be. If this file already exists, this tries variations on the
leaf name "suggestedName" until it finds one that does not already exist. If the
search for nonexistent files takes too long (thousands of the variants already exist),
it gives up and return NS_ERROR_FILE_TOO_BIG.

The type flag must be either NORMAL_FILE_TYPE or DIRECTORY_TYPE

Syntax:

nsresult CreateUnique(PRUint32 type, PRUint32
permissions)

Parameters:

type: The type of file system object to be made. The only two types at this
time are file and directory which are defined below. If the type is
unrecongnized, returns an error (NS_ERROR_FILE_UNKNOWN_TYPE).

permissions: Unix style octal permissions. This may be ignored on systems
that do not need to do permissions.

Result:

NS_OK if successful.

Clone

Allocates and initializes an nsIFile object to the exact location of this nsIFile
Creating XPCOM Components

XPCOM I/O
Syntax:

nsresult Clone(nsIFile **_retval)

Parameters:

None.

Returns:

An nsIFile with which this object will be initialized.

Equals

Determines if inFile equals this.

Syntax:

Equals(nsIFile *inFile, PRBool *_retval)

Parameters:

inFile: The comparison object.

Returns:

TRUE if the files are equal.

FALSE otherwise.

Contains

Determines if inFile is a descendant of this file. If recur is true, it will also look
in subdirectories.

Syntax:

nsresult Contains(nsIFile *inFile, PRBool recur, PRBool
*_retval)

Parameters:

inFile: The file to be evaluated.

recur: A boolean indicating whether subdirectories should be searched.
Creating XPCOM Components 235

Appendix B: XPCOM API Reference

236
Returns:

TRUE if infile is a descendent of this file.

FALSE otherwise.

LeafName

Getters and setters for the leaf name of the file itself. nativeLeafName must be in
the native filesystem charset.

nsresult GetLeafName(nsAString & aLeafName)

nsresult SetLeafName(const nsAString & aLeafName)

nsresult GetNativeLeafName(nsACString &
aNativeLeafName)

nsresult SetNativeLeafName(const nsACString &
aNativeLeafName)

Permissions

Getters and setters for the permssion of the file or link.

nsresult GetPermissions(PRUint32 *aPermissions)

nsresult SetPermissions(PRUint32 aPermissions)

nsresult GetPermissionsOfLink(PRUint32
*aPermissionsOfLink)

nsresult SetPermissionsOfLink(PRUint32
aPermissionsOfLink)

LastModificationTime

Gets and sets time of the last file modification. Times are stored as milliseconds
Creating XPCOM Components

XPCOM I/O
from midnight (00:00:00), January 1, 1970 Greenwich Mean Time (GMT).

Syntax

nsresult GetLastModifiedTime(PRInt64
*aLastModifiedTime)

nsresult SetLastModifiedTime(PRInt64 aLastModifiedTime)

nsresult GetLastModifiedTimeOfLink(PRInt64
*aLastModifiedTimeOfLink)

nsresult SetLastModifiedTimeOfLink(PRInt64
aLastModifiedTimeOfLink)

FileSize

Getters and setters for the file size.

Warning: On the Mac, getting/setting the file size with nsIFile only deals with
the size of the data fork. If you need to know the size of the combined data and
resource forks use the GetFileSizeWithResFork() method defined on
nsILocalFileMac.

Syntax

nsresult GetFileSize(PRInt64 *aFileSize)

nsresult SetFileSize(PRInt64 aFileSize)

nsresult GetFileSizeOfLink(PRInt64 *aFileSizeOfLink)

Target

Gets the target, ie, what the symlink points at. Gives an error
(NS_ERROR_FILE_INVALID_PATH) if not a symlink. Note that the ACString
attribute is returned in the native filesystem charset.
Creating XPCOM Components 237

Appendix B: XPCOM API Reference

238
Warning:The native version of these strings are not guaranteed to be a usable path
to pass to NSPR or the C stdlib. There are problems that affect platforms on which
a path does not fully specify a file because two volumes can have the same name
(e.g., XP_MAC). This is solved by holding "private", native data in the nsIFile
implementation. This native data is lost when you convert to a string.

Note: NOT USE TO PASS TO NSPR OR STDLIB!

Syntax

nsresult GetTarget(nsAString & aTarget)

nsresult GetNativeTarget(nsACString & aNativeTarget)

Parent

Gets the parent of this file. Parent will be null when this file is at the top of the
volume.

Syntax

nsresult GetParent(nsIFile * *aParent);

DirectoryEntries

Gets an enumeration of the elements in a directory. Each element in the enumerator
is an nsIFile. If the current nsIFile does not specify a dirctory, returns an error
NS_ERROR_FILE_NOT_DIRECTORY.

Syntax

nsresult GetDirectoryEntries(nsISimpleEnumerator *
*aDirectoryEntries)
Creating XPCOM Components

XPCOM I/O

)

Example

PRBool RecursiveDirectories(nsIFile* file)

{

 nsresult rv;

 nsCOMPtr<nsISimpleEnumerator> entries;

 rv = file->GetDirectoryEntries(getter_AddRefs(entries));

 if(NS_FAILED(rv) || !entries)

 return PR_FALSE;

 PRUint32 count = 0;

 PRBool hasMore;

 while(NS_SUCCEEDED(entries->HasMoreElements(&hasMore)) && hasMore

 {

 nsCOMPtr<nsISupports> sup;

 entries->GetNext(getter_AddRefs(sup));

 if(!sup)

 return PR_FALSE;

 nsCOMPtr<nsIFile> file = do_QueryInterface(sup);

 if(!file)

 return PR_FALSE;

 nsEmbedCString name;

 if(NS_FAILED(file->GetNativeLeafName(name)))

 return PR_FALSE;

 PRBool isDir;

 printf("%s\n", name.get());

 rv = file->IsDirectory(&isDir);

 if (NS_FAILED(rv))

 {

 printf("IsDirectory Failed!!!\n");

 return PR_FALSE;

 }

 if (isDir == PR_TRUE)

 {

 RecursiveDirectories(file);

 }

 }

 return PR_TRUE;

}

Creating XPCOM Components 239

Appendix B: XPCOM API Reference

240
nsIInputStream

This interface manages reading data in from an input stream. It is partially
scriptable.

Methods:

• close

• Available

• Read

• ReadSegments

• IsNonBlocking

close

Closes the stream.

Syntax:

nsresult Close(void)

Parameters:

None.

Result:

NS_OK if successful.

Available

Gets number of bytes currently available in the stream.

Syntax:

nsresult Available(PRUint32 *_retval)

Parameters:

None.
Creating XPCOM Components

XPCOM I/O
Returns:

The number of bytes.

Read

Reads data from the stream.

Syntax:

nsresult Read(char * aBuf, PRUint32 aCount, PRUint32
*_retval)

Parameters:

aBuf: The buffer into which the data is to be read.

aCount: The maximum number of bytes to be read.

Returns:

The number of bytes read. Returns 0 if end of file has been reached.

Throws NS_BASE_STREAM_WOULD_BLOCK if reading from the input stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

ReadSegments

Low-level read method that has access to the stream’s underlying buffer. The writer
function may be called multiple times for segmented buffers.

Syntax:

nsresult ReadSegments(nsWriteSegmentFun aWriter, void *
aClosure, PRUint32 aCount, PRUint32 *_retval)

Parameters:

aWriter: The "consumer" of the data to be read. The type is described below.

aClosure: Opaque parameter passed to writer.

aCount: The maximum number of bytes to be read.
Creating XPCOM Components 241

Appendix B: XPCOM API Reference

242
typedef NS_CALLBACK(nsWriteSegmentFun)(nsIInputStream
*aInStream, void *aClosure, const char *aFromSegment,
PRUint32 aToOffset, PRUint32 aCount, PRUint32
*aWriteCount);

aInStream: The stream being read.

aClosure: Opaque parameter passed to ReadSegments.

aFromSegment: A pointer to memory owned by the input stream.

aToOffset: The amount already read (since ReadSegments was called).

aCount: The length of fromSegment.

aWriteCount: The number of bytes read.

Note: Implementers should return the following: NS_OK and (*aWriteCount >
0) if consumed some data; NS_BASE_STREAM_WOULD_BLOCK if not interested in
consuming any data; <other-error> on failure. Errors are passed to the caller of
ReadSegments, unless aToOffset is greater than zero.

Returning NS_OK and (*aWriteCount = 0) has undefined behavior.

Returns:

The number of bytes read. Returns 0 if end of file has been reached.

Throws NS_BASE_STREAM_WOULD_BLOCK if reading from the input stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

Note: This method may be unimplemented if a stream has no underlying buffer
(e.g., socket input stream).

IsNonBlocking

Returns TRUE if stream is non-blocking.
Creating XPCOM Components

XPCOM I/O
Syntax:

nsresult IsNonBlocking(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if stream is non-blocking.

FALSE otherwise.

nsILocalFile

This interface adds methods to nsIFile that are particular to a file that is
accessible via the local file system. It follows the same string conventions as
nsIFile.

Methods:

• InitWithPath

• InitWithNativePath

• InitWithFile

• OpenNSPRFileDesc

• OpenANSIFileDesc

• Load

• appendRelativePath

• appendRelativeNativePath

• Reveal

• Launch

• GetRelativeDescriptor

• SetRelativeDescriptor

• FollowingLinks

• GetDiskSpaceAvailable
Creating XPCOM Components 243

Appendix B: XPCOM API Reference

244
InitWithPath

InitWithNativePath

Initializes the nsILocalFile object. Any internal state information will be reset.

Note: This function has a known bug on the macintosh and other operating systems
which do not represent file locations as paths. If you do use this function, be very
aware of this problem.

Syntax:

nsresult InitWithPath(const nsAString & filePath)

nsresult InitWithNativePath(const nsACString &
filePath)

Parameters:

filePath: A string which specifies a full file path to a location. Relative paths
will be treated as an error (NS_ERROR_FILE_UNRECOGNIZED_PATH). For
InitWithNativePath, filePath must be in the native filesystem charset.

Result:

NS_OK if successful.

InitWithFile

Initializes this object with another file.

Syntax:

nsresult InitWithFile(nsILocalFile *aFile)

Parameters:

aFile: The file to which this becomes equivalent.

Result:

NS_OK if successful.
Creating XPCOM Components

XPCOM I/O
OpenNSPRFileDesc

Opens the NSPR file descriptor.

Syntax:

nsresult OpenNSPRFileDesc(PRInt32 flags, PRInt32 mode,
PRFileDesc * *_retval)

Parameters:

flags: The appropriate flags.

mode: The appropriate mode.

Returns:

A pointer to the descriptor.

See NSPR’s documentation regarding PRFileDesc at http://www.mozilla.org/
projects/nspr.

OpenANSIFileDesc

Opens the ANSI file descriptor.

Syntax:

nsresult OpenANSIFileDesc(const char *mode, FILE *
*_retval)

Parameters:

mode: The appropriate mode.

Returns:

A pointer to the file.

Load

Loads this file (a library).

Syntax:
Creating XPCOM Components 245

Appendix B: XPCOM API Reference

246
nsresult Load(PRLibrary * *_retval)

Parameters:

None.

Returns:

A pointer to the library.

See NSPR’s documentation regarding PRLibrary at http://www/mozilla.org/
projects/nspr.

appendRelativePath

appendRelativeNativePath

Appends a relative path to the current path of the nsILocalFile object.

Syntax:

nsresult AppendRelativePath(const nsAString &
relativeFilePath)

nsresult AppendRelativeNativePath(const nsACString &
relativeFilePath)

Parameters:

relativeFilePath: The relativeFilePath. It is a native relative path. For
security reasons, it cannot contain .. or start with a directory separator. For the
appendRelativeNativePath method, the relativeFilePath must be in the
native filesystem charset.

Result:

NS_OK if successful.
Creating XPCOM Components

XPCOM I/O
Reveal

Asks the operating system to open the folder which contains this file or folder. This
routine only works on platforms which support the ability to open a folder.

Syntax:

nsresult Reveal(void)

Parameters:

None.

Result:

NS_OK if successful.

Launch

Asks the operating system to attempt to open the file. This really just simulates
"double clicking" the file on your platform and thus only works on platforms which
support this functionality.

Syntax:

nsresult Launch(void)

Parameters:

None.

Result:

NS_OK if successful.

GetRelativeDescriptor

Gets a relative file path in an opaque, XP format. It is therefore not a native path.

Note: The character set of the string returned from this function is undefined.

DO NOT TRY TO INTERPRET IT AS HUMAN READABLE TEXT!

Syntax:
Creating XPCOM Components 247

Appendix B: XPCOM API Reference

248
nsresult GetPersistentDescriptor(nsACString &
aPersistentDescriptor)

Parameters:

fromFile: The file from which the descriptor is relative.

Returns:

The descriptor.

SetRelativeDescriptor

Initializes the file to the location relative to fromFile using a string returned by
getRelativeDescriptor.

Syntax:

nsresult SetPersistentDescriptor(const nsACString &
aPersistentDescriptor)

Parameters:

fromFile: The file to which the descriptor is relative.

relativeDesc: The relative descriptor obtained from getRelativeDescriptor.

Result:

NS_OK if successful.

FollowingLinks

Getter and Setter for FollowingLinks attribute. Gets and sets whether the
nsLocalFile will auto resolve symbolic links. By default, this value will be false
on all non unix systems. On Unix, this attribute is effectively a no-op.

Be aware that changing this attribute from true to false after the nsILocalFile has
been initialized may lead to errors. This could happen if there were resolved
symlink in the initialized path. For example if you had /a/b/c where |b| was a
symlink, and you change this attribute to false, the next usage would mostlikely
fail.

Syntax:
Creating XPCOM Components

XPCOM I/O
nsresult GetFollowLinks(PRBool *aFollowLinks)

nsresult SetFollowLinks(PRBool aFollowLinks)

Result:

NS_OK if successful.

GetDiskSpaceAvailable

Return the available disk space on the volume or drive reference by the
nsILocalFile.

Syntax:

nsresult GetDiskSpaceAvailable(PRInt64
*aDiskSpaceAvailable)

Result:

NS_OK if successful.

nsIOutputStream

This interface manages writing data to an output stream. It is partially scriptable.

Methods:

• Close

• Flush

• Write

• WriteFrom

• WriteSegments

• IsNonBlocking

Close

Closes the stream. Forces the output stream to flush any buffered data.
Creating XPCOM Components 249

Appendix B: XPCOM API Reference

250
Syntax:

nsresult Close(void)

Parameters:

None.

Result:

NS_OK if successful.

Throws NS_BASE_STREAM_WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Flush

Flushes the stream.

Syntax:

nsresult Flush(void)

Parameters:

None.

Result:

NS_OK if successful.

Throws NS_BASE_STREAM_WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only).

Write

Writes data into the stream from an input stream.

Syntax:

nsresult Write(const char *aBuf, PRUint32 aCount,
PRUint32 *_retval)
Creating XPCOM Components

XPCOM I/O
Parameters:

aBuf: The buffer containing the data to be written.

aCount: The maximum number of bytes to be written.

Returns:

The number of bytes written.

Throws NS_BASE_STREAM_WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Throws <other-error> on failure.

WriteFrom

Writes data into the stream from an input stream.

Syntax:

nsresult WriteSegments(nsReadSegmentFun aReader, void *
aClosure, PRUint32 aCount, PRUint32 *_retval)

Parameters:

aFromStream:The stream containing the data to be written.

aCount: The maximum number of bytes to be written.

Returns:

The number of bytes written.

Throws NS_BASE_STREAM_WOULD_BLOCK if unable to flush without blocking
the calling thread (non-blocking mode only)

Throws <other-error> on failure

Note: This method is defined by this interface in order to allow the output stream to
efficiently copy the data from the input stream into its internal buffer (if any). If this
method was provided as an external facility, a separate char* buffer would need to
be used in order to call the output stream’s other Write method.
Creating XPCOM Components 251

Appendix B: XPCOM API Reference

252
WriteSegments

Low-level write method that has access to the stream’s underlying buffer. The
reader function may be called multiple times for segmented buffers.

Syntax:

nsresult WriteSegments(nsReadSegmentFun aReader, void *
aClosure, PRUint32 aCount, PRUint32 *_retval)

Parameters:

aReader: The "provider" of the data to be written. The type is described
below.

aClosure: Opaque parameter passed to reader.

aCount: The maximum number of bytes to be written.

typedef NS_CALLBACK(nsReadSegmentFun)(nsIOutputStream
*aOutStream, void *aClosure, char *aToSegment, PRUint32
aFromOffset, PRUint32 aCount, PRUint32 *aReadCount)

aOutStream: The stream being written to.

aClosure: Opaque parameter passed to WriteSegments.

aToSegment: A pointer to memory owned by the output stream.

aFromOffset: The amount already written (since WriteSegments was called).

aCount: The length of toSegment.

aReadCount: The number of bytes written.

Note: Implementers should return the following: NS_OK and (*aReadCount > 0)
if successfully provided some data; NS_OK and (*aReadCount = 0); or
NS_BASE_STREAM_WOULD_BLOCK if not interested in providing any data;<other-
error> on failure

Errors are passed to the caller of WriteSegments, unless aFromOffset is greater
than zero.
Creating XPCOM Components

XPCOM Startup/Shutdown
Returns:

The number of bytes written.

Throws NS_BASE_STREAM_WOULD_BLOCK if writing to the output stream
would block the calling thread (non-blocking mode only).

Throws <other-error> on failure.

Note: this function may be unimplemented if a stream has no underlying buffer
(e.g., socket output stream).

IsNonBlocking

Returns TRUE if stream is non-blocking.

Syntax:

nsresult IsNonBlocking(PRBool *_retval)

Parameters:

None.

Returns:

TRUE if stream is non-blocking.

FALSE otherwise.

XPCOM Startup/Shutdown

These C++ functions serve to initialize and terminate XPCOM. (In an embedding
situation, this is usually taken care of by embedding initialization.) Also included
are a number of global functions that provide access to the main XPCOM
components.

Note: These are C++ functions only, and are therefore not scriptable.

• NS_InitXPCOM2

• NS_ShutdownXPCOM

• NS_GetServiceManager
Creating XPCOM Components 253

Appendix B: XPCOM API Reference

254
• NS_GetComponentManager

• NS_GetComponentRegistrar

• NS_GetMemoryManager

• NS_NewLocalFile

• NS_NewNativeLocalFile

NS_InitXPCOM2

Initializes XPCOM. This function must be called by the application before using
XPCOM. Components should not call this function. The one exception is that you
may call NS_NewLocalFile to create an nsIFile object to supply as the bin
directory path in this call.

Syntax:

nsresult NS_InitXPCOM2(nsIServiceManager**
result,nsIFile*
binDirectory,nsIDirectoryServiceProvider*
appFileLocationProvider)

Parameters:

result: The service manager. You may pass null.

binDirectory: The directory containing the component registry and
runtime libraries. You can use nsnull to use the working directory.

appFileLocProvider: The object to be used by Gecko that specifies to
Gecko where to find profiles, the component registry preferences and so on.
You can use nsnull for the default behaviour.

nsresult

NS_OK if successful.

Other error codes indicate failure during initialization.

See also: see NS_NewLocalFile, nsILocalFile, and
nsIDirectoryServiceProvider.
Creating XPCOM Components

XPCOM Startup/Shutdown
NS_ShutdownXPCOM

Shuts down XPCOM. This function must be called by the application when you are
finished using XPCOM.

Syntax:

nsresult NS_ShutdownXPCOM(nsIServiceManager* servMgr)

Parameters:

servMgr: The service manager which was returned by NS_InitXPCOM2. This
will release the service manager. You may pass null.

Result:

NS_OK if successful.

Other error codes indicate failure.

NS_GetServiceManager

Accesses the Service Manager.

Syntax:

nsresult NS_GetServiceManager(nsIServiceManager**
result)

Parameters:

result: An interface pointer to the service manager.

Result:

NS_OK if successful.

NS_GetComponentManager

Accesses the Component Manager.

Syntax:
Creating XPCOM Components 255

Appendix B: XPCOM API Reference

256
NS_COM nsresult
NS_GetComponentManager(nsIComponentManager** result)

Parameters:

result: An interface pointer to the component manager.

Result:

NS_OK if successful.

NS_GetComponentRegistrar

Accesses the Component Registration Manager.

Syntax:

NS_COM nsresult
NS_GetComponentRegistrar(nsIComponentRegistrar**
result)

Parameters:

result: An interface pointer to the component registration manager.

Result:

NS_OK if successful.

NS_GetMemoryManager

Accesses the memory manager.

Syntax:

NS_COM nsresult NS_GetMemoryManager(nsIMemory** result)

Parameters:

result: An interface pointer to the memory manager

Result:

NS_OK if successful.
Creating XPCOM Components

XPCOM Startup/Shutdown
NS_NewLocalFile

NS_NewNativeLocalFile

Creates a new instanstance of an object implementating the nsIFile and
nsILocalFile interfaces. (On the Macintosh platform, this object also implments
the nsILocalFileMac interface). If using the native form of this call, path must
be in the native filesystem charset.

Syntax:

nsresult

NS_NewLocalFile(const nsAString &path,

 PRBool followLinks,

 nsILocalFile* *result);

nsresult

NS_NewNativeLocalFile(const nsACString &path,

 PRBool followLinks,

 nsILocalFile* *result);

Parameters:

path: A string which specifies a full file path to a location. Relative paths will
be treated as an error (NS_ERROR_FILE_UNRECOGNIZED_PATH). For
initWithNativePath, the filePath must be in the native filesystem
charset.

followLinks: Sets whether the nsLocalFile will auto resolve symbolic
links. On Unix, this parameter is ignored

result: [out] An interface pointer to the new nsILocalFile.

Result:

NS_OK if successful.
Creating XPCOM Components 257

Appendix B: XPCOM API Reference

258
 Creating XPCOM Components

Appendix C: Resources
This last section of the book provides a list of resources referred to in the tutorial
and other links that may be useful to the Gecko developer. The resources are
divided into the following categories:

• WebLock Resources

• Gecko Resources

• XPCOM Resources

• General Development Resources

WebLock Resources

• WebLock installer and information: http://www.brownhen.com/weblock

• The SDK download:

Linux: http://ftp.mozilla.org/pub/mozilla/releases/mozilla1.4a/gecko-sdk-i686-
pc-linux-gnu-1.4a.tar.gz

Windows: http://ftp.mozilla.org/pub/mozilla/releases/mozilla1.4a/gecko-
sdkwin32-1.4a.zip
Creating XPCOM Components 259

Appendix C: Resources

260
• Other Mozilla downloads: http://ftp.mozilla.org/pub/mozilla/releases/.

Gecko Resources

• Guide to the Mozilla string classes: www.mozilla.org/projects/xpcom/string-
guide.html

• The Gecko networking library (“necko”): www.mozilla.org/projects/netlib

• The Netscape Portable Runtime Environment: www.mozilla.org/projects/nspr

• Embedding Mozilla: www.mozilla.org/projects/embedding

• A list of module owners: www.mozilla.org/owners.html

• XPInstall: www.mozilla.org/projects/xpinstall

• XUL: www.mozilla.org/projects/xul

XPCOM Resources

• The XPCOM project page: www.mozilla.org/projects/xpcom

• XULPlanet’s online XPCOM reference: http://www.xulplanet.com/references/
xpcomref/

• Information on XPConnect and scriptable components: http://www.mozilla.org/
scriptable

• The Smart Pointer Guide: http://www.mozilla.org/projects/xpcom/nsCOMPtr/.

• XPIDL Reference: http://www.mozilla.org/scriptable/xpidl/

•

Creating XPCOM Components

General Development Resources
General Development Resources

• The World Wide Web Consoritum: www.w3.org

• URL specification at the W3: www.w3.org/TR/REC-html40/intro/intro.html

• Make: http://www.gnu.org/manual/make/
Creating XPCOM Components 261

Appendix C: Resources

262
 Creating XPCOM Components

Index

A
AddSite 121
archives 158
autoregistration 45

B
base class 16
binary interoperability 31
building

copying interfaces into your build environment 134

C
Chrome Registry, the 158
CID 18
client code 147
Component examples

Cookie Manager 28
component loader 46
Component Manager 47
component manifest 42
Component object 37
Component Registration 55
Component Viewer, the 34
component-based programming 11
Components 9

Component Manager 47
finding 34
packaging 146
parts 47
Registration 55
scriptable 37
the Component Viewer 34
using from JavaScript 37
WebLock 33

components 48
components and JavaScript 37
components directory 41
compreg.dat 42
constants 58
Contract 19
contract 11
Cookie Manager 28
Creating XPCOM Components 263

264
Copying Interfaces into Your Build Environment 134
CORBA 21
CreateInstance 66
Creating an Instance of Your Component 65
Cross Platform Component Object Module 8

D
dialog widget 149
Directory Service, the 112
Distributing Your Component 162
DLL

Windows DLLs 39
DSO 39

E
encapsulate 11
error code macros 25
error codes 25
Examples

Cookie Manager 28
exceptions 17

F
Factories 20
factories 48
factory design pattern 20
factory macros 79
file interface 61
File Interfaces 110
file paths 115
files

remote files 111
finding components 34
finding components with the Component Viewer 34
framework 8
frozen interfaces 34, 49

using 131

G
Gecko 8
Gecko Run-time Environment 41
Gecko UI 149
GetNext 125
GetSites 126
glue code 49
Glue Library, the 49
GRE 41
Creating XPCOM Components

H
HasMoreElements 126

I
identifiers 18
IID 17
implementation 8
Implementing the nsIContentPolicy Interface 135
includes 58
Inheritance 16
initialization 41
initialize 41
instances and services 38
instantiate 23
interface 8
interface definition language (IDL) 21
interface pointers 14
Interfaces 10
interfaces

frozen 34
public 30

IRC 61
irc.mozilla.org 61
iWebLock 121

AddSite 121
GetNext 125
GetSites 126
HasMoreElements 126
lock 121
RemoveSite 122
SetSites 124

iWeblock 121

J
JAR files 158
JavaScript 22, 29, 148
JavaScript component loaders 46

L
LXR 34

M
macros 76

error codes 25
factory macros 79
module implementation macros 77
NS_IMIPL_NSGETMODULE 77
status codes 25
variable mappings 25
Creating XPCOM Components 265

266
malloc 122
manifests 42
Microsoft COM 8
Modular Code 9
module 9
modules 48
MOZILLA 58
Mozilla chrome registry 158
Mozilla user interface 145

N
native languages 46
Netscape 9
Netscape Portable Runtime Library, the 116
new constructor and factories 20
notifications 136
NS 45
NS_GetComponentManager 255
NS_GetComponentRegistrar 256
NS_GetMemoryManager 256
NS_GetServiceManager 255
NS_IMPL_NSGETMODULE 77
NS_InitXPCOM2 254
NS_ShutdownXPCOM 255
nsACString 50
nsAString 50
nsComponentManagerObsolete 58
nsComponentManagerUtils 58
nsEmbedCString 50
nsEmbedString 50
NSGetModule 40
nsIClassInfo 202
nsIComponentManager 184
nsIComponentRegistrar 44, 192
nsIContentPolicy 135
nsIDirectoryService 112, 115, 223
nsIDirectoryServiceProvider 221
nsIDirectoryServiceProvider2 222
nsIFactory 20, 59, 188
nsIFile 61, 115, 225
nsIID 18, 19, 60
nsIInputStream 240
nsIInterfaceRequestor 178
nsIIOService 140
nsILocalFile 243
nsIMemory 180
nsIModule 40, 59, 189
nsIObserver 210
nsIObserverService 211
Creating XPCOM Components

nsIOutputStream 249
nsIProgrammingLanguage 183
nsIProperties 115
nsIServiceManager 63, 200
nsISimpleEnumerator 218
nsISupports 14, 176
nsISupportsPrimitives 124
nsIURI 140
nsIWeakReference 179
nsMemory 122
NSPR 116
nsWebBrowserFind 32

O
Object Interface Discovery 16
objects

reference counting 13
override 16
owning reference 13

P
package 146
paths

modifying paths 115
nsIFile 115

pointers 14
interface pointers 14

processing data 119
Programming by Contract 11
public 30
public interfaces versus private interfaces 30
Python 22

Q
QueryInterface 16

R
RDF/XML 158
receiving notifications 136
Reference Counting 24
reference counting 13
RegisterFactoryLocation 59, 66
RegisterSelf 64
Registration 44

alternatives 55
autoregistration 45
Components 55
CreateInstance 66
RegisterSelf 66
Creating XPCOM Components 267

268
registration methods 44
regxpcom 44, 55
Remote Files and nsIFile 111
RemoveSite 122
RTTI 17

S
scriptability 37
service 23
Services

versus regular instances 38
services and singleton objects 23
Services in XPCOM 23
Services Versus Regular Instances 38
SetSites 124
shared libraries

DLL 39
DSO 39

shared library files 41
shutdown observation 46
Shutdown Process, the 45
singleton 21
singleton objects and services 23
singletons 38
software development 8
status codes 25
String classes 50
string classes

nsACString 50
nsAString 50
nsEmbedCString 50
nsEmbedString 50

strings 50
subclass 16

T
trigger installation 158
type library files 43
type library manifest 42, 43

U
UI 145
uniform resource locators 138
universal unique identifiers 60
Unix 39
unlock 121
URI Caching 140
URL Checking 120
URLs 138
Creating XPCOM Components

user interface 54, 145
Using Frozen Interfaces 131
UUID 17
UUIDs 60

V
Variables 25
virtual class 12

W
WebBrowserFind 32
WebLock 27, 120

distributing 162
installing 162
Interfaces 135

Weblock 134
weblock 146
WebLock Component, the 33
WebLock data 139
WebLock Interfaces 135
WebLock source 56
weblock.jar 158
weblock.txt 119
webLockOverlay 146
white list 119
white list data 139

X
XML-based User Interface Language (XUL) 149
XPCOM 8, 23, 41

autoregistration 45
client code 147
Component Manager 47
constants 58
error codes 25
errors 25
glue 49
identifiers 18, 60
includes 58
Macros 76
manifests 42
notifications 136
registration 44
shutdown 46
status codes 25
variable mappings 25

XPCOM Component Viewer 34
XPCOM Components 184
XPCOM Data Structures 206
Creating XPCOM Components 269

270
XPCOM glue 40
XPCOM I/O 221
XPCOM Identifier Classes 19
XPCOM Identifiers 18
XPCOM Registry Manifests 42
XPCOM Startup/Shutdown 253
XPCOM String Classes 50
XPCOM Types 24
XPConnect 29, 30, 37
XPConnect objects 37
xpcshell 30
XPIDL 21
XPInstall APIs 44
xpti.dat 43
XUL 29, 148, 149
XUL widgets 149
Creating XPCOM Components

	Creating XPCOM Components
	Preface
	Who Should Read This Book
	Organization of the Tutorial
	Following Along with the Examples
	Conventions
	Acknowledgements

	CHAPTER 1 What Is XPCOM?
	The XPCOM Solution
	Gecko
	Components
	Interfaces
	Interfaces and Encapsulation
	The nsISupports Base Interface

	XPCOM Identifiers
	CID
	Contract ID

	Factories
	XPIDL and Type Libraries

	XPCOM Services
	XPCOM Types
	Method Types
	Reference Counting
	Status Codes
	Variable mappings
	Common XPCOM Error Codes

	CHAPTER 2 Using XPCOM Components
	Component Examples
	Cookie Manager
	The WebBrowserFind Component
	The WebLock Component

	Component Use in Mozilla
	Finding Mozilla Components
	Using XPCOM Components in Your C++
	XPConnect: Using XPCOM Components From Script

	CHAPTER 3 Component Internals
	Creating Components in C++
	XPCOM Initialization
	XPCOM Registry Manifests
	Registration Methods in XPCOM
	Autoregistration
	The Shutdown Process
	Three parts of a XPCOM Component Library

	XPCOM Glue
	The Glue Library
	XPCOM String Classes

	CHAPTER 4 Tutorial : Creating the Component Code
	What We’ll Be Working On
	Component Registration
	The regxpcom Program
	Registration Alternatives

	Overview of the WebLock Module Source
	Digging In: Required Includes and Constants
	Identifiers in XPCOM
	Coding for the Registration Process
	The Registration Methods
	Creating an Instance of Your Component

	webLock1.cpp

	CHAPTER 5 Tutorial: Using XPCOM Utilities To Make Things Easier
	XPCOM Macros
	Generic XPCOM Module Macros
	Common Implementation Macros
	Declaration Macros

	weblock2.cpp
	String Classes in XPCOM
	Using Strings
	nsEmbedString and nsEmbedCString

	Smart Pointers

	CHAPTER 6 Tutorial: Starting WebLock
	Getting Called at Startup
	Registering for Notifications
	Getting Access to the Category Manager

	Providing Access to WebLock
	Creating the WebLock Programming Interface
	Defining the Weblock Interface in XPIDL
	The XPIDL Syntax
	Scriptable Interfaces
	Subclassing nsISupports
	The Web Locking Interface

	Implementing WebLock
	Declaration Macros
	Representing Return Values in XPCOM
	XPIDL Code Generation
	Getting the WebLock Service from a Client
	Implementing the iWebLock Interface
	The Directory Service
	Modifying Paths with nsIFile
	Manipulating Files with nsIFile
	Using nsILocalFile for Reading Data
	Processing the White List Data

	iWebLock Method by Method
	Lock and Unlock
	AddSite
	RemoveSite
	SetSites
	GetNext
	GetSites
	HasMoreElements

	CHAPTER 7 Tutorial: Finishing the Component
	Using Frozen Interfaces
	Copying Interfaces into Your Build Environment
	Implementing the nsIContentPolicy Interface
	Receiving Notifications

	Implementing the nsIContentPolicy
	Uniform Resource Locators
	Checking the White List
	Creating nsIURI Objects

	CHAPTER 8 Tutorial: Building the WebLock UI
	User Interface Package List
	Client Code Overview
	XUL
	The XUL Document
	The Locking UI
	Site Adding UI
	weblock.xul

	Overlaying New User Interface Into Mozilla
	webLockOverlay.xul

	Other Resources
	weblock.css
	Image Resources

	CHAPTER 9 Tutorial: Packaging WebLock
	Component Installation Overview
	Archiving Resources
	The WebLock Installation Script
	The WebLock Trigger Script
	Distributing Your Component

	Appendix A: Setting up the Gecko SDK
	Downloading and Setting the SDK
	Building a Microsoft Visual C++ Project
	Creating a New Project
	Adding the Gecko SDK to the Project Settings

	A Makefile for Unix

	Appendix B: XPCOM API Reference
	XPCOM Core
	nsISupports
	nsIInterfaceRequestor
	nsIWeakReference
	nsIMemory
	nsIProgrammingLanguage

	XPCOM Components
	nsIComponentManager
	nsIFactory
	nsIModule
	nsIComponentRegistrar
	nsIServiceManager
	nsIClassInfo

	XPCOM Data Structures
	nsICategoryManager
	nsIObserver
	nsIObserverService
	nsIProperties
	nsISimpleEnumerator
	nsISupportsPrimitives

	XPCOM I/O
	nsIDirectoryServiceProvider
	nsIDirectoryServiceProvider2
	nsIDirectoryService
	nsIFile
	nsIInputStream
	nsILocalFile
	nsIOutputStream

	XPCOM Startup/Shutdown

	Appendix C: Resources
	WebLock Resources
	Gecko Resources
	XPCOM Resources
	General Development Resources

	Index

