
Component-based Templating System

Dave Rolsky & Ken Williams

Mason
Embedding Perl in HTML with

Embedding Perl in HTML
with Mason
Dave Rolsky and Ken Williams
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Chapter 5 CHAPTER 5

Advanced Features
In the previous chapters you have been introduced to the basic features of Mason,
and you should have a fairly good idea by now of how you might actually go about
constructing a dynamic web site from Mason components. You have seen a few of
Mason’s unique features, such as the autohandler mechanism, the dhandler mecha-
nism, and the ability to pass arbitrary data between components.

In this chapter we’ll go beyond the basics and learn more about advanced ways to
use Mason components to design large dynamic sites. You’ll learn how to define
multiple components in the same text file, how to create components on the fly from
Perl strings, how to manage multiple component root directories, and (finally!) how
to use all of Mason’s object-oriented features.

Subcomponents
Although we often imagine a one-to-one correspondence between text files and
Mason components, it is actually possible to define multiple components in a single
text file. This is achieved by using a <%def></%def> block, a special Mason directive
that defines one component from within another. The component embedded within
the <%def> block is called a subcomponent, and it is visible only to the component
within which it resides: component A may not access component B’s subcompo-
nents directly.

The subcomponent may use any of the standard Mason component directives, such
as <%args>, <%init>, %-lines, and so on. The only exceptions are that you may not use
<%def> or <%method> blocks within subcomponents nor may you use “global” blocks
like <%once> or <%shared>.

Subcomponents are most useful when you have some piece of processing to repeat
several times that is used only in a certain specific situation and doesn’t merit its own
separate component file.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

69

Here is an example of defining and calling a subcomponent. Note that the compo-
nent is assigned a name inside the <%def> tag (the name often starts with a period,
purely by convention) and that you use the regular component-calling mechanisms
($m->comp() or a <& &> tag) to invoke it.

<h2>Information about certain Minnesota cities:</h2>

% my @cities = ("Young America", "Sleepy Eye", "Nisswa", "Embarrass",
% "Saint Cloud", "Little Canada", "Burnsville", "Luverne");
% foreach my $name (@cities) {
 <hr>
 <& .city_info, city => $name, state => 'MN' &>
% }

<%def .city_info>
<%args>
 $city
 $state
</%args>
 <table border="2">
 <tr> <th colspan="2"><% $city %></th> </tr>
 <tr> <td>Population:</td> <td><% $population %></td> </tr>
 <tr> <td>Coordinates:</td> <td><% "$latitude, $longitude" %></td> </tr>
 <tr> <td>Mayor:</td> <td><% $mayor %></td> </tr>
 </table>
<%init>
 my ($population, $latitude, $longitude, $mayor) =
 $dbh->selectrow_array("SELECT population, latitude, longitude, mayor
 FROM cities
 WHERE city=? and state=?",
 undef, $city, $state);
</%init>
</%def>

Since a subcomponent is visible only to the component that defines, and because it
has all the capabilities that regular components have, you may think of subcompo-
nents as roughly analogous to privately scoped anonymous subroutine references in
Perl.

Creating Components on the Fly
You may encounter situations in which you want to use Mason’s templating features
and data management tools, but you don’t want to create a full-blown component
root hierarchy on disk to house your components. Perhaps you want to create a com-
ponent from an isolated file or directly from a string containing the component text.

For these situations, the Mason interpreter provides the make_component() method. It
accepts a comp_file or comp_source parameter (letting you create a component from a
file or a string, respectively) and returns a Component object.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 5: Advanced Features

Creating a component from scratch
#!/usr/bin/perl -w

use strict;
use HTML::Mason;

my $source = <<'EOF';
<%args>
 $planet
</%args>
Hello, <% $planet %>!
EOF

my $interp = HTML::Mason::Interp->new();
my $comp = $interp->make_component(comp_source => $source);
$interp->exec($comp, planet => 'Neptune');

And here is a component that creates another component at runtime:

<& $comp &>

<%init>
 my $comp = $m->interp->make_component(
 comp_file => '/home/slappy/my_comps/foo',
);
</%init>

Of course, creating components at runtime is slower than creating them ahead of
time, so if you need to squeeze out all the performance you possibly can, you might
need to think of a speedier method to achieve your goals. And as always, benchmark
everything so you really know what the effects are.

If the compiler encounters syntax errors when attempting to compile the compo-
nent, a fatal exception will be thrown inside the make_component() method. If you
want to trap these errors, you may wrap the make_component() method in Perl’s eval
{} block, and check $@ after the method call.

Sharing Data Among Component Sections
By default, the scope of variables created within an <%init> block, a Perl line, or any
other Mason markup sections is the entire component. This is tremendously conve-
nient, because it lets you initialize variables in the <%init> block, then use their val-
ues across the rest of the component. So most of the time, the techniques discussed
in this section won’t be needed.

There is one limitation to variables created within the <%init> section, however: their
values won’t be seen by any subcomponents you might define. This is true for two
reasons. First, the subcomponents may themselves contain an <%init> section, so the
relevance of the main component’s <%init> section isn’t necessarily clear. Second, a
subcomponent may actually be a method (more on this later), in which case it is
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sharing Data Among Component Sections | 71

accessible to the outside world without first calling the main component, so the
<%init> section never has a chance to run.

Sometimes you need to share data between a component and its subcomponents,
however, and for these situations Mason provides the <%shared> and <%once> blocks.
A <%shared> block runs before the main component or any of its methods or subcom-
ponents and may run initialization code. Any variables created here will be visible to
the entire main component and any of its subcomponents, including the main com-
ponent’s <%init> section, if any. The <%once> block is similar—the only difference is
that code in the <%once> block won’t run every time the component is called. It will
run only when the component itself is loaded. The initialized values will remain
intact for the lifetime of the component object, which may be until you make
changes to the component source file and Mason reloads it or until the web server
child expires and gets replaced by a new one.

A <%shared> section is great when a component and its subcomponents have a tight
relationship and may make complicated use of shared data. In contrast, <%once> sec-
tions are useful for caching values that change infrequently but may take a long time
to compute. See Example 5-1.

A similar example, but using a <%once> section, is shown in Example 5-2.

A cautionary note about the <%shared> and <%once> sections: they do not let you trans-
parently share data among Apache children (this would require actual shared memory

Example 5-1. sharing_example.mas

<%def .subcomponent>
 visible $color in .subcomponent is <% $color %>
</%def>

visible $color in main component is <% $color %>
<& .subcomponent &>

<%shared>
 my $color = 'bone';
</%shared>

Example 5-2. once_example.mas

<%def .subcomponent>
 visible $flavor in .subcomponent is <% $flavor %>
</%def>

visible $flavor in main component is <% $flavor %>
<& .subcomponent &>

<%once>
 my $flavor = 'gamey';
</%once>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 5: Advanced Features

segments and can be done with modules like IPC::Shareable), or among multiple
components (this can easily be done with global variables). It is also unwise to use
variables created in a <%once> section for saving state information that you intend to
change, since the next time the component is loaded your changes will be lost.

You should also remember that variables defined via an <%args> block are not visible
in a <%shared> block, meaning that the only access to arguments inside a shared block
is via the %ARGS hash or one of the request object methods such as request_args.

Methods and Attributes
The ability to use Mason’s component-level object-oriented methods and attributes
can give you powerful techniques for managing your site.

As explained in Chapter 3, one of the major benefits of object-oriented techniques is
that they help you reduce redundancy in your site. Site redundancy is a much bigger
problem than most people realize. How many times have you forgone a site revision
because performing the revision would be “too intrusive,” and you can’t afford the
downtime? How many Internet web sites have you seen that look promising at first,
but fail to fix problems and don’t adapt to usage patterns over the long run? Nobody
likes to be stuck with an unmaintainable site, and the only way to avoid it is to
design the site to be adaptable and extensible in the first place. Eliminating redun-
dancy goes a long way toward this goal.

Methods
Methods in Mason are actually quite simple. A method is just like a subcomponent,
but instead of defining it with a <%def> section, you use a <%method> section:

<%method .my_method>
 Any regular component syntax here...
</%method>

The difference between subcomponents and methods is primarily in how they can be
invoked from other components. A method can only be invoked using special
method syntax. We present three ways of doing this here:

Fetch the bottommost child of the current component
my $self = $m->base_comp;
$self->call_method('.my_method');

Shortcut for the above two lines
$m->comp('SELF:.my_method');

Same thing, using <& &> syntax
<& SELF:.my_method &>

Let’s think about what happens when you invoke a method. Suppose there is a
component called /staff/flintoff.mas, whose parent is /staff/autohandler, whose
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Methods and Attributes | 73

parent is in turn /autohandler. While any of these components are executing (which
might be when a top-level request comes in for /staff/flintoff.mas or when /staff/
flintoff.mas is called from another component), calling $m->base_comp from within
any of these three components will return a component object representing /staff/
flintoff.mas. In the example, that component object is stored in $self. Invoking
call_method('.my_method') will search $self and its hierarchy of parents for a
method called .my_method, starting the search at $self and proceeding upward. If
such a method is found, it gets executed. If no such method is found, a fatal error
occurs. You may want to call $self->method_exists('.my_method') first if you’re
not sure whether the method exists.

Remember that methods are full-blown subcomponents, so you may also pass them
arguments when you invoke them. Examples 5-3 and 5-4 demonstrate a more
sophisticated example of method invocation.

The central thing to note about this example is the way the main component and the
autohandler cooperate to produce the <body> tag. The designer of this site has cho-
sen to make the bgcolor and textcolor page attributes configurable by each page,
and the autohandler will generate the rest, including the call to the JavaScript func-
tion prepare_images().

Incidentally, note that the autohandler took responsibility for the <html> and </html>
tags, while the main component generated everything in the <head> and <body> sec-
tions. This is not necessarily good design—you must determine the right factoriza-
tion for each site you create—but it made the example straightforward.

Now that you know what methods are and how they work, we can explore some
ways that you can use them to design your site to be flexible and maintainable.

Example 5-3. /autohandler

<html>
<& $m->call_next &>
</html>
<%method .body_tag>
 <%args>
 $bgcolor => 'white'
 $textcolor => 'black'
 </%args>
 <body onLoad="prepare_images()" bgcolor="<% $bgcolor %>" text="<% $textcolor %>">
</%method>

Example 5-4. /important_advice.mas

<head><title>A Blue Page With Red Text</title></head>

<& SELF:.body_tag, bgcolor=>'blue', textcolor=>'red' &>
 Never put anything bigger than your elbow into your ear.
</body>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 5: Advanced Features

Using Methods for Titles and Headers
The most familiar example of commonality within a site’s structure is probably the
overall design of pages. Most web sites want to have a common design structure
across multiple pages, including common colors and fonts, common navigational
elements and headers, common keywords in <META> tags, and so on. In this section,
we explore how you can use methods for the specific problem of generating com-
monly styled headers and titles for your pages.

Generating titles and headers was the major motivation behind developing Mason’s
method capabilities in the first place. Consider for a moment the “title and header
problem”: it is often desirable to control the top and bottom of an HTML page cen-
trally, for all the reasons we’ve tried to drum into your skull throughout this chap-
ter. However, while large portions of the top and bottom of the page may be the
same for all pages on your site, certain small pieces may be different on every page—
titles and headers often fall into this category. So, you would like a way to generate
the large common portions of your pages centrally but insert the noncommon titles
and headers where they belong.

Mason’s methods provide a perfect answer. Each title and header can be specified
using a method. Then an autohandler can generate the common headers and foot-
ers, calling the base component’s title and header methods to insert the page-specific
information in its proper place (Examples 5-5 and 5-6).

Example 5-5. autohandler

<html>
<head><title><& SELF:title &></title></head>
<body>
 <center><h3><& SELF:header &></h3></center>
% $m->call_next;
 <center>-home-</center>
</body>
</html>
<%method title>
 www.Example.com
</%method>
<%method header>
 Welcome to Example.com
</%method>

Example 5-6. fancy_page.html

<p>This page isn't all <i>that</i> fancy, but it might be the
fanciest one we've seen yet.</p>
<%method title>
 Fancy Page
</%method>

<%method header>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Methods and Attributes | 75

The autohandler provides a default title and header, so if the base component fancy_
page.html didn’t provide a title or header method, the autohandler would use its
default values. If none of the components in the parent hierarchy (autohandler and
fancy_page.html in this case) defines a certain method and that method is invoked, a
fatal exception will be thrown. If you don’t want to have a default title and header,
ensuring that each page sets its own, you can simply omit the default methods in the
autohandler. If a page fails to set its title or header, you will know it pretty quickly in
the development cycle.

Remember that methods are Mason components, so they can contain more than just
static text. You might compute a page’s title or header based on information deter-
mined at runtime, for example.

Methods with Dynamic Content
As you know, methods and inheritance may be used to let a page and its autohan-
dler share the responsibility for generating page elements like headers and titles.
Since these elements may often depend on user input or other environmental condi-
tions (e.g., “Welcome, Jon Swartz!” or “Information about your 9/13/2001 order”),
you’ll need a way to set these properties (like “Jon Swartz” or “9/13/2001”) at run-
time. Why is this an issue? Well, the following won’t work:

<%method title>
 <!-- this method is invoked in the autohandler -->
 Information about your <% $order_date %> order
</%method>

Your order included the following items:
...generate item listing here...

<%init>
 my $order_date = $session{user}->last_order_date;
</%init>

The reason that won’t work is that variables set in the <%init> block won’t be visible
inside the <%method title> block. Even if the scope of $order_date included the
<%method title> block (it doesn’t), the sequence of events at runtime wouldn’t allow
its value to be seen:

1. A request for /your_order.html is received. Mason constructs the runtime inherit-
ance hierarchy, assigning /autohandler as /your_order.html’s parent.

2. Mason executes the /autohandler component, which invokes its SELF:title
method. The title method invoked is the one contained in /your_order.html.

 A Very Fancy Page
</%method>

Example 5-6. fancy_page.html (continued)
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 5: Advanced Features

3. The /your_order.html:title method runs, and the value of the $order_date is
still unset—in fact, the variable is undeclared, so Perl will complain that the
Global symbol "$order_date" requires explicit package name. Let’s suppose
you trapped this error with eval {}, so that we can continue tracing the
sequence of events.

4. Control returns to /autohandler, which eventually calls $m->call_next and passes
control to /your_order.html.

5. /your_order.html runs its <%init> section and then its main body. Note that it
would set $order_date much too late to affect the title method back in step 3.

6. /your_order.html finishes and passes control back to /autohandler, and the
request ends.

What’s a Mason designer to do? The solution is simple: use a <%shared> block
instead of an <%init> block to set the $order_date variable. This way, the variable can
be shared among all the methods of the /your_order.html component, and it will be
set at the proper time (right before step 2 in the previous listing) for it to be useful
when the methods are invoked.

The proper code is remarkably similar to the improper code; the only difference is
the name of the block in which the $order_date variable is set:

<%method title>
 <!-- this method is invoked in the autohandler -->
 Information about your <% $order_date %> order
</%method>

Your order included the following items:
...generate item listing here...

<%shared>
 my $order_date = $session{user}->last_order_date;
</%shared>

<%shared> blocks are executed only once per request, whenever the first component
sharing the block needs it. Its scope lasts only to the end of the request. Because of
this, <%shared> blocks are ideal for sharing scoped variables or performing compo-
nent-specific initialization code that needs to happen only once per request.

Now imagine another scenario, one in which the method needs to examine the
incoming arguments in order to generate its output. For instance, suppose you
request /view_user.html?id=2982, and you want the title of the page to display some
information about user 2982. You’ll have to make sure that the user ID is available to
the method, because under normal conditions it isn’t. The two most common ways
to get this information in the method are either for the method to call $m->request_
args() or for the autohandler to pass its %ARGS to the method when calling it. The
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Methods and Attributes | 77

method could then either declare $id in an <%args> block or examine the incoming
%ARGS hash directly. An example using request_args() follows:

<%method title>
 <!-- this method is invoked in the autohandler -->
 User page for <% $user->name %>
</%method>

... display information about $user ...

<%shared>
 my $user = MyApp::User->new(id => $m->request_args->{id});
</%shared>

Note that we cached the $user object with a shared variable so that we didn’t have to
create a new user object twice.

Attributes
Sometimes you want to take advantage of Mason’s inheritance system, but you don’t
necessarily need to inherit the full components. For instance, in our first title and
header example, the title and header methods contained just plain text and didn’t
use any of the dynamic capabilities of components. You might therefore consider it
wasteful in this case to bring the full component-processing system to bear on the
generation of headers and footers.

If you find yourself in this situation, Mason’s component attributes may be of inter-
est. An attribute is like a method in the way its inheritance works, but the value of an
attribute is a Perl scalar variable, not a Mason component.

Examples 5-7 and 5-8 rewrite our previous autohandler example using attributes
instead of methods.

Example 5-7. autohandler

<html>
<head><title><% $m->base_comp->attr('title') %></title></head>
<body>
 <center><h3><% $m->base_comp->attr('header') %></h3></center>
% $m->call_next;
 <center>-home-</center>
</body>
</html>

<%attr>
 title => "FancyMasonSite.Example.com"
 header => "Welcome to FancyMasonSite.Example.com"
</%attr>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 5: Advanced Features

Attributes can be used like this, for small bits of text that become part of every page,
but whose values vary from page to page. They can also be used to set properties of the
component, such as whether to display a certain navigation bar or to omit it, whether
the user must have certain characteristics in order to view this page,* and so on.

In the current version of Mason, each attribute in an <%attr> block must be on a sin-
gle line. This means that you cannot use multiple lines for clarity or to specify multi-
line values. Future versions of Mason may provide additional syntax options for
multiline attributes. If you run up against this limitation, you may want to use a
method instead of an attribute anyway, since methods can more easily deal with
more complex definitions.

Another limitation of attributes in the current version of Mason is that their values
are completely static properties of the component and can’t change from one request
to the next. This may or may not be addressed by a future version of Mason. In any
case, if you think you need dynamic attributes, you probably actually need to use
methods instead.

Top-Down Versus Bottom-Up Inheritance
The attentive reader will have noticed that there are two distinct facets to Mason’s
inheritance—the first is the “content wrapping” behavior, by which a parent compo-
nent can output some content, then call its child component, then output some more
content. The typical example of this is an autohandler that generates headers and
footers, wrapped around the output of its base component. The second facet of
inheritance is the method and attribute system, by which designers can define gen-
eral behavior and properties in the parent components and specific behavior in the
children.

A major difference between these two facets is the direction of inheritance. Mason
will begin the search for methods and attributes by starting with the bottommost

Example 5-8. fancy_page.html

<p>This page isn't all <i>that</i> fancy, but it might be the
fanciest one we've seen yet.</p>

<%attr>
 title => "Fancy Page"
 header => "A Very Fancy Page"
</%attr>

* In a mod_perl setting, authentication and authorization often happen before the content generation phase
(i.e., before Mason even steps into the picture). However, you may wish to bypass the auth control phases
and do your own authorization in the autohandler, just so that you can use Mason’s attributes to control
the behavior. For instance, you might give an unauthenticated user a different view of a certain page, rather
than denying access outright.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Methods and Attributes | 79

child and working its way toward the parent, but it will begin the component’s con-
tent generation by starting at the topmost parent and working its way toward the
bottommost child (assuming each parent calls $m->call_next).

Although this behavior may seem odd if this is the first time you’ve encountered it,
the inheritance system will seem like second nature after you’ve worked with it for a
while. To help form an intuitive notion of what’s happening, simply remember that
autohandlers (or other parent components) specify general behavior, whereas top-
level (i.e., child; i.e., “regular”) components dictate specific behavior, overriding the
parents.

Calling Components with Content Blocks
As you saw earlier, <%filter> blocks can be quite handy. The example we showed in
Chapter 3 altered the src attribute of tags in order to point them to a different
server.

In Chapter 8 we will show an example that filters a link menu of <a href> tags to
find the link for the current page and changes it to a tag instead, in order to high-
light the current page.

Both of these examples work just fine as long as we are willing to filter the output of
an entire component, but sometimes we’d like to limit the filtering to just one sec-
tion of the component. Consider the following autohandler:

<html>
<head>
<title><& SELF:title &></title>
</head>
<body>

<& SELF:top_menu, %ARGS &>

% $m->call_next;

</body>
</html>

This component calls the top_menu method, expecting it to produce some sort of
menu of links. We’d like to use the menu-filtering trick just mentioned, but using a
regular <%filter> block in this component would filter not only the menu of links
but also the entire page. That’s a waste of processing, not to mention a potential
source of bugs—and we hate bugs.

Another option would be to insert a <%filter> block directly into the source of the
top_menu method. However, the method may be defined in many different places; the
whole point of using a method instead of a regular component call is that any com-
ponent may redefine the method as it chooses. So we’d end up adding the same filter
block to every definition of the top_menu method. That’s a pretty poor solution.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 5: Advanced Features

What we really want is a solution that allows us to write the code once but apply it
to only the portion of the output that we choose. Of course, there is such a thing
called a “component call with content,” introduced in Mason Version 1.10. It looks
just like a regular <& &> component call, except that there’s an extra pipe (|) charac-
ter to distinguish it and a corresponding end tag, </&>. Using a component call with
content, we can apply the desired filter to just the menu of links:

<html>
<head>
<title><& SELF:title &></title>
</head>
<body>

<&| .top_menu_filter &>
 <& SELF:top_menu, %ARGS &>
</&>

% $m->call_next;

</body>
</html>

So the .top_menu_filter component—presumably a subcomponent defined in the
same file—is somehow being passed the output from the call to <& SELF:top_menu,
%ARGS &>. The .top_menu_filter component would look something like this:

<%def .top_menu_filter>
% my $text = $m->content;
% my $uri = $r->uri;
% $text =~ s,([^<]+),$1,;
<% $text %>
</%def>

This looks more or less like any other <%filter> block, but with two main differ-
ences. First, the body of a <%filter> block contains plain Perl code, but since .top_
menu_filter is a subcomponent, it contains Mason code. Second, we access the text
to filter via a call to $m->content instead of in the $_ variable. The $m->content()
method returns the evaluated output of the content block, which in this case is the
output of the SELF:top_menu component.

Mason goes through some contortions in order to trick the wrapped portion of the
component into thinking that it is still in the original component. If we had a compo-
nent named bob.html, as shown in the example below:

<&| .uc &>
I am in <% $m->current_comp->name %>
</&>

<%def .uc>
<% uc $m->content %>
</%def>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Calling Components with Content Blocks | 81

we would expect the output to be:

I AM IN BOB.HTML

And indeed, that is what will happen. You can also nest these sorts of calls:

<&| .ucfirst &>
 <&| .reverse &>
I am in <% $m->current_comp->name %>
 </&>
</&>

<%def .reverse>
<% scalar reverse $m->content %>
</%def>
<%def .ucfirst>
<% join ' ', map {ucfirst} split / /, $m->content %>
</%def>

This produces:

Lmth.bob Ni Ma I

As you can see, the filtering components are called from innermost to outermost.

It may have already occurred to you, but this can actually be used to implement
something in Mason that looks a lot like Java Server Page taglibs. Without comment-
ing on whether the taglib concept is conducive to effective site management or not,
we’ll show you how to create a similar effect in Mason. Here’s a simple SQL select
expressed in something like a taglib style:

<table>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
<&| /sql/select, query => 'SELECT name, age FROM User' &>
 <tr>
 <td>%name</td>
 <td>%age</td>
 </tr>
</&>
</table>

The idea is that the query argument specifies the SQL query to run, and the content
block dictates how each row returned should be displayed. Fields are indicated here
by a % and then the name of the field.

Now let’s write the /sql/select component.

<%args>
 $query
</%args>
<%init>
 my $sth = $dbh->prepare($query);
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 5: Advanced Features

 while (my $row = $sth->fetchrow_hashref) {
 my $content = $m->content;
 $content =~ s/%(\w+)/$row->{$1}/g;
 $m->print($content);
 }
</%init>

Obviously, this example is grossly simplified (it doesn’t handle things like bound
SQL variables, and it doesn’t handle extra embedded % characters very well), but it
demonstrates the basic technique.

Seeing all this, you may wonder if you can somehow use this feature to implement
control structures, again a taglib-esque idea. The answer is yes, with some caveats.
We say “with caveats” because due to the way this feature is implemented, with clo-
sures, you have to jump through a few hoops. Here is something that will not work:

<&| /loop, items => ['one', 'two', 'three'] &>
<% $item %>
</&>

And in /loop:

<%args>
 @items
</%args>
% foreach my $item (@items) {
<% $m->content %>
% }

Remember, the previous example will not work. The reason should be obvious. At
no time is the variable $item declared in the calling component, either as a global or
lexical variable, so a syntax error will occur when the component is compiled.

So how can this idea be made to work? Here is one way. Rewrite the calling compo-
nent first:

% my $item;
<&| /loop, items => ['one', 'two', 'three'], item => \$item &>
<% $item %>
</&>

Then rewrite /loop:

<%args>
 $item
 @items
</%args>
% foreach (@items) {
% $$item = $_;
<% $m->content %>
% }

This takes advantages of how Perl treats lexical variables inside closures, but explain-
ing this in detail is way beyond the scope of this book.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Calling Components with Content Blocks | 83

You can also achieve this same thing with a global variable. This next version
assumes that $item has been declared using allow_globals:

<&| /loop, items => ['one', 'two', 'three'] &>
<% $item %>
</&>

And /loop becomes this:

<%args>
 @items
</%args>
% foreach $item (@items) {
<% $m->content %>
% }

This version is perhaps a little less funky, but it could lead to having more globals
than you’d really like.

An in-between solution using Perl’s special $_ variable can solve many of these prob-
lems. This variable is a global but is automatically localized by loop controls like
foreach or while. So we can now write:

<&| /loop, items => ['one', 'two', 'three'] &>
<% $_ %>
</&>

And for /loop:

<%args>
 @items
</%args>
% foreach (@items) {
<% $m->content %>
% }

Magic. It isn’t perfect, but it looks kind of neat.

In any case, Mason was designed to use Perl’s built-in control structures, so we don’t
feel too bad that it’s awkward to build your own.

Advanced Inheritance
In Chapter 3 we introduced you to the concept of component inheritance, and in this
chapter we have discussed some of the ways you can use inheritance to create flexi-
ble, maintainable Mason sites. Now we show how inheritance interacts with other
Mason features, such as multiple component roots and multiple autohandlers.

Inheritance and Multiple Component Roots
It is possible to tell Mason to search for components in more than one directory—in
other words, to specify more than one component root. This is analogous to telling
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 5: Advanced Features

Perl to look for modules in the various @INC directories or to telling Unix or Win-
dows to look for executable programs in your PATH. In Chapters 6 and 7 you will
learn more about how to configure Mason; for now, we will just show by example:

my $ah = HTML::Mason::ApacheHandler->new(
 comp_root => [
 [main => '/usr/http/docs'],
 [util => '/usr/http/mason-util'],
]
);

or, in an Apache configuration file:

PerlSetVar MasonCompRoot 'main => /usr/http/docs'
PerlAddVar MasonCompRoot 'util => /usr/http/mason-util'

This brings up some interesting inheritance questions. How do components from the
two component roots relate to each other? For instance, does a component in /usr/
http/docs inherit from a top-level autohandler in /usr/http/mason-util? With this
setup, under what conditions will a component call from one directory find a com-
ponent in the other directory? The answers to these questions are not obvious unless
you know the rules.

The basic rule is that Mason always searches for components based on their compo-
nent paths, not on their source file paths. It will be perfectly happy to have a compo-
nent in one component root inherit from a component in another component root.
When calling one component from another, you always specify only the path, not
the particular component root to search in, so Mason will search all roots.

If it helps you conceptually, you might think of the multiple component roots as get-
ting merged together into one big über-root that contains all the files from all the
multiple roots, with conflicts resolved in favor of the earliest-listed root.

Let’s think about some specific cases. Using the two component roots given previously,
suppose you have a component named /dir/top_level.mas in the main component root
and a component named /dir/autohandler in the util component root. /dir/top_level.mas
will inherit from /dir/autohandler by default. Likewise, if /dir/top_level.mas calls a com-
ponent called other.mas, Mason will search for other.mas first in the main component
root, then in the utils root. It makes no difference whether the component call is done
by using the component path other.mas or /dir/other.mas; the former gets transformed
immediately into the latter by prepending the /dir/top_level.mas’s dir_path.

If there are two components with the same path in the main and util roots, you
won’t be able to call the one in the util root by path no matter how hard you try,
because the one in main overrides it.

This behavior is actually quite handy in certain situations. Suppose you’re creating
lots of sites that function similarly, but each individual site needs to have some small
tweaks. There might be small differences in the functional requirements, or you
might need to put a different “look and feel” on each site. One simple way to do this
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Advanced Inheritance | 85

is to use multiple component roots, with each site having its own private root and a
shared root:

my $interp = HTML::Mason::Interp->new(
 comp_root => [
 [mine => '/etc/httpd/sites/bobs-own-site'],
 [shared => '/usr/local/lib/mason/common'],
]
);

The shared root can provide a top-level autohandler that establishes a certain generic
look and feel to the site, and the mine root can create its own top-level autohandler to
override the one in shared.

Using this setup, any component call—no matter whether it occurs in a component
located in the mine or shared component root—will look for the indicated compo-
nent, first in mine, then in shared if none is found in mine.

An Advanced Inheritance Example
An example can help showcase several of the topics we’ve discussed in this chapter.
The component in this section was originally written by John Williams, though
we’ve removed a few features for the pedagogical purposes of this book. It imple-
ments an autohandler that allows you to run predefined SQL queries via a Mason
component interface. For example, you might use the component as in Example 5-9.

Note that we’re passing a content block to the /query/order_items:exec method
call. The idea is that the method will repeat the content block for every database
row returned by an SQL query, and the $_ variable will hold the data for each row,
as returned by the DBI method fetchrow_hashref(). The query itself is specified in
the /query/order_items file, which could look like Example 5-10.

Example 5-9. A calling component

<table>
<tr><th>Part Number</th><th>Quantity</th><th>Price</th><th>Total</th></tr>
<&| /query/order_items:exec, bind => [$OrderID] &>
<tr>
 <td><% $_->{PARTNUM} %></td>
 <td><% $_->{QUANTITY} %></td>
 <td><% $_->{PRICE} %></td>
 <td><% $_->{QUANTITY} * $_->{PRICE} %></td>
</tr>
</&>
</table>

Example 5-10. /query/order_items

SELECT * FROM items WHERE order_id = ?
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 5: Advanced Features

Yes, it’s just one line. Where is the exec method we called earlier? It’s in the parent
component, which (since we didn’t specify otherwise with an inherit flag) is query/
autohandler. This autohandler is the component that does all the work; see
Example 5-11.

Let’s step our way through the autohandler. The only code outside the exec method
ensures that this component is parentless. It’s not strictly necessary, but we include it
to make sure this example is isolated from any other interaction.

We access the database inside the exec method. Since we haven’t declared the $dbh
variable, it’s assumed that it’s already set up for us as a global variable, probably ini-
tialized in the site’s top-level autohandler. The first thing we do is make sure that the
code will throw an exception if anything goes wrong during the query, so we locally
set $dbh->{RaiseError} to 1. Any exceptions thrown will be the responsibility of
someone higher up the calling chain.

Example 5-11. /query/autohandler

<%flags>
 inherit => undef
</%flags>

<%method exec>
 <%args>
 @bind => ()
 </%args>

 <%init>
 local $dbh->{RaiseError} = 1;

 # Get the SQL from the base component
 my $sql = $m->scomp($m->base_comp, %ARGS);
 my $q = $dbh->prepare($sql);
 $q->execute(@bind);

 # Return now if called without content
 # (useful for insert/update/delete statements).
 return $dbh->rows unless defined $m->content;

 # Call the content block once per row
 local $_;
 while ($_ = $q->fetchrow_hashref('NAME_uc')) {
 $m->print($m->content);
 }

 # Don't print any of the whitespace in this method
 return;
 </%init>
</%method>
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Advanced Inheritance | 87

Next, we get the text of the SQL query. It’s contained in our base component, which
in our example was /query/order_items. We call this component to get its output.
Note that we also pass %ARGS to our base component, which lets us do additional
substitutions into the SQL statement. For example, we could have a query that sorts
by one of several different fields, using ORDER BY <% $ARGS{sort} %> inside the SQL
statement.

After we fetch the SQL and prepare the query, we execute the query, passing any
bound variables to the $q->execute() method. If there was no content block passed
to us, then we’re done—this allows the component to be used for INSERT/
UPDATE/DELETE statements in addition to SELECT statements.

Finally, we iterate through the rows returned by the query, storing the data for each
row in $_. Note that we localize $_ before using it, since blowing away any value
that’s already in there would be extremely impolite.

Be sure to notice that the $m->content body is reexecuted for each row. Because of
this, its execution happens within the scope of the current $_ variable. This is really
the only way this all could work, but it’s subtle enough that we had to point it out.

The advantage of using inheritance this way is that you capture the complicated
parts of a task in a single component, and then all the rest of the components
become very simple. If you get familiar with Mason’s inheritance model, you can cre-
ate very sophisticated applications with a minimum of redundancy and hassle.

Subrequests
Once in a while you may want to call one component from another as if it were a
top-level component, having it go through the full content-wrapping and dhandler-
checking process. This is what subrequests are for, and the manner in which they
work is similar to how subrequests work in Apache. Subrequests were introduced in
Mason Version 1.10.

When executing a subrequest, you may simply execute it via the request object’s
subexec() method, or you may first create the object via make_subrequest() and then
execute it via exec(). The subexec() method takes the same arguments as the comp()
method:

Calling /some/comp:
% $m->subexec('/some/comp', foo => 1);

The output of the subrequest goes to the same place as normal component output,
but can be captured in a variable fairly easily by using make_subrequest() to provide
explicit arguments when creating the request:

<%perl>
 my $output;
 my $req = $m->make_subrequest
 (comp => '/some/comp', args => [foo => 1], out_method => \$output);
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 5: Advanced Features

 $req->exec;
 $output =~ s/something/something else/g;
</%perl>
/some/comp produced:
<% $output %>

As this illustrates, one of the interesting things you can do with a subrequest is over-
ride some of the parameters provided by its parent request. So we can do:

Calling /some/comp:
<%perl>
 my $req = $m->make_subrequest
 (comp => '/some/comp', autoflush => 1);
 $req->exec;
</%perl>

In both cases, the request object created by the make_subrequest method inherits its
parameters from the parent request, except for those that are explicitly overridden.

A Caution About Autohandler Inheritance
Remember that Mason determines the default parent of every component but that
you can always specify a different parent using the special inherit flag in the
<%flags> section. This applies not just to regular components, but to autohandlers
too: any component, including the top-level autohandler, can inherit from a compo-
nent of your choosing.

However, specifying an autohandler’s inheritance explicitly can easily lead to an infi-
nite inheritance chain if you’re not careful. Suppose you set the parent of the top-level
autohandler to a component called /syshandler. In setting up the inheritance chain at
runtime, Mason will attempt to find the parent of /syshandler, and the default is (you
guessed it) autohandler in the same directory. So unless you’ve overridden /syshandler’s
parent, you’ll have /autohandler inheriting from /syshandler, and /syshandler inheriting
from /autohandler. Not a good situation: it will cause a fatal runtime error due to the
inheritance loop. The solution is to set the inherit flag for /syshandler to undef, termi-
nating the inheritance chain. Yes, this sounds a bit like SCSI; perhaps someday some-
one will invent the equivalent of USB in the Mason world. Until then, just make sure
you don’t create any loops.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Subrequests | 89

	Subcomponents
	Creating Components on the Fly
	Sharing Data Among Component Sections
	Methods and Attributes
	Methods
	Using Methods for Titles and Headers
	Methods with Dynamic Content
	Attributes
	Top-Down Versus Bottom-Up Inheritance

	Calling Components with Content Blocks
	Advanced Inheritance
	Inheritance and Multiple Component Roots
	An Advanced Inheritance Example

	Subrequests
	 A Caution About Autohandler Inheritance

