
DNS for Rocket Scientists

This Open Source Guide is about DNS and (mostly) BIND 9.x on Linux (REDHAT
Versions 6.x and 7.x) and the BSD's (FreeBSD, OpenBSD and NetBSD). It is meant
for newbies, Rocket Scientist wannabees and anyone in between.

This Guide was born out of our first attempts a number of years ago at trying to
install a much needed DNS service on an early Redhat Linux system. We completed
the DNS 'rite of passage' and found it a pretty unedifying and pointless experience.

Health Warning: This is still a work-in-progress. If you have expertise in something
- contribute some text. If you find errors don't grumble - tell us. Look at our to do
list and if you want to contribute something please do so. And for all that hard work
we promise only a warm sense of well-being and an acknowledgment of your work in
the licence.

Section 1 Overview

What's new in Guide version 0.1.27

1. Boilerplate and Terminology

1.1 Objectives and Scope
1.2 How to read this Guide
1.3 Terminology and Conventions used
1.4 Acknowledgements
1.5 Copyright and License

2. DNS - Overview

2.1 A brief History of Name Servers
2.2 DNS Concepts & Implementation

2.2.1 DNS Overview
2.2.2 Domains and Delegation
2.2.3 DNS Organization and Structure
2.2.4 DNS System Components
2.2.5 Zones and Zone Files
2.2.6 DNS Queries

2.2.6.1 Recursive Queries
2.2.6.2 Iterative Queries
2.2.6.3 Inverse Queries

2.2.7 Zone Updates
2.2.7.1 Full Zone Transfer (AXFR)
2.2.7.2 Incremental Zone Transfer (IXFR)
2.2.7.3 Notify (NOTIFY)
2.2.7.4 Dynamic Zone Updates
2.2.7.5 Alternative Dynamic DNS Approaches

http://www.zytrax.com/books/dns/todo.html
http://www.zytrax.com/books/dns/todo.html
http://www.zytrax.com/books/dns/changelog.html
http://www.zytrax.com/books/dns/ch1/
http://www.zytrax.com/books/dns/ch1/index.html#objectives
http://www.zytrax.com/books/dns/ch1/index.html#how
http://www.zytrax.com/books/dns/ch1/index.html#terminology
http://www.zytrax.com/books/dns/ch1/index.html#ack
http://www.zytrax.com/books/dns/ch1/index.html#license
http://www.zytrax.com/books/dns/ch1/index.html#license
http://www.zytrax.com/books/dns/ch2/index.html#history
http://www.zytrax.com/books/dns/ch2/index.html#concepts
http://www.zytrax.com/books/dns/ch2/index.html#overview
http://www.zytrax.com/books/dns/ch2/index.html#domains
http://www.zytrax.com/books/dns/ch2/index.html#structure
http://www.zytrax.com/books/dns/ch2/index.html#components
http://www.zytrax.com/books/dns/ch2/index.html#zones
http://www.zytrax.com/books/dns/ch2/index.html#queries
http://www.zytrax.com/books/dns/ch2/index.html#recursive
http://www.zytrax.com/books/dns/ch2/index.html#iterative
http://www.zytrax.com/books/dns/ch2/index.html#reverse
http://www.zytrax.com/books/dns/ch2/index.html#update
http://www.zytrax.com/books/dns/ch2/index.html#axfr-update
http://www.zytrax.com/books/dns/ch2/index.html#ixfr-update
http://www.zytrax.com/books/dns/ch2/index.html#notify
http://www.zytrax.com/books/dns/ch2/index.html#dyn-update
http://www.zytrax.com/books/dns/ch2/index.html#dyn-alt

2.3 DNS Security Overview
2.3.1 Security Threats
2.3.2 Security Types
2.3.3 Local Security
2.3.4 Server-Server (TSIG Transactions)
2.3.5 Server-Client (DNSSEC)

3. DNS Reverse Mapping

3.1 Reverse Mapping Overview
3.2 IN-ADDR.ARPA Files
3.3 Reverse Map Delegation

4. DNS Types

4.1 Master (a.k.a. Primary) DNS Server
4.2 Slave (Secondary) DNS Server
4.3 Caching (a.k.a. hint) DNS Server
4.4 Forwarding (a.k.a. Proxy, Client, Remote) DNS Server
4.5 Stealth (a.k.a. DMZ or Split) DNS Server
4.6 Authoritative Only DNS Server

Section 2 - Get Something Running

5. BIND (Berkeley Internet Name Daemon)

One day real soon now ™

6. DNS Sample Configurations

6.1 Sample Configuration Overview

6.1.1 Zone File Naming Convention

6.2 Master (Primary) DNS
6.3 Slave (Secondary) DNS
6.4 Caching only DNS
6.5 Forwarding (a.k.a. Proxy, Client, Remote) DNS
6.6 Stealth (a.k.a. Split or DMZ) DNS
6.7 Authoritative Only DNS
6.8 Views based Authoritative Only DNS

Section 3 Mind Numbing Details

7. BIND named.conf Parameters

http://www.zytrax.com/books/dns/ch2/index.html#security
http://www.zytrax.com/books/dns/ch2/index.html#security-threats
http://www.zytrax.com/books/dns/ch2/index.html#security-types
http://www.zytrax.com/books/dns/ch2/index.html#security-local
http://www.zytrax.com/books/dns/ch2/index.html#security-servers
http://www.zytrax.com/books/dns/ch2/index.html#security-clients
http://www.zytrax.com/books/dns/ch3/
http://www.zytrax.com/books/dns/ch3/index.html#overview
http://www.zytrax.com/books/dns/ch3/index.html#arpa
http://www.zytrax.com/books/dns/ch3/index.html#reverse
http://www.zytrax.com/books/dns/ch4/
http://www.zytrax.com/books/dns/ch4/index.html#master
http://www.zytrax.com/books/dns/ch4/index.html#slave
http://www.zytrax.com/books/dns/ch4/index.html#cache
http://www.zytrax.com/books/dns/ch4/index.html#forwarding
http://www.zytrax.com/books/dns/ch4/index.html#stealth
http://www.zytrax.com/books/dns/ch4/index.html#authoritative
http://www.zytrax.com/books/dns/ch5/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch6/index.html#overview
http://www.zytrax.com/books/dns/ch6/index.html#convention
http://www.zytrax.com/books/dns/ch6/index.html#master
http://www.zytrax.com/books/dns/ch6/index.html#slave
http://www.zytrax.com/books/dns/ch6/index.html#caching
http://www.zytrax.com/books/dns/ch6/index.html#forwarding
http://www.zytrax.com/books/dns/ch6/index.html#stealth
http://www.zytrax.com/books/dns/ch6/index.html#authoritative
http://www.zytrax.com/books/dns/ch6/index.html#view
http://www.zytrax.com/books/dns/ch7/

named.conf format, structure and overview
named.conf required zone files

named.conf acl section (statements)
named.conf controls section (statements)
named.conf include section (statements)
named.conf key section (statements)
named.conf logging section (statements)
named.conf options section (statements)
named.conf server section (statements)
named.conf trusted-keys section (statements)
named.conf views section (statements)
named.conf zone section (statements)

8. DNS Resource Records

Zone File Format
DNS Binary Record Formats
List of Record Types
A - IPv4 Address Record
A6 - IPv6 Address Record
CNAME - Host Alias Record
DNAME - Delegate Reverse Name Record
HINFO - System Information Record
KEY - DNSSEC Public Key Record
MX - Mail Exchanger Record
NS - Name Server Record
NXT - DNSSEC Content Record
PTR - Pointer Record
SIG - DNSSEC Signature Record
SOA - Start of Authority Record
SRV - Services Record
TXT - Text Record

Section 4 DNS Operations

Chapter 9 DNS HowTos

HOWTO - DNS Round Robin or Load Balancing
HOWTO - support http://domain.com
HOWTO - Configure Sub-domains (a.k.a. subzones)
HOWTO - Delegate a sub-domain (a.k.a. subzone)
HOWTO - Configure mail fail-over
HOWTO - Delegate Reverse Subnet Maps
HOWTO - Define an SPF record

Chapter 10 Diagnostics and Tools

http://www.zytrax.com/books/dns/ch7/index.html#overview
http://www.zytrax.com/books/dns/ch7/index.html#required
http://www.zytrax.com/books/dns/ch7/acl.html
http://www.zytrax.com/books/dns/ch7/controls.html
http://www.zytrax.com/books/dns/ch7/include.html
http://www.zytrax.com/books/dns/ch7/key.html
http://www.zytrax.com/books/dns/ch7/logging.html
http://www.zytrax.com/books/dns/ch7/options.html
http://www.zytrax.com/books/dns/ch7/server.html
http://www.zytrax.com/books/dns/ch7/trusted-keys.html
http://www.zytrax.com/books/dns/ch7/view.html
http://www.zytrax.com/books/dns/ch7/zone.html
http://www.zytrax.com/books/dns/ch8/
http://www.zytrax.com/books/dns/ch8/index.html#zone
http://www.zytrax.com/books/dns/ch8/index.html#intro
http://www.zytrax.com/books/dns/ch8/index.html#types
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/a6.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/ch8/dname.html
http://www.zytrax.com/books/dns/ch8/hinfo.html
http://www.zytrax.com/books/dns/ch8/key.html
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch8/nxt.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/sig.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/ch8/txt.html
http://www.zytrax.com/books/dns/ch9/
http://www.zytrax.com/books/dns/ch9/rr.html
http://www.zytrax.com/books/dns/ch9/suppress.html
http://www.zytrax.com/books/dns/ch9/subdomain.html
http://www.zytrax.com/books/dns/ch9/delegate.html
http://www.zytrax.com/books/dns/ch9/mail.html
http://www.zytrax.com/books/dns/ch9/reverse.html
http://www.zytrax.com/books/dns/ch9/spf.html
http://www.zytrax.com/books/dns/ch10/

10.1 Introduction
10.2 nslookup
10.3 dig

Chapter 11 Trouble and Error Messages

Work in progress

Chapter 12 BIND APIs

Work in progress

Section 5 DNS Security

Chapter 13 DNS Security

13.1 DNS Security Overview
13.1.1 Security Threats
13.1.2 Security Types
13.1.3 Local Security
13.1.4 Server-Server (TSIG Transactions)
13.1.5 Server-Client (DNSSEC)

Section 6 DNS Bits and Bytes

Chapter 15 DNS Message Formats

15.1 Overview Generic Format
15.2 The Message Header
15.3 The DNS Question
15.4 The DNS Answer
15.5 Domain Authority
15.6 Additional Information

Appendices: Resources

Appendix A: DNS & BIND Notes and Explanations
Appendix B: Domains and Registration
Appendix C: DNS Alternate Software and Resources
Appendix D: DNS and Relevant RFCs

Maintenance Information

To do list - Stuff that still needs to be done.

http://www.zytrax.com/books/dns/ch10/index.html
http://www.zytrax.com/books/dns/ch10/index.html#nslookup
http://www.zytrax.com/books/dns/ch10/index.html#dig
http://www.zytrax.com/books/dns/ch13/index.html#security
http://www.zytrax.com/books/dns/ch13/index.html#security-threats
http://www.zytrax.com/books/dns/ch13/index.html#security-types
http://www.zytrax.com/books/dns/ch13/index.html#security-local
http://www.zytrax.com/books/dns/ch13/index.html#security-servers
http://www.zytrax.com/books/dns/ch13/index.html#security-clients
http://www.zytrax.com/books/dns/ch15/index.html#overview
http://www.zytrax.com/books/dns/ch15/index.html#header
http://www.zytrax.com/books/dns/ch15/index.html#question
http://www.zytrax.com/books/dns/ch15/index.html#answer
http://www.zytrax.com/books/dns/ch15/index.html#authority
http://www.zytrax.com/books/dns/ch15/index.html#additional
http://www.zytrax.com/books/dns/appendices.html
http://www.zytrax.com/books/dns/apa/
http://www.zytrax.com/books/dns/apb.html
http://www.zytrax.com/books/dns/apc/
http://www.zytrax.com/books/dns/apd/
http://www.zytrax.com/books/dns/todo.html

Change log.

2. DNS Concepts

If you already understand what DNS is and does and how it fits into the greater
scheme of things - skip this chapter.

2.1 A brief History of Name Servers
2.2 DNS Concepts & Implementation

2.2.1 DNS Overview
2.2.2 Domains and Delegation
2.2.3 DNS Organization and Structure
2.2.4 DNS System Components
2.2.5 Zones and Zone Files
2.2.6 DNS Queries

2.2.6.1 Recursive Queries
2.2.6.2 Iterative Queries
2.2.6.3 Inverse Queries

2.2.7 Zone Updates
2.2.7.1 Full Zone Transfer (AXFR)
2.2.7.2 Incremental Zone Transfer (IXFR)
2.2.7.3 Notify (NOTIFY)
2.2.7.4 Dynamic Zone Updates
2.2.7.5 Alternative Dynamic DNS Approaches

2.3 DNS Security Overview
2.3.1 Security Threats
2.3.2 Security Types
2.3.3 Local Security
2.3.4 Server-Server (TSIG Transactions)
2.3.5 Server-Client (DNSSEC)

2.1 A brief History of Name Servers

.. or why do we have DNS servers

Without a Name Service there would simply not be a viable Internet. To understand
why we need to look at what DNS does and how and why it evolved.

1. A DNS translates (or maps) the name of a resource to its physical IP
address

2. A DNS can also translate the physical IP address to the name of a resource
by using reverse look-up or mapping.

Big deal.

Remember that the Internet (or any network for that matter) works by allocating
every point (host, server, router, interface etc.) a physical IP address (which may be
locally unique or globally unique).

http://www.zytrax.com/books/dns/changelog.html
http://www.zytrax.com/books/dns/ch2/?pf=yes#history#history
http://www.zytrax.com/books/dns/ch2/?pf=yes#concepts#concepts
http://www.zytrax.com/books/dns/ch2/?pf=yes#overview#overview
http://www.zytrax.com/books/dns/ch2/?pf=yes#domains#domains
http://www.zytrax.com/books/dns/ch2/?pf=yes#structure#structure
http://www.zytrax.com/books/dns/ch2/?pf=yes#components#components
http://www.zytrax.com/books/dns/ch2/?pf=yes#zones#zones
http://www.zytrax.com/books/dns/ch2/?pf=yes#queries#queries
http://www.zytrax.com/books/dns/ch2/?pf=yes#recursive#recursive
http://www.zytrax.com/books/dns/ch2/?pf=yes#iterative#iterative
http://www.zytrax.com/books/dns/ch2/?pf=yes#reverse#reverse
http://www.zytrax.com/books/dns/ch2/?pf=yes#update#update
http://www.zytrax.com/books/dns/ch2/?pf=yes#axfr-update#axfr-update
http://www.zytrax.com/books/dns/ch2/?pf=yes#ixfr-update#ixfr-update
http://www.zytrax.com/books/dns/ch2/?pf=yes#notify#notify
http://www.zytrax.com/books/dns/ch2/?pf=yes#dyn-update#dyn-update
http://www.zytrax.com/books/dns/ch2/?pf=yes#dyn-alt#dyn-alt
http://www.zytrax.com/books/dns/ch2/?pf=yes#security#security
http://www.zytrax.com/books/dns/ch2/?pf=yes#security-threats#security-threats
http://www.zytrax.com/books/dns/ch2/?pf=yes#security-types#security-types
http://www.zytrax.com/books/dns/ch2/?pf=yes#security-local#security-local
http://www.zytrax.com/books/dns/ch2/?pf=yes#security-server#security-server
http://www.zytrax.com/books/dns/ch2/?pf=yes#security-clients#security-clients

Separation of Church and State.....

Without DNS every host (PC) which wanted to access a resource on the network
(Internet), say a simple web page e.g. www.thing.com, would need to know its
physical IP address. With 80 million'ish hosts and 20 million'ish web pages it is an
impossible task - its also pretty impossible with just a handful of hosts and
resources).

To solve this problem the concept of Name Servers was created in the mid 70's to
enable certain attributes (properties) of a named resource to be maintained in a
known location - the Name Server.

With a Name Server present in the network any host only needs to know the
physical address of a Name Server and the name of the resource it wishes to
access. Using this data it can find the address (or any other stored attribute or
property) of the resource by interrogating (querying) the Name Server. Resources
can be added, moved, changed or deleted at a single location - the Name Server. At
a stroke network management was simplified and made more dynamic.

If it's broke....

We now have a new problem with our newly created Name Server concept. If our
Name Server is not working our host cannot access any resource on the network. We
have made the Name Server a critical resource. So we had better have more than
one Name Server in case of failure.

To fix this problem the concept of Primary and Secondary Name Servers (many
systems allow tertiary or more Name Servers) was born. If the Primary Name Server
does not respond a host can use the Secondary (or tertiary etc.).

Man, we got more names than Webster....

As our network grows we start to build up a serious number of Names in our Name
Server (database). This gives rise to three new problems.

1. Finding any entry in the database of names becomes increasingly slow as
we power through many millions of names looking for the one we want.
We need a way to index or organize the names.

2. If every host is accessing our Name Servers the load becomes very high.
Maybe we need a way to spread the load across a number of servers.

3. With many Name (resource) records in our database the management
problem becomes increasingly difficult as everyone tries to update all the
records at the same time. Maybe we need a way to separate (or delegate)
the administration of these Name (resource) records.

Which leads us nicely into the characteristics of the Internet's Domain Name System
(DNS).

http://www.zytrax.com/books/dns/ch2/?pf=yes

2.2 DNS Concepts & Implementation

The Internet's Domain Name Service (DNS) is just a specific implementation of the
Name Server concept optimized for the prevailing conditions on the Internet.

2.2.1 DNS Overview

From our brief history of Name Servers we saw how three needs emerged:

1. The need for a hierarchy of names
2. The need to spread the operational loads on our name servers
3. The need to delegate the administration of our Name servers

The Internet Domain Name System elegantly solves all these problems at the single
stoke of a pen (well actually the whole of RFC 1034 to be precise).

2.2.2 Domains and Delegation

The Domain Name System uses a tree (or hierarchical) name structure. At the top of
the tree is the root followed by the Top Level Domains (TLDs) then the domain-name
and any number of lower levels each separated with a dot.

NOTE: The root of the tree is represented most of the time as a silent dot ('.') but
there are times as we shall see later when it VERY important.

Top Level Domains (TLDs) are split into two types:

1. Generic Top Level Domains (gTLD) .com, .edu, .net, .org, .mil etc.
2. Country Code Top Level Domain (ccTLD) e.g. .us, .ca, .tv , .uk etc.

Country Code TLDs (ccTLDs) use a standard two letter sequence defined by ISO
3166.

Figure 1-1 shows this diagrammatically.

Figure 1-1 Domain Structure and Delegation

What is commonly called a 'Domain Name' is actually a combination of a domain-
name and a TLD and is written from LEFT to RIGHT with the lowest level in the
hierarchy on the left and the highest level on the right.

domain-name.tld e.g. example.com

In the case of the gTLDs e.g. .com, .net etc. the user part of the delegated name -
the name the user registered - is called a Second Level Domain (SLD), it is the
second level in the hierarchy. The user part is frequently simply referred to as the
SLD. So the the Domain Name in the example above can be re-defined to consist of:

sld.tld e.g. example.com

The term Second Level Domain (SLD) is much less useful with ccTLDs where the user
registered part is frequently the Third Level Domain e.g.:

example.co.uk
example.com.br

The term Second Level Domain (SLD) provides technical precision but can be
confusing - unless the precision is required we will continue to use the generic term
Domain Name or simply Domain to the whole name e.g. a Domain Name is
example.com or example.co.uk.

Authority and Delegation

The concepts of Delegation and Authority lie at the core of the domain name
system hierarchy. The Authority for the root domain lies with Internet Corporation
for Assigned Numbers and Names (ICANN). Since 1998 ICANN, a non-profit
organisation, has assumed this responsibility from the US government.

The gTLDs are authoritatively administered by ICANN and delegated to a series of
accredited registrars. The ccTLDs are delegated to the individual countries for
administration purposes. Figure 1.0 above shows how any authority may in turn
delegate to lower levels in the hierarchy, in other words it may delegate anything for
which it is authoritative. Each layer in the hierarchy may delegate the
authoritative control to the next lower level.

In the case of ccTLDs countries like Canada (ccTLD .ca) and the US (ccTLD .us) and
others with federal governments have decided that they will administer at the
national level and delegate to each province (Canada) or state (US) a two character
province/state code. e.g. .qc = Quebec, .ny = New York, md = Maryland etc.. Thus
mycompany.md.us is the Domain Name of 'mycompany' which was delegated from
the state of MaryLand in the US.

Countries with more centralized governments, like the UK and others, have opted for
functional segmentation in their delegation models e.g. .co = company, .ac =
academic etc.). Thus mycompany.co.uk is the 'Domain Name' of 'mycompany'
registered as a company from the UK registration authority.

http://www.icann.org/
http://www.icann.org/

Delegation within any domain may be almost limitless and is decided by the
delegated authority e.g. the US and Canada both delegate city within
province/state domains e.g. the address (or URL) tennisshoes.nb.us is the town of
Tennis Shoes in the State of Nebraska in the United States.

By reading a domain name from RIGHT to LEFT you can track its delegation. This
unit of delegation is usually referred to as a 'zone' in standards documentation.

So What is www.example.com

From our reading above we can see that www.example.com is built up from 'www'
and 'example.com'. The 'Domain-Name' example.com part was delegated from a
registrar which in turn was delegated from ICANN.

The 'www' part was chosen by the owner of the domain since they are now the
delegated authority for the 'example.com' name. They own EVERYTHING to the LEFT
of the delegated 'Domain Name'.

The leftmost part, the 'www' in this case, is called a host name. By convention (but
only convention) web sites have the 'host' name of www (for world wide web) but
you can have a web site whose name is fred.example.com - no-one may think of
typing this into their browser but that does not stop you doing it!

Every computer that is connected to the internet or an internal network has a host
name, here are some more examples:

www.example.com - the company web service
ftp.example.com - the company file transfer protocol server
pc17.example.com - a normal PC
accounting.example.com - the main accounting system

A host name must be unique within the 'Domain Name' but can be anything the
owner of 'example.com' wants.

Finally lets look at this name:

www.us.example.com

From our previous reading we figure its 'Domain Name' is example.com the 'www'
probably indicates a web site which leaves the 'us' part.

The 'us' part was allocated by the owner of 'mydomain.com (they are authoritative)
and is called a sub-domain. In this case the delegated authority for example.com
has decided that their company organization is best served by a country based sub-
domain structure. They could have delegated the responsibility internally to the US
subsidiary for administration of this sub-domain, which may in turn have created a
plant based structure e.g. www.cleveland.us.example.com could indicate the web
site of the Cleveland plant in the US organisation of 'example.com'.

To summarise the OWNER can delegate, IN ANY WAY THEY WANT, ANYTHING to the
LEFT of the 'Domain Name' they own (were delegated). The owner is also
RESPONSIBLE for administering this delegation.

Note: Names such as www.example.com and www.us.example.com are commonly - but erroneously -
referred to as Fully Qualified Domain Names (FQDN). Technically an FQDN unambiguously defines a name
from any starting point to the root and as such must contain the normally silent dot at the end e.g.
"www.example.com." is an FQDN "www.example.com" is not.

2.2.3 DNS Organization and Structure

The Internet's DNS exactly maps the 'Domain Name' delegation structure described
above. There is a DNS server running at each level in the delegated hierarchy and
the responsibility for running the DNS lies with the AUTHORITATIVE control at that
level.

Figure 1-2 shows this diagrammatically.

Figure 1-2 DNS mapped to Domain Delegation

The Root Servers (Root DNS) are the responsibility of ICANN but operated by a
consortium under a delegation agreement. ICANN created the Root Servers Systems
Advisory Committee (RSSAC) to provide advice and guidance as to the operation and
development of this critical resource. The IETF was requested by the RSSAC to
develop the engineering standards for operation of the Root-Servers. This request
resulted in the publication of RFC 2870.

There are currently (mid 2003) 13 root-servers world-wide. The Root-Servers are
known to every public DNS server in the world.

The TLD servers (ccTLD and gTLD) are operated by a variety of agencies and
registrars under a fairly complex set of agreements by Registry Operators.

The Authority and therefore the responsibility for the User (or 'Domain Name') DNS
servers lies with the owner of the domain. In many cases this responsibility is
delegated by the owner of the Domain to an ISP, Web Hosting company or
increasingly a registrar. Many companies, however, elect to run their own DNS

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.icann.org/committees/dns-root/
http://www.icann.org/committees/dns-root/
http://www.root-servers.org/

servers and even delegate the Authority and responsibility for sub-domain DNS
servers to separate parts of the organisation.

When any DNS cannot answer (resolve) a request for a domain name from a host
e.g. example.com the query is passed to a root-rerver which will direct the query to
the appropriate TLD DNS server which will in turn direct it to the appropriate Domain
(User) DNS server.

2.2.4 DNS System Components

A Domain Name System (DNS) as defined by RFC 1034 includes three parts:

1. Data which describes the domain(s)
2. One or more Name Server programs.
3. A resolver program or library.

A single DNS server may support many domains. The data for each domain describes
global properties of the domain and its hosts (or services). This data is defined in the
form of textual Resource Records organized in Zone Files. The format of Zone files is
defined in RFC 1035 and is supported by most DNS software.

The Name Server program typically does three things:

1. It will read a configuration file which defines the zones for which it is
responsible.

2. Depending on the Name Servers functionality the configuration file may
describe various behaviours e.g. to cache or not. Some DNS servers are
very specialized and do not provide this level of control.

3. Respond to questions (queries) from local or remote hosts.

The resolver program or library is located on each host and provides a means of
translating a users request for, say, www.thing.com into one or more queries to DNS
servers using UDP (or TCP) protocols.

Note: The resolver on all Windows systems and the majority of *nix systems is actually a stub resolver -
a minimal resolver that can only work with a DNS that supports recursive queries. The caching resolver on
MS Windows 2K and XP is a stub resolver with a cache to speed up responses and reduce network usage.

While BIND is the best known of the DNS servers and much of this guide documents
BIND features, it is by no means the only solution or for that matter the only Open
Source solution. Appendix C: lists many alternate solutions. The zone file formats
which constitute the majority of the work (depending on how many sites you
operate) is standard (defined by RFC 1035) and is typically supported by all DNS
suppliers. Where a feature is unique to BIND we indicate it clearly in the text so you
can keep your options open!

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/apa/resource.html
http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch4/
http://www.zytrax.com/books/dns/apa/resolver.html
http://www.zytrax.com/books/dns/ch2/?pf=yes#recursive#recursive
http://www.isc.org/products/bind/
http://www.zytrax.com/books/dns/apc/

2.2.5 Zones and Zone Files

Zone files contain Resource Records that describe a domain or sub-domain. The
format of zone files is defined by RFC 1035 and is an IETF standard. Almost any
sensible DNS software should be able to read zone files. A zone file will consist of the
following types of data:

1. Data that describes the top of the zone (a SOA Record).
2. Authoritative data for all nodes or hosts within the zone (typically A

Records).
3. Data that describes global information for the zone (typically MX Records

and NS Records).
4. In the case of sub-domain delegation the name servers responsible for this

sub-domain (a NS Record).
5. In the case of sub-domain delegation a 'glue' record that allows this name

server to reach the sub-domain (typically one or more A Records) for the
sub-domain name servers.

The individual Resource Records are described and numerous sample configuration
files are illustrated and described.

2.2.6 DNS Queries

The major task carried out by a DNS server is to respond to queries (questions) from
a local or remote resolver or other DNS acting on behalf of a resolver. A query would
be something like 'what is the IP address of fred.example.com'.

A DNS server may receive such a query for any domain. DNS servers may be
configured to be authoritative for some (if any) domains, slaves, caching, forwarding
or many other combinations for others.

Most of the queries that a DNS server will receive will be for domains for which it has
no knowledge i.e for which it has no local zone files. The DNS sofware typically
allows the name server to respond in different ways to queries about which it has no
knowledge.

There are three types of queries defined for DNS:

1. A recursive query - the complete answer to the question is always
returned. DNS servers are not required to support recursive queries.

2. An Iterative (or non-recursive) query - where the complete answer MAY be
returned. All DNS servers must support Iterative queries.

3. An Inverse query - where the user wants to know the domain name given
a resource record.

Note: The process called Reverse Mapping (returns a host name given an IP address) does not use
Inverse queries but instead uses Recursive and Iterative (non-recursive) queries using the special domain
name IN-ADDR.ARPA.

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/apa/resource.html
http://www.zytrax.com/books/dns/ch1/index.html#terms
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch9/subdomain.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch9/subdomain.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/apa/resolver.html
http://www.zytrax.com/books/dns/ch4/
http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/apa/resource.html
http://www.zytrax.com/books/dns/ch3/

Historically reverse IP mapping was not mandatory. Many systems however now use reverse mapping for
security and simple authentication schemes so proper implementation and maintenance is now practically
essential.

2.2.6.1 Recursive Queries

A recursive query is one where the DNS server will fully answer the query (or give an
error). DNS servers are not required to support recursive queries and both the
resolver (or another DNS acting recursively on behalf of another resolver) negotiate
use of recursive service using bits in the query headers.

There are three possible responses to a recursive query:

1. The answer to the query accompanied by any CNAME records (aliases) that
may be useful. The response will indicate whether the data is authoritative
or cached.

2. An error indicating the domain or host does not exist (NXDOMAIN). This
response may also contain CNAME records that pointed to the non-existing
host.

3. An temporary error indication - e.g. can't access other DNS's due to
network error etc..

In a recursive query a DNS server will, on behalf of the client (resolver), chase the
trail of DNS across the universe to get the real answer to the question. The journey
of a simple query such as 'what is the IP address of fred.example.com' to a DNS
server which supports recursive queries but is not authoritative for example.com
could look something like this:

1. Resolver on a host sends query 'what is the IP address of
fred.example.com' to locally configured DNS server.

2. DNS server looks up fred.example.com in local tables (its cache) - not
found

3. DNS sends query to a root-server for the IP of fred.example.com
4. The root-server replies with a referral to the TLD servers for .com
5. The DNS server sends query 'what is the IP address fred.example.com' to

.com TLD server.
6. The TLD server replies with a referral to the name servers for

example.com
7. The DNS server sends query 'what is the IP address fred.example.com' to

name server for example.com.
8. Zone file defines a CNAME record which shows fred is aliased to joe. DNS

returns both the CNAME and the A record for joe.
9. send response joe=x.x.x.x (with CNAME record fred=joe) to original client

resolver. Transaction complete.

2.2.6.2 Iterative (non-recursive) Queries

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/apa/resolver.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/ch8/cname.html

A Iterative (or non-recursive) query is one where the DNS server may provide a
partial answer to the query (or give an error). DNS servers must support non-
recursive queries.

There are four possible responses to a non-recursive query:

1. The answer to the query accompanied by any CNAME records (aliases) that
may be useful. The response will indicate whether the data is authoritative
or cached.

2. An error indicating the domain or host does not exist (NXDOMAIN). This
response may also contain CNAME records that pointed to the non-existing
host.

3. An temporary error indication - e.g. can't access other DNS's due to
network error etc..

4. A referral; the name and IP addess(es) or one or more name server(s)
that are closer to the requested domain name. This may, or may not be,
the authoritative name server for the target domain.

The journey of a simple query such as 'what is the IP address of fred.example.com'
to a DNS server which supports Iterative (non-recursive) queries but is not
authoritative for example.com could look something like this:

1. Resolver on a host sends query 'what is the IP address fred.example.com'
to locally configured DNS server.

2. DNS server looks up fred.example.com in local tables (its cache) - not
found

3. The DNS replies with a referral containing the root-servers
4. Resolver sends query to a root-server for the IP of fred.example.com
5. The root-server replies with a referral to the TLD servers for .com
6. The Resolver sends query 'what is the IP address fred.example.com' to

.com TLD server.
7. The TLD server replies with a referral to the name servers for

example.com
8. The Resolver sends query 'what is the IP address fred.example.com' to

name server for example.com.
9. Zone file defines a CNAME record which shows fred is aliased to joe. DNS

returns both the CNAME and the A record for joe.
10. Transaction complete.

Note: The above sequence is highly artificial since the resolver on Windows and most *nix systems is a
stub resolver - which is defined in the standards to be a minimal resolver which cannot follow referrals.
If you reconfigure your local PC or Workstation to point to a DNS server that only supports Iterative
queries - it will not work. Period.

2.2.6.3 Inverse Queries

An Inverse query maps a resource record to a domain. An example Inverse query
would be 'what is the domain name for this MX record'. Inverse query support is
optional and it is permitted for the DNS server to return a response Not
Implemented.

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/apa/referral.html
http://www.zytrax.com/books/dns/ch8/cname.html

Inverse queries are NOT used to find a host name given an IP address. This process
is called Reverse Mapping (Look-up) uses recursive and Iterative (non-recursive)
queries with the special domain name IN-ADDR.ARPA.

2.2.7 Zone Updates

The initial design of DNS allowed for changes to be propagated using Zone Transfer
(AXFR) but the world of the Internet was simpler and more sedate in those days
(1987). The desire to speed up the process of zone update propagation while
minimising resources used has resulted in a mumber of changes to this aspect of
DNS design and implementation from simple - but effective - tinkering such as
Incremental Zone Transfer (IXFR) and Notify messages to the concept of
Dynamic Updates which is still not widely deployed.

Warning While zone transfers are generally essential for the operation of DNS
systems they are also a source of threat. A slave DNS can become poisoned if it
accepts zone updates from a malicious source. Care should be taken during
configuration to ensure that, as a minimum, the 'slave' will only accept transfers
from known sources. The example configurations provide these minimum
precautions. Security Overview outlines some of the potential threats involved.

2.2.7.1 Full Zone Update (AXFR)

The original DNS specifications (RFC 1034 & RFC 1035) envisaged that slave (or
secondary) DNS servers would 'poll' the 'master'. The time between such 'polling' is
determined by the REFRESH value on the domain's SOA Resource Record

The polling process is accomplished by the 'slave' sending a query to the 'master'
and requesting the latest SOA record. If the SERIAL number of the record is different
from the current one maintained by the 'slave' a zone transfer (AXFR) is requested.
This why it is vital to very disciplined about updating the SOA serial number every
time anything changes in ANY of the zone records.

Zone transfers are always carried out using TCP on port 53 not UDP (normal DNS
query operations use UDP on port 53).

2.2.7.2 Incremental Zone Update (IXFR)

Transferring very large zone files can take a long time and waste bandwidth and
other resources. This is especially wasteful if only a single record has been changed!
RFC 1995 introduced Incremental Zone Transfers (IXFR) which as the name suggests
allows the 'slave' and 'master' to transfer only those records that have changed.

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch3/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch2/?pf=yes#security#security
http://www.zytrax.com/books/dns/apd/rfc1034.txt
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/apd/rfc1995.txt

The process works as for AXFR. The 'slave' sends a query for the domain's SOA
Resource Record every REFRESH interval. If the SERIAL value of the SOA record has
changed the 'slave' requests a Zone Transfer and indicates whether or not it is
capable of accepting an Incremental Transfer (IXFR). If both 'master' and 'slave'
support the feature an Incremental Transfer (IXFR) takes place otherwise a Full Zone
Transfer (AXFR) takes place. Incremental Zone transfers use TCP on port 53 (normal
DNS queries operations use UDP on port 53).

The default mode for BIND when acting as a 'slave' is to use IXFR unless it is
configured not to using the request-ixfr parameter in the server or options
section of the named.conf file.

The default mode for BIND when acting as a 'master' is to use IXFR only when the
zone is dynamic. The use of IXFR is controlled using the provide-ixfr parameter in
the server or options section of the named.conf file.

2.2.7.3 Notify (NOTIFY)

RFC 1912 recommends a REFRESH interval of up to 12 hours on the REFRESH
interval of an SOA Resource Record. This means that changes to the 'master' DNS
may not be visible at the 'slave' DNS for up to 12 hours. In a dynamic environment
this may be unacceptable.

RFC 1996 introduced a scheme whereby the master will send a NOTIFY message to
the slave DNS systems that a change MAY have occurred in the domain records. The
'slave' on receipt of the NOTIFY will request the latest SOA Resource Record and if
the SERIAL value is different will attempt a Zone Transfer using either a full Zone
Transfer (AXFR) or an Incremental Transfer (IXFR).

NOTIFY behaviour in BIND is controlled by notify, also-notify and notify-source
parameters in the zone or options statements of the named.conf file.

2.2.7.4 Dynamic Update

The classic method of updating Zone Resource Records is to manually edit the zone
file and then stop and start the name server to propagate the changes. When the
volume of changes reaches a certain level this can become operationally
unacceptable - especially considering that in organisations which handle large
numbers of Zone Files, such as service providers, BIND itself can take a long time to
restart at it plows through very large numbers of zone statements.

The 'holy grail' of DNS is to provide a method of dynamically changing the DNS
records while DNS continues to service requests.

There are two architectural approaches to solving this problem:

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch7/xfer.html#request-ixfr
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/ch2/?pf=yes#dyn-update#dyn-update
http://www.zytrax.com/books/dns/ch7/xfer.html#provide-ixfr
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/apd/rfc1912.txt
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/apd/rfc1996.txt
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch7/xfer.html#notify
http://www.zytrax.com/books/dns/ch7/xfer.html#also-notify
http://www.zytrax.com/books/dns/ch7/xfer.html#notify-source
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/ch8/

1. Allow 'run-time' updating of the Zone Records from an external
source/application.

2. directly feed BIND (say via one of its two APIs) from a database which can
be dynamically updated.

RFC 2136 takes the first approach and defines a process where zone records can be
updated from an external source. The key limitation in this specification is that a new
domain cannot be added dynamically. All other records within an existing zone can
be added, changed or deleted. In fact this limitation is also true for both of BIND's
APIs as well.

As part of this specification the term Primary Master is coined to describe the Name
Server defined in the SOA Resource Record for the zone. The significance of this
term is that when dynamically updating records it is essential to update only one
server even though there may be multiple master servers for the zone. In order to
solve this problem a 'boss' server must be selected, this 'boss' server termed the
Primary Master has no special characteristics other than it is defined as the Name
Server in the SOA record and may appear in an allow-update clause to control the
update process.

While normally associated with Secure DNS features (TSIG - RFC 2845 & TKEY - RFC
2930) Dynamic DNS (DDNS) does not REQUIRE TSIG/TKEY. However there is a
good reason to associate the two specifications when you consider that by enabling
Dynamic DNS you are opening up the possibility of master zone file corruption or
poisoning. Simple IP address protection (acl) can be configured into BIND but this
provides - at best - limited protection. For that reason serious users of Dynamic DNS
will always use TSIG/TKEY procedures to authenticate incoming requests.

Dynamic Updating is defaulted to deny from all hosts. Control of Dynamic Update
is provided by the BIND allow-update (usable with and without TSIG/TKEY) and
update-policy (only usable with TSIG/TKEY) clauses in the zone or options
statements of the named.conf file.

There are a number of Open Source tools which will initiate Dynamic DNS updates
these include dnsupdate (not the same as DNSUpdate) and nsupdate which is
distributed with bind-utils.

2.2.7.5 Alternative Dynamic DNS Approaches

As noted above the major limitation in the standard Dynamic DNS (RFC 2136)
approach is that new domains cannot be created dynamically.

BIND-DLZ takes a much more radical approach and using a serious patch to BIND
allows replacement of all zone files with a single zone file which defines a database
entry. The database support, which includes most of the major databases (MySQL,
PostgreSQL, BDB and LDAP among others) allows the addition of new domains as
well as changes to pre-existing domains without the need to stop and start BIND. As
with all things in life there is a trade-off and performance can drop precipitously.

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/apd/rfc2136.txt
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-update
http://www.zytrax.com/books/dns/apd/rfc2845.txt
http://www.zytrax.com/books/dns/apd/rfc2930.txt
http://www.zytrax.com/books/dns/apd/rfc2930.txt
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-update
http://www.zytrax.com/books/dns/ch7/xfer.html#update-policy
http://www.zytrax.com/books/dns/ch7/
http://dnsupdate.sourceforge.net/
http://bind-dlz.sourceforge.net/

Current work being carried (early 2004) out with a High performance Berkeley DB
(BDB) is showing excellent results approaching raw BIND performance.

PowerDNS an authoritative only name server takes a similar approach with its own
(non-BIND) code base by referring all queries to the database back-end and thereby
allow new domains to be added dynamically.

2.3 Security Overview

DNS Security is a huge and complex topic. It is made worse by the fact that almost
all the documentation dives right in and you fail to see the forest for all the d@!mned
trees.

The critical point is to first understand what you want to secure - or rather what
threat level you want to secure against. This will be very different if you run a root
server vs running a modest in-house DNS serving a couple of low volume web sites.

The term DNSSEC is thrown around as a blanket term in a lot of documentation. This
is not correct. There are at least three types of DNS security, two of which are -
relatively - painless and DNSSEC which is - relatively - painful.

Security is always an injudicious blend of real threat and paranoia - but remember
just because you are naturally paranoid does not mean that they are not after you!

2.3.1 Security Threats

In order to be able to assess both the potential threats and the possible counter-
measures it is first and foremost necessary to understand the normal data flows in a
DNS system. Diagram 1-3 below shows this flow.

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.powerdns.com/

Diagram 1-3 DNS Data Flow

Every data flow (each RED line above) is a potential source of threat! Using the
numbers from the above diagram here is what can happen at each flow - beware you
may not sleep tonight:

Number Area Threat

(1) Zone Files File Corruption (malicious or accidental). Local threat.

(2) Dynamic
Updates

Unauthorized Updates, IP address spoofing (impersonating
update source). Server to Server (TSIG Transaction)
threat.

(3) Zone
Transfers

IP address spoofing (impersonating update source). Server
to Server (TSIG Transaction) threat.

(4) Remote
Queries

Cache Poisoning by IP spoofing, data interception, or a
subverted Master or Slave. Server to Client (DNSSEC)
threat.

(5) Resolver
Queries

Data interception, Poisoned Cache, subverted Master or
Slave, local IP spoofing. Remote Client-client (DNSSEC)
threat.

The first phase of getting a handle on the problem is to figure (audit) what threats
are applicable and how seriously do YOU rate them or do they even apply. As an
example; if you don't do Dynamic Updates (BIND's default mode) - there is no
Dynamic Update threat! Finally in this section a warning: the further you go from
the Master the more complicated the solution and implementation. Unless
there is a very good reason for not doing so, we would always recommend that you
start from the Master and work out.

http://www.zytrax.com/books/dns/ch2/?pf=yes

2.3.2 Security Types

We classify each threat type below. This classification simply allows us select
appropriate remedies and strategies for avoiding or securing our system. The
numbering used below relates to diagram 1-3.

(1) The primary source of Zone data is normally the Zone Files (and don't forget the
named.conf file which contains lots of interesting data as well). This data should be
secure and securely backed up. This threat is classified as Local and is typically
handled by good system administration.

(2) If you run slave servers you will do zone transfers. Note: You do NOT have to
run with slave servers, you can run with multiple masters and eliminate the transfer
threat entirely. This is classified as a Server-Server (Transaction) threat.

(3) The BIND default is to deny Dynamic Zone Updates. If you have enabled this
service or require to it poses a serious threat to the integrity of your Zone files and
should be protected. This is classified as a Server-Server (Transaction) threat.

(4) The possibility of Remote Cache Poisoning due to IP spoofing, data interception
and other hacks is a judgement call if you are running a simple web site. If the site is
high profile, open to competitive threat or is a high revenue earner you have
probably implemented solutions already. This is classified as a Server-Client threat.

(5) We understand that certain groups are already looking at the implications for
secure Resolvers but as of early 2004 this was not standardised. This is classified as
a Server-Client threat.

2.3.3 Security - Local

Normal system administration practices such as ensuring that files (configuration and
zone files) are securely backed-up, proper read and write permissions applied and
sensible physical access control to servers may be sufficient.

Implementing a Stealth (or Split) DNS server provides a more serious solution
depending on available resources.

Finally you can run BIND (named) in a chroot jail.

2.3.4 Server-Server (TSIG Transactions)

Zone transfers. If you have slave servers you will do zone transfers. BIND provides
Access Control Lists (ACLs) which allow simple IP address protection. While IP
based ACLs are relatively easy to subvert they are a lot better than nothing and
require very little work. You can run with multiple masters (no slaves) and eliminate

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/ch4/index.html#stealth
http://www.zytrax.com/books/dns/ch7/acl.html

the threat entirely. You will have to manually synchronise zone file updates but this
may be a simpler solution if changes are not frequent.

Dynamic Updates. If you must run with this service it should be secured. BIND
provides Access Control Lists (ACLs) which allow simple IP address protection but
this is probably not adequate unless you can secure the IP addresses i.e. both
systems are behind a firewall/DMZ/NAT or the updating host is using a private IP
address.

TSIG/TKEY If all other solutions fail DNS specifications (RFC 2845 - TSIG and RFC
2930 - TKEY) provide authentication protocol enhancements to secure these Server-
Server transactions.

TSIG and TKEY implementations are messy but not too complicated - simply
because of the scope of the problem. With Server-Server transactions there is a
finite and normally small number of hosts involved. The protocols depend on a
shared secret between the master and the slave(s) or updater(s). It is further
assumed that you can get the shared secret securely to the peer server by some
means not covered in the protocol itself. This process, known as key exchange,
may not be trivial (typically long random strings of base64 characters are involved)
but you can use the telephone(!), mail, fax or PGP email amongst other methods.

The shared-secret is open to brute-force attacks so frequent (monthly or more)
changing of shared secrets will become a fact of life. What works once may not
work monthly or weekly. TKEY allows automation of key-exchange using a Diffie-
Hellman algorithm but seems to start with a shared secret!

2.3.5 Server-Client (DNSSEC)

The classic Remote Poisoned cache problem is not trivial to solve simply because
there may be an infinitely large number of Remote Caches involved. It is not
reasonable to assume that you can use a shared secret.

Instead DNSSEC relies on public/private key authentication. The DNSSEC
specifications (RFC 2535 augmented with others) attempt to answer three questions:

1. Authentication - the DNS responding really is the DNS that the request was
sent to.

2. Integrity - the response is complete and nothing is missing.
3. Integrity - the DNS records have not been compromised.

3. DNS Reverse Mapping

• 3.1 Reverse Mapping Overview
• 3.2 The IN-ADDR.ARPA Reverse Mapping Domain

http://www.zytrax.com/books/dns/ch2/?pf=yes
http://www.zytrax.com/books/dns/ch7/acl.html
http://www.zytrax.com/books/dns/apd/rfc2845.txt
http://www.zytrax.com/books/dns/apd/rfc2930.txt
http://www.zytrax.com/books/dns/apd/rfc2930.txt
http://www.zytrax.com/books/dns/apd/rfc2535.txt
http://www.zytrax.com/books/dns/ch3/?pf=yes#overview#overview
http://www.zytrax.com/books/dns/ch3/?pf=yes#arpa#arpa

• 3.3 Reverse Map Delegation

3.1 Reverse Mapping Overview

A normal DNS query would be of the form 'what is the IP of host=www in
domain=mydomain.com'. There are times however when we want to be able to find
out the name of the host whose IP address = x.x.x.x. Sometimes this is required for
diagnostic purposes more frequently these days it is used for security purposes to
trace a hacker or spammer, indeed many modern mailing systems use reverse
mapping to provide simple authentication using dual look-up, IP to name and name
to IP.

In order to perform Reverse Mapping and to support normal recursive and Iterative
(non-recursive) queries the DNS designers defined a special (reserved) Domain
Name called IN-ADDR.ARPA. This domain allows for all supported Internet IPv4
addresses (and now IPv6).

3.2 IN-ADDR.ARPA Reverse Mapping Domain

Reverse Mapping looks horribly complicated. It is not. As with all things when we
understand what is being done and why - all becomes as clear as mud!

We defined the normal domain name structure as a tree starting from the root. We
write a normal domain name LEFT to RIGHT but the hierarchical structure is RIGHT
to LEFT.

domain name = www.mydomain.com
highest node in tree is = .com
next (lower) = .mydomain
next (lower) = www

An IPv4 address is written as:

192.168.23.17

This IPv4 address defines a host = 17 in a Class C address range (192.168.23.x). In
this case the most important part (the highest node) is on the LEFT (192) not the
RIGHT. This is a tad awkward and would make it impossible to construct a sensible
tree structure that could be searched in a single lifetime.

The solution is to reverse the order of the address and place the result under the
special domain IN-ADDR.ARPA (you will see this also written as in-addr.arpa which is
OK since domains are case insensitive but the case should be preserved so we will
use IN-ADDR.ARPA).

http://www.zytrax.com/books/dns/ch3/?pf=yes
http://www.zytrax.com/books/dns/ch3/?pf=yes#reverse#reverse
http://www.zytrax.com/books/dns/ch2/index.html#domains

Finally the last part of the IPv4 Address (17) is the host address and hosts, from our
previous reading, are typically defined inside a zone file so we will ignore it and only
use the Class C address base. The result of our manipulations are:

IP address =192.168.23.17
Class C base = 192.168.23 ; omits the host address = 17
Reversed Class C base = 23.168.192
Added to IN-ADDR.ARPA domain = 23.168.192.IN-ADDR.ARPA

This is show in figure 3.0 below.

Figure 3.0 IN-ADDR.ARPA Reverse Mapping</B< p>

Finally we construct a zone file to describe all the hosts (nodes) in the
Reverse Mapped zone using PTR Records. The resulting file will look
something like this:

$ORIGIN 23.168.192.IN-ADDR.ARPA.
@ IN SOA ns1.foo.com. root.foo.com. (
 2003080800 ; serial number
 3h ; refresh
 15m ; update retry
 3w ; expiry
 3h ; minimum
)
 IN NS ns1.foo.com.
 IN NS ns2.foo.com.
1 IN PTR www.foo.com. ; qualified name
2 IN PTR joe.foo.com.
.....
17 IN PTR bill.foo.com.
.....
74 IN PTR fred.foo.com.
....

We must use qualified names ending with a dot (in fact they are Fully
Qualified Domain Names FQDN) in this file because if we did not our
$ORIGIN directive would lead to some strange results.

http://www.zytrax.com/books/dns/ch3/?pf=yes
http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/apa/dot.html
http://www.zytrax.com/books/dns/apa/origin.html

3.3 Reverse Map Delegation

Classless Reverse Map Delegation is defined by RFC 2317 which has Best
Current Practice status and should be regarded as a definitive reference.
Classless routing allows allocation of sub-nets on non-octet boundaries i.e.
less that 256 addresses from a Class C address may be allocated and routed.
The technique defined in the RFC is attributed to Glen A. Herrmannsfeldt.

Normal domain name mapping as we have seen maps the domain name to
an IP address. This process is independent of the ISP or other authority that
allocated the IP name space. If the addresses were to change then the
owner of the domain that maps these addresses would be able to make the
necessary changes directly with either the relevant registrar i.e. change the
IP address of DNS's for the domain or change the zone file(s) that describe
the domain.

The rule is that entities can be delegated only once in the domain name tree
this includes IN-ADDR.ARPA. When a Class C subnet is assigned by an ISP
or other authority e.g. 192.168.23.64/27 (a 32 IP address subnet) the
responsibility for reverse mapping for the whole Class C address has already
been assigned to the ISP or Authority. If you want to change the host
names in the assigned subnet they must be notified to the authority for that
Class C address. Generally this is unacceptable since such requests may
encounter indifference, cost or questions. It is most desirable that
responsibility for reverse mapping be delegated when the IP address subnet
is assigned.

The technique defined in RFC 2317 provides for such delegation to take
place using CNAME Resource Records (rather than the more normal PTR
Resource Records) in an expanded IN-ADDR.ARPA name space.

The following fragment shows our 192.168.23.64/27 subnet as a fragment
of the reverse mapping zone file located at the ISP or other Authority that
assigned the subnet:

$ORIGIN 23.168.192.IN-ADDR.ARPA.
@ IN SOA ns1.isp.com. root.isp.com. (
 2003080800 ; serial number
 3h ; refresh
 15m ; update retry
 3w ; expiry
 3h ; minimum
)
 IN NS ns1.isp.com.
 IN NS ns2.isp.com.
; definition of other IP address 0 - 63
....

; definition of our target 192.168.23.64/27 subnet
; name servers for subnet reverse map
64/27 IN NS ns1.mydomain.com.
64/27 IN NS ns2.mydomain.com.

http://www.zytrax.com/books/dns/apa/classless.html
http://www.zytrax.com/books/dns/apa/classless.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/ptr.html

; IPs addresses in the subnet - all need to be defined
; except 64 and 95 since they are the subnets
; broadcast and multicast addresses not hosts/nodes
65 IN CNAME 65.64/27.23.168.192.IN_ADDR.ARPA. ;qualified
66 IN CNAME 66.64/27 ;unqualified name
67 IN CNAME 67.64/27
....
93 IN CNAME 93.64/27
94 IN CNAME 94.64/27
; end of 192.168.23.64/27 subnet
.....
; other subnet definitions

The 64/27 construct is an artificial (but legitimate) way of constructing the
additional space to allow delegation. This is not technically a domain name
and therefore can use '/' (which is not allowed in a domain name) but could
be replaced with say '-' which is allowed e.g. 64-27.

The zone file at the DNS serving the Reverse Map (ns1.mydomain.com in the
above example) looks like this:

$ORIGIN 64/27.23.168.192.IN-ADDR.ARPA.
@ IN SOA ns1.mydomain.com. root.mydomain.com. (
 2003080800 ; serial number
 3h ; refresh
 15m ; update retry
 3w ; expiry
 3h ; minimum
)
 IN NS ns1.mydomain.com.
 IN NS ns2.mydomain.com.
; IPs addresses in the subnet - all need to be defined
; except 64 and 95 since they are the subnets
; broadcast and multicast addresses not hosts/nodes
65 IN PTR fred.mydomain.com. ;qualified
66 IN PTR joe.mydomain.com.
67 IN PTR bill.mydomain.com.
....
93 IN PTR web.mydomain.com.
94 IN PTR ftp.mydomain.com.
; end of 192.168.23.64/27 subnet

Now you have to change your reverse map zone names in the name.conf file
to reflect the above change. The following examples shows the reverse map
declaration before and after the change to reflect the configuration above:

// before change the reverse map zone declaration would look
// something like this
zone "23.168.192.in-addr.arpa" in{
 type master;
 file "192.168.23.rev";
};

The above - normal - reverse map declaration resolves reverse lookups for
192.168.23.x locally and without the need for access to any other zone or
DNS.

Change to reflect the delegated zone name.

// after change the reverse map zone declaration would look
// something like this
zone "64/27.23.168.192.in-addr.arpa" in{
 type master;
 file "192.169.23.rev";
};

The above configuration will only resolve by querying the master zone for
23.168.192.IN-ADDR.ARPA and following down the delegation back to itself.
If changes are not made at the ISP or issuing Authority or have not yet
propagated then this configuration will generate 'nslookup' and 'dig' errors.

4. DNS Configuration Types

Most DNS servers are schizophrenic - they may be masters (authoritative) for
some zones, slaves for others and provide caching or forwarding for all others.
Many observers object to the concept of DNS types partly because of the
schizophrenic behaviour of most DNS servers and partly to avoid confusion with
the name.conf zone parameter 'type' which only allows master, slave, stub,
forward, hint). Nevertheless, the following terms are commonly used to describe
the primary function or requirement of DNS servers.

Contents

4.1 Master (a.k.a. Primary) DNS Server
4.2 Slave (Secondary) DNS Server
4.3 Caching (a.k.a. hint) DNS Server
4.4 Forwarding (a.k.a Proxy, Client, Remote) DNS Server
4.5 Stealth (a.k.a. DMZ or Split) DNS Server
4.6 Authoritative Only DNS Server

4.1 Master (Primary) Name Servers

A Master DNS contains one or more zone files for which this DNS is Authoritative
('type master'). The zone has been delegated (via an NS Resource Record) to this
DNS.

The term 'master' was introduced in BIND 8.x and replaced the term 'primary'.

http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch4/?pf=yes#master#master
http://www.zytrax.com/books/dns/ch4/?pf=yes#slave#slave
http://www.zytrax.com/books/dns/ch4/?pf=yes#caching#caching
http://www.zytrax.com/books/dns/ch4/?pf=yes#forwarding#forwarding
http://www.zytrax.com/books/dns/ch4/?pf=yes#stealth#stealth
http://www.zytrax.com/books/dns/ch4/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch8/ns.html

Master status is defined in BIND by including 'type master' in the zone declaration
section of the named.conf file) as shown by the following fragment.

// example.com fragment from named.conf
// defines this server as a zone master
zone "example.com" in{
 type master;
 file "pri.example.com";
};

Notes:

1. The terms Primary and Secondary DNS entries in Windows TCP/IP network
properties mean nothing, they may reflect the 'master' and 'slave' name-
server or they may not - you decide this based on operational need, not
BIND configuration.

2. It is important to understand that a zone 'master' is a server which gets its
zone data from a local source as opposed to a 'slave' which gets its zone
data from an external (networked) source (the 'master'). This apparently
trivial point means that you can have any number of 'master' servers for
any zone if it makes operational sense. You have to ensure (by a manual
or other process) that the zone files are synchronised but apart from this
there is nothing to prevent it.

3. Just to confuse things still further you may run across the term 'Primary
Master' this has a special meaning in the context of dynamic DNS updates
and is defined to be the name server that appears in the SOA RR record.

When a master DNS receives Queries for a zone for which it is authoritative then it
will respond as 'Authoritative' (AA bit is set in a query response).

When a DNS server receives a query for a zone which it is neither a Master nor a
Slave then it will act as configured (in BIND this behaviour is defined in the
named.conf file):

1. If caching behaviour is permitted and recursive queries are allowed the
server will completely answer the request or return an error.

2. If caching behaviour is permitted and Iterative (non-recursive) queries are
allowed the server can respond with the complete answer (if it is already in
the cache because of another request), a referral or return an error.

3. If caching behaviour NOT permitted (an 'Authoritative Only' DNS server)
the server will return a referral or return an error.

A master DNS server can export (NOTIFY) zone changes to defined (typically slave)
servers. This ensures zone changes are rapidly propagated to the slaves (interrupt
driven) rather than rely on the slave server polling for changes. The BIND default is
to notify the servers defined in NS records for the zone.

If you are running Stealth Servers and wish them to be notified you will have to add
an also-notify parameter as shown in the BIND named.conf file fragment below:

// example.com fragment from named.conf

http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/ch2/index.html#dyn-update
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/apa/query.html
http://www.zytrax.com/books/dns/ch4/?pf=yes#slave#slave
http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/ch4/?pf=yes#cache#cache
http://www.zytrax.com/books/dns/ch4/?pf=yes#cache#cache
http://www.zytrax.com/books/dns/ch4/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch4/?pf=yes#stealth#stealth
http://www.zytrax.com/books/dns/ch7/xfer.html#also-notify
http://www.zytrax.com/books/dns/apa/conf.html

// defines this server as a zone master
// 192.168.0.2 is a stealth server NOT listed in a NS record
zone "example.com" in{
 type master;
 also-notify {192.168.0.2;};
 file "pri/pri.example.com";
};

You can turn off all NOTIFY operations by specifying 'notify no' in the zone
declaration.

Example configuration files for a master DNS are provided.

4.2 Slave (Secondary) Name Servers

A Slave DNS gets its zone file information from a zone master and it will respond as
authoritative for those zones for which it is defined to be a 'slave' and for which it
has a currently valid zone configuration.

The term 'slave' was introduced in BIND 8.x and replaced the term 'secondary'.

Slave status is defined in BIND by including 'type slave' in the zone declaration
section of the named.conf file) as shown by the following fragment.

// example.com fragment from named.conf
// defines this server as a zone slave
zone "example.com" in{
 type slave;
 file "sec/sec.example.com";
 masters {192.168.23.17;};
};

Notes:

1. The master DNS for each zone is defined in the 'masters' zone section and
allows slaves to refresh their zone record when the 'expiry' parameter of
the SOA Record is reached. If a slave cannot reach the master DNS when
the 'expiry' time has been reached it will stop responding to requests for
the zone. It will NOT use time-expired data.

2. The file parameter is optional and allows the slave to write the transferred
zone to disc and hence if BIND is restarted before the 'expiry' time the
server will use the saved data. In large DNS systems this can save a
considerable amount of network traffic.

Assuming NOTIFY is allowed in the master DNS for the zone (the default behaviour)
then zone changes are propagated to all the slave servers defined with NS Records in
the master zone file. There can be any number of slave DNS's for any given 'master'
zone. The NOTIFY process is open to abuse. BIND's default behaviour is to only allow

http://www.zytrax.com/books/dns/ch4/?pf=yes
http://www.zytrax.com/books/dns/ch7/xfer.html#notify
http://www.zytrax.com/books/dns/ch6/index.html#master
http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/ns.html

NOTIFY from the 'master' DNS. Other acceptable NOTIFY sources can be defined
using the allow-notify parameter in named.conf.

Example configuration files for a slave DNS are provided.

4.3 Caching Name Servers

A Caching Server obtains information from another server (a Zone Master) in
response to a host query and then saves (caches) the data locally. On a second or
subsequent request for the same data the Caching Server will respond with its locally
stored data (the cache) until the time-to-live (TTL) value of the response expires at
which time the server will refresh the data from the zone master.

If the caching server obtains its data directly from a zone master it will respond as
'authoritative', if the data is supplied from its cache the response is 'non-
authoritative'.

The default BIND behaviour is to cache and this is associated with the recursion
parameter (the default is 'recursion yes'). There are many configuration examples
which show caching behaviour being defined using a 'type hint' statement in a zone
declaration. These configurations confuse two distinct but related functions. If a
server is going to provide caching services then it must provide recursive queries and
recursive queries need access to the root servers which is provided via the 'type hint'
statement. A caching server will typically have a named.conf file which includes the
following fragment:

// options section fragment of named.conf
// recursion yes is the default and may be omitted
options {
 directory "/var/named";
 version "not currently available";
 recursion yes;
};
// zone section
....
// the DOT indicates the root domain = all domains
zone "." IN {
 type hint;
 file "root.servers";
};

Notes:

1. BIND defaults to recursive queries which by definition provides caching
behaviour. The named.conf recursion parameter controls this behaviour.

2. The zone '.' is shorthand for the root domain which translates to 'any
domain not defined as either a master or slave in this named.conf file'.

3. cache data is discarded when BIND is restarted.

http://www.zytrax.com/books/dns/ch4/?pf=yes
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-notify
http://www.zytrax.com/books/dns/ch6/index.html#slave
http://www.zytrax.com/books/dns/apa/ttl.html
http://www.zytrax.com/books/dns/ch7/queries.html#recursion
http://www.zytrax.com/books/dns/ch2/index.html#recursive
http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/ch2/index.html#recursive
http://www.zytrax.com/books/dns/ch7/queries.html#recursion

The most common DNS server caching configurations are:

• A DNS server acting as master or slave for one or more zones (domains)
and as cache server for all other requests. A general purpose DNS server.

• A caching only local server - typically used to minimise external access or
to compensate for slow external links. This is sometimes called a Proxy
server though we prefer to associate the term with a Forwarding server

To cache or not is a crucial question in the world of DNS. BIND is regarded as the
reference implementation of the DNS specification. As such it provides excellent - if
complex to configure - functionality. The down side of generality is suboptimal
performance on any single function - in particular caching involves a non-trivial
performance overhead.

For general usage the breadth of BIND functionality typically offsets any performance
concerns. However if the DNS is being 'hit' thousands of times per second
performance is a major factor. There are now a number of alternate Open Source
DNS servers some of which stress performance. These servers typically do NOT
provide caching services (they are said to be 'Authoritative only' servers).

Example configuration files for a caching DNS are provided.

Note: The response to a query is Authoritative under three conditions:

1. The response is received from a Zone master.
2. The response is received from a Zone slave with non time-expired zone data.
3. The response is received by a caching server directly from either a Zone master or slave. If

the response is read from the cache directly it is not authoritative.

4.4 Forwarding (a.k.a Proxy) Name Servers

A forwarding (a.k.a. Proxy, Client, Remote) server is one which simply forwards all
requests to another DNS and caches the results. On its face this look a pretty
pointless exercise. However a forwarding DNS sever can pay-off in two ways where
access to an external network is slow or expensive:

1. Local DNS server caching - reduces external access and both speeds up
responses and removes unnecessary traffic.

2. Remote DNS server provides recursive query support - reduction in traffic
across the link - results in a single query across the network.

Forwarding servers also can be used to ease the burden of local administration by
providing a single point at which changes to remote name servers may be managed,
rather than having to update all hosts.

Forwarding can also be used as part of a Split Server configuration for perimeter
defence.

http://www.zytrax.com/books/dns/ch4/?pf=yes
http://www.zytrax.com/books/dns/ch4/?pf=yes#forwarding#forwarding
http://www.zytrax.com/books/dns/apc/
http://www.zytrax.com/books/dns/apc/
http://www.zytrax.com/books/dns/ch4/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/ch6/index.html#caching
http://www.zytrax.com/books/dns/ch4/?pf=yes#stealth#stealth

BIND allows configuration of forwarding using the forward and forwarders
parameters either at a 'global' level (in an options section) or on a per-zone basis in
a zone section of the named.conf file. Both configurations are shown in the examples
below:

Global Forwarding - All Requests

// options section fragment of named.conf
// forwarders can have multiple choices
options {
 directory "/var/named";
 version "not currently available";
 forwarders {10.0.0.1; 10.0.0.2;};
 forward only;
};
// zone file sections
....

Per Domain Forwarding

// zone section fragment of named.conf
zone "example.com" IN {
 type forward;
 file "fwd.example.com";
 forwarders {10.0.0.1; 10.0.0.2;};
};

Where dial-up links are used with DNS forwarding servers BIND's general purpose
nature and strict standards adherence may not make it an optimal solution. A
number of the Alternate DNS solutions specifically target support for such links.
BIND provides two parameters dialup and heartbeat-interval (neither of which is
currently supported by BIND 9) as well as a number of others which can be used to
minimise connection time.

Example configuration files for a forwarding DNS are provided.

4.5 Stealth (a.k.a. DMZ or Split) Name Server

A stealth server is defined as being a name server which does not appear in any
publicly visible NS Records for the domain. The stealth server is normally used in a
configuration called Split Severs which can be roughly defined as having the
following characteristics:

1. The organisation needs a public DNS to enable access to its public services
e.g. web, mail ftp etc..

http://www.zytrax.com/books/dns/ch4/?pf=yes
http://www.zytrax.com/books/dns/ch7/queries.html#forward
http://www.zytrax.com/books/dns/ch7/queries.html#forwarders
http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/apc/
http://www.zytrax.com/books/dns/ch6/index.html#forwarding
http://www.zytrax.com/books/dns/ch8/ns.html

2. The organisation does not want the world to see any of its internal hosts
either by interrogation (query or zone transfer) or should the DNS service
be compromised.

A Split Server configuration is shown in Figure 4.1.

Figure 4.1 Split Server configuration

The external server(s) is(are) configured to provide Authoritative Only responses and
no caching (no recursive queries accepted). The zone file for this server would be
unique and would contain ONLY those systems or services that are publicly visible
e.g. SOA, NS records for the public (not stealth) name servers, MX record(s) for mail
servers and www and ftp service A records. Zone transfers can be allowed between
between the public servers as required but they MUST NOT transfer or accept
transfers from the Stealth server. While this may seem to create more work, the
concern is that should the host running the external service be compromised then
inspection of the named.conf or zone files must provide no more information than is
already publically visible. If 'master', 'allow-notify','allow-transfer' options are
present in named.conf (each of which will contain a private IP) then the attacker has
gained more knowledge about the organisation - they have penetrated the 'veil of
privacy'.

There are a number of articles which suggest that the view statement may be used
to provide similar functionality using a single server but this does not address the
problem of the DNS host system being compromised and by simple inspection of the
named.conf file additional data about the organisation could be discovered. In our
opinion 'view' does not provide adequate security in a 'Split DNS' solution.

A minimal public zone file is shown below:

; public zone master file
; provides minimal public visibility of external services
example.com. IN SOA ns.example.com. root.example.com. (
 2003080800 ; se = serial number
 3h ; ref = refresh
 15m ; ret = update retry
 3w ; ex = expiry
 3h ; min = minimum
)

http://www.zytrax.com/books/dns/ch4/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/ch7/view.html

 IN NS ns1.example.com.
 IN NS ns2.example.com.
 IN MX 10 mail.example.com.
ns1 IN A 192.168.254.1
ns2 IN A 192.168.254.2
mail IN A 192.168.254.3
www IN A 192.168.254.4
ftp IN A 192.168.254.5

The internal server (the Stealth Server) can be configured to make visible internal
and external services, provide recursive queries and all manner of other services.
This server would use a private zone master file which could look like this:

; private zone master file used by stealth server(s)
; provides public and private services and hosts
example.com. IN SOA ns.example.com. root.example.com. (
 2003080800 ; se = serial number
 3h ; ref = refresh
 15m ; ret = update retry
 3w ; ex = expiry
 3h ; min = minimum
)
 IN NS ns1.example.com.
 IN NS ns2.example.com.
 IN MX 10 mail.example.com.
; public hosts
ns1 IN A 192.168.254.1
ns2 IN A 192.168.254.2
mail IN A 192.168.254.3
www IN A 192.168.254.4
ftp IN A 192.168.254.5
; private hosts
joe IN A 192.168.254.6
bill IN A 192.168.254.7
fred IN A 192.168.254.8
....
accounting IN A 192.168.254.28
payroll IN A 192.168.254.29

Using BIND 9's view statement can provide different services to internal and external
requests can reduce further the Stealth server's visibility e.g. forwarding all DNS
internal requests to the external server.

Example configuration files for a stealth DNS are provided.

4.6 Authoritative Only Server

The term Authoritative Only is normally used to describe two concepts:

http://www.zytrax.com/books/dns/ch4/?pf=yes
http://www.zytrax.com/books/dns/ch7/view.html
http://www.zytrax.com/books/dns/ch6/index.html#stealth

1. The server will deliver Authoritative Responses - it is a zone master or slave
for one or more domains.

2. The server will NOT cache.

There are two configurations in which Authoritative Only servers are typically used:

1. As the public or external server in a Split (a.k.a. DMZ or Stealth) DNS used to
provide perimeter security.

2. High Performance DNS servers. In this context general purpose DNS servers
such as BIND may not provide an ideal solution and there are a number of
Open Source Alternatives some of which specialise in high performance
Authoritative only solutions.

You cannot completely turn off caching in BIND but you can control it and provide
the functionality described above by simply turning off recursion in the 'option'
section of named.conf as shown in the example below.

// options section fragment of named.conf
// recursion no = limits caching
options {
 directory "/var/named";
 version "not currently available";
 recursion no;
};
// zone file sections
....

BIND provides three more parameters to control caching ,max-cache-size and max-
cache-ttl neither of which will have much effect on performance in this particular
case and allow-recursion which uses a list of hosts that are permitted to use
recursion (all others are not).

Example configuration files for a authoritative-only DNS are provided.

Chapter 5. BIND (Berkeley Internet Name Daemon)

This chapter describes HOWTO install BIND 9.3.0 on a variety of OS Platforms as
well as BIND's command line arguments. Finally - OK so everyone knows this but we
didn't the first time we touched BIND (yeah we know it shows) - BIND runs as the
daemon named.

• FreeBSD Install (4.x and 5.x)
• Linux Install (Fedora Core 2)
• Windows Install (Win2K and NT 4.0)
• BIND Command Line Arguments

FreeBSD Installation

http://www.zytrax.com/books/dns/ch4/?pf=yes#stealth#stealth
http://www.zytrax.com/books/dns/apc/
http://www.zytrax.com/books/dns/ch7/queries.html#max-cache-size
http://www.zytrax.com/books/dns/ch7/queries.html#max-cache-ttl
http://www.zytrax.com/books/dns/ch7/queries.html#max-cache-ttl
http://www.zytrax.com/books/dns/ch7/queries.html#allow-recursion
http://www.zytrax.com/books/dns/ch6/index.html#authoritative
http://www.zytrax.com/books/dns/ch5/?pf=yes#fbsd#fbsd
http://www.zytrax.com/books/dns/ch5/?pf=yes#fc2#fc2
http://www.zytrax.com/books/dns/ch5/win2k.html
http://www.zytrax.com/books/dns/ch5/?pf=yes#command-line#command-line

FreeBSD 4.x and 5.1 ships with BIND version 8.x as the default or base installation.
FreeBSD 5.3 - the first of the stable 5.x series - ships with Bind 9.3.0 and some
annoying traits.

FreeBSD differentiates between a base DNS install and a normal DNS install. There
are some serious choices to be made when installing from the ports system. We
assume the theory behind this is to enable experimentation with the new software
but with the ability to return to the original DNS software by changing configuration
options in the rc.conf file if things get a bit wobbly.

You can either install BIND 9 as well as the default BIND 8 or 9 installation or you
can replace the base version. The difference is the base version is installed in
/usr/sbin (and the tools in /usr/bin) whereas a normal (non-base) installation is
made to /usr/local/sbin (and the tools to /usr/local/bin). Finally the standard version
assumes the named.conf file in /etc/namedb/named.conf whereas a non-base install
assumes /usr/local/etc/named.conf.

Notes:

1. On our very dirty FreeBSD 4.x test system - we have done a lot of very
naughty things to this poor system none of them deliberately! - we failed
to get Bind9 to install initially. The DNS make kept failing with undefined's
during compilations in exotic modules caused by incompletely generated
header files - created by the gen program which is in turn built during the
install! We eventually tracked the the problem to an install of
/usr/local/lib/libnsl which was causing the installation to assume a linux
base and hence the gen program failed to generate the headers correctly.
We deleted the library (it's not normally installed in FreeBSD) re-ran and
all was well again. The Bind9 build process is really rather horrible we have
concluded. Maybe its all essential but complex man, complex. Still it forced
us to find out more about autoconf and configure and automake and make
and gmake... We had to take a couple of days off work to recover.

BIND 9 non-base install

Assuming you have updated the ports-dns collection proceed as normal:

cd /usr/ports/dns/bind9
make install clean

The above sequence installs BIND9 in /usr/local/sbin and the tools in /usr/local/bin
and assumes the named.conf file is in /usr/local/etc.

If you want to run BIND9 at startup you must edit /etc/rc.conf as follows:

add following line if not present
named_enable="YES"
the line below must replace the line named_program="/usr/sbin/named'
if present
otherwise add it
named_program="/usr/local/sbin/named"

Either copy your named.conf file from /etc/namedb to /usr/local/etc before you
restart Bind or create a new version of the file in this directory.

To use the BIND9 tools you must precede the command with the BIND9 tool
directory path e.g.

this will run the installed Bind9 version
/usr/local/bin/dig example.com any
but this command
dig example.com
this will run the base dig version
4.x and 5.1 = Bind 8, 5.3 = Bind 9.3.0
dig example.com

BIND 9 replace base install

This assumes you either want to run the latest version of BIND as the base system -
replacing the exiting BIND - or a new install with Bind 9 as the base system.
Assuming you have updated the ports-dns collection proceed as follows:

cd /usr/ports/dns/bind9
make PORT_REPLACES_BASE_BIND9=yes install clean

The above sequence installs BIND9 in /usr/sbin and the tools in /usr/bin.

If you want to run BIND9 at startup you may need to edit /etc/rc.conf as follows:

add following line if not present
named_enable="YES"
add the line following line if not present
named_program="/usr/sbin/named"

No special action is required to run BIND9 tools:

this will run the Bind9 dig version
dig example.com

FreeBSD 5.3 Issues

By default FreeBSD 5.3 installs Bind 9 (9.3.0) as the default (or base) version but
with the following wrinkles:

1. Bind9 defaults to run in a chroot jail or a sandbox (which nows seems the
"in" term for a jail) in which all BIND9 files are maintained under
/var/named - including named.conf, log files and pid files (hard links are
provided so you can continue to find the files where you thought they
would be). To disable the sandbox add to /etc/rc.conf the following line(s):

2. named_chrootdir="" # disables jail/sandbox
3. named_pidfile="/var/run/named/pid" # Must set this in named.conf as well

4. named_chroot_autoupdate="NO" # Automatically install/update chrooted
5. # components of named. See /etc/rc.d/named.
6. named_symlink_enable="NO" # Symlink the chrooted pid file

The default value of these parameters in /etc/defaults/rc.conf are:

named_enable="YES" # Run named, the DNS server (or NO).
named_program="/usr/sbin/named" # path to named, if you want a
different one.
named_flags="-u bind" # Flags for named
named_pidfile="/var/run/named/pid" # Must set this in named.conf as well
named_chrootdir="/var/named" # Chroot directory (or "" not to auto-chroot
it)
named_chroot_autoupdate="YES" # Automatically install/update chrooted
 # components of named. See /etc/rc.d/named.
named_symlink_enable="YES" # Symlink the chrooted pid file

As always you should not update the /etc/defaults/rc.conf file but rather
edit /etc/rc.conf which will replace entries already defined in
/etc/defaults/rc.conf.

7. The system does not ship with localhost or localhost.ca (localhost.rev in
our terminology) files instead there is a script /etc/namedb/named.sh
which will help you define these files.

Fedora Core 2 Installation

This section describes the installation of BIND 9.3.0 on a clean Fedora Core 2
system. This was the first Linux system we had used used since Redhat 7.x series
and we found it significantly more windows like (this may be good or bad depending
on your predilictions for these things). It was also the first time we had ever had a
X11 graphical installation work without fooling around with XF86Config config files
(or the /etc/X11/xorg.conf as it is now). How much of this is a function of time and
better probing routines and how much the change to Xorg we have no real idea.
Never-the-less if you want a graphical system it surely was real fun (read difficult) to
configure X-Windows in the old days and it appears at least one of the objections to
Linux vs Windows has been removed if you are into GUIs. The configuration had the
following highlights:

1. We used the graphical configuration option (anaconda)
2. Automatic Partitioning was selected
3. A server install was selected
4. We selected a GNOME based desktop - we had read somewhere that RH

had elected to go with GNOME (rather than KDE) - and we were curious to
see what stage the GUI stuff had reached. We would not normally install a
GUI for a server configuration.

5. Since we were going to install BIND 9.3.0 we did not select to install DNS
from the installation menu. In fact, as we shall see, it partially installed
BIND-9.2.8-13.

6. We selected very few install options other that the development tools and
graphical internet utilities - this later to allow us to get a hold of the

http://www.zytrax.com/books/dns/ch5/?pf=yes

various RPMs and tarballs. We would use the browser for FTPing the rpms
and the former for use with the various tarballs.

Installation was very uneventful and we were up in < 30 minutes. Note: We were
using a VIA M10000 motherboard (we love these systems) based server and had
failed to install FC3 on this system so we retreated fairly quickly to FC2. We note in
passing that Fedora is pushing releases out a pretty quick rate these days. We also
noted that FC2 does not support the latest SE Linux options - well it does but they
are disabled 'cos they don't work. You need at least FC3 for this functionality or even
FC4 which is on the horizon.

BIND 9 Install

We used mozilla (the FC2 default installed browser) to obtain, from rpmfind.net,
Fedora Core Development rpms for:

1. bind-9.3.0-2.i386.rpm
2. bind-utils-9.3.0-2.i386.rpm
3. bind-libs-9.3.0-2.i386.rpm
4. bind-devel-9.3.0-2.i386.rpm

The above were all downloaded to /tmp. Before we installed we ran the following
from a terminal window:

rpm -q bind
which returned
bind-9.2.8-13

In retrospect this was surprising (since we had not requested any DNS software
during the FC2 installation procedure - FC2 install was kind enough to do it anyway)
and perhaps we should have removed this version before installing since we ended
up with -in our view - an incomplete installation. We may have had a complete install
if we had done this - maybe not. We issued the following command to upgrade the
installation:

rpm -Uvh /tmp/bind*

every thing appeared to work - there were no error messages. So far so good.

BIND 9 Configure

So we had a bright shiny FC2 GNOME destktop with BIND 9.3.0 installed in front of
us and now to get BIND up and running. We were as conversant as normal with the
details of any system that was new to us - we read nothing but figured we could
wing it and hit google if we got into trouble. We rounded up the normal suspects
looking for the default named.conf and default zone files in the normal Linux
locations being /etc/named.conf and /var/named for the zone files - typically
named.ca for the root servers - and localhost.zone and named.local (one day
someone may explain the the idea behind the naming scheme here - we suspect

drunken revelry ourselves). We discovered only a file called named.custom in /etc
which was a vestigial named.conf file. We poked around a bit more and then found a
GUI BIND configuration tool under System Settings-> Server Settings-> DNS from
the main menu (which is very windows like). After 5 minutes and a look at the help
file for system-config-bind we abandoned the GUI method. Why it could not provide
a set of default configurations to include caching server configuration (or at the very
least default local host files) is beyond us. What is the point in having a GUI utility
that forces you to know just as much as if you manually configure - and the help files
don't even hyperlink the BIND documentation - beats us. This GUI for the sake of
GUI which - IOHO - misses the point about the power of a GUI.

We manually built a simple caching server named.conf (no we didn't use vi - we used
gEdit). We FTP'd the missing root.server(called named.ca in RH Lunix distributions -
also available here as named.root) and master.localhost (called localhost.zone in RH
Lunix distributions) and localhost.rev (called named.local in RH Lunix distributions)
from another system - if you can't do this you will have to manually create them. We
always log to /var/log/named/named.txt (habit really) so we had to create and fix
the permissions for this directory using:

cd /var/log
mkdir named
chown named:named named

We then fired up BIND using:

/etc/rc.d/init.d/named start

And it failed with a segmentation fault!

syslog (/var/log/messages) showed the following message:

/usr/lib/libisc.so.9: symbol __snprint_chk, version GLIBC_2.3.4
not defined in file libc.so.6 with link time reference failed

We checked the version of GLIBC:

rpm -q glibc
glibc-2.3.3-27

Surprising that rpm forgot the dependency on glibc!! We downloaded the following
Fedora Core Development rpms - all demanded by various dependencies:

1. glibc-2.3.4-3
2. glibc-common-2.3.4-3
3. glibc-devel-2.3.4-3
4. glibc-headers-2.3.4-3
5. nscd-2.3.4-3
6. selinux-1.20.1-2

The easiest way we know to solve all those terrible dependency with rpms is to
create a new folder (in this case /tmp/glibc) - download or move all the rpms into it
and then:

http://www.zytrax.com/books/dns/ch6/#caching
ftp://ftp.internic.net./domain/

rpm -Uvh /tmp/glibc/*
glibc-2.3.3-27

We fired up bind again:

/etc/rc.d/init.d/named start

and confirmed it was running:

ps ax |grep named
1846 ? S 0:00 /usr/sbin/named -u named

Finally we verified that all was working using a dig:

dig @192.168.2.2 example.com any
where @192.168.2.2 is the new server address
forces use of new server irrespective of
resolv.conf configuration

Which returned a good result and confirmed that all was working. We wanted this
server to use our new DNS so we edited /etc/resolve.conf to include this servers IP
as the first namesever record.

. We also want bind to load at start-up time so we need to ensure the named script
in invoked - the named script was installed as usual as /etc/rc.d/init.d/named by
either the initial install or the upgrade - who knows). To do this we linked the named
start/stop script for each of the run-level directories that we might use:
ln /etc/rc.d/init.d/named /etc/rc.d/rc5.d/S68named # gui interface
ln /etc/rc.d/init.d/named /etc/rc.d/rc5.d/K68named # gui interface
ln /etc/rc.d/init.d/named /etc/rc.d/rc3.d/S68named # tty interface
ln /etc/rc.d/init.d/named /etc/rc.d/rc3.d/K68named # tty interface

The 68 in the S and K values is pretty arbitrary.

Finally we rebooted the system, checked syslog for any errors and verified that BIND
was indeed running, again with the command:

ps aux |grep named
1846 ? S 0:00 /usr/sbin/named -u named

In our follow-up research we discovered we had two other choices for installation as
well as the standard rpms:

1. caching-nameserver rpm which seems to be a package installed after BIND
has been installed.

2. bind-chroot rpms

We could find no further documentation that describes use, specification of
installation instructions for either of these packages. We're sure it must exist.

http://www.zytrax.com/books/dns/ch5/?pf=yes

BIND Command Line Arguments

This section describes the various command line options for BIND. You can get these
using man named but reproduced here for consistency.

Arg Param Notes

-c /path/to/config-
file

Absolute path to the config file (named.conf). This allows you to both change the
location and the name of this file. Default depends of OS (Linux =
/etc/named.conf, BSD = either /etc/namedb/named.conf or
/etc/local/etc/named.conf, Windows = c:\winnt\system32\dns\etc\named.conf.

-d de-bug level

-f - run in foreground (don't run as daemon) - normally only for de-bug purposes.

-g - run in foreground (don't run as daemon) and log to stderr (console) - normally
only for de-bug purposes.

-n #cpus Create #cpus worker threads to take advantage of multiple CPUs. If not
specified, named will try to determine the number of CPUs present and create
one thread per CPU. If it is unable to determine the number of CPUs, a single
worker thread will be created.

-p port-no Listen on defined port number. Default is 53. Normally only used for debugging
purposes since queries are received on port 53.

-t directory The path to the a directory to be used when named is run in a sandbox (a chroot
jail). This is conventionally set to /var/named/chroot in most systems which offer
this service as a standard configuration or option (BSD and FC2 do) but can be
set to anything you want. Must be used in conjunction with the -u argument
below to provide any meaningful security.

-u user Cause bind to suid() (change user name) after creating sockets on port 53
(which is in the privileged range of < 1024). If not present runs as user root.
Generally used only with chroot options (-t above) but most start-up scripts now
use -u named argument even if not chrooted which means that log files files will
have to have appropriate permissions set.

-v - Displays the bind version number to stdout (console) and exit.

There are two further arguments (-s and -x) which should only be used by
developers and have been omitted.

6. DNS Sample BIND Configurations

This chapter provides a number of BIND configuration samples.

6.1 Sample Configuration Overview

6.1.1 Zone File Naming Convention

6.2 Master (Primary) DNS
6.3 Slave (Secondary) DNS
6.4 Caching only DNS

http://www.zytrax.com/books/dns/ch6/?pf=yes#overview#overview
http://www.zytrax.com/books/dns/ch6/?pf=yes#convention#convention
http://www.zytrax.com/books/dns/ch6/?pf=yes#master#master
http://www.zytrax.com/books/dns/ch6/?pf=yes#slave#slave
http://www.zytrax.com/books/dns/ch6/?pf=yes#caching#caching

6.5 Forwarding (a.k.a. Proxy, Client, Remote) DNS
6.6 Stealth (a.k.a. Split or DMZ) DNS
6.7 Authoritative Only DNS
6.8 Views based Authoritative Only DNS

6.1 Sample BIND Configuration Overview

This chapter provides sample configurations and descriptions for each of the DNS
types previously described. A BIND systems consists of the following parts:

1. A named.conf file describing the functionality of the BIND system. The
entries in this file are fully described.

2. Depending on the configuration one or more zone files describing the
domains being managed. The entries in zone files are fully described. Zone
files contain Resource Records which are fully described.

3. Depending on the configuration one or more required zone files describing
the 'localhost' and root name servers.

Many BIND/DNS configurations are schizophrenic in nature - they may be 'masters'
for some zones, 'slaves' for others, forward others and provide caching services for
all comers. Where possible we cover alternate configurations or as least note the
alternate configurations.

All the configuration files are deliberately kept simple - links are provided to the
various sections that will describe more 'advanced' parameters as appropriate.
Comments are included in the files to describe functionality. The configuration used
throughout is:

1. Two name servers are used one internal (ns1) and one external (ns2) to
the domain

2. The mail service is external to the domain (provided by a third party)
3. FTP and WWW services are provided by the same host
4. There are two hosts named bill and fred
5. The host address are all in the class C private address range 192.168.0.0

(a slightly artificial case)

6.1.1 Zone File Naming Convention

Everyone has their own ideas on a good naming convention and thus something that
is supposed to be useful becomes contentious.

Here is a convention that is in daily use. Its sole merits are that it is a convention
and makes sense to its authors.

1. All zone files are placed in /var/named/. The base directory contains all the
housekeeping zone files (e.g. localhost, reverse-mapping, root.servers
etc.) with a subdirectory structure used as follows:

http://www.zytrax.com/books/dns/ch6/?pf=yes
http://www.zytrax.com/books/dns/ch6/?pf=yes#forwarding#forwarding
http://www.zytrax.com/books/dns/ch6/?pf=yes#stealth#stealth
http://www.zytrax.com/books/dns/ch6/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/ch6/?pf=yes#view#view
http://www.zytrax.com/books/dns/ch4/
http://www.zytrax.com/books/dns/ch4/
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/ch7/zone.html
http://www.zytrax.com/books/dns/ch8/
http://www.zytrax.com/books/dns/ch7/index.html#required

1. /var/named/master - master zone files
2. /var/named/slave - slave zones files
3. /var/named/views - where views are used

2. master files are named master.example.com (or master.example.net etc.)
if its a sub-domain it will be master.sub-domain.example.com etc.

3. slave zone files are named slave.example.com (or slave.example.ca etc.) if
its a sub-domain it will be slave.sub-domain.example.com etc.

4. The root server zone file is called root.servers (typically called named.ca or
named.root in BIND distributions).

5. The reverse mapping file name uses the subnet number and .rev i.e.. if the
zone is '23.168.192.IN-ADDR.ARPA' the file is called 192.168.23.rev to
save having to reverse the digits at 3AM in a blind panic.

6. The 'localhost' zone file is called master.localhost (typically called
localhost.zone on BIND distributions). The reverse mapping file is called
localhost.rev (typically called named.local in BIND distributions).

Note: For most Linux distributions you have a small overhead at the beginning to
rename the supplied files but the author considers it worthwhile in the long run to
avoid confusion.

Final point on this topic: Whatever your convention be rigorous in its application!

6.2 Master (Primary) DNS Server

The functionality of the master name server was previously described.

Master Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. 'master' DNS for example.com
2. provides 'caching' services for all other domains
3. provides recursive query services for all resolvers

The BIND 'named.conf' is as follows (click to look at any file):

// MASTER & CACHING NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
//
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses
 version "get lost";
 // optional - disables all transfers - slaves allowed in zone clauses
 allow-transfer {"none";);
};
//

http://www.zytrax.com/books/dns/ch6/?pf=yes
http://www.zytrax.com/books/dns/ch4/index.html#master

// log to /var/log/named/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
//
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3 size 2m;
 severity info;
 };
 category default{
 example_log;
 };
};
// required zone for recursive queries
zone "." {
 type hint;

 file " root.servers ";

};
zone "example.com" in{
 type master;

 file " master/master.example.com ";

 // enable slaves only
 allow-transfer {192.168.23.1;192.168.23.2;);
};
// required local host domain
zone "localhost" in{
 type master;

 file " master.localhost ";

 allow-update{none;};
};
// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
};
// reverse map for class C 192.168.0.0
zone "0.168.192.IN-ADDR.ARPA" in{
 type master;

 file " 192.168.0.rev ";

};

Notes:

6.3 Slave (Secondary) DNS Server

The functionality of the slave name server was previously described.

Slave Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. 'slave' DNS for example.com
2. provides 'caching' services for all other domains

http://www.zytrax.com/books/dns/ch6/?pf=yes
http://www.zytrax.com/books/dns/ch6/root-servers.html
http://www.zytrax.com/books/dns/ch6/mydomain.html
http://www.zytrax.com/books/dns/ch6/localhost.html
http://www.zytrax.com/books/dns/ch6/localhost-rev.html
http://www.zytrax.com/books/dns/ch6/reverse-map.html
http://www.zytrax.com/books/dns/ch4/index.html#slave

3. provides recursive query services for all resolvers

Note: Since we are defining the slave the alternate sample file is used throughout
this example configuration with all servers being internal to the domain.

The BIND 'named.conf' is as follows (click to look at any file):

// SLAVE & CACHING NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
//
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses
 version "not currently available";
 // allows notifies only from master
 allow-notify {192.168.0.1};
 // disables all zone transfer requests
 allow-transfer{"none"};
};
//
// log to /var/log//named/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
//
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3 size 2m;
 severity info;
 };
 category default{
 example_log;
 };
};
// required zone for recursive queries
zone "." {
 type hint;

 file " root.servers ";

};
// see notes below
zone "example.com" in{
 type slave;
 file "slave/slave.example.com";
 masters {192.168.0.1;};
};
// required local host domain
zone "localhost" in{
 type master;

 file " pri.localhost ";

 allow-update{none;};
};
// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
};
// reverse map for class C 192.168.0.0 (see notes)
zone "0.168.192.IN-ADDR.ARPA" IN {
 type slave;
 file "sec.192.168.0.rev";

http://www.zytrax.com/books/dns/ch6/root-servers.html
http://www.zytrax.com/books/dns/ch6/localhost.html
http://www.zytrax.com/books/dns/ch6/localhost-rev.html

 masters {192.168.0.1;};
};

Notes:

1. The slave zone file 'slave/slave.example.com' is optional and allows
storage of the current records - minimising load when named is
restarted. To create this file initially just open and save an empty file.
BIND will complain the first time it loads but not thereafter.

2. The reverse map for the network (zone 0.168.192.IN-ADDR.ARPA) is
defined as a slave for administrative convenience - you need to
maintain only one copy - but it could be defined as a 'master' with a
standard reverse map format.

3. A single 'masters' IP address is used specifying ns1.example.com.

6.4 Caching Only DNS Server

The functionality of the Caching Only name server was previously described.

Caching Only Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. The name server is not a 'master' or 'slave' for any domain
2. provides 'caching' services for all domains
3. provides recursive query services for all resolvers

The BIND 'named.conf' is as follows (click to look at any file):

// CACHING NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
//
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses
 version "not currently available";
 // disables all zone transfer requests
 allow-transfer{"none"};
};
//
// log to /var/log/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
//
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3 size 2m;
 severity info;

http://www.zytrax.com/books/dns/ch6/?pf=yes
http://www.zytrax.com/books/dns/ch4/index.html#caching

 };
 category default{
 example_log;
 };
};
// required zone for recursive queries
zone "." {
 type hint;

 file " root.servers ";

};
// required local host domain
zone "localhost" in{
 type master;

 file " master.localhost ";

 allow-update{none;};
};
// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
};

Notes:

1. The Caching only name server contains no zones (other than 'localhost')

2. omitted since it assumed that an
re

with 'master' or 'slave' types.
The reverse map zone has been
external body (ISP etc) has the master domain DNS and is therefo
also responsible for the reverse map. It could be added if required for
local operational reasons.

6.5 Forwarding (a.k.a. Proxy, Client, Remote) DNS Server

The functionality of the Forwarding name server was previously described.

Forwarding Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. The name server is not a 'master' or 'slave' for any domain

ll local resolvers (Global

The BIND 'named.conf' is as follows (click to look at any file):

2. provides 'caching' services for all domains
3. forwards all queries to a remote DNS from a

forwarding)

// FORWARDING & CACHING NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more

http://www.zytrax.com/books/dns/ch6/?pf=yes

//
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses
 version "not currently available";
 forwarders {10.0.0.1; 10.0.0.2;};
 forward only;
 // disables all zone transfer requests
 allow-transfer{"none"};
};
// log to /var/log/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3;
 severity info;
 };
 category default{
 example_log;
 };
};
// required local host domain
zone "localhost" in{
 type master;

 file " pri.localhost ";

 allow-update{none;};
};
// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
};

Notes:

1. The Forwarding name server typically contains no zones (other than
'localhost') with 'master' or 'slave' types.

ain DNS and is therefore
for

3.
 override 'recursive query' behaviour.

an

de the global options.

2. The reverse map zone has been omitted since it assumed that an
external body (ISP etc) has the master dom
also responsible for the reverse map. It could be added if required
local operational reasons.
The forward option must be used in conjunction with a forwarders
option. The value 'only' will

4. Since all queries are forwarded the root servers zone ('type hint') c
be omitted.

5. Forwarding can be done on a zone basis in which case the values
defined overri

6.6 Stealth (a.k.a. Split or DMZ) DNS Server

The functionality of the Stealth name server was previously described. The following
diagram illustrates the conceptual view of a Stealth (a.k.a. Split) DNS server system.

http://www.zytrax.com/books/dns/ch6/?pf=yes

Figure 6.1 Split/Stealth Server configuration

 a 'Stealth' (a.k.a. Split) DNS system is that thThe key issue in ere is a clear line of
demarcation betw l' or Public DNS
servers(s). The primary difference in configuration is the 'Stealth' Servers will

as an

1. The zone file for the 'Stealth' server will contain both public and private
e 'Public' server's master zone file will contain only

public hosts.

ransfer', etc. with references to the IP of the 'Stealth'
NS
 could

e

Th
be his does not
address the problem of the DNS host system being compromised and by

een the 'Internal' Stealth server(s) and the 'Externa

provide a comprehensive set of services to internal users to include caching and
recursive queries and would be configured as a typical Master DNS, while the
External server may provide limited services and would typically be configured
Authoritative Only DNS server.

There are two critical points:

hosts, whereas th

2. To preserve the 'Stealth' nature it is vital that the PUBLIC DNS
configuration does not include options such as 'master', 'allow-
notify','allow-t
server. If the Stealth servers IP where to appear in the Public D
server and its file system were to be compromised the attacker
gain more knowledge about the organisation - they can penetrated th
'veil of privacy' by simply inspecting the 'named.conf file.

ere are a number of articles which suggest that the view statement may
 used to provide similar functionality using a single server. T

simple 'named.conf' file inspection additional data about the organisation
being discovered. In a secure environment 'view' does not provide a
'Stealth DNS' solution if there is any possibility that a filesystem
compromise can happen.

uthoritative Only DNS Server 6.7 A

The functionality of the Authoritative name serv
security is not the primary requirement then th

er was previously described. If
e view statement may be used to

http://www.zytrax.com/books/dns/ch6/?pf=yes
http://www.zytrax.com/books/dns/ch6/?pf=yes#master#master
http://www.zytrax.com/books/dns/ch6/?pf=yes#authoritative#authoritative
http://www.zytrax.com/books/dns/ch6/?pf=yes#authoritative#authoritative

provide 'Authoritative only' services to external users and more comprehensive
services to internal users. An example configuration is shown below.

Authoritative Only Name Server Configuration

The BIND DNS configuration provides the following functionality:

2. does NOT provide 'caching' services for any other domains
y services for all resolvers (Iterative

The BIND any file):

1. 'master' DNS for example.com

3. does NOT provide recursive quer
only)

4. optimised for maximum performance

 'named.conf' is as follows (click to look at

// AUTHORITATIVE ONLY NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
//
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses
 version "not currently available";
 recursion no;
 // disables all zone transfer requests in this case
 // for performance not security reasons
 allow-transfer{none;};
};
//
// log to /var/log/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
//
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3 size 2m;
 severity info;
 };
 category default{
 example_log;
 };
};
zone "example.com" in{
 type master;

 file " master/master.example.com ";

};
// reverse map for class C 192.168.0.0
zone "0.168.192.IN-ADDR.ARPA" in{
 type master;

 file " 192.168.0.rev ";

};
// required local host domain
zone "localhost" in{
 type master;

 file " master.localhost ";

 allow-update{none;};
};

http://www.zytrax.com/books/dns/ch4/index.html#authoritative

// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
};

Notes:

1. The reverse mapping zone (zone "0.168.192.IN-ADDR.ARPA") was
originally omitted from this server - given the use of reverse look-up by
anti-spam systems we have restored the reverse look-up zone. It would

BIND provide max-
cache-ttl neit ect on performance in the above case
and allow-recursion which uses a list of hosts that are permitted to use recursion (all

- in a perfect world without spam - typically not be present on a
performance oriented server.

s three more parameters to control caching ,max-cache-size and
her of which will have much eff

others are not) - a kind of poor man's 'view'.

6.8 View based Authoritative Only DNS Server

The functionality of the Authoritative name server was previous
security is not the primary requirement then the view statement

ly described. If
 may be used to

provide 'Authoritative only' services to external users and more comprehensive
services to internal users.

View based Authoritative Only Name Server Configuration

The BIND DNS configuration provides the following functionality:

1. 'master' DNS for example.com
users

3. does NOT provide recursive query services for any external resolvers

The BIND):

2. does NOT provide 'caching' services for any external

(Iterative only)
4. provides 'caching' services for internal users
5. provides recursive query services for internal users

 'named.conf' is as follows (click to look at any file

// VIEW BASED AUTHORITATIVE ONLY NAME SERVER for EXAMPLE, INC.
// maintained by: me myself alone
// CHANGELOG:
// 1. 9 july 2003 - did something
// 2. 16 july 2003 - did something else
// 3. 23 july 2003 - did something more
//
// global options
options {
 directory "/var/named";
 // version statement for security to avoid hacking known weaknesses

http://www.zytrax.com/books/dns/ch6/?pf=yes

 version "not currently available";
};
//
// log to /var/log/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// BIND 8.x logging MUST COME FIRST in this file
// BIND 9.x parses the whole file before using the log
// failure messages up to this point are in (syslog) /var/log/messages
//
 logging{
 channel example_log{
 file "/var/log/named/example.log" versions 3 size 2m;
 severity info;
 };
 category default{
 example_log;
 };
};
// provide recursive queries and caching for our internal users
view "goodguys" {
 match-clients { 192.168.0.0/24; }; // our network
 recursion yes;
 // required zone for recursive queries
 zone "." {
 type hint;

 file " root.servers ";

 };
 zone "example.com" {
 type master;
 // private zone file including local hosts

 file " view/master.example.com.internal ";

 };
 // required local host domain
 zone "localhost" in{
 type master;

 file " master.localhost ";

 allow-update{none;};
 };
 // localhost reverse map
 zone "0.0.127.in-addr.arpa" in{
 type master;

 file " localhost.rev ";

 allow-update{none;};
 };
}; // end view

// external hosts view
view "badguys" {
 match-clients {"any"; }; // all other hosts
 // recursion not supported
 recursion no;
 zone "example.com" {
 type master;
 // only public hosts

 file " view/master.example.com.external ";

 };
}; // end view

Notes:

1. All the required zones must be declared in each view.
2. The 'goodguys' view contains the root.servers, 'localhost' and reverse

mapping file.

http://www.zytrax.com/books/dns/ch6/root-servers.html
http://www.zytrax.com/books/dns/ch6/mydomain.html

3. The 'badguys' view contains only the required zone files for which we

4. ew may contain an edited version of the reverse map

will answer authoritatively.
The 'badguys' vi
file.

7. 'named.conf' Parameters

This chapter describes the BIND 9.3.x named.conf file which controls the behaviour
and functionality of BIND. named.conf is the only file which is used by BIND -
confusingly there are still many references to boot.conf which was used by BIND 4 -

usr/share/docs/bind-version/misc/options (redhat) or
/usr/src/contrib/bind/doc/ (FreeBSD) and if you are using the Windows version it

t
et a feel for the things you need, it

identifies the MINIMAL values (depending on your requirement). Check the samples

 set of related statements. We don't call
'em options or clauses or substatements(!) or statements or phrases - just clauses

.conf required zone files

The c

efines one of more access control lists, groups
fied by keys, that may be referenced in view

and other clauses or statements.

controls
the rndc utility.

amed.conf file

either inside or outside a clause. Allows inclusion of external files into

key

controls clause).

ignore them.

BIND releases include a list of the latest statements and options supported. This list
is available in /

ain't there! Supported list for BIND 9.3.0.

BIND allows a daunting list of configuration entities. You need a small subset to ge
operational. Read the first two sections to g

section for configuration specific examples.

Note: We got fed-up with inconsistent terminology so we use the term clause to
describe the structure that group together a

and statements. Period. If you want to read more about our reasons. Full list of
statements.

named.conf format, structure and overview
named

lauses supported by BIND are:

acl Access Control Lists. D
of hosts or users identi

Describes and controls access to the control channel used by the
remote administrator when using

include Neither a statement nor a clause. Included here for no particularly
good reason. include can appear anywhere in a n

named.conf for administrative convenience or security reasons.

Defines shared keys used to control and authenticate operations such
as Dynamic DNS (DDNS) and the remote control channel (the

http://www.zytrax.com/books/dns/ch7/release-options.txt
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch6/
http://www.zytrax.com/books/dns/ch1/#terminology
http://www.zytrax.com/books/dns/ch7/statements.html
http://www.zytrax.com/books/dns/ch7/statements.html
http://www.zytrax.com/books/dns/ch7/statements.html
http://www.zytrax.com/books/dns/ch7/statements.html
http://www.zytrax.com/books/dns/ch7/controls.html

logging
BIND.

lwres Defines the properties of BIND when running as a lightweight

options Groups statements that control generic or global behavior and that

ther clause.

g

trusted-keys

view based on the host
address(es).

zone Defines the specific zones that your name server will support. In
ed to

Statements

Configures the location, level and type of logging that BIND performs.
Unless you are using syslog you need a logging statement for

resolver.

have scope for all zones and views unless overridden within a zone,
views or o

server Defines the properties or behavior this server will use when accessin
or responding to a defined remote server

Controls BIND functionality and behaviour

addition there are a number of special zones that you may ne
include.

 Classification

We have also classified all the statements into the following groups:

1. Queries - statements controlling query behavior
ehavior

4. Security - statements controlling security behavior
g behavior

A full

named.conf format, structure and overview

2. Transfer - statements controlling zone transfer and DDNS b
3. Operations - statements controlling operational behavior

5. Statistics - statements controlling statistical loggin

list of all statements is here.

A named.conf file can contain comments and will contain a number of clauses
unctionality and

security of the BIND server.
which group together related statements which control the f

BIND provides a number of comment formats as follows:

/* C style comment format needs opening and closing markers
** but allows multiple lines or */
/* single lines */
// C++ style comnents single line format no closing required
PERL/SHELL style comments single lines no closing required

http://www.zytrax.com/books/dns/ch7/key.html
http://www.zytrax.com/books/dns/ch7/options.html
http://www.zytrax.com/books/dns/ch7/queries.html

The whole named.conf file is parsed for completeness and correctness b
this is a major change from previous releases of BIND. Prior to the availa

efore use -
bility of (or

in the absence of) a valid logging clause failures use syslogd and are (depending on
your syslog.conf file) typically written to /var/log/messages thereafter failures are
written to any file(s) defined in your logging clause. There are some rules defined
for the clause order for BIND 9. The general clause layout of a named.conf file is
usually:

 // acl clause if required
 // defining first avoids forward name references
 acl "name" {...};
 logging {...};
 // usually requires at least a file statement
 // unless you are using the system log
 options {...};
 // other clauses/statements (as required)
 // zones clauses including 'required' zones
 zone {...};

 zone {...};

If you are using view clause the order changes significantly:

 // acl clauses if required
 // defining first avoids forward name references
 acl "name" {...};
 logging {...}
 // usually requires at least a file statement
 // unless you are using the system log
 options {...};
 // other clauses/statements (as required)
 view "first" {
 options{...};
 // zones clauses including 'required' zones
 zone {...};

 zone {...};
 };
 view "second" {
 options {...};
 // zones clauses including 'required' zones
 zone {...};

 zone {...};
 };

BIND
other separat

 is very picky about opening and closing brackets/braces, semicolons and all the
ors defined in the formal 'grammars' below, you will see in the

literature various ways to layout statements. These variations are simply attempts to

http://www.zytrax.com/books/dns/ch7/logging.html
http://www.zytrax.com/books/dns/apa/layout.html

minimise the chance of errors, they have no other significance. Use the method you
feel most comfortable with.

named.conf required zone files

Depending on your requirements BIND needs a number of zone files to allow it to

root.servers This file (called named.ca or named.root in most distributions but

 of

rver

function properly - these are in addition to any zones files that explicitly describe
master or slave zones:

renamed root.servers in this guide) defines a list of name servers
(a.root-servers.net - m.root-servers.net) where BIND can get a list
TLD servers for the particular TLD e.g. .com - perhaps that's why its
called hint. When a name server cannot resolve a query it uses the
name server list obtained to provide a referral (if its an Iterative
query) or to find an answer (if its a Recursive query). The root se
file is defined using a normal zone clause with type hint as in the
example below:
zone "." {
 type hint;
 file "root.servers";
};

The 'zone "."' is short for the root zone and means any zone for

By convention this file is usually included as the first zone statement

The file supplied with any distribution will get out of date and can be

 three

retrieved

e

localhost This zone allows resolution of the name 'localhost' to the loopback

.0.0.1.

which there is no locally defined zone (slave or master) or cached
answer.

but there is no good reason for this - it may be placed anywhere
suitable. If you are running an internal name service on a closed
network you do not need the root.servers file or 'hint' zone. Even if
the hint zone is not defined BIND 9 has a internal list which it uses.

updated from a number of locations including ICANN. You see
numerous commentators advise that this file be updated every
months or so. This is not essential. The first thing that BIND does
when loaded with a 'hint' zone' is to update the root-server list from
one of the locations in the root.server file. It will log any
discrepancies from the supplied file but carry on using its
list. Other than extra log messages there seems little advantage in
updating the root.server file unless BIND load time is vital. If you ar
curious to see a sample root.server file.

address 127.0.0.1 when using the DNS server. Any query for
'localhost' from any host using the name server will return 127
localhost is used by many applications. On its face this may seem a
little strange and you can either continue to treat the process as
magic or get some understanding of how resolvers work. The
localhost zone is defined as shown below

http://www.zytrax.com/books/dns/ch2/index.html#iterative
http://www.zytrax.com/books/dns/ch2/index.html#recursive
http://www.zytrax.com/books/dns/ch7/zone.html
ftp://ftp.internic.net./domain/
http://www.zytrax.com/books/dns/ch6/root-servers.html
http://www.zytrax.com/books/dns/apa/resolver.html

zone "localhost" in{
 type master;
 file "master.localhost";
};

In many examples and even the files supplied with BIND 9 a zone

An example master.localhost.

reverse-map Reverse mapping describes the process of translating an IP address

ing
d

0.0.127.IN- This special zone allows reverse mapping of the loopback address
s.

ge

ue

specific option allow-update statement is shown as allow-update
(none;);. Since this is BIND 9's default mode it is not required and
has been omitted.

to a host name. This process uses a special domain called IN-
ADDR.ARPA and, if it is to be supported, requires a correspond
zone file. Reverse Mapping and the required zone files are describe
in detail.

127.0.0.1 to satisfy applications which do reverse or double lookup
Any request for the address 127.0.0.1 using this name server will
return the name localhost. On its face this may seem a little stran
and you can either continue to treat the process as magic or get
some understanding of how resolvers work and the unpleasant iss
of reverse mapping. The 0.0.127.IN-ADDR.ARPA zone is defined as
shown below
zone "0.0.127

ADDR.ARPA

.in-addr.arpa" in{
 type master;
 file "localhost.rev";
};

In many examples and even the files supplied with BIND 9 a zone

An example localhost.rev.

specific option allow-update statement is shown as allow-update
(none;);. Since this is BIND 9's default mode it is not required and
has been omitted.

roblems, comments, suggestions, corrections (including broken links) or some thing

r the

P
to add? Please take the time from a busy life to 'mail us' (at top of screen), the
webmaster (below) or info-support at zytrax. You will have a warm inner glow fo
rest of the day.

http://www.zytrax.com/books/dns/ch7/zone.html#allow-update
http://www.zytrax.com/books/dns/ch3/
http://www.zytrax.com/books/dns/ch3/
http://www.zytrax.com/books/dns/ch3/
http://www.zytrax.com/books/dns/apa/resolver.html
http://www.zytrax.com/books/dns/ch7/zone.html#allow-update

Chapter 8. DNS Resource Records

DNS records have a binary or wire-format which is used in queries and responses
and a text format which is used in a zone files and is described in this chapter.

Contents

Zone File Format
DNS Generic Record Formats

DNS Record Types

A full list of DNS Record Types may be obtained from IANA DNS Parameters.

RR Value RFC Description

A 1 RFC 1035 IPv4 Address record. An IPv4 address for a host.

AAAA 28 RFC 3596 IPv6 Address record. An IPv6 address for a host.
Current IETF recommendation for IPv6 forward-
mapped zones.

A6 38 RFC 2874 Experimental. Forward mapping of IPv6
addresses. An IP address for a host within the
zone.

AFSDB 18 RFC 1183
Location of AFS servers. Experimental - special
apps only.

CNAME 5 RFC 1035 Canonical Name. An alias name for a host.

DNAME 39 RFC 2672 Experimental. Delegation of reverse addresses
(primarily IPv6).

HINFO 13 RFC 1035 Host Information - optional text data about a
host.

ISDN 20 RFC 1183
ISDN address. Experimental = special
applications only.

KEY 25 RFC 2535 DNSSEC. Public key associated with a DNS name.

LOC 29 RFC 1876 Stores GPS data. Experimental - widely used.

MX 15 RFC 1035 Mail Exchanger. A preference value and the host
name for a mail server/exchanger that will
service this zone. RFC 974 defines valid names.

NAPTR 2 RFC 3403 Naming Authority Pointer Record. Goss
misnomer. General purpose definition of rule set
to be used by applications e.g. VoIP

http://www.zytrax.com/books/dns/ch15/#rr-format
http://www.zytrax.com/books/dns/ch8/?pf=yes#zone#zone
http://www.zytrax.com/books/dns/ch8/?pf=yes#generic#generic
http://www.iana.org/assignments/dns-parameters
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/aaaa.html
http://www.zytrax.com/books/dns/apd/rfc3596.txt
http://www.zytrax.com/books/dns/ch8/a6.html
http://www.zytrax.com/books/dns/apd/rfc2874.txt
http://www.zytrax.com/books/dns/apd/rfc1183.txt
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/dname.html
http://www.zytrax.com/books/dns/apd/rfc2672.txt
http://www.zytrax.com/books/dns/ch8/hinfo.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/apd/rfc1183.txt
http://www.zytrax.com/books/dns/ch8/key.html
http://www.zytrax.com/books/dns/apd/rfc2535.txt
http://www.zytrax.com/books/dns/apd/rfc1876.txt
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/naptr.html
http://www.zytrax.com/books/dns/apd/rfc3403.txt

NS 2 RFC 1035 Name Server. Defines the authoritative name
server(s) for the domain (defined by the SOA
record) or the subdomain.

NSEC 47 RFC 3755 DNSSEC.bis. Next Domain record type. Used with
RRSIG.

NXT 30 DNSSEC Next Domain record type. Obsolete use
NSEC.

PTR 12 RFC 1035 IP address (IPv4 or IPv6) to host. Used in reverse
maps.

RP 17 RFC 1183
Information about responsible person.
Experimental - special apps only.

RRSIG 46 RFC 3755 DNSSEC.bis. Signed RRset.

RT 21 RFC 1183
Through-route binding. Experimental - special
apps only.

SOA 6 RFC 1035 Start of Authority. Defines the zone name, an e-
mail contact and various time and refresh values
applicable to the zone.

SRV 33 RFC 2872 Defines services available in zone e.g. ldap, http
etc..

SIG 24 RFC
2931//2535

DNSSEC. Signature - contains data authenticated
in a secure DNS. RFC 2535.

TXT 16 RFC 1035 Text information associated with a name. The SPF
record is defined using a TXT record but is not
(July 2004) an IETF RFC.

WKS 11 RFC 1035 Well Known Services. Deprecated in favour of
SRV.

X25 19 RFC 1183 X.25 address. Experimental - special apps only.

Zone File Directives
$ORIGIN
$INCLUDE
$TTL
$GENERATE (non-standard BIND only)

Zone File Format

The DNS system defines a number of Resource Records (RRs). The text
representation of these records are stored in zone files.

Zone file example

; zone file for example.com

http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/nsec.html
http://www.zytrax.com/books/dns/apd/rfc3755.txt
http://www.zytrax.com/books/dns/ch8/nxt.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch3
http://www.zytrax.com/books/dns/ch3
http://www.zytrax.com/books/dns/apd/rfc1183.txt
http://www.zytrax.com/books/dns/ch8/rrsig.html
http://www.zytrax.com/books/dns/apd/rfc3755.txt
http://www.zytrax.com/books/dns/apd/rfc1183.txt
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/apd/rfc2782.txt
http://www.zytrax.com/books/dns/ch8/sig.html
http://www.zytrax.com/books/dns/apd/rfc2931.txt
http://www.zytrax.com/books/dns/apd/rfc2931.txt
http://www.zytrax.com/books/dns/apd/rfc2535.txt
http://www.zytrax.com/books/dns/ch8/txt.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch9/spf.html
http://www.zytrax.com/books/dns/ch9/spf.html
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/apd/rfc1183.txt
http://www.zytrax.com/books/dns/ch8/?pf=yes#directives#directives
http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/ch8/include.html
http://www.zytrax.com/books/dns/apa/ttl.html
http://www.zytrax.com/books/dns/ch8/generate.html

$TTL 2d ; 172800 secs default TTL for zone
@ IN SOA ns1.example.com. hostmaster.example.com. (
 2003080800 ; se = serial number
 12h ; ref = refresh
 15m ; ret = update retry
 3w ; ex = expiry
 3h ; min = minimum
)
 IN NS ns1.example.com.
 IN MX 10 mail.example.net.
joe IN A 192.168.254.3
www IN CNAME joe

The above example shows a very simple but fairly normal zone file. The following
notes apply to zone files:

1. Zone files consist of Commnents, Directives and Resource Records
2. Comments start with ';' (semicolon) and are assumed to continue to the

end of the line. Comments can occupy a whole line or part of a line as
shown in the above example.

3. Directives start with '$' and are standardized - $ORIGIN and $INCLUDE
(defined in RFC 1035) and $TTL (defined in RFC 2308). BIND additionally
provides the non-standard $GENERATE directive.

4. There are a number of Resource Record types defined in RFC 1035 and
augmented by subsequent RFCs. Resouce Records have the generic
format:

5. name ttl class rr parameter

The value of 'parameter' is defined by the record and is described for each
Resource Record type in the sections below.

6. The $TTL should be present and appear before the first Resource Record
(BIND 9).

7. The first Resource Record must be the SOA record.

DNS Generic Record Format

Resource Records have two representations. A textual format described in this
chapter and a binary or wire-format described in Chapter 15.

The textual format has the following generic form:

name ttl class type type-specific-data

Where:

http://www.zytrax.com/books/dns/ch8/?pf=yes
http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/ch8/include.html
http://www.zytrax.com/books/dns/apa/ttl.html
http://www.zytrax.com/books/dns/ch8/generate.html
http://www.zytrax.com/books/dns/ch15

name The name of the node in the zone file to which this record belongs

ttl 32 bit value. The time to Live in seconds (range is 1 to x). The value
zero indicates the data should not be cached.

class A 16 bit value which defines the protocol family or an instance of the
protocol. The normal value is IN = Internet protocol (other values are
HS and CH both historic MIT protocols).

types The resource record type which determines the value(s) of the type-
specific-data field. Type takes one of the values below.

type-
specific-
data

Data content of each record is defined by the type and class values.

The generic binary or wire-format is:

name ttl class type rdlen rdata

The binary format is described in chapter 15 RR format

DNS Zone File Directives

Directives start with '$' and are standardized - $ORIGIN and $INCLUDE (defined in
RFC 1305) and $TTL (defined in RFC 2308). BIND additionally provides the non-
standard $GENERATE directive.

Directive Description

$INCLUDE Includes the defined file in-line.

$ORIGIN Defines the base name (aka label) to be used for 'unqualified' name
substitution.

$TTL Defines the default Resource Record TTL value, used if no TTL is defined
in a resource record.

Chapter 9. HOWTOs

This chapter defines HOWTOs for a number of commonly requested features.

http://www.zytrax.com/books/dns/ch8/?pf=yes
http://www.zytrax.com/books/dns/ch8/?pf=yes
http://www.zytrax.com/books/dns/ch8/?pf=yes#types#types
http://www.zytrax.com/books/dns/ch15/#answer
http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/ch8/include.html
http://www.zytrax.com/books/dns/apa/ttl.html
http://www.zytrax.com/books/dns/ch8/generate.html
http://www.zytrax.com/books/dns/ch8/include.html
http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/apa/ttl.html

HOWTO DNS Round Robin or Load Balancing

HOWTO support http://mydomain.com

HOWTO Configure Sub-domains

HOWTO Delegate a Sub-domain

HOWTO Configure Mail Server Fail-over

HOWTO Delegate Reverse Maps

HOWTO Define an SPF record

HOWTO Install BIND 9 on Fedora Core 2 (Linux)

HOWTO Install BIND 9 on FreeBSD

HOWTO Install BIND 9 on Windows

HOWTO - Configure Load Balancing

This HOWTO assumes you want the DNS server to respond with different addresses
in order to provide a simple load balancing solution. You have a choice of solutions
based on what you want to do:

Contents

Balancing Mail
Balancing Other Services
Balancing Services
Controlling the Round Robin
Effectiveness of DNS Load Balancing

Balancing Mail

Using the MX record you can balance mail in two ways. You can also configure DNS
to provide a kinda mail service fail-over.

1. Define multiple MX records with the same priority e.g.
2. ; zone file fragment
3. IN MX 10 mail.example.com.
4. IN MX 10 mail1.example.com.
5. IN MX 10 mail2.example.com.
6.
7. mail IN A 192.168.0.4
8. mail1 IN A 192.168.0.5
9. mail2 IN A 192.168.0.6

http://www.zytrax.com/books/dns/ch9/rr.html
http://www.zytrax.com/books/dns/ch9/suppress.html
http://www.zytrax.com/books/dns/ch9/subdomain.html
http://www.zytrax.com/books/dns/ch9/delegate.html
http://www.zytrax.com/books/dns/ch9/mail.html
http://www.zytrax.com/books/dns/ch9/reverse.html
http://www.zytrax.com/books/dns/ch9/spf.html
http://www.zytrax.com/books/dns/ch5/#fc2
http://www.zytrax.com/books/dns/ch5/#fbsd
http://www.zytrax.com/books/dns/ch5/win2k.html
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes#mail#mail
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes#services#services
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes#srv#srv
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes#order#order
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes#effect#effect
http://www.zytrax.com/books/dns/ch9/mail.html

The name server will deliver the MX records in the order defined by the rrset-
order and the receiving SMTP software will select one based on its algorithm.
In some cases the SMTP alogithm may work against the definition of the
rrset-order statement. Current versions of sendmail (8.13.x), Exim (4.44) and
Postfix (2.1 or 2.2) all have definitive references to indicate they randomly
select equal preference servers (Postfix allows control of the behaviour with
the smtp_randomize_addresses parameter) and consequentially may use an
address which the rrset-order has carefully tried to change! qmail, courier-
mta and Microsoft (Exchange and IIS SMTP) documentation do not appear to
have definitive references to indicate how they handle this case.

10. The alternate approach is to define multiple A records with the same name
and different IP addresses.

11. ; zone file fragment
12. IN MX 10 mail.example.com.
13.
14. mail IN A 192.168.0.4
15. IN A 192.168.0.5
16. IN A 192.168.0.6

In this case the load-balancing effect is under the control of BIND and the
rrset-order record. In order to avoid problems if the receiving mail system
does reverse look-up as a spam check then the PTR records for 192.168.0.4,
192.168.0.5, 192.168.0.6 above must all define to mail.example.com.

In all the above cases each mail server must be capable of handling and
synchronising the load for all the mail boxes served by the domain, using some
appropriate back-end to do this or by defining all but one server to be a relay or
forwarder.

Balancing Other Services

Assuming you want to load share your ftp or web services then you simply define
multiple A records with the same name and different IPs as in the example below.

; zone file fragment

ftp IN A 192.168.0.4
ftp IN A 192.168.0.5
ftp IN A 192.168.0.6
www IN A 192.168.0.7
www IN A 192.168.0.8

; or use this format which gives exactly the same result
ftp IN A 192.168.0.4
 IN A 192.168.0.5
 IN A 192.168.0.6

http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes
http://www.zytrax.com/books/dns/ch7/queries.html#rrset-order
http://www.zytrax.com/books/dns/ch7/queries.html#rrset-order
http://www.zytrax.com/books/dns/apa/reverse.html

www IN A 192.168.0.7
 IN A 192.168.0.8

The DNS will deliver all the IP addresses defined, the first IP address in the list will
be in a default round robin (controlled by the rrset 'named.conf' directive). The FTP
and WEB servers must all be exact replicas of each other in this scenario.

Balancing Services

The SRV record provides the kind of fine control that you are probably looking for to
balance load with a fine level of granularity as well as provide some level of fail-over.
It provides both priority and weight fields for the purpose. The SRV record
description contains an example illustrating this kind of flexibility.

Controlling the order of RRs

You can control the order of RR that BIND supplies in response to queries by use of a
rrset-order option which works for any set of equal records. The default behaviour is
defined to be random-cyclic - a random selection of the initial order thereafter cyclic
(round-robin). Experimentation with BIND 9.3.0 showed that the default is cyclic.

Effectiveness of DNS Load Balancing

Assuming the interest in controlling the order is to load balance across multiple
servers supporting a single service - the real question is how effective can the DNS
system be in providing this balancing?

The effects of caching will distort the effectiveness of any IP address allocation
algorithm unless a 0 TTL is used which has the effect of significantly increasing the
load on the DNS (and is not always implemented consistently). In this case the cure
may be worse than the disease Good news we have good load balancing on our web
servers. Bad news we need 17 more DNS servers!. Intuitively, and without running
any experiments to verify, we would suggest that given a normal TTL (12 hours or
more) and ANY IP allocation algorithm other than a single static list, loads should be
reasonably balanced (measured by request arrivals at destination IPs) given the
following assumptions:

1. traffic is balanced over a number of DNS caches i.e. traffic originates from a
number of ISPs or customer locations. Specifically there are no
PATHOLOGICAL patterns where 90% (or some large'ish number) of the load
originates from a particular cache/service).

http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes
http://www.zytrax.com/books/dns/ch9/rr.html?pf=yes
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/ch7/queries.html#rrset-order

2. the volume of traffic is reasonably high - since PATHOLOGICAL patterns are
more likely in small traffic volumes.

What DNS load balancing cannot do is to account for service loading e.g. certain
transactions may generate very high CPU or resource loads. For this type of control
only a local load balancer - one which measures response times - will be effective.

Finally on this topic if you still consider that a DNS solution will do the trick if only
you could control the order of IP address generation you can use the BIND 9 SDB
API to achieve the result (or one of the available libraries).

HOWTO support http://example.com

This HOWTO configures a DNS server to allow URL's of the form
http://www.example.com and http://example.com - both URL's will get to the same
web server. Seems its the cool thing to do these days.

Beware: You will also have to change your web server for this to work (change
defined below for Apache using Virtual hosts).

; zone fragment for 'zone name' example.com
....
; SOA NS MX and other stuff

; define an IP that will resolve example.com
 IN A 192.168.0.3
; you could also write the above line as
; example.com. IN A 192.168.0.3
www IN CNAME example.com. ; dot essential
; aliases www.example.com to example.com
; OR define another A record for www using same host
; this is the least number of changes and saves a CNAME
www IN A 192.168.0.3

You could do the above for any other host name e.g. ftp as long as different ports
are in use e.g. ftp://example.com would work if your FTP server was appropriately
configured and on the same host!

Apache change

Assuming you are using virtual hosts on an Apache server you will have a definition
in your httpd.conf file something like this:

<VirtualHost 10.10.0.23>
 ServerAdmin webmaster@example.com
 DocumentRoot /path/to/web/root
 ServerName www.example.com
 ErrorLog logs/error_log
 CustomLog logs/access_log common

http://www.zytrax.com/books/dns/apc/

</VirtualHost>

you need add a second definition with ServerName modified to reflect your change
as follows:

<VirtualHost 10.10.0.23>
 ServerAdmin webmaster@example.com
 DocumentRoot /path/to/web/root
 ServerName example.com
 ErrorLog logs/error_log
 CustomLog logs/access_log common
</VirtualHost>

An alternate method is to use a single <VirtualHost> with the ServerAlias directive
as shown below:

<VirtualHost 10.10.0.23>
 ServerAdmin webmaster@example.com
 DocumentRoot /path/to/web/root
 ServerName www.example.com
 ServerAlias example.com
 ErrorLog logs/error_log
 CustomLog logs/access_log common
</VirtualHost>

Notes:

1. In many cases when you type example.com in your browser, the ever
helpful browser will auto-complete (or guess) that what you really meant was
www.example.com and add the www. So after all that hard work in many
browsers example.com would have worked even if you had done nothing!

2. If you are using MS Frontpage extensions with a single <VirtualHost>
definition then the ServerName must be the name that is used to login to FP.
In the example above the FrontPage login name used would be
www.example.com. When using FP if the ServerName were example.com and
the ServerAlias were www.example.com then the FP login would fail.

HOWTO - Configure Sub-domains (a.k.a subzones)

This HOWTO is an overview of sub-domain configuration, where a sub-domain is
defined as being:

• zone (domain) name = example.com
• domain host name = bill.example.com
• sub-domain name = us.example.com
• sub-domain host name = ftp.us.example.com

You have a choice of two strategies for handing sub-domain addressing:

1. Fully delegate the sub-domain - in this case you will need one or more name
servers for the sub-domain.

2. Create a virtual (or pseudo) sub-domain - in this case you define the sub-
domain's configuration, as well as the main zone configuration, in a single
name-server and zone file.

In this HOWTO we configure a virtual sub-domain i.e. the subdomain definition is
included in a single zone file.

Zone Name Server Configuration

The primary name server for our domain is running BIND and has a named.conf file
that defines the zone.

We received some mail which suggested that we show the explicit use of the allow-
transfer statement. The samples in Chapter 6 all show this statement in use but for
anyone just using this section it is not apparent.

Zone Name-Server named.conf

The named.conf file will contain statements similar to the following fragment
defining the main zone as normal:

// named.conf file fragment
....
options {

 // stop everyone
 allow-transfer {"none";};

};
zone "example.com" in{
 type master;
 file "master/master.example.com";
 // explicitly allow slave
 allow-transfer {192.168.0.4;};
};

Zone Name-Server Zone Files

The file 'master.example.com' (or whatever naming convention you use) will contain
our domain and sub-domain configuration with, say, a couple of name servers.

; zone fragment for 'zone name' example.com
; name servers in the same zone
$TTL 2d ; zone default TT = 2 days
$ORIGIN example.com
@ IN SOA ns1.example.com. hostmaster.example.com. (
 2003080800 ; serial number

http://www.zytrax.com/books/dns/ch9/delegate.html
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-transfer
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-transfer
http://www.zytrax.com/books/dns/ch6

 2h ; refresh = 2 hours
 15M ; update retry = 15 minutes
 3W12h ; expiry = 3 weeks + 12 hours
 2h20M ; minimum = 2 hours + 20 minutes
)
; main domain name servers
 IN NS ns1.example.com.
 IN NS ns2.example.com.
; mail servers for main domain
 IN MX 10 mail.example.com.
; A records for name servers above
ns1 IN A 192.168.0.3
ns2 IN A 192.168.0.4
; A record for mail servers above
mail IN A 192.168.0.5
; other domain level hosts and services
bill IN A 192.168.0.6
....
; sub-domain definitions
$ORIGIN us.example.com.
 IN MX 10 mail
; record above could have been written as
; us.example.com. IN MX 10 mail.us.example.com.
; A record for subdomain mail server
mail IN A 10.10.0.28
; the record above could have been written as
; mail.us.example.com. A 10.10.0.28 if it's less confusing
ftp IN A 10.10.0.29
; the record above could have been written as
; ftp.us.example.com. A 10.10.0.29 if it's less confusing
....
; other subdomain definitions as required

Additional sub-domains could be defined in the same file using the same strategy.
For administrative convenience you could use $INCLUDE directives e.g.

; snippet from file above showing use of $INCLUDE
....
; other domain level hosts and services
bill IN A 192.168.0.5
....
; sub-domain definitions
$INCLUDE us-subdomain.sub
; other subdomain definitions as required

HOWTO - Delegate a Sub-domain (a.k.a. subzone)

This HOWTO configures BIND to fully delegate the responsibility for a sub-domain to
another name server. This is not the only possible method of defining sub-domains

http://www.zytrax.com/books/dns/ch8/include.html

(virtual - or pseudo - subdomains). The following defines the hierarchy we want to
create:

• zone (domain) name = example.com
• domain host name = bill.example.com
• sub-domain name = us.example.com
• sub-domain host name = ftp.us.example.com

To ease the administration load we want to fully delegate the responsibility for the
administration of the us sub-domain (and its reverse-lookup) to the the
us.example.com management group.

This HOWTO assumes that the name servers for our zone (example.com) are all in
our domain. If they are not, the actual configuration is exactly the same but you will
have to convince the name server administrator to carry out the configuration. If we
own the name servers we can do what we like!

Finally it is important to remember that as far as the internet registration authorities
and root name-servers are concerned sub-domains do not exist. All queries for
anything which ends with example.com will be directed to the name-servers for the
example.com zone. These name servers are responsible for redirecting the query to
the sub-domain name-servers.

For want of any better terminology we call our servers the domain name-server
(this one is visible to registration authorities) and the the sub-domain name-server
(essentially visible only to the domain name-server).

We received some mail which suggested that we show the explicit use of the allow-
transfer statement. The samples in Chapter 6 all show this statement in use but for
anyone just using this section it is not apparent.

domain Name Server Configuration

The name servers for our domain are running BIND and has a named.conf file that
defines the zone.

Domain Name-Server named.conf

The 'named.conf' file will contain statements similar to the following fragment
defining the main zone:

// named.conf file fragment
....
options {

 allow-transfer {"none";};

};
zone "example.com" in{
 type master;
 file "master/master.example.com";
 // explicitly allow slave

http://www.zytrax.com/books/dns/ch9/subdomain.html
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-transfer
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-transfer
http://www.zytrax.com/books/dns/ch6
http://www.zytrax.com/books/dns/ch7/

 allow-transfer {192.168.0.4;};
};
// optional - we act as the slave (secondary) for the delegated domain
zone "us.example.com" IN {
 type slave;
 file "slave/slave.us.example.com";
 masters {10.10.0.24;};
};

The optional definition of a slave (secondary) name server for our delegated
us.example.com sub-domain is probably good practice but not essential - you can
define it to be any name server.

Domain Name-Server Zone Files

The file 'master.example.com' (or whatever naming convention you use) will contain
our domain configuration with two name servers.

; zone fragment for example.com
; name servers in the same zone
$TTL 2d ; default TTL is 2 days
$ORIGIN example.com.
@ IN SOA ns1.example.com. hostmaster.example.com. (
 2003080800 ; serial number
 2h ; refresh = 2 hours
 15M ; update retry = 15 minutes
 3W12h ; expiry = 3 weeks + 12 hours
 2h20M ; minimum = 2 hours + 20 minutes
)
; main domain name servers
 IN NS ns1.example.com.
 IN NS ns2.example.com.
; main domain mail servers
 IN MX mail.example.com.
; A records for name servers above
ns1 IN A 192.168.0.3
ns2 IN A 192.168.0.4
; A record for mail server above
mail IN A 192.168.0.5
....

; sub-domain definitions
$ORIGIN us.example.com.
; we define two name servers for the sub-domain
@ IN NS ns3.us.example.com.
; the record above could have been written without the $ORIGIN as
; us.example.com. IN NS ns3.us.example.com.
; OR as simply
; IN NS ns3
; the next name server points to ns1 above
 IN NS ns1.example.com.
; sub-domain address records for name server only - glue record
ns3 IN A 10.10.0.24 ; 'glue' record
; the record above could have been written as
; ns3.us.example.com. A 10.10.0.24 if it's less confusing

Notes:

1. The above fragment makes the assumptions that ns1.example.com will act as
a slave (secondary) for the us.example.com sub-domain. If not we could have
defined other name-servers in the same way.

2. The A record for ns3.us.example.com for the sub-domain is the so-called glue
record and MUST be present. It is necessary to allow a DNS query to succeed
in a single transaction - which always requires an IP address - which is always
defined in an A or AAAA RR.

Note: All name server queries require both a name and an IP address (a glue
record) in the response (answer). In the case of the gTLD or ccTLD servers
they provide the glue (IP address) record. These glue records were captured
when the domain was registered. The A record for the name server
ns2.example.com is not strictly speaking a glue record but the A record for
ns1.example.com IS a glue record for us.example.com but NOT, strictly
speaking, for example.com.

Sub-domain Configuration

Assuming our sub-domain name-server is also running BIND we will have the
following configuration.

Sub-domain named.conf

The 'named.conf' file will contain statements similar to the following fragment
defining the sub-domain zone:

// named.conf file fragment
....
options {

 allow-transfer {"none";};

};
zone "us.example.com" in{
 type master;
 file "master/master.us.example.com";
 // explicitly allow slave
 allow-transfer {192.168.0.3;};
};

Sub-domain Zone Files

The file master.us.example.com (or whatever convention you use) will contain our
sub-domain configuration with, say, a couple of name servers.

; zone fragment for sub-domain us.example.com
; name servers in the same zone
$TTL 2d ; default TTL = 2 days
$ORIGIN us.example.com.
@ IN SOA ns3.us.example.com. hostmaster.us.example.com. (
 2003080800 ; serial number
 2h ; refresh = 2 hours
 15M ; update retry = 15 minutes
 3W12h ; expiry = 3 weeks + 12 hours
 2h20M ; minimum = 2 hours + 20 minutes
)
; sub-domain name servers

 IN NS ns3.us.example.com.
 IN NS ns1.example.com. ; see notes below
; sub-domain mail server
 IN MX 10 mail.us.example.com.
; above record could have been written as
; IN MX 10 mail
; A records for name servers above
ns3 IN A 10.10.0.24
ns1.example.com. IN A 192.168.0.3 ; 'glue' record
; A record for mail server above
mail IN A 10.10.0.25
; next record defines our ftp server
ftp IN A 10.10.0.28
; the record above could have been written as
; ftp.us.example.com. A 10.10.0.24 if it's less confusing
....
; other sub-domain records
....

Notes:

1. The above fragment makes the assumptions that our main zone name server

2. glue record and is not strictly

3. d in the

will act as a slave (secondary) for us.example.com. If not we could have
defined other name-servers in the same way.
The A record for ns1.example.com is a so-called
necessary since this address will already be available from the initial query to
the example.com domain i.e. all queries will descend the domain name
hierarchy and already have received the IP for ns1.example.com.
Our ftp service host (and any others we may define) are only define
sub-domain name server and are not visible in the zone name-server.

HOWTO - Configure Mail Servers fail-over

This HOWTO configures a DNS server to provide a 'kinda' fail-over service when the

Define MX records with different priorities e.g.

primary mail service is off-line.

; zone file fragment
 IN MX 10 mail.example.com.
 IN MX 20 mail.example.net.
....
mail IN A 192.168.0.4

If the most preferred mail server (mail.example.com) is down, mail should be sent to

ure

the alternate server (mail.example.net). The server mail.example.net, which in the
fragment above is external to the domain and ideally at a separate geographic
location, would typically configured as a simple relay (or forwarder) with a very long
retry time in which case it will accept the mail and try and relay it to the proper
destination (mail.mydomain.com) over the next six weeks or whatever you config
the retry time to be.

Beware: There are a number of articles around the web which suggest that most
mail systems do a poor job of using the 'preference system of the MX record.

HOWTO Delegate Reverse Subnet Maps

This HOWTO configures delegated reverse subnet maps as defined in RFC 2317 to
support classless routing. There is a longer explanation of reverse mapping which
covers the same topic.

Delegated reverse mapping requires the support or participation of your ISP or the
Authority that assigned the static IP address range.

Note: When doing a reverse name look-up using your local DNS server before this
change would resolve locally without requiring any external DNS access. The
configuration defined below will always require to access the zone master for the
reverse mapped address IN-ADDR.ARPA domain. If this change has not taken place
or has not propagated you will get errors from 'nslookup' or 'dig' operations.

The following fragment shows the 192.168.23.64/27 subnet as a fragment of a
reverse map zone file located at the ISP or other Authority that assigned the subnet:

$ORIGIN 23.168.192.IN-ADDR.ARPA.
@ IN SOA ns1.isp.com. root.isp.com. (
 2003080800 ; serial number
 2h ; refresh
 15m ; update retry
 2w ; expiry
 3h ; minimum
)
 IN NS ns1.isp.com.
 IN NS ns2.isp.com.
; definition of other IP address 0 - 63
....

; definition of our target 192.168.23.64/27 subnet
; name servers for subnet reverse map
64/27 IN NS ns1.mydomain.com.
64/27 IN NS ns2.mydomain.com.
; IPs addresses in the subnet - all need to be defined
; except 64 and 95 since they are the subnets
; broadcast and multicast addresses not hosts/nodes
65 IN CNAME 65.64/27.23.168.192.IN_ADDR.ARPA. ;qualified
66 IN CNAME 66.64/27 ;unqualified name
67 IN CNAME 67.64/27
....
93 IN CNAME 93.64/27
94 IN CNAME 94.64/27
; end of 192.168.23.64/27 subnet
.....
; other subnet definitions

http://www.zytrax.com/books/dns/apd/
http://www.zytrax.com/books/dns/apa/classless.html
http://www.zytrax.com/books/dns/ch3/

The 64/27 construct is an artificial (but legitimate) way of constructing the additional
space to allow delegation. This is not technically a domain name and therefore can
use '/' (which is not allowed in a domain name) but it could be replaced with say '-'
e.g. 64-27 if that makes you more comfortable.

The zone file at the DNS serving the Reverse Map (ns1.mydomain.com in the above
example) looks like this:

$ORIGIN 64/27.23.168.192.IN-ADDR.ARPA.
@ IN SOA ns1.mydomain.com. root.mydomain.com. (
 2003080800 ; serial number
 2h ; refresh
 15m ; update retry
 2w ; expiry
 3h ; minimum
)
 IN NS ns1.mydomain.com.
 IN NS ns2.mydomain.com.
; IPs addresses in the subnet - all need to be defined
; except 64 and 95 since they are the subnets
; broadcast and multicast addresses not hosts/nodes
65 IN PTR fred.mydomain.com. ;qualified
66 IN PTR joe.mydomain.com.
67 IN PTR bill.mydomain.com.
....
93 IN PTR web.mydomain.com.
94 IN PTR ftp.mydomain.com.
; end of 192.168.23.64/27 subnet

Now you have to change your reverse map zone names in the name.conf file to
reflect the above change. The following examples shows the reverse map declaration
before and after the change to reflect the configuration above:

// before change the reverse map zone declaration would look
// something like this
zone "23.168.192.in-addr.arpa" in{
 type master;
 file "192.168.23.rev";
};

Change to reflect the delegated zone name.

// after change the reverse map zone declaration would look
// something like this
zone "64/27.23.168.192.in-addr.arpa" in{
 type master;
 file "192.169.23.rev";
};

HOWTO - Define an SPF Record

This section defines HOWTO configure a Sender Policy Framework (SPF) record for a
domain and its mail servers.

SPF was initiated by Meng Weng Wong of pobox.com and is being proposed (as of
July 2004) as an IETF standard to enable validation of legitimate sources of email.
The information below is NOT complete please see the SPF web site which contains
further information or the draft RFC.

Briefly the design intent of the SPF record is to allow a receiving MTA (Message
Transfer Agent) to interrogate the Name Server of the domain which appears in the
email (the sender) and determine if the originating IP of the mail (the source) is
authorized to send mail for the sender's domain.

The SPF information is contained in a standard TXT RR (though a new RR type may
be allocated if and when SPF reaches standardization by the IETF).

If a SPF (TXT) RR exists and authorizes the source IP address the mail can be
accepted by the MTA. If the SPF (TXT) RR does not authorize the IP address the mail
can be bounced - it did not originate from an authorized source for the sender's
domain. If the domain does not have an SPF RR the situation is no worse than
before.

Many Open Source MTAs have already been modified to use the SPF record and there
is no down-side and plenty of potential up-side to implement the proposed record
format now.

We use the following terminology to try and simplify the descriptions below:

1. sender - the full email address of the originator of the mail item (typically
uses return-path in the actual SPF checks)

2. source-ip - the IP address of the SMTP server trying to send this message
3. sender-domain the domain name part of the sender's email address e.g.

assume the sender is info@example.com the sender-domain is
example.com.

The SPF record defines one or more tests to carry out to verify the sender. Each test
returns a condition code (pre below). The first test to pass will terminate SPF
processing.

TXT RR Format

The standard TXT record format is defined as:

name ttl class rr text

The SPF record is entirely contained in the text field (a quoted string). SPF defines
the contents of the quoted string as follows:

http://spf.pobox.com/
http://www.zytrax.com/books/dns/ch9/june-2005.txt
http://www.zytrax.com/books/dns/ch8/txt.html

v=spf1 [[pre] type] ... [mod]

Where:

Parameter Description

v=spf1 Mandatory. Defines the version being used. Currently the only version
supported is spf1
.

pre Optional (defaults to +). pre defines the code to return when a match
occurs. If a test is conclusive either add + or omit (defaults to +). If a
test might not be conclusive use "?" or "~" (tilde). "-"(minus) is
typically only used with -all to indicate that if we have had no previous
matches - fail.
Value Description

+ Default. Pass.

- Fail.

~ Softfail.

? Neutral.

type Defines the mechanism type to use for verification of the sender. May
take one of the following values:

Basic Mechanisms

These types do NOT define a verification mechanism but affect the
verification sequence.

1. include - Recurse (restart) testing using supplied domain. The
sender-domain is replaced with the included domain name.
Example:

2. ; spf record for example.com
3. example.com. IN TXT "v=spf1 include:example.net -all"
4. ; use the SPF details for example.net
5. ; in the above case to replace example.com's SPF
6. ; or
7. example.com. IN TXT "v=spf1 mx include:example.net -all"
8. ; additive - use MX RR for example.com
9. ; AND if that fails use example.nets's SPF
10.
11. all - The all type terminates processing (but may be

optionally followed by a mod value). It is defined to
be optional but it is a Good Thing™ to include it. It
is normally present in the form -all to signify that
if processing reaches this point without a prior match
the result will be fail. But if you are not sure that
the tests are conclusive you could use ?all which
would allow mail to be accepted even if all previous
checks failed.

12.

http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#v#v
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#pre#pre
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#type#type
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#mod#mod
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#mod#mod

Sender Mechanisms

These types define a verification mechanism.

1. ip4 - use IP Version 4 addresses e.g. 192.168.3.0 for verification
2. ip6 - use IP Version 6 addresses for verification
3. a - use DNS A RRs for verification
4. mx - use DNS MX RRs for verification
5. ptr - use DNS PTR RRs for verification
6. exists - test for existence of domain

Value Description

a
a:domain
a:domain/cidr
a/cidr

In its base form this uses the sender-domain to find an A RR(s) to
verify the source. This form relies on an A RR for the domain e.g.

; fragment for example.com
$ORIGIN example.com.
example.com. IN TXT "v=spf1 a -all"
; needs domain A record
@ IN A 192.168.0.3
; functionally the same as
example.com. IN A 192.168.0.3

The form a/cidr applies the test to the cidr (or IP refix or slash) range
of the sender-domain's A RR.

The form a:domain replaces sender-domain with domain's A RR for
verification. This does NOT use domain's SPF record(s) (use include
for that). The domain form may use macro-expansion features.
Example:

; fragment for example.net
$ORIGIN example.net.
@ IN TXT "v=spf1 a:example.com -all"
; will use a single A query to example.com
; which may not yield the result expected unless
; example.com has an A record as below
@ IN A 192.168.0.3
; functionally the same as
example.com. IN A 192.168.0.3

can take a host name format as shown below:

; fragment for example.net
$ORIGIN example.net.
@ IN TXT "v=spf1 a:mail.example.com -all"
; will use a single A query for mail.example.com

The form a:domain/cidr applies the cidr range to the IP address
obtained from the A query e.g.

; fragment for example.net
$ORIGIN example.net.
@ IN TXT "v=spf1 a:mail.example.com/27 -all"
; will use a single A query for mail.example.com

http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#ip4#ip4
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#ip6#ip6
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#a#a
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#mx#mx
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#ptr#ptr
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#exists#exists
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#include#include
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#macro#macro

Any of the 32 IP addresses that contain mail.example.com will pass.
e.g. if the source-ip is 192.168.0.25 and the A RR for
mail.example.net is 192.168.0.2 then the test will pass.

mx
mx:domain
mx:domain/cidr
mx/cidr

This basic form without any extensions uses the MX RR of the sender-
domain to verify the mail source-ip. The MX record(s) return a host
name from which the A record(s) can be obtained and compared with
the source-ip. The form mx/cidr applies the IP Prefix or slash range
to the A RR address. With any of the domain extensions the MX record
of the designated (substituted) domain is used for verification. The
domain form may use macro-expansion features.

Warning Remember the MX RR defines the receiving MTA. If this is
not the same host(s) as the sending (SMTP) MTA tests based on an mx
type will fail. Examples:

; fragment for example.com
$ORIGIN example.com.
 IN TXT "v=spf1 mx:example.net -all"
; verify sender using exmple.net MX and A RRs
; fragment for example.com
$ORIGIN example.com.
 IN TXT "v=spf1 mx:/26 -all"
; verify sender using exmple.com MX and A RRs
; and use 16 address range

ptr
ptr/domain

Use the source-ip's PTR RR and a reverse map query. The AA RR for
the host is then obtained. If this IP matches the sender-ip AND the
sender-domain is the same as the domain name of the host obtained
from the PTR RR then the test passes. The form ptr:domain replaces
the sender-domain with domain in the final check for a valid domain
name. The domain form may use macro-expansion features. The PTR
record is the least preferred solution since it places a load on the IN-
ADDR.ARPA (IPv4) or IPV6.ARPA reverse-map domains which generally
have less capacity than the gTLD and ccTLD domains. Examples:

; fragment for example.com
$ORIGIN example.com.
@ IN TXT "v=spf1 ptr -all"
; the effect is to allow any host which is reverse mapped
; in the domain to send mail

ip4:ipv4
ip4:ipv4/cidr

In its basic form defines an explicit ipv4 address to verify the mail
source-ip. If the source-ip is the same as ipv4 the test passes. May
optionally take the form ipv4/cidr to define a valid IP address range.
Since this type incurs the least additional load on the DNS the current
draft of the proposed RFC recommends this format. Examples:
; fragment for example.com
$ORIGIN example.com.
@ IN TXT "v=spf1 ip4:192.168.0.2 -all"
; if source-ip is 192.168.0.2 test passes
; cidr format
@ IN TXT "v=spf1 ip4:192.168.0.2/27 -all"
; if source-ip is in range 192.168.0.1
; to 192.168.0.31 test passes

ip6:ipv6
ip6:ipv6/cidr

In its basic form defines an explicit ipv6 address to verify the mail
source-ip. If the source-ip is the same as ipv6 the test passes. May
optionally take the form ipv6/cidr to define a valid IP address range.
Since this type incurs the least additional load on the DNS the current
draft of the proposed RFC recommends this format. Examples:
; fragment for example.com
$ORIGIN example.com.

http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#domain#domain
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#macro#macro
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch3
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#macro#macro

@ IN TXT "v=spf1 ip6:2001:db8::10 -all"
; if source-ip is 2001:db8:0:0:0:0:0:10 test passes
; cidr format
@ IN TXT "v=spf1 ip4:2001:db8::10/120 -all"
; if source-ip is in range 2001:db8:0:0:0:0:0:0
; to 2001:db8:0:0:0:0:0:FF test passes

exists:domain The existence (any valid A RR) of the specified domain allows the test
to pass. Domain may use macro-expansion features.

mod Two optional record modifiers are defined. If present they should follow
the last type directive i.e. after the all. The current values defined are
as follows:

Modifier Description

redirect=domain Redirects verification to use the SPF records of the defined domain.
Functionally equivalent to include but can appear on its own (without
a terminating all) or can placed after the all which means "if all the
previous test fail try this redirect". Examples:
; fragment for example.com
$ORIGIN example.com.
@ IN TXT "v=spf1 ip4:192.168.0.2 -all
redirect=example.net"
; if source-ip is 192.168.0.2 test passes
; if it fails redirect to example.net
; OR single redirect
@ IN TXT "v=spf1 redirect=example.net"
; only use example.net SPF record

exp=txt-rr The exp record if present should come last in a SPF record (after the
all if present). It defines a DNS name whose TXT record's text may be
returned with any failure message. Example:

; domain SPF record
 IN TXT "v=spf1 mx -all exp=getlost.mydomain.com"
; the getlost TXT record
getlost IN TXT "You are not authorized to send mail for
the domain"

The syntax allowed by this record is significantly more complex (see
macro-expansion below.

Macro-Expansion

SPF defines a number of macro-expansion features as defined below:

Modifier Description

%(c) Only allowed in TXT records referenced by the exp field. The IP of the receiving MTA.

%(d) The current domain normally the sender-domain %(o) but replaced by the value of any
domain argument in the type above.

%(h) The domain name supplied on HELO or EHLO, normally the hostname of the sending SMTP
server.

%(i) sender-ip The IP of SMTP server sending mail for user info@example.com.

%(l) replace with local part of sender e.g. if sender is infor@example.com local part is info.

http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#macro#macro
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#include#include
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#all#all
http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#macro#macro

%(o) The sender-domain e.g. if email address is info@example.com the sender-domain is
example.com.

%(p) The validated domain name. The name obtained using the PTR RR of the sender-ip. Use of
this macro will require an additional query unless a ptr type is used.

%(r) Only allowed in TXT records referenced by the exp field. The name of the host performing the
SPF check. Normally the same as the receiving MTA.

%(t) Only allowed in TXT records referenced by the exp field. Current timestamp.

%(s) Replace with sender email address e.g. info@example.com

%(v) Replaced with "in-addr" if sender-ip is an IPv4 address and "ipv6" if an IPv6 address. Used to
construct reverse map strings.

The above macros may take one or more additional arguments as follows:

1. r - Indicates reverse the order of the field e,g, %(or) would be displayed as
com.example and %(ir) would display 192.168.0.2 as 2.0.168.192. The
normal split used "." (dor) as the separator but any other separator may be
used e.g. %(sr@) would display example.com.info, when fields are rejojned
they will always use a "." (dot).

2. digit - the presence of a digit (range 1 to 128) limits the number of right most
elements displayed e.g. %(d1) displays com only from example.com but
%(d5) would display up to five right hand element up to the maximum
available e.g. example.com.

Examples

Example 1

Example 1: Assumes a single mail server which both sends and receives mail for the
domain.

; zone file fragment for example.com
$ORIGIN example.com.
 IN MX 10 mail.example.com.
....
mail IN A 192.168.0.4
; SPF stuff
; domain SPF
example.com. IN TXT "v=spf1 mx -all"
; mail host SPF
mail IN TXT "v=spf1 a -all"

Notes:

1. the domain SPF is returned from a sender-domain query using the sender's
email address e.g. sender = info@example.com sender-domain =
example.com. The SPF record only allows the MX host to send for the domain.

2. the mail host SPF is present in case the receiving MTA uses a reverse query
to obtain the source-ip host name and then does a query for the SPF record
of that host. The SPF record states that the A record of mail.example.com
alone is permitted to send mail for the domain.

If the domain contains multiple MX servers the domain SPF would stay the same but
each mail host should have a SPF record.

Example 2

Example 2: Assumes the domain will send mail through an offsite mail server e.g. an
ISP:

; zone file fragment for example.com
$ORIGIN example.com.
 IN MX 10 mail.offsite.com.
....
; SPF stuff
; domain SPF
example.com. IN TXT "v=spf1 include:offsite.com -all"
; WARNING: offsite.com MUST have a valid SPF definition

Notes:

1. This format should be used IF AND ONLY IF you know that offsite.com has a
valid SPF configuration.

2. include recurses (restarts) verification using the SPF records for offsite.com.
Mail configuration changes are localised at offsite.com which may simplify
administration.

3. include could have been replaced with redirect.

Example 3

Example 3: Assumes we are the host for a number of virtual mail domains and that
we can send mail from any host in our subnet.

Zone file fragment for one of the virtual mail domains:

; zone file fragment for vhost1.com
$ORIGIN example.com.
 IN MX 10 mail.example.com.
....
; SPF stuff
; domain SPF
vhost1.com. IN TXT "v=spf1 include:example.com -all"

Notes:

1. the domain SPF is returned from a sender-domain query using the sender's
email e.g. sender = info@vhost1.com, sender-domain = vhost1.com. The
SPF record recurses to the DOMAIN example.com for verification.

Zone file for example.com

; zone file fragment for example.com
 IN MX 10 mail.example.com.
....
; SPF stuff

http://www.zytrax.com/books/dns/ch9/spf.html?pf=yes#redirect#redirect

; domain SPF - any host from
; 192.168.0.1 to 192.168.0.30 (32 - bcast and mcast = 30)
; can send mail
example.com. IN TXT "v=spf1 ip4:192.168.0.3/27 -all"
; mail SPF
mail IN TXT "v=spf1 ip4:192.168.0.3/27 -all"

Notes:

1. the domain SPF is returned from a sender-domain query using the sender's
email e.g. sender = info@example.com sender-domain = example.com.
The SPF record allows any host in the 32 address subnet which contains
192.168.0.3 to send mail for this and any host virtual domain e.g
virtual1.com in the above example. NOTE: while /27 allows 32 IP addresses
subnet rules remove 192.168.0.0 and 192.168.0.31 as the multicast and
broadcast addresses respectively. [read more about IPv4 Classes]

2. In the above scenario we could have used a slightly shorter version such as:
3. example.com. IN TXT "v=spf1 mx/27 -all"

This record has the same effect as a:192.168.0.3/27 above but will cost a
further DNS look up operation whereas the IP is already available.

4. The above scenario relies on the fact that customers will only send mail via
the domain example.com i.e. they will NOT send via another ISP at home or
when travelling. If you are not sure if this is the case you can terminate the
sequence with ?all which says kinda pass (soft fail) and let the mail go
through - perhaps logging the incident to capture statistics.

If the domain contains multiple MX servers the domain SPF would stay the same but
each mail host should have a SPF record.

Example 4

Example 4: Assumes that the domain never sends mail from ANY location - ever.
Typically you would do this to prevent bogus mail for everyone else - it is a supreme
act of self-sacrifice!

; zone file fragment for example.com
; zone does NOT contain MX record(s)
...
; SPF stuff
; domain SPF
example.com. IN TXT "v=spf1 -all"

Notes:

1. This SPF test will always fail since the only condition it tests is the all which
results in a fail.

http://www.zytrax.com/tech/protocols/ip-classes.html

Example 5

Example 4: Uses various macro expansion features:

; zone file fragment for example.com
$ORIGIN example.org.
 IN MX 10 mail.example.com.
....
; SPF records
; domain SPF
@ IN TXT "v=spf1 exists:%(ir).%(v).arpa -all ext=badguy.example.com"
badguy IN TXT "The email from %(s) using SMTP server at %(i)
 was rejected by %(c) (%(r)) at %(t) because it failed
 the SPF records check for the domain %(p).
 Please visit http://abuse.example.com/badguys.html
 for more information"

Notes:

1. The badguy TXT above is split across multiple lines for presentation reasons
only and should appear on a single line in the zone file.

2. The exists:%(ir).%(v).arpa tests is a great example BUT IT WILL NOT WORK
because the exists type uses an A RR. But it's a great example to show the
power of macro-expansion and we can't think of a better one. Sorry about
that.

Chapter 5. Bind on Win2k and NT 4.0

• FreeBSD Install (4.x and 5.x)
• Linux Install (Fedora Core 2)
• Windows Install NT 4.0
• Windows Install Win 2000 Server

WinNT 4.0 and Win2k Installation

We decided that it was time to try out BIND 9 on our aging NT 4.0 desktops and a
Win2000 server that we keep around for some light relief. We primarily wanted to
use dig consistently across all our systems so that we could forget nslookup and this
seemed like the ideal way to do it and provide some local DNS cache services as well
on all our remaining NT 4.0 desktops. We had a couple of problems mostly due to
Bind's normal paucity of documentation. Still its good to see that some things in life
don't change.

Install on NT 4.0

We took a low risk approach to set up a simple caching DNS server and defaulted
everything. This was what we did:

http://www.zytrax.com/books/dns/ch5/index.html#fbsd
http://www.zytrax.com/books/dns/ch5/index.html#fc2
http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes#win2k#win2k
http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes#2k#2k

1. We down-loaded Bind 9.3.0.zip from the ISC site and unzipped it into a
temporary location. So far so good.

2. We found the readme1st.txt file in the temporary install directory and took
the 15 seconds required to read this copious document. The most
interesting thing at this point is that Bind9 is going to run as an NT service
and that it appears it will require a unique NT account, passwords and
special permissions. Very unwindows like.

3. From here on out we are logged in as a local administrator on the NT 4.0
PC.

4. We added a new user account called named (the default assumed by the
BIND install) using Start->programs->administrative tools->user
manager. Entered passwords and set user can't change password and
password never expires options. Otherwise it's a normal account so far -
but it requires NT service logon capabilities. So we have a little more work
to do. We subsequently installed BIND 9 on Windows 2000 and discovered
the install process will create the required named account automatically so
you can bypass this step.

5. In User Manager select User Rights from Policies menu, check the Show
Advanced User Rights and then find and select the log on as a service right
and click the Add button.

6. Select the local PC if you are working in a domain and because, by default,
it only shows the groups click Show Users then select the named account
and click the Add button on this window to assign the log on as a service
to the named account. We did not remove any rights so we suspected the
BIND install would object during the install because the readme1st.txt file
suggests that if there any more permissions than the one required (log on
as a service) it will send you a little message. If you are allergic to
messages and have a couple of minutes to spare you can remove the
excess rights. We didn't - we love chatty messages and were quite looking
forward to it! Kill all the User Manager windows and we're done with this
phase. Again as we subsequently discovered the install process
automatically creates the relevant account with the correct permissions.

7. Back to our temporary directory and double click the BindInstall.exe and
up pops this screen:

http://www.zytrax.com/books/dns/ch5/readme1st.txt
http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes#2k#2k

We just added the password for the named account and noted in passing
that the default install directory is c:\Winnt\system32\dns (or
%SystemRoot%\system32\dns in windows terms) and clicked the Install
button. The install appeared to run like a dream. And yes, we got our little
message about too many permissions. It was the highlight of the install.
Note: We did not check the box labelled Start BIND Service after Install,
we have some more stuff to do before run the service.

8. We set up a directory called c:\Winnnt\system32\dns\etc\named and then
created three sub-directories called run, zones and log. You can do this
anywhere but we were a little suspicious of Bind9's ability to figure out
Windows paths so we did it this way.

We placed our master.localhost, localhost.rev and root.servers files in the
zones sub-directory and the named.conf file below into the
%SystemRoot%\system32\dns\etc directory.

// generated by ME
// CACHING NAME SERVER for NT 4.0
// 1. dec 2004
// a. changed directory statement to windows format
// b. changed location of log file to named\log\named.log
// c. changed location of all zone files to named\zones

// d. added pid-file directive in named\run\named.pid
options {
 directory "C:\Winnt\system32\dns\etc";
 // version added for security otherwise may be able to exploit known
weaknesses
 version "not currently available";
 pid-file "named\run\named.pid";
 recursion yes;
};

// log to named\log\named.log events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// failure messages up to this point are in the event log
 logging{
 channel my_log{
 file "named\log\named.log" versions 3 size 250k;
 severity info;
 };
 category default{
 my_log;
 };
};
zone "." {
 type hint;
 file "named\zones\root.servers";
};

zone "localhost" in{
 type master;
 file "named\zones\master.localhost";
 allow-update{none;};
};
zone "0.0.127.in-addr.arpa" in{
 type master;
 file "named\zones\localhost.rev";
 allow-update{none;};
};

9. We used windows explorer to give the account named full control over the
directory c:\Winnt\system32\dns with the inherit property set so all lower
directories pick up the same permissions. The install process does not set
permissions - as we subsequently discovered on Windows 2000 - so this
step is essential.

10. We are lazy and forgetful so decided to add the BIND9 bin directory
(%SystemRoot%\system32\dns\bin) to the Windows path since we are
going to use dig for sure on a regular basis and in a couple of days we will
have forgotten where is it - scrub that idea - in a couple of hours we will
have forgotten where it is. So Start->settings->control panel->system and
check the environment tab. Find and click the Path and Add the following
(or wherever your BIND9 bin directory is).

11. ;%SystemRoot%\system32\dns\bin

Click Set and exit. Note: the separator on windows is a semi-colon not a
colon as in the *nix world. Cost us 10 minutes with a magnifying glass to
fix that one.

12. Time to start the service. Start->settings->control panel->services. Select
ISC BIND and try and start it. It failed for us with a login error. So we re-
entered the password (using User Manager) and tried again and it worked.

The standard install is set for automatic start so we re-booted the PC and
checked that named.exe was started with Task Manager. It was.

13. Finally we opened a dos box and tried a dig command. Seemed to run a bit
slowly but we got our results. And yes we had already forgotten where we
installed bind. Thank goodness we set the path variable.

We have not used the service frequently but we were pleasantly surprised at how
easy it was to install. Task Manager shows about 380K of memory usage which is by
no means excessive. If you want consistently of DNS across a mixed Windows and
*nix environment using BIND is the only way to do it.

Win2k Installation

This section describes installation of BIND 9.3.0 on Windows 2000 server.

Having setup BIND on NT 4.0 we decided to install BIND on a server - again as a
simple caching server. This was what we did:

1. We down-loaded Bind 9.3.0.zip from the ISC site and unzipped it into a
temporary location. So far so good.

2. We found the readme1st.txt file in the temporary install directory and took
the 15 seconds required to read this copious document. The most
interesting thing at this point is that Bind9 is going to run as an NT service
and that it appears it will require a unique NT account, passwords and
special permissions. The install process creates the required account but
we manually set the account up under NT 4.0 entirely due to a misplaced
mistrust in BIND's install process and because the documentation did not
tell us it would do so.

3. In our temporary directory we double clicked BindInstall.exe and up pops
this screen:

http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes
http://www.zytrax.com/books/dns/ch5/readme1st.txt
http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes#nt4#nt4

The password entry is optional - you can leave it blank or not as you
choose - we left it blank (but see NT 4.0). We noted in passing that the
default install directory is c:\Winnt\system32\dns (or
%SystemRoot%\system32\dns in windows terms) and clicked the Install
button. The install appeared to run like a dream. We did not check the box
labelled Start BIND Service after Install, we have some more stuff to do
before run the service.

4. We set up a directory called c:\Winnnt\system32\dns\etc\named and then
created three sub-directories called run, zones and log. You can do this
anywhere but we were a little suspicious of Bind9's ability to figure out
Windows paths so we did it this way.

We placed our master.localhost, localhost.rev and root.servers files in the
zones sub-directory and the named.conf file below into the
%SystemRoot%\system32\dns\etc directory.

// generated by ME
// CACHING NAME SERVER for NT 4.0
// 1. dec 2004
// a. changed directory statement to windows format
// b. changed location of log file to named\log\named.log
// c. changed location of all zone files to named\zones

http://www.zytrax.com/books/dns/ch5/win2k.html?pf=yes#nt4#nt4

// d. added pid-file directive in named\run\named.pid
options {
 directory "C:\Winnt\system32\dns\etc";
 // version added for security otherwise may be able to exploit known
weaknesses
 version "not currently available";
 pid-file "named\run\named.pid";
 recursion yes;
};

// log to named\log\named.log events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// failure messages up to this point are in the event log
 logging{
 channel my_log{
 file "named\log\named.log" versions 3 size 250k;
 severity info;
 };
 category default{
 my_log;
 };
};
zone "." {
 type hint;
 file "named\zones\root.servers";
};

zone "localhost" in{
 type master;
 file "named\zones\master.localhost";
 allow-update{none;};
};
zone "0.0.127.in-addr.arpa" in{
 type master;
 file "named\zones\localhost.rev";
 allow-update{none;};
};

5. We used windows explorer to give the account named everything except
full control over the directory c:\Winnt\system32\dns with the inherit
property set so all lower directories pick up the same permissions. This is
essential to avoid permission errors when you start the BIND service.

Select the BIND install directory (this shows the default in
c:\%SystemRoot%\system32\dns)in Windows Explorer:

Right click properties then permissions and find and select the named
account and Add:

Add all permissions except full control and leave the inherit check box set
(the default):

6. We are lazy and forgetful so decided to add the BIND9 bin directory
(%SystemRoot%\system32\dns\bin) to the Windows path since we are
going to use dig for sure on a regular basis and in a couple of days we will
have forgotten where is it - scrub that idea - in a couple of hours we will
have forgotten where it is. So Start->settings->control panel->system:

Click Environment Variables from the Advanced tab:

Find and double click the path line and Add the following (or wherever
your BIND9 bin directory is located):

Click OK and exit. Note: the separator on windows is a semi-colon not a
colon as in the *nix world. Cost us 10 minutes with a magnifying glass to
fix that one.

7. Time to start the BIND service. This is a Server so the standard Windows
DNS services is activated by default. First we have to disable it using
Computer Management; expand Services and Applications then double
click Services and find DNS Server:

Double click DNS Server and disable the service then click Stop then OK

:

Find and double click ISC BIND

:

Double click ISC BIND and click Start (the service is set to Automatic by
default which means it will load on start-up

:

Any errors will be logged under Applications in the Event Log.

8. Finally we opened a DOS box (Start->run->cmd) and tried a dig
command:

9. dig @192.168.2.2 example.com any

Seemed to run a bit slowly but we got our results. And yes we had already
forgotten where we installed bind. Thank goodness we set the path
variable.

Note: The @192.168.2.2 is required to force use of the local service
irrespective of the TCP configuration.

10. We changed the DNS settings to use the local DNS service (Start->Control
Panel->Network and dial-up Connections->select Local LAN->Properties-
>find and double click Internet TCP/IP) and re-booted the PC. We used
Task Manager to check that the ISC BIND service started-up (is loads as
named.exe):

We were pleasantly surprised at how easy it was to install. If you want consistently
of DNS for maintenance and other purposes across a mixed Windows and *nix
environment using BIND is the only way to do it. As serious side benefit you get dig
and other tools as a bonus.

Chapter 10. DNS Diagnostics and Tools

This chapter defines tools that may be provided with BIND releases, are generally
available or just jolly useful! The tools described either provide specific services or
may help in diagnosing problems.

Contents

10.1 Introduction and Overview
10.2 NSLOOKUP
10.2 DIG

10.1 Overview and Introduction

http://www.zytrax.com/books/dns/ch10/?pf=yes#intro#intro
http://www.zytrax.com/books/dns/ch10/?pf=yes#nslookup#nslookup
http://www.zytrax.com/books/dns/ch10/?pf=yes#dig#dig

10.2 NSLOOKUP

nslookup is officially deprecated in favour of dig. It is however almost universally
available - even when dig is not - this especially true on windows systems where dig
is still pretty exotic. You are still more likely to come across nslookup than dig on a
wide range of platforms. Old utilities do not die they just slowly fade away!

Command Format

nslookup in general returns A or PTR records but specific options can be used to
override the default. There are both command line and interactive formats available.

nslookup maintains a set of configuration parameters (that may be modified) to add
power to the command line. These parameters can be displayed using the -all (or
set all in interactive mode) argument.

Quick Usage examples

The following are quick examples of common usage - all the options are explained
below in mind numbing detail:

lookup a specific host
nslookup www.example.com
get MX and NS records for the domain
nslookup -type=ANY example.com
get SOA record and display all nslookup default parameters
nslookup -all -type=SOA example.com

The generic command format is:

format 1 lookup target using default DNS server
nslookup [-opt] target
format 2 lookup target using the specific dns
nslookup [-opt] target dns
format 3 enter interactive mode using default DNS server
nslookup [-opt]
format 4 enter interactive mode using the specific dns
nslookup [-opt] - dns

Simple examples

Format 1 - Host lookup

nslookup www.example.com
will return
Server: ns1.example.com
Address: 192.168.2.53

Name: www.example.com

http://www.zytrax.com/books/dns/ch10/?pf=yes
http://www.zytrax.com/books/dns/ch10/?pf=yes#dig#dig
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/ptr.html

Address: 192.168.2.80

Returns the A record for www.example.com using the default DNS server - in this
case ns1.example.com (defined in Windows Network Properties or /etc/resolv.conf in
*nix systems).

Format 1 - Reverse MAP IP lookup

nslookup 192.168.2.80
will return
Server: ns1.example.com
Address: 192.168.2.53

Name: www.example.com
Address: 192.168.2.80

Returns the PTR record for 192.168.2.80 using the IN-ADDR.ARPA domain hierarchy.

Format 2 - Host lookup

nslookup www.example.com 192.168.255.53
will return
Server: another.domain.com
Address: 192.168.255.53

Name: www.example.com
Address: 192.168.2.80

Returns the A record for www.example.com using the DNS server at
192.168.255.53. The command format allows either an IP or a name so the above
command could have been written as:

nslookup www.example.com another.domain.com

Interactive Format

Interactive format (format 3 and 4 above) provides a single prompt (>) and allows
any command line option to be entered. To terminate interactive mode you can use
CTRL-C (Windows and *nix) or CTRL-D (*nix only) or exit (Windows and *nix).

Options

nslookup provides a dizzy number of options that vary its processing. Some of
these options are only available in interactive mode. The Windows version adds a
couple of commands. In each case Mode defines B = Interactive and command line
format, I = Interactive only, C = command line only, W = Windows only. Multiple
options can be specified with a single command.

option params mode processing

d - C Lists information for the domain. Gives SOA record and NS record

http://www.zytrax.com/books/dns/ch3/#arpa

details.

ls [opt]
domain

I list all the information for the target domain. Takes the optional
extensions > or >> filename to output to a file for subsequent
processing. The options supported are:

-
a

lists aliases (CNAME) in the domain (synonym for -t CNAME)

-
d

The default behaviour. Lists all records in the domain
(synonym for -t ANY)

-
h

Lists all information records in the domain (synonym for -t
HINFO)

-s Lists all well known service records in the domain (synonym
for -t WKS)

-t List the specific record type in the domain e.g. -t A

lserver dns I sets the dns for subsequent commands. May be either a name or an
IP. The name or IP is looked up using the original default dns (before
any server or lserver commands were issued).

root root-dns B changes to root server used in various commands.

server dns I sets the dns for subsequent commands. May be either a name or an
IP. The name or IP is looked up using the current default dns. The
default server is defined in /etc/resolv.conf for *nix systems and
network properties for Windows systems.

options which work with 'set' in interactive mode

In interactive mode these options are preceded with set and operate until changed with another set
directive. In command line mode they are preceded with - and operate on a single command. In a number
of cases a short form is also provided.

all - B displays a list of the default values used by nslookup, including the
DNS server. Typical ouput
Set options:
 nodebug
 defname
 search
 recurse
 nod2
 novc
 noignoretc
 port=53
 type=A
 class=IN
 timeout=2
 retry=1
 root=A.ROOT-SERVERS.NET.
 domain=example.com
 MSxfr [note: Windows only MS fast zone xfer]
 IXFRversion=1 [note: Windows only incremental zone xfer]
 srchlist=example.com
Default Server: ns1.example.com
Address: 192.168.2.53

class= IN
ANY
CHAOS
HESIOD

B allows the class value to be set for all subsequent commands

domain= domain-
name

B allows a base to be set for all subsequent searches e.g.
assume default domain = example.com
> set domain=example.org
> www
returns results for www.example.org

but will handle full format
> mail.example.org
returns correct result for mail.example.org

The default domain is defined in /etc/resolv.conf for *nix systems
and network properties for Windows systems. Setting domain= will
reset any previously defined srchlist.

[no]debug
[no]deb

- I allows control over the debugging information - debug (short form
deb) turns it on, nodebug (or nodeb) turns it off. The default is
nodebug

[no]d2 - I enables/disable voluminous debugging information - d2 turns it on,
nod2 turns it off. Default is nod2

[no]defname
[no]def

- I controls whether a domain name (in either domain or srchlist) is
added to a target which does not end with a dot i.e. is NOT a FQDN.
See also search below for full behaviour description.

[no]ignoretc - I controls if packet truncation errors are ignored (ignoretc) or
whether they cause termination (noignoretc - default).

[no]msxfer - W Controls use of MS Fast zone transfer. msxfer turns it on,
nomsxfer (default) turns it off.

[no]recurse
[no[rec]

- B Controls recursive behaviour. recurse (default) turns it on
norecurse turns it off.

[no]vc - I controls whether to use TCP (vc) or UDP (novc) - default is novc.

[no]search
[no]sea

- I This parameter controls how the srchlist= value is used. search and
defname are interrelated based on the following matrix for targets
which are not FQDNs:

search defname add domain names from srchlist or until
answer found

nosearch defname add domain name from domain

nosearch nodefname must be FQDN

search nodefname must be FQDN

In all cases the first result will terminate the command - you cannot
use the srchlist to look up multiple targets. In general the srchlist is
most useful with subdomains but can be used with different
domains.

port= port no. B changes the default port from the normal (53) to that specified by

port no..

type=
querytype=

ANY
A
CNAME
HINFO
MINFO
MX
NS
PTR
SOA
TXT
UINFO
WKS

B When using type= anything except A the following commands will
only work on the domain root e.g.:
enter interactive mode
nslookup
> set type=MX
> www.example.com
fails with 'domain non-existent'
> example.com
provides correct answers
ANY with a domain root name will return any DNS RR with a blank
name (label) entry - these include NS and MX records and thus it
provides a quick way to get useful domain info.

retry= number B controls the number of retries that will be attempted. Default is 4.

root= dns B controls the dns used in the root command. Default is typically
f.root-server.net. (on *nix) and a.root-servers.net.) on windows.

srchlist= dom1/dom2 I allows setting of a searchlist (up to six names are allowed separated

http://www.zytrax.com/books/dns/ch10/?pf=yes#root#root

by forward slash).

Examples - command line

get mail records for a domain
nslookup -type=MX example.com
list all the options being used and get host address
nslookup -all mail.example.com
get SOA record using a specific DNS
nslookup -type=SOA example.com 192.168.23.53

Examples - interactive mode

enter interactive mode and list default options
nslookup -all
>
list all records in the domain
> ls example.com
list all text records in domain
> ls -t TXT example.com
set the base domain to be used for subsequent commands
> set domain=example.org
find host
> mail
returns mail.example.org
exit interactive mode
> exit

10.3 DIG

dig is the current diagnostic DNS diagostic tool of preference but as noted above is
not always widely available. You may still need to use nslookup.

Command Format

dig has both a command line and a batch mode (no interactive mode like
nslookup). In general the command line of dig is more powerful than nslookup
(even allowing multiple queries in a single line) and the batchmode makes running
check files a breeze. dig offers a daunting array of options but the following are
simple examples:

get the A record for any record without a label
but will always return the SOA record for the domain
dig example.com
get the MX record for the domain
dig example.com mx
get the A record for the host
dig www.example.com
get all domain records if allowed
dig example.com axfr
get all records with no label for the domain
dig example.com any
typically returns SOA, NS, MX and domain SPF if defined

http://www.zytrax.com/books/dns/ch10/?pf=yes
http://www.zytrax.com/books/dns/ch10/?pf=yes#nslookup#nslookup

Generic Format

The following is the generic dig command format:

dig [@dns] domain [[-c]q-type] [[-t]q-class] [+q-opt] [-d-opt] [%comment]

Note: In general dig uses a mixture of positional/contextual arguments and
identified options (i.e. identified with a option value @, -, +) to keep simple
queries - simple! There are times when it necessary to disambiguate the q-type and
q-class option and in this both can be specified in an identified option format
(see examples).

Parameters in bone-chilling detail:

Parameter Value Description

dns - optional name or IP address (IPv4 or IPv6 format) of the
DNS server to be used for the query. Default is defined
in /etc/resolv.conf for *nix systems. If present must be
preceded by commercial at (@) e.g.
dig @192.168.2.53 www.example.com

domain - name or IP address (IPv4 or IPv6 format) of the target -
may be a host or domain name depending on context
(see examples).

q-type
a
any
axfr
hinfo
mx
ns
soa
srv
wks

Defines the type of record to return. May be optionally
preceded with -t in the identified option format. Most
values are self explanatory but to get a full listing of all
the domain records use the axfr option. This feature
may be disallowed by the allow-transfer BIND9 option in
which case the command will fail with Connection
refused.

q-class
in
any
hesiod
chaos

in is the default option. May be optionally preceded with
-c in the identified option format. NB any is a valid
option for both q-type and q-class and to ensure the
correct value is used (to disambiguate in the jargon)
always specify both q-type and q-class when using this
format e.g.:
this will get any record for class IN only
dig example.com any
this will get any record for any class
dig example.com any any

Alternatively you can use an identified option format
with -c for q-class and -t for q- type. When the
identified option format is used the parameter order

http://www.zytrax.com/books/dns/ch10/?pf=yes#dig-examples#dig-examples
http://www.zytrax.com/books/dns/ch10/?pf=yes#dig-examples#dig-examples
http://www.zytrax.com/books/dns/ch7/xfer.html#allow-transfer

not important e.g.
dig -c any -t any example.com

See d-opt below for identified option format

q-opt All these options are preceded with a plus (+) and
control how the resulting DNS query operates. Multiple
values may appear in a single command. Many of the
values are the same as nslookup. Many of the values
have an abbreviation - its is shown in parenthesis after
the command e.g. addit (ad). In this case ad is the
abbreviation for addit.

 domain=name Replaces the default domain name.

 [no]aaonly Controls whether to use authoritative query only.
Default = noaaonly.

 [no]addit Controls whether to print additional information. Default
= addit/ad.

 [no]answer Controls whether to print answer section. Default =
answer/an.

 [no]author Controls whether to print authoritative section. Default
= author/au.

 [no]cl Controls whether to print class information. Default =
nocl.

 [no]cmd Controls whether to echo valid arguments. Default =
cmd.

 [no]d2 Controls the voluminous diagnostic level. Default =
nod2.

 [no]debug Controls the diagnostic level. Default = nodebug.

 [no]defname Controls substitution of default domain if no periods in
domain name. Default = defname.

 [no]dnssec Controls whether to set the DNSSEC OK bit in the OPT
pseudo header. Default = nodnssec/nodn.

 [no]header Print header flags. Default = header/he.

 [no]Header print basic header. Default = Header/H.

 [no]ignore Controls whether to ignore truncation errors. Default =
noignore.

 [no]ko Controls whether the virtual connection is kept open or
not. Only valid with vc. Default = noko.

 [no]primary Controls where to use or not the primary dns. Default =
noprimary.

 [no]ques Controls whether to print question section. Default =
ques/qu.

 [no]qr Controls whether to print outgoing query. Default =
noqr.

 [no]recurse Controls recursive query behaviour. Default = recurse.

http://www.zytrax.com/books/dns/ch10/?pf=yes#nslookup#nslookup

 [no]reply Controls whether to print a reply. Default = reply/rep.

 [no]search Controls use of the srchlist (see explanation of
relationship between search and defname). Default =
search.

 [no]stats Controls whether to display stats. Default = stats/st.

 [no]trunc Controls whether to truncate origin from names. Default
= trunc/tr.

 [no]ttlid Controls whether to print TTL. Default = ttlid/tt.

 [no]vc Controls whether to use TCP (vc) or UDP (novc).
Default = novc.

 pfand=# Bitwise AND print flags with # (octal/hex/decimal).

 pfdef Set default print flags.

 pfmin Set to minimal default print flags.

 pfor=# Bitwise OR print flags with # (octal/hex/decimal).

 pfset=# Set print flags as # (octal/hex/decimal).

 retry=num Controls the number of query retries.

 time=secs Controls the query timeout period. Default = 4 secs.

 time=secs Controls the query timeout period. Default = 4 secs.

d-opt These options control how dig operates and are
preceded with a minus (-). Multiple options may appear
in a single command line.

 -c indicates a q-class argument follows (this is the
identified option format) and can be used as a
convenience or to disambiguate from the same q-type
options.

 -envsav save variables to the file defined by the environment
variable LOCALDEF or DIG.env in the current working
directory if LOCALDEF not set.

 -f filename specifies a file containing batch commands. Any options
specified on the command line will be in effect during
the batch run i.e. they are global). Lines beginning with
';' or '#' or '\n' are ignored

 -k dir:key Sign the key with TSIG key in dir.

 -p port changes the port used for queries to port
(default is 53).

 -P causes a ping to be issued to the dns being used.

 -T secs time in seconds between executing lines in a batch file
(using option -f above)

 -t indicates a q-type argument follows (this is the
identified argument format).

 -x specifies that inverse notation is being used i.e.:

http://www.zytrax.com/books/dns/ch10/?pf=yes#ns-srchlist#ns-srchlist

this will fail NXDOMAIN (not found)
dig 192.168.2.53
instead use
dig -x 192.168.2.53
OR if you are a masochist!
dig 53.2.168.192.in-addr.arpa ptr

Dig examples

Host Query

simple host lookup - defaults to an A RR
dig www.example.com
or could have been written as - order important
dig www.example.com a
identified option format - order not important
dig -t a www.example.com
use the dns at 192.168.2.224 for the query
dig @192.168.2.224 www.example.com a
use the dns at ns1.example.com for the query
dig @ns1.example.com www.example.com a
reverse map query - returns PTR RR
dig -x 192.168.2.224

Domain Query

simple domain lookup - returns any A RR without a label
even if none present will return the domain SOA RR
dig www.example.com
quick domain lookup
return all RR without labels - typically gets SOA, NS, MX and domain SPF if present
dig example.com any
identified option format - order not important
dig -t any example.com
use the dns at 192.168.2.224 for the query
dig @192.168.2.224 example.com any
use the dns at ns1.another.com for the query
dig @ns1.another.com example.com a

Multiple Queries

You can issue multiple queries per command line - as long as each query is clearly
identified (or disambiguated).

multiple domain lookup - returns non-label RRs for both domains
dig example.com any another.com any
multiple domain lookup - returns A RR for first and non-label RRs for second domains
dig example.com another.com any
multiple domain lookup - returns non-label RRs for first domains and A RR for second
dig example.com any another.com
if you start with one format you must be consistent - this fails on the second query
dig example.com -t any another.com any
but this works
dig example.com -t any another.com -t any
and yes this works
dig example.com any another.com any yetanother.com any
and so does this
dig www.example.com www.another.com fred.yetanother.com

http://www.zytrax.com/books/dns/ch10/?pf=yes

Chapter 15 DNS Messages

15.1 Overview Generic Format
15.2 The Message Header
15.3 The DNS Question
15.4 The DNS Answer
15.5 Domain Authority
15.6 Additional Information

15.1 Overview

This section details the format of messages that pass between a Resolver and a DNS
system. The really smart thing to do is install ethereal and let it to all the analysis for
you. However if you are in de-bug mode then you may need this stuff. This where
the Rocket Scientists wannabees hang out. Welcome.

Message formats are defined in RFC 1035.

The good news is that each message has the same generic format with 5 sections.
This is the last good news.

Section Meaning/Use

Section 1 Message Header

Section 2 The DNS question being asked

Section 3 The Resource Record(s) which answer the question

Section 4 The Resource Record(s) which point to the domain authority

Section 5 The Resource Record(s) which may hold additional information

Notes:

1. Unused sections are not present - determined by count values in the
message header

15.2 The Message Header

Present in all messages. Never empty. Contains various flags and values which
control the transaction. If you are not comfortable with bits, bytes and hex values
take up origami or read this quick memory jogger. And while you are in this

http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch15/?pf=yes#overview#overview
http://www.zytrax.com/books/dns/ch15/?pf=yes#header#header
http://www.zytrax.com/books/dns/ch15/?pf=yes#question#question
http://www.zytrax.com/books/dns/ch15/?pf=yes#answer#answer
http://www.zytrax.com/books/dns/ch15/?pf=yes#authority#authority
http://www.zytrax.com/books/dns/ch15/?pf=yes#additional#additional
http://www.zytrax.com/books/dns/apa/resolver.html
http://www.ethereal.com/
http://www.zytrax.com/books/dns/apd/rfc1035.txt
http://www.zytrax.com/books/dns/ch15/?pf=yes#header#header
http://www.zytrax.com/books/dns/ch15/?pf=yes#question#question
http://www.zytrax.com/books/dns/ch15/?pf=yes#answer#answer
http://www.zytrax.com/books/dns/ch15/?pf=yes#authority#authority
http://www.zytrax.com/books/dns/ch15/?pf=yes#additional#additional
http://www.zytrax.com/books/dns/ch15/?pf=yes#jogger#jogger

receptive mode you may want remind yourself that bit numbering standards are a
real mess.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Message ID

QR OPCODE AA TC RD RA res1 res2 res3 RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

The following table defines the field values above:

Section Meaning/Use

Message ID 16 bit message ID supplied by the requestion (the questioner) and
reflected back unchanged by the responder (answerer). Identifies the
transaction.

QR Query - Response bit. Set to 0 by the questioner (query) and to 1 in
the response (answer).

OPCODE

Identifies the request/operation type. Currently assigned values are:

Value Meaning/Use

0 QUERY. standard query.

1 IQUERY. Inverse query. Optional support by DNS

2 STATUS. DNS status request

AA Authoritative Answer. Valid in responses only. Because of aliases
multiple owners may exists so the AA bit corresponds to the name
which matches the query name, OR the first owner name in the
answer section.

TC TrunCation - specifies that this message was truncated due to length
greater than that permitted on the transmission channel. Set on all
truncated messages except the last one.

RD Recursion Desired - this bit may be set in a query and is copied into
the response if recursion supported if rejected the response (answer)
does not have this bit set. Recursive query support is optional.

RA Recursion Available - this bit is valid in a response (answer) and
denotes whether recursive query support is available (1) or not (0) in
the name server.

RCODE Identifies the response type to the query. Ignored on a request
(question). Currently assigned values:

Value Meaning/Use

http://www.zytrax.com/books/dns/ch15/?pf=yes#numbering#numbering
http://www.zytrax.com/books/dns/ch15/?pf=yes#mid#mid
http://www.zytrax.com/books/dns/ch15/?pf=yes#qrbit#qrbit
http://www.zytrax.com/books/dns/ch15/?pf=yes#opcode#opcode
http://www.zytrax.com/books/dns/ch15/?pf=yes#aabit#aabit
http://www.zytrax.com/books/dns/ch15/?pf=yes#tcbit#tcbit
http://www.zytrax.com/books/dns/ch15/?pf=yes#rdbit#rdbit
http://www.zytrax.com/books/dns/ch15/?pf=yes#rabit#rabit
http://www.zytrax.com/books/dns/ch15/?pf=yes#res1#res1
http://www.zytrax.com/books/dns/ch15/?pf=yes#res2#res2
http://www.zytrax.com/books/dns/ch15/?pf=yes#res3#res3
http://www.zytrax.com/books/dns/ch15/?pf=yes#rcode#rcode
http://www.zytrax.com/books/dns/ch15/?pf=yes#qdcount#qdcount
http://www.zytrax.com/books/dns/ch15/?pf=yes#ancount#ancount
http://www.zytrax.com/books/dns/ch15/?pf=yes#nscount#nscount
http://www.zytrax.com/books/dns/ch15/?pf=yes#arcount#arcount

0 No error condition.

1 Format error - The name server was unable to interpret the query.

2 Server failure - The name server was unable to process this query due to a
problem with the name server.

3 Name Error - Meaningful only for responses from an authoritative name

server, this code signifies that the domain name referenced in the query
does not exist.

4 Not Implemented - The name server does not support the requested kind of
query.

5 Refused - The name server refuses to perform the specified operation for
policy reasons. For example, a name server may not wish to provide the
information to the particular requester, or a name server may not wish to
perform a particular operation (e.g., zone transfer) for particular data.

QDCOUNT Unsigned 16 bit integer specifying the number of entries in the
question section.

ANCOUNT Unsigned 16 bit integer specifying the number of resource records in
the answer section. May be 0 in which case no answer record is
present in the message.

NSCOUNT Unsigned 16 bit integer specifying the number of name server
resource records in the authority section. May be 0 in which case no
authority record(s) is(are) present in the message.

ARCOUNT Unsigned 16 bit integer specifying the number of resource records in
the additional records section. May be 0 in which case no addtional
record(s) is(are) present in the message.

Notes:

1.

15.3 The DNS Question

While it is normal to have only one question per message, it is permissible to have
any number defined by QDCOUNT each question has the same format as defined
below:

Field Name Meaning/Use

QNAME The domain name being queries

QTYPE The resource records being requested

QCLASS The Resource Record(s) class being requested e.g. internet, chaos
etc.

http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch15/?pf=yes#qdcount#qdcount
http://www.zytrax.com/books/dns/ch15/?pf=yes#qname#qname
http://www.zytrax.com/books/dns/ch15/?pf=yes#qtype#qtype
http://www.zytrax.com/books/dns/ch15/?pf=yes#qclass#qclass

Each field has the following format:

Name Meaning/Use

QNAME The name being queried will depend upon the QTYPE (below) e.g. a
request for an A record will require a host part i.e.
www.mydomain.com an MX query will obviously only use a domain
name i.e. mydomain.com The name being queried is split into labels
by removing the separating dots. Each label is represented as a
length/data pair as follows:
Value Meaning/Use

no. of chars single octet defining the number of characters in the label which
follows. The top two bits of this number must be 00 (indicates the
label format is being used) which gives a maximum domain name
length of 63 bytes (octets). If we assume this is comprised of a TLD
+ domain and the TLD (and its accompanying dot) can have a
maximum length 4 bytes this gives the well-known maximum
domain name length of 59 bytes (octets). Well that was true until
we had .museum and all the other new TLDs so each domain name
limit is actually TLD specific. Another global truth falls by the
wayside. A value of zero indicates the end of the name field.

domain name A string containing the characters in the label.

Wow. To illustrate the above we'll use two examples:
// assume an MX query with a name of mydomain.com
// the hex representation is
08 6D 79 64 6F 6D 61 69 6E 03 63 6F 6D 00
// printable
 ! m y d o m a i n ! c o m !
// note ! = unprintable

// assume an A query with a name of www.mydomain.com
// the hex representation is
03 77 77 77 08 6D 79 64 6F 6D 61 69 6E 03 63 6F 6D 00
// printable
 ! w w w ! m y d o m a i n ! c o m !
// note ! = unprintable

QTYPE Unsigned 16 bit value. The resource records being requested. These
values are assigned by IANA and a complete list of values may be
obtained from them. The following are the most commonly used
values:
Value Meaning/Use

x'0001 (1) Requests the A record for the domain name

x'0002 (2) Requests the NS record(s) for the domain name

x'0005 (5) Requests the CNAME record(s) for the domain name

x'0006 (6) Requests the SOA record(s) for the domain name

x'000B (11) Requests the WKS record(s) for the domain name

x'000C (12) Requests the PTR record(s) for the domain name

x'000F (15) Requests the MX record(s) for the domain name

x'0021 (33) Requests the SRV record(s) for the domain name

x'0026 (38) Requests the A6 record(s) for the domain name

x'00F F (255) Requests ANY resource record (typically wants SOA, MX, NS and MX)

http://www.iana.org/assignments/dns-parameters
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/wks.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/ch8/a6.html

QCLASS Unsigned 16 bit value. The CLASS of resource records being requested
e.g. Internet, CHAOS etc. These values are assigned by IANA and a
complete list of values may be obtained from them. The following are
the most commonly used values:
Value Meaning/Use

x'0001 (1) IN or Internet

15.4 The DNS Answer

The Answer, Authority and Additional Section all comprise RRs and hence share the
same format. The section the record appears in determines its type e.g. an A RR can
appear in the Answer or Additional section. So far this stuff has been relatively
straightforward if messy - take a deep breath before reading on. The format of these
records is:

Field Name Meaning/Use

NAME The name being returned e.g. www or ns1.example.net If the name is
in the same domain as the question then typically only the host part
(label) is returned, if not then a FQDN is returned.

TYPE The RR type e.g. SOA or AAAA

CLASS The RR class e.g. Internet, Chaos etc.

TTL The TTL in seconds of the RR e.g. 2800

RLENGTH The length of RR specific data in octets e.g. 27

RDATA The RR specific data (see Binary RR Formats below) whose length is
defined by RDLENGTH e.g. 192.168.254.2

The various fields have the following meanings:

Name Meaning/Use

NAME This name reflects the QNAME of the question i.e. any may take one
of TWO formats. The first format is the label format defined for
QNAME above. The second format is a pointer (in the interests of data
compression which to fair to the original authors was far more
important then than now). A pointer is an unsigned 16-bit value with
the following format (the top two bits of 11 indicate the pointer
format):

http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.iana.org/assignments/dns-parameters
http://www.zytrax.com/books/dns/ch15/?pf=yes#name#name
http://www.zytrax.com/books/dns/ch15/?pf=yes#type#type
http://www.zytrax.com/books/dns/ch15/?pf=yes#class#class
http://www.zytrax.com/books/dns/ch15/?pf=yes#ttl#ttl
http://www.zytrax.com/books/dns/ch15/?pf=yes#rdlength#rdlength
http://www.zytrax.com/books/dns/ch15/?pf=yes#rdata#rdata
http://www.zytrax.com/books/dns/ch15/?pf=yes#qname#qname
http://www.zytrax.com/books/dns/ch15/?pf=yes#qname#qname

1 1 The offset in octets (bytes) from the start of the whole
message. Must point to a label format record to derive name
length.

Note: Pointers, if used, terminate names. The name field may consist
of a label (or sequence of labels) terminated with a zero length record
OR a single pointer OR a label (or label sequence) terminated with a

TYPE Unsigned 16 bit value. The resource record types - determines the
content of the RDATA field. These values are assigned by IANA and a
complete list of values may be obtained from them. The following are
the most commonly used values:

Value Meaning/Use

x'0001 (1) An A record for the domain name

x'0002 (2) A NS record(for the domain name

x'0005 (5) A CNAME record for the domain name

x'0006 (6) A SOA record for the domain name

x'000B (11) A WKS record(s) for the domain name

x'000C (12) A PTR record(s) for the domain name

x'000F (15) A MX record for the domain name

x'0021 (33) A SRV record(s) for the domain name

x'0026 (38) An A6 record(s) for the domain name

CLASS Unsigned 16 bit value. The CLASS of resource records being requested
e.g. Internet, CHAOS etc. These values are assigned by IANA and a
complete list of values may be obtained from them. The following are
the most commonly used values:

Value Meaning/Use

x'0001 (1) IN or Internet

TTL Unsigned 32 bit value. The time in seconds that the record may be
cached. A value of 0 indicates the record should not be cached.

RDLENGTH Unsigned 16-bit value that defines the length in bytes (octets) of the
RDATA record.

RDATA Each (or rather most) resource record types have a specific RDATA
format which reflect their resource record format as defined below:

SOA

Value Meaning/Use

Primary NS Variable length. The name of the Primary Master for the domain. May
be a label, pointer or any combination.

http://www.zytrax.com/books/dns/ch15/?pf=yes#rdata#rdata
http://www.iana.org/assignments/dns-parameters
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/wks.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch8/srv.html
http://www.zytrax.com/books/dns/ch8/a6.html
http://www.iana.org/assignments/dns-parameters
http://www.zytrax.com/books/dns/ch8/ns.html

Admin MB Variable length. The administrator's mailbox. May be a label, pointer or
any combination.

Serial
Number

Unsigned 32-bit integer.

Refresh
interval

Unsigned 32-bit integer.

Retry
Interval

Unsigned 32-bit integer.

Expiration
Limit

Unsigned 32-bit integer.

Minimum TTL Unsigned 32-bit integer.

MX

Value Meaning/Use

Preference Unsigned 16-bit integer.

Mail
Exchanger

The name host name that provides the service. May be a label, pointer
or any combination.

A

Value Meaning/Use

IP Address Unsigned 32-bit value representing the IP address

PTR, NS

Value Meaning/Use

Name The host name that represents the supplied IP address (in the case of a PTR)
or the NS name for the supplied domain (in the case of NS). May be a label,
pointer or any combination.

15.5 Domain Authority

You will be delighted to know that authority records have exactly the same format as
Answer records it is simply their position in an authority section that determines they
are authority records (and that they will be of TYPE NS).

15.6 Additional Information

http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch15/?pf=yes#answer#answer

You will be delighted to know that additional records have exactly the same format
as Answer records it is simply their position in an additional section that determines
they are additional records.

Memory jogger - Binary, decimal and hexadecimal

The contents of an 8 bit byte (an octet) may be expressed in decimal (base 10),
binary (base 2) or hexadecimal (base 16 - 0-9, A-F) as follows:

Decimal Hexadecimal Binary

0 00 0000 0000

65 41 0100 0001

187 BB 1011 1011

255 FF 1111 1111

To convert a dotted decimal IP e.g. 192.168.0.5 to hexadecimal, take each dotted
decimal value and convert it using a hex calculator (standard windows calculator in
scientific mode will do the job). This will yield C0.A8.00.05 for our example above.

Bit numbering

Bit numbering can be very confusing with various standard bodies adopting different
conventions. The following are all valid, and used, bit numbering conventions for
describing an 8 bit byte (an octet).

Memory contents 0 0 0 0 0 0 0 0

Bit numbering conventions

Left to right base 0 (IETF) 0 1 2 3 4 5 6 7

Left to right base 1 1 2 3 4 5 6 7 8

Right to left base 1 (ITU) 8 7 6 5 4 3 2 1

Power of 2 7 6 5 4 3 2 1 0

Always check what convention is used on any specification. The convention used by
the IETF is a LEFT to RIGHT number starting from (base) ZERO. Many (but not all) C
compliers allocate bits in a field using this convention.

http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch15/?pf=yes
http://www.zytrax.com/books/dns/ch15/?pf=yes#answer#answer

Time-to-Live (TTL) Values

The $TTL directive is defined in RFC 2308.

TTL in the DNS context defines the duration in seconds that the record may be
cached. Zero indicates the record should not be cached. Note: RFC 1912 cautions
that 0 = no caching is not widely implemented so make no assumptions.

The default TTL for the zone is defined in BIND9 by the $TTL directive which must
appear at the beginning of the zone file i.e. before any RR to which it will apply. This
$TTL is used for any Resource Record which does not explicitly set the 'ttl' field.

The TTL field is defined to be an unsigned 32 bit value with a valid range from 0 to
2147483647 (clarified in RFC 2181) - which is a long time! - somewhere on the other
side of 68 years.

The $TTL field may take any time value.

In BIND 8 the SOA record (minimum parameter) was used to define the zone default
TTL value. In BIND 9 the SOA 'minimum' parameter is used as the negative
(NXDOMAIN) caching time (defined in RFC 2308).

RFC 1912 recommends that the $TTL value be set to 1 day or longer and that certain
RRs which rarely change, such as the MX records for the domain, use an explicit TTL
value to set even longer values such as 2 to 3 weeks. The value of this field is a
balance between how frequently you think the DNS records will change vs load on
the DNS server. In the example below the $TTL value of 2d (2 days) indicates that
any change may not be fully propagated for 48 hours, equally caching DNS servers
will require to re-read the RRs from your DNS every 48 hours which can be a non-
trivial load. Many users will set this value to say 2w (2 weeks) in normal operation
then prior to planned changes will reduce the value to say 1d or 12h, until the
change has stabilized then restore the value to 2w.

Example

; example.com zone file fragment
$TTL 2d ; zone default
 3w IN MX 10 192.168.254.2 ; overrides default
joe 3h IN A 192.168.254.3 ; overrides default
www IN A 192.168.254.3 ; uses zone default = 2 days

ORIGIN and @ Substitution

The symbol @ is used in BIND to denote 'zone root'. The value substituted for @ is
either:

http://www.zytrax.com/books/dns/apd/rfc1912.txt
http://www.zytrax.com/books/dns/apa/time.html
http://www.zytrax.com/books/dns/ch8/soa.html

• The last $ORIGIN directive encountered in the file.
• OR
• If no $ORIGIN directive - BIND uses the value of the zone

in named.conf file e.g.
• // named.conf file fragment
•
• zone "example.com" in{
• type master;
• file "pri.example.com";
• };

example.com will replace @.

•

Example

; example.com zone file fragment
....
@ IN NS ns1.mydomain.com.
; ns1.example.com services example.com
....
$ORIGIN uk.example.com.
@ IN NS ns2.example.com.
; ns2.example.com services uk.example.com

Reverse Look-up Problem

If you define two A Records with the same IP address then when you come to define
the Reverse Mapping (look-up) file you can only map a single name to the IP
address. Increasingly mail systems as part of an anti-spam strategy and others may
perform a dual look-up, IP to name then name to IP. A Reverse Mapping query will
only return the right result for joe in the example below not for www. In this simple
case use of a CNMAE record for www could fix the problem.

Example

; zone file fragment
joe IN A 192.168.254.3 ; joe & www = same ip
www IN A 192.168.254.3

; reverse in-arpa file fragment
.3 IN PTR joe.mydomain.com.

http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/cname.html

If you define multiple A Records for load balancing or round robin strategy the same
problem arises. In a dual look-up, IP to name then name to IP, system this will only
work for mail in the example below not for any others.

; zone file fragment
mail IN A 192.168.254.3 ; round robin
 IN A 192.168.254.4
 IN A 192.168.254.5

; reverse in-addr.arpa file fragment
.3 IN PTR mail.mydomain.com.
.4 IN PTR mail1.mydomain.com.
.5 IN PTR mail2.mydomain.com.

The DOT in a Zone File

Sometimes you need it sometimes you don't. At first glance, and even at the fourth
glance, it seems confusing.

It is not. The rule is simple.

If there is a dot at the end of a name in a resource record or directive, the name is
'qualified' and if it contains the whole name including the host then it is a Fully
Qualified Domain Name - FQDN. The value as it appears in the record is used
unchanged.

If there is NO dot at the end of the name (a.k.a. 'label' in DNS jargon), the name is
'unqualified' and DNS software adds the 'zone name' from the named.conf file for
this zone OR the value of the last $ORIGIN statement. The fragment below illustrates
this using A records and CNAME records.

; zone file fragment for mydomain.com
; the named.conf file contains 'zone "mydomain.com"'
; there is no $ORIGIN statement
; line below is expanded to joe.mydomain.com
joe IN A 192.168.254.3
; next line www.mydomain.com aliased to joe.mydomain.com
www IN CNAME joe
; next line is functionally the same as line above
www.mydomain.com. IN CNAME joe.mydomain.com.
; and so is this line
www IN CNAME joe.mydomain.com.
; this is record defaults to mydomain.com
 IN A 192.168.254.3

BIND Time formats

http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/apa/conf.html
http://www.zytrax.com/books/dns/apa/origin.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/cname.html

BIND allows a number of time formats in combinations. Formats allowed are (case
insensitive):

• #s = seconds = # x 1 seconds (really!)
• #m = minutes = # x 60 seconds
• #h = hours = # x 3600 seconds
• #d = day = # x 86400 seconds
• #w = week = # x 604800 seconds

Examples

; foo.com zone file fragment
; common origin (@) format
@ IN SOA ns.foo.com. root.foo.com. (
 2003080800 ; serial number
 10800s ; refresh = 3 hours
 15M ; update retry = 15 minutes
 3W12h ; expiry = 3 weeks + 12 hours
 2h20M ; minimum = 2 hours + 20 minutes
)
www 12H15m IN A 10.0.5.17 ; A record TTL value

Zones and Zone files

A 'zone' is convenient short-hand for that part of the domain name for which we are
configuring the DNS server (e.g. BIND) and is always an entity for which we are
authoritative.

Assume we have a 'Domain Name' of mydomain.com. This is comprised of a domain-
name (mydomain) and a gTLD name (com). The zone in this case is
'mydomain.com'. If we we have a sub-domain which has been delegated to us called
us.mydomain.com then the zone is 'us.mydomain.com'.

Zones are described in zone files (sometimes called master files) (normally located in
/var/named) which can contain Directives (used by the DNS software e.g. BIND) and
Resource Records which describe the characteristics of the zone and individual hosts
and services within the zone. Both Directives and Resource records are a standard
defined by RFC 1035 so should be read by any self-respecting DNS server software.
The single exception to this is the BIND-specific $GENERATE directive. So if you think
you will change DNS servers don't use $GENERATE.

Example Zone File

foo.com. IN SOA ns1.foo.com. root.foo.com. (
 2003080800 ; se = serial number
 3h ; ref = refresh
 15m ; ret = update retry
 3w ; ex = expiry

http://www.zytrax.com/books/dns/apa/directives.html
http://www.zytrax.com/books/dns/apa/resource.html
http://www.zytrax.com/books/dns/ch8/generate.html

 3h ; min = minimum
)
 IN NS ns1.foo.com.
 IN NS ns2.foo.com.
 IN MX 10 mail.anotherdomain.com.
joe IN A 192.168.254.3
www IN CNAME joe

DNS Queries

The major task carried out by a DNS server is to respond to queries (questions) from

1. A recursive query - the real answer to the question is always returned. DNS

Note: The process called Reverse Mapping does not use Inverse queries but instead

Historically reverse IP mapping was non-mandatory. Many systems however now use

a local or remote resolver or other DNS acting on behalf of a resolver - a query
would be somthing like 'what is the IP address of host=fred in
domain=mydomain.com'. There are three types of queries that DNS support:

servers are not required to support recursive queries.
2. An Iterative (or non-recursive) query - where the real answer MAY be

returned. All DNS servers must support Iterative queries.
3. A Inverse query - where the user wants to know the domain name given a

resource record.

uses recursive and non-recursive queries with the special domain name IN-
ADDR.ARPA.

reverse mapping for security and simple authentication schemes and is its proper
implementation and maintenance is now essential.

Resolvers

The generic term resolver defines a set of functions supplied as part of the standard

Resolvers are quite complicated and are defined to be capable of following referrals

K

C network/socket libraries (i.e. glibc6 in *nix systems) or supplied as part of a
package (e.g. BIND). These functions are used by applications to answer questions
such as 'what is the IP address of this host'. The most common method to invoke
such resolver services, used by your browser among many other applications, is to
use the POSIX socket functions 'gethostbyname' (or 'getaddrinfo' for sock2) for
name to IP and 'gethostbyaddr' (replaced by 'getnameinfo' in sock2) for IP to name.

(they can work with systems that do not support recursive queries. However almost
all resolvers (both Windows and *nix) are stub resolvers. A stub resolver is a
minimal resolver which will only work with a DNS that does support recursive
queries i.e. it cannot follow referrals. Some newer Windows systems (Windows 2
and XP) provide what is called a caching resolver. This resolver is a stub

http://www.zytrax.com/books/dns/apa/resolver.html
http://www.zytrax.com/books/dns/ch2/index.html#recursive
http://www.zytrax.com/books/dns/ch2/index.html#iterative
http://www.zytrax.com/books/dns/ch2/index.html#reverse
http://www.zytrax.com/books/dns/ch2/#recursive
http://www.zytrax.com/books/dns/apa/referrals.html

resolver but does maintain a cache of responses to minimize network access
and increase performance.

There are a number of ways your system can resolve a name and the actual
order will vary based on your configuration:

1. If you are using a *nix system with the GNU glibc libraries the
order of lookup is determined by the 'hosts' entry in the
/etc/nsswitch.conf file which will read something like:

hosts files nisplus dns

Indicating look at /etc/hosts, then use NIS (Network Information
Systems), then DNS (via resolv.conf)

2. If you are using a *nix system with the older GNU libc libraries the
order of lookup is determined by the 'order' entry in the
/etc/host.conf file which will read something like:

order hosts,bind

Indicating look at /etc/hosts then DNS (using resolv.conf)

3. If you are using a windows system the order is:
1. look in hosts (windows\system32\drivers\etc\hosts)
2. use the DNS entries in the tcp/ip network definition.

4. FreeBSD does not install /etc/nsswitch.conf by default so NIS
assumes a resolution order as if the following 'hosts' line was
present in nsswitch.conf:

hosts dns files

Which means use DNS (via resolve.conf) then /etc/hosts.

If you want to know more about resolvers on *nix systems read Chapter 6
from the Linux Network Administrators Guide.

DNS Referrals

The term referral indicates a response to a query which does not contain an answer
section (it is empty) but which contains one or more authoritative name servers (in
the Domain Authority section) that are closer to the required query question. The
response will typically (always from the root and TLD servers) contain in the
Additional Information section the IP addresses (the A or glue records) of the
supplied servers. A query to the root-servers for the IP of fred.example.com will
result in the following DNS transactions:

http://www.oreilly.com/catalog/linag2/book/ch06.html
http://www.zytrax.com/books/dns/ch15/#answer
http://www.zytrax.com/books/dns/ch15/#authority
http://www.zytrax.com/books/dns/ch15/#additional

1. Root-server returns a referral to the gTLD servers for .com (list of servers
in Authority section and IP addresses in Additional Information section of
response

2. gTLD server returns a referral to the name servers for example.com (list of
servers in Authority section and IP addresses in Additional Information
section of response

Resource Records

Resource Records are defined by RFC 1035 (and augmented by others). Resource
Records describe global properties of a zone and the hosts or services that are part
of the zone. They are described in detail in Chapter 8. Resource Records have a
binary format, used internally by DNS software and when sent across a network e.g.
zone updates, and a text format which is used in zone files.

Resource Records include SOA Record, NS Records, A Records, CNAME Records, PTR
Records, MX Records.

Example of Resource Records in a Zone File

foo.com. IN SOA ns.joe.com. root.foo.com. (
 2003080800 ; se = serial number
 3h ; ref = refresh
 15m ; ret = update retry
 3w ; ex = expiry
 3h ; min = minimum
)
 IN NS ns1.foo.com.
 IN MX 10 mail.anotherdomain.com.
joe IN A 192.168.254.3
www IN CNAME joe

BIND: named.conf file

BIND operational functionality is controlled by a file called named.conf normally
/etc/named.conf (Linux) or /etc/namedb/named.conf (BSD's).

The named.conf file declares both global properties for BIND and the zones for which
the configuration is a slave or master. Each zone referenced requires a zone file. By
default zone files are located in /var/named but this can be changed using the
'directory' parameter in named.conf.

Zone File Directives

http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch8
http://www.zytrax.com/books/dns/ch8/soa.html
http://www.zytrax.com/books/dns/ch8/ns.html
http://www.zytrax.com/books/dns/ch8/a.html
http://www.zytrax.com/books/dns/ch8/cname.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/ptr.html
http://www.zytrax.com/books/dns/ch8/mx.html
http://www.zytrax.com/books/dns/ch7/
http://www.zytrax.com/books/dns/apa/zones.html
http://www.zytrax.com/books/dns/ch7/location.html#directory

RFC 1035 defines a number of directives for use in zone files. These are summarised
below:

• $TTL - Mandatory as first entry in a BIND 9 zone file. Defines the default TTL
(or cache life) for any Resource Record which does not contain one.

• $ORIGIN - changes the 'zone name' which is added to any 'unqualified' name.
The dot is optional at the end of a name appearing in an ORIGIN directive.

• $INCLUDE - allows the contents of a file to be inserted into the zone file. The
critical point to note is that if an INCLUDE'd file contains an $ORIGIN
statement it's scope (is valid) for the INCLUDE'd file only, the original values
of ORIGIN and 'zone name' are restored once the INCLUDE'd file has been
fully processed.

BIND additionally provides $GENERATE, a non-standard directive to simplify
generation of reverse delegations in in-addr.arpa files. If you think you may want to
change DNS software do not use $GENERATE.

BIND statement layout variations

BIND is very picky about opening and closing brackets/braces, semicolons and all the
other separators defined in the formal statement 'grammars. The literature contains
various ways to layout statements. The variations are simply attempts by the
authors to minimise the potential for errors, they have no other significance. Use any
method you feel comfortable with. The following zone statement layouts are all
equivalent and acceptable to BIND.

// dense single line
zone "mydomain.com" {type slave; file "sec.mydomain.com"; masters
{10.0.0.1;};};
// lots of lines
zone "mydomain.com" {
 type slave;
 file "sec.mydomain.com";
 masters {10.0.0.1;};
 };
// spot the difference
zone "mydomain.com" {
 type slave;
 file "sec.mydomain.com";
 masters {10.0.0.1;}; };

Classless Routing Overview

This is a simplified description of classless routing principles. For more information.

Classless routing, defined in RFC 1817, allows for the routing of non-octet boundary
subnets and greatly increases the usage of the existing IPv4 address space. Prior to
Classless routing only Class boundary routing was supported e.g.:

http://www.zytrax.com/books/dns/ch8/ttl.html
http://www.zytrax.com/books/dns/ch8/origin.html
http://www.zytrax.com/books/dns/ch8/include.html
http://www.zytrax.com/books/dns/ch8/generate.html
http://www.zytrax.com/tech/protocols/ip-classes.html

CLASS A address e.g. 10.0.0.0 subnet mask 255.0.0.0
CLASS B address e.g. 172.16.0.0 subnet mask 255.255.0.0
CLASS C address e.g. 192.168.0.0 subnet mask 255.255.255.0

Class C address ranges are used for the following examples but the principles apply
to all address ranges.

Classless routing, in this context, describes the process of splitting and routing the
Class C space into multiple subnets. Assume we want to allocate and route a 32
address subnet, starting at address 64, in the Class C address 192.168.23.0. This
could be written as:

192.168.23.64 netmask 255.255.255.224

To simplify the process of writing this, a short-form (sometimes called the 'slash'
form officially an IP Prefix) '/x' is used, where x defines the number of contiguous
bits in the subnet mask. So the above could be written as:

192.168.23.64/26 (26 bits in the subnet mask 255.255.255.224)

Remember that the first address in the subnet is reserved for multi-casting and the
last for broadcasting - you always lose two addresses in a subnet.

The following table shows the relationship between the 'slash' form and the subnet
mask - starting with a base address of 0:

192.168.23.0/24 (subnet mask 255.255.255.0)
192.168.23.0/24 (256 IPs - subnet mask 255.255.255.0)
192.168.23.0/25 (128 IPs - subnet mask 255.255.255.128)
192.168.23.128/26 (64 IPs - subnet mask 255.255.255.192)
192.168.23.192/27 (32 IPs - subnet mask 255.255.255.224)
192.168.23.224/28 (16 IPs - subnet mask 255.255.255.240)
192.168.23.240/29 (8 IPs - subnet mask 255.255.255.248)
192.168.23.248/30 (4 IPs - subnet mask 255.255.255.252)

Valid Names and Labels

Host Names (or 'labels' in DNS jargon) were traditionally defined by RFC 952 and
RFC 1123 and may be composed of the following valid characters.

A to Z ; upper case characters
a to z ; lower case characters
0 to 9 ; numeric characters 0 to 9
- ; dash

The rules say:

1. A host name (label) can start or end with a letter or a number
2. A host name (label) MUST NOT start or end with a '-' (dash)

3. A host name (label) MUST NOT consist of all numeric values
4. A host name (label) can be up to 63 characters

RFC 2181 significantly liberalized the valid character set including the use of "_"
(underscore) essentially saying that anything goes and its up to the client to validate
in context. If you want to be safe stick with the rules above if you need the
expanded capabilities (e.g. SRV RRs) use them. However you are taking a risk that
one vital system will not talk to you at 3AM in the morning due to an upgrade!

The named.conf statement check-names allows control over the names accepted.

Domain names are defined to be case insensitive (essentially so you don't have to
register every possible variant of your domain name) but the rule is that case should
be preserved since this may change in the future. Host names seem to obey the
same rules - essentially as an artifact of subdomains.

Host Name Examples

; for clarity we show a host name in A records
www IN A 192.168.0.3 ; valid
wWw IN A 192.168.0.3 ; valid
my www IN A 192.168.0.3 ; invalid
my-www IN A 192.168.0.3 ; valid
my_www IN A 192.168.0.3 ; invalid but may work
3www IN A 192.168.0.3 ; valid
-www IN A 192.168.0.3 ; invalid
5512 IN A 192.168.0.3 ; invalid
host-5512 IN A 192.168.0.3 ; valid
@www IN A 192.168.0.3 ; invalid

http://www.zytrax.com/books/dns/ch7/zone.html#check-names

	DNS for Rocket Scientists
	Section 1 Overview
	1. Boilerplate and Terminology
	2. DNS - Overview
	3. DNS Reverse Mapping
	4. DNS Types

	Section 2 - Get Something Running
	5. BIND (Berkeley Internet Name Daemon)
	6. DNS Sample Configurations

	Section 3 Mind Numbing Details
	7. BIND named.conf Parameters
	8. DNS Resource Records

	Section 4 DNS Operations
	Chapter 9 DNS HowTos
	Chapter 10 Diagnostics and Tools
	Chapter 11 Trouble and Error Messages
	Chapter 12 BIND APIs

	Section 5 DNS Security
	Chapter 13 DNS Security

	Section 6 DNS Bits and Bytes
	Chapter 15 DNS Message Formats

	Appendices: Resources
	Maintenance Information

	Chapter 9. HOWTOs
	HOWTO - Configure Mail Servers fail-over
	HOWTO Delegate Reverse Subnet Maps
	Time-to-Live (TTL) Values
	Example

	Reverse Look-up Problem
	Example

	The DOT in a Zone File
	Zones and Zone files
	Example Zone File

	DNS Referrals
	Resource Records
	Example of Resource Records in a Zone File

	BIND: named.conf file
	BIND statement layout variations
	Classless Routing Overview

