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PREFACE

This manual contains material designed to be useful in the design of an introductory physics
course based on the text FUNDAMENTALS OF PHYSICS, seventh edition, by David Halliday,
Robert Resnick, and Jearl Walker. It may be used with either the extended or regular versions
of the text. Section One includes material to help instructors choose topics and design courses.
Section Two contains a discussion of sources for ancillary material that might be helpful in designing
a course or obtaining lab and demonstration apparatus and audio/visual material. Section Three
contains lecture notes outlining the important topics of each chapter, suggested demonstration and
laboratory experiments, computer software, video cassettes, and DVDs.

Sections Four, Five, and Six contain answers to checkpoints, end-of-chapter questions, and end-
of-chapter problems. To help ease the transition from the sixth to the seventh edition of the text,
Section Seven of the manual cross references end-of-chapter problems between the two editions.
Because some instructors avoid assigning problems that are discussed in A Student’s Companion,
in the Student Solution Manual or on the Wiley website, while others desire to include a few of
these in many assignments, Section Eight of the manual contains a list of these problems.

The principal author is grateful to Stanley Williams, who co-authored the first edition of the
instructor manual for Fundamentals of Physics. Much of his material has been retained in this
manual. He is also grateful to Walter Eppenstein, who helped with suggestions for demonstration
and laboratory experiments. Jearl Walker helped significantly by supplying answers to checkpoint
questions, end-of-chapter questions, and end-of-chapter problems.

The author is indebted to the Project Editor Geraldine Osnato, who managed many aspects of
this project. Special thanks go to Sharon Prendergast, the Production Editor. Karen Christman
carefully read earlier editions of the manuscript and made many useful suggestions. Her fine work
is gratefully noted. The unfailing support of Mary Ellen Christman is joyfully acknowledged.

J. Richard Christman
Professor Emeritus
U.S. Coast Guard Academy
New London, Connecticut 06320
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SECTION ONE

ABOUT THE TEXT

Fundamentals of Physics, seventh edition, follows the sequence of topics found in most intro-
ductory courses. In fact, earlier editions of this text were instrumental in establishing that sequence.
It is, however, extremely flexible in regard to both the range of topics and the depth of coverage.
As a result, it can be used for a two, three, or four term course along traditional lines. It can
also be used with many of the innovative courses that are presently being designed and taught. In
many instances sections that discuss fundamental principles and give applications are followed by
other sections that go deeper into the physics. Some instructors prefer to cover fewer topics than
others but treat the topics they do cover in great depth. Others prefer to cover more topics with
less depth. Courses of both types can easily be accommodated by selecting appropriate sections of
the text.

By carefully choosing sections of the text to be included, your course might be a two-term,
in-depth study of the fundamentals of classical mechanics and electromagnetism. With the addition
of another term you might include more applications and the thermodynamics and optics chapters.
In a three-term course, you might also forgo thermodynamics and optics but include Chapter 37
(Relativity) and some of the quantum mechanics chapters added in the extended version.

When designing the course, some care must be taken in the selection of topics because many
discussions in later chapters presume coverage of prior material. Here are some comments you
might find useful in designing your course. Also refer to the Lecture Notes section of this manual.

Mechanics. The central concepts of classical mechanics are covered in Chapters 1 through 11.
Some minor changes that are possible, chiefly in the nature of postponements, are mentioned in
the Lecture Notes. For example, the scalar product can be postponed until the discussion of work
in Chapter 7 and the vector product can be postponed until the discussion of torque in Chapter
11.

Coverage of Chapter 5 can be shortened to two lectures or elongated to over four, depending
on the time spent on applications. Sections 9—8, 9—9, 9—10, and 9—11, on collisions, can be covered
as part of laboratory exercises. Other sections in the first twelve chapters that can be used to
adjust the length of the course are 2—10, 3—7, 4—8, 4—9, 6—4, 7—8, 9—10, 9—11, 9—12, 11—5, and 11—12.
Section 10—7, which deals with the calculation of the rotational inertias of extended bodies, can
be covered in detail or can be shortened by simply stating results once the definition as a sum
over particles has been discussed. The parallel axis theorem is needed to solve some end-of-chapter
problems in this chapter and in Chapter 16 and it should be covered if those problems are assigned.

The order of the chapters should be retained. For example, difficulties arise if you precede
dynamics with statics as is sometimes done in other texts. To do so, you would need to discuss
torque, introduced in Chapter 10, and explain its relation to angular acceleration. This involves
considerable effort and is of questionable value.

Chapters 12 through 18 apply the fundamental principles of the first 11 chapters to special
systems and, in many cases, lay the groundwork for what is to come. Many courses omit one or
more of Chapters 12 (Equilibrium and Elasticity), 13 (Gravitation), 14 (Fluids), and 17 (Waves
– II). There is some peril in these omissions, however. Chapter 13, for example, is pedagogically
important. The central idea of the chapter is a force law and the discussions of many of its rami-
fications show by example how physics works. Since the chapter brings together many previously
discussed ideas it can be used as a review. In addition, Newton’s law of gravity is used later to
introduce Coulomb’s law and the proof that the electrostatic force is conservative relies on the
analogy. The basis of Gauss’ law is laid in Chapter 13 and inclusion of this chapter makes teaching
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of the law easier.
The idea of a velocity field is first discussed in Chapter 14 and is used to introduce electric flux

in Chapter 23 (Gauss’ Law). The concepts of pressure and density are explained in Chapter 14
and are used again in the thermodynamics chapters. If Chapter 14 is omitted, you should be
prepared to make up for the loss of material by presenting definitions and discussions of velocity
fields, pressure, and density when they are first used in your course.

Chapter 12 (Equilibrium and Elasticity) can be safely omitted. If it is, a brief description of the
equilibrium conditions might be included in the discussion of Chapter 10 or 11. The few problems in
later chapters that depend on material in this chapter can be passed over. If Chapter 12 is included,
be sure you have already covered torque and have explained its relation to angular acceleration.

Chapters 15 (Oscillations) and 16 (Waves – I) are important parts of an introductory course
and should be covered except when time constraints are severe. Chapter 15 is required for Chap-
ter 16 and both are required for Chapter 17 (Waves – II). Chapter 15 is also required for Chapter 31
(Electromagnetic Oscillations and Alternating Current) and parts of Chapter 16 are required for
Chapters 33 (Electromagnetic Waves), 35 (Interference), 36 (Diffraction), 38 (Photons and Matter
Waves), and 39 (More About Matter Waves). Chapters 15 and 16 may be covered in the mechanics
part of the course or may be delayed until electromagnetic waves are covered.

Sections of Chapters 12 through 17 that can be used to adjust the length of the course are
12—6, 12—7, 13—7, 13—8, 13—9, 14—5, 15—6, 15—7, 15—8, 15—9, 16—8, 17—7, 17—9, and 17—10.

Thermodynamics. Chapters 18 through 20 cover the ideas of thermodynamics. Most two-term
courses and some three-term courses omit these chapters entirely. If they are covered, they can be
placed as a unit almost anywhere after the mechanics chapters. The idea of temperature is used in
Chapter 26 (Current and Resistance) and in some of the modern physics chapters, as well as in the
other thermodynamics chapters. If Chapter 18 is not covered prior to Chapter 26, you should plan
to discuss the idea of temperature in connection with that chapter or else omit the section that
deals with the temperature dependence of the resistivity. Sections of these chapters that can be
used to adjust the length of the course are 18—6, 18—12, 19—6, 19—10, 20—5, 20—6, 20—7, and 20—8.

Electromagnetism. The fundamentals of electricity and magnetism are covered in Chapters 21
through 33. Chapter 33 (Electromagnetic Waves) may be considered a capstone to the electro-
magnetism chapters or as an introduction to the optics chapters. Sections that might be omitted
to adjust the length of the course are 21—5, 24—8, 25—6, 25—7, 25—8, 26—6, 26—8, 26—9, 27—8, 27—9,
28—7, 30—9, 30—12, 31—11, 32—6, 32—7, 32—8, 32—9, 32—10, 32—11, and 33—7. Sections 33-8, 33—9, and
33—10 can be om8itted if the optics chapters are not covered. Otherwise, they must be included.

Sections 25—6, 25—7, and 25—8, on dielectrics, should be included in an in-depth course but
may be omitted in other courses to make room for other topics. Similarly, coverage of Chapters 27
(Circuits) and 31 (Electromagnetic Oscillations and Alternating Currents) may be adjusted consid-
erably, depending on the extent to which the course emphasizes practical applications. They may
also be covered as laboratory exercises. Section 26—6 is required if Chapter 41 is covered although
the material can be shorted and presented in conjunction with Chapter 41 rather than at an earlier
time.

Section 32—2 contains a discussion of Gauss’ law for magnetism, one of Maxwell’s equations, and
should be included in every course, as should sections 32—3, 32—4, and 32—5, on the displacement
current, the Ampere-Maxwell law, and the complete set of Maxwell’s equations. The last portion
of the chapter deals with magnetic properties of materials and some of ramifications of those
properties. It nicely complements the previous sections on dielectrics. These parts of the chapter
might be omitted or passed over swiftly to gain time for other sections. On the other hand, they
should be included if you intend to emphasize properties of materials.

Optics. Chapters 34 through 36 are the optics chapters. You might wish to precede them
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with Chapter 33 (Electromagnetic Waves) or you might wish to replace Chapter 33 with a short
qualitative discussion. You can be somewhat selective in your coverage of Chapter 34 (Images).
It can be covered as lightly or as deeply as desired. Much of the material in this chapter can be
covered as laboratory exercises.

Chapters 35 (Interference) and 36 (Diffraction) are important in their own right and are quite
useful for the discussion of photons and matter waves in Chapter 38. Chapter 36 cannot be included
without Chapter 35 but coverage of both chapters can be reduced somewhat to make room for other
topics. The fundamentals of interference and diffraction are contained in Sections 35—1 through
35—6 and 36—1 through 36—5. Other sections of these chapters can be included or excluded, as
desired.

Modern Physics. Chapter 37 (Relativity) may be used as a capstone to the mechanics section of
the course, as a capstone to the entire course, or as an introduction to the modern physics included
in the extended version of the text. Some results of relativity theory are needed for the chapters
that follow. If you do not wish to cover Chapter 37 in detail you can describe these results as
they are needed. However, it is probably more satisfying to present a more complete and logically
connected description of relativity theory. If you plan to cover some of the other modern physics
chapters you should consider including Chapter 37.

The fundamentals of the quantum theory are presented in Chapters 38 (Photons and Matter
Waves) and 39 (More About Matter Waves). This material should be treated as a unit and must
follow in the order written. If you include these chapters, be sure earlier parts of the course include
discussions of uniform circular motion, angular momentum, Coulomb’s law, electrostatic potential
energy, electromagnetic waves, and diffraction. E = mc2 and E2 = (pc)2 + (mc2)2, from relativity
theory, are used in discussions of the Compton effect.

The introductory modern physics chapters are followed by application chapters: Chapters 40
(All About Atoms), 41 (Conduction of Electricity in Solids), 42 (Nuclear Physics), 43 (Energy from
the Nucleus), and 44 (Quarks, Leptons, and the Big Bang). You may choose to end the course
with Chapter 39 or you may choose to include one or more of the application chapters.

The ideas of temperature and the Kelvin scale are used in several places in the modern physics
chapters: Sections 40—12 (How a Laser Works), 41—5 (Metals), 41—6 (Semiconductors), 43—6 (Ther-
monuclear Fusion: The Basic Process), and 44—12 (The Microwave Background Radiation). With
a little supplementary material, these sections can be covered even if Chapter 18 is not.

Chapter 43 (Energy from the Nucleus) requires Chapter 42 (Nuclear Physics) for background
material, but Chapter 42 need not be followed by Chapter 43. E = mc2 and E2 = (pc)2 + (mc2)2

from relativity theory are also used. The discussion of thermonuclear fusion uses some of the ideas
of kinetic theory, chiefly the distribution of molecular speeds. Either Chapter 19 (particularly
Section 19—7) should be covered first or you should be prepared to supply a little supplementary
material here.

Chapter 44 includes an introduction to high energy particle physics and tells how the ideas
of physics are applied to cosmology. Both these topics fascinate many students. In addition, the
chapter provides a nice overview of physics.

Some knowledge of the Pauli exclusion principle (from Chapter 40) and spin angular momen-
tum (from Chapters 32 and 40) is required. Knowledge of the strong nuclear force (discussed in
Chapters 42 and 43) is also required. In addition, beta decay (discussed in Chapter 42) is used
several times as an illustrative example. Nevertheless, the chapter can be made to stand alone with
the addition of only a small amount of supplementary material.

SUGGESTED COURSES

A bare bones two-semester course (about 90 meetings) can be constructed around Chapters 1
through 11, 15, 16, and 21 through 33, with the omission of Chapter 31 Sections 32—7 through 32—
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11. The course can be adjusted to the proper length by the inclusion or omission of supplementary
material and optional topics. If four to eight additional meetings are available each term, Chapter 13
or 14 (or perhaps both) can be inserted after Chapter 11 and one or more of the optics chapters
can be inserted after Chapter 33. As an alternative, you might consider including sections on
dielectrics, magnetic properties, semiconductors, and superconductors to emphasize properties of
materials.

A three-term course (about 135 meetings) can be constructed by adding the thermodynamics
chapters (18 through 20) and some or all of the modern physics chapters (37 through 44) to those
mentioned above. If the needs of the class dictate a section on alternating current, some modern
physics material can be replaced by Chapter 31.

ESTIMATES OF TIME

The following chart gives estimates of the time required to cover all of each chapter, in units
of 50 minute periods. The second and fifth columns of the chart contain estimates of the number
of lecture periods needed and includes the time needed to perform demonstrations and discuss
the main points of the chapter. The third and sixth columns contain estimates of the number of
recitation periods required and includes the time needed to go over problem solutions, answers to
end-of-chapter questions, and points raised by students. If your course is organized differently, you
may wish to add the two numbers to obtain the total estimated time for each chapter.

Use the chart as a rough guide when planning the syllabus for a semester, quarter, or year
course. If you omit parts of chapters, reduce the estimated time accordingly.

Text Number of Number of Text Number of Number of
Chapter Lectures Recitations Chapter Lectures Recitations

1 0.3 0.2 23 1.8 1.8
2 2.0 2.0 24 1.8 1.8
3 1.0 1.0 25 1.5 2.0
4 2.0 2.5 26 1.0 1.0
5 2.0 2.0 27 2.0 2.3
6 2.0 2.0 28 2.0 1.8
7 1.8 1.5 29 2.0 1.2
8 2.0 2.0 30 2.5 2.5
9 2.5 2.0 31 1.5 1.8
10 2.0 1.5 32 2.5 2.5
11 2.0 2.0 33 2.9 2.7
12 1.0 2.0 34 2.5 2.5
13 2.3 2.0 35 2.0 2.0
14 2.0 2.0 36 2.0 2.0
15 2.5 1.8 37 2.5 2.0
16 2.5 2.0 38 2.0 2.0
17 2.5 2.0 39 2.0 2.0
18 2.5 2.5 40 2.2 2.0
19 2.0 1.4 41 2.0 2.0
20 1.5 1.6 42 1.8 2.0
21 1.0 1.0 43 2.0 2.0
22 1.6 1.3 44 2.0 2.0
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SECTION TWO

SUGGESTIONS FOR THE COURSE

General Two excellent books that deal with teaching the introductory calculus-based course are

Teaching Introductory Physics; Arnold B. Arons; John Wiley (1997); also available from
the American Association of Physics Teachers (AAPT, One Physics Ellipse, College Park,
MD 20740-3845; www.aapt.org).

Teaching Introductory Physics (A Sourcebook); Clifford E. Swartz and Thomas Miner;
Springer-Verlag (1998); also available from the AAPT (see above for address).

Both of these provide well thought-out explanations of some of the concepts that perplex students
and give help with teaching those concepts. They are also excellent sources of demonstration and
laboratory experiments that illuminate the important ideas of the introductory physics course.

Over the past fifteen years or so the field of physics education research has grown tremendously.
Many research projects focus on the troubles students have in learning physics and analyze proposed
remedies. Lillian McDermot and Edward Redish have compiled an extensive resource letter that
lists books and journal articles in the field. It appeared in the September 1999 issue of the American
Journal of Physics and is highly recommended as a source of material for improvement of the course.

Also see On Teaching Physics; edited by Melba Phillips. An older but still valuable collection
of American Journal of Physics articles dealing with physics education.

Class Participation Each chapter contains several semi-quantitative questions, called checkpoints.
Encourage students to use them to check their understanding of the concepts and relationships
discussed in the chapter. Go over some or all of them in recitation classes or lectures. Answers to
the checkpoint questions are given in Section Four of this manual.

If funds are available, consider setting up an interactive class room or lecture hall in which
students can be polled remotely. The checkpoints and end-of-chapter questions are excellent
for this purpose. You might look into Classroom Performance System from Texas Instruments
(www.einstruction.com).

Assessment. Several books deal with grading practices and the use of grading in effective teach-
ing. See for example

Effective Grading: A Tool for Learning and Assessment ; Barbara E. Walvoord and Virginia
Johnson; Jossy-Bass, A Wiley Company; 250 pages. Available through the AAPT (see
above for address).

Classroom Assessment Techniques: A Handbook for College Teachers; Thomas A. Angelo
and K. Patricia Cross; Jossey-Bass, a Wiley Company; 427 pages. Available through the
AAPT (see above for address).

Many schools now use computer submission and grading for homework, quizzes, and exams.
WebAssign (Box 8202, NCSU, Raleigh NC 27695; www.webassign.net/info) and mapleT.A. (Wa-
terloo Maple, 615 Kumpf Drive, Waterloo, Ontario, Canada N2V 1K8; www.maplesoft.com) are
two such software products. Both allow you to generate assignments and exams containing your
own problems.

Video. All of the video cassette and DVD items listed in the SUGGESTIONS sections of the
Lecture Notes are short, well done, and highly pertinent to the chapter. It is not possible to review
all available material and there are undoubtedly many other fine video cassettes and disks that are
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not listed. Video might be incorporated into the lectures, shown during laboratory periods, or set
up in a special room for more informal viewing.

An excellent set of DVDs, The Mechanical Universe, can be obtained from The Annenberg
CPB Collection (PO Box 2345, South Burlington, VT 05407—2345; www.learner.org) and from the
AAPT (see above for address). The set consists of 52 half-hour segments dealing with nearly all the
important concepts of introductory physics. Historical information and animated graphics are used
to present the concepts in an imaginative and engaging fashion. Some physics departments run
appropriate segments throughout the course in special viewing rooms. Accompanying textbooks,
teacher manuals, and study guides are also available.

Many time-tested film loops originally from Project Physics have been transferred to DVD and
are available under the title Physics Single-Concept Film Collection from Ztek Co. (PO Box 11768,
Lexington, KY 40577—1768, www.ztek.com); and from the AAPT (see above for address). The
films cover a host of topics in mechanics, thermodynamics, electricity and magnetism, optics, and
modern physics. Other short films that have been transferred to video are the AAPT Collections
1 and 2 and the Miller Collection.

The following is available from Films for the Humanities and Sciences (PO Box 2053, Princeton,
NJ 08543—2053; www.films.com): Physics: Introductory Concepts; VHS and DVD. A 29-part series
of experiments covering a wide range of topics and using slow motion and high-speed photography
to capture details. Also of interest from the same company are The Physics of Sports and The
Physics of Amusement Park Rides.

Physics Demonstrations in Mechanics (two parts), Physics Demonstrations in Heat (three
parts), Physics Demonstrations in Sound and Waves (three parts), Physics Demonstrations in Light
(two parts), and Physics Demonstrations in Electricity and Magnetism (three parts) are available in
VHS and DVD formats from Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville,
MN 55044; www.physicscurriculum.com). Each is a collection of 3 to 4 minute demonstrations that
can be incorporated into lecture demonstrations.

Computer Software. Computers have made significant contributions to the teaching of physics.
They are widely used in lectures to provide animated illustrations, with parameters under the
control of the user; they also provide tutorials and drills that students can work through on their
own. Specialized programs are listed in appropriate SUGGESTION sections of the Lecture Notes.
In addition, several available software packages cover large portions of an introductory course. Some
of them are:

Core Concepts in Physics; Macintosh, Windows; Thomson Brooks/Cole (10 Davis Drive,
Belmont, CA 94002; www.brookscole.com). A great many animations and live videos, lab-
oratory demonstrations, and graphics. Most are interactive. Many step-by-step solutions
are given to example problems.

Interactive Physics; MSC Working knowledge; available from Physics Curriculum & In-
struction (see above for address); Windows, Macintosh. Animations and graphs for a wide
variety of mechanical phenomena. The user can set up “experiments” with massive ob-
jects, strings, springs, dampers, and constant forces. Parameters can easily be changed.
Reviewed in The Physics Teacher, September 1991.

Interactive Physics Player Workbook ; tutorial oriented work book and CD-ROM; Macin-
tosh, Windows; Cindy Schwartz and John Ertel; Prentice-Hall (240 Frisch Ct., Paramus,
NJ 07652-5240; www.phptr.com). A large number of animations and simulations. Self-
check quizzes are associated with the simulations.

Physics 4.2 CD ; MCH Multimedia, Inc; available from the AAPT (see above for address);
Windows and Macintosh. A collection of interactive demonstrations covering topics in
introductory mechanics, with some quantum mechanics.
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Exploration of Physics; Physics Curriculum & Instruction (see above for address); Win-
dows, Macintosh; two-volume set. A comprehensive collection of highly interactive simu-
lations. Useful for demonstrations and for student activities.

Physics of Sports; Physics Curriculum & Instruction (see above for address); Windows,
Macintosh. Simulations of activities from basketball, baseball, gymnastics, diving, biking,
skiing, car racing, weight lifting, high jumping, and hammer throwing, with graphical anal-
ysis. Can be used for demonstrations and for student activities. User supplies parameters.

Amusement park Physics; Physics Curriculum & Instruction (see above for address); Win-
dows, Macintosh. Digitized video clips of amusement park rides, suitable for any analysis
tool that can be used with AVI Video for Windows files.

Physlets. Physlets are small Java applets designed by Wolfgang Christian and others at
Davidson College. They can be incorporated into interactive demonstrations, interactive
problems for homework and exams, or student activities. The book Physlet Physics: In-
teractive Illustrations, Explorations and Problems for Introductory Physics by Wolfgang
Christian and Mario Belloni and published by Prentice-Hall shows you how to use them.
No programming experience is necessary. Physlets can be downloaded from the website
webphysics.davidson.edu/Applets/Applets.html.

You might consider setting aside a room or portion of a lab, equip it with several computers,
and make tutorial, drill, and simulation programs available to students. If you have sufficient
hardware (and software), you might base some assignments on computer materials.

Computers and top-of-the line graphing calculators might also be used by students to perform
calculations. Properly selected computer projects can add greatly to the students’ understanding of
physics. Projects involving the investigation of some physical system of interest might be assigned
to individuals or might be carried out by a laboratory class. The PTRA workshop manual Role
of Graphing Calculators in Teaching Physics by Cheri Bibo Lehman, Linda J. Armstrong, and
John E. Gastineau is available from the AAPT (see above for address). A large number of suitable
problems and projects can also be found in the book Introduction to Computational Physics by
Marvin L. De Jong (Addison-Wesley, 1991).

Commercial spreadsheet programs can facilitate problem solving. PSI-Plot (Windows; Poly
Software International, P.O. Box 60, Pearl River, NY 10965, www.polysoftware.com) and f(g)
Scholar (Macintosh, Windows; Future Graph, Inc., Suite 200, 538 Street Road75 James Way,
Southampton, PA 18966, www.graduating engineer.com) are high-end spreadsheet programs that
incorporate many science and engineering problem-solving and graphing capabilities. Commercial
problem-solving programs such as MathCAD (Windows; MathSoft, Inc., 101 Main Street, Cam-
bridge, MA 02142-1521; www.mathsoft.com), DERIVE (Windows; Texas Instruments; www.educa-
tion.ti.com), MAPLE (Macintosh, Windows; Waterloo Maple, 615 Kumpf Drive, Waterloo, On-
tario, Canada N2V 1K8; www.maplesoft.com), and Mathematica (Macintosh, Windows; Wolfram
Research, Inc., 100 Trade Center Drive, Champaign, IL 61820—7237; www.wolfram.com) can easily
be used by students to solve problems and graph results. All these programs allow students to set
up a problem generically, then view solutions for various values of input parameters. For example,
the range or maximum height of a projectile can be found as a function of initial speed or firing
angle, even if air resistance is taken into account.

A number of computer programs allow you to view digitized video on a computer monitor and
mark the position of an object in each frame. The coordinates of the object can be listed and
plotted. They can then be used to find the velocity and acceleration of the object, either within the
program itself or by exporting the data to a spreadsheet. Three of these are: Videopoint (Windows,
CD-ROM; Pasco Scientific, 10101 Foothills Blvd., Roseville, CA 95747—7100; www.pasco.com),
VideoGraph (Macintosh; Physics Academic Software, Centennial Campus, 940 Main Campus Drive,
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Raleigh, NC 27606—5212; www.aip.org/pas), and World-in-Motion (Windows; Physics Curriculum
and Instruction; see above for address). All of these come with an assortment of video clips. Home-
made videos can also be used. The capabilities of the programs are different. Check carefully before
purchasing.

Alberi’s Window (304 Pleasant Street, Watertown, MA 02472; www. albertiswindow.com)
makes Motion Visualizer 2D and Motion Visualizer 3D, which analyze input from video cameras to
produce computer graphics displaying trajectories, velocity graphs, and acceleration graphs. Two
objects can be followed, making the system amenable to collision studies. The systems are also
available from Pasco Scientific (see above for address).

Demonstrations. Notes for most of the chapters are developed around demonstration experi-
ments. Generally speaking, these use relatively inexpensive, readily available equipment, yet clearly
demonstrate the main ideas of the chapter. The choice of demonstrations, however, is highly per-
sonal and you may wish to substitute others for those suggested here or you may wish to present
the same ideas using chalkboard diagrams. Several excellent books give many other examples of
demonstration experiments. The following are available from the AAPT (see above for address):

A Demonstration Handbook for Physics, G.D. Freier and F.J. Anderson, 320 pages (1981).
Contains over 800 demonstrations, including many that use everyday materials and that
can be constructed with minimal expense. Line drawings are used to illustrate the demon-
strations.

String and Sticky Tape Experiments, Ronald Edge, 448 pages (1987). Contains a large
number of illuminating experiments that can be constructed from inexpensive, readily
available materials.

Apparatus for Teaching Physics, edited by Karl C. Mamola. A collection of articles from
The Physics Teacher that describe laboratory and demonstration apparatus.

How Things Work , H. Richard Crane, 114 pages, 1992. A collection of 20 articles from
The Physics Teacher.

Turning the World Inside Out and 174 Other Simple Physics Demonstrations, Robert
Ehrlich, 216 pages. A collection of demonstration experiments using common, inexpensive
materials.

Apparatus for Teaching Physics, edited by Karl C. Mamola, 247 pages. A collection of
articles from The Physics Teacher dealing with laboratory and demonstration apparatus.

Interactive Physics Demonstrations, edited by Joe Pizza. Describes 46 interactive demon-
strations suitable for hallway exhibits. From The Physics Teacher .

The following is currently out of print but is available in many college libraries and physics depart-
ments:

Physics Demonstration Experiments, H.F. Meiners, ed. An excellent source of ideas, in-
formation, and construction details on a large number of experiments, with over 2000
line drawings and photographs. It also contains some excellent articles on the philosoph-
ical aspects of lecture demonstrations, the use of shadow projectors, TV, films, overhead
projectors, and stroboscopes.

Appropriate demonstrations described in Freier and Anderson are listed in the SUGGESTIONS
sections of the notes. This book does not give any construction details, but more information about
most demonstrations can be obtained from the book edited by Meiners.

The Physics InfoMall CD-ROM (The Learning Team, 84 Business Park Drive, Suite 307,
Armonk, NY 10504; www.phys.ksu.edu/perg/infomall), a searchable database of over 1000 demon-
strations, is another excellent source. There are both Windows and Macintosh versions. The CD
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also contains articles and abstracts, problems with solutions, whole reference books, and a physics
calendar.
Monographs The following books, all available from the AAPT (see above for address), are also
sources of ideas for demonstrations and examples:

Physics of Sports; edited by C. Frohlich. Contains reprints and a resource letter.

Amusement Park Physics; edited by Carole Escobar. In workbook form. The activities
described are perhaps more appropriate for a high school class but some can be used in
college level lectures as examples.

Potpourri of Physics Teaching Ideas; edited by Donna Berry; reprints of articles on appa-
ratus from The Physics Teacher.

The Role of Toys in Teaching Physics; Jodi and Roy McCullough; AAPT (see above for
address); 292 pages. A PTRA workshop manual.

Flying Circus of Physics; Jearl Walker; John Wiley and Sons. A collection of problems
and questions about every day phenomena.

A computer can also be used for data acquisition during demonstrations. Photogate timers,
temperature probes, strain gauges, voltage probes, and other devices can be input directly into
the computer and results can be displayed as tables or graphs. The screen can be shown to a
large class by using a large monitor, a TV projection system, or an overhead projector adapter.
Inexpensive software and hardware can be purchased from Vernier Software & Technology (13979
SW Millikan Way, Beaverton, OR 97005—2886; www. vernier.com). Pasco Scientific (see above for
address) has data acquisition software and an extensive variety of probes for both Macintosh and
Windows computers. If more sophisticated software is desired, consider the commercial package
Labview (National Instruments Corporation, 11500 N. Mopac Expwy., Austin, TX 78759—3504;
www.rii.com). The monograph Photodetectors by Jon W. McWane, J. Edward Neighbor, and
Robert F. Tinker; available from the AAPT (see above for address) is a good source of technical
information about photodetectors.

Laboratories. Hands-on experience with actual equipment is an extremely important element of
an introductory physics course. There are many different views as to the objectives of the physics
laboratory and the final decision on the types of experiments to be used has to be made by the
individual instructor or department. This decision is usually based on financial and personnel
considerations as well as on the pedagogical objectives of the laboratory.

Existing laboratories vary widely. Some use strictly cookbook type experiments while others
allow the students to experiment freely, with practically no instructions. The equipment ranges
from very simple apparatus to rather complex and sophisticated equipment. Physical phenomena
may be observed directly or simulated on a computer. Data may be taken by the students or fed
into a computer. The PTRA workshop manual Role of the Laboratory in Teaching Introductory
Physics by Jim and Jane Nelson is available from the AAPT (see above for address).

The equipment described above can be used for data acquisition in a student lab. Even if data
acquisition software is not used, consider having students use computers and spreadsheet programs
to analyze and graph data.

Many physics departments have written their own notes or laboratory manuals and relatively
few physics laboratory texts are on the market. Three such books, both available from John Wiley
& Sons, are

Fundamentals of Physics Probeware Lab Manual, developed in conjunction with Pasco
Scientific.

Laboratory Physics, second edition, H.F. Meiners, W. Eppenstein, R.A. Oliva, and T.
Shannon. (1987).
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Laboratory Experiments in College Physics, seventh edition, C.H. Bernard and C.D. Epp.
(1994).

Experiments from these books are listed in the SUGGESTIONS sections of the Lecture Notes.
Meiners is used to designate the Meiners, Eppenstein, Oliva, and Shannon book, Bernard is used
to designate the Bernard and Epp book, and Probeware is used to designate the Pasco book. The
books contain excellent experiments and activities for students. Meiners and Bernard have sections
that explain laboratory procedures to students. Meiners also contains a large amount of material
on the use of microprocessors in the lab.

Student supplements. Several supplements, all available from Wiley, might be recommended
to the students:

A Student’s Companion to Fundamentals of Physics. A study guide. The basic concepts
of each chapter are reviewed in a format that helps students focus their attention on
the important ideas and their relationships to each other. Hints are given for all the
odd numbered end-of-chapter questions and about one-third of the odd numbered end-of
chapter problems. There is also a quiz (with answers) for each chapter so students can test
their understanding. A list of the problem hints in the study guide are given in Section
Seven of this instructor manual.

Student Solution Manual . Contains fully worked solutions to about one-third of the end-
of-chapter problems. These problems are different from those for which hints are given in
the study guide. A list of the solutions in the solution manual are given in Section Seven
of this Manual.

CD Physics. A CD ROM version of the text and supplements for Windows and Macintosh.
This contains the complete text, the Student Solution Manual, A Student’s Companion,
interactive tutorials, interactive simulations, and a glossary. It is extensively hyperlinked.

Wiley Website. Wiley maintains a website devoted to materials for students using this
text. It contains samples of worked-out solutions from the Student Solution manual and
hints from the study guide. In addition there are self-quizzes and additional problems
using graphical simulations. The site also contains links to other websites. The solutions
and hints on the site are given in Section Seven of this manual.

Instructor aids. In addition to this Instructor Manual Wiley provides several other aids for
instructors:

Instructor’s Solution Manual Contains fully worked solutions to all the end-of-chapter
problems.

Test Bank . Contains over 2800 multiple choice questions (with answers) for use on exams
and quizzes. Both quantitative and qualitative questions are included. In each chapter,
some of the questions are modeled after the checkpoints and end-of-chapter questions, as
well as after the end-of-chapter problems and exercises.

A set of transparencies for overhead projectors.

eGrade Plus, WebAssign, and CAPA for homework submission and management.

Instructor’s Resource CD. A CD ROM for Windows and Macintosh. It contains the
Instructor’s Solution Manual (in both Word and PDF form), reproductions of illustrations
from the text (in JPEG form), and the Test Bank . There is a computer program that
allows instructors to generate exams from the test bank questions.

10 Suggestions for the Course



SECTION THREE

LECTURE NOTES

Lecture notes for each chapter of the text are grouped under the headings BASIC TOPICS
and SUGGESTIONS.

BASIC TOPICS contains the main points of the chapter in outline form. In addition, one
or two demonstrations are recommended to show the main theme of the chapter. You may wish
to pattern your lectures after the notes, suitably modified, or simply use them as a check on the
completeness of your own notes.

The SUGGESTIONS sections recommend end-of-chapter questions and problems, video cas-
settes, DVDs, computer software, computer projects, alternate demonstrations, and other material
that might be useful for the course. Many of the questions concentrate on points that seem to
give students trouble, and it is worthwhile dealing with some of them before students tackle a
problem assignment. Some questions and problems might be incorporated into the lectures while
some might be assigned and used to generate discussion by students in small recitation sections.
Answers to the questions appear in Section Five of this manual and answers to the problems appear
in Section Six.

Chapter 1 MEASUREMENT

BASIC TOPICS

I. Base and derived units.
A. Explain that standards are associated with base units and that measurement of a physical

quantity takes place by means of comparison with a standard. Discuss qualitatively the
SI standards for time, length, and mass. Show a 1 kg mass and a meter stick. Show the
simple well-known procedure for measuring length with a meter stick. Many schools have
atomic clocks. If yours does, here is a good place to demonstrate it.

B. Explain that derived units are combinations of base units. Emphasize that the speed of
light is now a defined unit and the meter is a derived unit. Discuss an experiment in which
the time taken for light to travel a certain distance is measured. Example: the reflection
of a light signal from the Moon. Use a clock and a meter stick to find your walking speed
in m/s.

C. This is a good place to review area, volume, and mass density. Use simple geometric figures
(circle, rectangle, triangle, cube, sphere, cylinder, etc.) as examples.

II. Systems of units.
A. Explain what a system of units is. Give the 1971 SI base units (Table 1—1). Stress that

they will be used extensively in the course.
B. Point out the SI prefixes (Table 1—2). The important ones for this course are mega,

kilo, centi, milli, micro, nano, and pico. Discuss powers of ten arithmetic and stress the
simplicity of the notation. This might be a good place to say something about significant
digits.

C. Discuss unit arithmetic and unit conversion.
D. Most of the students’ experience is with the British system. Relate the inch to the cen-

timeter, the yard to the meter, and the slug to the kilogram. Discuss unit conversion.
Use speed as an example: convert 50mph and 3mph to km/h and m/s. Point out the
conversion tables in Appendix D.
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III. Properties of standards.
A. Discuss accessibility and invariability as desirable properties of standards.
B. Discuss secondary standards such as the meter stick used earlier.

IV. Measurements.
A. Stress the wide range of magnitudes measured. See Tables 1—3, 1—4, and 1—5. Explain

the atomic mass unit. One atom of 12C has a mass of exactly 12 u. 1 u is approximately
1.661 × 10−27 kg.

B. Discuss indirect measurements.

SUGGESTIONS

1. Assignments
a. To emphasize SI prefixes assign problems 3 and 10.
b. Unit conversion is covered in many problems. Choose some, such as 2, 4, and 6 that deal

with unfamiliar units. Also consider problem 9.
c. According to the needs of the class, assign one or more problems that deal with area and

volume calculations, such as 5 and 7.
d. Assign a problem or two that deal with mass density, such as 19, 20, 21, or 23.

2. Demonstrations
Examples of “standards” and measuring instruments: Freier and Anderson Ma1 – 3.

3. Books and Monographs
a. Frequency and Time Measurements, edited by Christine Hackman and Donald B. Sullivan;

available from the American Association of Physics Teachers (AAPT, One Physics Ellipse,
College Park, MD 20740-3845, www.aapt.org).

b. SI: The International System of Units; edited by Robert A. Nelson; available from the
AAPT (see above for address).

c. Connecting Time and Space; edited by Harry E. Bates; available from the AAPT (see above
for address). Reprints that discuss measurements of the speed of light and the redefinition
of the meter. Students will not be able to understand much of this material at this stage
of the course but it is nevertheless useful for background.

d. Powers of Ten : A Flipbook ; by Philip Morrison and Phylis Morrison, and the Office of
Charles and Ray Eames; published by W.H. Freeman and Company; available from the
AAPT (see above for address).

4. Audio/Visual
a. Time and Place, Measuring Short Distances; Cinema Classics DVD 1: Mechanics (I);

available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and
from the AAPT (see above for address).

b. Powers of Ten from the Films of Charles and Ray Eames; produced by Pyramid Media;
video tape; available from the AAPT (see above for address).

5. Laboratory
a. Meiners Experiment 7-1: Measurement of Length, Area, and Volume. Gives students

experience using the vernier caliper, micrometer, and polar planimeter. Good introduction
to the determination of error limits (random and least count) and calculation of errors in
derived quantities (volume and area).

b. Bernard Experiments 1 and 2: Determination of Length, Mass, and Density and Measure-
ments, Measurement Errors, and Graphical Analysis. Roughly the same as the Meiners
experiment, but a laboratory balance is added to the group of instruments and the polar
planimeter is not included. Graphs of mass versus radius and radius squared for a collec-
tion of disks made of the same material, with the same thickness, are used to establish the
quadratic dependence of mass on radius.

12 Lecture Notes: Chapter 1



c. Meiners Experiment 7-3: The Simple Pendulum and Bernard Experiment 3: The Period
of a Pendulum – An Application of the Experimental Method. Students time simple
pendulums of different lengths, then use the data and graphs (including a logarithmic plot)
to determine the relationship between length and period. They calculate the acceleration
due to gravity. This is an exercise in finding functional relationships and does not require
knowledge of dynamics.

Chapter 2 MOTION ALONG A STRAIGHT LINE

BASIC TOPICS

I. Position and displacement.
A. Move a toy cart with constant velocity along a table top. Select an origin, place a meter

stick and clock on the table, and demonstrate how x(t) is measured in principle. Emphasize
that x is always measured from the origin; it is not the cart’s displacement during any time
interval.

B. Draw a graph of x(t) and point out that it is a straight line. Show what the graph looks
like if the cart is not moving. Point out that the line has a greater slope if the cart is going
faster. Move the cart so its speed increases with time and show what the curve x(t) looks
like. Do with same for a cart that is slowing down.

C. Some students think of a coordinate as distance. Distinguish between these concepts.
Point out that a coordinate defines a position on an axis and can be positive or negative.
Demonstrate a negative velocity, both with the cart and on a graph. As another example,
throw a ball into the air, pick a coordinate axis (positive in the upward direction, say),
and point out when the velocity is positive and when it is negative. Draw the graph of the
coordinate as a function of time. Repeat with the positive direction upward.

D. Define the displacement of an object during a time interval. Emphasize that only the initial
and final coordinates enter and that an object may have many different motions between
these while still having the same displacement. Point out that the displacement is zero if
the initial and final coordinates are the same.

II. Velocity.
A. Define average velocity over an interval. Stress the meaning of the sign. Go over Sample

Problem 2—1. Draw a graph of x versus t for an object that is accelerating. Pick an interval
and draw the line between the end points on the graph. Observe that the average velocity
in the interval is the slope of the line. Figs. 2—3 and 2—4 may also be used. Show how to
calculate average velocity if the function x(t) is given in algebraic form.

B. Define instantaneous velocity. Demonstrate the limiting process. Use a graph of x versus t
for an accelerating cart to demonstrate that the line used to find the average velocity
becomes tangent to the curve in the limit as ∆t vanishes. Remark that the slope of the
tangent line gives the instantaneous velocity. Show a plot of v versus t that corresponds to
the x versus t graph used previously. Show how to calculate the instantaneous velocity if
the function x(t) is given in algebraic form. See Sample Problem 2—3. Stress that a value
of the instantaneous velocity is associated with each instant of time. Some students think
of velocity as being associated with a time interval rather than an instant of time.

C. Define instantaneous speed as the magnitude of the velocity. Compare to the average speed
in an interval, which is the total path length divided by the time. Remark that the average
speed is not the same as the magnitude of the average velocity if the direction of motion
changes in the interval.

D. Note that many calculus texts use a prime to denote a derivative. They also define the
derivative of x with respect to time by the limit of [x(t +∆t) − x(t)]/∆t rather than by
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the limit of ∆x/∆t. Mention the different notations in class so students can relate their
physics and calculus texts.

III. Acceleration.

A. Define average and instantaneous acceleration. Show the previous v versus t graph and
point out the lines used to find the average acceleration in an interval and the instanta-
neous acceleration at a given time. Show how to calculate the average and instantaneous
acceleration if either x(t) or v(t) is given in algebraic form. See Sample problem 2—4.

B. Interpret the sign of the acceleration. Give examples of objects with acceleration in the
same direction as the velocity (speeding up) and in the opposite direction (slowing down).
Be sure to include both directions of velocity. Emphasize that a positive acceleration does
not necessarily imply speeding up and a negative acceleration does not necessarily imply
slowing down.

C. Use graphs of x(t) and v(t) to point out that an object may simultaneously have zero
velocity and non-zero acceleration. Explain that if the direction of motion reverses the
object must have zero velocity at some instant. Give the position as a function of time as
x(t) = At2, for example, and show that the velocity is 0 at t = 0 but the acceleration is
not 0. Illustrate the function with a graph.

IV. Motion in one dimension with constant acceleration.

A. Derive the kinematic equations for x(t) and v(t). If students know about integration, use
methods of the integral calculus (as in Section 2—8). If you use the integral calculus you
might cover the graphical interpretation of an integral. See Section 2—10. In any event,
show that v(t) is the derivative of x(t) and that a is the derivative of v(t).

B. Discuss kinematics problems in terms of a set of simultaneous equations to be solved.
Examples: use equations for x(t) and v(t) to algebraically eliminate the time and to al-
gebraically eliminate the acceleration. The equations of constant acceleration motion are
listed in Table 2—1. Some instructors teach students to use the table. Others ask students
to always start with Eqs. 2—10 and 2—15, then use algebra to obtain the equations needed
for a particular problem. See Sample Problem 2—5.

C. To help students see the influence of the initial conditions, sketch graphs of v(t) and x(t)
for various initial conditions but the same acceleration. Include both positive and negative
initial velocities. Draw a different set of graphs for positive and negative acceleration.
Point out where the particle has zero velocity and when it returns to its initial position.

V. Free fall.

A. Give the value for g in SI units. Point out that the free-fall acceleration is essentially due to
gravity and that it is directed toward the center of Earth. Say that locally Earth’s surface
is essentially flat and the free-fall acceleration may be taken to be in the same direction at
slightly different points. Explain that a = +g if down is taken to be the positive direction
and a = −g if up is the positive direction. Do examples using both choices. Throw a ball
into the air and emphasize that its acceleration is g throughout its motion, even at the top
of its trajectory.

B. Drop a small ball through two photogates, one near the top to turn on a timer and one
further down to turn it off. Repeat for various distances and plot the position of the
ball as a function of time. Explain that the curve is parabolic and indicates a constant
acceleration.

C. Explain that all objects at the same place have the same free-fall acceleration. In reality,
different objects may have different accelerations because air influences their motions dif-
ferently. This can be demonstrated by placing a coin and a wad of cotton in a glass cylinder
about 1m long. Turn the cylinder over and note that the coin reaches the bottom first.
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Now use a vacuum pump to partially evacuate the cylinder and repeat the experiment.
Repeat again with as much air as possible pumped out.

D. Point out that free-fall problems are special cases of constant acceleration kinematics and
the methods described earlier can be used. Work a few examples. For an object thrown
into the air, calculate the time to reach the highest point, the height of the highest point,
the time to return to the initial height, and its velocity when it returns, all in terms of the
initial velocity.

SUGGESTIONS

1. Assignments
a. To help students obtain some qualitative understanding of velocity and acceleration, ask

them to discuss questions 1, 2, 3, and 6. Some aspects of motion with constant acceleration
are covered in questions 4 and 7. Free fall is covered in questions 5 and 8.

b. To make more use of the calculus assign some of problems 5, 12, and 13. Problem 13 can
also be used to discuss differences between average and instantaneous velocity.

c. To emphasize the interpretation of graphs assign a few of problems 5, 6, 13, and 18. Some
of these require students to draw graphs after performing calculations.

d. Ask students to solve a few problems dealing with motion with constant acceleration.
Consider problems 21,, 22, 24, 27, 30, 33, and 35. For a little more challenge, consider
problem 32.

e. Problems 38, 42, 47, and 49 are good problems to test understanding of free-fall motion.
Problem 53 is more challenging.

2. Demonstrations
Uniform velocity and acceleration, velocity as a limiting process: Freier and Anderson
Mb10 – 13, 15, 18, 21, 22.

3. Audio/Visual
a. Acceleration due to Gravity ; from AAPT collection 1 of single-concept films; DVD; available

from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and from the
American Association of Physics Teachers (One Physics Ellipse, College Park, MD 20740-
3845, www.aapt.org).

b. One Dimensional Motion; Distance, Time & Speed ; One Dimensional Acceleration; Con-
stant Velocity & Uniform Acceleration; from the AAPT collection 2 of single-concept films;
DVD; available from Ztek Co. and from the AAPT (see above for addresses).

c. Uniform Motion, Free Fall ; Cinema Classics DVD 1: Mechanics (I); available from Ztek
Co. and from the AAPT (see above for addresses).

d. Numbers, Units, Scalars, and Vectors; VHS video tape, DVD; Films for the Humanities
and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

4. Computer Software
a. Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-

riculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurricu-
lum.com). Simulations of physical phenomena along with graphs. Includes sections on
position, velocity, acceleration, and free fall.

b. Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on velocity
and acceleration graphs and on free fall, with and without air resistance.

c. Graphs and Tracks; David Trowbridge; DOS, Macintosh; available from Physics Academic
Software (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—
5212; www.aip.org/pas). A ball rolls on a series of connected inclines. In one part the
student is given graphs of the position, velocity, and acceleration and is asked to adjust the
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tracks to produce the graphed motion. In a second part the student is shown the motion
and asked to sketch the graphs. Complements lab experiments with a sonic ranger.

d. Newtonian Sandbox ; Judah Schwartz; DOS, Macintosh; available from Physics Academic
Software (see above for address). Generates the motion of a point particle in one and
two dimensions. Plots trajectories, coordinates, velocity components, radial and angular
positions, and phase space trajectories.

e. Objects in Motion; Peter Cramer; DOS, Macintosh; available from Physics Academic Soft-
ware (see above for address). Simulates the motion of an object under various conditions
and plots graphs of the position, velocity and accelerations. Situations considered are: uni-
form acceleration along a straight line, projectile motion, relative motion, circular motion,
planetary motion, and elastic collisions.

f. Physics Demonstrations; Julien C. Sprott; DOS; available from Physics Academic Software
(see above for address). Ten simulations of motion and sound demonstrations. Includes
“the monkey and the coconut”, “ballistics cat”, “flame pipe”, “Doppler effect”.

g. Conceptual Kinematics; Frank Griffin and Louis Turner; DOS, Macintosh; available from
Physics Academic Software (see above for address). An interactive, animated tutorial, with
quiz questions for self-testing.

h. Dynamic Analyzer; Roger F. Sipson; DOS; available from Physics Academic Software (see
above for address).

5. Computer Projects
a. Use a spreadsheet or your own computer program to demonstrate the limiting processes

used to define velocity and acceleration. Given the functional form of x(t), have the
computer calculate and display the coordinate for some time t and a succession of later
times, closer and closer to t. For each interval, have it calculate and display the average
velocity. Be careful to refrain from displaying non-significant figures and be sure to stop
the process before all significance is lost.

b. Have students use the root finding capability of a commercial math program or their own
computer programs to solve kinematic problems for which x(t) and v(t) are given functions.
Nearly all of them can be set up as problems that involve finding the root of either the
coordinate or velocity as a function of time, followed perhaps by substitution of the root
into another kinematic equation. Problems need not be limited to those involving constant
acceleration. Air resistance, for example, can be taken into account. The same program
can be used to solve rotational kinematic problems in Chapter 11.

6. Laboratory
a. Probeware Activity 1: Motion in One Dimension.
b. Motion detectors. Students use a motion detector to relate their own positions as functions

of time to computer generated graphs.
c. Probeware Activity 2: Position, Velocity, and Acceleration. A motion detector is now used

to explore one dimensional accelerated motion.
d. Several sonic rangers are reviewed in The Physics Teacher of January 1988. An extremely

popular model is available from Vernier Software, 8565 SW Beaverton-Hillsdale Hwy.,
Portland, OR 97225-2429.

e. Meiners Experiment 7—5: Analysis of Rectilinear Motion. Students measure the position
as a function of time for various objects rolling down an incline, then use the data to
plot speeds and accelerations as functions of time. No knowledge of rotational motion
is required. This experiment emphasizes the definitions of velocity and acceleration as
differences over a time interval.

f. Meiners Experiment 8—1: Motion in One Dimension (omit the part dealing with con-
servation of energy). Essentially the same experiment except pucks sliding on a nearly
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frictionless surface are used. This experiment may be done with dry ice pucks or on an air
table or air track.

g. Bernard Experiment 7: Uniformly Accelerated Motion. The same technique as the Meiners
experiments but a variety of setups are described: the standard free fall apparatus, the
free fall apparatus with an Atwood attachment, an inclined plane, an inclined air track,
and a horizontal air track with a pulley attachment.

Chapter 3 VECTORS

BASIC TOPICS

I. Definition.
A. Explain that vectors have magnitude and direction, and that they obey certain rules of

addition.

B. Example of a vector: displacement. Give the definition of displacement and point out that
a displacement does not describe the path of the object. Give the definition and physical
interpretation of the sum of two displacements. Demonstrate vector addition by walking
along two sides of the room. Point out the two displacements and their sum. Note that
the distance traveled is not the magnitude of the displacement. Go back to your original
position and point out that the displacement is now zero.

C. Compare vectors with scalars and present a list of each.

D. Go over vector notation and insist that students use it to identify vectors clearly. In this
text a vector is indicated by placing an arrow over an algebraic symbol. The italic version
of the symbol, without the arrow, indicates the magnitude of the vector. Point out that
many other texts use boldface type to indicate vectors.

II. Vector addition and subtraction by the graphical method.

A. Draw two vectors tail to head, draw the resultant, and point out its direction. Explain
how the magnitude of the resultant can be measured with a ruler and the orientation can
be measured with a protractor. Explain how a scale is used to draw the original vectors
and find the magnitude of the resultant.

B. Define the negative of a vector and define vector subtraction as na−nb = na+(−nb). Graphically
show that if na+nb = nc then na = nc−nb.

C. Show that vector addition is both commutative and associative.

III. Vector addition and subtraction by the analytic method.
A. Derive expressions for the components of a vector, given its magnitude and the angles

it makes with the coordinate axes. In preparation for the analysis of forces, find the x
component of a vector in the xy plane in terms of the angles it makes with the positive
and negative x axis and also in terms of the angles it makes with the positive and negative
y axis.

B. Point out that the components depend on the choice of coordinate system, and compare
the behavior of vector components with the behavior of a scalar when the orientation of
the coordinate system is changed. Find the components of a vector using two differently
oriented coordinate systems. Point out that it is possible to orient the coordinate system
so that only one component of a given vector is not zero. Remark that a pure translation
of a vector (or coordinate system) does not change the components.

C. Define the unit vectors along the coordinate axes. Give the form used to write a vector
in terms of its components and the unit vectors. Explain that unit vectors are unitless so
they can be used to write any vector quantity.
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D. Vector addition. Give the expressions for the com-
ponents of the resultant in terms of the components
of the addends. Demonstrate the equivalence of the
graphical and analytic methods of finding a vector
sum. See the diagram to the right.

E. Give the expression for vector subtraction in terms of
components. You may also wish to demonstrate the
equivalence of the graphical and analytical methods
of vector subtraction.

x

y

na

nb

nc

←−−− ax −−−→←− bx −→←−−−−−−− cx −−−−−−−→
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...............................................................
..............................................................
...............................................................
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....................................................................................................
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F. Show how to find the magnitude and angles with the coordinate axes, given the components.
Explain that calculators give only one of the two possible values for the inverse tangent
and show how to determine the correct angle for a given situation.

G. State that two vectors are equal only if their corresponding components are equal. State
that many physical laws are written in terms of vectors and that many take the form of
an equality between two vectors. Expressions for the laws are then independent of any
coordinate system.

IV. Multiplication involving vectors.
A. Multiplication by a scalar. Give examples of both positive and negative scalars multiplying

a vector. Give the components of the resulting vector as well as its magnitude and direction.
Remark that division of a vector by a scalar is equivalent to multiplication by the reciprocal
of the scalar.

B. Scalar product of two vectors (may be postponed until Chapter 7). Emphasize that the
product is a scalar. Give the expression for the product in terms of the magnitudes of the
vectors and the angle between them. To determine the angle, the vectors must be drawn
with their tails at the same point. Point out that na ·nb is the magnitude of na multiplied
by the component of nb along an axis in the direction of na. Explain that na ·nb = 0 if na is
perpendicular to nb.

C. Either derive or state the expression for a scalar product in terms of Cartesian components.
See the discussion leading to Eq. 3—23. Specialize the expression to show that na · na = a2.
Show how to use the scalar product to calculate the angle between two vectors if their
components are known. Consider problem 31.

D. Vector product of two vectors (may be postponed until Chapter 12). Emphasize that the
product is a vector. Give the expression for the magnitude of the product and the right
hand rule for determining the direction. Explain that na × nb = 0 if na and nb are parallel.
Point out that |na×nb| is the magnitude of na multiplied by the component of nb along an axis
perpendicular to na and in the plane of na and nb. Show that nb× na = −na×nb.

E. Either derive or state the expression for a vector product in terms of Cartesian components.
See the discussion leading to Eq. 3—30. Give students the useful mnemonic for the vector
products of the unit vectors î, ĵ, and k̂, written in that order clockwise around a circle.
One starts with the first named vector in the vector product and goes around the circle
toward the second named vector. If the direction of travel is clockwise the result, is the
third vector. If it is counterclockwise, the result is the negative of the third vector.

SUGGESTIONS

1. Assignments
a. Use questions 2, 3, and 4 to discuss properties of vectors. Questions 1 and 5 deal with

vector addition and subtraction. Question 6 deals with the signs of components.
b. Ask students to use graphical representations of vectors to think about problems such as

8 and 10.
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c. Problems 3, 4, and 8 cover the fundamentals of vector components. Problems 5 and 6 stress
the physical meaning of vector components. Some good problems to test understanding of
analytic vector addition and subtraction are 13, 18, 19, and 23.

d. Unit vectors are used in problems 14, 15, 16, and 20.

2. Demonstrations
Vector addition: Freier and Anderson Mb2, 3.

3. Audio/Visual
a. Numbers, Units, Scalars, and Vectors; VHS video tape, DVD; Films for the Humanities

and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).
b. Vector Addition – Velocity of a Boat ; from AAPT collection 1 of single-concept films;

DVD; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com)
and from the American Association of Physics Teachers (AAPT, One Physics Ellipse,
College Park, MD 20740-3845, www.aapt.org).

c. Vectors; Cinema Classics DVD 1: Mechanics (I); available from Ztek Co. and from the
AAPT (see above for addresses).

d. Vector Addition; Physics Demonstrations in Mechanics, Part III; VHS video tape, DVD;
≈3 min; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com)

4. Computer Software
a. Vectors; Richard R. Silbar; Windows and Macintosh; available from Physics Academic

Software (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—
5212; www.aip.org/pas).

b. Vectors; Windows and Macintosh; WhistleSoft, Inc.; available from Physics Academic
Software (see above for address).

5. Computer Project
Have students use a commercial math program or write their own computer programs to
carry out conversions between polar and Cartesian forms of vectors, vector addition, scalar
and vector products.

6. Laboratory
Bernard Experiment 4: Composition and Resolution of Coplanar Concurrent Forces. Students
mathematically determine a force that balances 2 or 3 given forces, then check the calculation
using a commercial force table. They need not know the definition of a force, only that the
forces in the experiment are vectors along the strings used, with magnitudes proportional to
the weights hung on the strings. The focus is on resolving vectors into components and finding
the magnitude and direction of a vector, given its components.

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

BASIC TOPICS

I. Definitions.
A. Draw a curved particle path. Show the position vector for several times and the dis-

placement vector for several intervals. Define average velocity over an interval. Write the
definition in both vector and component form.

B. Define velocity as dnr/dt. Write the definition in both vector and component form. Point
out that the velocity vector is tangent to the path. Define speed of the magnitude of the
velocity.

C. Define acceleration as dnv/dt. Write the definition in both vector and component form.
Point out that na is not zero if either the magnitude or direction of nv changes with time.
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D. Show that the particle is speeding up only if na ·nv is positive. If na ·nv is negative, the particle
is slowing down, and if na · nv = 0, its speed is not changing.

E. Remark that sometimes the magnitude and direction of the acceleration are given, rather
than its components. Remind students how to find the components if such is the case.

F. Go over Sample Problem 4—4 or a similar problem of your own devising. It shows how to
find and use the components of the acceleration.

II. Projectile motion.
A. Demonstrate projectile motion by using a spring gun to fire a ball onto a surface at the

firing height. Use various firing angles, including 45◦, and point out that the maximum
range occurs for a firing angle of 45◦. Remark on the symmetry of the range as a function
of firing angle. Mention that the maximum range occurs for a different angle when the ball
is fired onto a surface at a different height and when drag is significant.

B. Draw the trajectory of a projectile, show the direction of the initial velocity, and derive its
components in terms of the initial speed and firing angle.

C. Write down the kinematic equations for x(t), y(t), vx(t), and vy(t). At first, include both
ax and ay but then specialize to ax = 0 and ay = −g for positive y up. Stress that these
form two sets of one dimensional equations, linked by the common variable t and are to be
solved simultaneously. Note that ax affects only vx, not vy or vz. Make similar statements
about the other components. Throw a ball vertically, then catch it. Repeat while walking
with constant velocity across the room. Ask students to observe the motion of the ball
relative to the chalkboard and to describe its motion relative to your hand.

D. Point out that the acceleration is the same at all points of the trajectory, even the highest
point. Also point out that the horizontal component of the velocity is constant.

E. Work examples. Use punted footballs, hit baseballs, or thrown basketballs according to
season.
1. Find the time for the projectile to reach its highest point, then find the coordinates of

the highest point.
2. Find the time for the projectile to hit the ground, at the same level as the firing point.

Then, find the horizontal range and the velocity components just before landing.
3. Show that maximum range over level ground is achieved when the firing angle is 45◦.
4. Show how to work problems for which the landing point is not at the same level as the

firing point.
F. Point out that all projectiles follow some piece of

the full parabolic trajectory. For example, A to D
could be the trajectory of a ball thrown at an upward
angle from a roof to the street; B to D could be the
trajectory of a ball thrown horizontally; C to D could
be the trajectory of a ball thrown downward.

G. Explain how to find the speed and direction of travel
for any time. Specialize to the time of impact on level
ground and show that the speed is the same as the
firing speed but that the vertical component of the
velocity has changed sign. Remark that this result is
true only because air resistance has been neglected.

•

•

•

•
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H. Work some sample problems. Consider Sample Problems 4—6, 4—7, and 4—8 or others of
your own devising.

III. Circular motion.
A. Draw the path and describe uniform circular motion, emphasizing that the speed remains

constant. Remind students that the acceleration must be perpendicular to the velocity.
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By drawing the velocity vector at two times, argue that the acceleration vector must be
directed inward. On the diagram show the velocity and acceleration vectors for several
positions of the particle.

B. Derive a = v2/r. As an alternative to the derivation given in the text, write the equations
for the particle coordinates as functions of time, then differentiate twice.

C. Example: calculate the speed of an Earth satellite, given the orbit radius and the acceler-
ation to due to gravity at the orbit. Emphasize that the acceleration is toward Earth.

IV. Relative motion.
A. Material in this section is used in Chapter 5 to discuss inertial frames and in Chapter 11

to discuss rolling without slipping. It is also useful as a prelude to relativity.
B. Relate the position of a particle as given in coordinate system A to the position as given

in coordinate system B by nrPA = nrPB + nrBA, where nrBA is the position of the origin of B
relative to the origin of A. Differentiate to show that nvPA = nvPB+nvBA and naPA = naPB+naBA,
where nvBA and naBA are the velocity and acceleration, respectively, of B relative to A.

C. Discuss examples of a ball thrown or rolled in accelerating and non-accelerating trains.
The discussion may be carried out for either one- or two-dimensional motion.

D. Remark that naPB = naPA if the two coordinate systems are not accelerating with respect
to each other. This is an important point for the discussion of inertial reference frames in
Chapter 5.

E. Work several problems dealing with airplanes flying in the wind and boats sailing in moving
water. Emphasize that relative motion problems are chiefly exercises in vector addition.
To help students understand some of the problems explain that a boat’s “heading” is its
direction of motion in a frame attached to the water, while its direction of travel is its
direction of motion in a frame attached to the ground.

SUGGESTIONS

1. Assignments
a. Assign some of problems 3, 5, 6, 9, 12, and 14 to have students think about the analysis

of motion in two dimensions.
b. Use questions 3 through 10 to generate discussions of ideal projectile motion.
c. Ask questions 11, 12, and 13 in connection with centripetal acceleration.
d. Have students work several of the projectile motion problems (17 through 43). Some of

these deal with sports. See, for example, problems 18, 26, 28, 32, 34, 37, 39, and 43.
e. Assign two or three of problems 45, 47, 49, and 51 in connection with uniform circular

motion.
f. Assign one or two problems that deal with relative motion. Good examples are 56, 57, 58,
60, and 66.

2. Demonstrations
Projectile motion: Freier and Anderson Mb14, 16, 17, 19, 20, 23, 24, 28.

3. Audio/Visual
a. A Matter of Relative Motion, Galilean Relativity – Ball Dropped from Mast of Ship;

Object Dropped from Aircraft , Projectile Fired Vertically ; from the AAPT collection 1 of
single-concept films; DVD; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—
1768, www.ztek.com) and from the American Association of Physics Teachers (AAPT, One
Physics Ellipse, College Park, MD 20740-3845, www.aapt.org).

b. Projectile Motion, Circular Motion; Cinema Classics DVD 2: Mechanics (II) and Heat;
available from Ztek Co. and the AAPT (see above for addresses).

c. Projectile Motion; VHS video tape, DVD (20 min); Films for the Humanities and Sciences
(PO Box 2053, Princeton, NJ 08543—2053; www.films.com).
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d. Circular and Rotational Motion; VHS video tape, DVD (21 min); Films for the Humanities
& Sciences (see above for address).

e. Reference Frames from Skylab Physics Videodisc; video disk; available from Ztek Co. (see
above for address).

f. Projectile Motion; from Physics Demonstrations in Mechanics, Part I; VHS video tape,
DVD; ≈3 min; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN
55044; www.PhysicsCurriculum.com).

g. Circular Motion; from Physics Demonstrations in Mechanics, Part I; VHS video tape,
DVD; ≈3 min; Physics Curriculum & Instruction (see above for address).

h. Velocity and Acceleration Vectors; Frame of Reference; from Physics Demonstrations in
Mechanics, Part III; VHS video tape, DVD; ≈3 min each; Physics Curriculum& Instruction
(see above for address).

i. Projectile Motion; VHS video tape, DVD (part of a collection); Films for the Humanities
and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

j. Circular and Rotational Motion; VHS video tape, DVD (part of a collection); Films for
the Humanities and Sciences (see above for address).

4. Computer Software
a. Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-

riculum & Instruction (see above for address). Includes sections on projectile motion and
centripetal force.

b. Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on velocity
and acceleration graphs and on projectile motion, with and without air resistance.

c. Mechanics in Motion; Stephen Saxon; Windows; available from Physics Academic Soft-
ware (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212;
www.aip.org/pas). Contains projectile, pendulum, and collision simulators. Can also be
used to demonstrate conservation of energy and rotational motion.

d. Newtonian Sandbox . See Chapter 2 SUGGESTIONS.
e. Objects in Motion. See Chapter 2 SUGGESTIONS.
f. Physics Demonstrations. See Chapter 2 SUGGESTIONS.
g. Dynamic Analyzer. See Chapter 2 SUGGESTIONS.

5. Computer Projects
a. Have students use a commercial math program or their own root finding programs to solve

projectile motion problems.
b. Have students use a spreadsheet or write a computer program to tabulate the coordinates

and velocity components of a projectile as functions of time. Have them change the initial
velocity and observe changes in the coordinates of the highest point and in the range. Ask
them to find the firing angle for the greatest horizontal coordinate when the landing point
is above or below the firing point.

6. Laboratory
a. Probeware Activity 3A: Projectile Motion Part 1 – Change Initial Speed and Probeware

Activity 3B: Projectile Motion Part 2 – Change Launch Angle. Photogates and a time-
of-flight detector are used to investigate some of the basic ideas of projectile motion.

b. Meiners Experiment 7—9: Ballistic Pendulum – Projectile Motion (use only the first
method in connection with this chapter). Students find the initial velocity of a ball shot
from a spring gun by measuring its range. Emphasizes the use of kinematic equations.

c. Inelastic Impact and the Velocity of a Projectile (use only Procedure B with this chapter).
In addition to using range data to find the initial velocity, students plot the range as a
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function of firing angle.

Chapter 5 FORCE AND MOTION – I

BASIC TOPICS

I. Overview

A. Explain that objects may interact with each other and, as a result, their velocities change.
State that the strength of an interaction depends on properties of the objects and their
relative positions. Gravitational mass is responsible for gravitational interactions, electric
charge is responsible for electric and magnetic interactions.

B. Explain that we split the problem into two parts and say that each body exerts a force on
the other and that the net force on a body changes its velocity. Remark that an equation
that gives the force in terms of the properties of the objects and their positions is called
a force law. Force laws are discussed throughout the course. The dominant theme of this
chapter, however, is the relationship between the net force and the acceleration it produces.

II. Newton’s first law.

A. State the law: if an object does not interact with any other objects, its acceleration is zero.

B. Point out that the acceleration depends on the reference frame used to measure it and that
the first law can be true for only a select set of frames. Cover the essential parts of the
relative motion section of Chapter 4, if they were not covered earlier. Define an inertial
frame. Tell students that an inertial frame can be constructed, in principle, by finding an
object that is not interacting with other objects and then attaching a reference frame to
it. Any frame that moves with constant velocity relative to an inertial frame is also an
inertial frame, but one that is accelerating relative to an inertial frame is not.

C. Explain that we may take a reference frame attached to Earth as an inertial frame for the
description of most laboratory phenomena but we cannot for the description of ocean and
wind currents, space probes, and astronomical phenomena.

III. Newton’s second law.

A. Explain that the environment influences the motion of an object and that force measures
the extent of the interaction. The result of the interaction is an acceleration. Place a cart
at rest on the air track. Push it to start it moving and note that it continues at constant
velocity. After it is moving, push it to increase its speed, then push it to decrease its speed.
In each case note the direction of the force and the direction of the acceleration. Also give
an eraser a shove across a table and note that it stops. Point out that the table top exerts
a force of friction while the eraser is moving. Push the eraser at constant velocity and
explain that the force of your hand and the force of friction sum to zero.

B. Define force in terms of the acceleration imparted to the standard 1 kg mass. Explain how
this definition can be used to calibrate a spring, for example. Point out that force is a
vector, in the same direction as the acceleration. If two or more forces act on the standard
mass, its acceleration is the same as when a force equal to the resultant acts.
Unit: newton. Explain that 1N is 1 kg·m/s2.

C. Have three students pull on a rope, knotted together
as shown. Ask one to increase his or her pull and ask
the others to report what they had to do to remain
stationary.

•
..............................................................
..............................................................
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D. Define mass in terms of the ratio of the acceleration imparted to the standard mass and to
the unknown mass, with the same force acting. Attach identical springs to two identical
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carts, one empty and the other containing a lead brick. Pull with the same force (same
elongation of the springs) and observe the difference in acceleration. Unit: kilogram.

E. State the second law. Stress that the force that appears is the net or resultant force.
Explain that the law holds in inertial frames. Point out that this is an experimentally
established law and does not follow as an identity from the definitions of force and mass.
Emphasize that mna is not a force.

F. Discuss examples: calculate the constant force required to stop an object in a given time,
given the mass and initial velocity; calculate the force required to keep an object in uniform
circular motion, given its speed and the radius of its orbit. Calculate the acceleration of
an object being pushed by two forces in opposite directions and note that the acceleration
vanishes if the forces have equal magnitudes. Emphasize that the forces continue to act
but their sum vanishes. Some students believe that the forces literally cancel each other
and no longer act.

IV. Newton’s third law.
A. State the law. Stress that the two forces in question act on different bodies and each helps

to determine the acceleration of the body on which it acts. Explain that the third law
describes a characteristic of force laws. State that the two forces in an action-reaction pair
are of the same type: gravitational, for example.

B. Discuss examples. Hold a book stationary in your hand, identify action-reaction pairs
(hand-book, book-Earth). Now allow your hand and the book to accelerate downward
with an acceleration less than g and again identify action-reaction pairs. Note that you
can control the acceleration of the book by means of the force you exert but once you exert
a given force you cannot control the force that the book exerts on you.

C. Attach a force probe to each of two air-track carts. Use a computer to plot the force that
each exerts on the other as the carts collide. Point out that at each instant the forces have
the same magnitude and are in opposite directions.

V. Applications of Newton’s laws involving a single object.
A. Go over the steps used to solve a one-body problem: identify the body and all forces

acting on it, draw a free-body diagram, choose a coordinate system, write the second law
in component form, and finally solve for the unknown.

B. Some special forces should be explained. They are important for many of the problems but
are rarely mentioned explicitly. Warn students they must take these forces into account if
they act.
1. Point out that the magnitude of the gravitational force is mg, where g is the local

acceleration due to gravity and m is the mass of the object. It is directed toward the
center of Earth. Explain that the magnitude of this force is the weight of the object.
Explain that weight varies with altitude and slightly from place to place on the surface
of Earth, but mass does not vary. Emphasize that the appearance of g in the formula
for the gravitational force does not imply that the acceleration of the body is g.

2. Point out that a massless rope transmits force unaltered in magnitude and that the
magnitude of the force it exerts on objects at each end is called the tension force. If
a person pulls an object by exerting a force on a string attached to the object, the
motion is as if the person pulled directly on the object. The string serves to define the
direction of the force. A frictionless, massless pulley serves to change the direction but
not the magnitude of the tension force of the rope passing over it.

3. Explain that the normal force of a surface on an object originates in elastic and ulti-
mately electric forces. It prevents the object from moving through the surface. State
that it is perpendicular to the surface. If the surface is at rest, the normal force adjusts
so the acceleration component perpendicular to the surface vanishes. More generally,
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the object and the surface have the same perpendicular acceleration component. Place
a book on the table and press on it. State that the normal force is greater than when
you were not pressing. Hold the book against the wall by pressing on it and mention
that the normal force is horizontal.

C. Set up the situation described in Sample Problem 5—7 using an inclined air track but attach
a calibrated spring scale to the support at the top of the incline and tie the other end of
the scale to the block. Calculate the tension force of the string and compare the result to
the reading on the scale. Cut the string, then calculate the acceleration.

D. Consider a person standing on a scale in an elevator. State that the scale measures the
normal force and calculate its value for an elevator at rest, one accelerating upward, one
accelerating downward with a < g, and one in free fall. See Sample Problem 5—8.

VI. Applications of Newton’s laws involving more than one object.
A. Explain that when two or more objects are involved, a free-body diagram must be drawn

for each. A Newton’s second law equation, in component form, is also written for each
object. Point out that differently oriented coordinate systems may be used for different
bodies. Show how to invoke the third law when necessary. Explain that the same symbol
should be used for the magnitude of the two forces of an action-reaction pair and that
their opposing directions are taken into account when drawing the free-body diagram and
in writing the second law equations.

B. Explain that in some cases both objects can be considered as a single object. Say that
the objects must have the same acceleration and that the forces they exert on each other
must not be requested. The mass of the single object is then the sum of the masses of the
constituent objects and internal forces are not included in the analysis.

C. Use examples to show how rods, strings, and pulleys relate the motions of bodies in various
cases. Explain that, in addition to the second law equations, there will be equations
relating the accelerations of the objects. Show that these equations depend on the choice
of coordinate systems.

D. Consider several examples, carefully explaining each step. If you have not developed an
application of your own, work Sample Problem 5—9 in the text. If possible, give a demon-
stration.

SUGGESTIONS

1. Assignments
a. Use questions 1 through 7 to help students think about the influence of forces on bodies.

some of these emphasize that the net force is a vector sum and others exercise Newton’s
first law. Assign one or two of problems 1, 2, and 3.

b. Use questions 9 and 10 to help students think about normal forces.
c. Use question 8 and problem 9 to help students with tensions in ropes.
d. Assign problem 2 to emphasize the definition of force and problem 4 or 5 to demonstrate

Newton’s second law.
e. Use problems 21 and 43 to discuss Newton’s third law.
f. Assign a few applications problems from the group 13 through 56, according to the needs
and interests of the class.

g. As a prelude to Chapter 9 (where the center of mass and conservation of momentum are
discussed) assign problem 27.

2. Demonstrations
a. Inertia: Freier and Anderson Mc1 – 5, Me1.
b. nF = mna: Freier and Anderson Md2, Ml1.
c. Third-law pairs: Freier and Anderson Md1, 3, 4.
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d. Mass and weight: Freier and Anderson Mf1, 2.
e. Tension in a string: Freier and Anderson Ml1.

3. Books and Monographs
Resource Letters, Book Four ; American Association of Physics Teachers (AAPT, One
Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Contains a resource letter
on mechanics.

4. Audio/Visual
a. Dynamics; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box 2053,

Princeton, NJ 08543—2053; www.films.com).
b. Frames of Reference; DVD; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—

1768, www.ztek.com) and from the American Association of Physics Teachers (see above
for address).

c. Human Mass Measurement from Skylab Physics; video disk; available from Ztek Co. (see
above for address).

d. Newton’s First and Second Laws; Newton’s Third Law ; Inertial Forces; Translational Ac-
celeration; from the AAPT collection 2 of single-concept films; DVD; available from Ztek
Co. (see above for address).

e. Inertial Forces — Translational Acceleration; from the AAPT Miller collection of single-
concept films; DVD; available from Ztek Co. and from the AAPT (see above for addresses).

f. Forces, Newton’s Laws; Cinema Classics DVD 1: Mechanics (I); available from Ztek Co
and from the AAPT (see above for addresses).

g. Newton’s 1st Law ; Newton’s 2nd Law ; Newton’s 3rd Law ; Physics Demonstrations in Me-
chanics, Part II; VHS video tape, DVD; ≈3 min each; Physics Curriculum & Instruction
(22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

h. Newton’s 1st Law ; Physics Demonstrations in Mechanics, Part III; VHS video tape, DVD;
≈3 min; Physics Curriculum & Instruction (see above for address).

5. Computer Software
a. Freebody; Graham Oberum; Macintosh; available from Physics Academic Software (Centen-

nial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212; www.aip.org/
pas) and from the AAPT (see above for address) . Students draw force vectors and can
change the length and orientation of the vectors in response to questions. The screen gives
the components.

b. Force and Motion Microworld; Ping-Kee L. Tao and Ming-Wai Tse; available from Physics
Academic Software (see above for address). Uses velocity graphs to display the effects of
force on the motion of an object. Includes drag forces.

c. Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction Physics Curriculum & Instruction (see above for ad-
dress). Includes sections on Newton’s laws of motion.

d. Forces; Windows; available from Physics Academic Software and from the AAPT (see
above for addresses). Covers most of the principles, with examples of electrostatic and
electromagnetic forces.

e. Force and Motion; interactive CD-ROM; Films for the Humanities and Sciences (see above
for address).

f. Dynamic Analyzer . See Chapter 2 SUGGESTIONS.
g. Newtonian Sandbox . See Chapter 2 SUGGESTIONS.

6. Laboratory
a. Probeware Activity 4A: Newton’s Second Law Part 1 – Constant Mass and Probeware

Activity 4B: Newton’s Second Law Part 2 – Constant New Force. A motion detector is
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used to relate net force and acceleration. A small cart on a track is accelerated by means
of a weight attached to a string and hung over a pulley.
Meiners Experiment 8—2: Concept of Mass: Newton’s Second Law of Motion. Students
measure the accelerations of two pucks that interact via a spring on a nearly frictionless
surface and compare the ratio to the ratio of their masses. This experiment may be done
with dry ice pucks or on an air table or air track.

b. Probeware Activity 5A: Newtons’s Third Law Part 1 – Collisions and Probeware Activity
5B: Newton’s Third Law Part 2 – Tug-of-War. A force sensor is used to generate a
computer plot of the forces of two carts on each other during a collision and to compare
the forces on the ends of a rope during a tug-of-war.

Chapter 6 FORCE AND MOTION – II

BASIC TOPICS

I. Frictional forces.
A. Place a large massive wooden block on the lecture table. Attach a spring scale, large

enough to be read easily. If necessary, tape sandpaper to the table under the block. Pull
weakly on the scale and note that the reading is not zero although the block does not
move. Pull slightly harder and note that the reading increases but the block still does not
move. Remark that there must be a force of friction opposing the pull and that the force
of friction increases as the pull increases. Now increase your pull until the block moves
and note the reading just before it starts to move. Pull the block at constant speed and
note the reading. Have the students repeat the experiment in a qualitative manner, using
books resting on their chair arms. To show that the phenomenon depends on the nature of
the surface, the demonstration can be repeated after waxing the wooden block and table
top.

B. Give a brief qualitative discussion about the source of frictional forces. Stress that the force
of static friction has whatever magnitude and direction are required to hold the two bodies
in contact at rest relative to each other, up to a certain limit in magnitude. Define the
coefficient of static friction and explain the use of fs < µsFN . In particular, explain that if
the surface is stationary the force of static friction is determined by the condition that the
object on it has zero acceleration. To test if an object remains at rest, the frictional force
required to produce zero relative acceleration is calculated and compared with µsFN .

C. Define the coefficient of kinetic friction and explain that fk = µkFN gives the frictional
force as long as the object is sliding on the surface. Also explain that if the surface is
stationary the force of kinetic friction is directed opposite to the velocity of the object
sliding on it.

D. Work some examples:
1. Find the angle of an inclined plane for which sliding starts; find the angle for which

the body slides at constant speed. These examples can be analyzed in association with
a demonstration and the students can use the data to find the coefficients of friction.

2. Analyze an object resting on the floor, with a person applying a force that is directed
at some angle above the horizontal. Find the minimum applied horizontal force that
will start the object moving and point out that it is a function of the angle between
the applied force and the horizontal.

3. Consider the same situation but with the object moving. Find its acceleration. This
and the previous example demonstrate the dependence of the normal force and the
force of friction on the externally applied force.
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4. To give an illuminating variant, consider a book being held against the wall by a
horizontal force. Calculate the minimum applied force that will keep the book from
falling.

II. Drag forces and terminal speed.
A. Make or buy a small toy parachute. Drop two weights side by side and note they reach the

floor at the same time. Attach the parachute to one and repeat. Explain that the force of
the air reduces the acceleration.

B. State that for turbulent flow of air around an object the magnitude of the drag force is
given by D = 1

2CρAv
2, where A is the effective cross-sectional area, ρ is the density of

air, and v is the speed of the object relative to the air. C is a drag coefficient, usually
determined by experiment. Remark that a parachute increases the cross-sectional area.
State that the drag force is directed opposite to the velocity in still air.

C. Explain that as an object falls its speed approaches terminal speed as a limit. Write down
Newton’s second law for a falling object and point out that the drag and gravitational
forces are in opposite directions. Suppose the object is dropped from rest and point out
that the acceleration is g at first but as the object gains speed its acceleration decreases in
magnitude. At terminal speed the acceleration is zero and remains zero, so the velocity no
longer changes. Show that zero acceleration leads to vt = 2mg/CρA. Point out Table
6—1, which gives some terminal speeds.

D. Remark that if an object is thrown downward with a speed that is greater than terminal
speed it slows down until terminal speed is reached.

E. Qualitatively discuss projectile motion with drag. The horizontal component of the velocity
tends to zero while the vertical component tends to the terminal speed. Contrast the
trajectory with one in the absence of air resistance.

III. Uniform circular motion.
A. Point out that for uniform circular motion to occur there must be a radially inward force

of constant magnitude and that something in the environment of the body supplies the
force. Whirl a mass tied to a string around your head and explain that the string supplies
the force. Set up a loop-the-loop with a ball or toy cart on a track and explain that the
combination of the normal force of the track and the force of gravity supplies the centripetal
force. Have students identify the source of the force in examples and problems as they are
discussed.

B. Point out that F = mv2/r is just F = ma with the expression for centripetal acceleration
substituted for a.

C. Discuss problem solving strategy. After identifying the forces, find the radial component
of the resultant and equate it to mv2/r.

D. Examples:
1. Find the speed and period of a conical pendulum.
2. Find the speed with which a car can round an unbanked curve, given the coefficient of

static friction.
3. Find the angle of banking required to hold a car on a curve without aid of friction.
4. Analyze the loop-the-loop and point out that the ball leaves the track when the normal

force vanishes. Show that the critical speed at the top is given by v2/r = g.

SUGGESTIONS

1. Assignments
a. Discuss some or all of questions 1 through 7 in connection with the force of static friction

and the onset of sliding. Kinetic friction is the subject of questions 6, 7, and 9. Consider
asking question 9 in connection with problem 30.
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b. Ways in which the coefficient of static friction is used are emphasized in problems 1, 3,
and 15. Problem 29 is more challenging. To help students understand the role played by
the normal force in the onset of sliding, assign problem 11. Problem 7 deals with the role
of the normal force in kinetic friction.

c. Problems 14 and 30 provide some interesting applications of the laws of friction.
d. Use questions 10 and 11 in your discussion of centripetal acceleration and force. Problems

36 and 37 cover the role of friction in rounding a level curve. Also consider problems 46
and 47.

2. Demonstrations
a. Friction: Freier and Anderson Mk.
b. Inclined plane: Freier and Anderson Mj2.
c. Centripetal acceleration: Freier and Anderson Mb29, 31, Mm1, 2, 4 – 8, Ms5.

3. Audio/Visual
a. Trajectories; from AAPT collection 2 of single-concept films; DVD; available from Ztek

Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).
b. Inertial Forces – Centripetal Acceleration; from the AAPT Miller collection of single-

concept films; video DVD; available from Ztek Co. (see above for address) and from the
American Association of Physics Teachers (AAPT, One Physics Ellipse, College Park MD
20740—3845; www.aapt.org).

4. Computer Software
a. Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;

Physics Curriculum & Instruction Physics Curriculum & Instruction (22585 Woodhill
Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com). Includes sections on veloc-
ity and acceleration graphs and on friction and centripetal acceleration.

b. Dynamic Analyzer . See Chapter 2 SUGGESTIONS.

5. Computer Projects
a. Have students use a computer program to investigate objects that are subjected to time

dependent forces. To check the program first have them consider a constant force and
compare machine generated functions with the known kinematic equations.

b. Have students modify the program to integrate Newton’s second law for velocity depen-
dent forces, then have them investigate the motion of an object subjected to a force that
is proportional to v or v2. It is instructive to have them plot the velocity components
as functions of time for a projectile fired straight up or down, subject to air resistance.
Consider initial velocities that are both greater and less than the terminal velocity. Also
have them study the maximum height and range of projectiles with various coefficients of
air resistance.

6. Laboratory
a. Meiners Experiment 7—6: Coefficient of Friction – The Inclined Plane. Students deter-

mine the coefficients of static and sliding friction for three blocks on an inclined plane.
They devise their own experimental procedures.

b. Meiners Experiment 7—7: Radial Acceleration (Problem I only). The centripetal force and
the speed of a ball on a string, executing uniform circular motion, are measured for various
orbit radii. Essentially a verification of F = mv2/r.

c. Meiners Experiment 7—8: Investigation of Uniform Circular Motion, or Bernard Exper-
iment 13: Centripetal Force. Students measure the force acting on a body undergoing
uniform circular motion, with the centripetal force provided by a spring.

d. Meiners Experiment 8—3: Centripetal Force. Students measure the speed of a puck under-
going uniform circular motion on a nearly frictionless surface. The data is used to calculate
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the centripetal force.

Chapter 7 KINETIC ENERGY AND WORK

BASIC TOPICS

I. Kinetic energy and the work-kinetic energy theorem.
A. Define kinetic energy for a particle. Remind students that kinetic energy is a scalar and

depends on the speed but not on the direction of the velocity. Point out that v2 = v2x + v
2
y

for two-dimensional motion and remark that the appearance of velocity components in the
expression does not mean K has components.

B. Consider a ball thrown into the air. Neglect air resistance and point out that during
the upward part of the motion the force of gravity slows the ball and the kinetic energy
decreases. As the ball falls, the force of gravity speeds the ball and the kinetic energy
increases. Remind students that for a constant force (and acceleration) v2 = v20 + 2a∆x
(which was derived in the study of kinematics). Multiply bym/2 to obtainK = K0+F ∆x.
Say that for a constant force acting on a particle that moves in one dimension W = F ∆x
is the work done by the force F as the particle travels through the displacement ∆x. State
that K = K0 +W is an example of the work-kinetic energy theorem: the change in the
kinetic energy of a particle during a given interval equals the work done on the particle by
the total force during the interval.

C. Point out that only the component of a force parallel or antiparallel to the velocity changes
the speed. Other components change the direction of motion. Positive total work results in
an increase in kinetic energy and speed, negative total work results in a decrease. Remind
students of previous examples in which the object moves with constant speed (including
uniform circular motion). The total work is zero and the kinetic energy does not change.
Avoid quantitative calculations involving frictional forces.

D. Explain that the work-kinetic energy theorem can be applied only to particles and objects
that can be treated as particles. To give an example in which it cannot be applied directly,
consider a car crashing into a rigid barrier: the barrier does no work but the kinetic energy
of the car decreases.

E. Explain that observers in different inertial frames will measure different values of the net
work done and for the change in the kinetic energy but both will find Wnet = ∆K.

F. Use Newton’s second law to prove the theorem for motion in one dimension. If the students
are mathematically sophisticated, extend the theorem to the general case. Stress that it is
the total work (done by the resultant force) that enters the theorem.

II. Work done by a constant force.
A. Write down W = nF · nd = Fd cosφ and point out φ on a diagram. Explain that this is the

work done on a particle by the constant force nF as the particle undergoes a displacement
nd. Explain that work can be calculated for each individual force and that the total work
done on the particle is the work done by the resultant force. Point out that work is a
scalar quantity. Also point out that work is zero for a force that is perpendicular to the
displacement and that, in general, only the component of nF tangent to the path contributes
to the work. The force does no work if the displacement is zero. Emphasize that work can
be positive or negative, depending on the relative orientation of nF and nd. For a constant
force, the work depends only on the displacement, not on details of the path. Unit: joule.

B. Calculate the work done by the force of gravity as a mass falls a distance h and as it rises
a distance h. Emphasize the sign. Calculate the work done by a non-horizontal force used
to pull a box across a horizontal floor. Point out that the work done by the normal force
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and the work done by the force of gravity are zero. Consider both an accelerating box and
one moving with constant velocity. Repeat the calculation for a crate being pulled up an
incline by a force applied parallel to the incline. Show the work done by gravity is −mgh,
where h is the change in the height of the crate.

III. Work done by a variable force.
A. For motion in one dimension, discuss the integral form for work as the limit of a sum over

infinitesimal path segments. Explain that the sum can be carried out by a computer even
if the integral cannot be evaluated analytically.

B. Examples: derive expressions for the work done by an ideal spring and a force of the form
k/x2. If you have not yet discussed the force of an ideal spring, do so now as a preface to
the calculation of work. Explain how the spring constant can be found by hanging a mass
from the spring and measuring the extension. Demonstrate changes in the spring length
during which the spring does positive work and during which the spring does negative
work.

C. As an example consider a stone dropped onto a vertical spring and calculate the maximum
compression of the spring, given the mass of the stone, the height from which it is dropped,
and the spring constant of the spring.

D. For motion in more than one dimension, write down the expression for the work in the

form
f

i
nF · dnr and explain its interpretation as the limit of a sum over infinitesimal path

segments. Explain that this is the general definition of work. Calculate the work done by
the applied force, the force of gravity, and the tension in the string as a simple pendulum
is pulled along its arc until it is displaced vertically through a height h by a horizontal
applied force nF .

IV. Power.
A. Define power as P = dW/dt. Unit: watt.

B. Show that P = nF · nv. Explain that the work done over a time interval is given by P dt.

SUGGESTIONS

1. Assignments
a. The idea of kinetic energy is covered in question 1. Assign one or more of problems 2, 3,

and 5 to exercise the concept.
b. The idea of work is covered in questions 2 and 6. Problems 7, 8, and 9 are good examples of

the quantitative aspects. The work done by the net force, as opposed to individual forces,
is emphasized in problems 13 and 14.

c. To discuss the work done by gravity, ask question 5, then assign problems 16, 17, and 18.
To discuss the force exerted by an ideal spring and the work done by it, ask question 8,
then assign problems 24 and 26.

d. Question 10 and problem 29 are a good introduction to the work-kinetic energy theorem.
Also assign problem 30 or 35.

e. Assign problem 32 in connection with the work done by a variable force. Also consider
problems 33, 34, and 39.

f. Assign one or more of problems 40, 42, 44, and 46 in connection with power.

2. Demonstrations
Work: Freier and Anderson Mv1.

3. Audio/Visual
a. Work and Energy ; Cinema Classics DVD 5: Conservation Laws; available from Ztek

Co. (PO Box 11768, Lexington, KY 40577—1768; www.ztek.com) and from the Ameri-
can Association of Physics Teachers (One Physics Ellipse, College Park, MD 20740-3845,
www.aapt.org).
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b. Work and Energy ; Physics Demonstrations in Mechanics, Part VI; VHS video tape, DVD;
≈3 min; Physics Curriculum & Instruction, 22585 Woodhill Drive, Lakeville, MN 55044.

c. Friction, Work, and Energy ; VHS video tape, DVD (part of a collection); Films for the
Humanities and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

d. Motion of Bodies and Mechanical Energy ; VHS video tape, DVD; Films for the Humanities
and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

e. Energy and Force: Part 1 ; VHS video tape; Films for the Humanities and Sciences (see
above for address).

f. Energy and Force: Part 2 ; VHS video tape; Films for the Humanities and Sciences (see
above for address).

4. Computer Project
Have students use a commercial math program or write a program to numerically evaluate
the integral for work, then use the program to calculate the work done by various forces,
given as functions of position. Include a nonconservative force and use the program to
show the work done on a round trip does not vanish.

5. Laboratory
a. Probeware Activity 6: Work and Energy. Net work and change in kinetic energy are

compared. A force probe is used to measure the force and photogates are used to measure
the speed of a cart that is pulled by a hanging weight.

b. Meiners Experiment 7—16: Elongation of an Elastomer. Students measure the elongation
of an elastomer for a succession of applied forces and use a polar planimeter to calculate the
work done by the force. The experiment may also be done in connection with Chapter 13.

c. Bernard Experiment 10: Mechanical Advantage and Efficiency of Simple Machines. This
experiment can be used to broaden the course to include these topics. A lever, an inclined
plane, a pulley system, and a wheel and axle are studied. In each case the force output is
measured for a given force input and the work input is compared to the work output.

d. Probeware Activity 7A: Hooke’s Law Part 1: Find the Spring Constant and Probeware
Activity 7B: Hooke’s Law part 2: Work Done By a Spring. A force probe is used to
determine the force of a spring as a function of its elongation and compression and a
motion detector is used to measure the speed of a cart being pushed by a spring. The
change in kinetic energy of the cart is then related to the work done by the spring.

Chapter 8 POTENTIAL ENERGY

AND CONSERVATION OF ENERGY

BASIC TOPICS

I. Potential energy, conservative and nonconservative forces
A. Explain that potential energy is an energy of configuration. The potential energy of a

system of objects depends on the relative positions of the objects. A system consisting of
an object and Earth has a potential energy that depends on the separation of Earth and
the object, for example.

B. State that a potential energy can be associated with a force only if that force is conservative
and explain that a force is conservative if the work done by the force when the system
starts and ends with the same configuration is zero, no matter what the configurations
and no matter what motions occur between the beginning and end of the interval. Show
that this implies that the work done by the force between any given starting and ending
configurations is the same no matter what intervening configurations are assumed by the
system.
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C. Discuss the force of gravity and the force of an ideal spring as examples. For either or
both of these, show that the work done depends only on the end points and not on the
path between, then argue that the work vanishes for a round trip. Point out that on some
parts of the path the force does positive work while on other parts it does negative work.
Demonstrate that the work done by a spring is independent of the path by considering two
different motions with the same end points. For the first motion, have the mass go directly
from the initial point to the final point; for the second, have it first go away from the final
point before going there.

D. Use a force of friction with constant magnitude as an example of a nonconservative force.
Consider a block on a horizontal table top and argue that the work done by the force
cannot vanish over a round trip since it is negative for each segment. Suppose the block
moves around a circular path and friction is the only force that does work. Argue that the
object returns to its initial position with less kinetic energy than it had when it started.
State that a potential energy cannot be associated with a frictional force.

E. Use a cart on a linear air track to demonstrate these ideas. Couple each end of the cart,
via a spring, to a support at the corresponding end of the air track. Give the cart an initial
velocity and tell students to observe its speed each time it returns to its initial position.
Point out that the kinetic energy returns to nearly the same value and that the springs
do zero work during a round trip. Reduce or eliminate air flow to show the influence of a
nonconservative force. If this is done rapidly and skillfully, you can cause the cart to stop
far from the starting point.

II. Potential energy.
A. Give the definition of potential energy in terms of work for motion in one dimension. See

Eq. 8—6 and emphasize that the change in potential energy is the negative of the work done
by the force responsible for the potential energy.

B. Discuss the following properties:
1. The zero is arbitrary. Only potential energy differences have physical meaning.
2. The potential energy is a scalar function of position.
3. The force is given by F = −dU/dx in one dimension.
4. Unit: joule.

C. Derive expressions for the potential energy functions associated with the force of gravity
(uniform gravitational field) and the force of an ideal spring. Stress that the potential
energy is a property of the object-Earth or spring-mass system and depends on the config-
uration of the system.

D. Use the work-kinetic energy theorem to show that W = ∆U is the work that must be
applied by an external agent to increase the potential energy by ∆U if the kinetic energy
does not change. Show that ∆U is recovered as kinetic energy when the external agent is
removed. Example: raising an object in a gravitational field.

III. Conservation of energy.
A. Explain that if all the forces acting between the objects of a system are conservative and the

net work done by external forces on objects of the system is zero then K + U = constant.
This follows from the work-kinetic energy theorem with the work of the conservative forces
represented by the negative of the change in potential energy. The negative sign in Eq. 8—6
is essential to obtain this result. Emphasize that U is the sum of the individual potential
energies if more than one conservative force acts. Define the total mechanical energy as
Emec = K + U .

B. Discuss the conversion of kinetic to potential energy and vice versa. Drop a superball on
a rigid table top and point out when the potential and kinetic energies are maximum and
when they are minimum. The question of elasticity can be glossed over by saying that to
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a good approximation the ball rebounds with unchanged speed. Also discuss the energy in
a spring-mass system. Return to the cart on the air track and discuss its motion in terms
of K + U = constant. To avoid later confusion in the students’ minds, start the motion
with neither K nor U equal to zero. Emphasize that the energy remains in the system
but changes its form during the motion. The agent of the change is the work done by the
forces of the springs.

C. Show how to calculate the total energy for a spring-mass system from the initial condi-
tions. Write the conservation principle in the form 1

2mv
2 + U(x) = 1

2mv
2
0 + U(x0). Use

conservation of energy to find expressions for the maximum speed, maximum extension,
and maximum compression, given the total energy.

D. Use the example of a ball thrown upward to demonstrate that conservation of energy must
be applied to a system rather than to a single particle. Remark that Earth does work on
the ball, the ball does work on Earth, and the change in potential energy is the negative
of the sum. Show it is mgh, where h is the change in their separation. Remark that both
kinetic energies change and the total change is the negative of the change in the potential
energy. Explain that because Earth is so massive the change in its kinetic energy is small
and may be neglected.

E. Discuss potential energy curves. Use the curve for a spring-mass system, then a more
general one, and show how to calculate the kinetic energy and speed from the coordinate
and total energy. Point out the turning points on the curves and discuss their physical
significance. Use F = −dU/dx to argue that the particle turns around at a turning point.
For an object on a frictionless roller coaster track, find the speed at various points and
identify the turning points.

F. Define stable, unstable, and neutral equilibrium. Use a potential energy curve (a frictionless
roller coaster, say) to illustrate. Emphasize that dU/dx = 0 at an equilibrium point.

IV. Potential energy in two and three dimensions.
A. Define potential energy as a line integral and explain that it is the limit of a sum over in-

finitesimal path segments. Remark that conservation of energy leads to 1
2
mv2+U(x, y, z) =

constant. Explain that v2 = v2x + v
2
y + v

2
z and that v

2 is a scalar.
B. Example: simple pendulum. Since the gravitational potential energy depends on height,

in the absence of nonconservative forces the pendulum has the same swing on either side
of the equilibrium point and always returns to the same turning points. Demonstrate with
a pendulum hung near a blackboard and mark the end points of the swing on the board.
For a more adventurous demonstration, suspend a bowling ball pendulum from the ceiling
and release the ball from rest in contact with your nose. Stand very still while it completes
its swing and returns to your nose.

V. External work and thermal energy.
A. Explain that when forces due to objects external to the system do work W on the system

the energy equation becomes ∆K +∆U = W if the internal forces are conservative. K is
the total kinetic energy of all objects in the system and U is the total potential energy of
their interactions with each other.

B. Show that if the external force is conservative the system can be enlarged to include the
(previously) external agent. Then, W = 0 and U must be augmented to include the new
interactions. Give the example of a ball thrown upward in Earth’s gravitational field.

C. Explain that if some or all of the internal forces are nonconservative then the total energy
must include an thermal energy term to take account of energy that enters or leaves some
or all of the objects and contributes to the energy (kinetic and potential) of the particles
that make up the objects. Distinguish between thermal energy and the energy associated
with the motion and interactions of the object as a whole. Write ∆K +∆U +∆Eth =W .
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D. Refer back to the block sliding on the horizontal table top, discussed earlier. Explain
that when the block stops all the original kinetic energy has been converted to thermal
energy. As an example assume the table top exerts a constant frictional force of magnitude
f . Explain that Ki = fd, where Ki is the initial kinetic energy and d is the distance
the block slides before stopping. Say that if the system consists of only the block, then
−Ki + ∆Eth = W , where W is the work done by friction on the block and ∆Eth is the
change in the thermal energy of the block. Note that −fd is not the work done by friction.
Now take the system to consist of the both the block and table top. Then −Ki+∆Eth = 0,
where ∆Eth is the total change in the thermal energies of the block and table top. Argue
that ∆Eth = fd. Explain that the division of thermal energy between the block and the
table top cannot be calculated without a detailed model of friction.

E. Explain that the quantity nf ·dnr along the path of an object does NOT give the work done
by friction but it does contribute to the change in kinetic energy of the object, along with
similar contributions from other forces, if any. For a block sliding on a table top, the work
done by friction is algebraically greater than the value of the integral and the difference is
the increase in the thermal energies of the block and table top.

F. Explain that there may be other forms of internal energy. For example, the chemical energy
stored in the fuel of a car and the kinetic energy of the moving pistons are forms of internal
energy if the car is taken to be an object of a system. Write E = K+U+Eth+Eint, where
Eint is the total internal energy of the system, exclusive of the thermal energy. Eint is not
considered in detail in this chapter but is considered in Chapter 9 and other chapters.

SUGGESTIONS

1. Assignments
a. Use question 1 to discuss the idea of a conservative force.
b. Question 3 and problems 2, 3, 5, and 6 test basic understanding of gravitational potential

energy. Use problem 1 to test basic understanding of elastic potential energy.
c. Test for understanding of the conservation of mechanical energy by asking questions 2 and

3 and assigning some of problems 9, 10, 12, 17, 26, 29, 31, and 34. Some of these are
related to previous problems. Some combine gravitational and elastic potential energies.

d. Draw several potential energy curves and have the class analyze the particle motion for
various values of the total energy. This can provide particularly useful feedback as to how
well the students have mastered the idea of energy conservation. Also ask question 5 and
assign problems 37 and 39.

e. Assign a few questions and problems dealing with applied and dissipative forces. Consider
questions 4, 6, 7, 8, and 9 and problems 41, 43, 44, 45, 51, 52, and 58.

2. Demonstrations
a. Conservation of energy: Freier and Anderson Mn1 – 3, 6.
b. Nonconservative forces: Freier and Anderson Mw1.

3. Books and Monographs
The Bicycle by Phillip DiLavore; available from the American Association of Physics Teach-
ers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Deals
chiefly with energy. Students do not need to know about rotational motion.

4. Audio/Visual
a. Gravitational Potential Energy ; Conservation of Energy – Pole Vault and Aircraft Take-

off ; from the AAPT collection 1 of single-concept films; DVD; available from Ztek Co.
(PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).

b. Energy Conservation; Cinema Classics DVD 5: Conservation Laws; available from Ztek
Co. (see above for address) and the AAPT (see above for address).
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c. Conservation of Energy ; Work and Conservation of Energy ; from Physics Demonstra-
tions in Mechanics, Part I; VHS video tape, DVD; ≈3 min each; Physics Curriculum &
Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

5. Computer Software
Momentum and Energy from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum& Instruction (see above for address). Includes sections on conservation
of energy.

6. Laboratory
a. Probeware Activity 8: Conservation of Energy. Students use a motion detector to compare

the potential energy of a cart at the top of an incline with its kinetic energy at the bottom.
Bernard Experiment 9: Work, Energy, and Friction. A string is attached to a car on an
incline and passes over a pulley at the top of the incline. Weights on the free end of the
string are adjusted so the car rolls down the incline at constant speed. The work done
by gravity on the weights and on the car is calculated and used to find the change in
mechanical energy due to friction. The coefficient of friction is computed. The experiment
is repeated for the car rolling up the incline and for various angles of incline. It is also
repeated with the car sliding on its top and the coefficients of static and kinetic friction
are found.

Chapter 9 CENTER OF MASS AND LINEAR MOMENTUM

BASIC TOPICS

I. Center of mass.
A. Spin a chalkboard eraser as you toss it. Point out that, if the influence of air can be

neglected, one point (the center of mass) follows the parabolic trajectory of a projectile
although the motions of other points are more complicated.

B. Define the center of mass by giving its coordinates in terms of the coordinates of the
individual particles in the system. As an example, consider a system consisting of three
discrete particles and calculate the coordinates of the center of mass, given the masses and
coordinates of the particles. Point out that no particle need be at the center of mass.

C. Extend the definition to include a continuous mass distribution. Note that if the object
has a point, line, or plane of symmetry, the center of mass must be at that point, on that
line, or in that plane. Examples: a uniform sphere or spherical shell, a uniform cylinder,
a uniform square, a rectangular plate, or a triangular plate. Show how to compute the
coordinates of the center of mass of a complex object comprised of a several simple parts,
a table for example. Each part is replaced by a particle with mass equal to the mass of the
part, positioned at the center of mass of the part. The center of mass of the particles is
then found. Explain how to find the center of mass of a simple shape, such as a rectangular
or circular plate, with a hole cut in it.

D. Explain that the general motion of a rigid body may be described by giving the motion of
the center of mass and the motion of the object around the center of mass.

E. Derive expressions for the velocity and acceleration of the center of mass in terms of the
velocities and accelerations of the particles in the system.

F. Derive nFnet = Mnacom and emphasize that nFnet is the net external force on all objects of
the system. As an example, consider a two-particle system with external forces acting on
both particles and each particle interacting with the other. Invoke Newton’s third law to
show that the internal forces cancel when all forces are summed.

G. State that if nFnet = 0 and the center of mass is initially at rest, then it remains at the
same point no matter how individual parts of the system move. Refer to the two carts of
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C above.Work a sample problem. For example, consider a person running from one end to
the other of a slab that is free to slide on a horizontal frictionless surface or two skaters who
pull themselves toward each other with a rope or pole. Ask how far the cart and running
person or the two skaters each move.

II. Momentum.
A. Define momentum for a single particle. If you are including modern physics topics in the

course, also give the relativistic definition of momentum.
B. Show that Newton’s second law can be written nFnet = dnp/dt for a particle. Emphasize

that the mass of the particle is constant and that this form of the law does not imply that
a new term nv dm/dt has been added to nFnet = mna.

C. State that the total momentum of a system of particles is the vector sum of the individual
momenta and show that nP =Mnvcom.

D. Show that Newton’s second law for the center of mass can be written nFnet = dnP/dt, where
nP is the total momentum of the system. Stress that nFnet is the net external force and that
this equation is valid only if the mass of the system is constant.

III. Impulse.
A. Define the impulse of a force as the integral over time of the force. Note that it is a

vector. Clearly distinguish between impulse (integral over time) and work (integral over
path). Draw a force versus time graph for the force of one body on the other during a
one-dimensional collision and point out the impulse is the area under the curve.

B. Define the time averaged force and show that the impulse is the product nFavg∆t, where
∆t is the time of interaction. Remark that we can use the average force to estimate the
strength of the interaction during the collision.

C. Use Newton’s second law to show that the impulse on a body equals the change in its
momentum. Remark that the change in momentum depends not only on the force but also
on the duration of the interaction.

IV. Conservation of linear momentum.
A. Point out that nP = constant if nFnet = 0. Stress that one examines the external forces to

see if momentum is conserved in any particular situation. Point out that one component
of nP may be conserved when others are not.

B. Put two carts, connected by a spring, on a horizontal air track and set them in oscillation
by pulling them apart and releasing them from rest. Explain that the center of mass does
not accelerate and the total momentum of the system is constant. Use the conservation
of momentum principle to derive an expression for the velocity of one cart in terms of the
velocity of the other. Push one cart and explain that the center of mass is now accelerating
and the total momentum is changing.

C. Consider a projectile that splits in two and find the velocity of one part, given the velocity
of the other. Point out that mechanical energy is conserved for the cart-spring system but
is not for the fragmenting projectile. The exploding projectile idea can be demonstrated
with an air track and two carts, one more massive than the other. Attach a brass tube to
one cart and a tapered rubber stopper to the other. Arrange so that the tube is horizontal
and the stopper fits in its end. The tube has a small hole in its side, through which a
firecracker fuse fits. Start the carts at rest and light a firecracker in the tube. The carts
rapidly separate, strike the ends of the track, come back together again, and stop. Arrange
the initial placement so the carts strike the ends of the track simultaneously. Explain that
nP = 0 throughout the motion. For a less dramatic demonstration, tie two carts together
with a compressed spring between them, then cut the string.

D. Explain that observers in two different inertial frames will measure different values of the
momentum for a system but they will agree on the conservation of momentum. That is,
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if the net external force is found to vanish in one inertial frame, it vanishes in all inertial
frames.

E. Illustrate the use of conservation of momentum to solve problems by considering the firing
of a cannon initially resting on a frictionless surface. Assume the barrel is horizontal and
calculate the recoil velocity of the cannon. Explain that muzzle velocity is measured relative
to the cannon and that we must use the velocity of the cannonball relative to Earth.

V. Properties of collisions
A. Set up a collision between two carts on an air track. Point out the interaction interval and

the intervals before and after the interaction.
B. Explain that for the collisions considered two bodies interact with each other over a short

period of time and that the times before and after the collision are well defined. The force
of interaction is great enough that external forces can be ignored during the interaction
time.

C. Refer to the air track collision and point out that it is the impulse of one body on the
other that changes the momentum of the second body. Repeat the air track collision.
Measure the velocity of one cart before and after the collision and calculate the change in
its momentum. Equate this to the impulse the other cart exerts. Estimate the collision
time and calculate the average force exerted on the cart.

D. Use the third law to show that two bodies in a collision exert equal and opposite impulses
on each other and show that, if external impulses can be ignored, then total momentum is
conserved. Refer to the air track collision. Again stress that external forces are neglected
during the collisions considered here.

E. Force probes, with input to a computer, can be used to plot the forces acting during a
collision as functions of time. The curves can be integrated to find the impulse.

VI. Two-body collisions in one dimension.
A. Define the terms “elastic”, “inelastic”, and “completely inelastic”. Distinguish between the

transfer of kinetic energy from one colliding object to the another and the loss of kinetic
energy to internal energy.

B. Two-body completely inelastic collisions.
1. Derive an expression for the velocity of the bodies after the collision in terms of their

masses and initial velocities.
2. Demonstrate the collision on an air track, using carts with velcro bumpers. Point

out that the kinetic energy of the bodies is not conserved and calculate the energy
loss. Remark that the energy is dissipated by the mechanism that binds the objects
to each other. Some goes to internal energy, some to deformation energy. Note that
1
2(m1+m2)v

2
com is retained. If we use a reference frame attached to the center of mass

to describe the collision, we would find the combined bodies at rest after the collision
and all kinetic energy lost.

C. Two-body elastic collisions.
1. Derive expressions for the final velocities in terms of the masses and initial velocities.
2. Specialize the general result to the case of equal masses and one body initially at rest.

Demonstrate this collision on the air track using carts with spring bumpers. Point out
that the carts exchange velocities.

3. Specialize the general result to the case of a light body, initially at rest, struck by a
heavy body. Demonstrate this collision on the air track. Point out that the velocity
of the heavy body is reduced only slightly and that the light body shoots off at high
speed. Relate to a bowling ball hitting a pin.

4. Specialize the general result to the case of a heavy body, initially at rest, struck by
a light body. Demonstrate this collision on the air track. Point out the low speed
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acquired by the heavy body and the rebound of the light body. Relate to a ball
rebounding from a wall. A nearly elastic collision can be obtained with a superball.

5. Point out that, although the total kinetic energy does not change, kinetic energy is
usually transferred from one body to the other. Consider a collision in which one body
is initially at rest and calculate the fraction that is transferred. Show that the fraction
is small if either mass is much greater than the other and that the greatest fraction is
transferred if the two masses are the same. This is important, for example, in deciding
what moderator to use to thermalize neutrons from a fission reactor.

D. Point out that while the greatest energy loss occurs when the interaction is completely
inelastic, there are many other inelastic collisions in which less than the maximum energy
loss occurs. Note that it is possible to have a collision in which kinetic energy increases
(an explosive impact, for example).

VII. Two-body collisions in two dimensions.
A. Write down the equations for the conservation of momentum, in component form, for a

collision with one body initially at rest. Mention that these can be solved for two unknowns.
B. Consider an elastic collision for which one body is at rest initially and the initial velocity of

the second is given. Write the conservation of kinetic energy and conservation of momentum
equations. Point out that the outcome is not determined by the initial velocities but that
the impulse of one body on the other must be known to determine the velocities of the
two bodies after the collision. State that the impulse is usually not known and in practice
physicists observe one of the outgoing particles to determine its direction of motion. Carry
out the calculation: assume the final direction of motion of one body is known and calculate
the final direction of motion of the other and both final speeds.

C. State, or perhaps prove, that if the particles have the same mass then their directions of
motion after the collision are perpendicular to each other.

D. Consider a completely inelastic collision for which the two bodies do not move along the
same line initially. Mention that the outcome of this type collision is determined by the
initial velocities. Calculate the final velocity. Calculate the fraction of energy dissipated.

VIII. Variable mass systems.
A. Derive the rocket equations, Eqs. 9—87 and 9—88. Emphasize that we must consider the

rocket and fuel to be a single constant mass system. Derive expressions for the momentum
before and after a small amount of fuel is expelled, in terms of the mass of the rocket and
fuel together, the mass of the fuel expelled, the initial velocity of the rocket, the change in
its velocity, and the relative velocity of the expelled fuel. Assume no external forces act on
the rocket-fuel system and equate the two expressions for the total momentum.

B. To demonstrate, screw several hook eyes into a toy CO2 propelled rocket, run a line through
the eyes, and string the line across the lecture hall. Start the rocket from rest and have
the students observe its acceleration as it crosses the hall.

C. As a second example, consider the loading of sand on a conveyor belt and calculate the
force required to keep the belt moving at constant velocity.

SUGGESTIONS

1. Assignments
a. Use problems 1, 3, and 6 to generate discussion about the position of the center of mass.

To present a challenge, assign problem 8.
b. Questions 1 and 2 are good tests of understanding of the motion of the center of mass.

Discuss them as an introduction to the problems. Assign problems 11, and 12. Assign
some problems in which the center of mass does not move: 16 and 17, for example.

c. To emphasize the vector nature of momentum, assign problems 19 and 20.
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d. To help students with the concept of impulse and the impulse-momentum theorem ask
question 5. Also consider problems 23 and 32.

e. To discuss conservation of momentum use questions 6 and 7 and assign problems such as
35 and 39. To emphasize the difference between conservation of energy and conservation
of momentum assign problem 44.

f. Use question 9 to discuss the motion of the center of mass during a collision.
g. Assign some problems dealing with inelastic collisions, such as 51. Assign and discuss a

problem for which the mechanism of kinetic energy loss is given explicitly. See problem 53.
h. Assign a problem, such as 56, that ask students to determine if a collision is elastic.
i. Ask question 8 in support of the discussion of elastic collisions. Assign problem 55. For
some fun, carry out the demonstration described in problem 63.

j. Demonstrate the ballistic pendulum and show how it can be used to measure the speed of
a bullet. Assign problem 46.

k. Assign some problems that deal with two-dimensional collisions: the group 65 through 73.
Include both elastic and inelastic collisions.

l. Assign problems such as 70, 72, and 73, which are concerned with variable mass systems.

2. Demonstrations
a. Center of mass, center of gravity: Freier and Anderson Mp7, 12, 13.
b. Motion of center of mass: Freier and Anderson Mp1, 2, 16 – 19.
c. Conservation of momentum: Freier and Anderson Mg4, 5, Mi2.
d. Collisions: Freier and Anderson Mg1 – 3, Mi1, 3, 4, Mw3, 4.
e. Rockets: Freier and Anderson Mh.

3. Books and Monographs
Rockets by David Keeports; available from the American Association of Physics Teachers
(AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt.org).

4. Audio/Visual
a. Finding the Speed of a Rifle Bullet ; from the AAPT collection 1 of single-concept films;

DVD; from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).
b. Center of Mass, Conservation of Linear/Angular Momentum, Conservation of Momentum;

from the AAPT collection 2 of single-concept films; DVD; available from Ztek Co. (see
above for address).

c. Linear Momentum; Cinema Classics DVD 5: Conservation Laws; available from Ztek Co.
(see above for address) and the AAPT (see above for address).

d. Motion of Center of Mass; Conservation of Momentum; from Physics Demonstrations in
Mechanics, Part II; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction
(22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

e. Dynamics; VHS video tape, DVD; Films for the Humanities and Sciences (see above for
address).

f. Impulse and Momentum;Conservation of Momentum; from Physics Demonstrations in
Mechanics, Part V; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction
(see above for address).

g. Motion of Center of Mass; from Physics Demonstrations in Mechanics, Part V; VHS video
tape, DVD; ≈3 min; Physics Curriculum & Instruction (see above for address).

h. Linear Momentum and Newtons’ Laws of Motion; VHS video tape, DVD (part of a col-
lection); Films for the Humanities and Sciences (PO Box 2053, Princeton, NJ 08543—2053;
www.films.com).

i. One-Dimensional Collisions, Two-Dimensional Collisions, Scattering of a Cluster of Ob-
jects, Dynamics of a Billiard Ball , Inelastic One-Dimensional Collisions, Inelastic Two-
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Dimensional Collisions, and Colliding Freight Cars; from the AAPT collection 1 of single-
concept films; DVD; available from Ztek Co. (see above for address).

j. Drops and Splashes, Collisions in Two Dimensions, Inelastic Collisions; from the AAPT
collection 2 of single-concept films; DVD; available from Ztek Co. (see above for address).

k. Elastic Collisions, Inelastic Collisions, Collisions; Cinema Classics DVD 5: Conservation
Laws; available from Ztek Co. and from the AAPT (see above for addresses).

l. Collisions from Skylab Physics; DVD; available from Ztek Co. (see above for address).
m. Characteristics of Collisions; Elastic Collision; from Physics Demonstrations in Mechanics,

Part V; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction (see above for
address).

5. Computer Software
a. Objects in Motion. See Chapter 2 SUGGESTIONS.
b. Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-

riculum & Instruction (see above for address). Includes sections on center of mass and 2D
collisions.

c. Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes a section on the center
of mass.

d. Momentum and Energy from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on elastic and
inelastic collisions and on conservation of momentum.

6. Computer Projects
a. Have students use a spreadsheet or write a computer program to follow individual particles

in a two or three particle system, given the force law for the forces they exert on each other.
The program should integrate Newton’s second law for each particle. Have the students
use their data to verify the conservation of momentum.

b. Have students use a commercial math program or write a program to graph the total
final kinetic energy as a function of the final velocity of one object in a two-body, one-
dimensional collision, given the initial velocities and masses of the two objects. Ask them
to run the program for specific initial conditions and identify elastic, inelastic, completely
inelastic, and explosive collisions on their graphs.

7. Laboratory
a. Meiners Experiment 8—7: Linear Momentum. Essentially the same as 8—6 but data is

analyzed to give the individual momenta and total momentum as functions of time. Kinetic
energy is also analyzed.

b. Meiners Experiment 7—10: Impulse and Momentum. Students use a microprocessor to
measure the force as a function of time as a toy truck hits a force transducer. They
numerically integrate the force to find the impulse, then compare the result with the
change in momentum, found by measuring the velocity before and after the collision.

c. Probeware Activity 9: Impulse v Change in Momentum. Much like Meiners Experiment
7—10. A force probe is used to measure the force on a cart as it collides with a magnetic
bumper. The force is integrated by computer to find the impulse. A motion sensor is used
to find the change in the velocity of the cart.

d. Bernard Experiment 8: Impulse, Momentum, and Energy. Part A deal with a mass that
is hung on a string passing over a pulley and attached to an air track glider. The glider
accelerates from rest for a known time and a spark timer is used to find its velocity at the
end of the time. The impulse is calculated and compared with the momentum. In part
B a glider is launched by a stretched rubber band and a spark record of its position as a
function of time is made while it is in contact with the rubber band. A static technique is
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used to measure the force of the rubber band for each of the recorded glider positions and
the impulse is approximated. The result is again compared with the final momentum of
the glider.

e. Meiners Experiment 7—9: Ballistic Pendulum – Projectile Motion. A ball is shot into
a trapping mechanism at the end of a pendulum. The initial speed of the ball is found
by applying conservation of momentum to the collision and conservation of energy to the
subsequent swing of the pendulum. Also see Bernard Experiment 11: Inelastic Impact and
the Velocity of a Projectile.

f. Meiners Experiment 8—6: Center of Mass Motion. Two pucks are connected by a rubber
band or spring and move toward each other on a nearly frictionless surface. A spark timer
is used to record their positions as functions of time. Students calculate and study the
position of the center of mass as a function of time. They also find the center of mass
velocity. Can be performed with dry ice pucks or on an air table or air track.

g. Meiners Experiment 8—8: Two-Dimensional Collisions. Same as Meiners 8—5 but the pucks
are allowed to scatter out of the original line of motion. Students must measure angles
and calculate components of the momenta. The experiment may be performed with dry
ice pucks or on an air table.

h. Bernard Experiment 12: Elastic Collision – Momentum and Energy Relations in Two
Dimensions. A ball rolls down an incline on a table top and strikes a target ball initially
at rest at the edge of the table. The landing points of the balls on the floor are used
to find their velocities just after the collision. The experiment is run without a target
ball to find the velocity of the incident ball just before the collision. Data is used to
check for conservation of momentum and energy. Both head-on and grazing collisions are
investigated. A second experiment, similar to Meiners 8—8, is also described.

i. Probeware Activity 10A: Conservation of Linear Momentum Part 1 – Inelastic Collision
and Probeware Activity 10B: Conservation of Linear Momentum Part 2 – Elastic Col-
lision. Motion detectors are used to find the velocities of two carts before and after they
collide. The momentum of each of the carts and the net momentum before the collision is
compared with the same quantity after the collision.

j. Meiners Experiment 7—11: Scattering (for advanced groups). The deflection of pellets
from a stationary disk is used to investigate the scattering angle as a function of impact
parameter and to find the radius of the disk.

k. Meiners Experiment 8—5: One-Dimensional Collisions. A puck moving on a nearly friction-
less surface collides with a stationary puck. A spark timer is used to record the positions
of the pucks as functions of time. Students calculate the velocities, momenta, and energies
before and after the collision. May be performed with dry ice pucks or on an air table or
track.

Chapter 10 ROTATION

BASIC TOPICS

I. Rotation about a fixed axis.
A. Spin an irregular object on a fixed axis. A bicycle wheel or spinning platform with the

object attached can be used. Draw a rough diagram, looking along the rotation axis.
Explain that each point in the body has a circular orbit and that, for any selected point,
the radius of the orbit is the perpendicular distance from the point to the rotation axis.
Contrast to a body that is simultaneously rotating and translating.

B. Define angular position θ (in radians and revolutions), angular displacement ∆θ, angular
velocity ω (in rad/s, deg/s, and rev/s), and angular acceleration α (in rad/s2, deg/s2,
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and rev/s2). Treat both average and instantaneous quantities but emphasize that the
instantaneous quantities are most important for us. Remind students of radian measure.

C. Use Fig. 10—4 to show how an angular displacement is measured. By convention in this
text position angles are positive in the counterclockwise direction. Remark that as the
body rotates counterclockwise, say, θ continues increase beyond 2π rad.

D. Interpret the signs of ω and α. Give examples of spinning objects for which ω and α have
the same sign and for which they have opposite signs.

E. Point out the analogy to one-dimensional linear motion. θ corresponds to x, ω to v, and α
to a.

F. Point out that ω and α can be thought of as the components of vectors nω and nα, respectively.
For fixed axis rotation, the vectors lie along the rotation axis, with the direction of nω
determined by a right hand rule: if the fingers curl in the direction of rotation, then the
thumb points in the direction of nω. If dω/dt > 0, then nα is in the same direction; if
dω/dt < 0, then it is in the opposite direction. Use Fig. 10—7 to explain that a vector
cannot be associated with a finite angular displacement because displacements do not add
as vectors.

II. Rotation with constant angular acceleration.
A. Emphasize that the discussion here is restricted to rotation about a fixed axis but that

the same equations can be used when the rotation axis is in linear translation. This type
motion will be discussed in the next chapter.

B. Write down the kinematic equations for θ(t) and ω(t). Make a comparison with the anal-
ogous equations for linear motion (see Table 10—1).

C. Point out that the problems of rotational kinematics are similar to those for one-dimensional
linear kinematics and that the same strategies are used for their solution.

D. Go over examples. Calculate the time and number of revolutions for an object to go from
some initial angular velocity to some final angular velocity, given the angular acceleration.
If time permits, consider both a body that is speeding up and one that is slowing down. For
the latter, calculate the time to stop and the number of revolutions made while stopping.
Calculate the time to rotate a given number of revolutions and the final angular velocity,
again given the angular acceleration.

III. Linear speed and acceleration of a point rotating about a fixed axis.
A. Write down s = θr for the arc length. Explain that it is a rearrangement of the defining

equation for the radian and that θ must be in radians for it to be valid.
B. Wrap a string on a large spool that is free to rotate about a fixed axis. Mark the spool

so the angle of rotation can be measured. Slowly pull out the string and explain that the
length of string pulled out is equal to the arc length through which a point on the rim
moves. Compare the string length to θr for θ = π/2, π, 3π/2, and 2π rad. Show that
s = θr reduces to the familiar result for θ = 2π rad.

C. Differentiate s = θr to obtain v = rω and at = αr. Emphasize that radian measure must
be used. Point out that v gives the speed and at gives the acceleration of the string as
it is pulled provided it does not slip on the spool. Point out that all points in a rotating
rigid body have the same value of ω and the same value of α but points that are different
distances from the rotation axis have different values of v and different values of at.

D. Point out that the velocity is tangent to the circular orbit but that the total acceleration is
not. at gives the tangential component while ar = v

2/r = ω2r gives the radial component.
The tangential component is not zero only when the point on the rim speeds up or slows
down in its rotational motion while the radial component is not zero as long as the object
is turning. For students who have forgotten, reference the derivation of ar = v

2/r, given
in Chapter 4.
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E. Explain how to find the magnitude and direction of the total acceleration in terms of ω,
α, and r.

IV. Kinetic energy of rotation and rotational inertia.
A. By substituting v = rω into K = 1

2mv
2, show that K = 1

2mr
2ω2 for a particle moving

around a circle with angular velocity ω and, by summing over all particles in a rigid body,
show that K = 1

2Iω
2, where I = mir

2
i if the body is rotating about a fixed axis.

Explain that I is called the rotational inertia of the body. Mention that many texts call it
the moment of inertia.

B. Point out that rotational inertia depends on the distribution of mass and on the position
and orientation of the rotation axis. Explain that two bodies may have the same mass but
quite different rotational inertias. State that Table 10—2 gives the rotational inertia for
various objects and axes. Particularly point out the rotational inertia of a hoop rotating
about the axis through its center and perpendicular to its plane. Note that all its mass is
the same distance from the rotation axis. Also point out the rotational inertias of a cylinder
rotating about its axis and a sphere rotating about a diameter. Note that the mass is now
distributed through a range of distances from the rotation axis and the rotational inertia
is less than that for a hoop with the same mass and radius.

C. Optional: show how to convert the sum for I to an integral. Use the integral to find the
rotational inertia for a thin rod rotating about an axis through its center and perpendic-
ular to its length. If the students have experience with volume integrals using spherical
coordinates, derive the expression for the rotational inertia of a sphere.

D. Prove the parallel axis theorem. The proof can be carried out using a sum for I rather than
an integral. Explain its usefulness for finding the rotational inertia when the rotation axis
is not through the center of mass. Emphasize that the actual axis and the axis through
the center of mass must be parallel for the theorem to be valid. Use the parallel axis
theorem to obtain the rotational inertia for the rotation of a thin rod about one end from
the rotational inertia for rotation about the center, given in Table 10—2.

V. Torque.
A. Define torque for a force acting on a single particle. Consider forces that lie in planes

perpendicular to the axis of rotation and take τ = rF sinφ, where nr is a vector that is
perpendicular to the rotation axis and points from the axis to the point of application of
the force. φ is the angle between nr and nF when they are drawn with their tails at the same
point. The definition will be generalized in the next chapter. Explain that τ = rFt = r⊥F ,
where Ft is the tangential component of nF and r⊥ is the moment arm.

B. Explain that the torque vanishes if nF is along the same line as nr and that only the com-
ponent of nF that is perpendicular to nr produces a torque. This is a mechanism for picking
out the part of the force that produces angular acceleration, as opposed to the part that
is associated with centripetal acceleration. Also explain that the same force can produce
a larger torque if it is applied at a point farther from the rotation axis.

C. Use a wrench tightening a bolt as an example. The force is applied perpendicular to the
wrench arm and long moment arms are used to obtain large torques.

D. Explain the sign convention for torques applied to a body rotating about a fixed axis. For
example, torques tending to give the body a counterclockwise (positive) angular accelera-
tion are positive while those tending to give the body a clockwise angular acceleration are
negative. Remark that the convention is arbitrary and the opposite convention may be
convenient for some problems.

VI. Newton’s second law for rotation.
A. Use a single particle on a circular orbit to introduce the topic. Start with Ft = mat and

show that τ = Iα, where I = mr2. Explain that this equation also holds for extended
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bodies, although I is then the sum given above.
B. Remark that problems are solved similarly to linear second law problems. Tell students

to identify torques, draw a force diagram, choose the direction of positive rotation, and
substitute the total torque into τnet = Iα. Remark that the point of application of a force
is important for rotation, so the object cannot be represented by a dot on a force diagram.
Tell students to sketch the object and place the tails of force vectors at the application
points.

C. Wrap a string around a cylinder, free to rotate on a fixed horizontal axis. Attach the free
end of the string to a mass and allow the mass to fall from rest. Note that its acceleration
is less than g, perhaps by dropping a free mass beside it. See Sample Problem 10—8.

VII. Work-kinetic energy theorem for rotation.
A. Use dW = nF · dns to show that the work done by a torque is given by W = τ dθ and that

the power delivered is given by P = τω.
B. Use τ dθ = Iα dθ = 1

2
I d(ω2) to show that W = 1

2
I(ω2f − ω2i ).

C. For the situation of Sample Problem 10—8 use conservation of energy to find the angular
velocity of the cylinder after the mass has fallen a distance h. Use rotational kinematics
and the value for the angular acceleration found in the text to check the answer.

SUGGESTIONS

1. Assignments
a. Use questions 1, 2, and 3 to discuss graphical interpretations of angular position and

velocity.
b. Use techniques of the calculus to derive the kinematic equations for constant angular

acceleration. That is, integrate α = constant twice with respect to time. Assign problem
4 or 6.

c. Assign some problems that deal with rotation with constant angular acceleration: 11, 13,
and 17, for example.

d. To discuss the relationship between angular and linear variables, assign some of problems
21, 22, 23, and 28.

e. Use question 4 to guide students through a qualitative discussion of rotational inertia.
Assign problems 37, 39, and 41.

f. Use problem 47 or 48 to discuss the calculation of torque.
g. To help students think about torque and τnet = Iα, discuss questions 5, 6, 7,8, and 9.

Assign some of problems 53, 54, and 57. To deal with a situation in which the dynamics of
more than one object is important, demonstrate the Atwood machine and discuss problem
55.

h. Use question 10 to discuss the work done by a torque and changes in rotational kinetic
energy. Discuss conservation of mechanical energy and assign problems 65 and 67.

2. Demonstrations
a. Rotational dynamics: Freier and Anderson Ms7, Mt 5, 6, Mo5.
b. Rotational work and energy: Freier and Anderson Mv2, Mr5, Ms2.

3. Computer Software
Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-
riculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurricu-
lum.com). Includes a section on torque.

4. Computer Project
Ask students to use a commercial math program or their own root finding programs to
solve rotational kinematic problems.

Lecture Notes: Chapter 10 45



5. Laboratory
a. Probeware Activity 11: Rotational Motion. A motion detector is used to plot the angular

position and angular velocity of an accelerating disk. The graphs are compared to the
analogous graphs for the linear motion of a cart.

b. Meiners Experiment 7—14: Rotational Inertia. The rotational inertia of a disk is measured
dynamically by applying a torque (a falling mass on a string wrapped around a flange on
the disk). A microprocessor is used to measure the angular acceleration. Small masses
are attached to the disk and their influence on the rotational inertia is studied. The
acceleration of the mass can also be found by timing its fall through a measured distance.
Then, at = αr is used to find the angular acceleration of the disk. Also see Bernard
Experiment 14: Moment of Inertia.

Chapter 11 ROLLING, TORQUE,

AND ANGULAR MOMENTUM

BASIC TOPICS

I. Rolling.
A. Remark that a rolling object can be considered to be rotating about an axis through the

center of mass while the center of mass moves. The text considers the special case for
which the axis of rotation does not change direction. Point out that the rotational motion
obeys τnet = Icomα and the translational motion of the center of mass obeys nFnet = mnacom,
where τnet is the sum of external torques and nFnet is the sum of external forces. Emphasize
that one of the forces acting may be the force of friction produced by the surface on which
the object rolls.

B. Explain that the speed of a point at the top of a rolling object is vcom+ωR and the speed
of a point at the bottom is vcom − ωR. Specialize to the case of rolling without slipping.
Point out that the point in contact with the ground has zero velocity, so vcom = ωR. Use
Fig. 11—5 as evidence. Also point out that tire tracks in the snow are clean (not smudged)
if the tires do not slip.

C. Explain that a wheel rolling without slipping can be viewed as rotating about an axis
through the point of contact with the ground. Use this and the parallel axis theorem to
show that the kinetic energy is 12Mv

2
com +

1
2Icomω

2.
D. Consider objects rolling down an inclined plane and show how to calculate the speed at

the bottom using energy considerations. If time permits, carry out an analysis using the
equations of motion and show how to find the frictional force that prevents slipping.

E. Roll a sphere, a hoop, and a cylinder, all with the same radius and mass, down an incline.
Start the objects simultaneously at the same height and ask students to pick the winner.
Point out that the speed at the bottom is determined by the dimensionless parameter
β = I/MR2 and not by I, M , and R alone. All uniform cylinders started from rest reach
the bottom in the same time and have the same speed when they get there.

F. Consider a ball striking a bat. Show how to find the point at which the ball should hit
so the instantaneous center of rotation is at the place where the bat is held. The striking
point is called the center of percussion. When the ball hits there the batter feels no sting.

II. Torque and angular momentum.
A. Define torque as nτ = nr × nF and explain that this is the general definition. Review the

vector product, give the expression for the magnitude (τ = rF sinφ), and give the right

hand rule for finding the direction. Explain that nτ = 0 if nr = 0, nF = 0, or nr is parallel (or

antiparallel) to nF .
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B. Consider an object going around a circle and suppose a force is applied tangentially. Take
the origin to be on the rotation axis but not at the circle center and show the general
definition reduces to the expression used in Chapter 11 for the component of the torque
along the rotation axis: τ = FtR, where R is the radius of the circle (not the distance from
the origin to the point of application).

C. Use vector notation to define angular momentum for a single particle (nf = mnr × nv). Give
the expression for the magnitude and the right-hand rule for the direction.

D. Derive the relationship f = mr2ω between the magnitude of the angular momentum and
the angular velocity for a particle moving on a circle centered at the origin. Also find the
angular momentum if the origin is on a line through the circle center, perpendicular to the
circle, but not at the center. Explain that the component along the rotation axis is mr2ω
and is independent of the position of the origin along the line and that the component
perpendicular to the axis rotates with the particle.

E. To show that a particle may have angular momentum even if it is not moving in a circle,
calculate the angular momentum of a particle moving with constant velocity along a line
not through the origin. Point out that the angular momentum depends on the choice of
origin. In preparation for G below you might want to find the time rate of change of nf.

F. Use Newton’s second law to derive nτ = dnf/dt for a particle. Consider a particle moving
in a circle, subjected to both centripetal and tangential forces. Take the origin to be at
the center of the circle and show that nτ = dnf/dt reduces to Ft = mat, as expected. Take
the origin to be on the line through the center, perpendicular to the circle, but not at the
center. Show that the torque associated with the centripetal force produces the change in
nf expected from the discussion of D.

G. Show that the magnitude of the torque about the origin exerted by gravity on a falling
mass is mgd, where d is the perpendicular distance from the line of fall to the origin. Write
down the velocity as a function of time and show that the angular momentum is mgtd.
Remark that τnet = df/dt by inspection. See Sample Problem 11—5.

III. Systems of particles.
A. Explain that the total angular momentum for a system of particles is the vector sum of

the individual momenta.
B. Show that nτnet = dnL/dt for a system of particles for which internal torques cancel. Empha-

size that nτnet is the result of summing all torques on all particles in the system and that
nL is the sum of all individual angular momenta. Demonstrate in detail the cancellation
of internal torques for two particles that interact via central forces. Point out that this
equation is the starting point for investigations of the rotational motion of bodies.

C. Show that the component along the rotation axis of the total angular momentum of a rigid
body rotating about a fixed axis is Iω. Use the example of a single particle to point out
that the angular momentum vector is along the rotation axis if the body is symmetric
about the axis but that otherwise it is not. Emphasize that for fixed axis rotation we are
chiefly interested in the components of angular momentum and torque along the rotation
axis.

D. Make a connection to material of the last chapter by showing that L = Iω and τnet = dL/dt
lead to τnet = Iα for a rigid body rotating about a fixed axis. Here τnet is the component
of the total external torque along the rotation axis.

IV. Conservation of angular momentum.
A. Point out that nL =constant if nτnet = 0. State that different objects in a system may change

each other’s angular momentum but the changes sum vectorially to zero. Also explain that
the rotational inertia of an object may change while it is spinning. Then, Iiωi = Ifωf if
the net external torque vanishes.
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B. As examples consider a mass dropped onto the rim of a freely spinning platform, a person
running tangent to the rim of a merry-go-round and jumping on, and a spinning skater
whose rotational inertia is changed by dropping her arms.

C. The third example can be demonstrated easily if you have a rotating platform that can
hold a person. Have a student hold weights in each hand to increase the rotational inertia.
Start him spinning with arms extended, then have him bring his arms in toward the sides
of his body. See Fig. 11—17. Also carry out the spinning bicycle wheel demonstration
described in the text. See Fig. 11—20.

SUGGESTIONS

1. Assignments
a. In connection with rolling without sliding assign problems 4, 6, and 7. For a little greater

challenge, assign problem 14.
b. The definition of torque is covered in questions 1, 2, and 3. The definition of angular

momentum is covered in questions 5 (particle) and 6 (system of particles). Assign problems
22 and 26 to stress the importance of the origin in calculations of torque and angular
momentum. Problem 27 asks students to calculate the angular momentum if the cartesian
components of the position and momentum vectors are given. Problem 24 deals with both
angular momentum and torque. Be sure students can calculate the angular momentum
of an object moving along a straight line and the angular momentum of a rigid body
rotating about a fixed axis. See problems 25 and 37. Also consider discussing the angular
momentum of a projectile.

c. Newton’s second law in angular form is covered in questions 7 and 8. Assign problem 32
or 33.

d. Assign questions and problems dealing the conservation of angular momentum. Consider
questions 9 and 10. Problem 47 includes motion along a straight line. Problems 41 and 46
deal with changes in rotational inertia. Problems 42 and 43 deal with inelastic rotational
collisions. Assign one or more from each of these groups.

2. Demonstrations
a. Rolling: Freier and Anderson Mb4, 7, 30, Mo3, Mp3, Mr1, 4, Ms1, 3, 4, 6.
b. Conservation of angular momentum: Freier and Anderson Mt1 – 4, 7, 8, Mu1.
c. Gyroscopes: Freier and Anderson Mu2 – 18.

3. Audio/Visual
a. Human Momenta, Initial Translation and Rotation from Skylab Physics; DVD; available

from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).
b. Conservation of Linear/Angular Momentum; from the AAPT collection 2 of single-concept

films; DVD; available from Ztek Co. (see above for address).
c. Angular Momentum; Cinema Classics DVD 6: Angular Momentum and Modern Physics;

available from Ztek Co. (see above for address) and the American Association of Physics
Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt.org).

d. Rotational Dynamics; from Physics Demonstrations in Mechanics, Part VI; VHS video
tape, DVD; ≈3 min; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville,
MN 55044; www.PhysicsCurriculum.com).

e. Conservation of Angular Momentum; Center of Percussion; from Physics Demonstrations
in Mechanics, Part II; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction
(see above for address).

4. Computer Software
Forces and Motion from Exploration of Physics Volume II; Windows and Macintosh;
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Physics Curriculum & Instruction (see above for address). Includes a section on angu-
lar momentum.

5. Computer Project
Given the law for the torque between two rotating rigid bodies a computer program or
spreadsheet can be used to integrate Newton’s second law for rotation and tabulate the
angular positions and angular velocities as functions of time. The data can be used to
verify the conservation of angular momentum.

6. Laboratory
a. Meiners Experiment 7—12: Rotational and Translational Motion. Students measure the

center of mass acceleration of various bodies rolling down an incline and calculate the
center of mass velocities at the bottom. Results are compared to measured velocities. It
is also instructive to use energy methods to find the final speeds.

b. Meiners Experiment 7—13: Rotational Kinematics and Dynamics. Students find the veloc-
ity and acceleration of a ball rolling around a loop-the-loop and analyze the forces acting
on it.

c. Meiners Experiment 8—9: Conservation of Angular Momentum. Uses the Pasco rotational
dynamics apparatus. A ball rolls down a ramp and becomes coupled to the rim of a
disk that is free to rotate on a vertical axis. Students measure the velocity of the ball
before impact and the angular velocity of the disk-ball system after impact, then check for
conservation of angular momentum.

Chapter 12 EQUILIBRIUM AND ELASTICITY

BASIC TOPICS

I. Conditions for equilibrium.
A. Write down the equilibrium conditions for a rigid body: nFnet = 0, nτnet = 0 (about any

point). Remind students that only external forces and torques enter. Explain that these
conditions mean that the acceleration of the center of mass and the angular acceleration
about the center of mass both vanish. The body may be at rest or its center of mass
may be moving with constant velocity or the body may be rotating with constant angular
momentum. Point out that the equilibrium conditions form six equations that are to be
solved for unknowns, usually the magnitudes of some of the forces or the angles made by
some of the forces with fixed lines. Explain that we will be concerned chiefly with static
equilibrium for which nP = 0 and nL = 0. Remark that the subscript “ext” is usually
omitted.

B. Show that, for a body in equilibrium, nτnet = 0 about every point.
C. Explain that the gravitational forces and torques, acting on individual particles of the

body, can be replaced by a single force acting at a point called the center of gravity. If the
gravitational field is uniform over the body, the center of gravity coincides with the center
of mass and the magnitude of the replacement force is Mg, where M is the total mass. It
points downward.

II. Solution of problems.
A. Give the problem solving steps: isolate the body, identify the forces acting on it, draw a

force diagram, choose a reference frame for the resolution of the forces, choose a reference
frame for the resolution of the torques, write down the equilibrium conditions in component
form, and solve these simultaneously for the unknowns. Point out that the two reference
frames may be different and that the reference frame for the resolution of torques can often
be chosen so that one or more of the torques vanish.
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B. Work examples. Consider a ladder leaning against a wall (Sample Problem 12—2) or an
object hanging from a boom (Sample Problem 12—3). In each case show how the situation
can be analyzed qualitatively to find the directions of the forces, then solve quantitatively.

III. Elasticity.
A. Point out that you have been considering mainly rigid bodies until now. Real objects

deform when external forces are applied. Explain that deformations are often important
for determining the equilibrium configuration of a system.

B. Consider a rod of unstrained length L subjected to equal and opposite forces F applied
uniformly at each end, perpendicular to the end. Define the stress as F/A, where A is the
area of an end. Define strain as the fractional change in length ∆L/L caused by the stress.
Explain that stress and strain are proportional if the stress is sufficiently small. Define
Young’s modulus E as the ratio of stress to strain and show that ∆L = FL/EA. Explain
that Young’s modulus is a property of the object and point out Table 12—1.

C. Explain that if the stress is small, the object returns to its original shape when the stress is
removed and it is said to be elastic. Explain what happens if the stress is large and define
yield strength and ultimate strength.

D. Calculate the fractional change in length for compressional forces acting on rods made of
various materials. Use data from Table 12—1.

E. Explain that shearing occurs when the forces are parallel to the ends. Define the stress as
F/A and the strain as ∆x/L where ∆x is the displacement of one end relative to the other.
Define the shear modulus G as the ratio of stress to strain and show that ∆x = FL/GA.

F. Explain hydraulic compression. Define pressure as the force per unit area exerted by the
fluid on the object. Explain that the pressure is now the stress and the fractional volume
change ∆V/V is the strain. Define the bulk modulus B by p = B∆V/V .

G. To show how elastic properties are instrumental in determining equilibrium go over Sample
Problem 12—6 or a similar problem.

SUGGESTIONS

1. Assignments
a. Use questions 1, 2, 3, and 4 to help students gain understanding of the equilibrium con-

ditions in specific situations. Assign a few problems, such as 3 and 10, for which only the
total force is important. Assign others, such as 7, 11, and 11, for which torque is also
important. To provide a greater challenge assign a few of problems 21, 28, and 31.

b. The fundamentals of elasticity are covered in problems 36 (Young’s modulus), and 37
(shear). Also assign one or both of problems 39 and 40, in which the laws of elasticity are
used in conjunction with the equilibrium conditions to solve for forces and their points of
application.

2. Demonstrations
Freier and Anderson Mo1, 2, 4, 6 – 9, Mp4 – 6, 9, 11, 14, 15, Mq1, 2.

3. Audio/Video
Linear Momentum and Newtons’ Laws of Motion; VHS video tape, DVD (part of a col-
lection); Films for the Humanities and Sciences (PO Box 2053, Princeton, NJ 08543—2053;
www.films.com).

4. Laboratory
a. Bernard Experiment 5: Balanced Torques and Center of Gravity. A non-uniform rod is

pivoted on a fulcrum. A single weight is hung from one end and the pivot point moved
until equilibrium is obtained. The data is used to find the center of gravity and mass of
the rod. Additional weights are hung and equilibrium is again attained. The data is used
to check that the net force and net torque vanish.
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b. Bernard Experiment 6: Equilibrium of a Crane. Students study a model crane: a rod
attached to a wall pivot at one end and held in place by a string from the other end to
the wall. Weights are attached to the crane and the equilibrium conditions are used to
calculate the tension in the rod and in the string. The latter is measured with a spring
balance.

c. Meiners Experiment 7—16: Elongation of an Elastomer (see Chapter 7 notes).
d. Meiners Experiment 7—17: Investigation of the Elongation of an Elastomer with a Micro-

computer. Same as Meiners 7—16 but a microprocessor is used to plot the elongation as a
function of applied force. A polar planimeter is used to calculate the work done.

Chapter 13 GRAVITATION

BASIC TOPICS

I. Newton’s law of gravity.
A. This is an important chapter. It is the first chapter devoted to a force law and its ram-

ifications. Students get a glimpse of how a force law and the laws of motion are used
together. It reviews the concepts of potential energy, angular momentum, and centripetal
acceleration in the context of some important applications. In addition, the discussion of
the gravitational fields of continuous mass distributions is a precursor to Gauss’ law.

B. Write down the equation for the magnitude of the force of one point mass on another.
Explain that the force is one of mutual attraction and is along the line joining the masses.
Give the value of G (6.67 × 10−11 N·m2/kg2) and explain that it is a universal constant
determined by experiment. If you have a Cavendish balance, show it but do not take
the time to demonstrate it. As a thought experiment dealing with the magnitude of G,
consider a pair of 100-kg spheres falling from a height of 100m, initially separated by a bit
more than their radii. As they fall, their mutual attraction pulls them only slightly closer
together. Air resistance has more influence.

C. Explain that the same mathematical form holds for bodies with spherically symmetric mass
distributions (this was tacitly assumed in B) if r is now the separation of their centers.
Explain that the force on a point mass anywhere inside a uniform spherical shell is zero.
(Optional: use integration to prove that this follows from Newton’s law for point masses.)
Use this to derive an expression for the force on a point mass inside a spherically symmetric
mass distribution. See Sample Problem 13—4.

D. Point out the assumed equivalence of gravitational and inertial mass.
E. Use Newton’s law of gravity to calculate the acceleration ag due to gravity for objects near

the surface of Earth and justify the use of a constant acceleration due to gravity in previous
chapters. Remark that the acceleration due to gravity is independent of the mass of the
body.

F. Optional: Discuss factors that influence ag and apparent weight. Explain the difference
between ag and the free-fall acceleration g arising from earth’s rotation.

II. Gravitational potential energy.
A. Use integration to show that the gravitational potential energy of two point masses is given

by U = −GMm/r if the zero is chosen at r → ∞. Demonstrate that this result obeys
F = −dU/dr.

B. Argue that the work needed to bring two masses to positions a distance r apart is indepen-
dent of the path. Divide an arbitrary path into segments, some along lines of gravitational
force and others perpendicular to the gravitational force.

C. Consider a body initially at rest far from Earth and calculate its speed when it gets to
Earth’s surface. Calculate the escape velocity for Earth and for the Moon.
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D. Show how to calculate the gravitational potential energy of a collection of discrete masses.
Warn the students about double counting the interactions – a term of the sum is associated
with each pair of masses. Relate this energy to the binding energy of the system.

III. Planetary motion and Kepler’s laws.

A. Consider a single planet in orbit about a massive sun. The center of mass for the system
is essentially at the sun and it remains stationary.

B. Explain that the orbit is elliptical with the sun at one focus. This is so because the force
is proportional to 1/r2 and the planet is bound. Draw a planetary orbit and point out the
semimajor axis, the perihelion point, and the aphelion point. Define eccentricity. Show
that Rp = a(1− e) and Ra = a(1 + e), where a is the semimajor axis, Rp is the perihelion
distance, and Ra is the aphelion distance.

C. Explain that the displacement vector from the sun to the planet sweeps out equal areas in
equal time intervals. Sketch an orbit to illustrate. Show that the torque acting on the planet
is zero because the force is along the displacement vector; then show that conservation of
angular momentum leads to the equal area law. Note that the result is true for any central
force.

D. For circular orbits, show that the square of the period is proportional to the cube of
the orbit radius and that the constant of proportionality is independent of the planet’s
mass. State that the result is also true for elliptical orbits if the radius is replaced by the
semimajor axis. Verify the result for planets in nearly circular orbits. The data can be
found in Table 14—3.

E. For a body held by gravitational force in circular orbit about another, much more massive
body, show that the kinetic energy is proportional to 1/r and that the total mechanical
energy is −GMm/2r. Explain that the energy is zero for infinite separation with the
bodies at rest, that a negative energy indicates a bound system, and that a positive energy
indicates an unbound system. Describe the orbits of recurring and non-recurring comets.
Explain that the expression for the energy is valid for elliptical orbits if r is replaced by the
semimajor axis. Remark that the energy of a satellite cannot be altered without changing
the semimajor axis of its orbit.

F. Remark that the laws of planetary motion hold for moons (including artificial satellites)
traveling around planets, binary star systems, stars traveling around the center of a galaxy,
and for galaxies in clusters. Explain that when the masses of the two objects are com-
parable, both objects travel around the center of mass and it is the relative displacement
that obeys Kepler’s laws. When discussing stars in galaxies you might show how the law
of periods has been used to argue for the existence of dark matter.

SUGGESTIONS

1. Assignments

a. To stress Newton’s force law, ask question 1 and assign problem 1. Also assign problem 15
to test if students know the source of the value for ag. To discuss symmetry, ask question
3.

b. Use problems 4 through 6 to test for understanding of the superposition principle.

c. Discuss problem 21 in connection with calculations of the gravitational force of a spherically
symmetric mass distribution on a point mass. Problem 20 is fundamental to the shell
theorem.

d. The essentials of gravitational potential energy are covered in problems 24 and 31. Con-
servation of mechanical energy is important for the solution to problem 32. Some of these
can be used later as models for electrostatic potential energy. Question 10 covers some
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important qualitative aspects of gravitational work and potential energy. Escape velocity
and energy are covered in several problems. Consider problems 25, 27, and 33.

e. To discuss planetary orbits assign some of problems 39, 44, 45, and 56.

2. Audio/Visual
a. Gravitation; VHS video tape, DVD (part of a collection); Films for the Humanities and

Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).
b. The Determination of the Newtonian Constant of Gravitation ; VHS video tape, DVD;

Films for the Humanities and Sciences (see above for address).
c. Retrograde Motion – Heliocentric Model and Geocentric Model ; Kepler’s Laws; Jupiter

Satellite Orbits; from the AAPT collection 1 of single-concept films; DVD; available Ztek
Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).

d. Measurement of “G” – The Cavendish Experiment ; from the AAPT collection 2 of single-
concept films; DVD; available from Ztek Co. (see above for address).

e. Planetary Motion; Cinema Classics DVD 2: Mechanics (II) and Heat; available from Ztek
Co. (see above for address) and the American Association of Physics Teachers (AAPT,
One Physics Ellipse, College Park MD 20740—3845; www.aapt.org).

f. Newton’s Law of Universal Gravitation; from Physics Demonstrations in Mechanics, Part
IV; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction (22585 Woodhill
Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

3. Computer Software
a. Orbits; James B. Harold, Kenneth Hennacy, and Edward Redish; Windows; available

from Physics Academic Software (Centennial Campus, 940 Main Campus Drive, Suite 210,
Raleigh, NC 27606—5212; www.aip.org/pas). Calculates and plots the trajectories of up to
seven bodies. Two can be massive and influence the motions of the others. The rest are
light. The user can change the value of the gravitational constant and can shift the view
to various reference frames.

b. Planets and Satellites; Windows; available from Physics Academic Software and from the
AAPT (see above for addresses).

c. Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-
riculum & Instruction (see above for address). Includes a section or planetary orbits.

d. Astronomy from Exploration of Physics Volume II; Windows and Macintosh; Physics Cur-
riculum & Instruction (see above for address). Includes sections on a comparison of geo-
centric and heliocentric planetary systems and Kepler’s laws.

e. Objects in Motion. See Chapter 2 SUGGESTIONS.

4. Computer Project
Have students use a spreadsheet or write a computer program to integrate Newton’s second
law for a 1/r2 central force and use it to investigate satellite motion. Try some projects in
which the orbit is changed and have students compute the energy required for the change.

5. Laboratory
Meiners Experiment 7—21: Analysis of Gravitation. Students use the Leybold-Heraeus
Cavendish torsional balance to determine G. Requires extremely careful work and a solid
vibration free wall to mount the apparatus.
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Chapter 14 FLUIDS

BASIC TOPICS

I. Pressure and density.
A. Introduce the subject by giving a few examples of fluids, including both liquids and gases.

Remark that fluids cannot support shear.
B. Define density as the mass per unit volume in a region of the fluid. Point out that the

limit is a macroscopic limit: the limiting volume still contains many atoms. The density
is a scalar and is a function of position in the fluid.

C. Explain that fluid in any selected volume exerts a force on the material across the boundary
of the volume. The boundary may be a mathematical construct and the material on the
other side may be more of the same fluid. The boundary may also be a container wall
or an interface with another fluid. Explain that, for a small segment of surface area, the
force exerted by the fluid is normal to the surface and is proportional to the area. The
pressure is the force per unit area and nF = p nA, where the magnitude of nA is the area and
the direction of nA is outward, normal to the surface. Units: Pa (= N/m2), atmosphere,
bar, torr, mm of Hg. Give the conversions or point out Appendix D in the text.

D. Show that in equilibrium with y measured positive above some reference height dp/dy =
−ρg, where ρ is the fluid density. Then, note that p2 − p1 = − ρg dy, where the integral
limits are y1 and y2. Point out that the difference in pressure arises because a fluid surface
is supporting the fluid above it. Finally, point out that if the fluid is incompressible and
homogeneous, then ρ is a constant. If y2 − y1 is sufficiently small that g is also constant,
then p2− p1 = −ρg(y2− y1). Point out that if p0 is the surface pressure, then the pressure
a distance h below the surface is p = p0 + ρgh. Note that the pressure is the same at all
points at the same depth in a homogeneous fluid. Explain that p0 is atmospheric pressure
if the surface is open to the air and is zero if the fluid is in a tube with the region above
the surface evacuated.

E. Connect a length of rubber tubing to one arm of a U-tube partially filled with colored
water. Blow into the tube, then suck on it. In each case note the change in water level.
Insert the U-tube into a deep beaker of water, with the free end of the tubing out of the
water. As the open end is lowered, the change in the level of the colored water will indicate
the increase in pressure. Go over Sample Problem 14—3 to show the equilibrium positions
of two immiscible liquids of different densities. Show how to obtain the pressure at the
top of one arm in terms of the pressure at the top of the other arm, the densities, and the
quantities of fluids. Point out that the pressures are the same and are the atmospheric
pressure if the U-tube is open. Explain that the pressure is always the same at two points
that are at the same height and can be joined by a line along which neither ρ nor g vary.
Use the diagram associated with the problem to point out two places at the same height
where the pressure is the same and two places at the same height where the pressures are
different.

II. Measurement of pressure.
A. This section not only describes some pressure measuring instruments but also provides

some applications of previous material, especially the variation of pressure with depth in
a fluid.

B. Show a mercury barometer. A lens system or an overhead projector suitably propped on
its side can be used to project an image of the mercury column on a screen for viewing by
a large class. Use p = p0 + ρgh to show why the height of the column is proportional to
the pressure at the mercury pool. Emphasize that the pressure at the top of the column
is nearly zero and that this is important for the operation of the barometer.
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C. Show a commercial open-tube manometer or explain that such an instrument is similar to
the U-tube demonstration done earlier. Explain gauge pressure and emphasize that the
instrument measures gauge pressure.

III. Pascal’s and Archimedes’ principles.
A. State Pascal’s principle. Start with p = p0 + ρgh, consider a change in p0, and show

∆p = ∆p0 if the fluid is incompressible. You can demonstrate the transmission of pressure
with a soda bottle full of water, fitted with a tight rubber stopper. Wrap a towel around
the neck of the bottle and hit the stopper sharply. With some practice you can blow the
bottom out of the bottle cleanly.

B. Apply the principle to a hydraulic jack. Show that F1/A1 = F2/A2. Also explain that if
the fluid is incompressible, F1 and F2 do the same work. The point of application of the
smaller force moves the greater distance. A hydraulic jack can be made from a hot water
bottle, fitted with a narrow rubber tube. Put the bottle on the floor and fasten the tube
to a tall ringstand so it is vertical. Place a thin wooden board on the bottle to distribute
the weight and have a student stand on it. To change the pressure, use a plunger or rubber
squeeze ball from an atomizer or blow into the tube.

C. State Archimedes’ principle. Stress that the force is due to the surrounding fluid. Contrast
the case of an immersed body surrounded by fluid with one placed on the bottom of the
container. Consider a flat board floating on the surface of a liquid, compute the net upward
force in terms of the difference in pressure and use p = p0 + ρgh to show that this is the
weight of the displaced liquid.

D. Explain why some objects sink while others float.
E. Fill a large mouthed plastic vessel with water precisely up to an overflow pipe. Immerse

a dense object tied by string to a spring balance. Weigh the object while it is immersed
and weigh the displaced water. Observe that the buoyant force is the same as the weight
of the displaced water.

IV. Fluids in motion.
A. Describe:

1. Steady and non-steady flow. Emphasize that the velocity and density fields are inde-
pendent of time if the flow is steady. They may depend on position, however.

2. Compressible and incompressible flow. Emphasize that the density is independent of
both position and time if the flow is incompressible.

3. Rotational and irrotational flow.
4. Viscous and nonviscous flow.

B. Describe streamlines for steady flow and point out that streamlines are tangent to the fluid
velocity and that no two streamlines cross. Remark that the velocity is not necessarily
constant along a streamline. Describe a tube of flow as a bundle of streamlines. Sketch a
tube of flow with streamlines far apart at one end and close together at the other. Explain
that since streamlines do not cross the boundaries of a tube of flow they are close together
where the tube is narrow and far apart where the tube is wide. Remark that particles do
not cross the boundaries of a tube of flow.

V. Equation of continuity
A. Define volume flow rate (volume flux) and mass flow rate (mass flux). Consider a tube of

flow with cross-sectional area A at one point and give the physical significance of Aρv and
Av. Remark that the first can be measured in kg/s and the second in m3/s. Show how to
convert m3/s to gal/s and L/s.

B. State the equation of continuity: Aρv = constant along a streamline if there are no sources
or sinks of fluid and if the flow is steady. Argue that if the equation were not true there
would be a build up or depletion of fluid in some regions and the flow would not be steady.
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C. Discuss the special case of an incompressible fluid and explain that the fluid speed is great
where the tube of flow is narrow and vice versa. Point out that the fluid velocity is great
where the streamlines are close together and small where they are far apart. Use the
diagram of section IVB above as an example.

VI. Bernoulli’s equation.
A. Apply the work-kinetic energy theorem to a tube of flow to show that for steady, nonviscous,

incompressible flow p + 1
2
ρv2 + ρgy = constant along a streamline. Point out that this

equation also gives the pressure variation in a static fluid (v = 0 everywhere).
B. Remark that a typical fluid dynamics problem gives the conditions v, p, y at one point on

a streamline and asks for conditions at another. The equation of continuity and Bernoulli’s
equation can be solved simultaneously for two quantities.

C. Work a sample problem. Consider horizontal flow (y = constant) through a pipe that
narrows. Give the fluid velocity where the pipe is wide and use the equation of continuity
to calculate the velocity where it is narrow. Then, use Bernoulli’s equation to calculate the
pressure difference. Emphasize that the pressure must decrease to provide the force that
accelerates the fluid as it passes into the narrow region.

D. Now work the same problem but suppose the height of the pipe increases along the direction
of flow. Point out the difference in the answers for the pressure.

SUGGESTIONS

1. Assignments
a. Use question 1 to discuss pressure. Problems 1, 2, and 4 cover the definition of pressure.

Problem 14 deals with the variation of pressure with depth. Problem 19 includes torque.
b. Use problem 22 in connection with Pascal’s principle.
c. Questions 4, 5, and 6 all provide good examples of Archimedes’ principle. Pick several

to illustrate applications of the principle. Also assign problems 24 and 25 and some of
problems 31, 33, 35, 36, and 38.

d. Use problems 42 and 47 as part of the discussion of the equation of continuity.
e. The fundamentals of Bernoulli’s equation are covered in problems 45, 47, and 48. Also

consider problems 55 and 59. Some of these require students to combine the equation of
continuity and Bernoulli’s equation. Work one or two of these as examples in lecture and
assign others.

2. Demonstrations
a. Force and pressure: Freier and Anderson Fa, Fb, Fc, Fd, Fe, Ff, Fh.
b. Archimedes’ principle: Freier and Anderson Fg.
c. Bernoulli’s principle: Freier and Anderson Fj, Fl1.

3. Books and Monographs
Hydraulic Devices; by Malcolm Goldber, John P. Ouderkirk, and Bruce B. Marsh ; available
from the American Association of Physics Teachers (AAPT, One Physics Ellipse, College
Park MD 20740—3845; www.aapt.org).

4. Audio/Visual
Pressure; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com).

5. Computer Software
a. Fluids from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum

& Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).
Simulated experiments with analysis. Includes exercises dealing with density, pressure,
buoyancy and, the Bernoulli equation.
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b. Fluids from Exploration of Physics Volume II; Windows and Macintosh; Physics Cur-
riculum & Instruction (see above for address). Includes sections on measuring pressure,
volume, density, and buoyancy.

6. Laboratory
a. Probeware Activity 12: Buoyant Force. a force sensor is used to measure the force on

an object as it is lowered into water. A force versus depth is generated. Data is used to
compute the density of the water.

b. Meiners Experiment 7—7: Radial Acceleration (Problem II only). Students measure the
orbit radii of various samples floating on the surface of water in a spinning globe and
analyze the forces on the samples. This experiment is an application of buoyancy forces to
rotational motion.

c. Bernard Experiment 16: Buoyancy of Liquids and Specific Gravity. Archimedes’ principle is
checked by weighing the water displaced by various cylinders. Buoyant forces are measured
by weighing the cylinders in and out of water. The same cylinder is immersed in various
liquids and the results are used to find the specific gravities of the liquids.

Chapter 15 OSCILLATIONS

BASIC TOPICS

I. Oscillatory motion.
A. Set up an air track and a cart with two springs, one attached to each end. Mark the

equilibrium point, then pull the cart aside and release it. Point out the regularity of the
motion and show where the speed is the greatest and where it is the least. By reference to
the cart define the terms periodic motion, equilibrium point, period, frequency, cycle, and
amplitude.

B. Explain that x(t) = xm cos(ωt + φ) describes the coordinate of the cart as a function of
time if x = 0 is taken to be the equilibrium point, where the force of the springs on the
cart vanishes. State that this type motion is called simple harmonic. Show where x = 0 is
on the air track, then show what is meant by positive and negative x. Sketch a mass on
the end of a single spring and explain that the mass also moves in simple harmonic motion
if dissipative forces are negligible.

C. Discuss the equation for x(t).
1. Explain that xm is the maximum excursion of the mass from the equilibrium point

and that the spring is compressed by xm at one point in a cycle. xm is called the
amplitude of the oscillation. Explain that the amplitude depends on initial conditions.
Draw several x(t) curves, identical except for amplitude. Illustrate with the air track
apparatus.

2. Note that ω is called the angular frequency of the oscillation and is given in radians/s.
Define the frequency by f = ω/2π and the period by T = 1/f . Show that T = 2π/ω
is in fact the period by direct substitution into x(t); that is, show x(t) = x(t + T ).
Explain that the angular frequency does not depend on the initial conditions. For the
cart on the track, use a timer to show that the period, and hence ω, is independent
of initial conditions. Draw several x(t) curves, for oscillations with different periods.
Replace the original springs with stiffer springs and note the change in period. Also
replace the cart with a more massive cart and note the change in period.

3. Define the phase of the motion and explain that the phase constant φ is determined
by initial conditions. Draw several x(t) curves, identical except for φ, and point out
the different conditions at t = 0. Remark that the curves are shifted copies of each
other. Illustrate various initial conditions with the air track apparatus.
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D. Derive expressions for the velocity and acceleration as functions of time for simple harmonic
motion. Show that the speed is a maximum at the equilibrium point and is zero when
x = ±xm. Also show that the magnitude of the acceleration is a maximum when x = ±xm
and is zero at the equilibrium point. Relate these results to F (x).

E. Show that the initial conditions are given by x0 = xm cosφ and v0 = −xmω sinφ. Solve for
xm and φ: x2m = x

2
0 + v

2
0/ω

2 and tanφ = −v0/ωx0. Calculate xm and φ for a few special
cases: x0 = 0 and v0 positive, x0 = 0 and v0 negative, x0 positive and v0 = 0, x0 negative
and v0 = 0. Tell students how to test the result given by a calculator for φ to see if π must
be added to it.

II. The force law.
A. State the force law for an ideal spring: F = −kx. Point out that the negative sign is

necessary for the force to be a restoring force. Hang identical masses on springs with
different spring constants, measure the elongations, and calculate the spring constants.
Remark that stiff springs have larger spring constants than weak springs. Remark that the
expression for the force is an idealization. It is somewhat different for real springs.

B. Start with Newton’s second law and derive the differential equation for x(t). Show that
x = xm cos(ωt+ φ) satisfies the equation if ω = k/m and explain that this is the most
general solution for a given spring constant and mass.

C. Show a vertical spring-mass system. Point out that the equilibrium point is determined by
the mass, force of gravity, and the spring constant. Show, both analytically and with the
apparatus, that the force of gravity does not influence the period, phase, or amplitude of
the oscillation.

III. Energy considerations.
A. Derive expressions for the kinetic and potential energies as functions of time. Show that the

total mechanical energy is constant by adding the two expressions and using the trigono-
metric identity sin2 α + cos2 α = 1. Remark that the energy is wholly kinetic at the
equilibrium point and wholly potential at a turning point. It changes from one form to the
other as the mass moves between these points.

B. Show how to use the conservation of energy to find the amplitude, given the initial position
and velocity, to find the maximum speed, and to find the speed as a function of position.

IV. Applications.
A. Demonstrate a torsional pendulum and discuss it analytically. Derive the differential equa-

tion for the angle as a function of time and compare with the differential equation for a
spring to obtain the angular frequency and period in terms of the spring constant and the
rotational inertia.

B. Demonstrate a simple pendulum and discuss it analytically in the small amplitude approx-
imation. Derive the differential equation for the angle as a function of time and obtain
expressions for the angular frequency and period from the equation. Emphasize that the
angular displacement must be measured in radians for the small amplitude approximation
to be valid. Have students use their calculators to find the sines of some angles, in radians,
starting with large angles and progressing to small angles.

C. Demonstrate a physical pendulum. Use Newton’s second law for rotation to obtain the
differential equation for the angular displacement. Obtain expressions for its angular fre-
quency and period in the small amplitude approximation. Remind students that the rota-
tional inertia depends on the position of the pivot and show them how to use the parallel
axis theorem to find its value.

V. Simple harmonic motion and uniform circular motion.
A. This section is particularly important if you intend to include wave interference and diffrac-

tion in the course.
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B. Mount a bicycle wheel vertically and arrange for it to be driven slowly with uniform angular
speed. Attach a tennis ball to the rim and project the shadow of the ball on the wall. Note
that the shadow moves up and down in simple harmonic motion. Point out that the period
of the wheel and the period of the shadow are the same. It is possible to suspend a mass
on a spring near the wall and adjust the angular speed and initial conditions so the mass
and shadow move together for several cycles. A period of about 1 s works well.

C. Analytically show that the projection of the position vector of a particle in uniform circular
motion undergoes simple harmonic motion. Mention the converse: if an object simulta-
neously undergoes simple harmonic motion in two orthogonal directions, with the same
amplitude and frequency, but a π/2 phase difference, the result is a circular orbit.

VI. Damped and forced harmonic motion.
A. Write the differential equation for a spring-mass oscillator with a damping term propor-

tional to the velocity. Treat the case (b/2m)2 < k/m and write the solution, including the
expression for the angular frequency in terms of k, m, and b. If there is time, prove it is
the solution by direct substitution into the differential equation or leave the proof as an
exercise for the students. Remark that the natural angular frequency is nearly k/m if
damping is small.

B. Show a graph of the displacement as a function of time. See Fig. 15—16. Point out the
exponential decay of the amplitude. Mention that the oscillator loses mechanical energy
to dissipative forces.

C. Explain that if (b/2m)2 > k/m then the mass does not oscillate but rather moves directly
back to the equilibrium point. The displacement is a decreasing exponential function of
time. To demonstrate under- and over-damping, attach a vane to a pendulum. Experiment
with the size so the pendulum oscillates in air but does not when the vane is in water.

D. Write the differential equation for a forced spring-mass system, including a damping term.
Assume an applied driving force of the form Fm cos(ωdt) and point out that ωd is not
necessarily the same as the natural angular frequency of the oscillator.

E. Mention that when the system is first started transients are present and the motion is
somewhat complicated. However, it settles down to a sinusoidal motion with an angular
frequency that is the same as that of the driving force.

F. Also point out that in steady state the amplitude is constant in time but that it depends on
the frequency of the driving force. Illustrate with Fig. 15—17, which shows the amplitude as
a function of the driving frequency for various values of the damping coefficient. Mention
that the amplitude is the greatest when the driving frequency nearly matches the natural
frequency and say this is the resonance condition. Also mention that at resonance the
amplitude is greater for smaller damping and that small damping produces a sharper
resonance than large damping.

G. Resonance can be demonstrated with three identical springs
and two equal masses, as shown. Fasten the bottom spring
to a heavy weight on the floor and drive the upper spring
by hand (perhaps standing on a table). Obtain resonance
at each of the normal modes (masses moving in the same
and opposite directions). After showing the two resonances,
drive the system at a low frequency to show a small re-
sponse, then drive it at a high frequency to again show a
small response. Repeat at a resonance frequency to show
the larger response. To show pronounced damping effects,
attach a large stiff piece of aluminum plate to each mass.
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SUGGESTIONS

1. Assignments
a. Ask some of questions 1 through 6 as part of the discussion of the conditions for simple

harmonic motion and of the parameters of that motion. Question 5 is a good test of
understanding of the phase constant. Also assign problems 15 and 28.

b. Assign question 10 and problem 5 in support of the spring-mass demonstration and dis-
cussion. Also assign problem 25. Problems 20 and 23 deal with vertical oscillators. Assign
one of these for variety.

c. Springs in parallel and series test understanding of the spring force law. Consider problems
11, 24, and 26. Also consider problem 22.

d. Assign problems 31 and 33 in support of the discussion of energy. When assigning problem
33 also ask for the maximum speed of the mass.

e. If oscillators other than a spring-mass system are considered, assign problem 39 (angular
simple harmonic motion), 46 (simple pendulum), and 51 (physical pendulum).

f. Use problems 59 and 60 to test for understanding of damped harmonic motion and problems
62 and 63 to test for understanding of forced harmonic motion.

2. Demonstrations
a. Simple harmonic motion: Freier and Anderson Mx1, 2, 3, 4, 7.
b. Pendulums: Freier and Anderson Mx6, 9, 10, 11, 12, My1, 2, 3, 8, Mz1, 2, 3, 6, 7, 9.

3. Audio/Visual
a. Simple Harmonic Motion; The Stringless Pendulum; Sand Pendulum; from the AAPT col-

lection 2 of single-concept films; DVD; available from Ztek Co. (PO Box 11768, Lexington,
KY 40577—1768, www.ztek.com).

b. Oscillations from Skylab Physics; DVD; available from Ztek Co. (see above for address).
c. Tacoma Narrows Bridge Collapse; from the AAPT Miller collection of single-concept films;

DVD; available from Ztek Co. (see above for address) and from the American Associ-
ation of Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845;
www.aapt.org).

d. Coupled Oscillators – Equal Masses; Coupled Oscillators – Unequal Masses; from the
AAPT Miller collection of single-concept films; DVD; available from Ztek Co. and from
the AAPT (see above for addresses).

e. Periodic Motion; from Cinema Classics DVD 2: Mechanics (II) and Heat; available from
Ztek Co. and the AAPT (see above for addresses).

f. Twin Views of the Tacoma Narrows Bridge Collapse; VHS video tape; available from the
AAPT (see above for address).

4. Computer Software
a. Physics of Oscillation; Eugene L. Butikov; Windows; available from Physics Academic

Software (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—
5212; www.aip.org/pas).

b. Mechanics from Exploration of Physics Volume I; Windows and Macintosh; Physics Cur-
riculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurricu-
lum.com). Simulated experiments with analysis. Includes sections on springs, pendulums,
damped oscillators, and 2D oscillators.

c. Vibrations, Waves, and Sound from Exploration of Physics Volume II; Windows and Mac-
intosh; Physics Curriculum & Instruction (see above for address). Includes sections on
simple harmonic motion and resonance of a damped mass on a spring.

d. Dynamic Analyzer . See Chapter 2 SUGGESTIONS.
e. Oscillations and Waves; interactive CD-ROM; Films for the Humanities and Sciences (PO

Box 2053, Princeton, NJ 08543—2053; www.films.com).
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5. Laboratory
a. Probeware Activity 13: Harmonic Motion – Mass on a Spring. A motion detector is used

to plot the position of a weight hanging from a spring. The period of oscillation is then
calculated and compared with the theoretical value.

b. Probeware Activity 14: Simple Harmonic Motion – Simple Pendulum. A motion detector
is used to plot the position of the bob of a simple pendulum. The period of oscillation is
computed and compared with the theoretical value.

c. Meiners Experiment 7—2: The Vibrating Spring. Students time a vertical vibrating spring
with various masses attached, then use the data and a logarithmic plot to determine the
relationship between the period and mass.

d. Bernard Experiment 15: Elasticity and Vibratory Motion. The experiment is much the
same as Meiners 7—2, in that a graph is used to determine the relationship between the
mass on a spring and the period of oscillation. This measurement is preceded by a static
determination of the spring constant.

e. Meiners Experiment 7—4: The Vibrating Ring. Students time the oscillations of various
diameter rings, hung on a knife edge, then use the data and a logarithmic plot to determine
the relationship between the period and ring diameter. A good example of a physical
pendulum.

f. Meiners Experiment 7—15: Investigation of Variable Acceleration. A pendulum swings
above a track and a spark timer is used to record its position as a function of time. Its
velocity and acceleration are investigated.

g. Meiners Experiment 7—19: Harmonic Motion Analyzer. This apparatus allows students
to vary the spring constant, mass, driving frequency, driving amplitude, and damping
coefficient of a spring-mass system. They can measure the amplitude, period, and relative
phase of the oscillating mass. A variety of experiments can be performed.

h. Meiners Experiment 8—4: Linear Oscillator. A spark timer is used to record the position
of an oscillating mass on a spring, moving horizontally on a nearly frictionless surface. The
period as a function of mass can be investigated and the conservation of energy can be
checked.

i. Meiners Experiment 7—18: Damped Driven Linear Oscillator. The amplitude and relative
phase of a driven damped spring-mass system are measured as functions of the driving
frequency and are used to plot a resonance curve.

j. Meiners Experiment 7—20: Analysis of Resonance with a Driven Torsional Pendulum. The
driving frequency and driving amplitude of a driven damped torsional pendulum are varied
and the frequency, amplitude, and relative phase are measured. Damping is electromagnetic
and can be varied or turned off. A variety of experiments can be performed.

Chapter 16 WAVES – I

BASIC TOPICS

I. General properties of waves.
A. Explain that wave motion is the mechanism by which a disturbance created at one place

travels to another. Use the example of a pulse on a taut string and point out that the
displaced string causes neighboring portions of the string to be displaced. Stress that the
individual particles have limited motion (perhaps perpendicular to the direction of wave
travel), whereas the pulse travels the length of the string. Demonstrate by striking a taut
string stretched across the room. Point out that energy is transported by the wave from
one place to another. Ask the students to read the introductory section of the chapter for
other examples of waves.
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B. Point out that a wave on a string travels in one dimension, water waves produced by
dropping a pebble travel in two, and sound waves emitted by a point source travel in three.

C. Explain the terms longitudinal and transverse. Demonstrate longitudinal waves with a
slinky.

D. State that waves on a taut string of uniform density travel with constant speed and that
this course deals chiefly with idealized waves that do not change shape. Take the string
to lie along the x axis and draw a distortion in the shape of a pulse, perhaps a sketch of
exp[−α(x− x0)2]. Remark that the initial displacement of the string can be described by
giving a function f(x). Now suppose the pulse moves in the positive x direction and draw
the string at a later time. Point out that the maximum has moved from x0 to x0 + vt,
where v is the wave speed. Remark that the displacement can be calculated by substituting
x− vt for x in the function f(x). Substantiate the remark by showing that x− vt = x0 if
x is the coordinate of the pulse maximum at time t. Explain that x+ vt is substituted if
the pulse travels in the negative x direction. Emphasize the relative signs of kx and ωt.

II. Sinusoidal traveling waves.
A. Write f(x) = ym sin(kx) for the initial displacement of the string and sketch the function.

Identify the amplitude as giving the limits of the displacement and point it out on the
sketch. Also point out the periodicity of the function and identify the wavelength on the
sketch. Show that k must be 2π/λ for f(x) to equal f(x+ nλ) for all integers n. Remark
that k is called the angular wave number of the wave.

B. Substitute x−vt for x in f(x) and explain you will assume the wave travels in the positive
x direction. Show that the result is y(x, t) = ym sin(kx− ωt), where ω = kv.

C. State that the motion of the string at any point is simple harmonic and that ω is the angular
frequency. Show that at a given place on the string the motion repeats in a time equal to
2π/ω. This is the period T . Remind students that the frequency is f = 1/T = ω/2π.

D. Remark that any given point on the string reaches its maximum displacement whenever a
maximum on the wave passes that point. Since the time interval is one period a sinusoidal
wave travels one wavelength in one period and v = λ/T = λf = ω/k, in agreement with
the derivation of y(x, t).

E. Explain that y(x, t) = ym sin(kx+ωt) represents a sinusoidal wave traveling in the negative
x direction.

F. Show that the string velocity is u(x, t) = ∂y/∂t = −ωym cos(kx − ωt). Point out that
x is held constant in taking the derivative since the string velocity is proportional to the
difference in the displacement of the same piece of string at two slightly different times.
Remark that different points on the string may have different velocities at the same time
and the same point may have a different velocity at different times. Contrast this behavior
with that of the wave velocity. Point out that for a transverse wave u is transverse.

G. Explain that the wave speed for an elastic medium depends on the inertia and elasticity
of the medium. State that, for a taut string, v = τ/µ, where τ is the tension in the
string and µ is the linear density of the string. Show how to measure µ for a homogeneous,
constant radius string. The expression for v may be derived as in Section 17—6 of the text.

H. Point out that the frequency is usually determined by the source and that doubling the
frequency for the same string with the same tension halves the wavelength. The product
λf remains the same. Remark that if a wave goes from one medium to another the speed
and wavelength change but the frequency remains the same. Work an example: given the
two densities and the frequency, calculate the wave speed and wavelength in each segment.
Draw a diagram of the wave.

III. Energy considerations.
A. Point out that the energy in the wave is the sum of the kinetic energy of the moving

62 Lecture Notes: Chapter 16



string and the potential energy the string has because it is stretched in the region of the
disturbance. Energy moves with the disturbance.

B. Show that the kinetic energy of an infinitesimal segment of string is given by dK =
1
2 dmv

2 = 1
2(µdx)(ω

2y2m) cos
2(kx − ωt). State that this energy is transported to a neigh-

boring portion in time dt = v dx, so dK/dt = 1
2
µvω2y2m cos

2(kx − ωt) gives the rate at
which kinetic energy is transported past the point with coordinate x, at time t. Explain
that when this is averaged over a cycle the result is (dK/dt)avg =

1
4µvω

2y2m. Remark that
this is not zero. Although kinetic energy moves back and forth as the string oscillates,
there is a net flow.

C. State without proof that the average rate at which potential energy is transported is
exactly the same as the rate for kinetic energy, so the average rate of energy flow is
Pavg =

1
2µvω

2y2m. Note that this depends on the square of the amplitude and on the
square of the frequency.

IV. Superposition and interference.
A. Stress that displacements, not intensities, add. State that if y1 and y2 are waves that are

simultaneously present, then y = y1 + y2 is the resultant wave. Using diagrams of two
similar sinusoidal waves, show that the resultant amplitude can be twice the amplitude of
one of them, can vanish, or can have any value in between. Mention that the medium must
be linear.

B. Start with the waves y1 = ym sin(kx − ωt + φ) and y2 = ym sin(kx − ωt) and show that
y = 2ym cos(φ/2) sin(kx−ωt+φ/2). Show that maximum constructive interference occurs
if φ = 2nπ, where n is an integer and maximum destructive interference occurs if φ =
(2n+ 1)π, where n is again an integer. Remark that the maximum amplitude is 2ym and
the minimum is zero. The derivation depends heavily on the trigonometric identity given
as Eq. 16—50. You may wish to verify this identity for the class. Use the expressions for
the sine and cosine of the sum of two angles to expand the right side of Eq. 16—50.

C. Interference can easily be demonstrated with a monaural amplifier, a signal generator, a
microphone, an oscilloscope, and a pair of speakers. Fix the position of speaker S1 and,
with S2 disconnected, show the wave form on the oscilloscope. Then, connect S2 and show
the wave form as S2 is moved. Because both speakers are driven by the same amplifier,
the only phase difference is due to the path difference.

Oscilloscope

Microphone

Amplifier Signal
Generator

S1

S2

⊃

⊃

D. Explain that a phasor is an arrow that rotates around the location of its tail. Its length,
to some scale, is taken to be the amplitude of a sinusoidal traveling wave and its angular
velocity is taken to the angular frequency of the wave. Show that its projection on an axis
through the tail behaves like the displacement in a wave. Point out the significance of the
phase constant φ for the phasor rotation. Show how to use phasors to add two sinusoidal
waves with the same frequency and wavelength but with different amplitudes and phase
constants. Develop the expression y2m = y21m + y

2
2m + 2y1my2m cosφ for the amplitude of

the resultant wave. Show how to use the law of sines to obtain the phase constant of the
resultant wave.

V. Standing waves.
A. Use a mechanical oscillator to set up a standing wave pattern on a string. Otherwise, draw
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the pattern. Point out nodes and antinodes. Explain that all parts of the string vibrate
either in phase or 180◦ out of phase and that the amplitude depends on position along the
string. The disturbance does not travel. If possible, use a stroboscope to show the standing
wave pattern. CAUTION: students with epilepsy should not watch this demonstration.

B. Explain that a standing wave can be constructed from two sinusoidal traveling waves of
the same frequency and amplitude, traveling with the same speed in opposite directions.
Use the trigonometric identity of Eq. 16—50 to show that y1 + y2 = 2ym sin(kx) cos(ωt) if
the phase constant for each wave is zero. Find the coordinates of the nodes and show they
are half a wavelength apart. Also find the coordinates of the antinodes and show they lie
halfway between nodes.

C. Point out that standing waves can be created by a wave and its reflection from a boundary.
By means of a diagram show how the incident and reflected waves cancel at the fixed end
of a string.

D. Remark that for a string fixed at both ends, each end must be a node. Derive the expression
for the standing wave frequencies of such a string. Draw diagrams showing the string at
maximum displacement for the lowest three or four frequencies.

E. Place two speakers, driven by the same signal generator and amplifier, well apart on the
lecture table, facing the class. Standing waves are created throughout the room. Have
each student place a finger in one ear and move his head slowly from side to side in an
attempt to find the nodes and antinodes. Use a frequency of about 1 kHz.

F. Consider a driven string and describe resonance. Explain that the amplitude becomes large
when the driving frequency matches a standing wave frequency. Explain that at resonance
the energy supplied by the driving force is dissipated and that off resonance the string does
work on the driving mechanism.

G. You may wish to explain that when the string is driven at a non-resonant frequency, each
traveling wave and its reflection from an end produce a standing wave, just as at resonance.
The standing waves produced by successive reflections, however, do not coincide and a
jumble results.

SUGGESTIONS

1. Assignments
a. Use question 4 to discuss wave speed. To emphasize the mathematical description of a

traveling wave, assign problems 6 and 8. Wave speed in terms of tension and linear mass
density is covered in problems 13 through 21. Assign a few of these.

b. Assign problem 29 when discussing energy transport.
c. Question 4 deals with the superposition of waves and questions 5 and 7 deal with wave

interference. The fundamentals of interference are covered in problems 29 and 30. Include
problem 34 if you discuss phasors.

d. Assign questions 9, 10, and 11 and problems 38, 43, and 44 in connection with standing
waves. The superposition of traveling waves to form a standing wave is covered in problems
47, 50, and 53. For a challenge assign problem 55.

2. Demonstrations
a. Traveling waves: Freier and Anderson Sa3, 4, 5, 6, 12, 13.
b. Reflection: Freier and Anderson Sa7, 12, 14.
c. Standing waves: Freier and Anderson Sa8, 9.

3. Audio/Visual
a. Superposition; Vibrations of a Wire; Vibrations of a Drum; from the AAPT collection 1

of single-concept films; DVD; available from Ztek Co. (PO Box 11768, Lexington, KY
40577—1768, www.ztek.com).
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b. Nonrecurrent Wavefronts; from the AAPT Miller collection of single-concept films; DVD;
available from Ztek Co. (see above for address) and from the American Association of
Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt-
.org).

c. Wave Propagation, Periodic Waves, Superposition, Standing Waves; Cinema Classics DVD
3: Waves (I); available from Ztek Co. and from the AAPT (see above for addresses).

d. Mechanical Resonance; Velocity/Wavelength & Frequency ; Standing Waves; Change in
Medium/Interference; from Physics Demonstrations in Sound & Waves, Part I; VHS
video tape, DVD; ≈3 min each; Physics Curriculum & Instruction (22585 Woodhill Drive,
Lakeville, MN 55044; www.PhysicsCurriculum.com).

4. Computer Software
a. Waves from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum

& Instruction (see above for address). Simulated experiments with analysis. Deals with
waves on a taut string, interference, and standing waves.

b. Vibrations, Waves, and Sound from Exploration of Physics Volume II; Windows and Mac-
intosh; Physics Curriculum & Instruction (see above for address). Includes sections on
frequency, phase, amplitude, and superposition.

c. Physics Simulation Programs; Robert H. Good; DOS; available from Physics Academic
Software (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—
5212; www.aip.org/pas). Contains simulations of traveling and standing waves.

d. WaveMaker ; Freeman Deutsch, Philip Sadler, Charles Whitney, Stephen Engquist, and
Linda Shore; Macintosh; available from Physics Academic Software (see above for ad-
dress). Beads are attached to elastic, massless strings and oscillate transversely. The user
can control the masses and the spring constants. The program sill plot the position, ve-
locity, and acceleration of any bead. Demonstrates beats, reflection at fixed and free ends,
normal oscillations, wave superposition, and transmission through a boundary between two
different media.

e. Wave Motion; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box
2053, Princeton, NJ 08543—2053; www.films.com).

f. Oscillations and Waves; interactive CD-ROM; Films for the Humanities and Sciences (see
above for address).

g. Harmonic Motion and Waves; VHS video tape, DVD (part of a collection); Films for the
Humanities and Sciences (see above for address).

5. Computer Project
Have students use a commercial math program, a spreadsheet, or their own programs to
investigate energy in a string carrying a wave. The program should calculate the kinetic,
potential, and total energies at a given point and time, given the string displacement as a
function of position and time. Use the program to plot the energies as functions of time for
a given position. Consider a pulse, a sinusoidal wave, and a standing wave. Demonstrate
that energy passes the point in the first two cases but not in the third. For sinusoidal and
standing waves, the program should also calculate averages over a cycle.

6. Laboratory
a. Meiners Experiment 12—1: Transverse Standing Waves (Part A). Several harmonics are

generated in a string by varying the driving frequency. Frequency ratios are computed
and compared with theoretical values. Values of the wave speed found using λf and using
τ/µ are compared. The experiment can be repeated for various tensions and various

linear densities.
b. Bernard Experiment 22: A Study of Vibrating Strings. A horizontal string is attached to

a driven tuning fork vibrator. It passes over a pulley and weights are hung on the end.
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The weights are adjusted so standing wave patterns are obtained and the wavelength of
each is found from the measured distance between nodes. Graphical analysis is used to
find the relationship between the wave velocity and the tension in the string and to find
the frequency. Several strings are used to show the relationship between the wave velocity
and the linear density.

Chapter 17 WAVES – II

BASIC TOPICS

I. Qualitative description of sound waves.

A. Explain that the disturbance that is propagated is a deviation from the ambient density
and pressure of the material in which the wave exists. This comes about through the
motion of particles. If Chapter 14 was not covered, you should digress to discuss density
and pressure briefly. Point out that sound waves in solids can be longitudinal or transverse
but sound waves in fluids are longitudinal: the particles move along the line of wave
propagation. Waves in crystalline solids moving in low symmetry directions are examples
that are neither transverse nor longitudinal. Use a slinky to show a longitudinal wave and
point out the direction of motion of the particles. State that sound can be propagated in
all materials.

B. Draw a diagram, similar to Fig. 17—3, to show a compressional pulse. Point out regions of
high, low, and ambient density. Also show the pulse at a later time.

C. Similarly, diagram a sinusoidal sound wave in one dimension and draw a rough graph of
the pressure as a function of position for a given time. Give the rough frequency limits of
audible sound and mention ultrasonic and infrasonic waves.

D. Discuss the idea that the wave velocity depends on an elastic property of the medium
(bulk modulus) and on an inertia property (ambient density). Recall the definition of
bulk modulus (or introduce it) and show by dimensional analysis that v is proportional
to B/ρ. Assert that the constant of proportionality is 1. Point out the wide range of
speeds reported in Table 17—1.

II. Interference.

A. Remind students of the conditions for interference. Consider two sinusoidal sound waves
with the same amplitude and frequency, traveling in the same direction. Explain that
constructive interference occurs if they are in phase and complete destructive interference
occurs if they are π rad out of phase.

B. Explain that a phase difference can occur at a detector if two waves from the same source
travel different distances. Show that the phase difference is given by k∆x (= 2π∆x/λ).

C. Interference of sound waves can be demonstrated by wiring two speakers to an audio
oscillator and putting the apparatus on a slowly rotating platform. Students will hear the
changes in intensity.

III. Mathematical description of one-dimensional sound waves.

A. If desired, derive v = B/ρ as it is done in the text.

B. Write s = sm cos(kx−ωt) for the displacement of the material at x. Show how to calculate
the pressure as a function of position and time. Relate the pressure amplitude to the
displacement amplitude. Explain that a sinusoidal pressure wave traveling in the positive
x direction is written ∆p(x, t) = ∆pm sin(kx − ωt), where ∆pm = vρωsm. State that ∆p
is the deviation of the pressure from its ambient value. Remind students that k = 2π/λ,
f = ω/2π, and λf = v.
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C. Remark that power is transmitted by a sound wave because each element of fluid does work
on neighboring elements. Show that the kinetic energy in an infinitesimal length dx of a
sinusoidal sound wave traveling along the x axis is dK = 1

2Aρω
2s2m sin

2(kx−ωt) dx, where
A is the cross-sectional area. Show that its average over a cycle is (dK)avg =

1
4
Aρω2s2m.

Argue that this energy moves to a neighboring segment in time dt = dx/v and show that
the rate of kinetic energy flow is, on average, (dK/dt)avg =

1
4
Aρvω2s2m, where v is the

speed of sound. Tell students that the rate of flow of potential energy is exactly the same,
so the rate of energy flow is Pavg =

1
2Aρvω

2s2m.
D. Define intensity as the average rate of energy flow per unit area and show that it is given

by I = 1
2ρvω

2s2m. Show that conservation of energy implies that the intensity decreases
as the reciprocal of the square of the distance as a spherical wave moves outward from an
isotropic point source.

E. Show a scale of the range of human hearing in terms of intensity. Introduce the idea of
sound level and define the bel and decibel. Discuss both absolute (relative to 10−12W/m2)
and relative intensities. Remark that an increase in intensity by a factor of 10 means
an increase in sound level by 10 db. If you have a sound level meter, use an oscillator,
amplifier, and speaker to demonstrate the change of a few db in sound level.

IV. Standing longitudinal waves and sources of sound.
A. Use a stringed instrument or a simple taut string to demonstrate a source of sound. Point

out that the wave pattern on the string is very nearly a standing wave, produced by a
combination of waves reflected from the ends. If the string is vibrating in a single standing
wave pattern, then sound waves of the same frequency are produced in the surrounding
medium. Demonstrate the same idea by striking a partially filled bottle, then blowing
across its mouth. Also blow across the open end of a ball point pen case. If you have them,
demonstrate Chladni plates.

B. Derive expressions for the natural frequencies and wavelengths of air pipes open at both
ends and closed at one end. Stress that pressure nodes occur near open ends and that
pressure antinodes occur at closed ends. Define the terms fundamental and harmonic.

C. Optional: Discuss the quality of sound for various instruments in terms of harmonic con-
tent. If possible, demonstrate the instruments.

D. Demonstrate voice patterns by connecting a microphone to an oscilloscope and keeping
the setup running through part or all of the lecture. This is particularly instructive in
connection with part C.

V. Beats.
A. Demonstrate beats using two separate oscillators, amplifiers, and speakers, operating at

nearly, but not exactly, the same frequency. If possible, show the time dependence of the
wave on an oscilloscope. Remark that the sound is like that of a pure note but the intensity
varies periodically. Explain that this technique is used to tune instruments in an orchestra.

B. Remark that you will consider displacement oscillations at a point in space when two
sound waves of the same amplitude and nearly the same frequency are present. Write the
expression for the sum of s1 = sm cos(ω1t) and s2 = sm cos(ω2t), where ω1 ≈ ω2, but the
two frequencies are not exactly equal. Show that s1 + s2 = 2sm cos(ω

It) cos(ωt), where
ωIt = (ω1−ω2)/2 and ω = (ω1+ω2)/2. Remark that because the difference in frequencies
is much smaller than either constituent frequency we can think of the oscillation as having
an angular frequency of ω = (ω1 + ω2)/2 and a time dependent amplitude. Note that the
angular frequency of the amplitude is ωI = |ω1 − ω2|/2 but the angular frequency of the
intensity is ωbeat = |ω1 − ω2|. The latter is the beat angular frequency.

VI. Doppler effect.
A. Explain that the frequency increases when the source is moving toward the listener, de-
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creases when the source is moving away, and that similar effects occur when the listener is
moving toward or away from the source. Use Fig. 17—19 to illustrate the physical basis of
the phenomenon.

B. Derive expressions for the frequency when the source is moving and for the frequency when
the listener is moving. Point out that the velocities are measured relative to the medium
carrying the sound.

C. The effect can be demonstrated by placing an auto speaker and small audio oscillator (or
sonalert type oscillator) on a rotating table. The sonalert can also be secured to a cable
and swung in a circle. Show the effect of a passive reflector by moving a hand-held sonalert
rapidly toward and away from the blackboard.

SUGGESTIONS

1. Assignments
a. The speed of sound is emphasized in problem 3.
b. Ask question 3 and assign problems 17 and 19 in connection with interference.
c. Use problems 22 and 23 to discuss sound intensity and problems 24 and 25 to discuss sound

level. They will help students with the concepts of bel and decibel. Also consider problem
24.

d. Ask questions 4 through 7 and assign problems 36, 42, and 44 when discussing standing
waves.

e. Assign problems 46 and 46 in connection with beats.
f. Use question 10 and problem 59 in a discussion of the Doppler effect. Assign problems 57
and 61. Assign problem 63 in connection with sonic booms.

2. Demonstrations
a. Wavelength and speed of sound in air: Freier and Anderson Sa16, 17, 18, Sh1.
b. Sound not transmitted in a vacuum: Freier and Anderson Sh2.
c. Sources of sound, acoustical resonators: Freier and Anderson Sd3, Se, Sf, Sj6.
d. Harmonics: Freier and Anderson Sj2 – 5
e. Beats: Freier and Anderson Si4 – 6.
f. Doppler shift: Freier and Anderson Si1 – 3.

3. Books and Monographs
a. Resource Letters, Book Four and Resource Letters, Book Five; available from the American

Association of Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—
3845; www.aapt.org). Contains resource letters on sound and acoustics.

b. Musical Acoustics; edited by Thomas D. Rossing; available from the AAPT (see above for
address). Reprints.

4. Audio/Visual
a. Waves and Sound ; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box

2053, Princeton, NJ 08543—2053; www.films.com).
b. Experiments on the Doppler Effect ; VHS video tape, DVD; Films for the Humanities and

Sciences (see above for address).
c. Longitudinal Waves; Longitudinal Standing Waves; from Physics Demonstrations in Sound

& Waves, Part I; VHS video tape, DVD; ≈3 min each; Physics Curriculum & Instruction
(22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

d. Nature of Sound Waves; Propagation of Sound ; Transmission of Sound ; Refraction of
Sound ; Interference of Sound ; diffraction of Sound ; Doppler Effect ; from Physics Demon-
strations in Sound & Waves, Part II; VHS video tape, DVD; ≈3 min each; Physics Cur-
riculum & Instruction (see above for address).
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e. Standing Sound Waves; Standing Sound Waves in Two Dimensions; Resonance/Real
Time; Superposition Principle; from Physics Demonstrations in Sound & Waves, Part
III; VHS video tape, DVD; ≈3 min each; Physics Curriculum & Instruction (see above for
address).

5. Computer Software
a. Waves from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum

& Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).
Simulated experiments with analysis. Some sections deal with beats and the Doppler shift.

b. Vibrations, Waves, and Sound from Exploration of Physics Volume II; Windows and Mac-
intosh; Physics Curriculum & Instruction (see above for address). Includes sections on
standing waves in organ pipes. the Doppler effect, and sonic booms.

c. Physics Demonstrations. See Chapter 2 SUGGESTIONS.

6. Computer Projects
A spreadsheet or computer program can be used to add waves. Have students use it to
investigate interference effects and beats.

7. Laboratory
a. Meiners Experiment 12—2: Velocity of Sound in Air and Bernard Experiment 23: Velocity

of Sound in Air – Resonance-Tube Method. Resonance of an air column is obtained by
holding a tuning fork of known frequency at the open end of a tube with one closed end.
The length of the column is changed by adjusting the amount of water in the tube. The
wavelength and speed of sound are found.

b. Meiners Experiment 12—3: Velocity of Sound in Metals and Bernard Experiment 24: Ve-
locity of Sound in a Metal – Kundt’s-Tube Method. A Kundt’s tube is used to find the
frequency of sound excited in a rod with its midpoint clamped and its ends free. The
wavelength is known to be twice the rod length and λf is used to find the speed of sound.
In another experiment, a transducer and oscilloscope are used to time a sound pulse as it
travels the length of a rod and returns.

c. Meiners Experiment 12—4: Investigation of Longitudinal Waves. The amplitude and phase
of a sound wave are investigated as functions of distance from a speaker source. To do
this, Lissajous figures are generated on an oscilloscope screen by the source signal and the
signal picked up by a microphone. To eliminate noise, the speaker and microphone should
be in a large sound-proof enclosure with absorbing walls. Use Meiners Experiment 10—10
to familiarize students with the oscilloscope and Lissajous figures.

d. Probeware Activity 15: Superposition. Two sinusoidal sound waves with the same fre-
quency are generated and the individual and superposed pressure waves are plotted on the
computer monitor. The frequency and relative phase can be adjusted. Another part of the
activity demonstrates the interference of four sound waves.

e. Probeware Activity 16: Interference – Beats. Two sound waves with slightly different
frequencies are generated. The individual and superposed pressure waves are shown on the
computer monitor. The frequencies can be adjusted. The beat frequency is measured and
the value compared with the theoretical value.

Chapter 18 TEMPERATURE, HEAT,

AND THE FIRST LAW OF THERMODYNAMICS

BASIC TOPICS

I. The zeroth law of thermodynamics.
A. Explain that if two bodies, not in thermal equilibrium, are allowed to exchange energy
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then they will do so and one or more of their macroscopic properties will change. When no
further changes take place, the bodies are in thermal equilibrium. Explain that two bodies
in thermal equilibrium are said to have the same temperature.

B. For gases, the properties of interest include pressure, volume, internal energy, and the
quantity of matter. Other properties may be included for other materials. The quantity
of matter may be given as the number of particles or as the number of moles.

C. Explain what is meant by diathermal and adiabatic walls and remark that diathermal walls
are used to obtain thermal contact without an exchange of particles. Adiabatic walls are
used to thermally isolate a system.

D. State the zeroth law: if body A and body B are each in thermal equilibrium with body C,
then A is in thermal equilibrium with B. Discuss the significance of the zeroth law. State
that it is the basis for considering the temperature to be a property of an object. If it were
not true, then, at best, an object might have a large number of temperatures, depending
on what other objects were in thermal equilibrium with it.

E. Explain that the temperature of a body is measured by measuring some property of a
thermometer in thermal equilibrium with it. Illustrate by reminding students that the
length of the mercury column in an ordinary household thermometer is a measure of
the temperature. Explain that the zeroth law guarantees that the same temperature,
as measured by the same thermometer, will be obtained for two substances in thermal
equilibrium with each other.

II. Temperature measurements.
A. Mention that the value of the temperature obtained depends on the substance used for the

thermometer and on the property measured but that several techniques exist that allow us
to define temperature independently of the thermometric substance and property.

B. Describe a constant-volume gas thermometer. If one is available, demonstrate its use.
If not, show Fig. 18—5. The gas is placed in thermal contact with the substance whose
temperature is to be measured and the pressure is adjusted so that the volume has some
standard value (for that thermometer). After corrections are made, the temperature is
taken to be proportional to the pressure: T = ap, where a is the constant of proportionality.

C. Describe the triple point of water and explain that water at the triple point is assigned the
temperature T = 273.16 K. Solve for a and show that T = 273.16(p/p3).

D. Point out that thermometers using different gases give different values for the temperature
when used as described. Explain the limit used to obtain the Kelvin temperature. See
Fig. 18—6.

E. Define the Celsius and Fahrenheit scales. Give the relationships between the degree sizes
and the zero points. Give equations for conversion from one scale to another and give the
temperature value for the ice and steam points in each system. Use Fig. 18—7 and Table
18—1.

F. Define the Kelvin scale and explain the kelvin as a unit of temperature. Give the relation-
ship between the Celsius and Kelvin scales. Give the ice and steam points on the Kelvin
scale.

III. Thermal expansion.
A. Describe linear expansion and define the coefficient of linear expansion: α = ∆L/L∆T .

Point out Table 18—2. Obtain a bimetallic strip and use both a bunsen burner and liquid
nitrogen (or dry ice) to show bending. After the students see the strip bend ask which of
the metals has the greater coefficient of linear expansion. Explain that these devices are
often used in thermostats.

B. Discuss area and volume expansion. Consider a plate and show that the coefficient of
area expansion is 2α. Consider a rectangular solid and show that the coefficient of volume
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expansion is 3α. In each case apply the equation for linear expansion to each dimension of
the object and find ∆A or ∆V to first order in ∆T .

C. Explain that the length of a scratch on the flat face of an object increases as the temperature
increases. The area of a hole also increases. Carefully drill a 1/2 inch hole in a piece of
aluminum, roughly 1 14 inch thick. Obtain a 13-mm diameter steel ball bearing and place
it in the hole. It will not pass through. Heat the plate on a bunsen burner and the ball
passes through easily.

D. Demonstrate volume expansion of a gas using a flat bottomed
flask, a bulbed tube, a two hole stopper, and some colored
water. Partially evacuate the bulb so the colored water stands
in the tube somewhat above the stopper. Place your hand on
the bulb to warm the air inside and the water in the tube
drops in response.

IV. Heat.
A. Explain that when thermal contact is made between two bod-

ies at different temperatures, a net flow of energy takes place
from the higher temperature body to the lower temperature
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body. The temperature of the hotter body decreases, the temperature of the cooler body
increases, and the net flow continues until the temperatures are the same. Energy also
flows from warmer to cooler regions of the same body. State that heat is energy that is
transferred because of a temperature difference. Distinguish between heat and internal
energy. Emphasize that the idea of a body having heat content is not meaningful. Also
emphasize that heat is not a new form of energy. The energy transferred may be the
kinetic energy of molecules or the energy in an electromagnetic wave. Examples: a bunsen
burner flame, radiation across a vacuum. State that heat is usually measured in Joules
but calories and British thermal units are also used. 1 kcal = 3.969 Btu = 4187 J. Remark
that the unit used in nutrition, a Calorie (capitalized) is 1 kcal.

B. Remind students of the energy equation studied in Chapter 8. Tell them that for the
systems considered here the center of mass remains at rest (or has a constant velocity)
and changes in potential energy are ignored. Processes considered change only the internal
energy. A new term, however, must be added since the environment can exchange energy as
heat with the system, as well as do macroscopic work on the system. Write ∆Eint = Q−W ,
whereQ is the energy absorbed as heat by the system andW is the work done by the system.

C. Stress the sign convention for heat and work: Q is positive if the system takes in energy,
W is positive if the system does positive work.

D. Stress that heat and work are alternate means of
transferring energy and explain that, for exam-
ple, temperature changes can be brought about
by both heat and mechanical work. To demon-
strate this, connect a brass tube, fitted with a
rubber stopper, to a motor as shown. Make a
wooden brake or clamp that fits tightly around
the tube. Put a few drops of water into the tube,
start the motor, and exert pressure on the tube

.........

..........
....................................................................................................................
..........
.......

.............................................................................

tube

motor

clamp -
brake

with the clamp. Soon the stopper will fly off. Note that mechanical work was done and
steam was produced.

V. Heat capacity.
A. Define the heat capacity of a body as the amount of energy absorbed as heat per degree

of temperature change: for a small temperature change C = Q/∆T . Point out that it
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depends on the temperature and on the constraints imposed during the transfer. The
heat capacity at constant volume is different from the heat capacity at constant pressure
because positive work is done by the system when the temperature is increased at constant
pressure. More energy is therefore required as heat to obtain the same increase in internal
energy and temperature.

B. Point out that the heat capacity depends on the amount of material. Define the specific
heat c and the molar specific heat. Explain they are independent of the amount of material.
Point out Table 18—3. You might use CI to denote a molar specific heat.

C. Do a simple calorimetric calculation (see Sample Problem 18—4). Stress the fundamental
idea: the energy that leaves one body enters another, so the sum of the energies absorbed
by all objects in a closed system vanishes.

D. Explain that energy must be transferred to or from a body when it changes phase (liquid
to gas, etc.). The energy per unit mass is called the heat of transformation or latent heat.
Point out Table 18—4. If time permits, work a calorimetric problem that involves a change
in phase. Consider, for example, dropping ice into warm water and calculate the final
temperature. Work a problem for which all the ice is melted and a problem for which only
part of the ice is melted.

VI. Heat, work, and the first law of thermodynamics.
A. Describe a gas in a cylinder fitted with a piston. Remind students that as the piston moves

the gas volume changes and the gas does work W = p dV on the piston. Explain that
the gas might exchange energy with its environment through both work and heat.

B. Draw a p-V diagram (such as Fig. 18—14) and mark initial and final states, with Vf > Vi.
Explain that p and V are thermodynamic state variables and have definite, well defined
values for a given thermodynamic state. They can be used to specify the state. Point
out there are many paths from the initial to the final state. Define the term “quasi-static
process” and explain that the various paths on the diagram represent quasi-static processes,
for which the system is always infinitesimally close to equilibrium states. Point out that
for different paths p is a different function of V and that the work is different for different
paths. Also explain that the heat is different for different paths. Work and heat are not
thermodynamic state variables.

C. Explain that Q−W is independent of the process. Define the internal energy by ∆Eint =
Q−W and point out that ∆Eint is the same for any two selected states regardless of the
path used to get from one to the other. State that ∆Eint is the change in mechanical
energy (kinetic and potential energy) of all the particles that make up the system. Stress
that the first law ∆Eint = Q−W is an expression of the conservation of energy.

VII. Applications of the first law.
A. Adiabatic process. Explain that Q = 0 and ∆Eint = −W . As an example, consider

a gas in a thermally insulated cylinder and allow the volume to change by moving the
piston. Explain that when the internal energy increases the temperature goes up for most
materials. This can be achieved by compressing the gas. The opposite occurs when the
piston is pulled out. Stress that no heat has been exchanged. Illustrate an adiabatic
process on a p-V diagram.

B. Constant volume process. Explain that W = 0 and ∆Eint = Q. Illustrate on a p-V
diagram.

C. Isobaric process. Explain that W = p(Vf − Vi) for a quasi-static isobaric process. For a
change in phase, show that ∆Eint = mL− p∆V . Illustrate on a p-V diagram.

D. Describe adiabatic free expansion and note that ∆Eint = 0. Explain that this process is
not quasi-static and cannot be shown on a p-V diagram. The end points, however, are well
defined thermodynamic states and are points on a p-V diagram.
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E. Cyclical process. Explain that all state variables return to their original values at the end
of each cycle and, in particular, ∆Eint = 0. Thus, Q = W . Illustrate on a p-V diagram.
For later reference, stress that heat may be absorbed (or rejected) and work done during
a cyclic process.

VIII. Transfer of heat.
A. Explain that steady state heat flow can be obtained if both ends of a slab are held at

different temperatures. Define the thermal conductivity k of the material using Pcond =
−kAdT/dx for a slab of uniform cross section A. Here Pcond is the rate of heat flow.
Emphasize that the negative sign appears because heat flows from hot to cold. Stress that
Pcond and T are constant in time in the steady state. Explain that Pcond = kA(TH−TC)/L
for a uniform bar of length L, with the cold end held at temperature TC and the hot end
held at temperature TH .

B. A demonstration that shows both thermal conductivity and heat capacity can be con-
structed from three rods of the same size, one made of aluminum, one made of iron, and
one made of glass. Use red wax to attach small ball bearings at regular intervals along
each rod. Clamp the rods so that each has one end just over a bunsen burner. The rate
at which the wax melts and the ball bearings drop off is mostly dictated by the thermal
conductivity of the rods, but it is influenced a bit by the specific heats.

C. For a practical discussion, introduce the idea of R value and discuss home insulation.
D. Qualitatively discuss radiation as a means of energy transfer. Place a heating element at

the focal point of one spherical reflector and some matches, stuck in a cork, at the focal
point of the another. Place the reflectors several meters apart and adjust the positions so
that the heater is imaged at the matches. Use a 1 kW or so heater. The matches will ignite
in about a minute.

E. Give Prad = σ6AT 4 for the rate with which a surface with area A at Kelvin temperature
T emits radiative energy. Here σ (= 5.603 × 10−8W/m2 · K4) is the Stefan-Boltzmann
constant and 6 is the emissivity of the surface. Explain that 6 has a value between 0 and
1 and depends on the composition of the surface.

F. Qualitatively discuss convection as a means of heat transfer.

SUGGESTIONS

1. Assignments
a. After discussing gas thermometers assign problems 1 and 3. Temperature scales are covered

in problems 4 and 7.
b. Use question 2 and one or two of problems 8, 12, and 15 to discuss thermal expansion. Use

problem 17 in connection with the ball and hole demonstration.
c. To test the fundamental concepts of heat capacity and heat of transformation assign ques-

tion 3 and some of problems 22 through 41. Some of these problems involve phase changes.
Include one or two of them.

d. Problems 42 and 44 are good tests of understanding of the first law. Also assign questions
5 and 6 and problems such as 42, 43, 45, 48, and 49, which involve the interpretation of
p-V diagrams. Tell students to pay attention to signs.

e. Following the discussion of thermal conductivity, assign problems 51, 53, and 57 in con-
nection with heat conduction.

2. Demonstrations
a. Thermometers: Freier and Anderson Ha1 – 4.
b. Thermal expansion: Freier and Anderson Ha5 – 12.
c. Heat capacity and calorimetry: Freier and Anderson Hb1, 2.
d. Work and heat: Freier and Anderson He1 – 6.
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e. Heat transfer: Freier and Anderson Hc, Hd1 – 7, Hf.
f. p-V relations: Freier and Anderson Hg1 – 3.

3. Books and Monographs
Resource Letters, Book Five; the American Association of Physics Teachers (AAPT, One
Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Contains an exhaustive list
of journal articles on heat and thermodynamics.
Resource Letters, Book Six ; the AAPT (see above for address). Contains a list of journal
articles on heat and thermodynamics.

4. Audio/Visual
Heat and Temperature; Cinema Classics DVD 2: Mechanics (II) and Heat; available from
Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and from the AAPT
(see above for address).

a. Thermodynamics; VHS video tape, DVD (part of a collection); Films for the Humanities
and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

b. Heat and Temperature; VHS video tape; Films for the Humanities and Sciences (see above
for address).

c. Heat ; VHS video tape, DVD; Films for the Humanities and Sciences (see above for address).
d. Heat ; VHS video tape, DVD (part of a collection); Films for the Humanities and Sciences

(see above for address).
e. The Conduction of Heat ; VHS video tape; Films for the Humanities and Sciences (see

above for address).
f. The Convection of Heat ; VHS video tape; Films for the Humanities and Sciences (see above
for address).

5. Computer Software
a. Heat from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum

& Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).
Simulated experiments with analysis. Includes sections on heat, heat conduction, calorime-
try, and the first law of thermodynamics.

b. Thermodynamics Lecture Demonstrations; Kurt Wick and Philip Johnson; Windows; avail-
able from Physics Academic Software (Centennial Campus, 940 Main Campus Drive, Suite
210, Raleigh, NC 27606—5212; www.aip.org/pas). Simulations of ten thermodynamic pro-
cesses, including isochoric, adiabatic, and isothermal processes, the Carnot cycle, and the
Otto and diesel engines. The processes are also diagramed on p-V and T -S diagrams.

6. Laboratory
a. Meiners Experiment 9—3: Linear Expansion and Bernard Experiment 18: Linear Coefficient

of Expansion of Metals. The length of a metal rod is measured at room temperature and
at 100◦C (in a steam jacket), then the data is used to compute the coefficient of thermal
expansion. The experiment can be repeated for several different metals and the results
compared.

b. Probeware Activity 17: Temperature and Heat. Water is heated electrically and the tem-
perature of the water is plotted as a function of time. The energy input for a given
temperature change is computed and the values for two difference amounts of water are
compared.

c. Meiners Experiment 9—1: Calorimetry – Specific Heat and Latent Heat of Fusion. Students
use a calorimeter to find the specific heat of water and a metal sample. They also measure
the latent heat of fusion of ice. Since the specific heat of the stirring rod and the calorimeter
must be taken into account, this is a good exercise in experimental design.

d. Meiners Experiment 9—2: Calorimetry – Mechanical Equivalent of Heat and Bernard
Experiment 30: The Heating Effect of an Electric Current. A calorimeter is used to find
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the relationship between the energy dissipated by a resistive heating element and the
temperature rise of the water in which it is immersed. Students must accept P = i2R for
the power output of the heating element. With slight revision these experiments can also
be used in conjunction with Chapter 27.

e. Bernard Experiment 19: Specific Heat and Temperature of a Hot Body. A calorimeter is
used to obtain the specific heat of metal pellets. In a second part, a calorimeter and a
metal sample with a known specific heat are used to find the temperature of a Bunsen
burner flame.

f. Probeware Activity 18: Specific Heat. A small metal object of known mass, initially at
room temperature, is placed in an ice bath of known mass and its temperature is monitored
as it cools. The specific heat of the object, relative to that of water, is then computed.

g. Bernard Experiment 20: Change of Phase – Heat of Fusion and Heat of Vaporization.
A calorimeter is used to measure the heat of fusion and heat of vaporization of water. If
the lab period is long or writeups are done outside of lab, experiments 19 and 20 may be
combined nicely.

h. Meiners Experiment 9—6: Calorimetry Experiments (with a microprocessor).
i. Meiners Experiment 9—4: Thermal Conductivity. The sample is sandwiched between a
thermal reservoir and a copper block. The rate at which energy passes through the sample is
found by measuring the rate at which the temperature of the copper increases. Temperature
is monitored by means of a thermocouple.

j. Meiners Experiment 9—5: Thermal Conductivity with Microprocessor.

Chapter 19 THE KINETIC THEORY OF GASES

BASIC TOPICS

I. Macroscopic description of an ideal gas.
A. Explain that kinetic theory treats the same type problems as thermodynamics but from

a microscopic viewpoint. It uses averages over the motions of individual particles to find
macroscopic properties. Here it is used to clarify the microscopic basis of pressure and
temperature.

B. Define the mole. Define Avogadro’s number NA and give its value, 6.02 × 1023mol−1.
Explain the relationships between the mass of a molecule, the mass of the sample, the
molar mass, the number of moles, the number of molecules, and Avogadro’s number.
These often confuse students.

C. Write down the ideal gas equation of state in the form pV = nRT and in the form pV =
NkT . Here N is the number of molecules and n is the number of moles. Give the values of
R and k and state that k = R/NA. Explain that for real gases at low density pV/T is nearly
constant. Point out that the equation of state connects the thermodynamic variables n (or
N), p, V , and T . Draw some ideal gas isotherms on a p-V diagram.

D. To show how the equation of state is used in thermodynamic calculations, go over Sample
Problem 19—1. Also consider a problem in which the pressure and volume of an ideal gas
are changed. Calculate the change in temperature.

E. Derive expressions for the work done by an ideal gas during an isothermal process and
during an isobaric process.

II. Kinetic theory calculations of pressure and temperature.
A. Go over the assumptions of kinetic theory for an ideal gas. Consider a gas of molecules

with only translational degrees of freedom. Assume the molecules are small and are free
except for collisions of negligible duration. Also assume collisions with other molecules and
with walls of the container are elastic. At the walls the molecules are specularly reflected.
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B. Discuss a gas in a cubic container and explain that the pressure at the walls is due to the
force of molecules as they bounce off. By considering the change in momentum at the wall
per unit time, show that the pressure is given by p = nMv2rms/3V , where M is the molar
mass. Define the rms speed. Use Table 20—1 to give some numerical examples of v2rms and
calculate the corresponding pressure. For many students, the rms value of a quantity needs
clarification. Consider a system of five or so molecules and select numerical values for their
speeds, then calculate v2rms numerically.

C. Substitute p = nMv2rms/3V into the ideal gas equation of state and show that vrms =
3RT/M . Remark that this equation can be used to calculate the rms speed for a par-

ticular (ideal) gas at a given temperature.
D. Rearrange the equation for the rms speed to obtain 1

2
Mv2rms =

3
2
RT and useM/m = NA to

show this can be written 1
2mv

2
rms =

3
2kT , where m is the mass of a molecule. Remark that

the left side is the mean kinetic energy of the molecules and point out that the temperature
is proportional to the mean kinetic energy.

III. Internal energy and equipartition of energy.
A. Explain that the internal energy of a monatomic ideal gas is the sum of the kinetic energies

of the molecules and write Eint =
1
2
Nmv2rms =

3
2
NkT = 3

2
nRT , where N is the number of

molecules and n is the number of moles. Stress that for an ideal gas the internal energy
is a function of temperature alone, not the pressure and volume individually. This is an
approximation for a real gas. Emphasize that the velocities used in computing the internal
kinetic energy are measured relative to the center of mass and that the internal energy
does not include the kinetic energy associated with motion of the system as a whole.

B. Point out that if adiabatic work W is done on the gas the internal energy increases by W
and the temperature increases by ∆T = 2W/3nR.

C. Point out that the expression obtained above for ∆T agrees closely with experimental
values for monatomic gases but gives values that are too high for gases of diatomic and
polyatomic molecules. Draw diagrams of these types of molecules and explain that they
have two and three degrees of rotational freedom, respectively. Some of the energy goes
into motions other than the translational motion of the molecules. Define the term degree
of freedom and show how to count the number for monatomic, diatomic, and polyatomic
molecules.

D. State the equipartition theorem: in thermal equilibrium the energy is distributed equally
among all degrees of freedom, with each receiving 1

2
kT for each molecule. Point out that

this agrees with the previous result for monatomic gases: there are three degrees of freedom
per molecule and an energy of 12kT is associated with each.

E. Discuss diatomic molecules and explain there are two new degrees of freedom, both rota-
tional in nature. Show that Eint =

5
2nRT =

5
2NkT . Explain that

3
2nRT is in the form of

translational kinetic energy and nRT is in the form of rotational kinetic energy.
F. Discuss polyatomic molecules. State that there are now three rotational degrees of freedom

and show that Eint = 3nRT = 3NkT . Explain that
3
2nRT is in the form of translational

kinetic energy and 3
2nRT is in the form of rotational kinetic energy.

G. Explain that vibrational motions may also contribute to the internal energy and that, since
a vibration has both kinetic and potential energy, there are two degrees of freedom and
energy kT associated with each vibrational mode. Explain that, in fact, for most materials
vibrational modes generally do not contribute to the internal energy except at extremely
high temperatures. Quantum mechanics is required to explain why vibrational modes are
frozen out.
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IV. Heat capacities of ideal gases.
A. Use equations previously derived for ∆Eint to obtain expressions for the molar specific

heat at constant volume CV . Point out the different results for monatomic, diatomic, and
polyatomic molecules. Remark that CV is used to denote molar specific heats in this and
the next chapter. The symbol is not used for heat capacity as it was in the last chapter.

B. Show that the molar specific heat at constant pressure is related to the molar specific
heat at constant volume by Cp = Cv + R and derive the formulas for Cp for monatomic,
diatomic, and polyatomic ideal gases.

C. For each type ideal gas, obtain the value for the ratio of molar specific heats γ = Cp/Cv.
Point out these values are independent of T .

D. Derive pV γ = constant for an ideal gas undergoing an adiabatic quasi-static process. Also
derive the expression W = −(pfVf − piVi)/(γ − 1) for the work done by the gas during
an adiabatic change of state. Draw an ideal gas adiabat on a p-V diagram. Suppose the
initial pressure and volume and the final volume are given. Show how to calculate the final
pressure and temperature.

SUPPLEMENTARY TOPICS

1. Mean free path. This topic emphasizes the collisions of molecules and adds depth to the kinetic
theory discussion but it is not crucial to subsequent chapters. Discuss as much as time allows.

2. Distribution of molecular speeds. This section deals with the Maxwell distribution and provides
a deeper understanding of average speed and root-mean-square speed. Include it if you intend
to cover thermonuclear fusion later in the course.

SUGGESTIONS

1. Assignments
a. Assign a problem, such as 3, that is a straightforward application of the ideal gas law

. Then, assign problems that show how the law is used to compute changes in various
quantities when the gas changes state: 5 and 6, for example.

b. Problem 13 provides an illustration of the work done by an ideal gas and problem 12
provides an example of heat exchange during a cycle. Also consider questions 1, 2, AND
3.

c. Problems 14 and 15 deal with real-life applications. If possible, assign one or both. You
may wish to discuss mixtures of gases and partial pressures; if so, consider problem 9.

d. Use problem 21 in a discussion of the kinetic basis of pressure. Also assign problem 19.
e. Assign problem 23 when you deal with the kinetic basis of temperature and the relationship

between kinetic energy and temperature.
f. After discussing the various specific heats, ask questions 5, 7, and 8 and assign problem
44. Assign problem 46 to emphasize the dependence of the heat capacity on the process.

g. Consider using problem 54 to discuss adiabatic processes.

2. Demonstrations
Kinetic theory models: Freier and Anderson Hh1, 2, 4, 5.

3. Audio/Visual
a. Boyle’s Law , Equipartition of Energy , Maxwellian Speed Distribution, Random Walk and

Brownian Motion, Diffusion, Gas Diffusion Rates; from the AAPT collection 2 of single-
concept films; DVD; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768,
www.ztek.com).

b. Gas Laws; from Cinema Classics DVD 2: Mechanics (II) and Heat; available from Ztek Co.
(see above for address) and from the American Association of Physics Teachers (AAPT,
One Physics Ellipse, College Park MD 20740—3845; www.aapt.org).
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4. Computer Software
a. Thermodynamics Lecture Demonstrations. See Chapter 18 SUGGESTIONS.
b. Heat from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum

& Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).
Simulated experiments with analysis. Includes a section on ideal gases.

c. Thermodynamics from Exploration of Physics Volume II; Windows and Macintosh; Physics
Curriculum & Instruction (see above for address). Includes sections on the ideal gas law,
the molecular basis of internal energy, and the distribution of molecular speeds.

5. Laboratory
a. Probeware Activity 19: Ideal Gas Law. Temperature and pressure sensors are used to

verify the ideal gas law.
b. Bernard Experiment 17: Pressure and Volume Relations for a Gas. The volume of gas in a

tube is adjusted by changing the amount of mercury in the tube and a U-tube manometer is
used to measure pressure. A logarithmic plot is used to determine the relationship between
pressure and volume.

c. Meiners Experiment 9—8: Kinetic Theory Model. The Fisher kinetic theory apparatus,
consisting of a large piston-fitted tube of small plastic balls, is used to investigate relation-
ships between pressure, temperature, and volume for a gas. A variable-speed impeller at
the base allows changes in the average kinetic energy of the balls; the piston can be loaded
to change the pressure. A variety of experiments can be performed.

Chapter 20 ENTROPY AND THE SECOND LAW

OF THERMODYNAMICS

BASIC TOPICS

I. Entropy.
A. Distinguish between reversible and irreversible processes. Remark that reversible processes

are quasi-static but not all quasi-static processes are reversible (i.e. quasi-static processes
involving friction). Also mention that for a gas the path of a reversible process can be
plotted on a p-V diagram. As examples consider reversible and irreversible compressions
of an ideal gas.

B. Define the entropy difference between two infinitesimally close equilibrium states as dS =
dQ/T and between any two equilibrium states as ∆S = dQ/T . Explain that the integral
is independent of path and that S is therefore a thermodynamic state function. Stress
that a reversible path must be used to evaluate the integral but that entropy differences
are defined regardless of whether the actual process is reversible or irreversible. The end
points must be equilibrium states, however.

C. Derive expressions for the change in entropy for an ideal gas undergoing processes at
constant volume (nCV ln(Tf/Ti)), constant pressure (nCp ln(Tf/Ti)), and constant tem-
perature (nR ln(Vf/Vi)).

D. Consider the adiabatic free expansion of an ideal gas. Point out that the process is ir-
reversible, Q = 0, and ∆Eint = 0. Since the gas is ideal, Tf = Ti. Find the change
in entropy by evaluating dQ/T over a reversible isotherm through the initial and final
states. Point out that the isothermal path does not represent the actual process. Show
that ∆S = nR ln(Vf/Vi) and state this is positive.

E. Consider two identical rigid containers of ideal gas, at different temperatures, TH and
TL. Place them in contact in an adiabatic enclosure. Show they reach equilibrium at
temperature Tm = (TH +TL)/2. Then, consider a reversible, constant volume process that
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connects the initial and final states and show that ∆S = CV ln(T
2
m/THTL). Remark that

this is positive.

II. The second law of thermodynamics.
A. State the second law: for processes that proceed from an initial equilibrium state to a final

equilibrium state the total entropy of a closed system (or a system and its environment)
does not decrease. State that if the process is reversible the total entropy does not change
and if the process is irreversible it increases. Point out that the previous two examples are
consistent with this statement.

B. Stress that the entropy change of the environment must be included. The entropy of a
system can decrease but if it does the entropy of its environment increases by at least as
much.

C. Remark that for reversible processes the total entropy of the system and its environment
does not change because, for the combination of system and environment, the process is
adiabatic and dQ = 0 for each segment of the reversible path. On the other hand, entropy
increases for an adiabatic irreversible process.

III. Engines and refrigerators.
A. Discuss heat engines and refrigerators in general, from the point of view of the first law

only. Explain that they run in cycles and that an engine absorbs energy as heat at a
high temperature, rejects energy as heat at a low temperature, and does work. Describe
a refrigerator in similar terms. Define the efficiency of an engine and the coefficient of
performance of a refrigerator. Remark that heat engines and refrigerators may be reversible
or irreversible.

B. Remind students that a cycle is a process for which the system starts and ends in the same
equilibrium state and that ∆Eint = 0, ∆p = 0, ∆T = 0, ∆V = 0, and ∆S = 0 for a cycle.

C. As an example, consider a gas undergoing a reversible cycle consisting of two isothermal
processes at different temperatures and linked by two adiabatic processes (a Carnot cycle).
Illustrate with a p-V diagram. Mention that, when run as a heat engine, energy enters the
gas as heat during the isothermal expansion that energy leaves the gas as heat during the
isothermal compression.

D. Over a cycle the change in the entropy of the working substance is zero, the change in
the entropy of the high-temperature reservoir is −QH/TH , and the change in entropy
of the low temperature reservoir is −QL/TL. Thus, the change in the total entropy of
the system and its environment is ∆S = −(QL/TL) − (QH/TH). Since the process is
reversible this must be zero. So QL/QH = −TL/TH and the efficiency of the engine is
E =W/QH = (QH +QL)/QH = 1− (TL/TH). You may prefer to write these equations in
terms of the absolute magnitudes of the quantities involved.

E. Remark that the efficiency is independent of the working substance. Also say that the sec-
ond law of thermodynamics leads to the same expression for the efficiency of any reversible
engine operating between those temperatures. The efficiencies of real engines, which are
of necessity irreversible, are less.

F. Show that the second law forbids an engine with zero heat output. In particular, observe
that the total entropy of the engine and reservoirs decreases if |QL| < |QH |TL/TH and
that this violates the second law.

G. Say that if the process is irreversible the total entropy must increase, so |QL|/TL >
|QH |/TH and the efficiency must be less than the ideal efficiency. Remark that no en-
gine operating between two given temperatures can be more efficient than a reversible
engine.

H. Carry out a similar analysis for an ideal refrigerator. Show that the coefficient of perfor-
mance is given by K = TL/(TH −TL), independently of the working substance. State that
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all reversible refrigerators have the same coefficient of performance and that irreversible
refrigerators have lower coefficients for the same reservoirs. Use an entropy argument to
show that the second law forbids a refrigerator that operates with no work input.

IV. The statistical basis of entropy.
A. Explain that for any system composed of many molecules, there are many possible ar-

rangements of the molecules. Illustrate by considering a small collection of molecules in a
box. Say that each possible arrangement is called a microstate and that microstates can
be grouped into configurations such that all the microstates in a given configuration are
macroscopically equivalent. That is, the system has the same macroscopic properties. Use
the molecules in the box to illustrate two equivalent and two non-equivalent microstates.
State that the number of microstates associated with a configuration is called the multi-
plicity of the configuration.

B. Say that the fundamental assumption of statistical mechanics is that the system has the
same probability of being in any microstate consistent with its macroscopic properties.
Thus, the most likely configuration is the one with the largest multiplicity.

C. Show that if there are N molecules in the box, with nR in the right half and nL in the left
half, the multiplicity is W = N !/(nR!)(nL!).

D. Say that the entropy of a system when it has a given configuration is given by S = k lnW ,
where W is the multiplicity of the configuration and k is the Boltzmann constant.

E. Use the statistical definition of entropy to show that the entropy changes by ∆S = nR ln 2
when the volume available to the molecules in the box is suddenly doubled. You will need
to use Stirling’s approximation (lnN ! ≈ N lnN −N).

SUGGESTIONS

1. Assignments
a. To start students thinking about entropy changes as they occur in common processes, ask a

few of the questions in the group 1 through 5. Assign problems 1, 4, 5, and 14. To include
entropy changes in calorimetry experiments, ask problems 7, 9, and 16. Also consider
problem 17.

b. Use questions 8 and 9 to discuss real and ideal engines. Problems 27, 29, and 32 cover the
fundamentals of cycles.

c. Consider practical engines and their efficiencies by approximating their operation by re-
versible cycles. For a gasoline engine, TH ≈ 1000◦F and TL ≈ 400◦F. Compare actual
efficiencies with the ideal efficiency. Actual efficiencies can be obtained by considering the
fuel energy available and the work actually obtained.

d. Consider practical refrigerators. Look in a catalog for typical values of the coefficient of
performance and compare with the ideal coefficient of performance. Also consider question
10 and assign some of problems 36, 38, 41, and 42.

e. Ask question 11 in connection with the statistical interpretation of entropy.

2. Demonstrations
Engines: Freier and Anderson Hm5, Hn.

3. Audio/Visual
Entropy ; from Physics Demonstrations in Heat, Part III; VHS video tape, DVD; ≈3 min;
Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www
.PhysicsCurriculum.com).

4. Computer Software
a. Thermodynamics from Exploration of Physics Volume II; Windows and Macintosh; Physics

Curriculum & Instruction Physics Curriculum & Instruction (see above for address). In-
cludes sections on entropy and the second law of thermodynamics.
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b. Thermodynamics Lecture Demonstrations. See Chapter 18 SUGGESTIONS.
c. Physics Simulation Programs. See Chapter 16 SUGGESTIONS.

Chapter 21 ELECTRIC CHARGE

BASIC TOPICS

I. Charge.
A. Explain that there are two kinds of charge, called positive and negative, and that particles

with like charges repel each other, particles with unlike charges attract each other. Give
the SI unit (coulomb) and explain that it is defined in terms of current, to be discussed
later. Optional: explain that current is the flow of charged particles and is measured in
amperes. One coulomb of charge passes a cross section each second in a wire carrying a
steady current of 1A.

B. Carry out the following sequence of demonstrations. They work best in dry weather.
1. Suspend a pith ball by a string. Charge a rubber rod by rubbing it with fur, then

hold the rod near the pith ball. The ball is attracted, touches the rod, then flies away
after a short time. Use the rod to push the ball around without touching it. Explain
that the rod and ball carry the same type charge. Hold the fur near the pith ball and
explain that they are oppositely charged.

2. Repeat using a second pith ball and a wooden rod charged by rubbing it on a plastic
sheet (this replaces the traditional glass rod — silk combination and works much better).
Place the two pith balls near each other and explain that they are oppositely charged.

3. Suspend a charged rubber rod by a string. Use another charged rubber rod to push
it around without touching it. Similarly, pull it with the charged wooden rod. Also
show that only the rubbed end of the rubber rod is charged.

II. Conductors and insulators.
A. Explain the difference between a conductor and an insulator as far as the conduction

of charge is concerned. Explain that excess charge on a conductor is free to move and
generally does so when influenced by the electric force of other charges. Excess charge
on a conductor is distributed so the net force on any of it is zero. Any excess charge on
an insulator does not move far from the place where it is deposited. Remind students
of the demonstration that showed that only the rubbed end of the rubber rod remains
charged. Metals are conductors. The rubber rod is an insulator. Mention semiconductors
and superconductors.

B. Use an electroscope to demonstrate the conducting properties of conductors. Charge the
electroscope by contact with a charged rubber rod and explain why the leaves diverge. Dis-
charge it by touching the top with your hand. Explain why the leaves converge. Recharge
the electroscope with a charged wooden rod, then bring the charged rubber rod near the
electroscope, but do not let it touch. Note the decrease in deflection and explain this by
pointing out the attraction of the charged particles on the rod for the charged particles on
the leaves. Throughout, emphasize the motion of the charged particles through the metal
leaves and stem of the electroscope.

C. Demonstrate charging by induction. Bring a charged rubber rod near to but not touching
an uncharged electroscope. Touch your finger to the electroscope, then remove it. Remove
the rubber rod and note the deflection of the leaves. Bring the rubber rod near again
and note the decrease in deflection. Observe that the electroscope and rod are oppositely
charged. Confirm this with the wooden rod. Explain the process.
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III. Coulomb’s law.
A. Assert that experimental evidence convinces us that there are only two kinds of charge

and that the force between a pair of charged particles is along the line joining them, has
magnitude proportional to the product of the magnitudes of the charges, and is inversely
proportional to the square of the distance between them. Further, the force is attractive
for particles with unlike charges and repulsive for particles with like charges.

B. Write down Coulomb’s law for the magnitude of the electric force exerted by one point
charged particle on another. Give the SI value for 60 and for 1/4π60. Stress that the law
holds for point charged particles. Note in detail that the mathematical form of the law
contains all the qualitative features discussed previously in connection with gravitation. If
Chapter 13 was covered, point out the similarity with Newton’s law of gravity and mention
that, unlike charge, there is no negative mass.

C. Explain that a superposition law holds for electric forces and illustrate by finding the
resultant force on a charged particle due to two other charged particles. Use the analogy
with Newton’s law of gravity to show that the force of one spherical distribution of charge
on another obeys the same law as two point charged particles and that the force on a
charged particle inside a uniformly charged spherical shell is zero. If Chapter 13 was not
covered, simply state the shell theorems.

IV. Quantization and conservation of charge.
A. State that all measured charge is an integer multiple of the charge on a proton: q = ne.

Give the value of e: 1.60 × 10−19 C. State that the charge on the proton is +e, the charge
on the electron is −e, and the neutron is neutral.

B. Remark that macroscopic objects are normally neutral; they have the same number of
protons as electrons. Stress that the word “neutral” describes the algebraic sum of the
charges and does not indicate the absence of charged particles. Remark that when an
object is charged, the charge imbalance is usually slight but significant.

C. State that charge is conserved in the sense that for a closed system the sum of all charges
before an event or process is the same as the sum after the event or process. Stress that
the charges in the sum must have appropriate signs. Example: rubbing a rubber rod with
fur. The rod and fur are oppositely charged afterwards and the magnitude of the charge is
the same on both. Also discuss the conservation of charge in the annihilation and creation
of fundamental particles and note that the identity of the particles may change in an event
but charge is still conserved. Examples: beta decay, electron-positron annihilation.

SUGGESTIONS

1. Assignments
a. Discuss question 10, perhaps in connection with demonstrations or lab experiments. Also

see problems 4 and 9.
b. Use questions 3 and 4 to test for understanding of the direction of an electrical force and

the superposition of forces. Problems 8 and 13 deal with the addition of electric forces
in one dimension and problems 6 and 15 deal with the addition of electric forces in two
dimensions.

c. Ask question 1 in connection with the shell theorems.

2. Demonstrations
a. Charging, electroscopes: Freier and Anderson Ea1, 2, 11.
b. Electric force: Freier and Anderson Ea5, 6, 8, 12, 15, 17, Eb3, 4, 9, 10, 12, Ec4 – 6.
c. Induction: Freier and Anderson Ea12, 13, 14.
d. Touch a grounded wire to several places within a small area of a wall. Rub a balloon with

fur and place it in contact with that area. Ask students to explain why the balloon sticks.
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3. Books and Monographs
Teaching about Electrostatics; by Robert A. Morse; available from the American Asso-
ciation of Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845;
www.aapt.org). Describes reliable and inexpensive apparatus for demonstrations and stu-
dent activities.

4. Audio/Visual
a. Electrostatics; Cinema Classics DVD 4: Waves (II) & Electricity and Magnetism ; available

Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and from the AAPT
(see above for address).

b. Electricity ; VHS video tape; Films for the Humanities and Sciences (PO Box 2053, Prince-
ton, NJ 08543—2053; www.films.com). Contains sections on conductors and insulators,
charging and discharging, charging by induction, electrical currents, electric potential dif-
ference, and resistance.

c. Electricity and Magnetism; interactive CD-ROM; Films for the Humanities and Sciences
(PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

d. Understanding Electricity ; VHS video tape, DVD; Films for the Humanities and Sciences
(see above for address).

e. Electrostatics; Isolation of Charges; from Physics Demonstrations in Electricity and Mag-
netism, Part I; VHS video tape, DVD; ≈3 min each; Physics Curriculum & Instruction
(22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

5. Computer Software
a. Electricity and Magnetism from Exploration of Physics Volume I; Windows and Macintosh;

Physics Curriculum & Instruction (see above for address). Simulated experiments with
analysis. Includes a section on Coulomb’s law.

b. Electricity and Magnetism from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on pith ball
experiments and electroscopes.

c. Electricity and Magnetism from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on velocity
and acceleration graphs and on free fall, with and without air resistance.
Electric Field Hockey ; Ruth W. Chabay; Windows, Macintosh; available from Physics
Academic Software, North Carolina State University, PO Box 8202, Raleigh, NC 27690—
0739. The user tries to score a goal by placing stationary charged particles so they guide
a charged puck around obstacles and into the net. The force on the puck can be shown as
the puck moves.

6. Laboratory
Meiners Experiment 10—2: The Electrostatic Balance. A coulomb torsional balance is used
to find the functional relationship between the electrostatic force of one small charged ball
on another and the separation of balls. An electrostatic generator is used to charge the
balls.

Chapter 22 ELECTRIC FIELDS

BASIC TOPICS

I. The electric field.
A. Use a fluid to introduce the idea of a field. The temperature of the fluid T (x, y, z, t) is an

example of a scalar field and the velocity nv(x, y, z, t) is an example of a vector field. Point
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out that these functions give the temperature and velocity at the place and time specified
by the dependent variables.

B. Explain that charged particles may be thought to create an electric field at all points
in space and that the field exerts a force on another charged particle, if present. The
important questions to be answered are: Given the charge distribution, what is the field?
Given the field, what is the force on a charged particle?

C. Consider two point charged particles and remark that each creates a field and that the
field of either one exerts a force on the other. Explain that the two together produce a
field that is the superposition of the individual fields and that this field exerts a force on
a third charged particle, if present.

D. Define the field at any point as the force per unit charge on a positive test charge at the
point, in the limit of a vanishingly small test charge. Mention that the limiting process
eliminates the influence of the test charge on the charged particles creating the field. SI
units: N/C.

E. Use Coulomb’s law to obtain the expression for the field of a point charged particle. Explain
that the field of a collection of charged particles is the vector sum of the individual fields.

II. Electric field lines.
A. Explain that field lines are useful for visualizing the field. Draw field lines for a point

charged particle and explain that, in general, the field at any point is tangent to the line
through that point and that the magnitude of the field is proportional to the number of
lines per unit area that pass through a surface perpendicular to the lines.

B. By considering a sphere around a point charged particle and calculating the number of
lines per unit area through the sphere, show that the 1/r2 law allows us to associate lines
with a charged particle and to take the number of lines to be proportional to the charge.
Explain that lines can be thought of as directed and that they originate at positively
charged particles and terminate at negatively charged particles. Emphasize that they are
not vectors.

C. Show Figs. 22-2, 22-3, 22-4, and 22-5 or similar diagrams that illustrate the field lines of
some charge distributions.

D. Field lines can be illustrated by floating some long seeds in trans-
former oil in a shallow, flat-bottomed dish. Place two metal
plates in the dish and connect them to an electrostatic gener-
ator. The seeds line up along the field lines. You can place
the apparatus on an overhead projector and shadow project the
seeds.

............................

...................................................................................................................................................................

....................................................................... ...................
.........
.......
.......
.

seeds

III. Calculation of the electric field.
A. Remind the students of the expression for the field of a point charged particle. State that

the field is radially outward for a positively charged particle and radially inward for a
negatively charged particle. Also remind them that the total field is the vector sum of the
individual fields of the charged particles being considered.

B. Derive an expression for the field of an electric dipole by considering the field of two
particles with charge of equal magnitudes and opposite signs. Consider a field point on a
line perpendicular to the dipole moment, on a line along the dipole moment, or a general
point. Evaluate the expression in the limit of vanishingly small separation and finite dipole
moment. Define the dipole moment and stress that it points from the negative toward the
positively charged particle. Point out that the field is proportional to 1/r3 for points far
from the dipole.

C. Consider a small set of discrete charged particles and calculate the electric field by evalu-
ating the vector sum of the individual fields. Example: the field at the center of a square
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with various charged particles on its corners.

D. As an introduction to the fields of continuous charge distributions, go over the ideas of
linear and area charge densities. Graphically show how a line of charge is divided into
infinitesimal segments and point out that a segment of length ds contains charge dq = λds.
Explain that for purposes of calculating the field each segment can be treated as a point
charged particle and that the fields of all segments are summed vectorially to find the total
field.

E. Derive an expression for the field on the axis of a continuous ring of charge. Carefully
explain how the integral is set up and how the vector nature of the field is taken into
account by dealing with components. Explain in detail the symmetry argument used to
show that the field is along the axis.

F. Extend the calculation to find an expression for the field on the axis of a charged disk and
for an infinite sheet of charge. Remark that the field of a sheet is perpendicular to the
sheet and is independent of distance from the sheet. This will be useful later when parallel
plate capacitors are studied.

IV. Motion of a charged particle in an electric field.

A. Point out that the electric force on a charged particle is qnE and explain that the electric field
used is that due to all other charged particles (except q). Substitute the force into Newton’s
second law and remind the students that once the acceleration and initial conditions are
known, kinematics can be used to find the subsequent motion of the charged particle.

B. Find the trajectory of a charged particle moving into a region of uniform field, perpendicular
to its initial velocity. Compare to projectile motion problems studied in Chapter 4. See
Sample Problem 22-5.

C. Show that the force on a dipole in a uniform field is zero and that the torque is np× nE. Also
show that the potential energy of a dipole is −np · nE. Emphasize that the potential energy
minimum occurs when the dipole moment is aligned with the field. To review oscillatory
rotational motion calculate the angular frequency of small angle oscillations for a dipole
with rotational inertia I in a uniform electric field. Assume no other forces act.

SUGGESTIONS

1. Assignments

a. Center a qualitative discussion of electric field lines on question 1. Have students sketch
field lines for various charge distributions. See problems 1, 3, and 8.

b. Ask questions 2, 3, 4, and 5 and have students work some of problems 6, 8, 9, 11, and 12.
These deal with the superposition of fields.

c. Problems 18 and 19 are good tests of understanding of the derivation of the dipole field.

d. Assign problems 24 and 25 in support of the calculation of the field of a ring of charge.
Assign problems 27 and 29 to give students practice in deriving expressions for the field of
a continuous charge distribution.

e. Ask question 9 and assign problem 31 to support the discussion of the field of a uniformly
charged disk.

f. Assign problem 40 to help students with the motion of point charged particles in fields.
Assign questions 10 and 11 and problems 50 ( torque) and 53 (energy) in connection with
the discussion of a dipole in a field.

g. To include the Millikan oil drop experiment, assign problem 42.

2. Demonstrations

Electric field lines: Freier and Anderson Eb1, Ec2 – 4.
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3. Audio/Visual
a. Electrostatic Induction; The Van de Graaff Generator ; Field as a Vector ; from the AAPT

collection 2 of single-concept films; DVD; available from Ztek Co. (PO Box 11768, Lex-
ington, KY 40577—1768, www.ztek.com).

b. Electric Fields; Physics Demonstrations in Electricity and Magnetism, Part II; VHS video
tape, DVD; ≈3 min; from Physics Curriculum & Instruction (22585 Woodhill Drive,
Lakeville, MN 55044; www.PhysicsCurriculum.com).

4. Computer Software
a. Electricity and Magnetism from Exploration of Physics Volume I; Windows and Mac-

intosh; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com). Simulated experiments with analysis. Includes a section
on electric fields.

b. Electricity and Magnetism from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on electric field
lines and the trajectory of a charged particle in an electric field.

c. Electric Field Plotter ; Windows; Bob Nelson; available from Physics Academic Soft-
ware (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212;
www.aip.org/pas). Draws electric field lines and equipotential lines. Students can place
up to nine charged particles anywhere on the screen. The program also searches for points
where the electric field vanishes.

d. EM Field ; David Trowbridge; Windows, Macintosh; available from Physics Academic Soft-
ware (see above for address) and the American Association of Physics Teachers (AAPT,
One Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Plots electric field
lines and equipotential surfaces of point and line charges, set up by the user. The electric
field vectors can be shown. Plots magnetic field lines of user-selected current distributions.
Users can draw Gaussian surfaces or Amperian paths. The program gives the flux through
the surface or the contribution to nB · dns. When the surface or line is closed the program
gives the charge or current enclosed. A game asks the user to find hidden charge or current.

e. Virtual E-Field Lab; Gregory Marlow; Windows; available from Physics Academic Software
(see above for address). Shows field and equipotential lines for continuous charge distri-
butions as well as point charged particles. Gives numerical values of the electric potential
and field at the position of the curser.

f. Motion in Electromagnetic Fields; WhistleSoft, Inc.; Windows; available from Physics
Academic Software (see above for address). Interactive tutorial with real-life examples,
chiefly from scientific research.

g. Electric Field Hockey ; Windows; available from Physics Academic Software and from the
AAPT (see above for addresses).

h. Dynamic Analyzer . See Chapter 2 SUGGESTIONS.
i. Forces. See Chapter 5 SUGGESTIONS.

5. Computer Projects
a. Have students use a commercial math program or write their own programs to calculate

the electric fields of discrete charge distributions. Have them use the programs to plot the
magnitude of the field at various distances from a dipole, along lines that are perpendicular
and parallel to the dipole moment.

b. Have students write programs to trace field lines for discrete charge distributions.
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Chapter 23 GAUSS’ LAW

BASIC TOPICS

I. Electric flux.
A. Start by discussing some of the important concepts in a general way. Define a vector

surface element. Define the flux of a vector field through a surface. Distinguish between
open and closed surfaces and explain that for the latter the surface normal is taken to be
outward. Interpret the surface integral for the flux as a sum over surface elements. If you
covered Chapter 14, use the velocity field of a fluid as an example.

B. Define electric flux. Point out that it is the normal component of the field that enters. Also
point out that the sign of the contribution of any surface element depends on the choice
for the direction of d nA.

C. Interpret electric flux as a quantity that is proportional to the net number of field lines
penetrating the surface. Remind students that the number of lines through a small area
perpendicular to the field is taken to be proportional to the magnitude of the field. By
considering surfaces with the same area but different orientations, show that the net number
of penetrating lines is proportional to the cosine of the angle between the field and the
normal to the surface. Conclude that nE ·d nA is proportional to the number of lines through
d nA.

D. Stress that lines roughly in the same direction as the normal contribute positively to the
flux, lines roughly in the opposite direction contribute negatively, and lines that pass
completely through a volume do not contribute to the flux through its boundary. Point
out that zero flux through a surface does not imply zero field at points on the surface.

E. As an example, calculate the flux through each side of a cube in a uniform electric field.
Also consider Sample Problem 23—2, which deals with a nonuniform field.

II. Gauss’ law.
A. Write down the law. Stress that the surface is closed and that the charge appearing in

the law is the net charge enclosed. Interpret the law as a statement that the number of
(signed) lines crossing the surface is proportional to the net charge inside, and make the
statement plausible by reminding students that the field of each charge is proportional to
the charge and its direction depends on the sign of the charge.

B. Illustrate by considering the surface of a sphere with positively charged particles inside, with
negatively charged particles inside, with both positively and negatively charged particles
inside, and with charged particles outside. In each case draw representative field lines
with the number of lines proportional to the net charge. Stress that the position of the
charged particles inside is irrelevant for the flux through the surface. Also use Gauss’ law
to calculate the flux.

C. Use Gauss’ law and symmetry arguments to obtain an expression for the electric field of a
point charged particle.

III. Gauss’ law and conductors.
A. Argue that the electrostatic field vanishes inside a conductor and use Gauss’ law to show

that there can be no net charge at interior points under static conditions. Point out that
exterior charged particles and charged particles on the surface separately produce fields in
the interior but that the resultant field vanishes. For contrast, point out that an insulator
may have charge distributed throughout.

B. Demonstrate that any excess charge on a conductor resides on the exterior surface. Use a
hollow metal sphere with a small hole cut in it. As an alternative, solder shut the top of
an empty metal can and drill a small hole in it. This will not work as well because of the
sharp edges. Charge a rubber rod by rubbing it with fur and touch it to the inside of the
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sphere, being careful not to touch the edge of the hole. Repeat several times to build up
charge. Now scrape at the interior with a metal transfer rod, again being careful not to
touch the edge of the hole. Touch the transfer rod to an uncharged electroscope and note
the lack of deflection. Scrape the exterior of the sphere with the transfer rod and touch
the electroscope. Note the deflection.

C. Show how to calculate the charge on the inner and outer surfaces of neutral and charged
conducting spherical shells when charge is placed in the cavities. See Sample Problem
23—4. Also see Checkpoint 4.

D. Use Gauss’ law to show that the magnitude of the field just outside a charged conductor
is given by E = σ/60, where σ is the surface charge density.

IV. Applications of Gauss’ law.
A. Derive expressions for the electric field at various points for a uniformly charged sphere and

for a uniformly charged thick spherical shell. Remark that such distributions are possible
if the sphere or shell is not conducting. Carefully give the symmetry argument to show
the field is radial and has the same magnitude at all points on a concentric sphere.

B. Derive an expression for the electric field at a point outside an infinite sheet with a uniform
charge distribution. Contrast with the field outside an infinite conducting sheet with the
same area charge density on one surface. Point out that for the conductor the field is not
due only to the charge on the surface being considered. Another field must be present to
produce a net field of zero in the interior and this doubles the field in the exterior.

C. Consider a point charged particle at the center of a neutral spherical conducting shell and
derive expressions for the electric field in the various regions. Repeat for a charged shell.

D. Work one problem with cylindrical symmetry. For example, consider charge distributed
uniformly throughout a cylinder and find the field in all regions.

E. Note that Gauss’ law can be used to find nE only if there is adequate symmetry.

SUGGESTIONS

1. Assignments
a. Use questions 1, 4, 6, and 7 to help students understand the flux integral and charge that

appear in Gauss’ law. Use problems 1 and 2 to introduce electric flux. The latter problem
also demonstrates the vanishing of the total flux for a closed surface in a uniform field.

b. Problem 5 illustrates the fundamental idea of Gauss’ law. Problems 4 and 13 are also
instructive.

c. Use questions 8 and 9 and problem 19 to discuss the electrostatic properties of conductors.
d. Assign a variety of problems dealing with applications: 29 (cylinder of charge); 32, 38, and

41 (plane of charge); 45 and 49 (sphere of charge). Assign problem 47 or 51 to challenge
good students.

2. Demonstrations
Charges on conductors: Freier and Anderson Ea7, 18, 23, Eb7.

3. Audio/Visual
Charge Distribution – Faraday Ice Pail Experiment ; from the AAPT collection 2 of single-
concept films; video tape; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—
1768, www.ztek.com).

4. Computer Software
EM Field . See Chapter 22 SUGGESTIONS.

5. Computer Project
Have students use a commercial math program or their own programs to evaluate the flux
integral in Gauss’ law. Have them separately calculate the flux through each face of a cube
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containing a point charged particle. Consider various positions of the particle within the
cube to show that the flux through individual faces may change as the particle changes
position but the total flux remains the same and obeys Gauss’ law. Repeat for a point
charged particle outside the cube.

Chapter 24 ELECTRIC POTENTIAL

BASIC TOPICS

I. Electric potential.

A. Define the potential difference of two points as the negative of the work per unit charge
done by the electric field when a positive test charge moves from one point to the other.
Stress the sign of the potential: the potential of the end point is higher than that of the
initial point if the work is negative. The electric field points from regions of high potential
toward regions of low potential and positively charged particles tend to be repelled from
regions of high potential. The region near an isolated positively charged particle has a
higher potential than regions far away. The opposite is true for a negatively charged
particle. Unit: volt. Define electron volt as a unit of energy.

B. If you covered Chapter 14, use the similarity of Coulomb’s law and Newton’s law of gravity
to argue that the electrostatic force is conservative and that the work is independent of
path. If you did not cover Chapter 14, either derive or state these results.

C. Show that the definition is equivalent to Vb − Va = − nE · dns, where the integral is along
a path from a to b. Point out that the potential is constant in regions of zero field. Note
that the unit N/C is the same as V/m and the latter is a more common unit for nE.

D. Point out that the potential is a scalar and that only potential differences are physically
meaningful. One point can be chosen arbitrarily to have zero potential and the potential
at other points is measured relative to the potential there. Often the potential is chosen to
be zero where the field (or force) is zero. For a finite distribution of charge, the potential
is usually chosen to be zero at a point far away (infinity). Show a voltmeter and remark
that the meter reads the potential difference between the leads.

E. Show that the potential a distance r from an isolated point charged particle is given by
V = q/4π60r. Remark that this is the potential energy per unit test charge of a system
consisting of the point particle with charge q and the test charge. Explain that the equation
is valid for both positively and negatively charged particles. Show how to calculate the
potential due to a collection of point charged particles. Derive the expression for the
potential of an electric dipole.

F. Give some examples of calculations of the potential from the electric field. Start with a
uniform electric field, like that outside a uniform plane distribution of charge, and show
that potential is given by −Ex+C, where C is a constant. Since the distribution is infinite
the point at infinity cannot be picked as the zero of potential.

F. As a more complicated example, consider one of the configurations discussed in the last
chapter, a point charged particle at the center of a spherical conducting shell, say. Take
the potential to be zero at infinity and compute its value at points outside the outer
surface, within the shell, and inside the inner surface. As an alternative you might find
expressions for the potential in various regions around and inside a nonconducting sphere
with a uniform charge distribution.

G. Write down the integral expressions for the potential due to a line of charge and for a
surface of charge, in terms of the linear and area charge densities. Work an example, such
as the potential of a uniform finite line of charge or a uniform disk of charge.
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II. Equipotential surfaces.
A. Define the term equipotential surface. Show diagrams of equipotential surfaces for an

isolated point charged particle and for the region between two uniformly charged plates.
Equipotential surfaces of a dipole are shown in Fig. 24—3(c).

B. Point out that the field does zero work if a test charge is carried between two points on
the same equipotential surface and note that this means that the force, and hence nE, is
perpendicular to the equipotential surfaces. Note further that the work done by the field
when a charged particle is carried from any point on one surface to any point on another
is the product of the charge and the negative of the potential difference.

III. Calculation of nE from V .
A. Remind students that ∆V = −E∆x for a uniform field in the positive x direction. Note

that E has the form −∆V/∆x and nE is directed from high to low potential. Use this result

to reenforce the idea of an equipotential surface and the fact that nE is perpendicular to
equipotential surfaces.

B. Generalize the result to E = −dV/ds, where s is the distance along a normal to an
equipotential surface. Then specialize this to Ex = −∂V/∂x, Ey = −∂V/∂y, and Ez =
−∂V/∂z. Verify that the prescription works for a point charged particle and for a dipole.

IV. Electrostatic potential energy.
A. Remark that when a particle with charge Q moves from point a to point b the potential

energy of the system changes by Q(Vb − Va), where V is the potential due to the other
charged particles. When a particle with charge Q is brought into position from infinity
(where the potential is zero), the potential energy changes by QV , where V is the potential
at the final position of Q due to charged particles already in place.

B. Show that the potential energy of two point charged particles is given by q1q2/4π60r, where
r is their separation and the zero of potential energy is taken to be infinite separation. Point
out that the potential energy is positive if the charges on the particles have like signs and
negative if they have opposite signs. Explain that the potential energy decreases if particles
with charge of the same sign move apart or if two particles with charges of opposite sign
move closer together.

C. Remind students that potential energy can be converted to kinetic energy. Explain what
happens if the particles used in the last example are released from their positions. Consider
a proton fired directly at a heavy nucleus with charge Ze and find the distance of closest
approach in terms of the initial speed.

D. Calculate the potential energy of a simple system: charged particles at the corners of a
triangle or square, for example. Assume the particles are brought in from infinity one at a
time and sum the potential energies. Explain that the total is the sum over particle pairs.
Show how to calculate the potential energy of any collection of point charged particles.

E. Explain that the potential energy of a system of charged particles is the work an agent
must do to assemble the system from rest at infinite separation. This is the negative of
the work done by the field.

V. An isolated conductor.
A. Recall that the electric field vanishes at points in the interior of a conductor. Argue that

the surface must be an equipotential surface and that V at all points inside must have the
same value as on the surface. State that this is true if the conductor is charged or not and
if an external field exists or not.

B. Consider two spherical shells of different radii, far apart and connected by a very fine wire.
Explain that V1 = V2 and show that q1/R1 = q2/R2. Then show that the surface charge
density varies inversely with the radius: σ1/σ2 = R2/R1. Recall that E is proportional to
σ just outside a conductor and argue that σ and E are large near places of small radius of
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curvature and small near places of large radius of curvature. Use an electrostatic generator
to show discharge from a sharp point and from a rounded (larger radius) ball. Discuss the
function of lightning rods and explain their shape.

SUGGESTIONS

1. Assignments
a. Questions 1, 2, 3, 4, and 6 can be used to help students think about some qualitative

aspects of electric potential.
b. Use question 5 and problem 3 to test for understanding of equipotential surfaces.
c. Ask students to calculate potential differences for various situations: see problems 5, 7, 15,

19, and 28.
d. Use questions 9 and 10 and problems 37 and 41 in connection with the discussion of

electrostatic potential energy and the work done by an electric field or an external agent.
Also assign some conservation of energy problems, such as 43 and 45.

e. Assign one or two of problems 53, 56, and 58 to aid in a discussion of the field and potential
of a conductor.

2. Demonstrations
Electrostatic generators: Freier and Anderson Ea22, Ec1.

3. Audio/Visual
Electrical Energy ; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box
2053, Princeton, NJ 08543—2053; www.films.com).

4. Computer Software
a. Electric Field Plotter See Chapter 22 SUGGESTIONS.
b. EM Field . See Chapter 22 SUGGESTIONS.

5. Computer Project
Have students use a commercial math program or their own root finding programs to plot
equipotential surfaces for a discrete charge distribution. It is instructive to consider two
particles with unequal charges (any combination of signs).

6. Laboratory
Meiners Experiment 10—1: Electric Fields and Bernard Experiment 25: Mapping of Electric
Fields. Students map equipotential lines on sheets of high resistance paper with metallic
electrodes at two sides. In the Meiners experiment an audio oscillator generates the field
and an oscilloscope or null detecting probe is used to find points of equal potential. If
students are not familiar with oscilloscopes, you might want to preface this experiment
with Part A of Meiners Experiment 10—10. In the Bernard experiment the field is generated
by a battery and a galvanometer is used as a probe.

Chapter 25 CAPACITANCE

BASIC TOPICS

I. Capacitance.
A. Describe a generalized capacitor. Draw a diagram showing two separated, isolated con-

ductors. Assume they carry charge q and −q, respectively, draw representative field lines,
and point out that all field lines start on one conductor and terminate on the other. Ex-
plain that there is a potential difference V between the conductors and that the positively
charged conductor is at the higher potential. Define capacitance as C = q/V . Explain
that V is proportional to q and that C is independent of q and V . C does depend on the
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shapes, relative positions, and orientations of the conductors and on the medium between
them. Unit: 1 farad = 1C/V.

B. Show a radio tuning capacitor and some commercial fixed capacitors. Mention that one
usually encounters µF and pF capacitors. Capacitors on the order of 1 F have been devel-
oped for the electronics industry.

C. Remark that in circuit drawings a capacitor is denoted by .
D. State that a battery can be used to charge a capacitor. The battery transfers charged

particles from one plate to the other until the potential difference of the plates is the same
as the terminal potential difference of the battery. Calculate the charge, given the battery
potential difference and the capacitance.

E. In a general way, give the steps required to calculate capacitance: put charge q on one
conductor, −q on the other, and calculate the electric field due to the charge, then cal-
culate the potential difference V between the conductors, and finally use q = CV to find
the capacitance. Except for highly symmetric situations, the charge is not uniformly dis-
tributed over the surfaces of the conductors and fairly sophisticated means must be used
to calculate V . The text deals with symmetric situations for which Gauss’ law can be used
to calculate the electric field.

F. Examples: derive expressions for the capacitance of two parallel plates (neglect fringing)
and two coaxial cylinders or two concentric spherical shells. Use Gauss’ law to find the
electric field, then evaluate the integral for the potential difference. Emphasize that the
field is due to the charged particles on the plates.

G. Large demonstration parallel plate capacitors with variable plate separations are available
commercially. You can also make one using two ≈ 1-ft diameter circular plates of 1/8 inch
aluminum sheeting. Attach an aluminum disk to the center of each with a hole drilled for
a support rod. Use an insulating rod on one and a metal rod on the other. By sliding
the two conductors closer together, you can show the effect of changing d while holding q
constant. An electroscope serves as a voltmeter.

H. Explain how the equivalent capacitance of a device can be measured. Consider a black box
with two terminals. State that a potential difference V is applied and the total charge q
deposited is measured. The capacitance is q/V .

I. Derive 1/Ceq = 1/C1 +1/C2 for the equivalent capacitance of two capacitors in series and
Ceq = C1+C2 for the equivalent capacitance of two capacitors in parallel. Emphasize that
two capacitors in parallel have the same potential difference and that two in series have
the same charge. Explain the usefulness of these equations for circuit analysis.

II. Energy storage.
A. Derive the expression W = 1

2q
2/C for the work required to charge a capacitor. Explain

that, as an increment of charge is transferred, work is done by an external agent (a battery,
for example) against the electric field of the charged particles already on the plates. Show
that this expression is equivalent to W = 1

2CV
2. Interpret the result as the potential

energy stored in the charge system and explain that it can be recovered when the capacitor
is discharged.

B. Remark that if two capacitors are in parallel the larger stores the greater energy. If two
capacitors are in series, the smaller stores the greater energy.

C. Show that the energy density in a parallel plate capacitor is 1260E
2. State that this result

is quite general and that its volume integral gives the work required to assemble charged
particles to create the electric field E. Explain that the energy may be thought to reside
in the field or it may be considered to be the potential energy of the charged particles.

D. Integrate the energy density to find an expression for the energy stored in the electric field
of a charged spherical capacitor or a charged cylindrical capacitor. Compare the result
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with 1
2q
2/C.

III. Dielectrics.
A. Explain that when the region between the conductors of a capacitor is occupied by insulat-

ing material the capacitance is multiplied by a factor κ > 1, called the dielectric constant
of the material. Remark that κ = 1 for a vacuum.

B. Use a large commercial or homemade capacitor to show the effect of a dielectric. Charge
the capacitor, then isolate it and insert a glass plate between the plates. The electroscope
shows that V decreases and, since q is fixed, the capacitance increases.

C. Calculate the change in stored energy that occurs when a dielectric slab is inserted between
the plates of an isolated parallel plate capacitor (see Sample Problem 25—6). Also calculate
the change in stored energy when the slab is inserted while the potential difference is
maintained by a battery. Explain that the battery now does work in moving charged
particles from one plate to the other.

D. Explain that dielectric material between the plates becomes polarized, with the positively
charged ends of the dipoles attracted toward the negative conductor. The field of the
dipoles opposes the external field, so the electric field is weaker between the plates than it
would be if the material were not there. This reduces the potential difference between the
conductors for a given charge on them. Since the potential difference is less for the same
charge on the plates, the capacitance is greater.

E. Explain that if the polarization is uniform, the material behaves like neutral material with
charge on its surfaces.

F. Optional: Show how Gauss’ law can be written in terms of κnE and the free charge. Show
how to compute the polarization charge for a parallel plate capacitor with dielectric material
between its plates.

SUGGESTIONS

1. Assignments
a. Use question 1 to emphasize the dependence of capacitance on geometry.
b. The fundamental idea of capacitance is illustrated by problem 2. Assign problem 6 to have

students compare spherical and plane capacitors. Problem 4 covers the dependence of the
capacitance of a parallel plane capacitor on area and separation.

c. Include some of questions 5 through 9 in the discussion of series and parallel connections
of capacitors. Problems 8 and 10 cover equivalent capacitance, charge, and potential
difference for series and parallel combinations. Also consider assigning some problems in
which students must find the equivalent capacitance of more complicated combinations.
See problems 7 and 9, for example. Problem 23 is more challenging.

d. Problem 26 covers most of the important points discussed in connection with energy stor-
age. Also assign problem 31, which deals with the energy needed to separate the plates of
a parallel plate capacitor, and problem 32, which deals with the energy density around a
charged metal sphere.

e. Include question 11 in the discussion of the influence of a dielectric on capacitance. Assign
problems 36 and 40.

f. To test understanding of induced polarization charge, assign problem 45 or 47.

2. Demonstrations
a. Charge storage: Freier and Anderson Eb8, Ed3, 7.
b. Capacitance and voltage: Freier and Anderson Ed1.
c. Energy storage: Freier and Anderson Ed8
d. Dielectrics: Freier and Anderson Ed2, 4.
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3. Audio/Video

a. Magnetic Fields; VHS video tape; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com).

4. Computer Software

a. Electricity and Magnetism from Exploration of Physics Volume I; Windows and Mac-
intosh; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com). Simulated experiments with analysis. Includes a section
on capacitors.

5. Laboratory

a. Meiners Experiment 10—7 (Part B): Measuring Capacitance with a Ballistic Galvanometer.
A ballistic galvanometer is used to measure the capacitance of individual capacitors and
capacitors in series and parallel. Students must temporarily accept on faith that the
deflection of the galvanometer is proportional to the total charge that passes through it.

b. Meiners Experiment 11—2 (Part C): Coulomb Balance Attachment (to the current balance).
Students use gravitational force to balance the force of one capacitor plate on the other.
The voltage and plate separation are used to find the charge on the plates, then 60 is
calculated.

Chapter 26 CURRENT AND RESISTANCE

BASIC TOPICS

I. Current and current density.

A. Explain that an electric current is moving charged particles. Draw a diagram of a long
straight wire with positively charged particles moving in it. Consider a cross section and
state that the current is dq/dt if charge dq passes the cross section in time dt. Give
the sign convention: both positively charged particles moving to the right and negatively
charged particles moving to the left constitute currents to the right. Early on, use the
words “conventional current” quite often. Later “conventional” can be dropped. Some
high school courses now take the current to be in the direction of electron flow and it is
worthwhile making the effort to reduce confusion in students’ minds. Unit: 1 ampere =
1C/s.

B. Explain that under steady state conditions, in which no charge is building up or being
depleted anywhere in the wire, the current is the same for every cross section. Remark
that current is a scalar, but arrows are used to show the direction of positive charge flow.

C. Explain that current is produced when charged particles are free to move in an electric
field. For most materials, it is the negative electrons that move and their motion is opposite
to the direction of the electric field. Current is taken to be in the direction opposite to
that of electron drift, in the direction of the field.

D. Distinguish between the drift velocity and the velocities of individual charged particles.
Note that the drift velocity of electrons in an ordinary wire is zero unless an electric field
is turned on. Also note that the drift speed is many orders of magnitude smaller than the
average electron speed.

E. Explain that current density is a microscopic quantity used to describe current flow at a
point. Use the same diagram but now consider a small part of the cross section and state
that J = i/A in the limit as the area diminishes to a point. State that current density is
a vector in the direction of the drift velocity for positively charged particles and opposite
the drift velocity for negatively charged particles. Explain that i = nJ · d nA is the current
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through a finite surface, where d nA is normal to the surface. This reduces to J = i/A for
uniform current density and an area that is perpendicular to the current. Unit: A/m2.

F. Derive nJ = ennvd and show how to calculate the drift speed from the free-electron concen-
tration and current in the wire, assuming uniform current density. You may want to go
over the calculation of the free-electron concentration from the mass density of the sample
and the molar masses of its constituents.

II. Resistance and resistivity.
A. Define resistance by R = V/i and point out that R may depend on V . Unit: 1 ohm =

1V/A; abbreviation: Ω. Also define resistivity ρ and conductivity σ. Point out Table 26—1.
Explain that the latter quantities are characteristic of the material while resistance also
depends on the sample shape and the positions of the current leads.

B. Make a sketch similar to the one shown here. Indicate that
Va − Vb = iR is algebraically correct, even if i is negative,
and effectively defines the resistance of the sample with the
leads connected at a and b. Emphasize that the point at
which the current enters is iR higher in potential than the
point at which it leaves.
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C. Show that R = ρL/A for a conductor with uniform cross section A and length L, carrying
a current that is uniformly distributed over the cross section.

D. Point out that for many samples the current is proportional to the potential difference
and the resistance is independent of the voltage applied. These materials are said to obey
Ohm’s law. Also point out that many important materials do not obey Ohm’s law. Show
Fig. 26—12.

E. Use a variable-voltage power supply and connect, in turn, samples of ohmic (carbon resis-
tor) and non-ohmic (solid state diode) material across the terminals. Use analog meters
to display the current and potential difference and vary the supply smoothly and fairly
rapidly. For the ohmic material, it will be apparent that i is proportional to V , while for
the non-ohmic material, it will be apparent that i is not proportional to V .

F. Give a qualitative description of the mechanism that leads to Ohm’s law behavior. Explain
that collisions with atoms cause the drift velocity to be proportional to the applied field.
Assume the electrons have zero velocity after each collision and that they accelerate for a
time τ between collisions. Show that an electron goes the same distance on the average
during the first five collisions as it does during the second five so the drift velocity is
proportional to the field even though the electron accelerates between collisions. Now
consider the quantitative aspects: derive the expression for the drift velocity in terms of nE
and the mean free time τ , then derive ρ = m/ne2τ . Emphasize that the mean free time is
determined by the electron speed and, since drift is an extremely small part of the speed, τ
is essentially independent of the electric field. Point out that a long mean free time means
a small resistivity because the electrons accelerate for a longer time between collisions and
thus have a higher drift speed.

G. Remark that the resistivity of a sample depends on the temperature. Define the tempera-
ture coefficient of resistivity and point out the values given in Table 26—1.

III. Energy considerations.
A. Point out that when current flows from the high to the low potential side of any device,

energy is transferred from the current to the device at the rate P = iV . Reproduce Fig. 26—
14 and note that P = i(Va − Vb) is algebraically correct if P is the power supplied to the
device. Note that if P is negative the device is supplying energy at the rate −P .

B. Give examples: Energy may be converted to mechanical energy (a motor), to chemical
energy (a charging battery), or to internal energy (a resistor). Also note the converse:
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mechanical energy (a generator), chemical energy (a discharging battery), and internal
energy (a thermocouple) may be converted to electrical energy.

C. Explain that in a resistor the electrical potential energy of the free electrons is converted
to kinetic energy as the electric field does work on them and that the kinetic energy is lost
to atoms in collisions. This increases the thermal motion of the atoms. Show that the rate
of energy loss in a resistor is given by P = i2R = V 2/R.

SUPPLEMENTARY TOPICS

1. Semiconductors

2. Superconductors

Both topics are important for modern physics and technology. Say a few words about them if you
have time or encourage students to read about them on their own.

SUGGESTIONS

1. Assignments
a. Discuss question 2 to emphasize the sign convention for current.
b. Use questions 5 and 6 in a discussion of current density, resistivity, and drift velocity.

Definitions are covered in problems 1 (current), 5 (current density), and 6 (drift speed).
c. Use questions 3 and 5 when you discuss the calculation of resistance. Assign problems 18,

21, and 22. For a greater challenge assign problem 33.
d. As part of the coverage of energy dissipation by a resistor, assign problems 37 and 41.

2. Demonstrations
a. Model of resistance: Freier and Anderson Eg1.
b. Thermal dissipation by resistors: Freier and Anderson Eh3.
c. Fuses: Freier and Anderson Eh5.
d. Ohm’s law: Freier and Anderson Eg2, Eo1.
e. Measurement of resistance, values of resistance: Freier and Anderson Eg3, 6.
f. Temperature dependence of resistance: Freier and Anderson Eg4, 5.

3. Audio/Visual
a. Electric Currents; from Cinema Classics DVD 4: Waves (II) & Electricity and Magnetism;

available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and
from the American Association of Physics Teachers (AAPT, One Physics Ellipse, College
Park MD 20740—3845; www.aapt.org).

b. Electric Current ; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box
2053, Princeton, NJ 08543—2053; www.films.com).

c. Temperature and Resistance; from Physics Demonstrations in Electricity and Magnetism,
Part II; VHS video tape, DVD; ≈3 min; Physics Curriculum & Instruction (22585 Woodhill
Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

4. Laboratory
a. Probeware Activity 20: Ohm’s Law. Voltage and current probes, connected to a computer,

are used to plot the current versus the potential difference for several resistors and a diode.
b. Meiners Experiment 10—3: Electrical Resistance. An ammeter and voltmeter are used to

find the resistance of a light bulb and wires of various dimensions, made of various materials.
The dependence of resistance on length and cross section is investigated. Resistivities of
the substances are calculated and compared.

c. Bernard Experiment 29: A Study of the Factors Affecting Resistance. A Wheatstone bridge
and a collection of wire resistors are used to investigate the dependence of resistance on
length, cross section, temperature, and resistivity.
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d. Meiners Experiment 10—8: Temperature Coefficient of Resistors and Thermistors. A
Wheatstone bridge is used to measure the resistances of a resistor and thermistor in a
water-filled thermal reservoir. The temperature is changed by an immersion heater. Stu-
dents see two different behaviors. A voltmeter-ammeter technique can replace the bridge
if desired.

e. Also see Meiners Experiment 9—2 and Bernard Experiment 30, described in the Chapter 20
notes. These experiments can be revised to emphasize the power dissipated by a resistor.
In several runs the students measure the power dissipated for different applied voltages.

Chapter 27 CIRCUITS

BASIC TOPICS

I. Emf devices.
A. Explain that an emf device moves positive charged particles inside from its negative to its

positive terminal or negatively charged particles in the opposite direction and maintains
the potential difference between its terminals. Emf devices are used to drive currents in
circuits. Example: a battery is an emf device with an internal resistance. Note the symbol
used in circuit diagrams to represent an ideal emf device (no internal resistance).

B. Explain that a direction is associated with an emf and that it is from the negative to the
positive terminal, inside the device. This is the direction current would flow if the device
acted alone in a completed circuit. Point out that when current flows in this direction the
device does positive work on the charged particles and define the emf of an ideal device as
the work per unit positive charge: E = dW/dq. Also point out that the positive terminal
of an ideal device is E higher in potential than the negative terminal, regardless of the
direction of the current. Unit: volt.

C. Point out that the rate at which energy is supplied by an ideal device is iE . State that
for a battery the energy comes from a store of chemical energy. Mention that a battery is
charging if the current and emf are in opposite directions.

II. Single loop circuits.
A. Consider a circuit containing a single ideal emf and a single resistor. Use energy consider-

ations to derive the steady state loop equation (Kirchhoff’s loop rule): equate the power
supplied by the emf to the power loss in the resistor.

B. Derive the loop equation by picking a point on the circuit, selecting the potential to be zero
there, then traversing the circuit and writing down expressions for the potential at points
between the elements until the zero potential point is reached again. Tell the students that
if the current is not known a direction must be chosen for it and used to determine the
sign of the potential difference across the resistor. When the circuit equation is solved for
i, a negative result will be obtained if the current is actually opposite in direction to the
arrow. As you carry out the derivation remind students that current enters a resistor at
the high potential end and that the positive terminal of an emf is at a higher potential
than the negative terminal.

C. Consider slightly more complicated single loop circuits. Include the internal resistance of
the battery and solve for the current. Place two batteries in the circuit, one charging and
the other discharging. Once the current is found, calculate the power gained or lost in each
element.

D. For the circuits considered, show how to calculate the potential difference between two
points on the circuit and point out that the answer is independent of the path used for the
calculation. Explain the difference between the closed and open circuit potential difference
across a battery.
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III. Multiloop circuits.

A. Explain Kirchhoff’s junction rule for steady state current flow. State that it follows from
the conservation of charge and the fact that charge does not build up anywhere when the
steady state is reached.

B. Using an example of a two-loop circuit, go over the steps used to write down the loop and
junction equations and to solve for the currents. Explain that if the current directions are
unknown an arbitrary choice must be made in order to write the equations and that if the
wrong choice is made, the values obtained for the current will be negative.

C. Warn students not to write duplicate junction equations. Define a branch and state that
different symbols must be used for currents in different branches. State that the total
number of equations will be the same as the number of branches, that the number of
independent junction equations equals one less than the number of junctions, and that the
remaining equations are loop equations. Also state that each current must appear in at
least one loop equation.

D. Derive expressions for the equivalent resistance of two resistors in series and in parallel.
Contrast with the expressions for the equivalent capacitance of two capacitors in series
and in parallel. Show how to calculate potential differences across resistors in series and
currents in resistors in parallel. Show how series and parallel combinations can sometimes
be used to solve complicated circuits. Mention that not all circuits can be considered
combinations of series and parallel connections.

E. State that the current is the same in all resistors of a series combination and the potential
difference is the same for all resistors of a parallel combination.

IV. RC circuits.

A. Consider a series circuit consisting of an emf device, a resistor, a capacitor, and a switch.
Suppose the switch is closed at time t = 0 with the capacitor uncharged. Use the loop
rule and i = dq/dt to show that R(dq/dt) + (q/C) = E . By direct substitution, show
that q(t) = CE [1 − e−t/RC ] satisfies this equation and yields q = 0 for t = 0. Also find
expressions for the potential differences across the capacitor and across the resistor. Plot
the expressions for q and i. Show that q = CE for times long compared to RC. State that
i = dq/dt only if the current arrow is into the positive plate of the capacitor. If it is into
the negative plate, then i = −dq/dt.

B. Explain that τ = RC is called the time constant for the circuit and that it is indicative of
the time required to charge the capacitor. If RC is large, the capacitor takes a long time
to charge. Show that q/CE ≈ 0.63 when t = τ for a charging capacitor.

C. Show that the current is given by i(t) = (E/R)e−t/RC . Point out that i = E/R for t = 0 and
that the potential difference across the capacitor is zero at that time because the capacitor
is uncharged. Thus the potential difference across the resistor is E . Also point out that
the current tends toward zero for times that are long compared to τ . Then, the potential
difference across the resistor is zero and the potential difference across the capacitor is E .

D. Derive the loop equation for a series circuit consisting of a capacitor and resistor. Suppose
the capacitor has charge q0 at time t = 0 and show that q = q0e

−t/RC . Again find
expressions for the potential differences across the capacitor and resistor. Plot q and i.
Point out that RC is indicative of the time for discharge. Show that q/q0 ≈ 0.37 when
t− τ for a discharging capacitor.

E. Write the expression for the energy initially stored in the capacitor: U = 1
2q
2
0/C. Evaluate∞

0
i2Rdt to find the energy dissipated in the resistor as the capacitor discharges. Show

that these energies are the same.
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SUPPLEMENTARY TOPIC

Electrical measuring instruments (voltmeters and ammeters). This material can be covered as
needed in conjunction with the laboratory.

SUGGESTIONS

1. Assignments
a. Problem 2 covers the fundamental idea of emf. Use problems 7 and 14 to discuss the

distinction between the emf and terminal potential difference of a battery.
b. Assign some single-loop problems, such as 5.
c. Discuss some of questions 2, 3, 4, 5, 7, and 9 in connection with parallel and series combi-

nations of resistors. Assign problems 11, 15, and 29.
d. Assign some problems dealing with multiloop circuits. Consider problems 19, 20, 32, and

33.
e. Assign problem 39 if voltmeters and ammeters are discussed in lecture or lab. Also consider

problems 41 and 42.

2. Demonstrations
a. Seats of emf: Freier and Anderson Ee2, 3, 4.
b. Measurement of emf: Freier and Anderson Eg7.
c. Resistive circuits: Freier and Anderson Eh1, 2, 4, Eo2 – 8.

3. Computer Software
a. DC Circuits; Windows; Miky Ronen, Matzi Eliahu, and Igal Yastrubinezky; available

from Physics Academic Software (Centennial Campus, 940 Main Campus Drive, Suite 210,
Raleigh, NC 27606—5212; www.aip.org/pas). Circuit elements can be put together to form
circuits, values of the parameters can be selected, and the circuits can then be analyzed.

b. Electricity and Magnetism from Exploration of Physics Volume I; Windows and Mac-
intosh; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com). Simulated experiments with analysis. Includes sections on
resistive circuits and RC circuits.

c. Electricity and Magnetism from Exploration of Physics Volume II; Windows and Macintosh;
Physics Curriculum & Instruction (see above for address). Includes sections on electric
circuits, Ohm’s law, parallel and series connects of resistors.

4. Computer Projects
A computer can easily be programmed to solve simultaneous linear equations. Have stu-
dents use such a program to solve multiloop circuit problems.

5. Laboratory
a. Probeware Activity 21: Resistance in Series and Probeware Activity 22: Resistance in Par-

allel. Voltage and current probes, connected to a computer, are used to find the equivalent
resistance of several resistors in series and in parallel.

b. Meiners Experiment 10—7 (Part A): Measuring Current with a d’Arsonval Galvanometer.
Students determine the characteristics and sensitivity of a galvanometer. To expand this
lab, ask the students to design an ammeter and a voltmeter with full scale deflections
prescribed by you. Students practice circuit analysis while trying to understand design
considerations.

c. Meiners Experiment 10—9: The EMF of a Solar Cell. Students study a slide wire poten-
tiometer and use it to measure the emf of a solar cell. This is another experiment that
gives them practice in circuit analysis.

d. Bernard Experiment 28: Measurements of Potential Difference with a Potentiometer. Stu-
dents study a slide wire potentiometer and use it to investigate the emf and terminal
voltage of a battery and the workings of a voltage divider.
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e. Bernard Experiment 26: A Study of Series and Parallel Electric Circuits. Students use am-
meters and voltmeters to verify Kirchhoff’s laws and investigate energy balance for various
circuits. They also experimentally determine equivalent resistances of resistors in series and
parallel. This experiment can be extended somewhat by having them consider a network of
resistors that cannot be reduced by applying the rules for series and parallel resistors. Also
see Bernard Experiment 27: Methods of Measuring Resistance. Two voltmeter-ammeter
methods and a Wheatstone bridge method are used to measure resistance and to check the
equivalent resistance of series and parallel connections.

f. Bernard Experiment 31: Circuits Containing More Than One Potential Source. Similar
to Bernard Experiment 26 described above except circuits with more than one battery are
considered. The two experiments can be done together, if desired.

g. Probeware Activity 23: RC Circuit. Voltage and current sensors, connected to a computer,
are used to plot the potential difference across a charging and then discharging capacitor
as a function of time. The data is used to compute the capacitance.

h. Meiners Experiment 10—4: The R-C Circuit. Students connect an unknown resistor to a
known capacitor, charged by a battery. The battery is disconnected and a voltmeter and
timer are used to measure the time constant. The value of the resistance is calculated. In
a second part an unknown capacitor is charged by means of a square wave generator and
the decay is monitored on an oscilloscope. Again the time constant is measured, then it
is used to calculate the capacitance. A third part explains how to use a microprocessor
to collect data. Also see Bernard Experiment 32: A Study of Capacitance and Capacitor
Transients.

Chapter 28 MAGNETIC FIELDS

BASIC TOPICS

I. Definition of the field and the magnetic force on a moving charged particle.
A. Explain that moving charged particles create magnetic fields and that a magnetic field

exerts a force on a moving charged particle. Both the field of a moving charged particle
and the force exerted by a field depend on the velocity of the particle involved. The latter
property distinguishes it from an electric field. Also say that many particles, among them
the electron, proton, and neutron, have intrinsic magnetic fields associated with them, even
when they are not moving.

B. Define the magnetic field: the force on a moving test charge is q0nv × nB after the electric
force is taken into account. Review the rules for finding the magnitude and direction of a
vector product. Point out that the force must be measured for at least two directions of nv
since the component of nB along nv cannot be found from the force. The direction of nB can be
found by trying various directions for nv until one is found for which the force vanishes. The
magnitude of nB can be found by orienting nv perpendicular to nB. Units: 1 tesla = 1N/A·m,
1 gauss = 10−4 T. Point out the magnitudes of the fields given in Table 28—1.

C. Explain that the magnetic force on any moving charged particle is given by nFB = qnv × nB.
Point out that the force is perpendicular to both nv and nB and is zero for nv parallel or
antiparallel to nB. Also point out that the direction of the force depends on the sign of q.
Remark that the field cannot do work on the charged particle and so cannot change its
speed or kinetic energy. A magnetic field can change the direction of travel of a moving
charged particle. It can, for example, be used to produce a centripetal force and can cause
a charged particle to move in a circular orbit.

D. To show a magnetic force qualitatively, slightly defocus an oscilloscope so the central spot
is reasonably large. Move a bar magnet at an angle to the face of the scope and note the
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movement of the beam.
E. Point out that the total force on a charged particle is q(nE + nv × nB) when both an electric

and a magnetic field are present.

II. Magnetic field lines.
A. Explain that field lines can be associated with a magnetic field. At any point the field is

tangent to the line through that point and the number of lines per unit area that pierce a
plane perpendicular to the field is proportional to the magnitude of the field.

B. To show field lines project Figs. 28—4 and 28—5 or place a sheet of clear plastic over a
bar magnet and place iron filings on the sheet. Place the arrangement on an overhead
projector. Explain that the filings line up along field lines.

C. Point out that magnetic field lines form closed loops; they continue into the interior of the
magnet, for example. Contrast with electric field lines and remark that no magnetic charge
has yet been found. Mention that magnetic field lines would start and stop at magnetic
monopoles, if they exist. Remark that lines enter at the south pole of a magnet and exit
at the north pole.

III. Motions of charged particles in magnetic fields.
A. Derive v = E/B for the speed of a charged particle passing through a velocity selector.
B. Outline the Thompson experiment and derive Eq. 28—8 for the mass-to-charge ratio.
C. Show how the Hall effect can be used to determine the sign and concentration of charge

carriers in a conductor. Mention that these measurements are important for the semi-
conductor industry. Also mention that the Hall effect is used to measure magnetic fields.
Show a Hall effect teslameter.

D. Consider a charged particle with velocity perpendicular to a constant magnetic field. Show
that the orbit radius is given by r = mv/qB and the period of the motion is given by
T = 2πm/qB (independently of v) for non-relativistic speeds. If you are covering modern
topics, state that r = p/qB is relativistically correct but p = mv/ 1− v2/c2, where c is
the speed of light, must be used for the momentum. Remark that the orbit is a helix if the
velocity of the charged particle has a component along the field. Show how to calculate the
pitch of the helix, given the velocity components parallel and perpendicular to the field.
Mention that cyclotron motion is used in cyclotrons and synchrotrons. If you have time,
explain how a cyclotron works.

IV. Force on a current-carrying wire.
A. Run a flexible non-magnetic wire near a strong permanent magnet. Observe that the wire

does not move. Turn on a power supply so about 1A flows in the wire and watch the wire
move. Remark that magnetic fields exert forces on currents. A car battery and jumper
cables can be used. To avoid an explosion, place a heavy-duty switch in the circuit, far
from the battery.

B. Consider a thin wire carrying current, with all charge carriers moving with the drift ve-
locity. Start with the force on a single charged particle and derive dnFB = i dnL × nB for
an infinitesimal segment and nFB = inL× nB for a finite straight segment in a uniform field.
Stress that dnL and nL are in the direction of the current.

C. Consider an arbitrarily shaped segment of wire in a uniform
field. Show that the force on the segment between a and b is
nFB = inL× nB, where nL is the vector joining the ends of the
segment. This expression is valid only if the field is uniform.

D. Point out that the force on a closed loop in a uniform field
is zero since nL = 0.

.........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

.......................................
......................

....................
...............
.............
.............
.............
...............
..............................................................................................................................................................................................

•
•

a

b

nL

E. Calculate the force of a uniform field on a semicircular loop of wire, in the plane perpen-
dicular to nB. Do this by evaluating the integral i dnL × nB along the wire, then repeat
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using the result given in C above.

V. Torque on a current loop.
A. Calculate the torque exerted by a uniform field on a rectangular loop of wire arbitrarily

oriented with two opposite sides perpendicular to nB. See Fig. 28—21.
B. Define the magnetic dipole moment of a current loop (µ = NiA) and give the right hand

rule for determining its direction. For a rectangular loop in a uniform field, show that
nτ = nµ× nB. State that the result is generally valid for any loop in a uniform field. Mention
that other sources of magnetic fields, such as bar magnets and Earth, have dipole moments.
Mention that many fundamental particles have intrinsic dipole moments and that these
are the sources of their magnetic fields. See Table 29—2.

C. Note that this is a restoring torque and that if the dipole is free to rotate it will oscillate
about the direction of the field. If damping is present, it will line up along the field
direction. Remark that this is the basis of magnetic compasses.

D. Explain how analog ammeters and voltmeters work. To demonstrate the torque on a
current-carrying coil, remove the case from a galvanometer and wire it to a battery and
resistor so that it fully deflects.

E. Remark that a potential energy cannot be associated with a moving charged particle in a
magnetic field but can be associated with a magnetic dipole in a magnetic field. Show that
U = −nµ · nB. Find the work required to turn a dipole through 90◦ and 180◦, starting with
it aligned along the field. Point out that U is a minimum when nµ and nB are parallel and
is a maximum when they are antiparallel.

SUGGESTIONS

1. Assignments
a. Use question 1 to help in understanding the magnetic force. The dependence of magnetic

force on velocity and charge is emphasized in problem 2.
b. Use questions 5 through 8 to test for understanding of the motion of charge particles in

magnetic fields. Problems 17 and 20 deal with the circular orbit of a charged particle in
a uniform magnetic field. Crossed electric and magnetic fields, used as a velocity filter,
are explored in questions 3 and 4 and in problems 7 and 9. Problem 25 deals with a mass
spectrometer. Problem 29 deals with cyclotrons. Use some of these problems to include
practical applications.

c. Use problem 12 to help students study the Hall effect.
d. Use problems 32 and 36 to stress the importance of the angle between the magnetic field

and the current carrying wire on which it exerts a force. Use problem 40 to emphasize that
the force of a uniform magnetic field on a closed loop is zero. Problem 45 asks students
about the dynamics of current-carrying wires in magnetic fields. Assign problems 55 in
support of the discussion of magnetic torques on current-carrying loops.

e. Magnetic dipoles and the torques exerted on them by magnetic fields are explored in
problems 47 and 48. Question 10 and problem 53 deal with the energy of a dipole in a
field. Also consider problem 52.

2. Demonstrations
a. Force on an electron beam: Freier and Anderson Ei18, Ep8, 11.
b. Forces and torques on wires: Freier and Anderson Ei7, 12, 13 – 15, 19, 20.
c. Meters: Freier and Anderson Ej1, 2.
d. Hall effect: Freier and Anderson Ei16.

3. Books and Monographs
Teaching about Magnetism; by Robert J. Reiland; available from the American Associ-
ation of Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845;
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www.aapt.org). A PTRA workshop manual containing a collection of demonstrations and
student activities.

4. Computer Software
Electricity and Magnetism from Exploration of Physics Volume II; Windows and Macin-
tosh; Physics Curriculum & Instruction Physics Curriculum & Instruction (22585 Woodhill
Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com). Includes sections on the mo-
tion of a charged particle in a magnetic field and the magnetic force on a current-carrying
wire.

5. Audio/Visual
a. The Force on a Current ; from the AAPT collection 2 of single-concept films; DVD; available

from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).
b. Magnetism and Magnetic Fields; from Cinema Classics DVD 4: Waves (II) & Electricity

and Magnetism; available from Ztek Co. and from the AAPT (see above for addresses).
c. Understanding Magnetism; VHS video tape, DVD; Films for the Humanities and Sciences

(PO Box 2053, Princeton, NJ 08543—2053; www.films.com).
d. Magnets; VHS video tape, DVD; Films for the Humanities and Sciences (see above for

address).
e. Magnetism and Static electricity ; VHS video tape, DVD; Films for the Humanities and

Sciences (see above for address).
f. Magnetic Fields; Physics Demonstrations in Electricity and Magnetism, Part III; VHS
video tape, DVD; ≈3 min; Physics Curriculum & Instruction (see above for address).

6. Computer Software
a. Electricity and Magnetism from Exploration of Physics Volume I; Windows and Macintosh;

Physics Curriculum & Instruction (see above for address). Simulated experiments with
analysis. Includes a section on magnetic fields.

b. Dynamic Analyzer . See Chapter 2 SUGGESTIONS.

7. Computer Project
Have students use numerical integration of Newton’s second law to investigate the orbits
of charged particles in magnetic and electric fields.

8. Laboratory
a. Bernard Experiment 33: A Study of Magnetic Fields. A small magnetic compass is used

to map field lines of various permanent magnets, a long straight current-carrying wire, a
single loop of current-carrying wire, a solenoid, and Earth. Parts of this experiment might
be performed profitably in connection with Chapter 31.

b. Meiners Experiment 11—3: Determination of e/m. Students use the accelerating potential
and the radius of the orbit in a magnetic field to calculate the charge-to-mass ratio for the
electron.

c. Meiners Experiment 11—5: The Hall Effect. Students measure the Hall voltage and use it
to calculate the drift speed and carrier concentration for a bismuth sample. The influence
of the magnetic field on the Hall voltage is also investigated. Values of the magnetic field
are given to them by the instructor.

Chapter 29 MAGNETIC FIELDS DUE TO CURRENTS

BASIC TOPICS

I. Magnetic field of a current.
A. Place a magnetic compass near a wire carrying a dc current of several amperes, if possible.

Turn the current on and off and reverse the current. Note the deflection of the compass
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needle and remark that the current produces a magnetic field and that the field reverses
when the current reverses.

B. Write the Biot-Savart law for the field produced by an infinitesimal segment of a current-
carrying wire. Give the value for µ0. Draw a diagram to show the direction of the current,
the displacement vector from the segment to the field point, and the direction of the
field. Explain that d nB is in the direction of i dns×nr. Point out the angle between nr and dns.
Mention that the integral for the field of a finite segment must be evaluated one component
at a time. Point out that the angle between dnB and a coordinate axis must be used to find
the component of d nB.

C. Example: Show how to calculate the magnetic field of a straight finite wire segment. See
the text, but use finite limits of integration. State that magnetic fields obey a superposition
principle and point out that the result of the calculation can be used to find the field of
a circuit composed of straight segments. Specialize the result to an infinite straight wire.
Demonstrate the right-hand rule for finding the direction of nB due to a long straight wire.

D. Explain that the field lines around a straight wire are circles in planes perpendicular to the
wire and are centered on the wire. Draw a diagram to illustrate. Use symmetry to argue
that the magnitude of the field is uniform on a field line. Point out that for other current
configurations B is not necessarily uniform on a field line.

E. Show how to find the force per unit length of one long straight wire on another. Treat
currents in the same and opposite directions. Lay two long automobile starter cables on
the table. Connect them in parallel to an auto battery, with a 0.5Ω, 500W resistor and
an “anti-theft” switch or starter relay in each circuit. Close one switch and note that
the wires do not move. Close the other switch and note the motion. Show parallel and
antiparallel situations. It is better to reconnect the wires or rearrange them rather than
to use a reversing switch.

F. Give the definition of the ampere and remind students of the definition of the coulomb.
G. Consider a circular arc of radius R, subtending an angle φ, and carrying current i. Use the

Biot-Savart law to show that the magnetic field at the center is given by B = µ0iφ/4πR.
Note that φ must be in radians. Specialize to the cases of a semicircle and a full circle.

II. Ampere’s law.
A. Write the law in integral form. Explain that the integral is a line integral around a closed

contour and interpret it as a sum over segments. Point out that it is the tangential
component of nB that enters. Explain that the current that enters is the net current through
the contour. Two currents in opposite directions tend to cancel, for example. Illustrate by
considering a contour that encircles five or six wires, with some currents in each direction.
Also consider a wire passing through the plane of the contour but outside the contour.
Mention that this current produces a magnetic field at all points on the contour but the
integral of its tangential component is zero.

B. Explain the right-hand rule that relates the direction of integration around the contour
and the direction of positive current through the contour.

C. Pick a functional form for the magnetic field (Bx = 2axy, By = −ay2, Bz = 0, for example).
Be sure the divergence is zero and the curl is not. Now consider a simple contour, such
as a square in the xy plane. Integrate the tangential component of the field around the
contour and calculate the net current through it.

D. Use Ampere’s law to calculate the magnetic field outside a long straight wire. Either use
without proof the circular nature of the field lines or give a symmetry argument to show
that nB at any point is tangent to a circle through the point and has constant magnitude
around the circle. Point out that the integration contour is taken tangent to nB in order to
evaluate the integral in terms of the unknown magnitude of nB.
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E. Use Ampere’s law to calculate the field inside a long straight wire with a uniform current
distribution. Note that the use of Ampere’s law to find B has the same limitations as
Gauss’ law when used to find E: there must be sufficient symmetry.

F. Use Ampere’s law to calculate the field inside a solenoid. First argue that, for a long tightly
wound solenoid, the field at interior points is along the axis and nearly uniform while the
field at exterior points is nearly zero.

G. Similarly, use Ampere’s law to calculate the field inside a toroid.

III. Magnetic dipole field.

A. Use the Biot-Savart law to derive an expression for the field of a circular current loop at a
point on its axis. Stress the resolution of d nB into components.

B. Take the limit as the radius becomes much smaller than the distance to the field point and
write the result in terms of the dipole moment. Explain that the result is generally true
for loops of any shape as long as the field point is far from the loop. Remind students that
the dipole moment of a loop is determined by its area and the current it carries.

SUGGESTIONS

1. Assignments

a. Use questions 1 and 2 and problem 1 as part of the discussion of the magnetic field due
to a long straight wire. Problems 17 and 19 deal with the field of a finite straight wire.
Assign them, then problem 25, which asks students to superpose the fields of finite wires.

b. Question 3 deals with the field of a circular arc. Problems 4, 5, 6, and 13 deal with circuits
consisting of straight line and circular segments. Assign one or two of them.

c. Ask questions 5 and 6 in association with the magnetic forces exerted by wires on each
other. Assign problem 29.

d. Use questions 7 through 9 in your discussion of Ampere’s law. After discussing line integrals
around closed loops, assign problems 35 and 36 to test the fundamentals; problem 37 gives
an application. Assign problem 39 if you want to include the field of a wire with nonuniform
current density.

e. Problems 40 and 43 can be assigned to support the discussion of solenoids and toroids.

f. Problems 48 and 53 deal with the magnetic fields of coils and dipole loops. Assign problem
50 if you cover Helmholtz coils or use them in lab.

2. Demonstrations
a. Magnetic fields of wires: Freier and Anderson Ei8 – 11.

b. Magnetic forces between wires: Freier and Anderson Ei1 – 6.

c. Magnetic Fields; VHS video tape; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com).

3. Computer Software

a. Electricity and Magnetism from Exploration of Physics Volume II; Windows and Mac-
intosh; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com). Includes sections on the magnetic field of a current-carrying
wire, the magnetic field of a solenoid, and the magnetic field of a bar magnet.

b. EM Field ; David Trowbridge. See Chapter 22 SUGGESTIONS.

4. Books and Monographs

The Solenoid ; by Carl R. Stannard, Arnold A. Strassenberg, and Gabriel Kousourou;
available from the American Association of Physics Teachers (AAPT, One Physics Ellipse,
College Park MD 20740—3845; www.aapt.org). Covers the magnetic field of a solenoid and
practical applications as a mechanical switch.
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5. Computer Projects
a. Have students use the Biot-Savart law and numerical integration to calculate the magnetic

field due to a circular current loop at off-axis points. They can use a commercial math
program or their own programs.

b. Use numerical integration to verify Ampere’s law for several long straight wires passing
through a square contour. Have them show the result of the integration is independent of
the positions of the wires, as long as they are inside the square. Also have them consider
a wire outside the square.

6. Laboratory
a. Probeware Activity 25: Magnetic Field of a Solenoid. A magnetic field probe, connected to

a computer, is used to plot the magnitude of the magnetic field of a solenoid as a function
of radial position, both outside and inside the solenoid.

b. Meiners Experiment 11—1: The Earth’s Magnetic Field. A tangent galvanometer is used
to measure Earth’s magnetic field. The dip angle is calculated.

c. Meiners Experiment 11—2: The Current Balance. The gravitational force on a current-
carrying wire is used to balance the magnetic force due to current in a second wire. The
data can be used to find the value of µ0 or to find the current in the wires. The second
version essentially defines the ampere. Part B describes how a microprocessor can be used
to collect and analyze the data.

d. Bernard Experiment 34: Measurement of the Earth’s Magnetic Field. The oscillation
period of a small permanent magnet suspended inside a solenoid is measured with the
solenoid and Earth’s field aligned. The reciprocal of the period squared is plotted as a
function of the current in the solenoid, and the slope, along with calculated values of the
solenoid’s field, is used to find Earth’s field.

e. Meiners Experiment 11—3: Determination of e/m. Students find the speed and orbit radius
of an electron in the magnetic field of a pair of Helmholtz coils and use the data to calculate
e/m. Information from this chapter is used to compute the field, given the coil radius and
current. If you are willing to postulate the field for the students, this experiment can be
performed in connection with Chapter 30.

Chapter 30 INDUCTION AND INDUCTANCE

BASIC TOPICS

I. The law of induction.
A. Connect a coil (50 to 100 turns) to a sensitive galvanometer and move a bar magnet in and

out of the coil. Note that a current is induced only when the magnet is moving. Show all
possibilities: the north pole entering and exiting the coil and the south pole entering and
exiting the coil. In each case point out the direction of the induced current. With a little
practice you might also demonstrate effectively that the deflection of the galvanometer
depends on the speed of the magnet.

B. To show the current produced by changing the orientation of a loop, align the coil axis with
Earth’s magnetic field and rapidly rotate the coil once through 180◦. Note the deflection
of a galvanometer in series with the coil. Explain that this forms the basis of electric
generators.

C. Connect a coil to a switchable dc power supply. Connect a voltmeter (digital, if possible) to
the supply to show when it is on. Place a second coil, connected to a sensitive galvanometer,
near the first. Show that when the switch is opened or closed, current is induced in the
second coil, but that none is induced when the current in the first coil is steady.
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D. Define the magnetic flux through a surface. Unit: 1 weber = 1T·m2. Point out that
ΦB measures the number of magnetic field lines that penetrate the surface. Remark that
ΦB = BA cos θ when nB is uniform over the surface and makes the angle θ with its normal.

E. Give a qualitative statement of the law: an emf is generated around a closed contour
when the magnetic flux through the contour changes. Stress that the law involves the flux
through the surface bounded by the contour. Point out the surface and contour for each
of the demonstrations done, then remark that the contour may be a conducting wire, the
physical boundary of some material, or a purely geometric construction. Remark that if
the contour is conducting, then charge flows.

F. Give the equations for Faraday’s law: E = −dΦB/dt for a single loop and E = −N dΦB/dt
for N tightly packed loops. Note that the emf’s add.

II. Lenz’s law.
A. Explain Lenz’s law in terms of the magnetic field produced by the current induced if the

contour is a conducting wire. Stress that the induced field must re-enforce the external
field in the interior of the loop if the flux is decreasing and must tend to cancel it if the
flux is increasing. This gives the direction of the induced current, which is the same as
the direction of the emf. Review the right-hand rule for finding the direction of the field
produced by a loop of current-carrying wire. State that Lenz’s law can be used even if the
contour is not conducting. The current must then be imagined.

B. Optional: Give the right-hand rule for finding the direction of positive emf. When the
thumb points in the direction of d nA, then the fingers curl in the direction of positive emf.
If Faraday’s law gives a negative emf, then it is directed opposite to the fingers. Stress
that the negative sign in the law is important if the equation, with the right-hand rule, is
to describe nature.

C. Consider a rectangular loop of wire placed perpendicular to a magnetic field. Assume a
function B(t) and calculate the emf and current. Show how the directions of the emf and
current are found. Point out that an area integral is evaluated to find ΦB and a time
derivative is evaluated to find the emf. Some students confuse the variables and integrate
with respect to time.

III. Motional emf.
A. Consider a rectangular loop being pulled with constant velocity past the boundary of a

uniform magnetic field. Calculate the emf and current.
B. Consider a rod moving with a constant velocity that is perpendicular to a uniform magnetic

field. Show how to complete the loop and calculate the emf. Mention that the emf exists
only in the moving rod, regardless of whether the rest of the contour is conducting.

C. Consider a rectangular loop of wire rotating with constant angular velocity about an axis
that is in the plane of the loop and through its center. Take the magnetic field to be
uniform and point out that now the flux is changing because the angle between the field
and the normal to the loop is changing. Derive the expression for the emf and point out it
is time dependent.

IV. Energy considerations.
A. Point out that an emf does work at the rate Ei, where i is the current. Explain that for a

current induced by motion, the energy comes from the work done by an external agent or
from the kinetic energy of the moving portion of the loop.

B. Consider four conducting rails that form a rectangle, three fixed and the fourth riding on
two of them. Take the magnetic field to be uniform and normal to the loop. Assume that
essentially all of the electrical resistance of the loop is associated with the moving rail.
First, suppose the moving rail has constant velocity and derive expressions for the emf,
current, and magnetic force on the rail. Next, derive expressions for the rate at which an
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external agent must do work to keep the velocity constant and for the rate at which energy
is dissipated by the resistance of the loop. Point out that all the energy supplied by the
agent is dissipated.

C. Now suppose the rail is given an initial velocity and, thereafter, it is acted on by the
magnetic field alone. Use Newton’s second law to derive an expression for the velocity as
a function of time. Compare the rate at which the kinetic energy is decreasing with the
rate of energy dissipation in the resistance. Remark that this phenomenon finds practical
application in magnetic braking.

D. Mention that energy is also dissipated when a current is induced by a changing magnetic
field and it comes from the agent that is changing the field.

V. Induced electric fields.
A. Explain that a changing magnetic field produces an electric field, which is responsible for

the emf. The emf and electric field are related by E = nE ·dns, where the integral is around
the contour. Remind students that this integral is the work per unit charge done by the
field as a charge goes around the contour. Write Faraday’s law as nE · dns = − d

dt
nB · d nA.

Note that dns and d nA are related by a right-hand rule: fingers along dns implies thumb along
d nA. This is consistent with Lenz’s law.

B. State that the induced electric field is like an electrostatic field in that it exerts a force on
a charge but that it is unlike an electrostatic field in that it is not conservative. For an
electrostatic field, the integral defining the emf vanishes. An electric potential cannot be
associated with an induced electric field.

C. Consider a cylindrical region containing a uniform magnetic field along the axis. Assume
a time dependence for nB and derive expressions for the electric field inside the region and
outside the region. See Sample Problem 30—4. Point out that the lines of nE form closed
circles concentric with the cylinder and that the magnitude of nE is uniform around a circle.

VI. Definition of inductance.
A. Connect a light bulb and choke coil in parallel across a switchable dc supply. Close the

switch and note that the lamp is initially brighter than when steady state is reached. Open
the switch and note that the light brightens before going off. Remark that this behavior
is due to the changing magnetic flux through the coil and that the flux is created by the
current in the coil itself.

B. Point out that when current flows in a loop, it generates a magnetic field and the loop
contains magnetic flux due to its own current. If the current changes, so does the flux and
an emf is generated around the loop. The total emf, due to all sources, determines the
current. Remark that the self-flux is proportional to the current and the induced emf is
proportional to the rate of change of the current.

C. Define the inductance by L = NΦB/i, where N is the number of turns, ΦB is the magnetic
flux through each turn, and i is the current in the circuit. Unit: 1 henry = 1V·s/A.

D. Remark that Faraday’s law yields E = −Ldi/dt for the induced emf.
E. Inductors are denoted by .............

................................................................

...................................
.............
................................................................
...................................
.............
................................................................
...................................
.............
................................................................
...................................
.............
................................................................
................................... in circuit diagrams. Point out that if the circuit element

looks like .............
................................................................
...................................
.............
................................................................
...................................
.............
................................................................
...................................
.............
................................................................
...................................
.............
................................................................
...................................

i −→
a b

, then Vb−Va = −Ldi/dt is algebraically correct. As an example, use
i(t) = im sin(ωt). Note that i is positive when it is directed from a to b and negative when
it is directed from b to a. Compute Va − Vb = Limω cos(ωt). Graph i and the potential
difference as functions of time to show the phase relationship. Remark that a real inductor
can be regarded as a pure inductance in series with a pure resistance.

F. Show how to calculate the inductance of an ideal solenoid. Use the current to calculate
the field, then the flux, and finally equate NΦB to Li and solve for L. Point out that L is
independent of i but depends on geometric factors such as the cross-sectional area, length,
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and the number of turns per unit length.
G. Optional: Show how to calculate the inductance of a toroid.

VII. An LR circuit.
A. Derive the loop equation for a single loop containing a source of emf (an ideal battery), a

resistor, and an inductor in series: E − iR−Ldi/dt = 0, where the current is positive if it
leaves the positive terminal of the seat of emf. Use the prototypes developed earlier:
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Vb − Va = −Ldi/dt
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..............
..............
..............
..............
...............
...............
..............
................................................................................................................................................

..............
..............
..............
..............
...............
...............
..............
................................................................................................................................................

..............
..............
..............
..............
...............
...............
..............
................................................................................................................................................

..............
..............
..............
..............
...............
...............
..............
.....................................................................

................................................................................................................................................................................................................................................. ..........................................
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a b

i
Vb − Va = −iR

a b

◦−→ E
Vb − Va = E

Remark that these are correct no matter if the current is positive or negative or if it is
increasing or decreasing. Write down the solution for the current as a function of time
for the case i(0) = 0: i = (E/R)[1 − e−Rt/L]. Show that the expression satisfies the loop
equation and meets the initial conditions. Show a graph of i(t); point out the asymptotic
limit i = E/R and the time constant τL = L/R. Remark that if L/R is large, the current
approaches its limit more slowly than if L/R is small.

B. Explain the qualitative physics involved. When the battery is turned on and the current
increases, the emf of the coil opposes the increase and the current approaches its steady
state value more slowly than if there were no inductance. At long times, the current is
nearly constant so di/dt and the induced emf are small. The current is nearly the same as
it would be in the absence of an inductor. Just after the battery is turned on, the potential
difference across the resistor is zero and the potential difference across the inductor is
E . After a long time, the potential difference across the resistor is E and the potential
difference across the inductor is zero.

C. Repeat the calculation for a circuit with an inductor and resistor but no battery. Take the
initial current to be i0 and show that i(t) = i0e

−t/τL . Graph the solution and show the
position of τL on the time axis. Point out that the emf of the coil opposes the decrease in
current.

D. Demonstrate the two circuits by connecting a resistor and coil in series to a square-wave
generator. Observe the current by placing oscilloscope leads across the resistor. Observe
the potential difference across the coil. Vary the time constant by varying the resistance.

VIII. Energy considerations.
A. Consider a single loop circuit containing an ideal battery, a resistor, and an inductor.

Assume the current is increasing. Write down the loop equation, multiply it by i, and
identify the power supplied by the battery and the power lost in the resistor. Explain that
the remaining term describes the power being stored by the inductor, in its magnetic field.
Point out the similarity between iE and −iLdi/dt for the rate at which work is being done
by an ideal battery and by an inductor (with emf −Ldi/dt).

B. Integrate P = iLdi/dt to obtain UB =
1
2Li

2 for the energy stored in the magnetic field
(relative to the energy for i = 0).

C. Consider the energy stored in a long current-carrying solenoid and show that the energy
density is uB = B2/2µ0. Explain that this gives the energy density at a point in any
magnetic field and that the energy required to establish a given magnetic field can be
calculated by integrating the expression over the volume occupied by the field.

IX. Mutual induction.
A. Repeat the demonstration experiment discussed in note IC. Explain it in terms of the

concept of mutual induction. Point out that the flux through the second coil is proportional
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to the current in the first. Define the mutual induction of the second coil with respect to
the first by M12 = N2Φ12/i1. Show that E2 = −M12 di1/dt is the emf induced in the
second coil when the current in the first changes. State without proof that M12 =M21.

B. Example: derive the mutual inductance for a small coil placed at the center of a solenoid
or for a small, tightly wound coil placed at the center of a larger coil.

C. Show that two inductors connected in series and well separated have an equivalent induc-
tance of L = L1+L2. Then, show that if their fluxes are linked, L = L1+L2± 2M , where
the minus sign is used if the field lines have opposite directions. Also consider inductors in
parallel. Alternatively, assign problems 45 and 46.

SUGGESTIONS

1. Assignments
a. Question 2 deals with the magnitudes of induced emf and current. Questions 1 and 3 deal

with Lenz’s law. Use several as examples and several to test students.
b. Assign problems 1, 2, and 3 to cover the emf’s generated by various time dependent

magnetic fields. Addition of emf’s is covered in problem 9. This is a good problem to test
for understanding of the sign of an induced emf.

c. Motional emf is covered in problems 11, 15, 29, 30 and 32. If you use a flip coil in the lab,
assign problem 13. Problems 31 and 33 deal with energy transfers.

d. Assign problems 34 and 35 in connection with the discussion of induced electric fields.
e. Assign problem 38 (coil) or 41 (two parallel wires) as an example of a typical inductance

calculation.
f. Use some of questions 7, 9, and 10 when discussing LR circuits. Assign problem 50. LR
time constants are considered in problem 49.

g. After discussing energy flow in a simple LR circuit with increasing current, assign problems
60 and 62.

h. Problem 63 deals with energy storage and energy density in an inductor.

2. Demonstrations
a. As a supplementary demonstration, take a large, long

coil, mount it vertically, insert a solid, soft-iron rod with
a foot or so sticking out, and connect the coil via a switch
to a large dc power supply. Place a solid aluminum ring
around the iron rod. The ring should fit closely but be
free to move. Close the switch and the ring will jump up,
then settle down. Repeat with a ring that has a gap in
it. Finally, use an ac power supply. The effect can be
enhanced by cooling the ring with liquid nitrogen.

b. Generation of induced currents: Freier and Anderson Ek1
– 6.

c. Eddy currents: Freier and Anderson Ei1 – 6.
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d. Generators: Freier and Anderson: Eq4 – 7, Er1.
e. Self-inductance: Freier and Anderson Eq1 – 3.
f. LR circuit: Freier and Anderson Eo11, En5 – 7.

3. Audio/Visual
a. Electromagnetism; from Cinema Classics DVD 4: Waves (II) & Electricity and Magnetism;

available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and
from the American Association of Physics Teachers (AAPT, One Physics Ellipse, College
Park MD 20740—3845; www.aapt.org).
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b. Electricity and Magnetism; Electromagnetic Effects; Induction Application; Eddy Currents;
from Physics Demonstrations in Electricity and Magnetism, Part III; VHS video tape,
DVD; ≈3 min each; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville,
MN 55044; www.PhysicsCurriculum.com).

4. Computer Software
Electricity and Magnetism from Exploration of Physics Volume I; Windows and Mac-
intosh; Physics Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044;
www.PhysicsCurriculum.com). Simulated experiments with analysis. Includes a section
on Lenz’s law.

5. Laboratory
a. Probeware Activity 26: Faraday’s Law. A voltage senor, connected to a computer, is used

to measure the emf generated in a coil as a permanent magnet is pushed through it. The
computer displays the voltage as a function of time.

b. Bernard Experiment 35: Electromagnetic Induction. Students measure the magnitude
and observe the direction of current induced by a changing magnetic flux in a simple
galvanometer circuit. Changing flux is produced by moving permanent magnets, by moving
current-carrying coils, and by changing current in a coil.

c. Meiners Experiment 11—4: The Magnetic Field of a Circular Coil. The emf generated in
a small search coil when a low frequency ac current flows in a given circuit (a circular coil
in this case) is used to determine the magnetic field produced by the circuit. The field is
investigated as a function of position, specified in spherical coordinates.

Chapter 31 ELECTROMAGNETIC OSCILLATIONS

AND ALTERNATING CURRENT

BASIC TOPICS

I. LC oscillations.
A. Draw a diagram of an LC series circuit and assume the capacitor is charged. Explain that

as charge flows, energy is transferred from the electric field of the capacitor to the magnetic
field of the inductor and back again. When the capacitor has maximum charge, the current
(dq/dt) vanishes, so no energy is stored in the inductor. When the current is a maximum,
the charge on the capacitor vanishes and no energy is stored in that element.

B. Write down the loop equation, then convert it so the charge q on the capacitor is the
dependent variable. If the direction of positive current is into the capacitor plate with
positive charge q, then i = dq/dt. If it is out of that plate, then i = −dq/dt.

C. Write down the solution: q(t) = Q cos(ωt+ φ). Show by direct differentiation that this is
a solution if ω2 = 1/LC. Show that φ is determined by the initial conditions and treat the
special case for which q = Q, i = 0 at t = 0.

D. Once the solution is found, derive expressions for the current, the energy stored in the
capacitor, and the energy stored in the inductor, all as functions of time. Sketch graphs of
these quantities. Show that the total energy is constant.

E. Derive expressions for the potential differences across the capacitor and the inductor. Draw
graphs of them as well. Mention that the charge on the capacitor is proportional to the
potential difference across its plates and that the time rate of change of the current is
proportional to the emf of the inductor.

F. Note that the form of the differential equation for q is the same as that for the displacement
x of a block oscillating on the end of a spring. Make the analogy concrete by explaining
that if q is replaced by x, L is replaced by m, and C is replaced by 1/k, the equation for q
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becomes the equation for x. Also point out that the current corresponds to the velocity of
the block, that the energy in the inductor corresponds to the kinetic energy of the block,
and that the energy in the capacitor corresponds to the potential energy in the spring.

II. Damped oscillations.
A. Write down the loop equation for a single RLC loop, then convert it so q is the dependent

variable. State that q(t) = Qe−Rt/2L cos(ωIt+ φ) satisfies the differential equation. Here
ωI is somewhat less than 1/

√
LC. If time permits, the expression for ωI can be found by

substituting the assumed solution into the differential equation.
B. Draw a graph of q(t) and point out that the envelope decreases exponentially. Each time

the capacitor is maximally charged, the charge on the positive plate is less than the previous
time. Explain that this does not violate the conservation of charge principle since the total
of the charge on both plates of the capacitor is always zero. Energy is dissipated in the
resistor.

C. To show the oscillations, wire a resistor, inductor, and capacitor in series with a square-wave
generator and connect an oscilloscope across the capacitor. The scope shows a function
proportional to the charge. Also connect the oscilloscope across the resistor to show a
function that is proportional to the current. If you have a dual-trace scope, show the
functions simultaneously. Show the effect of varying C (use a variable capacitor), R (use a
decade box), and L (insert an iron rod into the coil). If time permits, show that oscillations
occur only if 1/LC > (R/2L)2.

III. Elements of ac circuit analysis.
A. Consider a resistor connected to a sinusoidally oscillating emf. State that the potential

difference across the resistor has the same angular frequency ωd as the emf. State that the
potential difference across the resistor is in phase with the current and that the amplitudes
are related by IR = VR/R. Emphasize that vR(t) gives the potential of one end of the
resistor relative to the other. Draw a phasor diagram: two arrows along the same line
with length proportional to IR and VR, respectively. Both make the angle ωdt with the
horizontal axis and rotate in the counterclockwise direction. Point out that the vertical
projections represent iR(t) and vR(t) and these vary in proportion to sin(ωdt) as the arrows
rotate.

B. Consider a capacitor connected to a sinusoidally oscillating emf. Start with iC = dq/dt =
C dvC/dt, substitute vC = VC sin(ωdt), and show that vC lags iC by 90◦ and that the
amplitudes are related by IC = VC/XC , where XC = 1/ωdC is the capacitive reactance.
Draw a phasor diagram to show the relationship. Mention that the unit of reactance is the
ohm.

C. Consider an inductor connected to a sinusoidally oscillating emf. Start with vL = LdiL/dt,
substitute vL = VL sin(ωdt), and show that vL leads iL by 90

◦ and that the amplitudes
are related by IL = VL/XL, where XL = ωdL is the inductive reactance. Draw a phasor
diagram to show the relationship.

D. Wire a small resistor in series with a capacitor and a signal generator. Use a dual trace
oscilloscope with one set of leads across the resistor and the other set across the capacitor.
Remind students that the potential difference across the resistor is proportional to the
current, so the scope shows iC and vC . Point out the difference in phase. Repeat with an
inductor in place of the capacitor.

IV. Forced oscillations of an RLC series circuit.
A. Draw the circuit. Assume the generator emf is given by E(t) = Em sin(ωdt) and the current

is given by i(t) = I sin(ωdt − φ). Pick consistent directions for positive emf and positive
current. Construct a phasor diagram step-by-step (see Fig. 31—13). First draw the current
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and resistor voltage phasors, in phase. Remind students that the current is the same in
every element of the circuit so voltage phasors for the other elements can be drawn using the
phase relations between voltage and current developed earlier. Draw the capacitor voltage
phasor lagging by 90◦ and the inductor voltage phasor leading by 90◦. Make VL > VC .
Their lengths are IXC and IXL, respectively. Draw the projections of the phasors on the
vertical axis and remark that the algebraic sum must be E(t).

B. Draw the impressed emf phasor. Remark that its projection on the inductance phasor
must be VL − VC and that its projection on the resistance phasor must be VR. Make the
analogy to a vector sum.

C. Use the phasor diagram to derive the expression for the current amplitude: I = Em/Z,
where Z = R2 + (XL −XC)2 is the impedance of the circuit. Show that the impedance
is frequency dependent by substituting the expressions for the reactances.

D. Use the phasor diagram to derive the expression for the phase angle of i relative to E :
tanφ = (XL−XC)/R. Point out that E leads i if XL > XC , but E lags i if XL < XC . For
later use, show that cosφ = R/Z.

V. Resonance
A. Sketch graphs of the current amplitude as a function of the generator frequency for several

values of the resistance (see Fig. 33—13). Point out that the current amplitude is greatest
when the generator frequency matches the natural frequency of the circuit and that the peak
becomes larger as the resistance is reduced. Use the expression derived above for the current
amplitude to show that I is greatest for XC = XL and that this means ωd = 1/

√
LC.

Remark that this is the resonance condition. Also show that the phase angle between the
current and the generator emf vanishes at resonance.

B. Demonstrate resonance phenomena by wiring an RLC loop in series with a sinusoidal audio
oscillator. Look at the current by putting the leads of an oscilloscope across the resistor.
Use a decade box for the resistor and measure the current amplitude for various frequencies
and for several resistance values. Be sure the amplitude of the oscillator output remains
the same. Explain that similar circuits are used to tune radios and TV’s.

C. Use a sweep generator to show the current amplitude. Set the oscilloscope sweep rate to
accommodate that of the generator and put a small diode in series with the scope leads.
Usually this will have enough capacitance that only the envelope will be displayed.

VI. Power considerations.
A. Discuss average values over a cycle. Show that the average of sin2(ωdt+ φ) is 1

2 and that
the average of sin(ωdt) cos(ωdt) is 0. Define the rms value of a sinusoidal quantity. Point
out that ac meters are usually calibrated in terms of rms values.

B. Derive the expression for the power input of the ac source: P = iE = imEm sin(ωdt +
φ) sin(ωdt). Show that the average over a cycle is given by P = Ermsirms cosφ. Do the
same for the power dissipated in the resistor. In particular, show that its average value can
be written i2rmsR or ErmsirmsR/Z. Recall that R/Z = cosφ and then use this relationship
to show that the average power input equals the average power dissipated in the resistor.

C. Show that the average rate of energy flow into the inductor and capacitor are each zero.
D. Explain that cosφ is called the power factor. If it is 1, the source delivers the greatest

possible power for a fixed generator amplitude. Remark that the power factor is 1 at
resonance.

SUPPLEMENTARY TOPIC

The transformer. Say that ac is in common use because it is efficient to transmit power
at high potential and low current but safety considerations require low potential at the user
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and producer ends of a transmission line. Transformers can be used to change the potential.
Use Faraday’s law to show how the potential difference across the secondary is related to the
potential difference across the primary. Explain what step-up and step-down transformers are.
A dual trace oscilloscope can be used to demonstrate transformer voltages. Assume a purely
resistive load and show how to find the primary and secondary currents. Show that, as far as
the primary current is concerned, the transformer and secondary circuit can be replaced by a
resistor with Req = (Np/Ns)

2R, where Np is the number of turns in the primary coil, Ns is
the number of turns in the secondary coil, and R is the load resistance. Explain impedance
matching.

SUGGESTIONS

1. Assignments
a. Questions 1 through 5 can be used to help students think about LC circuit relationships.
b. If you compare an oscillating LC circuit to an oscillating mass on a spring, assign problem

6 or 7.
c. Assign problems 1, 3, 4, and 11 to test for understanding of the fundamentals of LC

oscillations. The frequency of oscillation is covered in problems 9, 10, and 15.
d. When discussing solutions to the RLC loop equation, include questions 8, 9, and 11.
e. Assign problem 33 in connection with discussions of the phase and amplitude of separate

inductive and capacitive circuits.
f. Resonance is covered in problems 45 and 49.
g. Power in an RLC circuit is covered in problems 56 and 57 and the power factor in problem

55. Include question 12 in the discussion.

2. Demonstrations
a. LCR series circuit: Freier and Anderson En12, Eo13.
b. Measurements of reactance and impedance: Freier and Anderson Eo9.
c. Transformers: Freier and Anderson Ek7, Em1, 2, 4, 5, 7, 8, 10.

3. Laboratory
a. Meiners Experiment 10—11: A.C. Series Circuits. Students use an oscilloscope and ac

meters to investigate voltage amplitudes, phases, and power in RC and RLC circuits.
Voltage amplitudes and phases are plotted as functions of the driving frequency to show
resonance. Reactances and impedances are calculated from the data.

b. Bernard Experiment 37: A Study of Alternating Current Circuits. An ac voltmeter is used
to investigate the voltages across circuit elements in R, RC, RL, and RLC circuits, all with
60Hz sources. Reactances and impedances are computed. If possible, oscilloscopes should
be used. A section labeled optional describes their use. This experiment is pedagogically
similar to the text and can be used profitably to reenforce the ideas of the chapter. Warning:
the lab book uses the word vector rather than phasor.

Chapter 32 MAXWELL’S EQUATIONS;

MAGNETISM OF MATTER

BASIC TOPICS

I. Gauss’ law for magnetism.
A. Explain that a magnetic monopole is a particle that produces a magnetic field even while

at rest, with magnetic field lines starting or stopping on it. Remark that no magnetic
monopole has been observed yet but it is currently being sought. Write down Gauss’ law
for the magnetic field and state that magnetic field lines form closed contours so the flux

114 Lecture Notes: Chapter 32



through any closed surface vanishes. If monopoles were found to exist, the law would be
modified to include them. Compare with Gauss’ law for the electric field.

B. To show that the ends of a magnet are not monopoles, magnetize a piece of hard iron wire.
Use a compass to locate and mark the north and south poles. Break the wire into pieces
and again use the compass to show that each piece has a north and a south pole. Repeat a
few times using smaller pieces each time. Remark that the same results would be obtained
if the breaking process were continued to the atomic level. Individual atoms and particles
are magnetic dipoles, not monopoles.

II. The Maxwell induction law.

A. In the material discussed so far, note the absence of any counterpart to Faraday’s law,
i.e. the creation of magnetic fields by changing electric flux. Tell students it should be
there and you will now discuss its form.

B. Consider the charging of a parallel-plate capacitor. Remind students that in Ampere’s law
dns and d nA are related by a right-hand rule and the surface integral is over any surface
bounded by the closed contour.

C. In the diagram, surfaces A, B, and C are
all bounded by the contour that forms
the left end of the figure. If we choose
surface A or C, then Ampere’s law as we
have taken it gives nB · dns = µ0i, but if
we choose surface B, it gives nB · dns =
0. Since the integral on the left side is
exactly the same in all cases, something
is wrong.
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D. Note that the situation discussed and the lack of symmetry in the electromagnetic equations
suggests that Ampere’s law as used so far must be changed. Experiment confirms this
conjecture.

E. Explain that if the electric flux through an open surface changes with time, then there
is a magnetic field and the magnetic field has a tangential component at points on the
boundary. Write down the Maxwell law of induction: 8 nB · dns = µ060 dΦE/dt, where
ΦE is the electric flux through the surface. Compare to Faraday’s law and point out the
interchange of nB and nE, the change in sign, and the appearance of the factor µ060. State
that this law can be combined with Ampere’s law and write the complete Ampere-Maxwell
law: nB · dns = µ0i+ µ060 dΦE/dt.

F. Give the right-hand rule that relates the normal to the surface used to calculate ΦE and
the direction of integration around its boundary. State that the surface may be a purely
mathematical construction and that the law holds for any surface.

G. Consider a charging parallel-plate capacitor with circular plates and derive expressions in
terms of dE/dt for the magnetic field on a plane between the plates, at points both inside
and outside the capacitor. See Sample Problem 32—1.

III. Displacement current.

A. Define the displacement current: id = 60 dΦE/dt. Explain that it does not represent the
flow of charge and is not a true current, but that it enters the Ampere-Maxwell law in the
same way as a true current. Discuss the direction of id. Consider a region in which the
electric field is uniform and is changing. Find the direction for both an increasing and a
decreasing field.

B. Refer to the Ampere-Maxwell law. Explain that there are no changing electric fields in the
examples of previous chapters so only true currents were considered. Explain that there
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is no true current in the region between the plates of a charging capacitor, but there is a
displacement current.

C. Consider a parallel-plate capacitor with circular plates, for which dE/dt is given. Show that
the total displacement current in the interior of the capacitor equals the true current into
the capacitor. Explain that the sum of the true and displacement currents is continuous.
Optional: discuss a leaky capacitor.

D. Derive expressions in terms of id for nB at various points along the perpendicular bisector
of the line joining the plate centers. Consider points between the plates and outside them.

E. Show that the total displacement current between the plates of a capacitor is the same as
the true current into or out of the plates.

IV. Maxwell’s equations.
A. Write down the four equations in integral form and review the physical processes that each

describes. See Table 32—1.
B. Carefully distinguish between the line and surface integrals that appear in the equations

and give the right-hand rules that relate the direction of integration for the contour integrals
and the normal to the surface for the surface integrals.

C. Review typical problems: the electric field of a point charge, the magnetic field of a uniform
current in a long straight wire, the magnetic field at points between the plates of a capacitor
with circular plates, the electric field accompanying a changing uniform magnetic field with
cylindrical symmetry.

D. State that in the absence of dielectric and magnetic materials these equations describe all
electromagnetic phenomena to the atomic level and the natural generalizations of them
provide valid descriptions of electromagnetic phenomena at the quantum level. They are
consistent with modern relativity theory. Optional: for completeness you may want to
rewrite the equations and include magnetization and electric polarization terms.

V. Magnetic dipoles in matter.
A. Explain that current loops and bar magnets produce magnetic fields which, for points far

away, are dipole fields. Review the expressions for the magnetic field of a dipole and for
the dipole moment of a loop in terms of the current and area. Place a bar magnet under a
piece of plastic sheet on an overhead projector. Sprinkle iron filings on the sheet and show
the field pattern of the magnet. Remind students that field lines emerge from the north
pole and enter at the south pole.

B. Explain that the electron and many other fundamental particles have intrinsic dipole mo-
ments, which are related to their intrinsic spin angular momenta. Say that only one
component, usually taken to be the z component, can be measured at a time. The z
component of the spin angular momentum is Sz = ±h/4π = ±5.2729 × 10−35 J · s, where
h is the Planck constant. The z component of the associated magnetic dipole moment
is µS, z = −(e/m)Sz = ∓(eh/4πm) = ∓9.27 × 10−24 J/T, where m is the electron mass.
Since an electron is negatively charged, the dipole moment and spin angular momentum
are in opposite directions. Mention that particle and atomic magnetic moments are often
measured in units of the Bohr magneton µB: µB = eh/4πm. This is the magnitude of
the electron spin dipole moment.

C. Explain that electrons in atoms create magnetic fields by virtue of their orbital motions.
Derive Eq. 32—28, which gives the relationship between orbital angular momentum and
dipole moment for a negative particle, such as an electron. Say that quantum mechanically
the z component of the orbital angular momentum is given by Lorb, z = mfh/2π, where
mf = ±1, ±2, . . . , ±(limit) and “limit” is the largest magnitude of mf. The z component
of the dipole moment is µorb, z = −mf(eh/4π) = −mfµB.

D. Say that if an electron is placed in an external magnetic field, in the z direction, its magnetic
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energy is given by U = −µzBext. Draw an energy level diagram to show the splitting of
the levels in a magnetic field.

E. Remark that it is chiefly the orbital and spin dipole moments of electrons that are respon-
sible for the magnetic properties of materials. Explain how to calculate the dipole moment
of an atom: nµ = (−e/2m)nL + (−e/m)nS, where nL is the total orbital angular momentum
and nS is the total spin angular momentum of the electrons of the atom.

F. Explain that protons and neutrons also have intrinsic dipole moments, but that these are
much smaller than the dipole moment of an electron because the masses are so much larger.
Remark that nuclear magnetism has found medical applications.

VI. Magnetization.

A. Define magnetization as the dipole moment per unit volume. Although only uniformly
magnetized objects are considered in the text, you may wish to state the definition as the
limiting value as the volume shrinks to zero.

B. State that a magnetized object produces a magnetic field both in its exterior and interior
and write nB = nB0 + nBM for the total field. Here nB0 is the applied field and nBM is the
field due to dipoles in the material. Remark that for some materials nBM is in the same
direction as nB0, while for others it is in the opposite direction.

VII. Diamagnetism and paramagnetism.

A. Give a qualitative discussion of diamagnetism. Explain that an external field changes the
electron orbits so there is a net dipole moment and that the induced moment is directed
opposite to the field. This tends to make the total field weaker than the external field
alone. Bismuth is an example of a diamagnetic substance.

B. Give a qualitative discussion of paramagnetism. Explain that paramagnetic substances
are composed of atoms with net dipole moments and, in the absence of an external field,
the moments have random orientations, so that they produce no net magnetic field. An
external field tends to align the moments and the material produces its own field. Since
the moments, on average, are aligned with the external field, the total field is stronger
than the external field alone. Alignment is opposed by thermal agitation and both the net
magnetic moment and magnetic field decrease as the temperature increases.

C. Remind students that the potential energy of a dipole nµ in a magnetic field nB is given by
U = −nµ · nB and show that the energy required to turn a dipole end for end, starting with
it aligned with the field, is 2µB. Calculate U for µ = µB and B = 1T. Calculate the mean
translational kinetic energy for an ideal gas at room temperature (3

2
kT ) and remark that

there is sufficient energy for collisions to reorient the dipoles. Calculate the temperature
for which 2µB = 3

2
kT .

D. Give the Curie law for small applied fields. Explain that for small applied fields M is
proportional to B and inversely proportional to T . Draw the full graph of magnetization
as a function of the applied field and point out the linear region. Describe saturation and
explain that there is an upper limit to the magnetization. Point out this region on the
graph. The limit occurs when all atomic dipoles are aligned. Use a teslameter or flip coil
to measure the magnetic field just outside the end of a large, high-current coil. Put a large
quantity of manganese in the coil and again measure the field.

E. Explain that diamagnetic effects are present in all materials but are overshadowed by
paramagnetic or ferromagnetic effects if the atoms have dipole moments.

VIII. Ferromagnetism.

A. Explain that, for iron and other ferromagnetic substances (such as Co, Ni, Gd, and Dy),
the atomic dipoles are aligned by an internal mechanism (exchange coupling) so the sub-
stance can produce a magnetic field spontaneously, in the absence of an external field. At
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temperatures above its Curie temperature, a ferromagnetic substance becomes paramag-
netic. Gadolinium is ferromagnetic with a Curie temperature of about 20◦ C. Put a sample
in a beaker of cold water (T < 20◦ C) and use a weak magnet to pick it up from the bottom
of the beaker but not out of the water. Add warm water to the beaker and the sample will
drop from the magnet.

B. Describe ferromagnetic domains and explain that the dipoles are aligned within any domain
but are oriented differently in neighboring domains. The magnetic fields produced by the
various domains cancel for an unmagnetized sample. When the sample is placed in a
magnetic field, domains with dipoles aligned with the field grow in size while others shrink.
The dipoles in a domain may also be reoriented somewhat as a unit.

C. Define hysteresis (see Fig. 32—19) and explain that the growth and shrinkage of domains are
not reversible processes. Domain size is dependent not only on the external field but also
on the magnetic history of the sample. When the external field is turned off, the material
remains magnetized. Draw a hysteresis curve and point out the approach to saturation
and the residual field. Explain that to demagnetize an ferromagnet an external field must
be applied in the direction opposite to the magnetization.

D. Explain the difference between soft and hard iron in terms of hysteresis. Use a large, high-
current coil to magnetize a piece of hard iron and show that it remains magnetized when
the current is turned off. Also magnetize a piece of soft iron and show it is magnetized only
as long as the current remains on. When the current is turned off, very little permanent
magnetization remains. Soft iron is used for transformer coils.

SUPPLEMENTARY TOPIC

Earth’s magnetic field. Section 32—6 describes the magnetic field of Earth. The shape, cause,
and some of the ramifications of Earth’s field are important topics and should be covered if you
have the time. If not, you might intersperse some of the information in your other lectures.
Explain that the field can be approximated by a magnetic dipole field. Draw a sphere, label the
north and south geographic poles, draw a dipole moment vector at the center (pointing roughly
from north to south, about 10◦ away from the axis of rotation), and draw some magnetic field
lines. Remark that the north pole of the dipole is near the south geographic pole. Define
declination and inclination.

SUGGESTIONS

1. Assignments

a. To test for understanding of Gauss’ law for magnetism, assign problem 2 or 3.

b. Ask students to think about a permanent bar magnet that pierces the surface of a sphere
and explain why the net magnetic flux through the surface is zero. Also ask them about
the electric flux as a single charge as it crosses the surface and the magnetic flux of a single
magnetic monopole as it crosses the surface.

c. To test for understanding of the direction of the magnetic field induced by a changing
electric field, assign questions 1 and 3.

d. Question 4 helps students think carefully about displacement current. Also assign problems
15, 16, and 19.

e. Questions 5 and 6 deal with the energy of a magnetic dipole in an external magnetic
field. They also deal with the intrinsic dipole moments of electrons. Assign problem 29 in
connection with the dipole moments of electrons.

f. Questions 7, 8, and 11 deal with diamagnetism and question 9 deals with paramagnetism.
Magnetization in a paramagnetic substance is covered in problems 38 and 39.
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g. The Curie temperature of a ferromagnet is covered in problem 42 and the magnetization of
a ferromagnet is covered in problem 44. Use problem 43 to show that magnetic interactions
are not responsible for ferromagnetism.

2. Demonstrations
a. Field of a magnet: Freier and Anderson Er4.
b. Gauss’ law: Freier and Anderson Er12.
c. Paramagnetism: Freier and Anderson Es3, 4.
d. Ferromagnetism: Freier and Anderson Es1, 2, 6 – 10.
e. Levitation: Freier and Anderson Er10, 11.

3. Books and Monographs
Magnetic Monopoles; edited by Alfred S. Goldhaber and W. Peter Trower; available from
the AAPT, One Physics Ellipse, College Park MD 20740—3845. Reprint collection, with a
resource letter.

4. Audio/Visual
a. Ferromagnetic Domain Wall Motion; Paramagnetism of Liquid Oxygen; from the AAPT

Miller collection of single-concept films; DVD; available from Ztek Co. (PO Box 11768,
Lexington, KY 40577—1768, www.ztek.com) and from the AAPT (see above for address).

b. Electromagnetism; VHS video tape; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com). Contains sections on Earth’s magnetic field,
origins of magnetism, ferromagnetic domains, and electromagnetic induction.

5. Laboratory
Meiners Experiment 11—6: Magnetization and Hysteresis. Faraday’s law is used to measure
the magnetic field inside an iron toroid for various applied fields. A plot of the field as a
function of the applied field shows hysteresis. A method for obtaining the hysteresis curve
as an oscilloscope trace is also given.

Chapter 33 ELECTROMAGNETIC WAVES

BASIC TOPICS

I. Qualitative features of electromagnetic waves.
A. Explain that an electromagnetic wave is composed of electric and magnetic fields. The

disturbance, analogous to the string shape that moves on a taut string, is made up of
the fields themselves, moving through space or a material medium. Also explain that
electromagnetic waves carry energy and momentum.

B. State that the wave speed in a vacuum is given by c = 1/
√
µ060 and is about 3.00×108m/s.

The existence of waves and this expression for the wave speed in vacuum are predicted by
Maxwell’s equations. Since the values of c and µ0 are fixed, this fixes 60.

C. Show the electromagnetic spectrum (Fig. 33—1 of the text) and point out the visible,
ultraviolet, infrared, x-ray, microwave, and radio regions. Remark that all the waves are
fundamentally the same, differing only in wavelength and frequency. Remind students that
60 and µ0 enter electrostatics and magnetostatics, respectively, and were first encountered
in situations that had nothing to do with wave propagation.

D. Restate that the visible spectrum extends from just over 400 nm to just under 700 nm.
Remark that while color is largely subjective, violet is at the short wavelength end while
red is at the high wavelength end. Use a prism to display the spectrum. Show Fig. 33—2
of the text and remark that human eyes are most sensitive in the green—yellow portion of
the spectrum and that sensitivity falls off rather rapidly on either side.
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E. State that an accelerating charge creates electromagnetic radiation. Show a diagram of an
oscillating electric dipole antenna and its fields (see Fig. 33—3. Point out that nE and nB are
perpendicular to each other and to the direction of propagation and that they oscillate in
phase with each other at any point. Explain the term polarization.

II. Traveling sinusoidal waves.
A. Take E(x, t) = Em sin(kx − ωt), along the y axis, and B(x, t) = Bm sin(kx − ωt), along

the z axis. Remark that both fields travel in the positive x direction and that they are in
phase. Remind students that the minus sign in the argument becomes a plus sign for a
wave traveling in the negative x direction.

B. Consider a rectangular area in the xy plane, with infinitesimal width dx and length h (along

y). Evaluate nE · dns and ΦB, then show that Faraday’s law yields ∂E/∂x = −∂B/∂t.
Substitute the expressions for E and B to show that E = cB, where c = ω/k. Stress that

the magnitudes of nE and nB are related. Remark that nE is different at different points
because nB changes with time.

C. Consider a rectangular area in the xz plane, with infinitesimal width dx and length h
(along z). Evaluate nB · dns and ΦE , then show that the Ampere-Maxwell law yields
−∂B/∂x = µ060 ∂E/∂t. Combine this with the result of part B to show that c = 1/√µ060.
Remark that nB is different at different points because nE changes with time. Emphasize
the role played by the displacement current.

III. Energy and momentum transport.
A. Define the Poynting vector nS = (1/µ0) nE × nB and explain that it is in the direction of

propagation and that its magnitude gives the electromagnetic energy per unit area that
crosses an area perpendicular to the direction of propagation per unit time. Remark that
for a plane wave, S = EB/µ0 = E

2/µ0c = cB
2/µ0.

B. Consider the plane wave of Section II, propagating in the positive x direction. Consider a
volume of width ∆x and cross section A (in the yz plane) and show that the electric and
magnetic energies in it are equal and that the total energy is ∆U = (EBA/µ0c)∆x, for
small ∆x. This energy passes through the area A in time ∆t = ∆x/c so the rate of energy
flow per unit area is EB/µ0, as previously postulated.

C. Explain that most electromagnetic waves of interest oscillate rapidly and we are not nor-
mally interested in the instantaneous values of the energy or energy density. Explain how
to find the average over a period of the square of a sinusoidal function. Define the intensity
as the time average of the magnitude of the Poynting vector and write expressions for it
in terms of the average energy density and in terms of the field amplitudes.

D. Explain that electromagnetic waves transport momentum and that S/c gives the momen-

tum that crosses a unit area per unit time. The momentum is in the direction of nS. Also
explain that if an object absorbs energy U , then it receives momentum U/c. If the object
reflects energy U , then it receives momentum 2U/c.

E. Show that if a wave, incident normal to a surface of area A, is completely absorbed, then
the force on the surface is IA/c and the radiation pressure is I/c, where I is the intensity.
Show that the force and radiation pressure have twice these values if the wave is completely
reflected.

F. As an example of radiation pressure, you may wish to consider solar pressure. S can be
determined from the solar constant 1.38 kW/m2 (valid just above Earth’s atmosphere).

IV. Polarization.
A. Remind students that a linearly polarized electromagnetic wave is one for which the electric

field is everywhere parallel to the same line. As the wave passes by any point, the field
oscillates along the line of polarization.
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B. Explain that a linearly polarized wave can be resolved into two other linearly polarized
waves with mutually orthogonal polarization directions. Take the original polarization
direction to be at the angle θ to one of the new directions and show that the amplitudes
are given by E1 = Em cos θ and E2 = Em sin θ, where Em is the original amplitude.

C. Explain that the electric field associated with unpolarized light does not remain in the
same direction for more than about 10−8 s and the new direction is unrelated to the old.

D. Shine unpolarized light through crossed Polaroid sheets and note the change in intensity
as the second sheet is rotated. Show that the intensity does not change if the first sheet
is rotated. Remark that for an ideal polarizing sheet the transmitted intensity is half the
incident intensity.

E. Derive the law of Malus. Explain that the light emerging from the first Polaroid sheet is
linearly polarized in a direction determined by the orientation of the sheet. Remark that
this direction is called the polarizing direction of the sheet. Draw a diagram of the electric
field amplitude as the light enters the second sheet, at an angle θ to the polarizing direction
of the second sheet. Resolve the amplitude into components along the polarizing direction
and perpendicular to it. Explain that the first component is transmitted through the sheet
while the second is absorbed. The amplitude of the transmitted wave is proportional to
cos θ and the intensity is proportional to cos2 θ.

F. Shine unpolarized light onto two crossed Polaroid sheets and remark that no light is trans-
mitted. Then, slide another sheet between the two and point out the change in transmitted
intensity as you rotate the sheet in the middle. The sheets can be taped to ringstands to
hold them. Explain the phenomenon by examining the polarization at each stage of the
transmission.

V. Wave and geometrical optics.
A. Explain that optical phenomena outside the quantum realm can be understood in terms

of Maxwell’s equations and that the wave nature of electromagnetic radiation must be
taken into account to explain many important phenomena. State that some of these will
be discussed later.

B. Explain that if the wavelength of the light is much smaller than any obstacles it meets or
any slits through which it passes, then the important property is the direction of motion,
not details of the wave nature. This is the realm of geometrical optics.

C. Define a ray as a line that gives the direction of travel of a wave. It is perpendicular to
the wave fronts (surfaces of constant phase). Explain that geometrical optics deals largely
with tracing rays as light is reflected from surfaces or passes through materials.

VI. Reflection and refraction.
A. Explain that when light traveling in one medium strikes a boundary with another medium,

some is reflected and some is transmitted into the second medium. Draw a plane boundary
between two media and show an incident, a reflected, and a refracted ray. Label the angles
these rays make with the normal to the surface. Use θ1 to label the angle of incidence,
θI1 to label the angle of reflection, and θ2 to label the angle of refraction. Emphasize that
these angles are measured relative to the normal to the surface.

B. Tell students that the speed of light may be different in different materials and state that
the speeds of light in the two media are crucial for determination of the amplitudes of the
reflected and refracted light and for determination of the angle of refraction. Define the
index of refraction of a medium as the ratio of the wave speed in vacuum to the wave speed
in the medium and write v = c/n. Remark that the index of refraction is a property of the
medium and depends on the wavelength. Point out Table 33—1, which gives the indices of
refraction of various materials. Note that the index of refraction for a vacuum is 1 and is
nearly 1 for air. State it is wavelength dependent and point out Fig. 33—19.
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C. Consider a plane wave incident on a plane surface. Write down the law of reflection:
θ1 = θI1.

D. Write down the law of the law of refraction: n1 sin θ1 = n2 sin θ2.

E. Explain that light rays are bent toward the normal when light enters a more optically dense
medium (higher index of refraction) and are bent away from the normal when it enters a
less optically dense medium.

F. Consider light striking a water surface from air and trace a few rays. Consider light from
an underwater source and trace a few rays as they enter the air. Consider a slab of glass
with parallel sides and show that the emerging ray has the same direction as the entering
ray but is displaced along the slab. Optional: derive the expression for the displacement.

G. Trace a ray through a prism and derive the expression for the angle of deviation: ψ =
θ1 + θ2 + φ, where θ1 is the angle of incidence, θ2 is the angle of emergence, and φ is
the prism angle. Explain that ψ is different for different colors because n depends on
wavelength.

H. Shine an intense, monochromatic, well-collimated beam on a prism and point out the
reflected and refracted beams. A laser works reasonably well but it is difficult for the class
to see the beam. Use smoke or chalk dust to make it visible. To avoid the mess, use an
arc beam or the beam from a 35mm projector, filtered by red glass. Make a 1

2 in. hole in
a 2 in. by 2 in. piece of aluminum and insert it in the film gate. Use white light from the
projector and the prism to show that different wavelengths are refracted through different
angles.

I. Explain total internal reflection. Show that no wave is transmitted when the angle of
incidence is greater than the critical angle and derive the expression for the critical angle
in terms of the indices of refraction. Stress that the index for the medium of incidence must
be greater than the index for the medium of the refracted light. Total internal reflection
can be demonstrated with some pieces of solid plastic tubing having a diameter larger than
that used for fiber optics. The beam inside is quite visible. If time permits, discuss fiber
optics and some of its applications.

VII. Polarization by reflection.

A. Reflect a well collimated beam of unpolarized light from a plane glass surface. A slide
projector beam does nicely. Darken the room and obtain a reflection spot on the ceiling.
Place a Polaroid sheet in the reflected beam and note the change in intensity of the spot
as you rotate it. Remark that the reflected light is partially polarized.

B. Orient the incident beam so the angle of incidence is Brewster’s angle and use the Polaroid
sheet to show the reflected light is now entirely polarized.

C. Discuss Brewster’s law. Explain that unpolarized light incident on a boundary is partially
or completely polarized on reflection. When the angle of incidence and the angle of refrac-
tion sum to 90◦, the reflected light is completely polarized, with nE perpendicular to the
plane of the incident and reflected rays. Show that the angle of incidence θB for completely
polarized reflected light is given by tan θB = n2/n1, where medium 1 is the medium of the
reflected ray.

SUGGESTIONS

1. Assignments

a. Relationships among frequency, wavelength, and speed are explored in problems 2, 3, and
4. These also give some examples of high and low frequency electromagnetic radiation and
ask students to interpret Fig. 33—2, which graphs the sensitivity of the human eye as a
function of wavelength.
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b. To stress the relationship between nE and nB in an electromagnetic wave, assign problem
8. Use questions 1 and 2 in the discussion of the relationships among the directions of the
electric field, the magnetic field, and the direction of propagation.

c. To emphasize the magnitude of the energy and momentum carried by an electromagnetic
wave, assign problems 13 and 23. Also consider some problems that deal with point sources:
15 and 17, for example.

d. Use questions 3, 4, and 6 to test for understanding of polarization. The fundamentals
of polarizing sheets are covered in problems 35 and 37. In the first, the incident light is
unpolarized while in the second, it is polarized. Also consider problem 43.

e. Problem 45 covers the law of refraction. Also consider questions 7, 9, and 10.
f. Assign problems 54 and 57 in connection with total internal reflection. Assign either
problem 65 or 87 in connection with polarization by reflection.

2. Demonstrations
Radiation: Freier and Anderson Ep4, 5.

3. Books and Monographs
a. Resource Letters, Book Four and Resource Letters, Book Five; American Association of

Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt
.org). Contains resource letters on light.

b. Connecting Time and Space. See Chapter 2 SUGGESTIONS.

4. Audio/Visual
a. Color, Scattering, Polarization; from Cinema Classics DVD 4: Waves (II) & Electricity

and Magnetism; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768,
www.ztek.com) and from the AAPT (see above for address).

b. Light ; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com).

c. The Determination of the Velocity of Light ; VHS video tape, DVD; Films for the Human-
ities and Sciences (see above for address).

d. Reflection, Refraction, and Dispersion; from Cinema Classics DVD 3: Waves (I); available
from Ztek Co. (see above for address) and from the AAPT (see above for address).

e. Propagation of Light ; Visible and Infrared Spectrum; from Physics Demonstrations in Light,
Part I; VHS video tape, DVD; ≈3 min each; Physics Curriculum & Instruction (22585
Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).

5. Computer Software
a. Optics from Exploration of Physics Volume I; Windows and Macintosh; Physics Curricu-

lum & Instruction (Physics Curriculum & Instruction (see above for address). Simulated
experiments with analysis. Includes a section on Snell’s law.

b. Light and Optics from Exploration of Physics Volume II; Windows and Macintosh; Physics
Curriculum & Instruction (see above for address). Includes sections on measurements of
the speed of light, polarization, and refraction.

c. Physics Simulation Programs. See Chapter 16 SUGGESTIONS.

6. Laboratory
a. Probeware Activity 27: Polarization. A light intensity probe, connected to a computer, is

used to investigate the intensity of light transmitted through two or more polarizing sheets.
A rotary motion sensor automates the procedure so a plot of the intensity as a function
of the relative orientation of the sheets is displayed on the monitor. Students verify the
cosine squared law.

b. Meiners Experiment 13—7; Polarization of Light. Polaroid sheets are first investigated and
the law of Malus is verified. Then, a Polaroid sheet is used to investigate polarization
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by reflection, by refraction, and by scattering. Brewster’s angle is found. Rotation of the
direction of polarization by a sugar solution is also studied and crossed polarizer are used to
check various objects for stresses. This is essentially a series of demonstrations performed
by students.

c. Bernard Experiment 46; Polarized Light. Similar to Meiners Experiment 13—7 except light
transmitted by a calcite crystal is also investigated. A photodetector is used to obtain
quantitative data.

d. Meiners Experiment 13-3: Prism Spectrometer. Helium lines are used to determine the
index of refraction as a function of wavelength for a glass prism. A good example of dis-
persion and excellent practice in carrying out a rather complicated derivation involving
Snell’s law. Also see Bernard Experiment 43: Index of Refraction with the Prism Spec-
trometer and Bernard Experiment 44: The Wavelength of Light. In the second of these
experiments, students use a prism spectrometer to determine the wavelength of lines from
a sodium source.

Chapter 34 IMAGES

BASIC TOPICS

I. Plane mirrors.
A. Consider a plane wave incident on a plane mirror. Remind students of the law of reflection:

θ1 = θI1.
B. Consider a point source in front of a plane mirror. Draw both incident and reflected rays

and show that the reflected rays appear to come from a point behind the mirror. Show
that the object and image lie on the same normal to the mirror and that they are the same
distance from the mirror. Remark that no light comes from the image and that the image
is said to be virtual.

C. Define the object distance p and image distance i and explain that the latter is taken to
be negative for virtual images. The law of equal distance is written p = −i.

D. Give the condition for being able to see an image. Draw a mirror, an eye, a source, and
its image. Draw the line from the image to the eye and state that the image can be seen if
this line intersects the mirror. Show that length of a wall mirror with its top edge at eye
level need reach only halfway to the floor for a person to see his feet. Demonstrate with a
mirror resting on the floor and half-covered with a cloth. Have a student stand in front of
the mirror. Start with the cloth about shoulder height and lower it until the student can
see his feet.

II. Spherical mirrors.
A. Consider a point source in front of a concave spherical mirror. Draw a diagram that shows

the central axis, the center of curvature, and the source on the axis, outside the focal point.
Show that small-angle rays form an image and that object and image distances are related
by 1/p+1/i = 2/r. To emphasize the small-angle approximation, consider the case p = 2r
and use a full hemispherical concave surface. The small-angle formula predicts all rays
cross the axis at i = (2/3)r, but the ray that strikes the edge of the mirror crosses at the
vertex.

B. Explain that the mirror equation is also valid for convex mirrors and for any position of
the object, even virtual objects for which incoming rays converge toward a point behind
the mirror. Give the sign convention: p and i are positive for real objects and images (in
front of the mirror) and are negative for virtual objects and images (behind the mirror); r
is positive for concave mirrors (center of curvature in front of the mirror) and negative for
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convex mirrors (center of curvature behind the mirror). Remark that a surface is concave
or convex according to its shape as seen from a point on the incident ray.

C. Define the focal point as the image point when the incident light is parallel to the axis.
By considering a source far away, show that f = r/2. Consider a concave mirror and show
that for p > f , the image is real; for p < f , the image is virtual. Also show that for p = f ,
parallel rays emerge after reflection.

D. Describe a geometric construction for finding the image of an extended source. Trace rays
from an off-axis point: one through the center of curvature, one through the focal point,
and one parallel to the axis. Use both concave and convex mirrors as examples. Explain
that the geometric construction gives the same result as the small-angle approximation if
reflection is assumed to take place at a plane through the mirror vertex and perpendicular
to the optic axis. The law of reflection cannot be applied at this plane, of course.

E. Define lateral magnification and show that m = −i/p. Explain the sign: m is positive for
erect images and negative for inverted images. Virtual images of real objects are erect and
real images of real objects are inverted.

F. Take the limit r→∞ and show that the mirror equation makes sense for a plane mirror.

III. Spherical refracting surfaces.
A. Draw a convex spherical boundary between two media, use the law of refraction to trace a

small-angle ray from a source on the central axis, and show that n1/p+n2/i = (n2−n1)/r,
where n1 is the index of refraction for the region of incident light and n2 is the index of
refraction for the region of refracted light. You can demonstrate the bending of the light
using a laser and a round-bottom flask. Use a little smoke or chalk dust to make the beam
visible in air and a pinch of powdered milk in the water to make it visible inside the flask.

B. Explain the sign convention. Point out that real images are on the opposite side of the
boundary from the incident light and virtual images are on the same side. Explain that p
and i are positive for real objects and images, negative for virtual objects and images. r is
positive for convex surfaces, negative for concave. With this sign convention, the equation
holds for concave or convex surfaces and for n2 > n1 or n1 > n2.

C. Consider the limit r →∞, which yields i = −pn2/n1. This is the solution to the apparent
depth problem. For water four inches deep, a ball on the bottom appears to be at a depth
of about three inches. Use an aquarium filled with water and a golf ball to make a hallway
display.

IV. Thin lenses.
A. Explain that a lens consists of two refracting surfaces close together in vacuum. State or

derive the thin lens equation: 1/p + 1/i = (n − 1)(1/r1 − 1/r2), where n is the index of
refraction for the lens material. Stress that the equation holds for small-angle rays. State
that it also holds to a good approximation for a lens in air. r1 is the radius of the first
surface struck by the light and r2 is the radius of the second. They are positive or negative
according to whether the surfaces are convex or concave when viewed from a point on the
incident ray. You may wish to generalize the equation by retaining the indices of refraction.
The result is 1/p+1/i = (n2/n1−1)(1/r1−1/r2). This allows you to consider a thin glass
or air lens in water.

B. By considering p→∞, show that the focal length is given by 1/f = (n−1)(1/r1−1/r2) or
more generally by 1/f = (n2/n1−1)(1/r1−1/r2). Show that the same value, including sign,
is obtained no matter which surface is struck first by light. Then show that 1/p+1/i = 1/f .
Point out that there are two focal points, the same distance from the lens but on opposite
sides. For a converging lens, rays from a point source at f on one side are parallel on the
other side; incident parallel rays converge to f on the other side. For a diverging lens, rays
that converge toward f on the other side emerge parallel; rays that are parallel emerge as
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diverging from f on the incident side.
C. Show how to locate the image of an extended object by tracing a ray parallel to the axis,

a ray through the lens center, and a ray along a line through the first focal point (on the
incident side for a converging lens and on the other side for a diverging lens).

D. Define lateral magnification and show that m = −i/p. Explain that the sign tells whether
the image is erect or inverted.

E. Consider all possible situations: converging lens with p > f , p < f , and p = f ; diverging
lens with p > f , p < f , and p = f . In each case, show whether the image is real or virtual,
erect or inverted, and find its position relative to the focal point.

F. Note that most optical instruments are constructed from a combination of two or more
lenses. Point out that to analyze them, one considers one lens at a time, with the image
of the previous lens as the object of the lens being considered. This sometimes leads to
virtual objects. Note that the overall magnification is given by m = m1m2m3 . . . and that
the sign of m tells whether the image is erect or inverted. If the image lies on the opposite
side of the system from the object and is outside the system, then it is real; otherwise it is
virtual.

SUPPLEMENTARY TOPIC

Optical instruments. This section may be studied in the laboratory. Ask students to experiment
with the image forming properties of positive and negative lenses, then construct one or more
optical instruments. Display several instruments in the lab.

SUGGESTIONS

1. Assignments
a. Interesting applications of plane mirrors are covered in problems 4 (can observer see an

image?) and 120 (rotation of mirror). Problem 102 and question 3 deal with images in
multiple mirrors.

b. Use questions 3 and 5 to discuss images in spherical mirrors. Problems 19 through 21 cover
nearly all possibilities. Lateral magnification is covered in problem 7.

c. Assign problem 32 in connection with spherical refracting surfaces. Problems 34 through
40 cover all possibilities.

d. Use question 6 to discuss images formed by thin lenses. For comprehensive coverage of
nearly all relationships, assign problems 66, 67, 68 and 74 through 77. Problems 43 and
45 test understanding of the lensmaker’s equation. Also assign problem 125, which deals
with a compound system and includes a ray tracing exercise.

e. Consider expanding the course a little by including problem 91, which deals with the human
eye.

2. Demonstrations
a. Plane mirrors: Freier and Anderson Ob1 - 6, Ob8.
b. Refraction at a plane surface: Freier and Anderson Od1 - 7.
c. Prisms: Freier and Anderson Of1 - 4.
d. Total internal reflection: Freier and Anderson Oe1 - 7.

3. Books and Monographs
a. Resource Letters, Book Four and Resource Letters, Book Five; American Association of

Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt
.org). Contains a list of journal articles on optics.

b. The Camera; by Bill G. Aldridge, Gary S. Waldman, and John Yoder III.; available from
the AAPT (see above for address). Concepts important for understanding cameras.

126 Lecture Notes: Chapter 34



4. Audio/Visual
Optics; VHS video tape, DVD; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com).

5. Computer Software
a. Ray ; Miky Ronen; Macintosh; available from Physics Academic Software (Centennial Cam-

pus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212; www.aip.org/pas). A
ray-tracing program. The user can place reflecting surfaces, refracting surfaces, mirrors,
lenses, and prisms on the screen and control their orientation. Rays are traced using either
the paraxial approximation or the actual path.

b. Optics from Exploration of Physics Volume I; Windows and Macintosh; Physics Curriculum
& Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurriculum.com).
Simulated experiments with analysis. Includes a section on lenses.

c. Optics Phenomena; Helmut F. Mikelskis; Windows; available from Physics Academic Soft-
ware (see above for address). Interactive modules dealing mostly with geometrical optics.

d. Light and Optics from Exploration of Physics Volume II; Windows and Macintosh; Physics
Curriculum & Instruction (see above for address). Includes sections on formation of real
images and ray tracing.

6. Laboratory
a. Meiners Experiment 13—1: Laser Ray Tracing. A laser beam is used to investigate the

laws of reflection and refraction and to observe total internal reflection and the formation
of images by spherical mirrors. Measurements are used to calculate the index of refraction
of several materials, including liquids, and the focal length of mirrors. Tracing is done by
arranging the apparatus so the laser beam grazes a piece of white paper on the lab table.
Much the same set of activities are described in Bernard Experiment 38: Reflection and
Refraction of Light, but pins are used as objects rather than a laser source and rays are
traced by positioning other pins along them. The technique can be used if you do not have
sufficient lasers for the class.

b. Bernard Experiment 39: The Focal Length of a Concave Mirror. Several methods are
described, including a technique that involves finding the radius of curvature. Others
involve finding the image when the object distance is extremely long, when it is somewhat
greater than 2f , and when it is somewhat less than 2f . Then, the mirror equation is used
to solve for f .

c. Meiners Experiment 13—2: Lenses. A light source and screen on an optical bench are used
to find the focal lengths and magnifications of both convex and concave lenses. Chromatic
and spherical aberrations are also studied. Also see Bernard Experiment 40: Properties of
Converging and Diverging Lenses, a compendium of techniques for finding focal lengths.

d. Bernard Experiment 41: Optical Instruments Employing Two Lenses. Students construct
simple two-lens telescopes and microscopes on optical benches, then investigate their mag-
nifying powers. By trying various lens combinations, they learn the purposes of the objec-
tive and eyepiece lenses.

Chapter 35 INTERFERENCE

BASIC TOPICS

I. Huygens’ principle.
A. Shine monochromatic light through a double slit and project the pattern on the wall. Either

use a laser or place a single slit between the source and the double slit. Use a diagram
to explain the setup. Point out the appearance of light in the geometric shadow and the
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occurrence of dark and bright bands. You can make acceptable double slits by coating a
microscope slide with lamp black or even black paint. Tape a pair of razor blades together
and draw them across the slide. By inserting various thicknesses of paper or shim stock
between the blades, you can obtain various slit spacings.

B. Explain that Huygens’ principle will be used to understand the pattern, then state the
principle. Describe plane wave propagation in terms of Huygen wavelets: draw a plane
wave front, construct spherical wave fronts of the same radius centered at several points
along the plane wave front, then draw the plane tangent to these.

C. Use Huygens’ principle to derive the law of refraction. Assume different wave speeds in
the two media and show that the wavelengths are different. Consider wavefronts one
wavelength apart and show that sin θ1/ sin θ2 = v1/v2. Explain that n = c/v and obtain
the law of refraction.

D. Go back to the double-slit pattern and explain that those parts of an incident wave front
that are within the slit produce spherical wavelets that travel to the screen while wavelets
from other parts are blocked. Some wavelets reach the geometric shadow. The spreading of
the pattern beyond the shadow is called diffraction and will be studied in the next chapter.
Wavelets from different slits arrive at the same point on the screen and interfere to produce
the bands. This phenomena will be studied in this chapter.

II. Two-slit interference patterns.
A. Draw a diagram of a plane wave incident normally on a two-slit system and draw a ray

from each slit to a screen far away. Remark that the waves are in phase at the slits
but they travel different distances to get to the same point on the screen and may have
different phases there. The electric fields sum to the total electric field. At some points,
the two fields cancel, at other points they reinforce each other. Remind students that the
intensity is proportional to the square of the total field, not to the sum of the squares of
the individual fields.

B. Point out that if the screen is far away, the two rays are nearly parallel, then show that the
difference in distance traveled is d sin θ, where d is the slit separation and θ is the angle the
rays make with the forward direction. Explain the condition d sin θ = mλ for a maximum
of intensity and the condition d sin θ = (m+ 1

2
)λ for a minimum.

C. Show that a lens can be used to obtain the same pattern, even if the screen is not far away.

III. The intensity.
A. Take the two fields to be E1 = E0 sin(ωt) and E2 = E0 sin(ωt+φ), where φ = (2π/λ)d sin θ.

This is easily shown by remarking that φ = k∆d, where k = 2π/λ and∆d = d sin θ (derived
earlier).

B. Explain how the fields can be represented on a phasor diagram. Explain that a phasor has
a length proportional to the amplitude and makes the angle ωt or ωt+φ with the horizontal
axis. Its projection on the vertical axis is proportional to the field. Sum the phasors to
obtain the total field. Show that the amplitude Eθ of the total field is 2E0 cos(φ/2). Plot
the intensity 4E20 cos

2(φ/2) as a function of φ. Point out that φ = 0 produces a maximum,
that maxima occur at regular intervals, and that the minima are halfway between adjacent
maxima.

C. Show that the intensity at a maximum is four times the intensity due to one source alone.
Remark that no energy is gained or lost. All energy through the slits arrives at the screen.
The presence of the slitted barrier, however, redistributes the energy.

D. Note the half-width of each maximum, at half the peak, is given by sin θ = λ/4d. The
smaller λ/d, the sharper the maximum. Near the central maximum, where sin θ ≈ tan θ ≈
θ, the linear spread on the screen is y ≈ (λ/2d)D, where D is the distance from the slits
to the screen.
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E. It is also worth noting that since sin θ = mλ/d ≤ 1 for a maximum, the smaller λ/d, the
more maxima occur.

F. For completeness, you might mention the amplitude of the wavelets fall off as 1/r and are
not quite the same at the screen. Show this is a negligible effect for the patterns considered
here.

IV. Coherence.
A. Explain that two waves are coherent if their relative phase does not change with time.
B. Explain that the two interfering waves must be coherent to obtain an interference pattern.

The phase difference at the observation point must be constant over the observation time.
Explain why two incandescent lamps, for example, do not produce a stable interference
pattern. The light is from many atoms and the emission time for a single atom is about
10−8 s. The phase difference changes in a random way over times that are short compared
to the observation time. State that in this case the intensities add.

C. Explain that an extended source can be used to obtain an interference pattern. Light from
each atom goes through both slits and forms a pattern, but the patterns of different atoms
are displaced from each other, according to the separation of the atoms in the source. No
pattern is seen unless the incident light comes only from a small region of the source. If
you did not use a laser in the demonstration, explain the role of the single slit in front of
the double slit.

D. Explain that a laser produces coherent light even though many atoms are emitting simul-
taneously. Because emission is stimulated, light from any atom is in phase with light from
all other atoms. A laser can be used to form an interference pattern without restricting
the incident beam.

V. Thin-film interference.
A. Cut a 1 to 2mm slit in a 2” square piece of aluminum and insert it in the film gate of a

35mm projector. Let the beam impinge on a soap bubble to show the effect.
B. Consider normal incidence on a thin film of index n1 in a medium of index n2 and suppose

the medium behind the film has index n3. Explain that a wave reflected at the interface
with a medium of higher index undergoes a phase change of π. If n1 < n2 < n3, waves
reflected at both surfaces undergo phase changes of π. Consider all other possibilities and
then specialize to a thin film of index n in air. Give the conditions for maxima and minima
for both the reflected light and the transmitted light, assuming near normal incidence.
Note that the wavelength in the medium must be used to calculate the phase change on
traveling through the medium. Define optical path length and point out its importance for
thin-film interference.

C. Broaden the discussion qualitatively by including non-normal incidence. Note that for
some angles, conditions are right for destructive interference of a particular color while at
other angles, conditions are right for constructive interference of the same color. Also note
that these angles depend on λ. Hence the soap bubble colors.

D. If time permits, discuss Newton’s rings. Use a plano-convex lens and a plane sheet of glass
together with a laser. Use a diverging lens to spread the beam.

SUPPLEMENTARY TOPIC

The Michelson interferometer. This is an excellent example of an application of interference
effects. Set up a hallway demonstration and give a brief explanation.
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SUGGESTIONS

1. Assignments
a. In the discussion of coherence, give a more detailed explanation of the single slit placed

between the source and the double slit.
b. Questions 1, 2, 3, and 4 and problems 1 through 13 are good tests of the fundamentals.

Some of the problems deal with the speed of light in material media while others deal with
the calculation of phase differences. Use them in the discussion or ask students to answer
a few of them for homework.

c. Problems 14 through 17 and 19, 20, and 23 deal with the basics of interference. Assign one
or two. Use problem 27 or 117 to test for understanding of the derivation of the double-slit
equation.

d. Assign problem 20, 21, or 22 in connection with the double-slit interference pattern. Also
consider questions 6, 7, and 8.

e. Use questions 10, 11, and 12 and a few of problems 41 through 52 to help with the discussion
of thin films. Problems 57 through 68 deal with interference on transmission through a
thin film. Some problems in these two groups ask for the wavelength and some ask for the
film thickness. Assign one of each.

f. Problems 79, 80, and 81 illustrate some applications of a Michelson interferometer.

2. Demonstrations
a. Double-slit interference: Freier and Anderson Ol4, 5, 9.
b. Thin-film interference: Freier and Anderson Ol15 – 18.
c. Michelson interferometer: Freier and Anderson Ol19.

3. Audio/Visual
a. Michelson Interferometer ; from the AAPT Miller collection of single-concept films; DVD;

available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and
from the American Association of Physics Teachers (AAPT, One Physics Ellipse, College
Park MD 20740—3845; www.aapt.org).

b. Interference; from Cinema Classics DVD 4: Waves (II) & Electricity and Magnetism;
available from Ztek Co. and from the AAPT (see above for addresses).

c. Interference; Thin Film Interference; from Physics Demonstrations in Light, Part II; VHS
video tape, DVD; ≈3 min each; Physics Curriculum & Instruction (22585 Woodhill Drive,
Lakeville, MN 55044; www.PhysicsCurriculum.com).

4. Computer Software

a. Wave Interference; Mike Moloney; DOS; available from Physics Academic Software (Cen-
tennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212; www.aip.org
/pas). Uses phasors to obtain intensity patterns.

b. Light and Optics from Exploration of Physics Volume II; Windows and Macintosh; Physics
Curriculum & Instruction (see above for address). Includes a section on double-slit inter-
ference.

5. Laboratory
a. Probeware Activity 28: Diffraction of Light. A light intensity detector is moved along the

interference pattern produced as laser light passes through double slits. The pattern is
shown on the computer monitor and is used to compute the wavelength of the light. A
single-slit diffraction pattern is also obtained and analyzed.

b. Meiners Experiment 13—4: Interference and Diffraction. Students observe double-slit pat-
terns of water waves in a ripple tank, sound waves, microwaves, and visible light. In each
case except water waves, they measure and plot the intensity as a function of angle, then
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use the data to calculate the wavelength. A microcomputer can be used to take data and
plot the intensity of a visible light pattern.

c. Meiners Experiment 13—6: The Michelson Interferometer. An interferometer is used to
measure the wavelengths of light frommercury and a laser and to find the index of refraction
of a glass pane and air. Good practical applications.

Chapter 36 DIFFRACTION

BASIC TOPICS

I. Qualitative discussion of single-slit diffraction.
A. Shine coherent monochromatic light on a single slit and project the pattern on the wall.

Point out the broad central bright region and the narrower, less bright regions on either
side, with dark regions between. Also point out that light is diffracted into the geometric
shadow.

B. Remark that diffraction can be discussed in terms of Huygens wavelets emanating from
points in the slit. Explain that they not only spread into the shadow region but that
they arrive at any selected point with a distribution of phases and interfere to produce the
pattern. Explain that for quantitative work, this chapter deals with Fraunhofer diffraction,
with the screen far from the slit.

C. Draw a single slit with a plane wave incident normal to it. Also draw parallel rays from
equally spaced points within the slit, all making the same angle θ with the forward direction.
Point out that all wavelets are in phase at the slit. The first minimum can be located by
selecting θ so that, at the observation point, the ray from the top of the slit is 180◦ out
of phase with the ray from the middle of the slit. All wavelets then cancel in pairs. Show
that this leads to a sin θ = λ, where a is the slit width. Point out that this value of θ
determines the width of the central bright region and that this region gets wider as the
slit width narrows. Use sin θ ≈ tan θ ≈ θ (in radians) to show that the linear width of the
central region on a screen a distance D away is 2Dλ/a. Use a variable width slit or a series
of slits to demonstrate the effect.

D. By dividing the slit into fourths, eighths, etc. and showing that in each case the wavelets
cancel in pairs if θ is properly selected, find the locations of other minima. Show that
a sin θ = mλ for a minimum.

E. Explain that for a < λ, the central maximum covers the whole forward direction. No point
of zero intensity can be observed. Also remark that the intensity becomes more uniform as
a decreases from λ. This was the assumption made in the last chapter when the interference
of only one wavelet from each slit was considered.

F. Qualitatively discuss the intensity. Draw a phasor diagram showing ten or so phasors
representing wavelets from equally spaced points in the slit. Show that each wavelet at
the observation point is out of phase with its neighbor by the same amount. First, show
the phasors with zero phase difference (θ = 0), then show them for a larger value of θ.
Show that they approximate a circle at the first minimum and then, as θ increases, they
wrap around to form another maximum, with less intensity than the central maximum.
Point out that as θ increases, the pattern has successive maxima and minima and that the
maxima become successively less intense.

II. The intensity.
A. Draw a diagram showing ten or so phasors along the arc of a circle and let φ be the phase

difference between the first and last. See Fig. 36—8. Explain that you will take the limit
as the number of wavelets increases without bound and draw the phasor addition diagram
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as an arc. Use geometry to show that Eθ = Em(sinα)/α, where α = φ/2. Point out that
the intensity can be written Iθ = Im(sin

2 α)/α2, where Im is the intensity for θ = 0. By
examining the path difference for the rays from the top and bottom of the slit, show that
α = (πa/λ) sin θ. Explain that these expressions give the intensity as a function of the
angle θ.

B. Sketch the intensity as a function of θ (see Fig. 36—7) and show mathematically that the
expression just derived predicts the positions of the minima as found earlier.

C. (Optional) Set the derivative of (sinα)/α equal to 0 and show that tanα = α at an intensity
maximum. State that the first two solutions are α = 4.493 rad and 7.725 rad. Use these
results to show that the intensity at the first two secondary maxima are 4.72 × 10−2 and
1.65 × 10−2, relative to the intensity for θ = 0. You might also want to pick a wavelength
and slit width, then find the angular positions of the first two secondary maxima. Remark
that they are close to but not precisely at midpoints between zeros of intensity.

III. Double-slit diffraction.
A. Consider the double-slit arrangement discussed in the previous chapter. Point out that

the electric field for the light from each of the slits obeys the equation developed for
single-slit diffraction and these two fields are superposed. They have the same amplitude,
Em(sinα)/α, and differ in phase by (2πd/λ) sin θ, where d is the center-to-center slit separa-
tion. The result for the intensity is Iθ = Im(cos

2 β)(sin2 α)/α2, the product of the single-slit
diffraction equation and the double-slit interference equation. Here β = (πd/λ) sin θ.

B. Sketch Iθ versus θ for a double slit and point out that the single-slit pattern forms an
envelope for the double-slit interference pattern. Remark that this is so because d must be
greater than a. See Fig. 36—14.

C. Show how to calculate the number of interference fringes within the central diffraction
maximum and remark that the result depends on the ratio d/a but not on the wavelength.

D. Discuss missing maxima. Point out that the first diffraction minimum on either side of
the central single-slit diffraction maximum might coincide with a double-slit interference
maximum, in which case the maximum would not be seen. Show that the maximum of
order m is missing if d/a = m.

IV. Diffraction gratings.
A. Make or purchase a set of multiple-slit barriers with 3, 4, and 5 slits, all with the same slit

width and spacing. Multiple slits can be made using razor blades and a lamp blackened
microscope slide. Use a laser to show the patterns in order of increasing number of slits.
Finish with a commercial grating.

B. Qualitatively describe the pattern produced as the number of slits is increased. Point out
the principle maxima and, if possible, the secondary maxima. Remark that the principle
maxima narrow and that the number of secondary maxima increases as the number of slits
increases. Remark that for gratings with a large number of rulings, the principal maxima
are called lines. For each barrier, sketch a graph of the intensity as a function of angle.
Explain that the single-slit diffraction pattern forms an envelope for the pattern.

C. Remark that you will assume the slits are so narrow that the patterns you will consider
lie well within the central maximum of the single-slit diffraction pattern and you need to
consider only one wave from each slit. Explain that lines occur whenever the path difference
for rays from two adjacent slits is an integer multiple of the wavelength: d sin θ = mλ.
Remark that m is called the order of the line. Also remark that the angular positions of
the lines depend only on the ratio d/λ and not on the number of slits or their width.

D. Consider N phasors of equal magnitude that form a regular polygon and remark this is the
configuration for an interference minimum adjacent to a principal maximum. Show that for
one of these minima the phase difference for waves from adjacent slits is 2π(m+1/N) and
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the path difference is d sin θ = λ(m+ 1/N). Replace θ with θ+ δθ, where d sin θ = mλ, to
derive the expression δθ = λ/Nd cos θ for the angular half-width of the principal maximum
at angle θ. Explain that this predicts narrowing of the principal maxima as the number of
slits is increased. Also explain that principal maxima at large angles are wider than those
at small angles.

E. Show a commercial transmission grating and tell students a typical grating consists of tens
of thousands of lines ruled over a few centimeters. Explain that light is transmitted through
both the rulings and the regions between but since these represent different thickness of
material, the phase of the waves leaving the rulings is different from that of waves leaving
the regions between. As a result, the diffraction pattern is the same as that of a multiple-
slit barrier. Say that a diffraction pattern is also produced by lines ruled on a reflecting
surface.

F. Put a grating in front of a white-light source and point out the spectrum. Put a grating in
front of a discharge tube to display the emission spectrum of hydrogen or mercury. Note the
separation of the lines corresponding to the same principal maximum produced by different
frequency light. Explain that atoms produce light with certain discrete frequencies and
that these are separated by the grating. Remark that measurements of the angles can be
used to compute the wavelengths present if the ruling separation is known. Point out the
colors of a compact disk or CD ROM.

V. X-ray diffraction (optional).
A. Explain that x rays are electromagnetic radiation with wavelength on the order of 10−10m

(1 Å). Point out that crystals are regular arrays of atoms with spacings on that order and
so can be used to diffract x rays.

B. Consider a set of parallel crystalline planes and explain that reflection of the incident beam
occurs at each plane, with the angle of reflection equal to the angle of incidence. Draw
a diagram like Fig. 37—28 and state that x-ray diffraction is conventionally described in
terms of the angle between the ray and the plane, rather than the normal to the plane.
Show that waves reflected from the planes interfere constructively if 2d sin θ = mλ.

C. Explain that for a given set of planes intense diffracted waves are produced only if waves
are incident at an angle θ that satisfies the Bragg condition, given above. Measurements
of these angles can be used to investigate the crystal structure. Show how to calculate the
distance between planes, given the wavelength and the scattering angle. Explain that a
crystal with a known structure can be used as a filter to obtain x rays of a given wavelength
from a source with a broad range of wavelengths.

SUPPLEMENTARY TOPICS

1. Diffraction from a circular aperture. This topic is important for its application to diffraction
patterns of lenses and the diffraction limit to the resolution of objects by a lens system. Show
a diagram or picture (like Fig. 36—9) and point out the bright central disk and the secondary
rings. Tell students that the angular position of the smallest ring of zero intensity occurs for
θ = 1.22λ/d, where d is the diameter of the aperture. If you intend to discuss the resolving
power of a grating, the Rayleigh criterion for a circular aperture should be covered first since
it is easier to present and understand. You can demonstrate the Rayleigh criterion by drilling
two small holes, closely spaced, in the bottom of a tin can. Place the can over a light bulb and
let students view it from various distances. See problem 36—17. Also use red and blue filters
to show the dependence on wavelength.

2. Dispersion and resolving power of a grating. Define the dispersion of a grating and show it is
m/d cos θ for a line of order m occurring at angle θ. Note that dispersion can be increased by
decreasing the ruling separation but dispersion does not depend on the number of rulings. If
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you have gratings with different ruling separations, use them to show the hydrogen spectrum
and point out the difference. Define the resolving power of a grating and show it is Nm for
the line of order m. Remark that the resolving power does depend on the number of rulings
and that the greater this number, the greater the resolving power. Show the sodium spectrum
with a grating for which the two D lines cannot be resolved, then show it with one for which
they can. Explain that dispersion and resolving power measure different aspects of the pattern
produced by a grating. The lines produced by two different wavelengths may be fairly well
separated in angle (large dispersion) but cannot be resolved because the principal maxima are
so wide (small resolving power).

SUGGESTIONS

1. Assignments
a. Basic relationships for the single-slit pattern are explored in problems 1, 2, 3, 6, and 7.

Assign a few of these. To test for qualitative understanding, consider questions 1, 2, and
4.

b. Following the discussion of the equation for the double-slit pattern, ask question 8. Char-
acteristics of the pattern are explored in problems 29, 30, and 33.

c. Diffraction from a circular aperture with application to the Rayleigh criterion for resolution
is covered in problems 16 through 28. Assign one or two if you cover this topic.

d. After discussing diffraction patterns of multiple slits, ask question 11. Problems 37 and
39 cover the fundamental equation for an intensity maximum. Questions 9 and 10 and
problem 42 deal with line width.

e. Ask question 12 in connection with the dispersion and resolving power of a grating. Assign
problems 49 and 50 if you cover this topic.

f. After discussing x-ray diffraction by crystals, assign problems 55 and 58. Problems 60 and
63 are a little more challenging. Problem 61 deals with the geometry of a square lattice.

2. Demonstrations
a. Single-slit diffraction: Freier and Anderson Ol2, 3, 6, 7.
b. Multiple-slit diffraction: Freier and Anderson Ol10, 13.
c. Diffraction by circular and other objects: Freier and Anderson Ol21 – 23.
d. Diffraction by crystals: Freier and Anderson Ol14.

3. Computer Software
a. Light and Optics. See Chapter 35 SUGGESTIONS.
b. EM Field . See Chapter 22 SUGGESTIONS.

4. Computer Projects
Have students use a computer to plot the intensity pattern for various situations including
the case when the screen is not far from the sources.

5. Laboratory
a. Probeware Activity 28: Diffraction of Light. See Chapter 35.
b. Meiners Experiment 13—4: Interference and Diffraction. See Chapter 40 notes.
c. Probeware Activity 29: Spectral Lines. A diffraction grating, along with the equipment of

Activity 28, is used to measure the wavelengths of the emission line of mercury vapor.
d. Meiners Experiment 13—5; Diffraction Gratings. Wavelengths of the helium spectrum are

found using a grating spectrometer and the influence of the number of grating rulings is
investigated.

e. Bernard Experiment 44; The Wavelength of Light. Wavelengths of the sodium spectrum
are found using a grating spectrometer. The wavelength of a laser is also found.

f. Bernard Experiment 45; A Study of Spectra with the Grating Spectrometer. Sources used
are a sodium lamp, an incandescent bulb, a mercury lamp, and a lamp containing an
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unknown element. The limits of the visible spectrum are determined and the unknown
element is identified.

Chapter 37 RELATIVITY

BASIC TOPICS

I. Introduction.
A. Consider a wave on a string and remind students that its speed relative to the string is

given by vw = τ/µ, where τ is the tension and µ is the linear mass density. Explain
that, according to non-relativistic mechanics, an observer running with speed v0 with the
wave measures a wave speed of vw−vo and an observer running against the wave measures
a wave speed of vw + vo. Remark that these results are not valid for light (or fast moving
waves and particles). The speed of light in a vacuum is found to be the same, regardless
of the speed of the observer (or the speed of the source).

B. Remark that this fact has caused us to revise drastically our idea of time. If, for example,
two observers moving at high speed with respect to each other both time the interval
between two events, they obtain different results.

C. Explain that special relativity is a theory that relates measurements taken by two observers
who are moving with respect to each other. Although it sometimes seems to contradict
everyday experience, it is extremely well-supported by experiment.

D. State the postulates: the laws of physics are the same for observers in all inertial frames; the
speed of light in a vacuum is the same for all directions and in all inertial frames. Remind
students what an inertial frame is. Explain that the laws of physics are relationships
between measured quantities, not the quantities themselves. Newton’s laws and Maxwell’s
equations are examples. State that relativity has forced us to revise Newton’s second law
but not Maxwell’s equations.

II. Time measurements.
A. Explain the term event and note that three space coordinates and one time coordinate are

associated with each event. Explain that each observer may think of a coordinate system
with clocks at all places where events of interest occur and that the clocks are synchronized.
Outline the synchronization process involving light. State that the coordinate system and
clock used by an observer are at rest with respect to the observer and may be moving from
the viewpoint of another observer.

B. State that two observers in relative motion cannot both claim that two events at differ-
ent places are simultaneous if their motion is not perpendicular to the line joining the
coordinates of the events. To illustrate, show Fig. 37—4 and explain that the events are
simultaneous in Sam’s frame but the Red event occurs before the Blue event in Sally’s
frame. Show that signals from the events meet at the mid-point of Sam’s spaceship but
the signal from the Red event gets to the mid-point of Sally’s spaceship before the signal
from the Blue event. Stress the importance of the second postulate for reaching these
conclusions.

C. Explain the light flasher used to measure time, in principle. Consider a flasher at rest in
one frame, take two events to be a flash and the subsequent reception of reflected light
back at the instrument, then remark that the time interval is ∆t0 = 2D/c, where D is
the separation of the mirror from the flash bulb. Consider the events as viewed in another
frame, moving with speed v perpendicularly to the light ray, and show the interval is
∆t = 2D/c 1− v2/c2 = ∆t0/ 1− v2/c2. This is also written ∆t = γ∆t0, where γ

(= 1/ 1− v2/c2) is called the Lorentz factor. State that v/c < 1 and γ > 1.
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D. Remark that ∆t0 is the proper time interval and that both events occur at the same coor-
dinate in the frame in which it is measured. Point out that ∆t is larger than ∆t0. Explain
that the same result is obtained no matter what clocks are used for the measurement (as
long as they are accurate and each is at rest in the appropriate frame). Ask students to
identify a frame to estimate the proper time interval for a ball thrown from third to first
base. Note that ∆t ≈ ∆t0 if v U c.

E. State that time dilation has been observed by comparing clocks carried on airplanes to
clocks remaining behind and by comparing the average decay time of fast moving funda-
mental particles to their decay time when at rest. You might want to discuss the twin
paradox here.

III. Length measurements.
A. Point out the problem with measuring the length of an object that is moving relative to

the meter stick: the position of both ends must be marked simultaneously (in the rest
frame of the meter stick) on the meter stick. If the speed v of the object is known, another
method can be used to measure its length: put a mark on a coordinate axis along the line
of motion of the object, then measure the time ∆t0 taken by the object to pass the mark.
The length is given by L = v∆t0. Note that ∆t0 is a proper time interval but L is not the
proper length.

B. Explain that the length of the object, as measured in its rest frame, is L0 = v∆t, where ∆t
is the time interval measured in that frame. Substitution of ∆t = γ∆t0 leads to L = L0/γ.
State that L0, the length as measured in the rest frame of the object, is called the proper
length. Since γ > 1, all observers moving with respect to the object measure a length that
is less than the rest length. The same result is obtained no matter what method is used
to measure length. Note that L ≈ L0 if v U c.

IV. The Lorentz transformation.
A. Consider two reference frames: SI moving with speed v in the positive x direction relative

to S. Remark that the coordinates of an event as measured in S are written x, y, z, t
while the coordinates as measured in SI are written xI, yI, zI, tI. Write down the Lorentz
transformation for the coordinate differences of two events: ∆xI = γ(∆x−v∆t), ∆yI = ∆y,
∆zI = ∆z, ∆tI = γ(∆t − v∆x/c2). Remark that these equations reduce to the Galilean
transformation if v U c: ∆xI = ∆x− v∆t, ∆yI = ∆y, ∆zI = ∆z, ∆tI = ∆t.

B. Explain that the transformation equations can be solved for ∆x and ∆t, with the result
∆x = γ(∆xI + v∆tI), ∆t = γ(∆tI + v∆xI/c2). From the viewpoint of an observer in SI, S
is moving in the negative xI direction, so the two sets of equations are obtained from each
other when v is replaced by −v and the primed and unprimed symbols are interchanged.

C. Discuss some consequences of the Lorentz transformation equations:
1. Simultaneity. Take ∆t = 0, ∆x W= 0 and show that ∆tI = −γv∆x/c2 ( W= 0). If

two events are simultaneous and occur at different places in S, then they are not
simultaneous in SI. Point out that ∆tI is positive for ∆x negative and is negative for
∆x positive. Similarly, take ∆tI = 0, ∆xI W= 0 and show ∆t = γv∆xI/c2 ( W= 0).

2. Time dilation. Consider two events that occur at the same place in S and show that
∆tI = γ∆t. Point out that ∆t is the proper time interval. Also show that the events
do not occur at the same place in SI: ∆xI = −γv∆t. Work the same problem for two
events that occur at the same place in SI.

3. Length measurement. Suppose the object is at rest in SI and the meter stick is at rest
in S. Marks are made simultaneously in S on the meter stick at the ends of the object.
Thus, ∆t = 0. Show that ∆xI = γ∆x and point out that ∆xI is the rest length. Work
the same problem with the object at rest in S and the meter stick at rest in SI.

4. Causality. Consider two events, the first of which influences the second. For example,
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a particle is given an initial velocity along the x axis and collides with another particle.
Remark that t2 (the time of the collision) must be greater than t1 (the time of firing).
Take ∆t = t2 − t1 and ∆x > 0, then show that the Lorentz transformation predicts
∆tI is positive for every frame for which v < c. The collision cannot happen before the
firing in any frame moving at less than the speed of light.

5. Velocity transformation. Tell students that v represents the velocity of frame SI relative
to S and that nu and nuI represent the velocity of a particle, as measured in S and SI,
respectively. Now take u and uI to be the x components of the particle velocity.
Divide the Lorentz equation for ∆x by the Lorentz equation for ∆t to show that the x
component of the particle velocity in S is u = (uI+ v)/(1+ vuI/c2). Show this reduces
to the Galilean transformation u = uI+ v for v U c. Take uI = c and show that u = c.
If uI < c, then u < c for all frames moving at less than the speed of light.

V. Relativistic momentum and energy.
A. Explain that the non-relativistic definition of momentum must be generalized if momentum

is to be conserved in collisions involving particles moving at high speeds. State that the
proper generalization is np = mnv/ 1− v2/c2. Remark that np is unbounded as the particle
speed approaches the speed of light. In this text, m is used for the rest mass and is called
simply the mass. The concept of relativistic mass is not used.

B. Remark that the definition of energy must be changed if the work-energy theorem is to
hold for particles at high speeds. State that the relativistically correct expression for the
energy of a free particle is E = mc2/ 1− v2/c2. Take the limit as v/c becomes small
and show that E can then be approximated by mc2+ 1

2
mv2. Thus, the correct relativistic

definition of the kinetic energy is K = E −mc2. Point out that the particle has energy
mc2 when it is at rest and remark that mc2 is called the rest energy.

C. Explain that mass and rest energy are not conserved in many interactions involving funda-
mental particles but that total energy E is; rest energy can be converted to kinetic energy
and vice versa.

D. Derive E2 = (pc)2 + (mc2)2 and explain that this expression replaces E = p2/2m (=
mv2/2). Remark that E = pc for a massless particle, such as a photon.

SUPPLEMENTARY TOPIC

The Doppler effect for light. The expression for the frequency transformation can be derived
easily by considering the measurement of the period in two frames. Suppose an observer
in S obtains T for the interval between successive maxima at the same place. This is a
proper time interval and the interval in another frame SI is γT . If SI is moving parallel to
the wave, however, the two events do not occur at the same place in SI and γT is not the
period in that frame. An observer in S I must wait for a time |∆xI|/c longer before the next
maximum is reached at the place of the first. Thus, T I = γT + |∆xI|/c or since ∆xI = −γTv,
T I = γT (1 + v/c) = T (1 + β)/(1 − β). Thus, f I = f (1− β)/(1 + β). If SI is moving
perpendicularly to the wave, the two events occur at the same place in both frames and T I = γT ,
so f I = f/γ.

SUGGESTIONS

1. Assignments
a. Simultaneity and time measurements are the issues in questions 2, 3, 5, and 7. Ask some

of them to test for understanding. Also assign problems 5 and 6.
b. When length contraction is covered, assign problems 9, 13, and 14.
c. Assign problems 16, 17, and 25 in support of the discussion of the Lorentz transformation.
d. Assign problems 27 and 30 in connection with the relativistic velocity transformation.
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e. Assign problems 29 and 33 in connection with the relativistic Doppler effect.
f. Use question 10 to broaden the discussion of mass and rest energy. Assign problems 42, 44,
47, and 54 in connection with relativistic energy and momentum. If you covered cyclotrons
in Chapter 28, assign problem 50.

2. Computer Software
a. RelLab; Paul Horwitz, Edwin F. Taylor, and Kerry Shetline; Macintosh; available from

Physics Academic Software (Centennial Campus, 940 Main Campus Drive, Suite 210,
Raleigh, NC 27606—5212; www.aip.org/pas). Shows the coordinates and times of events,
as measured in user-selected reference frames. Presents some relativity paradoxes that can
be understood with the aid of the program.

b. Spacetime; Edwin F. Taylor; Windows, Macintosh; available from Physics Academic Soft-
ware (see above for address). Shows a “spacetime highway”, on which objects in different
lanes move with different speeds. Shows the corresponding spacetime diagram, on which
events are identified. All the clocks and rulers are also shown so the user can compare
readings in different frames.

c. Relativity from Exploration of Physics Volume II; Windows and Macintosh; Physics Cur-
riculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCurricu-
lum.com). Includes sections on the Michelson-Morley experiment, simultaneity, length
contraction, and time dilation.

d. Relativistic Collision; Edwin F. Taylor; DOS, Macintosh; available from Physics Academic
Software (see above for address). Data is entered and the computer calculates the energy,
momentum, mass, and geometry.

3. Computer Project
Have students write a computer program or design a spreadsheet to evaluate the Lorentz
transformation equations. Then have them use it to investigate simultaneity, length con-
traction, and time dilation.

Chapter 38 PHOTONS AND MATTER WAVES

BASIC TOPICS

I. Introduction.
A. Explain that this chapter deals with some of the fundamental results of quantum physics.

The first few sections describe experimental results that can be understood only if light
is regarded as made up of particles. Remark that interference and diffraction phenomena
require waves for their explanation. Reconciliation of these opposing views will be discussed
later.

B. Explain that the energy of a photon is related to the frequency of the wave through E = hf
and the momentum of a photon is related to the wavelength of the wave through p = h/λ.
Show these equations predict p = E/c, the classical relationship. Also explain that the
energy density is nhf , where n is the photon concentration, and that the intensity is Rhf ,
where R is the rate per unit area with which photons cross a plane perpendicular to their
direction of motion. Recall the discussion of the Poynting vector in Chapter 33. Explain
that the Planck constant is a constant of nature and pervades quantum physics. Give its
value (6.63 × 10−34 J·s) and calculate the photon energy and momentum for visible light,
radio waves, and x rays.

C. Point out that classically monochromatic electromagnetic radiation can have any value of
energy. Quantum mechanically, this is not true, but since h is so small, the discreteness of
the energy values is important only at the atomic level.
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II. The photoelectric effect.
A. Sketch a schematic of the experimental setup. Explain that monochromatic light is incident

on a sample. It is absorbed and part of the energy goes to electrons, some of which are
emitted. The energy of the most energetic electron is found by measuring the stopping
potential V0.

B. Point out that the stopping potential is independent of the light intensity. As the intensity
is increased, more electrons are emitted but they are not more energetic. Show a plot of the
stopping potential as a function of frequency and point out that the relationship is linear
and that as the frequency is increased the electrons emitted are more energetic. Also state
that electrons are emitted promptly when the light is turned on. If the radiation energy
were distributed throughout the region of a wave, it would take a noticeable amount of
time for an electron to accumulate sufficient energy to be emitted, since an electron has a
small surface area. This argument can be made quantitative (see Sample Problem 38—2).

C. Give the Einstein theory. Electromagnetic radiation is concentrated in photons, with each
photon having energy hf . The most energetic electrons after emission are those with
the greatest energy while in the material and, in the interaction with a photon, receive
energy hf . If the light intensity is increased without changing the frequency, there are
more photons and, hence, more electrons emitted, but no single electron can receive more
energy. Furthermore, the electron receives energy immediately and need not wait to absorb
the proper amount.

D. Show that this analysis leads to hf = Φ+Km, where Φ is the work function, the energy
needed to remove the most energetic electron from the material. It is characteristic of
the material. Remark that Km = eV0 and that the Einstein theory predicts a linear
relationship between V0 and f and predicts a minimum frequency for emission: hf = Φ.
Remark that the emitted electrons have a distribution of speeds if hf > Φ because they
come from states with different energies.

III. The Compton effect.
A. Note that in the explanation of the photoelectric effect, a photon is assumed to give up all

its energy to an individual electron. The photon then ceases to exist. Explain that a photon
might transfer only part of its original energy in an interaction with an electron. Since a
lower energy means a lower frequency, the scattered light has a longer wavelength than the
incident light. State that a photon also carries momentum and part of it is transferred to
a target electron.

B. Discuss the experiment. Light is scattered from electrons in matter and the intensity of the
scattered light is measured as a function of wavelength for various scattering angles. Show
Figs. 38—3 and 38—4. Stress that the experimental data can be explained by considering the
interaction to be a collision between two particles, with energy and momentum conserved.
Relativistic expressions, however, must be used for energy and momentum.

C. Remark that the situation is exactly like a two-dimensional collision between two particles.
Write down the relativistic expressions for the momentum and energy of a particle with
mass (the electron) and remind students of the rest energy. Assume the electron is initially
at rest and that the photon is scattered through the angle φ. The electron leaves the
interaction at an angle θ to the direction of the incident photon. Write down the equations
for the conservation of energy and the conservation of momentum in two dimensions. Write
down the momentum and energy of the photon in terms of the wavelength and solve for
the change on scattering of the wavelength: ∆λ = (h/mc)(1 − cosφ). Emphasize that
agreement with experiment strongly supports the conclusion that the momentum of a
photon is p = h/λ.

D. Note that the change in wavelength is independent of wavelength and that the change
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is significant only for short wavelength light, in the x-ray and gamma ray regions. Also
state that the theoretical results successfully predict experimental data. The widths of the
curves are due chiefly to moving electrons, for which ∆λ is slightly different, and the peak
near ∆λ = 0 is due to scattering from more massive particles (atoms as a whole). Stress
that the particle picture of light accounts for experimental data.

IV. Matter waves.
A. Explain that electrons and all other particles have waves associated with them, just as

photons have electromagnetic waves associated with them. State that the waves exhibit
interference and diffraction effects. Draw a diagram of a single-slit barrier with a beam
of monoenergetic electrons incident on it and a fluorescent screen or other mechanism for
detecting electrons behind it. Explain that an intense central maximum is obtained and
that many electrons arrive in this region. Secondary maxima are also obtained.

B. State that the width of the central maximum depends on the speed of the electrons and
narrows if the speed is increased. The maximum also narrows if more massive particles are
used at the same speed. Remind students that when they studied the single-slit diffraction
of electromagnetic waves, they found the width of the central maximum narrowed as the
wavelength decreased. Conclude that the momentum of the particle is related to the
wavelength of the wave and that one is proportional to the reciprocal of the other.

C. State that the particle energy and the wave frequency are related by E = hf and that
the particle momentum and the wavelength are related by p = h/λ, just as for photons.
Calculate the wavelengths of a 1-eV electron and a 35-m/s baseball.

D. By way of example, state that crystals diffract electrons of appropriate wavelength (≈
10−10m) and the angular positions of the scattering maxima can be found using Bragg’s
law, suitably modified to account for changes in the propagation direction that occur when
matter waves enter the crystal.

E. Explain that, at the atomic and particle level, physics deals with probabilities. What can
be analyzed is the probability for finding a particle, not its certain position. State that a
one-dimensional matter wave is denoted by ψ(x) and that |ψ|2 gives the probability density
for finding the particle near x. That is, the probability that the particle is in the region
between x and x+ dx is given by |ψ(x)|2 dx. Similarly, if E is the electric field amplitude
for an electromagnetic wave, then E2 is proportional to the probability density for finding
a photon. In the limit of a large number of particles, |ψ|2 is proportional to the particle
concentration.

F. State that space-dependent part of a particle wave function obeys the Schrödinger equation:

d2ψ

dx2
+
8π2m

h2
[E − U(x)]ψ = 0 ,

where E is the energy of the particle and U(x) is its potential energy function. Explain
that, for a free particle, we may take U(x) = 0 and write

d2ψ

dx2
+ k2ψ = 0 ,

where k2 = (8π2m/h2)E. The most general solution is

ψ(x) = Aeikx +Be−ikx ,

where A and B are arbitrary constants. The first term represents a particle moving in the
positive x direction with momentum hk/2π and the second represents a particle moving
in the negative x direction with the same magnitude momentum.
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G. You may want to review some properties of complex numbers. Explain that a complex
number can be written ψ = ψR + iψI , where ψR is the real part and ψI is the imaginary
part. Say that i =

√−1. Define the complex conjugate: state that |ψ|2 = ψ∗ψ, where ψ∗

is the complex conjugate of ψ, and show that |ψ|2 = ψ2R + ψ2I . Also show that |eikx|2 = 1.
V. The uncertainty principle.

A. Because a different answer might result each time the position of the electron is measured,
there is an uncertainty in the position. It can be defined similarly to the standard devi-
ation of a large collection of experimental results. Similar statements can be made about
momentum measurements. Explain that the uncertainties in position and momentum are
both determined by the particle wave function. Explain that if the electron is placed in a
state for which the uncertainty in position is small then the uncertainty in momentum is
large and vice versa.

B. Give the Heisenberg uncertainty relations: ∆x ·∆px ≥ h̄, ∆y ·∆py ≥ h̄, and ∆z ·∆pz ≥ h̄
and state that h̄ is the Planck constant divided by 2π. Note that it is impossible to reduce
both the uncertainty in position and the uncertainty in momentum simultaneously to zero.
Compare this conclusion with the classical result by setting h̄ = 0.

VI. Barrier tunneling.
A. Show Figs. 38—15 and 38—16 and explain that the wave function penetrates a finite barrier.

It is oscillatory (in position) outside the barrier, where E > U0, and exponential inside,
where E < U0. The figure shows the probability density.

B. Explain that the particle has a probability of being found on either side of the barrier.
Contrast to the behavior of a classical particle.

C. Write down Eqs. 38—21 and 38—22 for the transmission coefficient and explain that this
measures the probability of transmission through the barrier. Remark that transmission
is small for high, wide barriers and becomes larger as the barrier height decreases and as
the barrier width narrows. Also define the reflection coefficient R by R = 1− T .

SUGGESTIONS

1. Assignments
a. Ask questions 3, 9, and 10 and assign one or two of problems 4 and 7 as part of a discussion

of photon properties. Emphasize that the energy in a light beam is the product of the
number of photons and the energy of each photon. Assign some of problems 3, 4, 8, 9, 10,
11, and 12.

b. After discussing the photoelectric effect, ask some of questions 1, 2, 4, 5, and 6. Assign
problems 22 and 24.

c. After discussing the Compton effect, ask questions 6, 7, and 11 and assign problem 28.
Also consider problem 34.

d. In the discussion of the properties of matter waves, include questions 12 through 15 and
18. Assign problems 43 and 50.

e. Following the discussion of the uncertainty principle, assign problems 59 and 60.
f. Ask some of questions 16, 17, 19, and 20 in connection with tunneling. Also assign problems
62 and 63.

2. Demonstrations
Photoelectric effect: Freier and Anderson MPb1
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3. Audio/Visual

Photons and X-rays, Electrons, and Particles and Waves; from Cinema Classics DVD
6: Angular Momentum and Modern Physics; available from Ztek Co. (PO Box 11768,
Lexington, KY 40577—1768, www.ztek.com) and from the American Association of Physics
Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt.org).

a. The Quantum Idea from the Wave-Particle Duality series; VHS video tape; Films for the
Humanities and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).

b. Photons from the Wave-Particle Duality series; VHS video tape; Films for the Humanities
and Sciences (see above for adress).

c. Matter Waves from the Wave-Particle Duality series; VHS video tape; Films for the Hu-
manities and Sciences (see above for address).

d. Electron Diffraction; VHS video tape, DVD; Films for the Humanities and Sciences (see
above for address).

e. Understanding Uncertainty ; VHS video tape, DVD; Films for the Humanities and Sciences
(see above for address).

f. The Particle Model from the Wave-Particle Duality series; VHS video tape; Films for the
Humanities and Sciences (see above for address).

g. The Wave Model from the Wave-Particle Duality series; VHS video tape; Films for the
Humanities and Sciences (see above for address).

h. The Electromagnetic Model from the Wave-Particle Duality series; VHS video tape; Films
for the Humanities and Sciences (see above for address).

4. Computer Software

a. Modern Physics from Exploration of Physics Volume II; Windows and Macintosh; Physics
Curriculum & Instruction (22585 Woodhill Drive, Lakeville, MN 55044; www.PhysicsCur-
riculum.com). Includes sections on the photoelectric effect and double-slit interference of
electron waves.

b. Photoelectric Tutor ; Graham Oberon and Richard Steinberg; DOS, Macintosh; available
from Physics Academic Software (Centennial Campus, 940 Main Campus Drive, Suite 210,
Raleigh, NC 27606—5212; www.aip.org/pas). A tutorial on the photoelectric effect.

5. Computer Project

A commercial math program or a student-generated root-finding program can be used to
solve the equations for the photoelectric and Compton effects. Students may be interested,
for example, in seeing how the Compton lines broaden when the electrons are not initially
at rest. Assign some exercises as homework or set aside some laboratory time for a more
detailed investigation.

6. Laboratory

a. Probeware Activity 30: Photoelectric Effect – Planck’s Constant. The stopping potential
is measured as a function of the frequency of the incident light and Planck’s constant is
computed.

b. Meiners Experiment 14—2: The Photoelectric Effect. Students investigate the character-
istics of various photocells, then use a plot of stopping potential versus. frequency to
determine the Planck constant. A mercury source and optical filters are used to obtain
monochromatic light of various frequencies.

c. Meiners Experiment 14—5: Electron Diffraction. The Sargent-Welch electron diffraction
apparatus is used to investigate the diffraction of electrons by aluminum and graphite.
Since powder patterns (rings) are obtained, you will need to explain their origin.
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Chapter 39 MORE ABOUT MATTER WAVES

BASIC TOPICS

I. One-dimensional particle traps

A. Explain that, for a particle confined by infinite potential energy barriers to the region
between 0 and L on the x axis, possible wave functions are given by ψn(x) = A sin(nπx/L),
where n = 1, 2, . . . . Show that these satisfy the Schrödinger equation

d2ψ

dx2
+
8π2m

h2
Eψ = 0

inside the trap and that ψ goes to zero at the boundaries. Explain that a condition for the
given function to be a solution is that the energy of the particle must be En = n

2h2/8mL2.
You might want to include the time dependence by writing Ψ = A sin(nπx/L)fn(t) and
explaining that fn(t) is a function of time with magnitude 1.

B. Explain that confinement of the particle leads to energy quantization and that energy is
quantized for any bound particle. Plot the allowed values of the energy, as in Fig. 39—3.
Point out that the particle has kinetic energy even in the ground state and mention that
this energy is called its zero-point energy.

C. Explain that the particle can certainly be found between x = 0 and x = L, so
L

0
|ψn|2 dx =

1. The wave function is said to be normalized if it obeys this condition. Show that the
normalization condition leads to A = 2/L.

D. Use the particle confined to a one-dimensional trap as an example and explain that ψ2n dx =
(2/L) sin2(nπx/L) dx gives the probability that the particle can be found between x and
x+dx when it is in the state with the given wave function. Sketch several of the probability
density functions and point out that there are several places where the probability density
vanishes. See Fig. 39—6.

E. Explain that experimentally the probability can be found, in principle, by performing a
large number of position measurements and calculating the fraction for which the particle
is found in the designated segment of the x axis. Since a position measurement changes
the state of the particle, it must be restarted in the same state each time.

F. Explain that a particle may jump from some initial state to a lower energy state with the
emission of a photon and that the photon energy is equal to the change in the particle
energy. Write hf = ∆E, where f is the frequency of the electromagnetic wave associated
with the photon. Remind students that the frequency and wavelength are related by
λf = c. Use an energy level diagram to show that only a set of discrete wavelengths occur.
Explain that the particle may also absorb a photon and jump to a higher energy state but
only if the photon energy equals the difference between two allowed energy values for the
particle.

G. Draw a diagram of a one-dimensional trap with finite potential energy barriers at the ends
and state that the particle wave function now extends into the barriers, although it de-
creases exponentially there. Show Fig. 39—8. Mention that the allowed values of the energy
are different from those for infinite barriers, but that the energy is still quantized. Also
mention that the particle might absorb a photon of any energy that makes the final particle
energy greater than the barriers. Particle energy above the barriers is not quantized.

II. Two- and three-dimensional particle traps

A. Describe a two-dimensional rectangular trap with sides of length Lx and Ly, such that the
particle has infinite potential energy at the boundaries and zero potential energy within.
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Give the expression for the energies:

Enx,ny =
h2

8m

n2x
L2x

+
n2y
L2y

,

where nx and ny are integers. Explain that neither nx or ny can be zero since either of
those values would make the wave function zero everywhere.

B. Repeat the discussion for a three-dimensional trap in the form of a rectangular solid with
sides of lengths Lx, Ly, and Lz. Show that the energies are given by

Enx,ny,nz =
h2

8m

n2x
L2x

+
n2y
L2y
+

n2z
L− z2 ,

C. Mention the possibility of degeneracy. In some cases two or more states (with different
quantum numbers) may have the same energy.

III. The hydrogen atom and line spectra.
A. Use a commercial hydrogen tube to show the visible hydrogen spectrum. Since the intensity

is low, you will not be able to project this but you can purchase inexpensive 8II×10II sheets
of plastic grating material, which can be cut into pieces and passed out to the students.
Point out Fig. 39—19.

B. Give the expression for the hydrogen energy levels in terms of the principal quantum
number: En = −(me4/8620h2)(1/n2). State that quantum physics predicts these allowed
values. Say that a photon is emitted when a hydrogen atom changes state and derive
f = (me4/8620h

3)[(1/n22)− (1/n21)] for the frequency of the emitted electromagnetic wave.
C. Explain that the Schrödinger equation is a differential equation for the wave function of a

particle and that the main ingredient that causes two identical particles to have different
wave functions is their potential energy function. For an electron in a hydrogen atom, the
potential energy function is U(r) = −e2/4π60r, where r is the distance from the proton to
the electron. Mention that when this potential energy function is used in the Schrödinger
equation and the reasonable condition that the wave functions remain finite everywhere
is applied, then the allowed energy values are predicted. Draw a graph of U(r) and draw
lines across it to indicate the values of the first few energy levels.

D. Explain that states for hydrogen are classified using three quantum numbers:
1. The principal quantum number n, which determines the energy.
2. The orbital quantum number f, which determines the magnitude of the orbital angular

momentum.
3. The orbital magnetic quantum number mf, which determines the z component of the

orbital angular momentum.
E. Explain that traditionally each value of n is said to label a shell. Remark that a shell

may consist of many states, but each is associated with the same value of the energy. Tell
students that for a given shell, f may take on the values 0, 1, 2, . . . , n − 1. There are n
different values in all. Explain that all the states with given values of n and f are said to
form a subshell. Say that for a given value of f, mf may take on any integer value from −f
to +f and there are 2f + 1 values in all. As examples, list all the states for n = 1, 2, and
3. Group them according to n and remark that all states with the same n have the same
energy, all states with the same f have the same magnitude of orbital angular momentum,
and all states with the same mf have the same z component of orbital angular momentum.
Remark that states with different values of n, f, or mf have different wave functions.
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F. Give the ground state wave function and obtain the expression for the probability density.
Define the Bohr radius (a = h260/πme

2 = 52.9 pm). Remark that ψ has spherical sym-
metry and explain that this is true of all f = 0 wave functions. Remind students that the
volume of a spherical shell with thickness dr is 4πr2 dr and define the radial probability
density as P (r) = 4πr2|ψ(r)|2. Sketch P (r) for the hydrogen atom ground state (Fig. 39—
20) and point out there is a range of radial distances at which the electron might be found.
Locate the most probable radius and the average radius.

G. Show a dot plots (Figs. 39—22 and 39—24) for the n = 2 states and write the expressions
for the wave functions (see problems 43 and 48). Remark that the individual probability
densities are not spherically symmetric but their sum is.

SUGGESTIONS

1. Assignments
a. Use questions 1 through 7 in your discussion of a particle in a one-dimensional infinite well.

Assign problems 5, 6, and 49.
b. Ask questions 8, 10, 13, and 14 in connection with a particle trapped in a one-dimensional

finite well. Consider problems 15, 52, and 53.
c. Assign problems 20 and 21 in connection with two-dimensional traps and problems 22 and

23 in connection with three dimensional traps.
d. After discussing the hydrogen spectrum, ask questions 9, 16, and 17. Also assign problems

25, 27, 29, and 31. If you have discussed the terms binding energy and excitation energy,
assign problem 38.

e. When you discuss the enumeration of hydrogen atom states, assign problem 51.
f. Discuss problems 39 and 42 in connection with the ground state of a hydrogen atom. You
might also assign problems 37 and 41 if you did not show the given ground state wave
function is a solution to the Schrödinger equation and is normalized. Give problem 47 to
students who are math oriented.

g. The n = 2 hydrogen wave functions are covered in problems 43 and 48.

2. Demonstrations
Thompson and Bohr models of the atom.

3. Audio/Visual
a. Absorption Spectra; from the AAPT Miller collection of single-concept films; DVD; avail-

able from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com) and from
the American Association of Physics Teachers (AAPT, One Physics Ellipse, College Park
MD 20740—3845; www.aapt.org).

b. Electron Distribution in the Hydrogen Atom; A.F. Burr and Robert Fisher; slide set; AAPT
(see above for address). Probability distributions for n =1 to n = 6.

c. Atoms, Molecules, and Models; from Cinema Classics DVD 6: Angular Momentum and
Modern Physics; available from Ztek Co. and from the AAPT (see above for addresses).

4. Computer Software
a. Bellbox ; Darrel J. Conway; available from Physics Academic Software (Centennial Cam-

pus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212; www.aip.org/pas).
This simulation program allows students to experiment with the Einstein-Podolsky-Rosen
paradox.

5. Laboratory
Meiners Experiment 14—3: Analysis of Spectra. A spectroscope is used to obtain the
wavelengths of hydrogen and helium lines. Hydrogen lines are compared with predictions
of the Balmer equation.
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Chapter 40 ALL ABOUT ATOMS

BASIC TOPICS

I. Orbital and spin angular momentum.
A. Remark that orbital angular momentum is quantized and that the allowed values of its

magnitude are given by L = f(f+ 1)h̄, where h̄ = h/2π. The orbital quantum number f
takes on positive integer values.

B. State that the z component of the angular momentum is given by Lz = mfh̄, wheremf = 0,
±1, ±2, . . . , ±f. mf is called the orbital magnetic quantum number. The z axis can be in
any direction, perhaps defined by an external magnetic field. Point out that the angle θ
between the angular momentum vector and the z axis is given by cos θ = mf/ f(f+ 1).
The smallest value of θ occurs when mf = f and it is not zero. Explain that the angles
nL makes with the x and y axes cannot be known if the angle between nL and the z axis is
known. Discuss this in terms of the precession of nL about the z axis.

C. Explain that the electron and some other particles have intrinsic angular momentum, as
if they were spinning. The magnitude of the electron spin angular momentum is S =
s(s+ 1)h̄ = 3/4h̄ and the z component is either ms = −12 h̄ or +1

2 h̄ (there are two
possible states), where ms is called the spin magnetic quantum number. You might want
to remark that spin is not predicted by the Schrödinger equation but that it is predicted
by relativistic modifications to quantum physics.

D. Say that the total angular momentum of an atom is the vector sum of the orbital angular
momenta and the spin angular momenta of its electrons.

II. Magnetic dipole moments.
A. Explain that the electron has a magnetic dipole moment because of its orbital motion and

write nµorb = −(e/2m)nL and µorb,z = −(e/2m)Lz = −(eh̄/2m)mf. Give the value of the
Bohr magneton (µB = eh̄/2m = 9.28 × 10−24 J/T). Remind students that because of its
motion, the electron experiences a torque in an external magnetic field and produces its
own magnetic field (provided nµorb W= 0).

B. State that the spin magnetic moment is µsz = −2msµB. Stress the appearance of the
factor 2. The electron produces a magnetic field and experiences a torque in a magnetic
field because of this moment.

C. Remark that the energy of an electron is changed by−µzB when an external field nB is
applied in the positive z direction. Thus states with the same n but different mf have
different energies in a magnetic field. This is called the Zeeman effect. Photons with an
energy equal to the energy difference of the two spin states cause the spin to flip. The
phenomenon can be detected by measuring the absorption of the beam.

D. Briefly describe the Stern-Gerlach experiment. Explain that a magnetic dipole in a non-
uniform magnetic field experiences a force and that Fz = µz dB/dz for a field in the
z direction that varies along the z axis. Atoms with different values of mf experience
different forces and arrive at different places on a screen. That discrete regions of the
screen receive atoms is experimental evidence for the quantization of the z component of
angular momentum.

E. To emphasize the practical, qualitatively explain NMR and its use in diagnostic medicine.
You might also explain how local magnetic fields in solids, for example, can be measured
using magnetic resonance techniques.

IV. Pauli exclusion principle.
A. State the principle. For any two electrons in the same trap at least one of their quantum

numbers must be different. State that this is a principle that holds for electrons, protons,
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neutrons, and many other particles. Also state that it does not hold for all particles and
give the photon as an example of a particle for which it does not hold.

B. As an example consider a small group of electrons in a square trap. State that the single-
particle energy levels are given by (h2/8mL2)(n2x+n

2
y), where L is the length of an edge of

the trap and nx and ny are quantum numbers that may take on any integer value greater
than zero. For each of the (nx, ny) pairs of values (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),
and 3, 1) calculate the energy in units of h2/8mL2, order the states according to energy,
and point out the degeneracies, including spin. Note how many electrons can have each
value of the energy. Assume there are five electrons, give the ground state configuration,
and calculate the ground state energy of the system in units of h2/8mL2. Emphasize the
role of the Pauli exclusion principle.

C. Repeat for the first excited state of the system.

IV. Atomic states.
A. Explain that quantum mechanical states for an electron in an atom are classified using four

quantum numbers:
1. The principal quantum number n, which determines the energy.
2. The orbital quantum number f, which determines the magnitude of the orbital angular

momentum and, to a lesser extent, the energy.
3. The orbital magnetic quantum number mf, which determines the z component of the

orbital angular momentum.
4. The spin magnetic quantum number ms, which determines the z component of the

spin angular momentum.
B. Explain that traditionally each value of n is said to label a shell and the shells are named

K, L, M , N , . . . , in order of increasing n. Remark that a shell may consist of many states.
C. Remind students that for a given shell, f may take on the values 0, 1, 2, . . . , n− 1. There

are n different values in all. Explain that all the states with given values of n and f are
said to form a subshell. Remind students that for a given value of f, mf may take on any
integer value from −f to +f. Since ms can have either of two values, a subshell consists of
2(2f+1) states. Either state or prove that the shell with principal quantum number n has
2n2 states.

D. Give the spectroscopic notation: s labels an f = 0 subshell, p labels an f = 1 subshell, d
labels an f = 2 subshell, etc. Explain that the value of n is placed in front of the letter
and the number of electrons in the subshell is given as a superscript: 3d2 indicates two
electrons in the n = 3, f = 2 subshell.

E. As you may have done for the last chapter, list all the states for n = 1, 2, and 3. Group
them according to n and remark that all states with the same f have the same magnitude
of orbital angular momentum and all states with the same mf have the same z component
of orbital angular momentum. Remark that states with different values of n, f, and mf

have different wave functions.

V. Atom building and the periodic table.
A. Give the “rules” for atom building:

1. The four quantum numbers n, f, mf, ms can be used to label states. Remark that
wave functions and energies are different for electrons with the same quantum numbers
in different atoms.

2. The electrons in an atom obey the Pauli exclusion principle: No more than one electron
can have any given set of quantum numbers.

B. Explain that as more protons are added to the nucleus, the electron wave functions pull in
toward regions of low potential energy. This and the dependence of the energy on f means
that states associated with one principal quantum number may not be filled before states
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associated with the next principal quantum number are started. For example, a 5s state
is lower in energy than a 4d state, in different atoms. It also accounts for the fact that all
atoms are nearly the same size.

C. Show a periodic table. Point out the inert gas atoms and explain they all have filled s and
p subshells. Point out the alkali metal and alkaline earth atoms and state they have one
and two electrons, respectively, outside closed shells. Remark that electrons in partially
filled shells are chiefly responsible for chemical activity. Point out the atoms in which d
and f states are being filled and finally those in which p states are being filled.

VI. X rays and the numbering of the elements.
A. Explain that x rays are produced by firing energetic electrons into a solid target. Show

Fig. 40—14 and point out the continuous part of the spectrum and the peaks. Also point
out that there is a sharply defined minimum wavelength to the x-ray spectrum. Explain
that the continuous spectrum results because the electrons lose some or all of their kinetic
energy in close (decelerating) encounters with nuclei. This energy appears as photons and
∆K = hf . Explain that a photon of minimum wavelength is produced when an electron
loses all its kinetic energy in a single encounter. Derive the expression for the minimum
wavelength in terms of the original accelerating potential and point out it is independent
of the target material.

B. Explain that the line spectrum in Fig. 40—14 appears because incident electrons interact
with atomic electrons and knock some of the deep-lying electrons out of the atoms. Elec-
trons in higher levels drop to fill the holes, emitting photons with energy equal to the
difference in energy of the initial and final atomic levels. The Kα line is produced when
electrons drop from the L (n = 2) shell to the K (n = 1) shell and the Kβ line is produced
when electrons drop from the M (n = 3) shell to the K shell. Explain Fig. 40—16.

C. Show Fig. 40—17 and state that when the square root of the frequency for any given line
is plotted as a function of the atomic number of the target atom, the result is nearly a
straight line. Argue that the innermost electrons have an energy level scheme close to that
of hydrogen but with an effective nuclear charge of (Z − 1)e, where the 1 accounts for
screening by electrons close to the nucleus. Z is the number of protons in the nucleus, the
atomic number. Use the expression for hydrogen energy levels. For Kα, put n = 2 for the
initial state and n = 1 for the final state, then show that

√
f is proportional to (Z − 1).

D. Remark that this relationship was used to position the chemical elements in the periodic
table independently of their chemical properties. This technique was particularly important
for elements in the long rows of the periodic table, which contain many elements with
similar chemical properties. Today the technique is used to identify trace amounts of
impurities in materials.

VII. The laser.
A. List the characteristics of laser light: monochromatic, coherent, directional, can be sharply

focused. See the text for quantitative comparisons with light from other sources.
B. Explain the mechanism of light absorption: an incident photon is absorbed if hf corre-

sponds to the energy difference of two electron states of the material and the upper state is
initially empty. An electron jumps from the lower to the upper state. Explain spontaneous
emission: an electron spontaneously (without the aid of external radiation) makes the tran-
sition from one state to a lower state (if that state is empty) and a photon with hf equal
to the energy difference is emitted. Emphasize that in most cases the electron remains in
the upper state for a time on the order of 10−9 s but that there are metastable states in
which the electron remains for a longer time (≈ 10−3 s). Explain stimulated emission: with
the electron in an upper state, an incident photon with the proper energy can cause it to
make the jump to a lower state. The result is two photons of the same energy, moving
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in the same direction, with waves having the same phase and polarization. Remark that
laser light is produced by a large number of such events, each triggered by a photon from a
previous event. Hence, all laser photons are identical. Explain that metastable states are
important since the electron must remain in the upper state until its transition is induced.
Compare with light produced by random spontaneous transitions.

C. Explain that, in thermodynamic equilibrium, upper levels are extremely sparsely populated
compared to the ground state. To obtain laser light, the population of an upper level must
be increased; otherwise absorption events would equal or exceed stimulated emission events.
A laser must be pumped. Write down the expression for the thermal equilibrium number
of atoms in the state with energy E: n(E) = Ce−E/kT . Explain that C is independent of
energy but depends on the number of atoms present. State that the temperature T is on
the Kelvin scale.

D. Discuss the helium-neon laser, paying particular attention to the role played by helium
atoms in maintaining population inversion in the neon atoms. Also explain the roles played
by the walls and mirror ends. Go over the four characteristics of laser light discussed earlier
and tell how each is achieved.

SUGGESTIONS

1. Assignments
a. To test for understanding of the angular momentum quantum numbers, go over questions

1 through 5 and assign problems 5 and 7. To stress the connection between angular
momentum and magnetic dipole moment, assign problem 9.

b. To discuss the Stern-Gerlach experiment in more detail, include question 10. Also assign
problems 12 and 14.

c. Use problems 19 and 21 (two-dimensional trap) or problems 23 and 24 (three-dimensional
trap) to test for understanding of the Pauli exclusion principle. To emphasize the role
played by spin in the building of the periodic table, ask problem 17. To help in the
discussion of the periodic table, assign problems 25 and 27.

d. The existence of a minimum wavelength in the continuous x-ray spectrum provides an
argument for the particle nature of light. Either discuss this or see if the students can
devise the argument. Assign problems 31 and 32. After discussing characteristic x-ray
lines and Moseley plots, ask questions 11 and 12. Assign problems 33, 37, and 40.

e. Ask questions 13 and 14 to see if students understand how lasers work. Also assign problems
45, 51, and 52. Populations of states are covered in problems 46, 48, and 55.

2. Demonstrations
Zeeman effect: Freier and Anderson MPc1.

3. Books and Monographs
Resource Letters, Book Five; American Association of Physics Teachers (AAPT, One
Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Contains an exhaustive
list of journal articles on atomic physics.

4. Audio/Visual
a. Structure of the Atom; VHS video tape ; Films for the Humanities and Sciences (PO Box

2053, Princeton, NJ 08543—2053; www.films.com).
b. Atoms and Molecules; VHS video tape, DVD; Films for the Humanities and Sciences (PO

Box 2053, Princeton, NJ 08543—2053; www.films.com).

5. Computer Software
a. Modern Physics from Exploration of Physics Volume II; Windows and Macintosh; Physics

Curriculum & Instruction Physics Curriculum & Instruction (22585 Woodhill Drive, Lake-
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ville, MN 55044; www.PhysicsCurriculum.com). Includes sections on models of the atom,
the atomic nucleus and Rutherford’s experiment.

b. Atomic Orbitals; interactive CD-ROM; Films for the Humanities and Sciences (see above
for address).

Chapter 41 THE CONDUCTION OF ELECTRICITY IN SOLIDS

BASIC TOPICS

I. Electron energy bands.
A. Explain that a crystalline solid is a periodic arrangement of atoms and show some ball and

stick models or Fig. 41—1.
B. Explain that energy levels for electrons in crystalline solids are grouped into bands with the

levels in any band being nearly continuous and with gaps of unallowed energies between.
Remark that bands are produced when atoms are brought close together. Wave functions
for outer electrons then overlap and extend throughout the solid. Show Fig. 41—3 and
remark that low energy bands are narrow since the wave functions are highly localized
around nuclei and overlap is small. High energy bands are wide because overlap is large.
When the atoms are close together, outer-shell electrons are influenced by many atoms
rather than just one.

C. Remind students that since the Pauli exclusion principle holds, the lowest total energy is
achieved when electrons fill the lowest states with one electron in each state. Thus, at
T = 0K, all states are filled up to a maximum energy.

D. Remark that for a metal at T = 0K, the highest occupied state is near the middle of a
band, while for an insulator or semiconductor, it is at the top of a band.

E. Write down the Fermi-Dirac occupancy probability P (E), given by Eq. 41—6, and state that
it gives the thermodynamic probability that a state with energy E is occupied. State that
EF is a parameter, called the Fermi energy, that is different for different materials. Show
that for T = 0K, P (E) = 1 for E < EF and P (E) = 0 for E > EF . To give a numerical
example, calculate the probabilities of occupation for states 0.1 and 1 eV above the Fermi
energy, then 0.1 and 1 eV below, at room temperature. Graph P (E) versus. E for T = 0
and for T > 0. See Fig. 41—6. Also show the graph for a still higher temperature and point
out that the central region (from P = 0.9 to P = 0.1, say) widens. This quantitatively
describes the thermal excitation of electrons to higher energy states. Remark that the
Fermi-Dirac occupancy probability is valid for any large collection of electrons, including
the collections in metals, insulators, and semiconductors.

II. Metallic conduction.
A. Write down Eq. 26—25 for the resistivity and remark that n is the concentration of con-

duction electrons and τ is the mean time between collisions of electrons with atoms. Ask
students to review Section 26—6. Remark that a low resistivity results if the electron con-
centration is large or the mean free time is long. In a rough way, if there are few collisions
per unit time, then the mean free time is long and the electrons are accelerated by the
electric field for a long time before colliding, so the drift velocity is large. Remark that
quantum physics must be used to determine n and τ .

B. Explain that for metals, the energies of conduction electrons (those in partially filled bands)
are primarily kinetic and to a first approximation, we may take the electrons to be trapped
in a box the size of the sample. The so-called free electron model of a metal takes the
potential energy to be zero in the box.

C. Define the density of states function N(E) and the density of occupied states function
No(E). Explain that No(E) = N(E)P (E) and that the total electron concentration in a
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metal is given by n = N(E)P (E) dE. In principle, this equation can be solved for the
Fermi energy as a function of temperature. State that for nearly free electrons in a metal,
N(E) is given by Eq. 41—5, and that the Fermi energy is given by Eq. 41—9. Evaluate the
expression for copper and show that EF is about 7 eV above the lowest free electron energy.
Strictly, this is the result for T = 0 but the variation of EF and n with temperature is not
important in a first approximation for metals.

D. Explain that the electric current is zero when no electric field is present because states for
which the velocities are +nv and −nv, for example, have the same energy. If one is filled,
then so is the other. Thus the average velocity of the electrons vanishes. A current arises
in an electric field because the electrons accelerate: they tend to make transitions within
their band to other states such that the changes in their velocities are opposite to the field.

E. Explain that the acceleration caused by an electric field does not continue indefinitely
because the electrons are scattered by atoms of the solid. As a result, the electron distri-
bution distorts only slightly. Some states with energy slightly greater than EF and velocity
opposite the field become occupied while some states with energy slightly less than EF and
velocity in the direction of the field become vacant. Electrons with energy EF have speeds
vF given by EF =

1
2
mv2F but the average speed (the drift speed) is considerably less be-

cause most electrons can be paired with others moving with the same speed in the opposite
direction.

F. Explain that a steady state is reached and that the drift velocity is then proportional to
the applied electric field. Only electrons near the Fermi energy suffer collisions and the
additional velocities they obtain from the field between collisions are insignificant compared
to their velocities in the absence of the field. Thus the mean free time is essentially
independent of the field and Ohm’s law is valid.

G. State that electrons in a perfectly periodic lattice do not suffer collisions, a result that is
predicted by quantum physics. Collisions with the atoms occur because they are vibrating.
Collisions also occur if the solid contains impurities or other imperfections. As the tem-
perature increases, vibrational amplitudes of the atoms increase and so does the number
of collisions per unit time. As a result, the mean free time becomes smaller. This explains
the increase with temperature in the resistivity of a metal.

III. Insulators and semiconductors.

A. Explain that a filled band cannot contribute to an electric current because the average
electron velocity is always zero, even in an electric field. State that insulators and semi-
conductors have just the right number of electrons to completely fill an integer number
of bands and that, in the lowest energy state, all bands are either completely filled or
completely empty. For metals, on the other hand, the highest occupied state is near the
middle of a band. Metals always have partially filled bands. Show Fig. 41—4 and identify
the valence and conduction bands for an insulator.

B. Explain that as the temperature is raised from T = 0K, a small fraction of the electrons
in the valence band of an insulator or semiconductor are thermally excited across the gap
into the conduction band. For a semiconductor, the gap is small (about 1 eV) and at room
temperature, both bands can contribute to the current. The conductivity, however, is still
small compared to that of a metal. For an insulator, the gap is large (more than 5 eV),
so the number of promoted electrons is extremely small and the current is insignificant for
laboratory fields. Explain that silicon and germanium are the only elemental semiconduc-
tors although there are many semiconducting compounds. Carbon is a prototype insulator,
with a gap of 5.5 eV. Compare with silicon, which has a gap of 1.1 eV. Resistivities of metals
and semiconductors are compared in Table 41—1.

C. When electrons are promoted across the gap, they contribute to the current in an electric
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field. The valence band becomes partially filled and electrons there also contribute. It is
usually convenient to think about the few empty states in this band rather than the large
number of electrons there. That is, the electrons in a nearly filled band are replaced by a
collection of fictitious particles, called holes, so that the properties of the hole system are
identical to the properties of the electron system they replace. Holes behave as if they were
positive charges. In contrast to electrons, holes drift in the direction of the electric field.
Compare the carrier concentrations of metals and semiconductors at room temperature.
See Table 41—1.

D. Explain the different signs for the temperature coefficients of resistivity, also given in
Table 41—1. Explain that for both metals and semiconductors near room temperature,
the mean free time decreases with increasing temperature. For metals, the electron con-
centration is essentially constant but for semiconductors, n increases dramatically with
temperature as electrons are thermally promoted across the gap. This effect dominates
and the resistivity of an intrinsic semiconductor decreases with increasing temperature.

E. Explain that the proper kind of replacement atoms (donors) can increase the number of
electrons in the conduction band and another kind (acceptors) can increase the number
of holes in the valence band. They produce n and p type semiconductors, respectively.
By considering the number of electrons in their outer shells, explain why phosphorus is a
donor and aluminum is an acceptor. Point out that wave functions for impurity states are
highly localized around the impurity and so do not contribute to the conductivity. Go over
Sample Problem 41—6, which shows that only a relatively small dopant concentration can
increase the carrier concentration enormously. Doped semiconductors are used in nearly
all semiconducting devices.

IV. Semiconducting devices.

A. Show a commercial junction diode and draw a graph of current vs. potential difference
(Fig. 41—12). Include both forward and back bias. Explain that it is a rectifier, with high
resistance for current in one direction and low resistance for current in the other direction.
Demonstrate the i-V characteristics by placing a diode across a variable power supply and
measuring the current for various values of the potential. Reverse the potential to show
the rectification.

B. Describe a p-n junction and remark that the diffusion of carriers leaves a small depletion
region, nearly devoid of carriers, straddling the metallurgical junction. Explain the origin
of the electric field in the depletion region and the origin of the contact potential. Stress
that the field is due to uncovered replacement atoms, positive donors on the n side and
negative acceptors on the p side.

C. Describe a diffusion current as one that arises because particles diffuse from regions of high
concentration toward regions of low concentration. Explain that this motion results from
the random motion of the particles. More particles leave a high concentration region simply
because there are more particles there, not because they are driven by any applied force.
State that the diffusion current for both electrons and holes in an unbiased p-n junction is
from the p to the n side, against the contact electric field. Point out that the drift current
is from the n toward the p side and that the diffusion and drift currents cancel when no
external field is applied. Point out the depletion zone and the currents on Fig. 41—14.

D. Draw a circuit with a battery across a p-n junction, the positive terminal attached to the
n side. Explain that this is a back bias. The internal electric field is now larger, the barrier
to diffusion is higher, and the reverse current is extremely small. Also explain that the
width of the depletion zone is increased by application of a reverse bias.

E. Draw the circuit for forward bias. The internal electric field is now smaller, the barrier to
diffusion is lower, and the current increases dramatically. The depletion zone narrows.
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F. Explain how diodes are used for rectification and how light-emitting diodes work.
G. Optional. Explain how a field-effect transistor works. Explain the mechanism by which

the gate voltage of a MOSFET controls current through the channel. Remove the covers
from a few chips and pass them around with magnifying glasses for student inspection.

SUGGESTIONS

1. Assignments
a. Questions 1 and 2 deal with crystal structure. Ask them if you include more than a passing

mention of this topic. Also consider problem 43.
b. Questions 3 and 4 deal with electrons in solids and questions 5 and 6 deal with energy

bands.
c. Assign problems 2 and 7 in connection with the Fermi energy of a metal. Assign problem 6

in connection with the density of states for a metal. Assign some of problems 8, 11, and 16
in connection with the occupancy probability. Also assign problem 17 and either problem
19 or 22. The justification for the free electron model of a metal is covered in problem 12.

d. Problem 30 should be assigned or covered in class when you discuss intrinsic semiconduc-
tors.

e. Doped semiconductors are considered in questions 9, 10, and 14. Discuss them and then
assign problems 31 and 32. Also consider problem 33.

f. p-n junctions are the subject of questions 12, 13, and 15. Be sure to assign or discuss
problem 36. If you include LED’s, assign either problem 37 or 38 and if you discuss
field-effect transistors, assign problem 40.

2. Audio/Visual
Condensed Matter ; from Cinema Classics DVD 6: Angular Momentum and Modern Phys-
ics; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768, www.ztek.com).

3. Computer Project
Ask students to use a root finding program to carry out calculations of the electron con-
centration in the conduction band and hole concentration in the valence band of both
intrinsic and doped semiconductors. Then ask them to calculate the contact potential for
a p-n junction with given dopant concentrations.

Chapter 42 NUCLEAR PHYSICS

BASIC TOPICS

I. Nuclear properties.
A. Explain that the nucleus of an atom consists of a collection of tightly bound neutrons, which

are neutral, and protons, which are positively charged. A proton has the same magnitude
charge as an electron. Define the term nucleon and state that the number of nucleons is
called the mass number and is denoted by A, the number of protons is called the atomic
number and is denoted by Z, and the number of neutrons is denoted by N . Point out
that A = Z +N . Remark that nuclei with the same Z but different N are called isotopes.
The atoms have the same chemical properties and the same chemical symbol. Show a wall
chart of the nuclides. Refer to Table 42—1 when discussing properties of nuclides.

B. Explain that one nucleon attracts another by means of the strong nuclear force and that this
force is different from the electromagnetic force. It does not depend on electrical charge and
is apparently the same for all pairs of nucleons. It is basically attractive; at short distances
(a few fm), it is much stronger than the electrostatic force between protons, but it becomes
very weak at larger distances. Two protons exert attractive strong forces on each other
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only at small separations but they exert repulsive electric forces at all separations. Because
of the short range, a nucleon interacts only with its nearest neighbors via the strong force.
Because the nucleus is small, the much stronger nuclear force dominates and both protons
and neutrons can be bound in stable nuclei. Explain that the force is thought to be a
manifestation of the strong force that binds quarks together to form nucleons.

C. Show Fig. 42—4 and point out the Z = N line and the stability zone. Explain why heavy
nuclei have more neutrons than protons. Also explain that unstable nuclei are said to be
radioactive and convert to more stable ones with the emission of one or more particles.
Show Fig. 42—12 and point out the stable and unstable nuclei.

D. Explain that although the surface of a nucleus is not sharply defined, nuclei can be char-
acterized by their mean radii and these are given by r = r0A

1/3, where r0 ≈ 1.2 fm
(1 fm = 10−15m). Stress how small this is compared to atomic radii. Show that this
relationship between r and A leads to the conclusion that the mass densities of all nuclei
are nearly the same. Show that the density of nuclear matter is about 2 × 1017 kg/m3.

E. Explain that the mass of a nucleus is less than the sum of the masses of its constituent
nucleons, well separated. The difference in mass is accounted for by the binding energy
through ∆Ebe = ∆mc2, where ∆m is the magnitude of the mass difference. The binding
energy is the energy that must be supplied to separate the nucleus into well separated
particles, at rest. Generalize this equation to the case of a nucleus with Z protons and N
neutrons: ∆Ebe = Zmpc

2 + Nmnc
2 − mc2. Also define the binding energy per nucleon

∆Eben. Show Fig. 42—6 and point out that there is a region of greatest stability, near
iron. For heavier nuclei, the binding energy per nucleon falls slowly but nevertheless does
fall. For lighter nuclei, the binding energy per nucleon rises rapidly with increasing mass
number. Explain the terms fission and fusion, then remark that the high mass number
region is important for fission processes, the low mass number region is important for fusion
processes.

F. State that nuclear masses are difficult to measure with precision, so masses are usually
expressed in atomic mass units: 1 u = 1.6605 × 10−27 kg. Also state that tables usually
give atomic rather than nuclear masses and so include the mass of the atomic electrons.
Show that the electron masses cancel in the expression for the binding energy. Give the
mass-energy conversion factor: 931.5MeV/u.

G. Explain that nuclei have discrete energy levels, with separations on the order of MeV.
An excited nucleus can make a transition to a lower energy state with the emission of a
photon, typically in the gamma ray region of the spectrum. Explain that a nucleus may
have intrinsic angular momentum and a magnetic moment. Spins are on the order of h̄,
like atomic electrons, but moments are much less than electron moments because the mass
of a nucleon is much greater than the mass of an electron.

II. Radioactive decay.

A. Explain that nuclei may be either stable or unstable and those that are unstable ultimately
decay to stable nuclei. Decay occurs by spontaneous emission of an electron (e−), a positron
(e+), a helium nucleus (α), or larger fragments. The resulting nucleus has a different
complement of neutrons and protons than the original nucleus.

B. Explain that decay is energetically favorable if the total mass of the products is less than the
original mass. Define a decay symbolically as X → Y +b, whereX is the original nucleus, Y
is the daughter nucleus, and b is everything else. Point out that charge, number of nucleons,
and energy are all conserved. Define the disintegration energy by Q = (mX −mY −mb)c

2.
Note that an appropriate number of electron rest energies must be added or subtracted so
that atomic masses may be used. Note also that Q must be positive for spontaneous decays
and Q appears as the kinetic energy of the decay products or as an excitation energy if the
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daughter nucleus is left in an excited state.
C. Explain that each radioactive nucleus in a sample has the same chance of decaying and

that the decay rate or activity (R = −dN/dt) is proportional to the number of undecayed
nuclei present at time t: −dN/dt = λN . This has the solution N = N0 exp(−λt), so the
decay rate is given by R = R0 exp(−λt). Define the term half-life and show that it is
related to λ by T1/2 = (ln 2)/λ. Go over Sample Problems 42—4 and 42—5, show Fig. 42—8,
and point out the half-life. Emphasize that R decreases by a factor of two in every half-life
interval. Define the becquerel unit.

D. Discuss α decay. Write down Eq. 42—22 and explain that the daughter nucleus has two
fewer neutrons and two fewer protons than the parent. Go over Sample Problem 42—6 to
show that α decay is energetically favorable for 238U . Show Fig. 42—9 and explain that the
deep potential well is due to the strong attraction of the residual nucleus for the nucleons
in the α particle, while the positive potential is due to Coulomb repulsion. The two forces
form a barrier to decay. Explain that the α particle can tunnel through the barrier. Its
wave function does not go to zero at the inside edge, but rather has a finite amplitude in
the barrier and on the outside. There is a non-zero probability of finding the α particle
on the outside. High, wide barriers produce a small probability of tunneling and a long
half-life while low, narrow barriers produce the opposite effect. Note the wide range of
half-lives that occur in nature (Table 42—2).

E. Discuss β decay. Explain that a neutron can transform into a proton with the emission
of an electron and a neutrino (strictly, an antineutrino) and that a proton can transform
into a neutron with the emission of a positron and a neutrino. Mention the properties
of a neutrino: massless, neutral, weakly interacting. Only protons bound in nuclei can
undergo β decay but both free and bound neutrons can decay. These transformations lead
to decays such as the ones given in Eqs. 42—24 and 42—25. Explain that the energy is shared
by the decay products and that the electrons or positrons show a continuous spectrum of
energy up to some maximum amount (see Fig. 42—10). Explain that neutron rich nuclides
generally undergo β− decay while proton rich nuclides generally undergo β+ decay. This
is a mechanism for bringing the nucleus closer to stability. Carefully discuss the inclusion
of electron rest energies in the equation for Q so that atomic masses can be used. In
particular, show that in β− decay there is no excess electron mass but in β+ decay there
is an excess of two electron masses.

F. Define the units used to describe radiation dosage: grey and sievert.

SUPPLEMENTARY TOPICS

1. Radioactive dating. If time permits, cover this topic as an application of radioactive decay
processes.

2. Nuclear models. This topic adds a little breadth to the nuclear physics section and helps
students understand nuclear processes a little better.

SUGGESTIONS

1. Assignments
a. Nuclear constitution is covered in problems 4, 83, and 84. Nuclear radius and density are

covered in problems 7, 9, 87.
b. Include questions 2, 3, 6, 7, and 8 in the discussion of nuclear stability and nuclear binding.

These ideas are illustrated in problems 6, 8, 14, 15, and 17. Be sure to include problem 6
if you intend to discuss fission (Chapter 42).

c. Questions 9 through 14 deal with the decay law, activity, and half-life. Discuss a few.
Problems 22 and 24 cover basic half-life calculations. Problems 26, 27, 67, and 69 involve
half-life calculations drawn from many interesting applications. Assign some of them.
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d. Following the discussion of α decay, students should be able to answer question 15. The
disintegration energy and barrier height are covered in problems 44 and 81. Problem 43
asks students to take into account the recoil of the residual nucleus. Problem 40 shows
why alphas are emitted rather than well-separated nucleons.

e. After discussing β decay, assign one or more of problems 45, 47, and 77. Problem 46 shows
that β particles do not exist inside nuclei before decay occurs. The β decay discussion can
be broadened somewhat by including the recoil of the nucleus. See problem 50.

2. Demonstrations

Geiger counter: Freier and Anderson MPa2.

3. Books and Monographs

Resource Letters, Book Four ; American Association of Physics Teachers (AAPT, One
Physics Ellipse, College Park MD 20740—3845; www.aapt.org). Contains an exhaustive list
of journal articles on nuclear physics.

4. Audio/Visual

a. Radioactive Decay ; Scintillation Spectrometry ; from the AAPT Miller collection of single-
concept films; DVD; available from Ztek Co. (PO Box 11768, Lexington, KY 40577—1768,
www.ztek.com) and from the AAPT (see above for address).

b. Nuclear Physics; from Cinema Classics DVD 6: Angular Momentum and Modern Physics;
available from Ztek Co. and from the AAPT (see above for addresses).

c. Rutherford Scattering , Thomson Model of the Atom; from the AAPT collection 1 of single-
concept films; DVD; available from Ztek Co. (see above for address).

d. Nuclear Physics; VHS video tape; Films for the Humanities and Sciences (PO Box 2053,
Princeton, NJ 08543—2053; www.films.com). Contains sections on radioactivity and nuclear
energy.

e. The Rutherford Model ; VHS video tape (10 min); Films for the Humanities & Sciences
(see above for address).

f. Nuclear Science Wall Chart ; available from the AAPT (see above for address). A poster
describing basic nuclear processes, with applications to cosmology.

5. Computer Software

a. Chart of the Nuclides: A Tutorial ; Philip DiLavore; available from Physics Academic Soft-
ware (Centennial Campus, 940 Main Campus Drive, Suite 210, Raleigh, NC 27606—5212;
www.aip.org/pas). The chart is shown and a click on any nuclide produces information
about that nuclide.

6. Laboratory

Many of the following experiments make use of a Geiger tube and scalar.

a. Bernard Experiment 48: The Characteristics of a Geiger Tube describes how students can
systematically investigate the plateau and resolving time of a Geiger tube. They also
learn how to operate a scalar. Consider prefacing the other experiments either with this
experiment or with a demonstration of the same material.

b. Meiners Experiment 14—7: Half-Life of Radioactive Sources. A Geiger counter and scalar
are used to measure the decay rate as a function of time for indium, cesium 137, and
barium 137. For the first and last, the data is used to compute the half-life. Other sections
explain how to use a microcomputer to collect data and make the calculation and how
to use a emanation electroscope to collect data. A neutron howitzer or minigenerator is
required to produce radioactive sources.

c. Bernard Experiment 52: Measurement of Radioactive Half-Life. Nearly the same as Mein-
ers 14—7. The generation of sources with short half-lives is discussed.
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d. Meiners Experiment 14—6: Absorption of Gamma and Beta Rays. The particles are incident
on sheets of aluminum and the number that pass through per unit time is counted. Students
make a logarithmic plot of the counting rate as a function of the thickness of the aluminum
and determine the range of the particles.

Chapter 43 ENERGY FROM THE NUCLEUS

BASIC TOPICS

I. The fission process.
A. Refer back to the binding energy per nucleon vs. A curve (Fig. 42—6). It suggests that a

massive nucleus might split into two or more fragments nearer to iron, thereby increasing
the total binding energy. Each fragment is more stable than the original nucleus. This is
the fission process.

B. Remark that many massive nuclei can be rendered fissionable by the absorption of a thermal
neutron. Such nuclei are called fissile. Give the example 235U + n→ 236U→ X + Y + bn.
Explain that a thermal neutron (≈ 0.04 eV) is absorbed by a 235U nucleus and together
they form the intermediate fissionable 236U nucleus. This nucleus splits into two fragments
(X and Y) and several neutrons. The sequence of events is illustrated in Fig. 43—2. Point
out 236U on Fig. 42—6. The disintegration energy for one possible fission event is calculated
in Sample Problem 43—1.

C. Explain that different fission events, starting with the same nucleus, might produce different
fragments. The fraction of events that produce a fragment of a given mass number A is
graphed in Fig. 43—1. Point out that fragments of equal mass occur only rarely. Explain
that the parent nucleus is neutron rich, the initial fragments are neutron rich, and that the
initial fragments expel neutrons to produce the fragments X and Y. These generally decay
further by β emission and some may emit delayed neutrons following β decay.

D. Show Fig. 43—3 and explain that the parent nucleus starts in the energy well near r = 0.
The incoming neutron must supply energy to start the fission process. The required energy
is slightly less than Eb since tunneling can occur. Point out the energy Q released by the
process. Point out Table 43—2 and explain that En is the actual energy supplied by an
incoming thermal neutron. Point out nuclides in the table for which fission does not occur.

E. Write out several fission modes for 235U and note that on average more than one neutron is
emitted. Explain that some neutrons come promptly while others come from later decays
(the delayed neutrons). Point out that the average mode yields Q ≈ 200MeV, of which
190MeV or so appears as the kinetic energy of the fission fragments and 10MeV goes to
the neutrons.

II. Fission reactors.
A. Note that to have a practical reactor, the fission process must be self sustaining, once

started. Also, there must be a way to control the rate of the process and to stop it, if
desired.

B. To be self-sustaining, a chain reaction must occur: neutrons from one fission event trigger
another. The neutrons emitted from a typical fission event share about 5 to 10MeV energy
and they must be slowed to thermal speeds to be useful. Some sort of moderator, often
water, is used.

C. Explain that on average about 2.5 neutrons are produced per fission event. Describe in
detail what happens to them. Some leak out of the system, some of the slowed neutrons
are captured by 238U, some are captured by fission fragments, and the rest start fission in
235U. Fig. 43—4 gives some typical numbers.
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D. Explain the terms critical, subcritical, and supercritical. Note that the control rods, which
absorb slow neutrons, are used to achieve criticality. Point out that without the delayed
neutrons, control would not be possible since time is needed to move the rods into or out
of the reactor.

E. Define the multiplication factor k as the ratio of the number of neutrons present at one
time that participate in fission to the number present in the previous generation. Remark
that k = 1 for critical operation, k < 1 for subcritical operation, and k > 1 for supercritical
operation. Explain that k is determined by the positions of the control rods. The rods
are pulled out to increase k and thereby increase power output. They are pushed in to
decrease k and thereby decrease power output. When the desired power level is obtained,
the rods are positioned so k = 1.

F. Use Fig. 43—5 to describe the essential features of a nuclear power plant. Apart from the
fact that the fission process is used to heat water or generate steam, this schematic could
apply to any power plant. Remark on the special problems attendant on nuclear plants.

III. Fusion.
A. Return to Fig. 42—6 and remark that if two low-mass nuclei are combined to form a nucleus

with greater mass, the binding energy is increased considerably. The energy is transformed
to the kinetic energy of the resulting nucleus and any particles emitted. In order to carry out
the fusion process, the nuclei must be given sufficient energy to overcome the electrostatic
repulsion of their protons. They can then approach each other closely enough for the
attraction of the strong force to bind them. For 3He, the height of the barrier is about
1MeV. Since tunneling is possible, fusion can occur at slightly smaller energies.

B. To achieve a large number of fusion events, hydrogen or helium gases must be raised to
high temperatures. Even at the temperature of the Sun, only a small fraction of the nuclei
have sufficient energy to overcome the Coulomb barrier. Go over Fig. 43—10.

C. Discuss fusion in the Sun. Remark that the core of the Sun is 35% hydrogen and 65%
helium by mass. Outline the principal proton-proton cycle: two protons fuse to form a
deuteron, a positron, and a neutrino. A deuteron fuses with a proton to form 3He and two
3He nuclei fuse to form 4He and two protons. Remark that six protons are consumed and
two are produced for a net loss of four. The two positrons are annihilated with electrons
to produce photons. Note that the process can be simplified to 4p + 2e− → α + 2ν + 6γ
and the Q value is computed from the mass difference between the alpha particle and the
four protons.

D. Calculate the energy released. Show that Q = 26.7MeV and note that the neutrinos take
about 0.5MeV with them when they leave the Sun. Point out that the fusion process
produces about 20 million times as much energy per kg of fuel as the burning of coal.

E. If time permits, discuss helium burning. Use the solar constant to calculate the rate at
which the Sun converts mass to energy. Speculate on the future of the Sun. Also mention
the carbon cycle, which is essentially the same as the proton-proton cycle. Carbon acts as
a catalyst.

F. Discuss controlled thermonuclear fusion. Explain that deuteron-deuteron and deuteron-
triton fusion events are being studied. Point out that high particle concentrations at high
temperatures must be maintained for sufficiently long times in order to make the process
work. Discuss some means for doing this: the tokamak for plasma confinement by magnetic
fields, inertial confinement, and laser fusion. State that the right combination has not yet
been achieved but work continues.
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SUGGESTIONS

1. Assignments
a. After explaining the basic fission process, test for understanding with questions 1, 3, 4,

and 6. Also assign problems 2, 11, and 12.
b. Following the discussion of the fission reactor, ask questions 7 and 8. To help students

understand the role of a moderator, assign problem 21. To illustrate the role of the control
rods, assign problems 18 and 23.

c. Following the discussion of the basic fusion process, assign problems 28 and 29. Also ask
question 12.

d. To help students understand the fusion process as an energy source, assign problems 35
and 36. The carbon cycle is covered in problem 40.

2. Demonstrations
Chain reaction: Freier and Anderson MPa1.

3. Books and Monographs
a. Fission Reactors; edited by Melvin M. Levine.; available from the American Associa-

tion of Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845;
www.aapt.org). Covers both physics and engineering aspects.

b. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors; edited by J.A.
Fillo and P. Lindenfeld; available from the AAPT (see above for address). Covers both
physics and engineering aspects.

Chapter 44 QUARKS, LEPTONS, AND THE BIG BANG

BASIC TOPICS

I. The particle “zoo”.
A. Show a list of particles already familiar to students. Include the electron, proton, neutron,

and neutrino, then add the muon and pion. Explain that many other particles have been
discovered in cosmic ray and accelerator experiments. To impress students with the vast
array of particles and the enormous collection of data, make available to them a Review of
Particle Properties paper, published roughly every two years in Reviews of Modern Physics.

B. Explain that many new particles are discovered by bombarding protons or neutrons with
electrons or protons and show a picture of a detector or a bubble chamber picture, such
as Fig. 44—3. State that the picture shows tracks of charged particles in a strong magnetic
field, hence the curvature. Remind students that the radius of curvature can be used to
find the momentum of a particle if the charge is known. Indicate the collision point and
emphasize that the new particles were not present before the collision: the original particles
disappear and new particles appear. In most cases, the total rest energy after the collision
is much greater than the total rest energy before. Kinetic energy was converted to rest
energy.

C. Mention that a few particles seem to be stable (electron, proton, neutrino) but most decay
spontaneously to other particles. Point out decays on a bubble chamber picture. Explain
the statistical nature of decays and remind students of the meaning of half-life. Examples:
n→ p + e− + ν, π+ → µ+ + ν.

D. Explain that for each particle there is an antiparticle with the same mass. A charged
particle and its antiparticle have charge of the same magnitude but opposite sign. Their
magnetic moments are also opposite, relative to their angular momenta. A particle and
its antiparticle can annihilate each other, the energy (including rest energy) being carried
by photons or other particles produced in the annihilation. Example: e+ + e− → γ + γ.
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Antiparticles (except the positron) are denoted by a bar over the particle symbol. Some
uncharged particles (such as the photon and π0) are their own antiparticles. The universe
seems to be made of particles, not antiparticles.

II. Particle properties.

A. Spin angular momentum. Remind students that many particles have intrinsic angular mo-
mentum. Explain that the magnitude is always an integer or half integer times h̄. Remark
that particles with half integer spins are called fermions while particles with integer spins
are called bosons. Remind students of the Pauli exclusion principle and its significance,
then state that fermions obey the principle while bosons do not. Give examples: electrons,
protons, neutrons, and neutrinos are fermions; photons, pions, and muons are bosons. Re-
mark that spin angular momentum is conserved in particle decays and interactions. An
odd number of fermions, for example, cannot interact to yield bosons only.

B. Charge. Remind students of charge quantization and charge conservation. Even if the
character and number of particles change in an interaction, the total charge before is the
same as the total charge after. Example: n→ p + e− + ν.

C. Momentum and energy. Explain that energy and momentum are conserved in decays and
interactions. Give masses and rest energies for the particles in the list of part I. Give the
expressions for relativistic energy and momentum in terms of particle velocity.

D. Forces. Remark that all particles interact via the force of gravity and all charged particles
interact via the electromagnetic force. The force of gravity is too weak to have observable
influence at energies presently of interest. Remark that there are two additional forces,
called strong and weak, respectively. Remind students of the role played by the strong
force in holding a nucleus together and the role played by the weak force in beta decay.
These topics were covered in Chapter 42. Note that lifetimes for strong decays are about
10−23 s, lifetimes for electromagnetic decays are about 10−14 to 10−20 s, and lifetimes for
weak decays are about 10−8 to 10−13 s.

E. Leptons and hadrons. State that particles that interact via the strong force (as well as the
weak) are called hadrons and that particles that interact via the weak force but not the
strong are called leptons. List the leptons (electron, muon, tauon, and their neutrinos) and
explain that a different neutrino is associated with each of the leptons. Remark that the
neutrino that appears following muon decay is not the same as the neutrino that appears
following beta decay. Neutrinos are labeled with subscripts giving the associated lepton:
νe, νµ, and ντ .

F. Lepton numbers. State that a lepton number is associated with each lepton family, with
particles in the family having a lepton number of +1, antiparticles in the family having a
lepton number of −1, and all other particles having a lepton number of 0. Explicitly give
the electron lepton numbers and the muon lepton numbers for members of the electron and
muon families. Explain that each lepton number is conserved in all decays and interactions.
Give some beta and muon decay examples.

G. Baryons and mesons. Remark that some strongly interacting particles (proton, neutron)
are fermions and are called baryons while others (pion, kaon) are bosons and are called
mesons. Explain that a baryon number of +1 is assigned to each baryon particle, a baryon
number of −1 is assigned to each baryon antiparticle, and a baryon number of 0 is assigned
to each meson. Then baryon number is conserved in exactly the same way charge is
conserved: the total baryon number before a collision or decay is the same as the total
baryon number after. This conservation law (and conservation of energy) accounts for the
stability of the proton, the baryon with the smallest mass. There is some speculation that
baryon number is not strictly conserved and that protons may decay to other particles,
but the half-life is much longer than the age of the universe. Some physicists are trying to
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observe proton decay.
H. Strangeness. Explain that another quantity, called strangeness, is conserved in strong

interactions. Neutrons and protons have S = 0, K− and Σ+ have S = −1. A particle
and its antiparticle have strangeness of opposite sign. Conservation of strangeness allows
π+ + p→ K+ + Σ+ but prohibits π+ + p→ π+ + Σ+, for example.

III. Quarks and the eight-fold way.
A. Show the eight-fold way patterns (Figs. 44—3 and 44—4) and point out the oblique axes.

Remark that these patterns are to fundamental particles as the periodic table of chemistry
is to atoms and that they have provided clues to the existence of particles not previously
observed.

B. Remark that the properties of strongly interacting particles can be explained if we assume
they are made up of more fundamental particles (called quarks). State that there are
six quarks, not including the antiquarks, and list them and their properties (Table 44—5).
Particularly note the fractional charge and baryon number. Baryons are constructed of
three quarks, antibaryons of three antiquarks, and mesons of a quark and antiquark. Show
that uud has the charge, spin, and baryon number of a proton and udd has the charge, spin,
and baryon number of a neutron. Give the quark content of the spin 1/2 baryons (Fig. 44—
5a) and the quark content of the spin 0 mesons. Point out that the strange quark accounts
for the strangeness quantum number. Mention the charm, bottom, and top quarks and
point out they lead to other particles.

C. Explain that the existence of internal structure allows for excited states: there are other
particles with exactly the same quark content as those mentioned in III B but they are
different particles because the quarks have different motions. The additional energy results
in greater mass. Contrast this with the leptons, which have no internal structure. Quarks
and leptons are believed to be truly fundamental.

D. Messenger particles. Explain that particles interact by exchanging other particles. Elec-
tromagnetic interactions proceed by exchange of photons, for example. Also explain that
energy may not be conserved over short periods of time but this is consistent with the
uncertainty principle. State that the strong interaction proceeds by the exchange of glu-
ons by quarks and the weak interaction proceeds by the exchange of Z and W particles
by quarks and leptons. The interaction that binds nucleons in a nucleus is the same as
the interaction that binds quarks in a baryon or meson. In the former case, gluons are
exchanged between quarks of different nucleons; in the latter, they are exchanged between
quarks of the same baryon or meson.

E. Explain that quarks are conserved in strong interactions. Either the original quarks are
rearranged to form new particles or quark-antiquark pairs are created, then both the orig-
inal and the new quarks are rearranged. This accounts for conservation of strangeness.
Example: K+ → K0 + π+ (us → ds + ud). A dd pair is formed. The d quark couples to
the s quark to form a K0 and the d quark couples to the u quark to form a π+. Contrast
this with the weak interaction, which can change one type quark into another. Illustrate
with beta decay, in which a d quark is converted to a u quark.

F. Explain that quarks have another property, called color. Color produces the gluon field,
much as charge produces the electromagnetic field: baryons interact via the strong in-
teraction because quarks have color. Be sure students understand that “color” in this
context has nothing to do with the frequency of light. Mention that gluons carry color.
The emission or absorption of a gluon changes the color of a quark. Contrast this with the
electromagnetic interaction: a photon does not carry charge.

IV. The Big Bang and cosmology.
A. Remind students of the doppler shift for light and state that spectroscopic evidence con-
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vinces us that on a large scale, matter in the universe is receding from us and we are
led to conclude that the universe is expanding. Write down Hubble’s law and give the
approximate value of the Hubble parameter: 63.0 km/(s ·Mpc (= 19.3mm/s · ly). Define
the parsec (3.084 × 1013 km). Show that this implies a minimum age for the universe of
about 1.5 × 1010 y.

B. State that the future expansion (or contraction) of the universe depends on its mass density
and that the density of matter that radiates is too small to prevent expansion forever.
Explain that there is evidence for the existence of matter that does not radiate (dark
matter). Explain how the rotational period of a star in a galaxy, as a function of its
distance from the galactic center, provides such evidence. The nature of the dark matter
is not presently known.

C. Discuss the microwave background radiation and state that physicists believe it was gen-
erated about 300, 000 years after the big bang, when the universe became tenuous enough
to allow photons to exist without being quickly absorbed.

D. Remark that in the early universe the temperature was sufficiently high that the exotic
particles now being discovered (and others) existed naturally. We need the results of high
energy physics to understand the early universe.

E. Go over the chronological record given at the end of Section 44—14.

SUGGESTIONS

1. Assignments
a. To test for understanding of the conservation laws and the stability of particles, ask ques-

tions 4, 6, and 7. Problems 1, 7 (or 9), 11, 12, 13, 15, and 17 each deal with one or more
of the conservation laws. Assign several.

b. To help clarify particle properties and classifications, ask questions 8, 11, 12, and 13.
c. Problems 20, 21, 24, 39, and 28 provide excellent illustrations of the quark model.
d. Assign problem 26 in connection with Hubble’s law. Assign problem 27 or 28 in connection

with the red shift. If you discussed the relativistic Doppler shift in connection with Chapter
37, assign problem 29. Problem 31 deals with the cosmic background radiation. Dark
matter and the future of the universe are the subjects of problem 34.

2. Demonstrations
Show nuclear emulsion plates, available from Brookhaven National Laboratory, Fermilab,
and other high energy laboratories.

3. Books and Monographs
a. Resource Letters, Book Four and Resource Letters, Book Five; American Association of

Physics Teachers (AAPT, One Physics Ellipse, College Park MD 20740—3845; www.aapt
.org). Contains lists of journal articles on high energy, particle physics, and cosmology.

b. Quarks; edited by O.W. Greenberg; available from AAPT (see above for address). Reprints
covering important aspects of the quark model.

c. Quarks, Quasars, and Quandaries; edited by Gordon Aubrecht; available from AAPT (see
above for address). Summaries of particle physics and cosmology.

d. Cosmology and Particle Physics; edited by David Lindley, Edward W. Kolb, and David N.
Schramm. Reprint collection dealing the evolution of the universe from the big bang.

e. Black Holes; edited by Steven Detweiler; available from AAPT (see above for address).
Reprints dealing with structure and dynamics of black holes.

4. Audio/Visual
a. Black Holes, Dark Matter from The Complete Cosmos series; VHS video tape; Films for

the Humanities and Sciences (PO Box 2053, Princeton, NJ 08543—2053; www.films.com).
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b. The Expanding Universe: From Big Bang to Big Crunch? ; VHS video tape; Films for the
Humanities and Sciences (see above for address).

5. Laboratory
Meiners Experiment 14—8: Nuclear and High Energy Particles. A dry ice and alcohol cloud
chamber is used to observe the tracks of alpha and beta particles as well as the tracks produced
by cosmic rays. A magnet is used to make circular tracks.
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SECTION FOUR

ANSWERS TO CHECKPOINTS

The following are the answers to the Checkpoints that appear throughout the text.

Chapter 2

1. b and c
2. zero (zero displacement for the entire trip)
3. (check the derivative dx/dt) (a) 1 and 4; (b)
2 and 3

4. (see Tactic 5) (a) plus; (b) minus; (c) minus;
(d) plus

5. 1 and 4 (a = d2x/dt2 must be a constant
6. (a) plus (upward displacement on y axis);
(b) minus (downward displacement on y

axis); (c) a = −g = −9.8m/s2

Chapter 3

1. (a) 7m (na and nb are in the same direction);

(b) 1m (na and nb are in opposite directions)
2. c, d, f (components must be head-to-tail; na
must extend from the tail of one component
to the head of the other))

3. (a) +, +; (b) +, −; (c) +, + (draw vector

from the tail of nd1 to the head of nd2)
4. (a) 90◦; (b) 0 (vectors are parallel and in
the same direction); (c) 180◦ (vectors are
in opposite directions)

5. (a) 0 or 180◦; (b) 90◦

Chapter 4

1. (a) (8m) î − (6m) ĵ; (b) yes, the xy plane
(no z component)

2. (a) first; (b) third
3. (1) and (3) ax and ay are both constant, so

na is constant; (2) and (4) ay is constant but
ax is not, so na is not

4. 4m/s
2
, −2m/s, 3m

5. (a) vx constant; (b) vy initially positive, de-
creases to zero, and then becomes progres-
sively more negative; (c) ax = 0 through-
out; (d) ay = −g throughout

6. (a) −(4m/s) î; (b) −(8m/s2) ĵ

7. (a) 0, distance not changing; (b) +70 km/h,
distance increasing; (c) +80 km/h, distance
decreasing

8. (a)—(c) increase

Chapter 5

1. c, d, and e
2. (a) and (b) aN, leftward
3. (a) and (b) 1, 4, 3, 2
4. (a) equal; (b) greater
5. (a) equal; (b) greater; (c) less
6. (a) increase; (b) yes; (c) same; (d) yes
7. (a) F sin θ; (b) increase
8. 0

Chapter 6

1. (a) zero; (b) 5N; (c) n0; (d) yes; (e) 8N
2. (a) same; (b) decreases; (c) decreases
3. greater
4. (a) na is downward, nN is upward; (b) na and

nN are both upward
5. (a) same; (b) increases; (c) increases
6. (a) 4R1; (b) 4R1

Chapter 7

1. (a) decrease; (b) same; (c) negative, zero
2. d, c, b, a
3. (a) same; (b) smaller
4. (a) positive; (b) negative; (c) zero
5. zero

Chapter 8

1. no (consider round trip on the small loop)
2. 3, 1, 2
3. (a) all tie; (b) all tie
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4. (a) CD, AB, BC (zero); (b) positive x di-
rection

5. all tie

Chapter 9

1. (a) origin; (b) fourth quadrant; (c) on y axis
below origin; (d) origin; (e) third quadrant;
(f) origin

2. (a) to (c) at the center of mass, still at the
origin

3. (a) 1, 3, then 2 and 4 tie (zero force); (b) 3

4. (a) unchanged; (b) unchanged; (c) decrease

5. (a) zero; (b) positive; (c) positive y direc-
tion

6. (a) zero; (b) no (c) negative x direction

7. (a) 500 km/h; (b) 2600 km/h;

(c) 1600 km/h

8. (a) yes; (b) no

9. (a) 10 kg ·m/s; (b) 14 kg ·m/s; (c) 6 kg ·m/s
10. (a) 4 kg ·m/s; (b) 8 kg ·m/s; (c) 3 J
11. (a) 2 kg ·m/s; (b) 3 kg ·m/s

Chapter 10

1. (b and (c)

2. (a) and (d)

3. (a) yes; (b) no; (c) yes; (d) yes

4. all tie

5. 1, 2, 4, 3

6. 1 and 3 tie, then 2 and 5 tie (zero)

7. (a) downward in the figure; (b) less

Chapter 11

1. (a) same; (b) less

2. less

3. (a) ±z; (b) +y; (c) −x
4. (a) 1 and 3 tie, then 2 and 4 tie, then 5
(zero); (b) 2 and 3

5. (a) 3, 1, then 2 and 4 tie (zero)

6. (a) all tie; (b) sphere, disk, hoop

7. (a) decreases; (b) same; (c) increases

Chapter 12

1. c, e, f

2. directly below the rod (torque due to nFg
on the apple, about the suspension point,
is zero)

3. (a) no; (b) at site of nF1, perpendicular to
plane of figure; (c) 45N

4. (a) at C (to eliminate forces there from a
torque equation); (b) plus; (c) minus;

(d) equal

5. d

6. (a) equal; (b) B; (c) B

Chapter 13

1. all tie

2. (a) 1, tie of 2 and 4, then 3; (b) line d

3. negative y direction

4. (a) increase; (b) negative

5. (a) 2; (b) 1

6. (a) path 1 [decreased E (more negative)
gives decreased a]; (b) less than (decreased
a gives decreased T )

Chapter 14

1. all tie

2. (a) all tie (gravitational force on the pen-
guin is the same); (b) 0.95ρ0, ρ0, 1.1ρ0

3. 13 cm3/s, outward

4. (a) all tie; (b) 1, then 2 and 3 tie, 4 (wider
means slower);

(c) 4, 3, 2, 1 (wider and lower mean more
pressure)

Chapter 15

1. (sketch x versus t) (a) −xm; (b) +xm;
(c) 0

2. a (F must have the form of Eq. 6—10)

3. (a) 5 J; (b) 2 J; (c) 5 J

4. all tie (in Eq. 15—29, m is included in I)

5. 1, 2, 3 (the ratio m/b matters; k does not)
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Chapter 16

1. a, 2; b, 3; c, 1 (compare with phase in
Eq. 16—2, then see Eq. 16—5)

2. (a) 2, 3, 1 (see Eq. 16—13); (b) 3, then 1 and
2 tie (find amplitude of dy/dt)

3. same (independent of f); (b) decrease (λ =
v/f); (c) increase; (d) increase

4. (a) increase; (b) increase; (c) increase

5. 0.20 and 0.80 tie, then 0.60, 0.45

6. (a) 1; (b) 3; (c) 2

7. (a) 75Hz; (b) 525Hz

Chapter 17

1. beginning to decrease (example: mentally
move the curves of Fig. 17—7 rightward past
the point at x = 42m)

2. (a) 0, fully constructive; (b) 4λ, fully con-
structive

3. (a) 1 and 2 tie, then 3 (see Eq. 17—28);

(b) 3, then 1 and 2 tie (see Eq. 17—26)

4. second (see Eqs. 17—39 and 17—41)

5. (a) greater; (b) less; (c) can’t tell;

(d) can’t tell; (e) greater; (f) less

6. (measure speeds relative to the air)

(a) 222m/s; (b) 222m/s

Chapter 18

1. (a) all tie; (b) 50◦X, 50◦ Y, 50◦W
2. (a) 2 and 3 tie, then 1, then 4; (b) 3, 2, then
1 and 4 tie (from Eqs. 18—9 and 18—10, as-
sume that the change in area is proportional
to initial area)

3. A (see Eq. 18—14)

4. c and e (maximize area enclosed by a clock-
wise cycle)

5. (a) all tie (∆Eint depends on i and f, not on
path); (b) 4, 3, 2, 1 (compare areas under
curves); (c) 4, 3, 2, 1 (see Eq. 18—26)

6. (a) zero (closed cycle); (b) negative (Wnet

is negative; see Eq. 18—26)

7. b and d tie, then a, c (Pcond identical; see
Eq. 18—32)

Chapter 19

1. all but c
2. (a) all tie; (b) 3, 2, 1
3. gas A
4. 5 (greatest change in T ), then tie of 1, 2, 3,
and 4

5. 1, 2, 3 (Q3 = 0, Q2 goes into work W2, but
Q1 goes into greater work W1 and increases
gas temperature)

Chapter 20

1. a, b, c
2. smaller (Q is smaller)
3. c, b, a
4. a, d, c, b
5. b

Chapter 21

1. C and D attract; B and D attract
2. (a) leftward; (b) leftward; (c) leftward
3. (a) a, c, b; (b) less than
4. −15e (net charge of −30e is equally shared)

Chapter 22

1. (a) rightward; (b) leftward; (c) leftward;
(d) rightward; (p and e have same charge
magnitude and p is farther)

2. all tie
3. (a) toward positive y; (b) toward positive
x; (c) toward negative y

4. (a) leftward; (b) leftward; (c) decrease
5. (a) all tie; (b) 1 and 3 tie, then 2 and 4 tie

Chapter 23

1. (a) +EA; (b) −EA; (c) 0; (d) 0
2. (a) 2; (b) 3; (c) 1
3. (a) equal; (b) equal; (c) equal
4. +50e; (b) −150e
5. 3 and 4 tie, then 2, 1
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Chapter 24

1. (a) negative; (b) increase
2. (a) positive; (b) higher
3. (a) rightward; (b) 1, 2, 3, 5: positive;
4: negative; (c) 3, then 1, 2, and 5 tie, then
4

4. all tie
5. a, c (zero), b
6. (a) 2, then 1 and 3 tie; (b) 3; (c) accelerate
leftward

Chapter 25

1. (a) same; (b) same
2. (a) decreases; (b) increases; (c) decreases
3. (a) V , q/2; (b) V/2, q
4. (a) q0 = q1 + q34; (b) equal (C3 and C4 are
in series)

5. (a) same; (b) same (same potential differ-
ence across same plate separation)

6. (a) same; (b) decrease; (b) decrease; (c) in-
crease

Chapter 26

1. 8A, rightward
2. (a)–(c) rightward
3. a and c tie, then b
4. device 2
5. (a) and (b) tie, then (d), then (c)

Chapter 27

1. (a) rightward; (b) all tie; (c) b, then a and
c tie; (d) b, then a and c tie

2. (a) all tie; (b) R1, R2, R3
3. (a) less; (b) greater; (c) equal
4. (a) V/2, i; (b) V , i/2
5. (a) 1, 2, 4, 3; (b) 4, then 1 and 2 tie, then 3

Chapter 28

1. a, +z; b, −x; c, nFB = 0
2. (a) 2, then 1 and 3 tie (zero); (b) 4
3. (a) +z and−z tie, then +y and −y tie, then
+x and −x tie (zero); (b) +y

4. (a) electron; (b) clockwise
5. −y
6. (a) all tie; (b) 1 and 4 tie, then 2 and 3 tie

Chapter 29

1. a, c, b
2. b, c, a
3. d, then a and c tie, then b
4. d, a, then b and c tie (zero)

Chapter 30

1. b, then d and e tie, then a and c tie (zero)
2. a and b tie, then c (zero
3. c and d tie, then a and b tie
4. b, out; c, out; d, into; e, into
5. d and e
6. (a) 2, 3, 1 (zero; (b) 2, 3, 1
7. a and b tie, then c

Chapter 31

1. (a) T/2; (b) T ; (c) T/2; (d) T/4
2. (a) 5V; (b) 150µJ
3. (a) remains the same; (b) remains the same
4. (a) C, B, A; (b) 1, A; 2,B; 3, S; 4, C; (c) A
5. (a) remains the same; (b) increases
6. (a) remains the same; (b) decreases
7. (a) 1, lags; 2, leads; 3, in phase; (b) 3 (ωd =

ω when XL = XC)
8. (a) increase (circuit is mainly capacitive; in-
crease C to decrease XC to be closer to res-
onance for maximum Pavg); (b) closer

9. (a) greater; (b) step-up

Chapter 32

1. d, b, c, a (zero)
2. (a) 2; (b) 1
3. (a) away; (b) away; (c) less
4. (a) toward; (b) toward; (c) less
5. a, c, b, d (zero)
6. tie of b, c, and d, then a
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Chapter 33

1. (a) (Use Fig. 33—5.) On the right side of

rectangle, nE is in the negative y direction;
on the left side, nE+d nE is greater and in the
same direction; (b) nE is downward. On the

right side, nB is in the negative z direction;
on the left side nB+d nB is greater and in the
same direction.

2. positive direction of x
3. (a) same; (b) decrease
4. a, d, b, c (zero)
5. a
6. (a) no; (b) yes

Chapter 34

1. 0.2d, 1.8d, 2.2d
2. (a) real; (b) inverted; (c) same
3. (a) e; (b) virtual, same
4. virtual, same as object, diverging

Chapter 35

1. b (least n), c, a
2. (a) top; (b) bright intermediate illumina-
tion (phase difference is 2.1 wavelengths

3. (a) 3λ, 3; (b) 2.5λ, 2.5
4. a and d tie (amplitude of resultant wave is
4E0), then b and c tie (amplitude of resul-
tant wave is 2E0)

5. (a) 1 and 4; (b) 1 and 4

Chapter 36

1. (a) expand; (b) expand
2. (a) second side maximum; (b) 2.5
3. (a) red; (b) violet
4. diminish
5. (a) increase; (b) same
6. (a) left; (b) less

Chapter 37

1. (a) same (speed of light postulate); (b) no
(the start and end of the flight are spatially

separated); (c) no (because his measure-
ment is not a proper time)

2. (a) Sally’s; (b) Sally’s
3. (a) Eq. 2; (b) 0.90c; (c) 25 ns; (d) −7.0m
4. (a) right; (b) more
5. (a) equal; (b) less

Chapter 38

1. b, a, d, c
2. (a) lithium, sodium, potassium, cesium; (b)
all tie

3. (a) same; (b) — (d) x rays
4. (a) proton; (b) same; (c) proton
5. same

Chapter 39

1. b, a, c
2. (a) all tie; (b) a, b, c
3. a, b, c, d
4. E1,1 (neither nx nor ny can be zero
5. (a) 5; (b) 7

Chapter 40

1. 7
2. (a) decrease; (b) — (c) remain the same
3. less
4. A, C, B

Chapter 41

1. (a) larger; (b) same
2. Cleveland: metal; Boca Raton: none;
Seattle: semiconductor

3. a, b, and c
4. b

Chapter 42

1. 90As and 158Nd
2. a little more than 75Bq (elapsed time is a
little less than three half-lives)

3. 206Pb
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Chapter 43

1. c and d
2. (a) no; (b) yes; (c) no
3. e

Chapter 44

1. (a) the muon family; (b) a particle;
(c) Lµ = +1

2. b and e
3. c
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SECTION FIVE

ANSWERS TO QUESTIONS

The following are the answers to the end-of-chapter questions.

Chapter 2

1. (a) all tie; (b) 4, tie of 1 and 2, then 3
2. (a) negative; (b) positive; (c) zero; (d) neg-
ative; (e) twice

3. (a) positive direction; (b) negative direc-
tion; (c) 3 and 5; (d) 2 and 6 tie, then 3
and 5 tie, then 1 and 4 tie (zero)

4. a and c
5. (a) 3, 2, 1; (b) 1, 2, 3; (c) all tie; (d) 1, 2, 3
6. (a) 2, 3; (b) 1, 3; (c) 4
7. 60 km/h, not 0
8. (a) D; (b) E
9. x = t2 and x = 8(t − 2) + 1.5(t − 2)2, with
x in meters and t in seconds

Chapter 3

1. Either the sequence nd2, nd1 or the sequence
nd2, nd2, nd3

2. yes, when the vectors are in the same direc-
tion

3. no
4. (a) na andnb are parallel; (b) nb = 0; (c) na and
nb are perpendicular

5. (a) yes; (b) yes; (c) n0
6. (a) −, +; (b) −, −; (c) +, +
7. all but (e)

8. no (the orientations of nb and nc can differ
9. (a) positive x direction for (1), positive z
direction for (2) and (3); (b) negative x di-
rection for (1); negative z direction for (a)
and (3)

10. (a) nB and nC, nD and nE; (b) nD and nE

Chapter 4

1. (a) (7m) î + (1m) ĵ − (2m) k̂; (b) (5m) î −
(3m) ĵ + (1m) k̂; (c) (−2m) î

2. a and c tie, then b
3. yes; it is coming down
4. a, b, c
5. (a) all tie; (b) 1 and 2 tie, then 3 and 4 tie

6. (a) A; (b) closer
7. (a) 0; (b) 350 km/h; (c) 350 km/h; (d) the
same

8. (a) 3, 2, 1; (b) 1, 2, 3; (c) all tie; (d) 6, 5, 4
9. (a) all tie; (b) all tie; (c) 3, 2, 1; (d) 3, 2, 1
10. (a) c, b, a; (b) a, b, c
11. 2, then 1 and 4 tie, then 3
12. (a) 90◦ and 270◦; (b) 0◦ and 180◦; (c) 90◦

and 270◦

13. (a) yes (just round a curve); (b) no (the
direction of the velocity must be changing);
(c) yes (if going with constant speed)

Chapter 5

1. (a) 2 and 4; (b) 2 and 4
2. (a) 5; (b) 7; (c) (2N) î; (d) (−6N ĵ;
(e) fourth; (f) fourth

3. increase
4. (a) 2 and 3; (b) 2
5. (a) 2, 3, 4; (b) 1, 3, 4; (c) 1: in the positive
y direction, 2: in the positive x direction,
3: in the fourth quadrant, 4: in the third
quadrant

6. 1, graphs a and e; 2, graphs b and d; 3,
graphs b and f; 4, graphs c and f

7. a, then b, c, and d tie
8. (a) 10 kg; (b) 18 kg; (c) 10 kg; (d) all tie;
(e) 3, 2, 1

9. (a) increases from mg; (b) decreases from
mg to zero

10. d, c, a, b
11. (a) 17 kg; (b) 12 kg; (c) 10 kg; (d) all tie;

(e) nF , nF21, nF32
12. A positive and constant; B zero and con-

stant; D zero and constant; E positive and
increasing; F positive and decreasing

Chapter 6

1. (a) F1, F2, F3; (b0 all tie
2. (a) same; (b) increases; (c) increases; (d) n0
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3. (a) upward; (b) horizontal, away from wall;
(c) no change; (d) increases; (e) increases

4. (a) decreases; (b) decreases; (c) increases;
(d) increases; (e) increases

5. (a) decreases; (b) decreases; (c) decreases;
(d) decreases; (e) decreases

6. At first nfs is directed up the ramp and its
magnitude decreases from mg sin θ to 0 as
F increases. Then nfs is directed down the
ramp and its magnitude increases until it
reaches fs max. Thereafter the force is one
of kinetic friction directed down the ramp
and has magnitude fk, a constant value less
than fs max.

7. At first nfs is directed up the ramp and its
magnitude increases from mg sin θ until it
reaches fs{sub max. Thereafter the force is
one of kinetic friction directed up the ramp
and has magnitude fk, a constant value less
than fs max.

8. On opening the parachute produced a large
sudden upward force on the diver due to in-
creased air drag and the drag force slowed
the diver suddenly. To keep the pumpkin
in his grip he had to slow it just as much
but this required more force than he could
exert. From the diver’s viewpoint the ap-
parent weight of the pumpkin suddenly and
surprisingly increased and the pumpkin was
ripped from his hands. From the pumpkin’s
viewpoint the sudden upward force on the
diver ripped him away from the pumpkin.

9. (a) 5m/s
2
to 10m/s

2
; (b) 0 to 5m/s

2

10. 4, 3, then 1, 2, and 5 tie
11. (a) all tie; (b) all tie; (c) 2, 3, 1

Chapter 7

1. all tie
2. (a) positive; (b) negative; (c) negative
3. c, b, a
4. (a) 2; (b) 3; (c) 1
5. all tie
6. b (positive work), a (zero work, c (negative
work, d (more negative work

7. (a) A, nF2; B, nF1; C, nF3; D, nF4; (b) E, A and
D; F, B and C; G and H are meaningless

8. (a) A; (b) B
9. e through h

10. (a) 3m; (b) 3m; (c) 0 and 6m; (d) negative
x

Chapter 8

1. (a) 12 J; (b) −2 J
2. (a) 3, 2, 1; (b) 1, 2, 3
3. (a) 4; (b) returns to its starting point and
repeats the trip; (c) 1; (d) 1

4. 2, 1, 3
5. (a) AB, CD, then BC and DE tie (zero
force); (b) 5 J; (c) 5 J; (d) 6 J; (e) FG;
(f) DE

6. (a) less; (b) equal
7. +30 J
8. +30 J
9. (a) increasing; (b) decreasing; (c) decreas-
ing; (d) constant in AB and BC, decreasing
in CD

Chapter 9

1. (a) ac, cd, bc; (b) bc; (c) bd, ad
2. (a) 2N, rightward; (b) 2N, rightward;
(c) greater than 2N, rightward

3. d, c, a, b (zero)
4. (a) x yes, y no; (b) x yes, y no; (c) x no, y
yes

5. all tie
6. b, c, a
7. a, c, e, f: the sum of the momenta after
the explosion does not equal the momentum
before the explosion

8. (a) one was stationary; (b) 2; (c) 5;
(d) equal

9. (a) positive; (b) positive; (c) 2 and 3
10. (a) C; (b) B; (c) 3
11. (a) forward; (b) stationary; (c) backward
12. (a) c, kinetic energy cannot be negative; d,

total energy cannot increase; (b) a; (c) b

Chapter 10

1. (a) positive; (b) zero; (c) negative; (d) neg-
ative

2. (a) c, a, then b and d tie; (b) b, then a and
c tie, then d

3. (a) 1: counterclockwise (positive); 2: coun-
terclockwise (positive); 3: at θ = 0;
(b) 1: before; 2: at t = 0; 3: after;
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(c) 1: positive; 2: negative; 3: positive
4. c, a, b
5. larger
6. 90◦, then 70◦ and 110◦ tie
7. nF5, nF4, nF2, nF1, nF3 (zero)
8. (a) decrease; (b) clockwise;
(c) counterclockwise

9. (a) 1 and 2 tie, then 3; (b) 1 and 3 tie, then
2; (c) 2, 1, 3

10. all tie

Chapter 11

1. (a) 0 or 180◦; (b) 90◦

2. (a) 1, 2, 3 (zero); (b) 1 and 2 tie, then 3;
(c) 1 and 3 tie, then 2

3. (a) 5 and 6; (b) 1 and 4 tie, then the rest
tie

4. (a) spins in place; (b) rolls toward you;
(c) rolls away from you

5. b, then c and d tie, then a and e tie (zero)
6. a, then b and c tie, then d (zero)
7. (a) 3; (b) 1; (c) 2; (d) 4
8. D, B, then A and C tie
9. (a) 4, 6, 7, 1, then 2, 3, and 5 tie (zero)
10. (a) same; (b) increase; (c) decrease;

(d) same, decrease, increase

Chapter 12

1. (a) yes; (b) yes; (c) yes; (d) no
2. a and c (forces and torques balance)
3. (a) 1 and 3 tie, then 2; (b) all tie; (c) 1 and
3 tie, then 2 (zero)

4. (a) 1, 2, 3 (zero), 4, 5, 6; (b) 6, 5, 4, 3, 2, 1
5. (a) 12 kg; (b) 3 kg; (c) 1 kg
6. (a) 15N (the key is the pulley with the 10-N
piñata); (b) 10N

7. increase
8. (a) same; (b) smaller; (c) smaller; (d) same
9. 4, 1, then 2 and 3 tie
10. A, then tie of B and C

Chapter 13

1. (a) between, closer to less massive particle;
(b) no; (c) no

2. b and c tie, then a (zero)
3. Gm2/r2, upward
4. 3GM2/d2, leftward

5. (a) c, b, a; (b) a, b, c
6. (a) positive y; (b) yes, rotates counterclock-
wise until it points toward particle B

7. yes, in the second quadrant, closer to the y
axis than to the x axis, at a distance that
depends on its mass

8. (a) 1 and 2 tie, then 3 and 4 tie; (b) 1, 2, 3,
4

9. a tie of b, d, and f, then e, c, a
10. 1, tie of 2 and 4, then 3
11. (a) all tie; (b) all tie
12. b, a, c

Chapter 14

1. e, then b and d tie, then a and c tie
2. b, then a and d tie (zero), then c
3. (a) 2; (b) 1, less; 3, equal; 4, greater
4. (a) moves downward; (b) moves downward
5. all tie
6. (a) downward; (b) downward; (c) same
7. a, b, c
8. c, b, a
9. B, C, A
10. (a) 1 and 4; (b) 2; (c) 3

Chapter 15

1. c
2. (a) 2; (b) positive; (c) between 0 and +xm
3. a and b
4. (a) toward −xm; (b) toward +xm; (c) be-
tween −xm and 0; (d) between −xm and 0;
(e) decreasing; (f) increasing

5. (a) −π, −180◦; (b) −π/2, −90◦; (c) +π/2,
+90◦

6. (a) between D and E; (b) between 3π/2 rad
and 2π rad

7. (a) between B and C; (b) between π/2 rad
and π rad

8. (a) all tie; (b) 3, then 1 and 2 tie; (c) 1, 2,
3 (zero); (d) 1, 2, 3 (zero); (e) 1, 3, 2

9. (a) A, B, C; (b) C, B, A
10. (a) greater; (b) same; (c) same; (d) greater;

(e) greater
11. b (infinite period; does not oscillate), c, a
12. one system : k = 1500N/m, m = 500 kg;

other system: k = 1200N/m, m = 400 kg
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Chapter 16

1. (a) 3, then 1 and 2 tie; (b) all tie; (c) 1 and
2 tie, then 3

2. a, upward; b, upward; c, downward;
d, downward; e, downward; f, downward;
g, upward; h, upward

3. (a) 1, 4, 2, 3; (b) 1, 4, 2, 3
4. (a) 4; (b) 4; (c) 3
5. intermediate (closer to fully destructive in-
terference)

6. (a) 0, 0.2 wavelength, 0.5 wavelength (zero);
(b) 4Pavg, 1

7. a and d tie, then b and c tie
8. c, a, b
9. (a) 8; (b) antinode; (c) longer; (d) lower
10. d
11. (a) node; (b) antinode

Chapter 17

1. (a) 2.0 wavelengths; (b) 1.5 wavelengths;
(c) fully constructive in (a), fully destruc-
tive in (b)

2. C, then A and B tie
3. (a) 0, 0.2 wavelength, 0.5 wavelength (zero);
(b) 4Pavg, 1

4. (a) two; (b) antinode
5. 150Hz and 450Hz
6. all odd harmonics
7. d, fundamental
8. E, A, D, C, B
9. 1, 4, 3, 2
10. (a) 3, then 1 and 2 tie; (b) 1, then 2 and 3

tie; (c) 3, 2, 1

Chapter 18

1. Z, X, Y
2. c, then the rest tie
3. B, then A and C tie
4. c, b, a
5. (a) both clockwise; (b) both clockwise
6. (a) cycle 2; (b) cycle 2
7. (a) all tie; (b) all tie
8. sphere, hemisphere, cube
9. (a) greater; (b) 1, 2, 3; (c) 1, 3, 2; (d) 1, 2,
3; (e) 2, 3, 1

10. (a) at freezing point; (b) no liquid freezes;
(c) ice partly melts

11 (a) f, because the temperature cannot drop
once the melting point is reached; (b) b and
c end at the freezing point, d ends above
the freezing point, e ends below the freezing
point; (c) in b the liquid partly freezes and
no ice melts; in c no liquid freezes and the
ice fully melts; in e the liquid fully freezes
and no ice melts

Chapter 19

1. d, tie of a and b, then c
2. (a) 0; (b) 0; (c) negative; (d) positive
3. 20 J
4. (a) 0; (b) 0; (c) negative; (d) positive
5. constant-volume process
6. (a) 0; (b) 0; (c) negative; (d) positive
7. (a) 3; (b) 1; (c) 4; (d) 2; (e) yes
8. (a) same; (b) increases; (c) decreases;
(d) increases

9. (a) 1, 2, 3, 4; (b) 1, 2, 3
10. −4 J

Chapter 20

1. and c tie, then b and d tie
2. (a) all tie; (b) all tie; (c) all tie (zero)
3. b, a, c, d
4. 9 and −8, 8 and −5, 5 and −3, 3 and −2
5. unchanged
6. (a) AE; (b) AC; (c) AF; (d) none
7. A: first; B: first and second; C: second; D:
neither

8. c, a, b
9. (a) same; (b) increase; (c) decrease
10. (a) same; (b) increase; (c) decrease
11. more than the age of the universe

Chapter 21

1. b and c tie, then a (zero)
2. (a) 3, 1, 2; (b) all tie
3. a and b
4. (a) between; (b) positively charged; (c) un-
stable

5. 3, 1, 2, 4 (zero)
6. 2kq2/r2, up the page
7. 6kq2/d2, leftward
8. a and d tie, then b and c tie
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9. (a) same; (b) less than; (c) cancel; (d) add;
(e) adding components; (f) positive y direc-
tion; (g) negative y direction; (h) positive x
direction; (i) negative x direction

10. (a) neutral; (b) negatively

Chapter 22

1. a, b, c
2. (a) to their left; (b) no
3. 2, 4, 3, 1 (zero)
4. q/4π60d

2, leftward
5. (a) yes; (b) toward; (c) no (the field vec-
tors are not along the same line); (d) cancel;
(e) add; (f) adding components; (g) toward
negative y

6. (a) 3, then 1 and 2 tie (zero); (b) all tie;
(c) 1 and 2 tie, then 3

7. e, b, then a and c tie, then d (zero)
8. (a) rightward; (b) +q1 and −q3, increase;
+q2, decrease; n, same

9. a, b, c
10. (a) positive; (b) same
11. (a) 4, 3, 1, 2; (b) 3, then 1 and 4 tie, then 2

Chapter 23

1. (a) 8N ·m2/C; (b) 0
2. (a) all tie; (b) a uniform, b variable, c uni-
form, d variable

3. all tie
4. a, c, then b and d tie (zero)
5. all tie
6. either 2σ, σ, 3σ or 3σ, σ, 2σ
7. all tie
8. (a) 2, 1, 3; (b) all tie (+4q)
9. all tie (E = 0); (b) all tie
10. (a) a, b, c, d; (b) a and b tie, then c, d

Chapter 24

1. (a) 1 and 2; (b) none; (c) no; (d) 1 and 2,
yes; 3 and 4, no

2. (a) higher; (b) positive; (c) negative; (d) all
tie

3. b, then a, c, and d tie
4. −4q/4π60d
5. (a) 1, then 2 and 3 tie; (b) 3
6. (a) Q/4π60R; (b) Q/4π60R; (c) Q/4π60R;
(d) a, b, c

7. (a) 3 and 4 tie, then 1 and 2 tie; (b) 1 and
2, increase; 3 and 4, decrease

8. (a) 2, 4, and then a tie of 1, 3, and 5 (where
E = 0); (b) negative x direction; (c) posi-
tive x direction

9. (a) 0; (b) 0; (c) 0; (d) all three quantities
still 0

10. (a) positive; (b) positive; (c) negative;

(d) all tie

Chapter 25

1. a, 2; b, 1; c, 3

2. a, series; b, parallel; c, parallel

3. (a) V/3; (b) CV/3; (c) CV/3 (not CV )

4. (a) C/3; (b) 3C; (c) parallel

5. (a) no; (b) yes; (c) all tie

6. parallel, C1 alone, C2 alone, series

7. (a) same; (b) same; (c) more; (d) more

8. (a) less; (b) less; (c) less; (d) less

9. (a) 2; (b) 3; (c) 1

10. (a) increase; (b) same; (c) increase; (d) in-
crease; (e) increase; (f) increase

11. (a) increase; (b) increase; (c) decrease;

(d) decrease; (e) same, increase, increase,
increase

Chapter 26

1. a, b, and c all tie, then d (zero)

2. a, b, and c all tie, then d

3. b, a, c

4. A, B, and C all tie, then A + B and B + C
tie, then A + B + C

5. (a) 1 and 2 tie, then 3; (b) 1 and 2 tie, then
3; (c) 1 and 2 tie, then 3

6. (a) top-bottom, front-back, left-right;

(b) top-bottom, front-back, left-right;

(c) top-bottom, front-back, left-right;

(d) top-bottom, front-back, left-right

7. C, A, B

8. (a) C, B, A; (b) all tie; (c) A, B, C; (d) all
tie

9. (a) all tie; (b) B, C, A; (c) B, C, A

10. (a) B, A, C; (b) B, A, C
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Chapter 27

1. (a) b and d tie, then a, c, and e tie; (b) b, d,
then a, c, and e tie; (c) positive x direction

2. (a) series; (b) parallel; (c) parallel
3. (a) no; (b) yes; (c) all tie
4. (a) equal; (b) more
5. (a) same; (b) same; (c) less; (d) more
6. 60µC
7. parallel, R2, R1, series
8. 2.0A
9. (a) less; (b) less; (c) more
10. (a) all tie; (b) 1, 3, 2
11. 1, c; 2, a; 3, d; 4, b

Chapter 28

1. (a) no because nv and nFB must be perpen-

dicular; (b) yes; (c) no because nB and nFB
must be perpendicular

2. (a) 3 and 4 tie, then 1 and 2 tie (zero);
(b) 4 (assuming that the rightward current
is due to leftward motion of electrons in the
wire)

3. (a) nFE ; (b) nFB
4. 2, 5, 6, 9, 10
5. (a) negative; (b) equal; (c) equal; (d) half-
circle

6. into page: a, d, e; out of page: b, c, f (the
particle is negatively charged)

7. (a) nB1; (b) nB1 into page, nB2 out of page;
(c) less

8. 1i, 2e, 3c, 4a, 5g, 6j, 7d, 8b, 9h, 10f, 11k
9. (a) upper plate; (b) lower plate; (c) out of
page

10. (a) positive; (b) 1 → 2 and 1 → 3 tie, then
1 → 4 (which is zero)

Chapter 29

1. (a) into; (b) greater
2. c, d, then a and b tie (zero)
3. c, a, b
4. 1, then 3 and 4 tie, then 2 (zero)
5. (a) 1, 3, 2; (b) less
6. b, d, c, a (zero)
7. c and d tie, then b, a
8. d, then a and e tie, then b, c
9. b, a, d, c (zero)

10. (a) c, a, d, b; (b) a, c, b, d; (c) a and c tie,
then b and d tie; (d) greater

Chapter 30

1. out
2. (a) all tie (zero); (b) 2, then tie of 1 and 3
(zero)

3. (a) into; (b) counterclockwise; (c) larger
4. (a) 2, 1, 3; (b) 2, 1, 3; (c) 1 counterclock-
wise; 2 clockwise; 3 counterclockwise

5. 1 and 3 tie (clockwise), then 2 and 5 tie
(zero), then 4 and 6 tie (counterclockwise

6. d and c tie, then b, a
7. c, b, a
8. (a) all tie (zero); (b) 1 and 2 tie, then 3;
(c) all tie (zero)

9. (a) more; (b) same; (c) same; (d) same
(zero)

10. a, 2; b, 4; c, 1; d, 3

Chapter 31

1. with n zero or a positive integer, (a) 0±n2π;
(c) π/2± n2π; (e) π± n2π; (g) 3π/2± n2π

2. (a) T/4; (b) T/4; (c) T/2; (d) T/2
3. (a) less; (b) greater
4. b, a, c
5. (a) 3, 1, 2; (b) 2, then 1 and 3 tie
6. c, b, a
7. a, inductor; b, resistor; c, capacitor
8. (a) leads; (b) capacitive; (c) less
9. (a) 1 and 4; (b) 2 and 3
10. (a) less; (b) equal; (c) greater
11. (a) rightward, increase (XL increases, cir-

cuit is closer to resonance); (b) rightward,
increase (XC decreases, circuit is closer to
resonance); (c) rightward, increase (ωd/ω
increases, circuit is closer to resonance)

12. (a) positive; (b) decreased (to decrease XL
and get closer to resonance); (c) decreased
(to increaseXC and get closer to resonance)

Chapter 32

1. a, decreasing; b, decreasing
2. (a) a and b tie, then c, d; (b) none (be-

cause plate lacks circular symmetry, nB not
tangent to any circular loop); (c) none

3. (a) rightward; (b) leftward; (c) into
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4. 1, a; 2, b; 3, c and d
5. supplied
6. b
7. (a) all down; (b) 1 up, 2 down, 3 zero
8. (a) 1 up, 2 up, 3 down; (b) 1 down, 2 up, 3
zero

9. (a) 1 down, 2 down, 3 up; (b) 1 up, 2 down,
3 zero

10. (a) 1, 3, 2; (b) 2
11. (a) increase; (b) increase

Chapter 33

1. into
2. (a) positive direction of z; (b) x
3. (a) same; (b) increase; (c) decrease
4. (a) and (b) A = 1, n = 4, θ = 30◦

5. 20◦ and 90◦

6. c
7. a, b, c
8. b 30◦; c 60◦; d 60◦; e 30◦; f 60◦

9. d, b, a, c
10. none
11. n3, n2, n1
12. B

Chapter 34

1. (a) a; (b) c
2. (a) a and c; (b) three times; (c) you
3. (a) from infinity to the focal point; (b) de-
crease continually

4. (a) I1 and I4; (b) I2 and I3; (c) I3; (d) I3;
(e) I2

5. convex
6. 1 concave, 2 convex, 3 plane
7. d (infinite), tie of a and b, then c
8. (a) I2 and I3; (b) I1 and I4; (c) I1; (d) I1;
(e) I4

9. (a) all but variation 2; (b) for 1, 3, and 4:
right, inverted; for 5 and 6: left, same

10. 1 converging, 2 diverging

Chapter 35

1. (a) peak; (b) valley
2. a, c, b
3. (a) 2d; (b) (odd number)λ/2; (c) λ/4
4. (a) 300 nm; (b) exactly out of phase

5. (a) intermediate closer to maximum, m =
2; (b) minimum, m = 3; (c) intermediate
closer to maximum, m = 2; (d) maximum,
m = 1

6. (a) increase; (b) 1λ
7. (a) decrease; (b) decrease; (c) decrease;
(d) blue

8. b, 3 and 5; c, 1 and 4; d, 2
9. (a) maximum; (b) minimum; (c) alternates
10. c, d
11. (a) no; (b) 2(0) = 0; (c) 2L
12. (a) 0.5 wavelength; (b) 1 wavelength

Chapter 36

1. (a) the m = 5 minimum;
(b) (approximately) the maximum between
the m = 4 and m = 5 minima

2. (a) contract; (b) contract
3. (a) 1 and 3 tie, then 2 and 4 tie; (b) 1 and
2 tie , then 3 and 4 tie

4. 4
5. (a) A, B, C; (b) A, B, C
6. (a) A, B, C; (b) A, B, C
7. (a) larger; (b) red
8. (a) less; (b) greater; (c) greater
9. (a) decrease; (b) same; (c) in place
10. (a) decrease; (b) decrease; (c) to the right
11. (a) A; (b) left; (c) left; (d) right
12. (a) increase; (b) first order

Chapter 37

1. (a) 4 s; (b) 3 s; (c) 5 s; (d) 4 s; (e) 10 s
2. (a) CI1; (b) C

I
1

3. (a) C1; (b) C1
4. c
5. (a) Sam; (b) neither
6. b
7. (a) negative; (b) positive
8. (a) 3, tie of 1 and 2, then 4; (b) 4, tie of 1
and 2, then 3; (c) 1, 4, 2, 3

9. b, a, c, d
10. (a) 3, then 1 and 2 tie; (b) 2, then 1 and 3

tie; (c) 2, 1, 3; (d) 2, 1, 3
11. (a) tie of 3, 4, and 6, then tie of 1, 2, and 5;

(b) 1, then tie of 2 and 3, then tie of 5 and
6; (c) 1, 2, 3, 4, 5, 6; (d) 2 and 4; (e) 1, 2, 5
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Chapter 38

1. potassium
2. only e
3. (a) microwave; (b) x ray; (c) x ray
4. (a) true; (b) false; (c) false; (d) true;
(e) true; (f) false

5. positive charge builds up on the plate, in-
hibiting further electron emission

6. only b
7. none
8. The fractional wavelength change for visible
light is too small

9. (a) B; (b) — (d) A
10. (a) greater; (b) less
11. no essential change
12. (a) decreases by a factor of 1/

√
2; (b) de-

creases by a factor of 1/2
13. electron
14. electron, neutron, alpha particle
15. (a) decreasing; (b) increasing; (c) same;

(d) same
16. amplitude of reflected wave is less than that

of incident wave
17. a
18. proton
19. all tie
20. (a) zero; (b) yes

Chapter 39

1. a, c, b
2. (a) 1/4; (b) same factor
3. c
4. (a) ( 1/L) sin(π/2L)x;

(b) ( 4/L) sin(2π/L)x;

(c) ( 2/L) cos(π/L)x
5. (a) 18; (b) 17
6. less
7. equal
8. (a) wider; (b) deeper
9. b, c, and d
10. (a) 3; (b) 4
11. (a) decrease; (b) increase
12. 12 eV (4 −→ 2 in A) matches 1 −→ 2 in C;

9 eV (5 −→ 4 in A) matches 1 −→ 2 in D;
24 eV (5 −→ 1 in A) matches 1 −→ 3 in D;
15 eV (4 −→ 1 in A) matches 1 −→ 2 in E

13. n = 1, n = 2, n = 3
14. (a) greater; (b) less; (c) less

15. same
16. (a) first Lyman plus first Balmer; (b) Ly-

man series limit minus Paschen series limit
17. (a) n = 3; (b) n = 1; (c) n = 5

Chapter 40

1. same number (10)
2. 0, 2, and 3
3. (a) 2; (b) 8; (c) 5; (d) 50
4. 6p
5. −1, 0, 1, and 2
6. (a) bromine; (b) rubidium; (c) hydrogen
7. (a) n; (b) n and f
8. a, c, e, f
9. all true
10. (a) rubidium; (b) krypton
11. (a) 2; (b) 3
12. (a) unchanged; (b) decrease; (c) decrease
13. In addition to the quantized energy, a he-

lium atom has kinetic energy; its total en-
ergy can equal 20.66 eV

14. a and b

Chapter 41

1. 4
2. 8
3. much less than
4. (a) anywhere in the lattice;
(b) in any silicon-silicon bond; (c) in a sili-
con ion core, at a lattice site

5. b, c, d (the latter due to thermal expansion)
6. 4s2 and 4p2

7. b and d
8. a and b
9. none
10. (a) arsenic, antimony; (b) gallium, indium;

(c) tin
11. +4e
12. zero
13. (a) right to left; (b) back bias
14. silicon with arsenic
15. blue
16. a, b, and c

Chapter 42

1. less
2. more protons than neutrons
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3. above
4. 240U
5. (a) 196Pt; (b) no
6. less
7. (a) on the N = Z line; (b) positrons;
(c) about 120

8. (a) below; (b) below; (c) radioactive
9. yes
10. yes
11. no
12. (a) A and C tie, then B; (b) B, then A and

C tie
13. no effect
14. (a) increases; (b) same
15. 209Po
16. 7 h
17. d
18. (a) all except 198Au; (b) 132Sn and 208Pb

Chapter 43

1. a
2. a
3. b, e, a, c, d
4. b
5. c
6. (a) 93Sr; (b) 140I; (c) 155Nd
7. c, a, d, b
8. c
9. d
10. a
11. c
12. c

Chapter 44

1. into
2. d
3. the π+ pion whose track terminates at point
2

4. b, c, d
5. c, f
6. a, b, c, d
7. baryon number
8. (a) lepton; (b) antiparticle; (c) fermion;
(d) yes

9. c
10. 1d, 2e, 3a, 4b, 5c
11. (a) 0; (b) +1; (c) −1; (d) +1; (e) −1
12. b, f, c, d, a, g, e

13. 1b, 2c, 3d, 4e, 5a
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SECTION SIX

ANSWERS TO PROBLEMS

The following are the answers to the end-of-chapter problems.

Chapter 1

1. (a) 160 rods; (b) 40 chains
2. 0.18 points
3. (a) 109 µm; (b) 10−4; (c) 9.1× 105 µm
4. (a) 1.9 picas; (b( 23 points
5. (a) 4.00× 104 km; (b) 5.10 × 108 km2;
(c) 1.08 × 1012 km3

6. (a) 8.33 × 10−2, 2.08 × 10−2; 6.94 × 10−3,
3.47 × 10−3; (b) 0.250, 8.33 × 10−2, 4.17 ×
10−2; (c) 0.333, 0.167; (d) 0.500;
(e) 14.0medios; (f) 4.86 × 10−2 cahiz;
(g) 3.24× 104 cm3

7. 1.9× 1022 cm3
8. (a) 60.8W; (b) 43.3Z
9. 1.1× 103 acre-feet
10. (a) 52.6min; (b) 4.9%
11. 1.21 × 1012 µs
12. 3.1µm/s
13. C, D, A, B, E; the important criterion is

the consistency of the daily variation, not
its magnitude

14. 15◦

15. (a) 1.43; (b) 0.864
16. (a) 3.88× 108 rotations;

(b) 1557.806 448 872 75 s; (c) ±3× 10−11 s
17. (a) 495 s; (b) 141 s; (c) 198 s; (d) −245 s
18. 2.1 h
19. (a) 1× 103 kg; (b) 158 kg/s
20. (a) 1.430m2; (b) 72.84 km
21. 9.0× 1049 atoms
22. (a) 2.69× 105 cm3; (b) 0.77 y
23. (a) 1.18× 10−29m3; (b) 0.282 nm
24. (a) 2×103m3, 2×104m3; (b) 2×106 bottles,

2× 107 bottles; (c) 2× 106 kg, 2× 107 kg
25. (a) 22 pecks; (b) 5.5 Imperial bushels;

(c) 200L
26. 1 kilomole
27. ≈ 1× 1036
28. (a) 0.900, 7.50 × 10−2, 1.56 × 10−3, 8.32 ×

10−6; (b) 1.00, 8.33 × 10−2, 1.74 × 10−3,
9.24 × 10−6; (c) 12.0, 1.00, 2.08 × 10−2,

1.11 × 10−4; (d) 576, 48, 1.00, 5.32 × 10−3;
(e) 1.08 × 105, 9.02 × 103, 188, 1.00;
(f) 1.96m3

29. (a) 18.8 gallons; (b) 22.5 gallons
30. (a) 2.5 cups, 2 teaspoons; (b) 0.5 quart;

(c) 2 teaspoons; (d) 1 teaspoon
31. (a) 14.5 roods; (b) 1.47 × 104m2
32. 403L
33. 0.260 kg
34. (a) 1.0m3; (b) 6.0× 10−4m3
35. (a) 11.3m3/L; (b) 1.13×104m−1; (c) 2.17×

10−3 gal/ft2; (d) number of gallons to cover
a square foot if spread uniformly

36. 5.2× 106m
37. 0.3 cord
38. (a) 3.88; (b) 7.65; (c) 156 ken3; (d) 1.19 ×

103m3

39. (a) 3.9m, 4.8m; (b) 3.9 × 103mm, 4.8 ×
103mm; (c) 2.2m3, 4.2m3

40. (a) 3.0× 10−26 kg; (b) 5× 1046molecules
41. (a) 293U.S. bushels;

(b) 3.81× 103 U.S. bushels
42. 1.75 × 103 kg
43. 2× 104 to 4× 104 dbugs
44. 5.95 km
45. (a) 3 nebuchadnezzars, 1methuselah;

(b) 0.37 standard bottle; (c) 0.26L
46. 700 to 1500 oysters
47. 0.12AU/min
48. 1.3× 109 kg
49. 6.0× 1926 atoms
50. 8× 102 km
51. 3.8mg/s
52. 9.4× 10−3
53. 1.2m
54. 1.9× 105 kg
55. 10.7 habaneros
56. 0.020 km3

57. (a) 4.9× 10−6 pc; (b) 1.6× 10−5 ly
58. (a) yes; (b) 8.6 universe seconds
59. (a) 400; (b) 6.4× 107
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Chapter 2

1. 13m
2. 5.554 s
3. (a) +40 km/h; (b) 40 km/h
4. 48 km/h
5. (a) 0; (b) −2m; (c) 0; (d) 12m; (e) +12m;
(f) +7m/s

6. (a) 1.74m/s; (b) 2.14m/s
7. (a) 0; (b) 4.0m; (c) −0.82 s; (d) 0.82 s;
(f) +20t; (g) increase

8. 128 km/h
9. 1.4m
10. 60 km
11. (a) 73 km/h; (b) 68 km/h; (c) 70 km/h;

(d) 0
12. (a) −6m/s; (b) −x direction;(c) 6m/s;

(d) decreasing; (e) 2 s; (f) no
13. (a) 28.5 cm/s; (b) 18.0 cm/s; (c) 40.5 cm/s;

(d) 28.1 cm/s; (e) 30.3 cm/s
14. (a) 1.2 s; (b) 0; (c) positive; (d) negative

15. −20m/s2
16. 5.9m
17. (a) 54m; (b) 18m/s; (c) −12m/s2;

(d) 64m; (e) 4.0 s; (f) 24m/s; (g) 2.0 s;

(h) −24m/s2; (i) 18m/s
18. (a) 1.10m/s; (b) 6.11mm/s

2
; (c) 1.47m/s;

(d) 6.11mm/s2

19. (a) m/s2; (b) m/s3; (c) 1.0 s; (d) 82m;
(e) −80m; (f) 0; (g) −12m/s; (h) −36m/s;
(i) −72m/s; (j) −6m/s2; (k) −18m/s2;
(l) −30m/s2; (m) −42m/s2

20. (a) 0.100m
21. (a) +1.6m/s; (b) +18m/s
22. (a) 5.00 s; (b) 61.5m
23. (a) 3.1× 106 s; (b) 4.6 × 1013m
24. (a) 30 s; (b) 300m

25. 1.62 × 1015m/s2
26. 21g
27. (a) 3.56m/s

2
; (b) 8.43m/s

28. (a) 2.5 s
29. (a) 10.6m; (b) 41.5 s
30. (a) 56.6 s; (b) 31.8m/s

31. (a) 4.0m/s
2
; (b) +x

32. (a) 15.0m; (b) 94 km/h

33. (a) −2.5m/s2; (b) 1; (d) 0; (e) 2
34. (a) 32.9m/s; (b) 49.1 s; (c) 11.7m/s
35. 40m
36. (a) −50 km/h; (b) −2.0m/s2

37. (a) 0.994m/s
2

38. (a) 1.54 s; (b) 27.1m/s
39. (a) 29.4m; (b) 2.45 s
40. 183m/s; no
41. (a) 31m/s; (b) 6.4 s
42. (a) 3.70m/s; (b) 1.74 s; (c) 0.154m
43. (a) 5.4 s; (b) 41m/s
44. (a) 0.45 s; (b) 38m/s; (c) 42m/s
45. 9.6m/s
46. 3.0m/s
47. 4.0m/s
48. (a) 20m; (b) 59m

49. 857m/s
2
, upward

50. 26m
51. +1.26 × 103m/s2; (b) upward
52. (a) 12.3m/s
53. (a) 89 cm; (b) 22 cm
54. (a) 3.41 s; (b) 57m
55. 2.34m
56. (a) 350ms; (b) 82ms (each includes both

ascent and descent through the 15 cm)
57. 20.4m
58. (a) 8.0m/s

2
; (b) 20m/s

59. (a) 2.25m/s; (b) 3.90m/s
60. (a) 0.13m; (b) 0.50m
61. 100m
62. 0.56m/s
63. (a) 82m; (b) 19m/s
64. yes, 0, 10m/s
65. 17m/s

66. (a) 2.00 s; (b) 12 cm; (c) −9.00 cm/s2;
(d) right; (e) left; (f) 3.46 s

67. (a) 15.7m/s; (b) 12.5m; (c) 82.3m

68. (a) 5.00m/s; (b) 1.67m/s
2
; (c) 7.50m

69. (a) 2.0m/s2; (b) 12m/s; (c) 45m
70. (a) 3.2 s; (b) 1.3 s
71. (a) either; (b) neither
72. (a) 60.6 s; (b) 36.3m/s

73. (a) 9.08m/s2; (b) 0.926g; (c) 6.12 s;
(d) 15.3Tr; (e) braking; (f) 5.56m

74. 8.4m
75. +47m/s
76. (a) 3.5; (b) (5.0m)/vs
77. 217m/s

78. (a) 2.5m/s; (b) 8.0m/s; (c) 1.0m/s
2
; (d) 0

79. (a) 14m/s; (b) 18m/s; (c) 6.0m/s;

(d) 12m/s
2
; (e) 24m/s; (f) 24m/s

2

80. (a) 38.1m; (b) 9.02m/s; (c) down;
(d) 14.5m/s; (e) up
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81. 0.15m/s

82. (a) 5.0m/s; (b) v = 3.0m/s + (0.50m/s
3
)t2

83. (a) 5.0m/s
2
; (b) 4.0 s; (c) 6.0 s; (d) 90m

84. (a) 48.5m/s; (b) 4.95 s; (c) 34.3m/s;
(d) 3.50 s

85. 25g; (b) 400m
86. 10.2 s; (b) 10.0m

87. (a) 3.1m/s2; (b) 45m; (c) 13 s

88. (a) 15m; (b) 2.0m/s; (c) −2.0m/s2;
(d) 3.5m/s; (e) 0

89. (a) 8.85m/s; (b) 1.00m
90. (a) 1.23 cm; (b) 4 times; (c) 9 times;

(d) 16 times; (e) 25 times
91. 34m
92. 22.0m/s
93. 4H
94. 1.5 s
95. (a) 0.74 s; (b) 6.2m/s2

96. 414ms
97. (a) 80m/s; (b) 110m/s; (c) 20m/s2

98. 3.75ms
99. 39m/s
100. 25 km/h
101. 2.3 cm/min
102. 94m
103. 1.2 h
104. 90m
105. (a) 17 s; (b) 290m
106. 1.3 s
107. (a) 0.75 s; (b) 50m
108. (a) 3.0 s; (b) 9.0m
109. (a) 18m/s; (b) 83m
110. 0.556 s
111. 2.78m/s

2

112. (a) 0.28m/s
2
; (b) 0.28m/s

2

113. (a) 32m; (b) 1.6m/s (c) 24.5 s; (d) 1.3m/s

114. (a) d = 1
2at

2; (c) 7.2m/s
2

116. (a) 5.44 s; (b) 53.3m/s; (c) 5.80m

117. (a) v =
0
v20 + 2gh;

(b) t = [
0
v20 + 2gh− v0]/g;

(c) same as (a);

(d) t = [
0
v20 + 2gh+ v0]/g, greater

Chapter 3

1. (a) −2.5m; (b) −6.9m
2. (a) 0.349 rad; (b) 0.873 rad; (c) 1.75 rad;
(d) 18.9◦; (e) 120◦; (f) 441◦

3. (a) 47.2m; (b) 122◦

4. (a) 13m; (b) 7.5m
5. (a) 156 km; (b) 39.8◦ west of north
6. (a) 4.28m; (b) 11.7m
7. (a) 6.42m; (b) no; (c) yes; (d) yes;
(e) a possible answer:

(4.30m) î + (3.70m) ĵ + (3.00m) k̂;
(f) 7.96m

8. (b) 3.2m; (c) 41◦ south of west
9. 4.74 km
10. (a) 81 km; (b) 40◦ north of east
11. (a) (−9.0m) î + (10m) ĵ; (b) 13m; (c) 132◦
12. (a) 12m; (b) −5.8m; (c) −2.8m
13. (a) −70.0 cm; (b) 80.0 cm; (c) 141 cm;

(d) −172◦
14. (a) (8.0m) î + (2.0m) ĵ; (b) 8.2m; (c) 14◦;

(d) (2.0m) î − (6.0m) ĵ; (e) 6.3m; (f) −72◦
15. (a) (3.0m) î − (2.0m) ĵ + (5.0m) k̂;

(b) (5.0m) î − (4.0m) ĵ − (3.0m) k̂;
(c) (−5.0m) î + (4.0m) ĵ + (3.0m) k̂

16. (a) −80m; (b) 110m; (c) 143m; (d) 168◦
17. (a) 38m; (b) −37.5◦; (c) 130m; (d) 1.2◦;

(e) 62m; (f) 130◦

18. (a) 26.6m; (b) −151◦
19. (a) 1.59m; (b) 12.1m; (c) 12.2m; (d) 82.5◦

20. (a) (1.28m) î + (6.60m) ĵ;
(b) 6.72m; (c) 79.0◦; (d) 1.38 rad

21. 5.39m at 21.8◦ left of forward
22. 2.6 km
23. (a) 0.84m; (b) 79◦ south of west
24. (a) 5.0 km; (b) 4.3◦ south of west
25. (a) a î + a ĵ + a k̂; (b) −a î + a ĵ + a k̂;

(c) a î− a ĵ + a k̂; (c) a î− a ĵ + a k̂;
(d) −a î− a ĵ + a k̂; (e) 54.7◦; (f) √3a

26. (a) 9.51m; (b) 14.1m; (c) 13.4m; (d) 10.5m
27. (a) −18.8; (b) 26.9, in the positive z direc-

tion
28. (a) 2.0 k̂; (b) 26; (c) 46; (d) 5.8

29. (a) −21; (b) −9; (c) 5 î− 11 ĵ− 9 k̂
30. 0
31. 22◦

32. −3.0 î − 3.0 ĵ − 4.0 k̂
33. 70.5◦

34. 540
35. (a) 3.00m; (b) 0; (c) 3.46m; (d) 2.00m;

(e) −5.00m; (f) 8.66m; (g) −6.67; (h) 4.33
36. (a) 31 k̂; (b) 8.0; (c) 33; (d) 1.6
37. (a) 27.8m; (b) 13.4m
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38. (a) 57◦; (b) 2.2m; (c) −4.5m; (d) −2.2m;
(e) 4.5m

39. (a) 168 cm; (b) 32.5◦

40. (a) −(40m) î− (20m) ĵ + (25m) k̂;
(b) 45m

41. 4.1
42. 3.2
43. (a) 0; (b) −16; (c) −9
44. (a) 12; (b) +z; (c) 12; (d) −z; (e) 12;

(f) +z
45. (a) 30; (b) 52
46. (a) (9.19m) îI + (7.71m) ĵI;

(b) (14.0m) îI + (3.41m) ĵI

47. (a) 103 km; (b) 60.9◦ north of west
48. (a) (10.0m) î + (1.63m) ĵ; (b) 10.2m;

(c) 9.24◦

49. (a) 5.0m; (b) −37◦; (c) 10m; (d) 53◦;
(e) 11m; (f) 27◦; (g) 11m; (h) 80◦; (i) 11m;
(j) 260◦; (k) 180◦

50. (a) −28 cm; (b) −28 cm; (c) 50 cm; (d) 0;
(e) 30 cm; (f) 52 cm; (g) 52 cm; (h) 24 cm;
(i) 57 cm; (j) 25◦ north of east; (k) 57 cm;
(l) 25◦ south of west

51. (a) 370m; (b) 36◦ north of east; (c) 425m;
(d) the distance

52. (a) 2.81m2; (b) (1.43m2) î + (4.86m2) ĵ −
(2.48m2) k̂; (c) 63.5◦

53. (a) (9.0m) î+(6.0m) ĵ− (7.0m) k̂; (b) 123◦;
(c) −3.2m; (d) 8.2m

54. (a) 140◦; (b) 90.0◦; (c) 99.1◦

55. (a) −83.4; (b) (1.14×103) k̂; (c) 1.14×103, θ
not defined, φ = 0◦; (d) 90.0◦; (e) −5.14 î +
6.13 ĵ + 3.00 k̂; (f) 8.54, θ = 130◦, φ = 69.4◦

56. (a) +x direction; (b) +y direction; (c) 0;
(d) 0; (e) +z direction; (f) −z direction; (g)
d1d2; (h) d1d2; (i) d1d2/4; (j) +z direction

57. (a) 15m; (b) south; (c) 6.0m; (d) north
58. (a) 8 î + 16 ĵ; (b) 2 î + 4 ĵ
59. (a) (−3.18m) î + (4.72m) ĵ; (b) 5.69m;

(c) +124◦

60. 2.2m
61. (a) 3.0m2; (b) 52m3;

(c) (11m2) î + (9.0m2) ĵ + (3.0m2) k̂
62. (a) 4.2m; (b) 50◦ north of east; (c) 8.0m;

(d) 24◦ north of west
63. (a) 1.8m; (b) 69◦ north of east
64. (a) −2.83 ; (b) −2.83m; (c) 5.00m; (d) 0;

(e) 3.00m; (f) 5.20m; (g) 5.17m;

(h) 2.37m; (i) 5.69m; (j) 25◦ north of east;
(k) 5.69m; (l) 25◦ south of west

65. (a) 2.97; (b) 1.51 î + 2.67 ĵ − 1.36 k̂; (c) 48◦
66. (a) 11 î + 5.0 ĵ− 7.0 k̂; (b) 120◦; (c) −4.9;

(d) 7.3
67. 3.6m
68. (a) +y; (b) −y; (c) 0; (d) 0; (e) +z; (f) −z;

(g) ab for both; (h) ab/d; (i) +z
69. (a) 10m; (b) north; (c) 7.5m; (d) south

70. (a) (1000m) î+(2000m) ĵ− (500m) k̂; (b) 0
71. 70.5◦

72. (a) 9 î + 12 ĵ; (b) 3 î + 4 ĵ
73. (a) 0; (b) 0; (c) −1; (d) west; (e) up;

(f) west
74. (a) parallel; (b) antiparallel; (c) perpendic-

ular
75. Walpole (where the state prison is located)
76. (b) a2b sinφ

Chapter 4

1. (a) 6.2m
2. (a) (−5.0m) î+(8.0m) ĵ; (b) 9.4m; (c) 122◦;
(e) (8.0m) î − (8.0m) ĵ; (f) 11m; (g) −45◦

3. (−2.0m) î + (6.0m) ĵ − (10m) k̂
4. (a) 14 cm; (b) −135◦; (c) 20 cm; (d) 90◦;
(e) 0; (f) 0

5. (a) 7.59 km/h; (b) 22.5◦ east of north
6. (a) (3.00m/s) î− (8.00m/s2)t ĵ;
b) (3.00m/s) î − (16.0m/s) ĵ; (c) 16.3m/s;
(d) −79.4◦

7. (−0.70m/s) î + (1.4m/s) ĵ− (0.40m/s) k̂
8. (a) 1.08× 103 km; (b) 26.6◦ east of south;
(c) 480 km/h; (d) 26.6◦ east of south;
(e) 644 km/h

9. (a) (8m/s2)t ĵ + (1m/s) k̂; (b) (8m/s2) ĵ
10. (a) 56.6m; (b) 45◦ north of west;

(c) 1.89m/s; (d) 45◦ north of west;
(e) 0.471m/s

2
; (f) 45◦ north of east

11. (a) (6.00m)̂i − (106m) ĵ; (b) (19.0m/s) î −
(224m/s) ĵ; (c) (24.0m/s

2
) î − (336m/s2) ĵ;

(d) −85.2◦
12. (a) 15.8m/s; (b) 42.6◦

13. (32m/s) î

14. (a) (−18m/s2) î; (b) 0.75 s; (c) never;
(d) 2.2 s

15. (a) (−1.50m/s) ĵ; (b) (4.50m) î − (2.25m) ĵ
16. 60◦

17. (a) 3.03 s; (b) 758m; (c) 29.7m/s
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18. 25.9 cm
19. (a) 11m; (b) 23m; (c) 17m/s; (d) 63◦

20. (a) 0.495 s; (b) 3.07m/s
21. (a) 18 cm; (b) 1.9m
22. (a) 51.8m; (b) 27.4m/s; (c) 67.5m
23. (a) 10.0 s; (b) 897m
24. (a) 16.9m; (b) 8.21m; (c) 27.6m;

(d) 7.26m; (e) 40.2m; (f) 0
25. (a) 1.60m; (b) 6.86m; (c) 2.86m
26. (a) yes; (b) 20 cm; (c) no; (d) 86 cm
27. (a) 202m/s; (b) 806m; (c) 161m/s;

(d) −171m/s
28. 5.8m/s
29. 78.5◦

30. (a) 12.0m; (b) 19.2m/s; (c) 4.80m/s;
(d) no

31. 4.84 cm
32. (a) 0.205 s; (b) 0.205 s; (c) 20.5 cm;

(d) 61.5 cm
33. (a) 32.2m; (b) 21.9m/s; (c) 40.4◦; (d) be-

low the horizontal.
34. (a) 95m; (b) 31m
35. (a) it lands on the ramp; (b) 5.82m;

(c) 31.0◦

36. (a) 33.7m; (b) 26.0m/s; (c) 71.1◦

37. (a) yes; (b) 2.56m
38. 14◦

39. (a) 31◦; (b) 63◦

40. 42m/s
41. the third
42. (a) 20m/s; (b) 36m/s; (c) 74m
43. (a) 75.0m; (b) 31.9m/s; (c) 66.9◦;

(d) 25.5m

44. 4.0m/s
2

45. (a) 12 s; (b) 4.1m/s
2
; (c) down;

(d) 4.1m/s
2
; (e) up

46. (a) 0; (b) 0
47. (a) 7.32m; (b) west; (c) north

48. (a) 0.94m; (b) 19m/s; (c) 2.4 km/s
2
;

(d) 50ms

49. (3.00m/s
2
) î + (6.00m/s

2
) ĵ

50. (a) 8.82m; (b) 6.00m
51. 2.92m
52. (a) 4.00m; (b) 6.00m

53. 160m/s
2

54. (a) 5.24m/s
2
; (b) 3.33m/s

2

55. (a) 13m/s
2
; (b) eastward; (c) 13m/s

2
;

(d) eastward

56. (a) 5 km/h; (b) positive x; (c) 1 km/h;
(d) negative x

57. 5/3
58. 130◦

59. 60◦

60. (a) 185 km/h; (b) 22◦ south of west
61. (a) 38 knots; (b) 1.5◦ east of north; (c) 4.2 h;

(d) 1.5◦ west of south
62. 240 km/h
63. 32m/s
64. (a) 24.8m/s; (b) 83.8◦ north of east;

(c) 0.40m/s2; (d) 60.0◦ north of east
65. (a) (−32 km/h) î− (46 km/h) ĵ;

(b) [(2.5 km)− (32 km/h)t] î
+ [(4.0 km)− (46 km/h)t] ĵ; (c) 0.084 h;
(d) 0.20 km

66. (a) 37◦ west of north; (b) 62.6 s
67. (a) 2.7 km; (b) 76◦ clockwise
68. (a) A: 10.1 km, 0.556 km;

B: 12.1 km, 1.51 km;
C: 14.3 km, 2.68 km;
D: 16.4 km, 3.99 km;
E: 18.5 km, 5.53 km;
(b) the rocks form a curtain that curves up-
ward and away from you

69. (a) 55.6◦; (b) 6.85m; (c) 6.78m/s
70. 2.64m
71. (a) 0.83 cm/s; (b) 0; (c) 0.11m/s; (d) −63◦
72. (a) 8.43m; (b) −129◦
73. (−2.69m/s) î + (−1.80m/s) ĵ
74. (a) 2.5m; (b) 0.82m; (c) 9.8m/s

2
;

(d) 9.8m/s
2

75. (a) 10m/s; (b) 19.6m/s; (c) 40m; (d) 40m
76. (a) (72.0m) î + (90.7m) ĵ; (b) 49.5◦

77. (a) 6.29◦; (b) 83.7◦

78. (a) 3.50m/s; (b) −0.125m/s2
79. (a) −30◦; (b) 69min; (c) 80min; (d) 80min;

(e) 0; (f) 60min
80. (a) 2.6× 102m/s; (b) 45 s; (c) increase
81. (a) 63 km; (b) 18◦ south of east;

(c) 0.70 km/h; (d) 18◦ south of east;
(e) 1.6 km/h; (f) 1.2 km/h; (g) 33◦ north of
east

82. (a) 1.3× 105m/s; (b) 7.9 × 105m/s2;
(c) increase

83. (c) 2.10 s; (d) 25.7m; (e) 25.7m; (f) 0;
(g) 1.71 s; (h) 13.5m; (i) 4.76m; (j) 12.6m

84. 143 km/h
85. (a) 1030m; (b) west
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86. (a) (80 km/h) î− (60 km/h) ĵ
87. (a) 62ms; (b) 4.8 × 102m/s
88. (a) 7.3 km; (b) 80 km/h
89. (a) 6.7× 106m/s; (b) 1.4 × 10−7 s
90. (a) 7.2m/s; (b) 16◦ west of north; (c) 29 s

(not 28 s)
91. 3× 101m
92. (a) (−7.0m) î + (12m) ĵ
93. (a) 5.4× 10−13m; (b) decrease
94. (a) 14m/s; (b) 14m/s; (c) −10m;

(d) −4.9m; (e) +10m; (f) −4.9m
95. (a) (−1.5m/s2) î + (0.50m/s2) k̂;

(b) 1.6m/s
2
; (c) 162◦

96. (a) 4.2m, 45◦; (b) 5.5m, 68◦; (c) 6.0m, 90◦;
(d) 4.2m, 135◦; (e) 0.85m/s, 135◦;
(f) 0.94m/s, 90◦; (g) 0.94m/s, 180◦;
(h) 0.30m/s

2
, 180◦; (i) 0.30m/s2, 270◦

97. (−2.1m/s2) î + (2.8m/s2) ĵ
98. (a) (6.0m/s) î + (4.2m/s) ĵ; (b) (18m) î +

6.3m) ĵ
99. (a) 45m; (b) 22m/s
100. (a) 6.79 km/h; (b) 6.96◦

101. 67 km/h
102. (a) 22m; (b) 15 s
103. 7.0m/s
104. (a) 2.00 ns; (b) 2.00mm; (c) 1.00×107m/s;

(d) 2.00× 106m/s
105. (a) 16m/s; (b) 23◦; (c) above; (d) 27m/s;

(e) 57◦; (f) below
106. (a) 38 ft/s; (b) 32 ft/s; (c) 9.3 ft
107. 48 s
108. (a) 24m/s; (b) 65◦

109. (a) from 75◦ east of south; (b) 30◦ east of
north; for a second set of solutions substi-
tute west for east in both answers

110. (a) 20.3m/s; (b) 21.7m/s
111. (a) 1.5; (b) (36m , 54m)

112. (a) 7.49 km/s; (b) 8.00m/s
2

113. (a) 0, 0; 2.0m, 1.4m; 4.0m, 2.0m; 6.0m,
1.4m; 8.0m, 0;
(b) 2.0m/s, 1.1m/s; 2.0m/s, 0; 2.0m/s,

−1.1m/s; (c) 0, −0.87m/s2; 0, −1.2m/s2;
0, −.87m/s2

114. (a) 11m; (b) 45m/s
115. (a) 19m/s; (b) 35 rev/min; (c) 1.7 s

116. (a) 0.035m/s
2
; (b) 84min

117. (a) 76m; (b) 4.2 s
118. 36 s, no

119. (a) (10m/s) î + (10m/s) ĵ; (b) 8.0m/s
2
;

(c) 2.7 s; (d) 2.2 s
120. (a) y = 7.5 − 4.0t + 0.5t2, with y in meters

and t in seconds; (b) 3.0 s, 5.0 s; (c) 3.0 s;

(d) 21m; (e) (−1.9m/s2) î + (1.1m/s2) ĵ
121. (a) 2.1m/s; (b) not accidental because hor-

izontal launch speed is about 20% of world-
class sprint speed

122. (a) 73 ft; (b) 7.6◦; (c) 1.0 s
123. (a) yes; (b) 0.16 s
124. 0.421m/s at 3.1◦ west of north
125. (a) (1.00m) î − (2.00m) ĵ + (2.50m) k̂;

(b) 2.45m; (c) (2.50 cm/s) î−(5.00 cm/s) ĵ+
(2.50 cm/s) k̂; (d) insufficient information

126. (a) 32.4m; (b) 37.7m
127. (a) 44m; (b) 13m; (c) 8.9m
128. (a) 4.6× 1012m; (b) 2.4 × 105 s
129. (a) 48m, west of center; (b) 48m, west of

center
130. (a) 1.63 s; (b) no (18 cm); (c) 14.3m/s;

(d) yes
131. longer by about 1 cm
132. 23 ft/s
133. (a) 5.8m/s; (b) 17m; (c) 67◦

134. (a) 2.7g; (b) 3.8g
135. (a) 96.2m; (b) 4.31m; (c) 86.5m forward;

(d) 25.1m up
136. 93◦ from the car’s direction of motion

Chapter 5

1. 2.9m/s
2

2. (a) 1.88N; (b) 0.684N; (c) (1.88N)î
+(0.684N) ĵ

3. (a) 0; (b) (4.0m/s2) ĵ; (c) (3.0m/s2) î

4. (a) (0.86m/s2) î− (0.16m/s2) ĵ;
(b) 0.88m/s

2
; (c) −11◦

5. (a) (−32.0N) î − (20.8N) ĵ; (b) 38.2N;
(c) −147◦

6. (−34N) î − (12N) ĵ
7. (−2N) î + (6N) ĵ
8. 56◦

9. (a) 108N; (b) 108N; (c) 108N
10. (a) 2.0N; (b) down
11. (a) 4.0 kg; (b) 1.0 kg; (c) 4.0 kg; (d) 1.0 kg
12. (a) 0.26; (b) decrease

13. (a) 42N; (b) 72N; (c) 4.9m/s2

14. (a) 180N; (b) east; (c) 4.0m/s2; (d) west;

(e) 2.0m/s
2
; (f) east
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15. (a) 11.7N; (b) −59.0◦
16. (a) 0; (b) (20N) î; (c) (−20N) î;

(d) (−40N) î; (e) (−60N) î
17. 1.2× 105 N
18. 3.1× 102 N
19. (a) 0.022m/s

2
; (b) 8.3 × 104 km; (c) 1.9 ×

103m/s
20. 6.8× 103 N
21. (a) 494N; (b) up; (c) 494N; (d) down
22. (a) 5.5 kN; (b) 2.7 s; (c) 4.0; (d) 2.0
23. 1.5mm
24. (a) 566N; (b) 1.13 kN
25. (a) (285N) î + (705N) ĵ; (b) (285N) î
−(115N) ĵ; (c) 307N; (d) −22.0◦;
(e) 3.67m/s

2
; (f) −22.0◦

26. (a) (1.70N) î + (3.06N) ĵ; (b) (1.70N) î +
(3.06N) ĵ; (c) (2.02N) î + (2.71N) ĵ

27. (a) 0.62m/s2; (b) 0.13m/s2; (c) 2.6m
28. (a) +68N; (b) +28N; (c) −12N
29. (a) 1.18m; (b) 0.674 s; (c) 3.50m/s
30. 47.4N
31. (a) 2.2× 10−3N; (b) 3.7 × 10−3N
32. (a) 68N; (b) 73N
33. 1.8× 104 N
34. (a) 7.3 kg; (b) 89N
35. (a) 31.3 kN; (b) 24.3 kN
36. 16.0 kN
37. (a) 1.4m/s2; (b) 4.1m/s
38. 176N
39. (a) 1.23N; (b) 2.46N; (c) 3.69N; (d) 4.92N;

(e) 6.15N; (f) 0.250N
40. (a) 6.8 kN; (b) −21◦
41. (a) 2.18m/s

2
; (b) 116N; (c) 21.0m/s

2

42. 23 kg
43. (a) 1.1N

44. (a) 2.50m/s
2
; (b) 30.0N

45. (a) 0.970m/s
2
; (b) 11.6N; (c) 34.9N

46. (a) 36.8N; (b) 19.1 cm

47. (a) 3.6m/s2; (b) 17N
48. 5.1m/s

49. (a) 4.9m/s
2
; (b) 2.0m/s

2
; (c) up; (d) 120N

50. (a) 466N; (b) 527N; (c) 931N; (d) 1.05 kN;
(e) 931N; (f) 1.05 kN; (g) 1.86 kN;
(h) 2.11 kN

51. (a) 0.735m/s
2
; (b) down; (c) 20.8N

52. 81.7N
53. 2Ma/(a + g)
54. (a) 3.1N; (b) 15N

55. (a) 8.0m/s; (b) positive x direction
56. 18 kN
57. (a) 13 597 kg; (b) 4917L; (c) 20 075L;

(d) 45%
58. 2.2 kg
59. 9.0m/s

2

60. (b) F/(m+M); (c) FM/(m+M);
(d) F (m+ 2M)/2(m +M)

61. (a) 0; (b) 0.83m/s
2
; (c) 0

62. (3N) î − (11N) ĵ + (4N) k̂
63. (a) 0.74m/s

2
; (b) 7.3m/s

2

64. 16N
65. (a) 3.5N; (b) west; (c) 2.7N; (d) 22◦ west

of south
66. 2.4N
67. 16N
68. (a) 2.2× 105N; (b) 5.0 × 104N
69. (a) rope breaks; (b) 1.6m/s

2

70. (a) (1.0m/s
2
) î − (1.3m/s2) ĵ; (b) 1.6m/s2;

(c) −50◦
71. 12N
72. (a) 3260N; (b) 2.7× 103 kg; (c) 1.2m/s2
73. (a) 4.6m/s

2
; (b) 2.6m/s

2

74. (a) 3.0N; (b) 0.34 kg
75. 4.6N
76. (a) 1.1 kN; (b) up; (c) 9.8 × 102 N; (d) up;

(e) 8.1 × 102N; (f) up
77. (a) 2.6N; (b) 17◦

78. (a) 65N; (b) 49N
79. (b) 313N; (c) 0; (d) no; (e) yes
80. (a) 7.4× 102N; (b) 2.9 × 102N; (c) 0;

(d) 75 kg
81. (a) 11N; (b) 2.2 kg; (c) 0; (d) 2.2 kg

82. (a) 1.8× 102m/s2; (b) 12g; (c) 1.4× 108 N;
(d) 4.2 y

83. (a) 1.8× 102N; (b) 6.4 × 102N
84. 6.35 × 102N
85. (a) 620N; (b) 580N
86. (a) 4.6× 103N; (b) 5.8 × 103N
87. (a) (5.0m/s) î + (4.3m/s) ĵ; (b) (15m) î +

(6.4m) ĵ
88. (a) 590N, up; (b) 340N, up; (c) 590N,

down
89. (a) cos θ; (b)

√
cos θ

90. (a) (−6.26N) î − (3.23N) ĵ; (b) 7.04N;
(c) 207◦

91. (a) 4.9× 105N; (b) 1.5 × 106N
92. (a) 245m/s

2
; (b) 20.4 kN
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93. (a) 4.1m/s
2
; (b) 836N

94. (a) 4 kg; (b) 6.5m/s2; (c) 13N
95. (a) (1.0N) î − (2.0N) ĵ; (b) 2.2N; (c) −63◦;

(d) 2.2m/s
2
; (e) −63◦

96. 195N
97. (a) 1.1× 10−15N; (b) 8.9× 10−30N
98. 10m/s

2

99. (a) 44N; (b) 78N; (c) 54N; (d) 152N
100. (a) 27N; (b) 27◦ north of west
101. (a) 2.8N, west; (b) 2.2N, 22◦ west of south

Chapter 6

1. 2◦

2. 0.61
3. (a) 2.0× 102N; (b) 1.2 × 102N
4. 1.6× 102 N
5. (a) 1.9× 102N; (b) 0.56m/s2
6. 36m
7. (a) 11N; (b) 0.14m/s2

8. 0.53
9. 0.58
10. (a) 6.0N; (b) 3.6N; (c) 3.1N
11. (a) 1.1× 102N; (b) 1.3 × 102N; (c) no;

(d) 46N; (e) 17N
12. 2.8× 102 N
13. (a) 3.0× 102N; (b) 1.3m/s2
14. (b) 3.0× 107N
15. (a) no; (b) (−12N) î + (5.0N) ĵ
16. 0.54
17. (a) 19◦; (b) 3.3 kN
18. (a) 12.1m/s; (b) 19.4m/s
19. (a) (17N) î; (b) (20N) î; (c) (15N) î
20. (a) 8.6N; (b) 46N; (c) 39N
21. 1.0× 102 N
22. 8.5N
23. 0.37
24. (a) 147N; (b) same

25. (a) 3.5m/s
2
; (b) 0.21N

26. 3.3 kg
27. (a) 0; (b) (−3.9m/s2) î; (c) (−1.0m/s2) î
28. (a) 66N; (b) 2.3m/s

2

29. 4.9× 102 N
30. (a) (−6.1m/s2) î; (b) (−0.98m/s2) î
31. 9.9 s
32. 3.75
33. 2.3
34. (a) 2× 104 N; (b) 18g
35. (a) 3.2× 102 km/h; (b) 6.5× 102 km/h;

(c) no
36. 48 km/h
37. 21m
38. 9.7g
39. 0.60
40. (a) 3.7 kN; (b) up; (c) 1.3 kN; (d) down
41. 1.37 × 103N
42. (a) 547N; (b) 9.53◦

43. (a) 10 s; (b) 4.9 × 102N; (c) 1.1 × 103N
44. (a) 3.7 kN; (b) up; (c) 2.3 kN; down
45. (a) light; (b) 778N; (c) 223N; (d) 1.11 kN
46. 12◦

47. 2.2 km
48. 2.6× 103 N
49. 1.81m/s
50. 0.078
51. (a) 8.74N; (b) 37.9N; (c)6.45m/s;

(d) radially inward
52. (a) 0.40N; (b) 1.9 s
53. (a) 69 km/h; (b) 139 km/h; (c) yes
54. (a)

0
Rg(tan θ + µs)/(1 − µs tan θ);

(b) 149 km/h; (c) 76.2 km/h
55. (a) 222N; (b) 334N; (c) 311N; (d) 311N;

(e) c, d
56. 3.4%
57. (a) 7.5m/s

2
; (b) down; (c) 9.5m/s

2
;

(d) down
58. (b) 55◦; (c) increase; (d) 59◦

59. (a) µsmg/(sin θ − µs cos θ);
(b) θ0 = tan

−1 µs
60. (a) lowest point; (b) 8.73m/s

61. (a) 27N; (b) 3.0m/s2

62. 8.8N
63. (a) 35.3N; (b) 39.7N; (c) 320N
64. 0.74
65. (a) 3.0N; (b) 3.0N; (c) 1.6N; (d) 4.4N;

(e) 1.0N; (f) e
66. 9.4N
67. g(sin θ −√2µs cos θ)
68. (a) 1.05N; (b) 3.62m/s

2
; (c) answers are

the same except that the rod is under com-
pression

69. (a) 13N; (b) 1.6m/s
2

70. (a) 0.58; (b) 0.54
71. 118N
72. (a) 11◦; (b) 0.19
73. (a) v20/(4g sin θ); (b) no
74. (a) 12N; (b) 10N; (c) 26N; (d) 23N;

(e) 32N; (f) 23N; (g) d; (h) f; (i) a, c, d
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75. 0.76
76. (a) 3.0× 105N; (b) 1.2◦
77. (a) 30 cm/s; (b) 180 cm/s

2
; (c) inward;

(d) 3.6× 10−3N; (e) inward; (f) 0.37
78. 0.12m
79. 4.6N
80. (a) 6.80 s; (b) 6.76 s
81. 20◦

82. (a) 2.2m/s
2
; (b) 53N

83. (a) 0.11m/s
2
; (b) 0.23m/s

2
; (c) 0.041;

(d) 0.029%
84. 147m/s
85. (a) 0.34; (b) 0.24
86. (a) 190N; (b) 320N
87. (a) 3.21× 103 N; (b) 3.75 × 103N
88. (a) 0.96m/s; (b) 0.021
89. 178 km/h

90. 3.4m/s2

91. 0.18
92. (a) 0.37; (b) 0.37 < µs < 0.47
93. (a) 100N; (b) 245N; (c) 86.6N; (d) 195N;

(e) 50.0N; (f) 158N; (g) at rest; (h) slides;
(i) at rest

94. (a) 90N; (b) 70N; (c) 0.88m/s
2

95. 0.56
96. (a) 56N; (b) 59N; (c) 1.1× 103 N
97. (a) 2.1m/s

2
; (b) down the plane; (c) 3.9m;

(d) it stays there
98. (a) 210N; (b) 44.0m/s
99. (a) 275N; (b) 877N
100. 6.2 kN
101. 874N
102. (a) 240N; (b) 0.60

103. (a) 84.2N; (b) 52.8N; (c) 1.87m/s
2

104. (a) 0.13N; (b) 0.12
105. (a) 74N; (b) (76N)/(cos θ + 0.42 sin θ);

(c) 23◦; (d) 70N
106. (a) 0.0338N; (b) 9.77N
107. (a) bottom of circle; (b) 9.5m/s

108. (a) 5.1m/s
2
; (b) 4.8N; (c) 10N

Chapter 7

1. 1.8× 1013 J
2. (a) 5× 1014 J; (b) 0.1megaton TNT;
(c) 8 bombs

3. (a) 2.9× 107m/s; (b) 2.1 × 10−13 J
4. 7.1 J
5. (a) 2.4m/s; (b) 4.8m/s

6. 20 J
7. 6.8 J
8. 5.0 kJ
9. 0.96 J
10. 3.5m/s
11. (a) 1.7× 102N; (b) 3.4× 102m; (c) −5.8×

104 J; (d) 3.4 × 102N; (e) 1.7 × 102 N;
(f) −5.8× 104 J

12. (a) 3.00N; (b) 9.00 J
13. (a) 1.50 J; (b) increases
14. 15.3 J
15. (a) 62.3◦; (b) 118◦

16. (a) 36 kJ; (b) 2.0 × 102 J
17. (a) 12 kJ; (b) −11 kJ; (c) 11 kJ; (d) 5.4m/s
18. (a) 1.31 J; (b) 0.935m/s
19. (a) −3Mgd/4; (b) Mgd; (c) Mgd/4;

(d)
0
gd/2

20. 4.41 J
21. 25 J
22. (a) 8.84 kJ; (b) 7.84 kJ; (c) 6.84 kJ
23. (a) 25.9 kJ; (b) 2.45N
24. 1.25 kJ
25. x = −4.9 cm and x = +4.9 cm
26. (a) 7.2 J; (b) 7.2 J; (c) 0; (d) −25 J
27. (a) 16 J; (b) 16 J; (c) 0; (d) −14 J
28. (a) 0.905 J; (b) 2.15 J; (c) 0
29. (a) 6.6m/s; (b) 4.7m
30. (a) 0.12m; (b) 0.36 J; (c) −0.36 J;

(d) 0.060m; (e) 0.090 J
31. 8.0× 102 J
32. 25 J
33. (a) 0; (b) 0
34. 0.21 J
35. 5.3× 102 J
36. (a) 2.3 J; (b) 2.6 J
37. (a) 42 J; (b) 30 J; (c) 12 J; (d) 6.5m/s, pos-

itive x direction; (e) 5.5m/s, positive x di-
rection;
(f) 3.5m/s, positive x direction

38. 4.00N/m
39. +41.7 J
40. 2.7× 105W
41. 4.9× 102W
42. (a) 9.0 × 102 J; (b) 1.1 × 102W; (c) 2.3 ×

102W
43. (a) 0.83 J; (b) 2.5 J; (c) 4.2 J; (d) 5.0W
44. (a) 28W; (b) (6m/s) ĵ
45. 7.4× 102W
46. (a) 0; (b) −3.5× 102W
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47. (a) 1.0× 102 J; (b) 8.4W
48. (a) 32.0 J; (b) 8.00W; (c) 78.2◦

49. (a) 12 J; (b) 4.0m; (c) 18 J
50. (a) 0.29 J; (b) −1.8 J; (c) 3.5m/s; (d) 23 cm
51. (a) 2.7 × 102 N; (b) −4.0 × 102 J; (c) 4.0 ×

102 J; (d) 0; (e) 0
52. (a) 590 J; (b) 0; (c) 0; (d) 590 J
53. (a) 11 J; (b) −21 J
54. (a) vf =

√
cos θ, with vf in meters per sec-

ond; (b) vf =
√
1 + cos θ;

(c) vf =
√
1− cos θ

55. (a) 0.6 J; (b) 0; (c) −0.6 J
56. (a) 6.0N; (b) −2.5N; (c) 15N
57. (a) 1.20 J; (b) 1.10m/s
58. (a) 13 J; (b) 13 J;
59. (a) 314 J; (b) −155 J; (c) 0; (d) 158 J;
60. (a) 32 J; 8.0W; (c) 789◦

61. (a) 8.0N; (b) 8.0N/m
62. −37 J;
63. (a) 98N; (b) 4.0 cm; (c) 3.9 J; (d) −3.9 J
64. (a) 1.0× 102 J; (b) 67W; (c) 33W
65. −6 J
66. 165 kW
67. (a) 1.7W; (b) 0; (c) −1.7W
68. 1.5 kJ
69. (a) 2.1× 102 J; (b) 2.1× 102 J
70. (a) 797W; (b) 0; (c) −1.55 kJ; (d) 0;

(e) 1.55 kJ; (f) because F varies during dis-
placement

71. (a) 23mm; (b) 45N
72. (a) c = 4m; (b) c < 4m; (c) c > 4m
73. 235 kW
74. (a) 6 J; (b) 6.0 J
75. (b) x = 3.00m; (c) 13.5 J; (d) x = 4.50m;

(e) x = 4.50m
76. 0.47 J
77. (a) 1.8× 105 ft · lb; (b) 0.55 hp
78. (a) 2.5 kJ; (b) −2.1 kJ
79. (a) 1× 105megatons TNT;

(b) 1× 107 bombs
80. 6.67 × 105 J

Chapter 8

1. 89N/cm
2. (a) 167 J; (b) −167 J; (c) 196 J; (d) 29 J;
(e) 167 J; (f) −167 J; (g) 296 J; (h) 129 J

3. (a) 4.31mJ; (b) −4.31mJ; (c) 4.31mJ;
(d) −4.41mJ; (e) all increase

4. (a) 1.51 J; (b) −1.51 J; (c) 0; (d) −1.51 J;
(e) 1.51 J; (f) 0; (h) same

5. (a) 0; (b) 170 kJ; (c) 340 kJ; (d) 170 kJ;
(e) 340 kJ; (f) increase

6. (a) 184 J; (b) −184 J; (c) −184 J
7. (a) 0.15 J; (b) 0.11 J; (c) 0.19 J; (d) 38mJ;
(e) 75mJ; (f) all the same

8. (a) 13.1 J; (b) −13.1 J; (c) 13.1, J; (d) all
increase

9. (a) 2.08m/s; (b) 2.08m/s; (c) increase
10. (a) 12.9m/s; (b) 12.9m/s; (c) increase
11. (a) 17.0m/s; (b) 26.5m/s; (c) 33.4m/s;

(d) 56.7m; (e) all the same
12. (a) 2.98m/s; (b) 4.21m/s; (c) 2.98m/s;

(d) all the same
13. (a) 2.6× 102m; (b) same; (c) decrease
14. (a) 21.0m/s; (b) 21.0m/s; (c) 21.0m/s
15. (a) 3.0m; (b) 0.81m; (c) 11m/s;

(d) 6.3m/s; (f) 0.51m
16. (a) 7.2 J; (b) −7.2 J; (c) 86 cm; (d) 26 cm
17. (a) 0.98 J; (b) −0.98 J; (c) 3.1N/cm
18. 10 cm
19. (a) U = 27+12x−3x2; (b) 39 J; (c) −1.6m;

(d) 5.6m
20. (a) 2.29m/s; (b) same
21. (a) 2.5N; (b) 0.31N; (c) 30 cm
22. (a) no; (b) 9.3× 102N
23. (a) 4.85m/s; (b) 2.42m/s
24. −3.2× 102 J
25. (a) 4.4m; (b) same
26. (a) 8.35m/s; (b) 4.33m/s; (c) 7.45m/s;

(d) both decrease
27. (a) 5.0m/s; (b) 79◦; (c) 64 J
28. (a) 784N/m; (b) 62.7 J; (c) 62.7 J;

(d) 80.0 cm
29. (a) 35 cm; (b) 1.7m/s
30. (a) 2.40m/s; (b) 4.19m/s
31. (a) 39.2 J; (b) 39.2 J; (c) 4.00m

32. (a) 0.81m/s; (b) 0.21m; (c) 6.3m/s2;
(d) up

33. (a) 2.8m/s; (b) 2.7m/s
34. 1.25 cm
35. −18mJ
36. 9.20m
37. (a) 2.1m/s; (b) 10N; (c) positive x direc-

tion; (d) 5.7m; (e) 30N; (f) negative x di-
rection

38. (a) 1.12(A/B)1/6; (b) repulsive; (c) attrac-
tive
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39. (a) −3.7 J; (c) 1.3M; (d) 9.1m; (e) 2.2 J;
(f) 4.0m; (g) (4− x)e−x/4; (h) 4.0m

40. (a) 5.6 J; (b) 3.5 J
41. (a) 5.6× 102 J; (b) 5.6× 102 J
42. (a) 105 J; (b) 30.6 J; (c) 34.4 J
43. (a) 30.1 J; (b) 30.1 J; (c) 0.225
44. 11 kJ
45. (a) −2.9 kJ; (b) 3.9× 102 J; (c) 2.1 × 102 N
46. 0.53 J
47. 20 ft · lb
48. (a) 1.5MJ; (b) 0.51MJ; (c) 1.0MJ;

(d) 63m/s
49. 75 J
50. 1.2m
51. (a) 67 J; (b) 67 J; (c) 46 cm
52. 0.15
53. (a) 0.292m; (b) 14.2 J
54. 4.3m
55. (a) 1.5× 102 J; (b) 5.5m/s
56. (a) 13 cm; (b) 2.7m/s; (c) both increase
57. (a) −0.90 J; (b) 0.46 J; (c) 1.0m/s
58. (a) 19.4m; (b) 19.0m/s
59. 20 cm
60. H = 30 cm
61. 3.5m/s
62. (a) 7.4m/s; (b) 90 cm; (c) 2.8m; (d) 15m
63. (a) 39.6 cm; (b) 3.64 cm
64. 0.72m
65. (a) 10m; (b) 49N; (c) 4.1m; (d) 1.2×102 N
66. (a) 216 J; (b) 1.18 kN; (c) 432 J; (d) motor

also supplies thermal energy to crate and
belt

67. 4.33m/s
68. (a) −3.8 kJ; (b) 31 kN
69. (a) 4.9m/s; (b) 4.5N; (c) 71◦; (d) same
70. 1.0mJ
71. (a) 4.8N; (b) positive x direction; (c) 1.5m;

(d) 13.5m; (e) 3.5m/s
72. (a) 31.0 J; (b) 5.35m/s; (c) conservation
73. (a) 5.5m/s; (b) 5.4m/s; (c) same
74. (a) 1.5× 10−2N; (b) (3.8 × 102)g
75. 69 hp
76. (a) 1.4m/s; (b) 1.9m/s; (c) 28◦

77. (a) 13m/s; (b) 11m/s; (c) no, 9.3m
78. (a) 18 J; (B) 0; (c) 30 J; (d) 0; (e) b and d
79. (a) 109 J; (b) 60.3 J; (c) 68.2 J; (d) 41.0 J
80. (a) 5.00 J; (b) 9.00 J; (c) 11.0 J; (d) 3.00 J;

(e) 12.0 J; (f) 2.00 J; (g) 13.0 J; (h) 1.00 J;

(i) 13.0 J; (j) 1.00 J; (l) 11.0 J; (m) 10.8m;
(n) it returns to x = 0 and stops

81. (a) 0.950m/s; (b) 11.0m
82. (a) 7 J; (b) 16 J
83. (a) 24 kJ; (b) 4.7 × 102N
84. (a) 3.0× 105 J; (b) 10 kW; (c) 20 kW
85. (a) 2.1× 106 kg; (b) √100 + 1.5tm/s;

(c) (1.5 × 106)/√100 + 1.5tN; (d) 6.7 km
86. (a) 2.6m; (b) 1.5m; (c) 26 J; (d) 2.1m/s
87. (a) 6.75 J; (b) −6.75 J; (c) 6.75 J; (d) 6.75 J;

(e) −6.75 J; (f) 0.4459m
88. (a) 54m/s; (b) 52m/s; (c) −76m
89. 3.7 J
90. (a) 300 J; (b) 93.8 J; (c) 6.38m
91. 5.4 kJ
92. 15 J
93. (a) 2.2 kJ; (b) 7.7× 102 J
94. (a) 5.6 J; (b) 12 J; (c) 12 J
95. (a) 2.7 J; (b) 1.8 J; (c) 0.39m
96. 56m/s
97. 80mJ
98. (a) 3.5 kJ; (b) 3.5 kJ
99. (a) 7.0 J; (b) 22 J
100. (a) 7.4× 102 J; (b) 2.4× 102 J
101. (a) 94 J; (b) 94 J; (c) 7.7m/s
102. (a) −0.80 J; (b) −0.80 J; (c) +1.1 J
103. 5.5× 106 N
104. (a) 12m/s; (b) 11 cm
105. 25 J
106. (a) 44m/s; (b) 0.036
107. 24W
108. 100m
109. (a) 2.35× 103 J; (b) 352 J
110. (a) 0.2 to 0.3MJ; (b) same amount
111. −12 J
112. (a) 7.8MJ; (b) 6.2 bars
113. (a) 7.8MJ; (b) 2.6 kJ; (c) 1.6 kW
114. 17 kW
115. (a) 3.7 J; (b) 4.3 J; (c) 4.3 J
116. 8580 J
117. (a) 3.0mm; (b) 1.1 J; (d) yes; (e) ≈ 40 J;

(f) no
118. (a) 9.2m/s; (b) 4.8m/s
119. (a) 6.0 kJ; (b) 8.6× 102W; (c) 3.0× 102W;

(d) 9.0× 102W
120. (a) 8.6 kJ; (b) 8.6× 102W; (c) 4.3× 102W;

(d) 1.3 kW
121. 3.1× 1011W
122. (a) 19 J; (b) 6.4m/s; (c) 11 J, 6.4m/s
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123. (a) 0.75 J; (b) −1.0 J; (c) 0.25 J; (d) 1.0 J;
(e) −2.0 J; (f) 1.0 J; (g) 0.75 J; (h) −3.0 J;
(i) 2.3 J; (j) 0; (k) −4.0 J; (l) 4.0 J

124. (a) 6.4m/s; (b) 4.9m/s; (c) same
125. 880MW
126. (a) 39 kW; (b) 39 kW
127. (a) 1.2 J; (b) 11m/s; (c) no; (d) no
128. 738m
129. (a) v0 =

√
2gL; (b) 5mg; (c) −mgL;

(d) −2mgL
130. 181W
131. (a) 2.7×109 J; (b) 2.7×109W; (c) $2.4×108
132. 54%
133. (a) turning point on left, none on right,

molecule breaks apart; (b) turning points
on both left and right, molecule does not
break apart; (c) −1.1 × 10−19 J; (d) 2.1 ×
10−19 J; (e) ≈ 1× 10−9N on each, directed
toward the other; (f) r < 0.2 nm; (g) r >
0.2 nm; (h) r = 0.2 nm

135. (a) U(x) = −Gm1m2/x;
(b) Gm1m2d/x1(x1 + d)

136. because your force on the cabbage (as you
lower it) does work

Chapter 9

1. (a) 1.1m; (b) 1.3m; (c) toward
2. (a) −1.50m; (b) −1.43m
3. (a) 11 cm; (b) −4.4 cm
4. (a) −0.45 cm; (b) −2.0 cm
5. (a) 0; (b) 3.13 × 10−11m
6. (a) −6.5 cm; (b) 8.3 cm; (c) 1.4 cm
7. (a) 20 cm; (b) 20 cm; (c) 16 cm
8. (a) 6.0 cm; (b) 6.0 cm; (c) descends to low-
est point and then ascends to 6.0 cm;
(d) 2.8 cm

9. (a) 28 cm; (b) 2.3m/s
10. 6.2m
11. (a) 22m; (b) 9.3m/s
12. (−4.0m) î + (4.0m) ĵ
13. (a) (2.35m/s

2
) î− (1.57m/s2) ĵ;

(b)
�
(2.35m/s

2
) î− (1.57m/s2) ĵ

=
t;

(d) straight, at a downward angle of 34◦

14. (a) 5.74m; (b) (10.0m/s) î;

(c) (−3.68m/s2) ĵ
15. 53m
16. 58 kg
17. 4.2m

18. 4.2 kg ·m/s
19. (a) 7.5×104 J; (b) 3.8×104 kg ·m/s; (c) 39◦

south of east
20. (a) 30.0◦; (b) (−0.572 kg ·m/s) ĵ
21. 48◦

22. (a) 5.0 kg ·m/s; (b) 10 kg ·m/s
23. (a) 67m/s; (b) −x; (c) 1.2 kN; (d) −x
24. 1.0× 103 to 1.2× 103 kg ·m/s
25. (a) 1.1m; (b) 4.8× 103 kg ·m/s
26. (a) 42N · s; (b) 2.1 kN
27. 5N
28. (a) (30 kg ·m/s) î; (b) (38 kg ·m/s) î;

(c) (6.0m/s) î
29. (a) 5.86 kg ·m/s: (b) 59.8◦; (c) 2.93 kN;

(d) 59.8◦

30. (a) 4.50×10−3 N · s; (b) 0.529N · s; (c) push
31. (a) 1.00N · s; (b) 100N; (c) 20N
32. 9.9× 102 N
33. (a) (1.8N · s) ĵ; (b) (−180N) ĵ
34. (a) 7.17N · s; (b) 16.0 kg ·m/s
35. 3.0mm/s
36. (−1.4m/s) î
37. 4.4× 103 km/h
38. (a) (−0.15m/s) î; (b) 0.18m
39. 3.5m/s
40. mv2/6
41. (a) 14m/s; (b) −45◦
42. 3.4 kg
43. (a) (1.00 km/s) î− (0.167 km/s) ĵ;

(b) 3.23MJ
44. (a) 20 J; (b) 40 J
45. (a) 1.81m/s; (b) 4.96m/s
46. 3.1× 102m/s
47. (a) (2.67m/s) î− (3.00m/s) ĵ; (b) 4.01m/s;

(c) 48.4◦

48. (a) 4.6m/s; (b) 3.9m/s; (c) 7.5m/s
49. (a) 721m/s; (b) 937m/s
50. 7.3 cm
51. (a) +2.0m/s; (b) −1.3 J; (c) +40 J; (d) en-

ergy entered system from some source such
as a small explosion

52. 2.6m
53. 25 cm
54. 33 cm
55. (a) 99 g; (b) 1.9m/s; (c) 0.93m/s
56. (a) 1.9m/s; (b) right; (c) yes
57. (a) 100 g; (b) 1.0m/s
58. −28 cm
59. (a) 1.2 kg; (b) 2.5m/s
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60. (a) 2.47m/s; (b) 1.23m/s
61. (a) 3.00m/s; (b) 6.00m/s
62. (a) 2.22m; (b) 0.556m
63. (a) 0.21 kg; (b) 7.2m
64. 1.0 kg
65. (a) 4.15× 105m/s; (b) 4.84 × 105m/s
66. (a) (10m/s) î + (15m/s) ĵ; (b) −500 J
67. (a) 433m/s; (b) 250m/s
68. (a) 27◦

69. 120◦

70. (a) 2.7; (b) 7.4
71. (a) 1.57× 106 N; (b) 1.35 × 105 kg;

(c) 2.08 km/s
72. 108m/s
73. (a) 46N; (b) none
74. (a) stuck-together particles travel along the

x axis; (b) one particle along line 2, the
other along line 3; (c) one particle through
region B, the other through region C, with
paths symmetric about the x axis;
(c) 3.06m/s; (e) 4.00m/s, each particle

75. (a) 7.11m/s; (b) greater; (c) less; (d) less
76. (a) 1.78m/s; (b) less; (c) less; (d) greater
77. (a) 1.92m; (b) 0.640m
78. (a) 40m/s; (b) 0; (c) 60m/s; (d) M
79. 28.8N
80. 1.10m/s
81. (a) 25mm; (b) 26mm; (c) down; (d) 1.6 ×

10−2m/s2

82. (a) −0.25m; (b) 0
83. (a) 11.4m/s; (b) 95.1◦

84. (a) (−3.8m/s) î; (b) (7.2m/s) î
85. (a) 7290m/s; (b) 8200m/s;

(c) 1.271 × 1010 J; (d) 1.275 × 1010 J
86. (a) 0.800 kg ·m/s; (b) 0.400 kg ·m/s
87. (a) (−4.0× 104 kg ·m/s; (b) west; (c) 0
88. (a) 0.60 cm; (b) 4.9 cm; (c) 9.0 cm; (d) 0
89. (a) down; (b) 0.50m/s; (c) 0
90. (a) (−0.450 kg ·m/s) î− (0.450 kg ·m/s) ĵ−

(1.08 kg ·m/s) k̂;
(b) (−0.450N · s) î− (0.450N · s) ĵ
−(1.08N · s) k̂;
(c) (0.450N·s) î+(0.450N·s) ĵ+(1.08N·s) k̂

91. (a) 0; (b) 0; (c) 0
92. (a) (8.25 kg ·m/s) ĵ; (b) (8.25N · s)̂j;

(c) (−8.25N · s) ĵ
93. (a) 0; (b) 4.0m/s
94. (a) 30 cm; (b) 3.3m
95. (a) 0.745mm; (b) 153◦; (c) 1.67mJ

96. (a) (−1.00× 10−19 kg ·m/s) î
+(0.67×10−19 kg ·m/s) ĵ; (b) 1.19×10−12 J

97. (a) 0.841m/s; (b) 0.975m/s
98. (a) 1.14× 10−3; (b) same
99. (a) 1.0 kg · m/s; (b) 2.5 × 102 J; (c) 10N;

(d) 1.7 kN; (e) answer for (c) includes time
between pellet collisions

100. 41.7 cm/s
101. (a) (7.4× 103 N · s) î− (7.4 × 103N · s) ĵ;

(b) (−7.4× 103N · s) î;
(c) 2.3 × 103N; (d) 2.1 × 104N; (e) −45◦

102. 6.46 × 10−11m
103. (a) 3.7m/s; (b) 1.3N · s; (c) 1.8× 102 N
104. 72 km/h
105. (a) 9.0 kg ·m/s; (b) 3.0 kN; (c) 4.5 kN;

(d) 20m/s
106. 0.57m/s
107. 1.18 × 104 kg
108. +4.4m/s
109. (a) 4.4m/s; (b) 0.80
110. (a) 1.4 × 10−22 kg · m/s; (b) 28◦; (c) 1.6 ×

10−19 J
111. 0.22%
112. (a) 8.0× 104N; (b) 27 kg/s
113. 2.2 kg
114. 2.2× 10−3
115. 61.2 kJ
116. 3.0m
117. (a) (1.3m/s) î + (1.3m/s)̂j; (b) 1.9m/s; (c)

45◦

118. (a) 1; (b) 1.83 × 103; (c) 1.83 × 103; (d) all
the same

119. (a) 2.18 kg ·m/s; (b) 575N
120. (a) (−4.9m/s2) ĵ; (b) (−9.8m/s2) ĵ;

(c) (−4.9m/s2) ĵ; (d) 1.23m/s; (e) 4.90m/s;
(f) 6.13m/s

121. 5.0 kg
122. 2.5× 10−3
123. (a) (24.0 kg ·m/s) î− (180 kg ·m/s) ĵ

+(30.0 kg ·m/s) k̂; (b) 4.23 kJ; (c) 4.30 kJ
124. (a) 4.4m/s; (b) 38 J
125. 190m/s
126. 29 J
127. (a) 0.54m/s; (b) 0; (c) 1.1m/s

128. (a) 4.0 kg ·m/s2; (b) 8.0 kg ·m/s
129. (a) 5mg; (b) 7mg; (c) 5m
130. (a) 6.9m/s; (b) 30◦; (c) 6.9m/s; (d) −30◦;

(e) 2.0m/s; (f) −180◦
131. (a) 1.9m/s; (b) −30◦; (c) elastic
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132. (a) 41.0◦; (b) 4.75m/s; (c) no
133. (a) 4.6× 104 km; (b) 73%
134. (a) −0.50m; (b) −1.8 cm; (c) 0.50m
135. (a) 50 kg/s; (b) 1.6× 102 kg/s
136. 5.0× 106 N
137. (a) 0; (b) 2.25 kJ; (b) 2.25 kJ; (c) 1.61m/s;

(d) 1.00m/s
138. (a) 0; (b) 0.75m
139. (a) 8.1m/s; (b) 38◦ south of east
140. (a) 2.0 kg ·m/s, east; (b) 1.0 kg ·m/s, west;

(c) 4.0 kg ·m/s, west

Chapter 10

1. (a) 0.105 rad/s; (b) 1.75× 10−3 rad/s;
(c) 1.45 × 10−4 rad/s

2. 14 rev
3. (a) 12 : 00; (b) 12 : 00; (c) 3 : 00; (d) 6 : 00;
(e) 9 : 00; (f) 12 : 00; (g) 2 : 24; (h) 4 : 48;
(i) 7 : 12; (j) 9 : 36; (k) 12 : 00

4. 4.0 rad/s; (b) 28 rad/s; (c) 12 rad/s
2
;

(d) 6.0 rad/s
2
; (d) 18 rad/s

2

5. 11 rad/s
6. (a) 2.0 rad; (b) 0; (c) 1.3× 102 rad/s;
(d) 32 rad/s

2
; (e) no

7. (a) 4.0m/s; (b) no
8. (a) 3.00 s; (b) 18.9 rad

9. (a) 9.0× 103 rev/min2; (b) 4.2× 102 rev
10. (a) 30 s; (b)1.8 × 103 rad
11. (a) 2.0 rad/s

2
; (b) 5.0 rad/s; (c) 10 rad/s;

(d) 75 rad
12. (a) 4.09 s; (b) 1.70 s
13. 8.0 s
14. (a) 40 s; (b) 2.0 rad/s

2

15. (a) 3.4× 102 s; (b) −4.5× 10−3 rad/s2;
(c) 98 s

16. (a) 1.0 rev/s
2
; (b) 4.8 s; (c) 9.6 s; (d) 48 rev

17. (a) 44 rad; (b) 5.5 s; (c) 32 s; (d) −2.1 s;
(e) 40 s

18. (a) 13.5 s; (b) 27.0 rad/s
19. 6.9× 10−13 rad/s
20. 199 hits/s
21. (a) 20.9 rad/s; (b) 12.5m/s;

(c) 800 rev/min2; (d) 600 rev
22. (a) 3.0 rad/s; (b) 30m/s;

(c) 6.0m/s
2
; (d) 90m/s

2

23. (a) 2.50× 10−3 rad/s; (b) 20.2m/s2; (c) 0
24. (a) 3.1× 102m/s; (b) 3.4 × 102m/s

25. (a) 6.4 cm/s
2
; (b) 2.6 cm/s

2

26. (a) 40.2 cm/s2; (b) 2.36 × 103m/s2;
(c) 83.2m

27. (a) 7.3× 10−5 rad/s; (b) 3.5× 102m/s;
(c) 7.3 × 10−5 rad/s; (d) 4.6× 102m/s

28. 16 s
29. (a) 3.8× 103 rad/s; (b) 1.9 × 102m/s
30. (a) −1.1 rev/min2; (b) 9.9 × 103 rev;

(c) −0.99mm/s2; (d) 31m/s2
31. (a) 73 cm/s2; (b) 0.075; (c) 0.11

32. (a) −2.3× 10−9 rad/s2; (b) 2.6× 103 y;
(c) 24ms

33. 12.3 kg ·m2
34. (a) 1.5 rad/s

2
; (b) 0.40 J

35. (a) 1.1 kJ; (b) 9.7 kJ
36. (a) 7.1%; (b) 64%
37. 0.097 kg ·m2
38. 2.5 kg
39. (a) 0.023 kg ·m2; (b) 11mJ
40. (a) 8.352 × 10−3 kg ·m2; (b) −0.22%
41. 4.7× 10−4m2
42. (a) 2.0 kg ·m2; (b) 6.0 kg ·m2; (c) 2.0 kg ·m2
43. (a) 1.3 × 103 g · cm2; (b) 5.5 × 102 g · cm2;

(c) 1.9 × 103 g · cm2; (d) A+B
44. (a) 49MJ; (b) 1.0× 102min
45. 4.6N ·m
46. (a) 8.4N ·m; (b) 17N ·m; (c) 0
47. −3.85N ·m
48. 12N ·m
49. (a) 28.2 rad/s

2
; (b) 338N ·m

50. 1.28 kg ·m2
51. 0.140N
52. (a) 3.0 rad/s

2
; (b) 9.4 rad/s

2

53. (a) 9.7 rad/s
2
; (b) counterclockwise

54. (a) 1.7m/s
2
; (b) 6.9m/s

2

55. (a) 6.00 cm/s
2
; (b) 4.87N; (c) 4.54N;

(d) 1.20 rad/s2; (e) 0.0138 kg ·m2
56. 2.51 × 10−4 kg ·m2
57. (a) 4.2× 102 rad/s2; (b) 5.0× 102 rad/s
58. 396N ·m
59. (a) 1.4m/s; (b) 1.4m/s
60. (a) 19.8 kJ; (b) 1.32 kW
61. (a) 0.63 J; (b) 0.15m
62. (a) 11.2mJ; (b) 33.6mJ; (c) 56.0mJ;

(d) 2.80× 10−5 J · s2/rad2
63. 5.42m/s
64. (a) 0.15 kg ·m2; (b) 11 rad/s
65. 9.82 rad/s
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66. (a) 0.227 rad/s; (b) 5.32m/s
2
;

(c) 8.43 rad/s
2
; (d) 41.8◦

67. 1.4m/s
68. (a) 1.2t5− 1.3t3 +2.0; (b) 0.20t6 − 0.33t4 +

2.0t+ 1.0
69. (a) 314 rad/s2; (b) 7.54m/s2; (c) 14.0N;

(d) 4.36N
70. 3× 105 J
71. 6.16 × 10−5 kg ·m2
72. 146 rad/s
73. (a) 5.1 h; (b) 8.1 h
74. 25N
75. (a) 0.32 rad/s; (b) 1.0 × 102 km/h
76. (a) 8.6 s; (b) no
77. (a) 3.3 J; (b) 2.9 J

78. (a) 1.57m/s
2
; (b) 4.55N; (c) 4.94N

79. (a) −7.66 rad/s2; (b) −11.7N ·m; (c) 4.59×
104 J; (d) 624 rev; (e) 4.59 × 104 J

80. (a) 4.81× 105 N; (b) 1.12 × 104N ·m;
(c) 1.25 × 106 J

81. (a) 1.5×102 cm/s; (b) 15 rad/s; (c) 15 rad/s;
(d) 75 cm/s; (e) 3.0 rad/s

82. 30 rev
83. 4.6 rad/s2

84. 6.06 rad/s
86. (a) yes; (b) 1.1 × 102 kg
87. (a) 0.689N · m; (b) 3.05N; (c) 9.84N · m;

(d) 11.5N
88. 0.054 kg ·m2
89. 3.1 rad/s
90. (a) 0.20 kg ·m2; (b) 6.3 rad/s
91. (a) −1.25 rad/s2; (b) 250 rad; (c) 39.8 rev
92. (a) 5.92× 104m/s2; (b) 4.39 × 104 s−2
93. (a) 0.791 kg ·m2; (b) 1.79 × 10−2N ·m
94. 1.6 kg ·m2
95. 1.5× 103 rad
96. 18 rad
97. (a) 2.8 rad; (b) 0.42m/s

2

98. (a) 0.019 kg ·m2; (b) 0.019 kg ·m2
99. (a) 0.17 kg ·m2; (b) 0.22 kg ·m2;

(c) 0.10 kg ·m2
100. (a) 3.4× 105 g · cm2; (b) 2.9 × 105 g · cm2;

(c) 6.3×105 g·cm2; (d) (1.2 cm) î+(5.9 cm) ĵ
101. (a) 10 J; (b) 0.27m
102. (a) 3.1 rad/s; (b) same
103. (a) 11 rad/s
104. 2.6 J
105. (a) 5.00 rad/s; (b) 1.67 rad/s

2
; (c) 2.50 rad

106. (a) 5.5× 1015 s; (b) 26

107. (a) −67 rev/min2; (b) 8.3 rev
108. (a) 155 kg ·m2; (b) 64.4 kg
109. (a) ω0+at

4−bt3; (b) θ0+ω0t+at5/5−bt4/4
110. (a) a+ 3bt2 − 4ct3; (b) 6bt− 12ct2
111. 17
112. 2.1× 10−22 J
113. 1.4× 102 N ·m
114. (a) 2.0 rev/s; (b) 3.8 s

115. 5.6 rad/s
2

116. (a) 7.0 kg ·m2; (b) 7.2m/s; (c) 71◦
117. (a) 1.94m/s

2
; (b) 75.1◦

118. (a) 1.4× 102 rad; (b) 14 s
119. 200 rev/min
120. (a) 221 kg ·m2; (b) 1.10× 104 J
121. (a) 3.5 rad/s; (b) 52 cm/s; (c) 26 cm/s
122. 0.13 rad/s
123. 6.75 × 1012 rad/s
124. (a) 8.2× 1028N ·m; (b) 2.6× 1029 J;

(c) 3.0 × 1021 kW
125. (a) 9.71× 1037 kg ·m2; (c) 1× 109 y

Chapter 11

1. (a) 59.3 rad/s; (b) 9.31 rad/s2; (c) 70.7m
2. (a) 0; (b) (22m/s) î; (c) (−22m/s) î; (d) 0;
(e) 1.5 × 103m/s2; (f) 1.5× 103m/s2;
(g) (22m/s) î; (h) (44m/s) î; (i) 0; (j) 0;

(k) 1.5× 103m/s2; (l) 1.5× 103m/s3
3. −3.15 J
4. (a) 8.0◦; (b) more
5. 0.020
6. (a) (−4.0N) î; (b) 0.60 kg ·m2
7. (a) 63 rad/s; (b) 4.0m
8. (a) 37.8 cm; (b) 1.96 × 10−2N; (c) toward
loop’s center

9. 4.8m
10. 7.2× 10−4 kg ·m2
11. (a) 2.0m; (b) 7.3m/s
12. 1.34m/s
13. 0.50
14. 0.25
15. (a) 13 cm/s

2
; (b) 4.4 s; (c) 55 cm/s;

(d) 18mJ; (e) 1.4 J; (f) 27 rev/s

16. (a) 0.19m/s
2
; (b) 0.19m/s

2
; (c) 1.1 kN;

(d) no; (e) same; (f) greater
17. (a) (24N ·m) ĵ; (b) (−24N ·m) ĵ;

(c) (12N ·m) ĵ; (d) (−12N ·m) ĵ
18. (a) (6.0N ·m) ĵ + (8.0N ·m) k̂;

(b) (−22N ·m) î

Answers to Problems: Chapter 11 193



19. (−2.0N ·m) î
20. (a) (6.0N ·m) î− (3.0N ·m)̂j− (6.0N ·m) k̂;

(b) (26N ·m) î + (3.0N ·m) ĵ− (18N ·m) k̂;
(c) (32N ·m) î− (24N ·m) k̂; (d) 0

21. (a) (50N ·m)k̂; (b) 90◦
22. (a) (−1.5N·m) î−(4.0N·m) ĵ−(1.0N·m) k̂;

(b) (−1.5N ·m) î−(4.0N ·m) ĵ−(1.0N ·m) k̂
23. −5.00N
24. (a) 12 kg ·m2/s; (b) positive z direction;

(c) 3.0N ·m; (d) positive z direction
25. (a) 9.8 kg ·m2/s; (b) positive z direction
26. (a) (6.0× 102 kg ·m2/s) k̂;

(b) (7.2× 102 kg ·m2/s) k̂
27. (a) 0; (b) (8.0N ·m) î + (8.0N ·m) k̂
28. (a) 0; (b) −22 kg ·m2/s; (c) −7.84N ·m;

(d) −784N ·m
29. (a) (3.00m/s2) î− (4.00m/s2) ĵ

+(2.00m/s2) k̂; (b) (42.0 kg ·m2/s) î
+(24.0 kg ·m2/s) ĵ + (60.0 kg ·m2/s) k̂;
(c) (−8.00N ·m) î− (26.0N ·m) ĵ
−(40.0N ·m) k̂; (d) 127◦

30. (2.0N ·m) î− (4.0N ·m) ĵ
31. (a) (−1.7×102 kg·m2/s) k̂; (b) (+56N·m) k̂;

(c) (+56 kg ·m2/s2) k̂
32. (a) 0; (b) (−8.0N · m/s)t k̂; (c) −2.0√

t
k̂ in

newton·meters for t in seconds; (d) 8.0t−3 k̂
in newton·meters for t in seconds

33. (a) (48N ·m/s)t k̂; (b) increasing
34. (a) 0.53 kg ·m2/s; (b) 4.2 × 103 rev/min
35. (a) 1.47N ·m; (b) 20.4 rad; (c) −29.9 J;

(d) 19.9W
36. 1024
37. (a) 4.6×10−3 kg·m2; (b) 1.1×10−3 kg·m2/s;

(c) 3.9 × 10−3 kg ·m2/s
38. (a) 24 kg ·m2/s; (b) 1.5 k ·m2/s
39. (a) 1.6 kg ·m2; (b) 4.0 kg ·m2/s
40. 5.0× 102 rev
41. (a) 3.6 rev/s; (b) 3.0; (c) forces on the bricks

from the man transferred energy from the
man’s internal energy to kinetic energy

42. (a) 750 rev/min; (b) 450 rev/min; (c) clock-
wise

43. (a) 267 rev/min; (b) 0.667
44. 0.20
45. 0.176 rad/s
46. 3
47. (a) 1.5m; (b) 0.93 rad/s; (c) 98 J;

(d) 8.4 rad/s; (e) 8.8 × 102 J; (f) internal
energy of the skaters

48. (a) 4.2 rad/s; (b) no, because energy is
transferred to the cockroach’s internal en-
ergy

49. 3.4 rad/s
50. (a) 0.180m; (b) clockwise
51. 1.3× 103m/s
52. (a) 0.347 rad/s; (b) 1.33; (c) energy is trans-

ferred from the internal energy of the cock-
roach to kinetic energy

53. 11.0m/s
54. 2.6 rad/s
55. (a) 18 rad/s; (b) 0.92
56. (a) 0.24 kg ·m2; (b) 1.8× 103m/s
57. 1.5 rad/s
58. 0.070 rad/s
59. (a) 0.148 rad/s; (b) 0.0123; (c) 181◦

60. 32◦

61. (a) 0.33 rev/s; (b) clockwise
62. 0.43 rev/min

63. (5.55 kg ·m2/s) k̂
64. (a) −(0.11m)ω; (b) −2.1m/s2;

(c) −47 rad/s2; (d) 1.2 s; (e) 8.6m;
(f) 6.1m/s

65. 0.62 J
66. 39.1 J
67. (a) 6.65× 10−5 kg ·m2/s; (b) no; (c) 0;

(d) yes
68. (a) 0.81mJ; (b) 0.29; (c) 1.3 × 10−2N
69. 0.47 kg ·m2/s
70. (a) 8.0 J; (b) 3.0m/S; (c) 6.9 J; (d) 1.8m/s

71. (a) (−24t2 kg ·m2s) k̂; (b) (−48tN ·m) k̂;
(c) (12t2 kg ·m2/s) k̂; (d) (24tN ·m) k̂

72. 2.33m/s
73. 12 s
74. 1.00
75. (a) 0; (b) 0; (c) (−30t3 kg ·m2s) k̂;

(d) (−90t2N ·m) k̂; (e) (30t3 kg ·m2s) k̂;
(f) 90t2N ·m) k̂

76. (a) 0.333; (b) 0.111
77. (a) mvR/(I+MR2); (b) mvR2/(I+MR2)

78. (a) (−32 kg ·m2/s) k̂; (b) (−32 kg ·m2/s) k̂;
(c) (12N ·m) k̂; (d) 0

79. (7.4 kg ·m2s) k̂
80. (a) 61.7 J; (b) 3.43m; (c) no
81. (a) mR2/2; (b) a solid circular cylinder

82. (a) 4.11m/s
2
; (b) 16.4 rad/s

2
; (c) 2.55N ·m
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83. (a) 58.8 J; (b) 29.2 J
84. (a) 9.9×102 J; (b) 3.0×103 J; (c) 1.2×105 J
85. (a) 1.6m/s

2
; (b) 16 rad/s

2
; (c) (4.0N) î

86. (a) (−17.1t2 kg ·m2/s) k̂;
(b) (−34.2t kg ·m2/s2) k̂; (c) (−34.2tN·m) k̂

87. (a) 12.7 rad/s; (b) clockwise

88. (a) (−1.8 kg ·m2/s) k̂; (b) (−3.6 kg ·m2/s) k̂;
(c) 0; (d) (−7.3N ·m) k̂

89. (a) 0.89 s; (b) 9.4 J; (c) 1.4m/s; (d) 0.12 J;
(e) 4.4 × 102 rad/s; (f) 9.2 J

90. (a) 12.2 kg ·m2; (b) 308 kg ·m2/s
91. (a) 2.9× 104 kg ·m2/s; (b) 1.2× 106 N ·m
92. rotational speed would decrease; day would

be about 0.8 s longer
93. (a) 3.14× 1043 kg ·m2/s; (b) 0.614
94. 1.2× 108 kg ·m2/s
95. (a) 149 kg ·m2; (b) 158 kg ·m2/s;

(c) 0.744 rad/s
97. 2.5× 1011 kg ·m2/s

Chapter 12

1. (a) 2; (b) 7
2. (a) 2; (b) 7
3. 7.92 kN
4. 120◦

5. (a) 9.4N; (b) 4.4N
6. (a) 8.4× 102N; (b) 5.3 × 103N
7. (a) 1.2 kN; (b) down; (c) 1.7 kN; (d) up;
(e) left; (f) right

8. (a) 2.77 kN; (b) 3.89 kN
9. 74.4 g
10. 8.3 kN
11. (a) 2.8× 102N; (b) 8.8 × 102N; (c) 71◦
12. 0.536m
13. (a) 5.0N; (b) 30N; (c) 1.3m
14. (a) 49N; (b) 28N; (c) 57N; (d) 29◦

15. (a) 2.7 kN; (b) up; (c) 3.6 kN; (d) down
16. 0.702m
17. (a) 0.64m; (b) increased
18. 457N
19. 13.6N
20. (a) 1.9 kN; (b) up; (c) 2.1 kN; (d) down
21. (a) 192N; (b) 96.1N; (c) 55.5N
22. (a) 408N; (b) 245N; (c) to the right;

(d) 163N; (e) up
23. (a) 6.63 kN; (b) 5.74 kN; (c) 5.96 kN
24. (a) 3.4× 102N; (b) 0.88m; (c) increases;

(d) decreases

25. 2.20m
26. (a) (−80N) î + (1.3× 102 N) ĵ;

(b) (80N) î + (1.3 × 102N) ĵ
27. (a) 1.50m; (b) 433N; (c) 250N
28. (a) Wx/(L sin θ); (b) Wx/(L tan θ);

(c) W (1− x/L)
29. (a) 445N; (b) 0.50; (c) 315N
30. (a) 60.0◦; (b) 300N
31. 0.34
32. (a) (−797N) î + (265N) ĵ;

(b) (797N) î + (265N) ĵ;
(c) (797N) î + (931N) ĵ;
(d) (−797N) î + (−265N) ĵ

33. (a) slides; (b) 31◦; (c) tips; (d) 34◦

34. (a) 30.0◦; (b) 51.0 kg; (c) 10.2 kg
35. (a) 211N; (b) 534N; (c) 320N

36. (a) 7.5× 1010N/m2; (b) 2.9 × 108N/m2
37. (a) 6.5× 106N/m2; (b) 1.1× 10−5m
38. 56.0mJ
39. (a) 866N; (b) 143N; (c) 0.165
40. (a) 0.80; (b) 0.0; (c) 0.25
41. (a) 1.4× 109N; (b) 75
42. (a) 1.2× 102N; (b) 68N
43. 76N
44. (a) 500 kg; (b) 62.5 kg
45. (a) 8.01 kN; (b) 3.65 kN; (c) 5.66 kN
46. (a) 196N; (b) 294N; (c) 441N; (d) 49.0N;

(e) 0.16m
47. 71.7N
48. (a) 50◦; (b) 0.77mg
49. (a) 1.38 kN; (b) 180N
50. (a) 2mg; (b) mg; (c) mg; (d)

√
2mg

51. (a) µ < 0.57; (b) µ > 0.57
52. (a) BC, CD, DA; (b) 535N; (c) 757N
53. (a) L/2; (b) L/4; (c) L/6; (d) L/8;

(e) 25L/24

54. (a) 3.9m/s
2
; (b) 2.0 kN; (c) 3.5 kN;

(d) 0.79 kN; (e) 1.4 kN
55. 0.29
57. 8.7N
58. 44N
59. (a) 15N; (b) 29N
60. (a) 106N; (b) 64.0◦

61. 60◦

62. (a) 200N; (b) 360N; (c) 0.35

63. 2.4× 109 N/m2
64. (a) 0.80mm; (b) 2.3 cm
65. L/4
66. (−1.5× 102 N) î + (2.6 × 102N) ĵ
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67. (a) 88N; (b) (30N) î + (97N) ĵ

68. (a) 1.9×10−3; (b) 1.3×107N/m2; (c) 6.9×
109N/m

2

69. (a) 1.8× 107N; (b) 1.4 × 107N; (c) 16
70. 3.4m
71. (a) 1.5 kN; (b) 1.9 kN
72. (a) 42N; (b) 66N
73. (a) (1.16 kN) ĵ; (b) (1.74 kN) ĵ
74. (a) (−671N) ĵ; (b) (400N) î + (670N) ĵ
75. (a) (35N) î + (200N) ĵ; (b) (−45N) î

+(200N) ĵ; (c) 1.9× 102 N
76. 3.1 cm
77. 0.19m
78. (a) 270N; (b) 72N; (c) 19◦

79. (a) a1 = L/2, a2 = 5L/8, h = 9L/8;
(b) b1 = 2L/3, b2 = L/2, h = 7L/6

80. (a) 51◦; (b) 0.64Mg
81. (a) 2.5m; (b) 7.3◦

82. (a) 6.78m3; (b) 1.20 × 105 N;
(c) σ0 + (σm − σ0)r/rm
= (40 000 + 13r)N/m3, with r in meters;

(d) 2πr dr; (e) [(40 000+13r)N/m
3
]2πr dr,

with r in meters; (f) 1.04×105 N; (g) −0.13

Chapter 13

1. 19m
2. 2.16
3. 1/2
4. (a) 2.13× 10−8 N; (b) 60.6◦
5. 2.60 × 105 km
6. (1.18 × 10−14 N) î + (1.18 × 10−14N) ĵ
7. −5.00d
8. (a) 0.25 kg; (b) 1.0 kg
9. (a) M = m; (b) 0
10. (a) −0.20m; (b) −0.35m
11. 8.31 × 10−9N
12. (a) 0.716d; (b) −1.07d
13. (a) −1.88d; (b) −3.90d; (c) 0.489d
14. −0.30N
15. 2.6× 106m
16. (a) 17N; (b) 2.4

17. (a) 7.6m/s2; (b) 4.2m/s2

18. (a) (3.02×1043 kg ·m/s2)/Mh; (b) decrease;

(c) 9.82m/s2; (d) 7.30× 10−15m/s2; (e) no
19. 5× 1024 kg
20. (a) G(M1+M2)m/a

2; (b) GM1m/b
2; (c) 0

21. (a) (3.0× 10−7N/kg)m;
(b) (3.3× 10−7N/kg)m;

(c) (6.7 × 10−7N/kg ·m)mr
22. (a) 0.414R; (b) 0.500R

23. (a) 9.83m/s
2
; (b) 9.84m/s

2
; (c) 9.79m/s

2

24. (a) −4.4× 10−11 J; (b) −2.9× 10−11 J;
(c) 2.9 × 10−11 J

25. (a) 0.74; (b) 3.8m/s2; (c) 5.0 km/s
26. 1/2
27. (a) 0.0451; (b) 28.5
28. (a) 2.0× 109 J; (b) 2.5Rs
29. 5.0× 109 J
30. (a) 1.33; (b) 2.00; (c) 0
31. (a) 0.50 pJ; (b) −0.5 pJ
32. (a) 2.2× 107 J; (b) 6.9× 107 J
33. (a) 1.7 km/s; (b) 2.5× 105m; (c) 1.4 km/s
34. (a) −1.7× 10−8 J; (b) 0.56× 10−8 J
35. (a) 82 km/s; (b) 1.8× 104 km/s
36. (a) 0.50 kg; (b) 1.5 kg
37. −4.82 × 10−13 J
38. (a) 5.4× 104 km/h; (b) 3.8× 104 km/h
39. 6.5× 1023 kg
40. 1.87 y
41. 5× 1010 stars
42. 0.35 lunar months
43. (a) 7.82 km/s; (b) 87.5min
44. (a) 5.01× 109m; (b) 7.20 solar radii
45. (a) 6.64× 103 km; (b) 0.0136
46. 3.58 × 104 km
47. (a) 1.9× 1013m; (b) 3.5RP
48. (a) 6× 1016 kg; (b) 4× 103 kg/m3
50. 5.8× 106m
51. 0.71 y
52. (a) 3.7mJ ; (b) 2.5rg

53.
0
GM/L

54. (a) 8.0× 108 J; (b) 36N
55. (a) 2.8 y; (b) 1.0× 10−4
56. (a) 1/2; (b) 1/2; (c) B; (c) 1.1× 108 J
57. (a) 3.19× 103 km; (b) lifting
58. (a) −6.33× 109 J; (b) −6.33 × 109 J;

(c) falling
59. (a) r3/2; (b) 1/r; (c)

√
r; (d) 1/

√
r

60. (a) 4.6× 105 J; (b) 2.6× 102
61. (a) 7.5 km/s; (b) 97min; (c) 4.1 × 102 km;

(d) 7.7 km/s; (e) 93min; (f) 3.2× 10−3N;
(g) no; (h) yes

62. 1.1 s
63. (a) 1.0× 103 kg; (b) 1.5 km/s
64. (a) (1× 102)Ms; (b) lower
65. 7.2× 10−9 N
66. (a) 1.4× 106m/s; (b) 3× 106m/s2
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67. −(0.044µNĵ
68. 9.2× 10−5 rad/s
69. (a) 2.15× 104 s; (b) 12.3 km/s;

(c) 12.0 km/s; (d) 2.17×1011 J; (e) −4.53×
1011 J; (f) −2.35× 1011 J; (g) 4.04× 107m;
(h) 1.22× 103 s; (i) elliptical

70. (a) 2× 10−5m/s2; (b) 2 cm/s
71. (a) 1.3× 1012m/s2; (b) 1.6× 106m/s
72. (a) Gm2/Ri; (b) Gm

2/2Ri; (c)
0
Gm/Ri;

(d) 2
0
2Gm/Ri; (e) Gm

2/R1;

(f)
0
2Gm/Ri; (g) the center-of-mass frame

is an inertial frame and in it the conserva-
tion of energy principle may be written as
in Chapter 8; the reference frame attached
to body A is noninertial and the principle
cannot be written as in Chapter 8; answer
(d) is correct

73. (0.37µN) ĵ

74. (a) −1.3× 10−4 J; (b) less; (c) positive;
(d) negative

75. 29 pN

76. (a) R/3; (b)
√
3R

77. 2.5× 104 km
78. (a) 1.9 × 107m; (b) 7.6 × 108 J; (c) 8.6 ×

1024 kg

79. (a) 2.2× 10−7 rad/s; (b) 89 km/s
80. (a) (3.4× 10−3)g; (b) (6.1 × 10−4)g;

(c) (1.4 × 10−11)g
81. 3.2× 10−7 N
82. (a) (2.8× 104)g; (b) deadly; (c) 714g;

(d) 1.5 km/s

83. (a) 38.3MJ; (b) 1.03 × 103 km
84. 2.4× 104m/s
85. (a) 0; (b) 1.8× 1032 J; (c) 1.8× 1032 J;

(d) 0.99 km/s

86. (a) 1.98× 1030 kg; (b) 2.00 × 1030 kg
87. (a) 1.9× 1011m; (b) 4.6 × 104m/s
88. (a) 5.3× 10−8 J; (b) (−6.4× 10−8N) î
89. 7.9 km/s

90. −1.87GJ
91. −Gm(ME/R+Mm/r)

92. 3.4× 105 km
93. 1.1%

94. (a) 120; (b) 4.23 × 104 km; (c) 2.2× 106m;
(d) smaller; (e) toward

95. GMEm/12RE
96. (a) GMmx(x2 +R2)−3/2;

(b)

�
2GM

w
1

R
− 1√

R2 + x2

W
98. (b) 1.9 h
100. 2R
103. 2πr3/2/

0
G(M +m/4)

104. (a) 1×10−8N; (b) 1×10−6N; (c) 5×10−7N;
(d) no

Chapter 14

1. 2.9× 104 N
2. 18N
3. 1.1× 105 Pa or 1.1 atm
4. 38 kPa
5. 0.074
6. (a) 1.9× 102 kPa; (b) 15.9/10.6
7. 26 kN
8. 17 cm
9. 1.90 × 104 Pa
10. 1.08 × 103 atm
11. 7.2× 105 N
12. −2.6× 104 Pa
13. 2.80m
14. 2.0
15. 0.635 J
16. 44 km
17. 4.69 × 105N
18. (a) 5.0× 106N; (b) 5.6 × 106N
19. (a) 1.88× 109 N; (b) 2.20 × 1010N ·m;

(c) 11.7m
20. −3.9× 10−3 atm
21. (a) 7.9 km; (b) 16 km
22. (a) fA/a; (b) 103N
23. 8.50 kg
24. (a) 35.6 kN; (b) yes, decreases by 0.330m3

25. (a) 2.04× 10−2m3; (b) 1.57 kN
26. (a) 37.5 kN; (b) 39.6 kN; (c) 2.23 kN;

(d) 2.18 kN
27. five
28. 4.11 kJ
29. (a) 6.7× 102 kg/m3; (b) 7.4× 102 kg/m3
30. 7.84 cm, down
31. (a) 1.2 kg; (b) 1.3× 103 kg/m3
32. (a) 1.5 g/cm3; (b) 2.7× 10−3m3
33. 57.3 cm
34. 1.8 g/cm3

35. 0.126m3

36. 1.40m
37. (a) 1.80m3; (b) 4.75m3
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38. (a) 1.84 kg; (b) 2.01 kg
39. (a) 637.8 cm3; (b) 5.102m3;

(c) 5.102 × 103 kg
40. 9.7mm
41. 8.1m/s
42. 4.0m
43. 66W
44. (a) 56L/min; (b) 1.0
45. (a) 2.5m/s; (b) 2.6× 105 Pa
46. 1.7MPa
47. (a) 3.9m/s; (b) 88 kPa
48. (a) 2.40m/s; (b) 245Pa
49. (a) 1.6× 10−3m3/s; (b) 0.90m
50. 3.60 cm
51. 1.4× 105 J
52. (a) 2; (b) 1/2; (c) 3.0 cm
53. (a) 74N; (b) 1.5× 102m3
54. (a) 6.4m3; (b) 5.4m/s; (c) 9.8 × 104 Pa
55. (a) 35 cm; (b) 30 cm; (c) 20 cm
56. (a) 0.25m2; (b) 6.1m3/s
57. (a) 0.0776m3/s; (b) 69.8 kg/s
58. −2.50 J
59. (b) 2.0× 10−2m3/s
60. (a) 4.1m/s; (b) 21m/s; (c) 8.0× 10−3m3/s
61. (b) 63.3m/s
62. 1.1× 102m/s
63. 7.8 cm/h
64. (a) 0.13; (b) 0.96
65. 4.00 cm
66. 44.2 g
67. 45.3 cm3

68. 9.4%
69. (a) 3.2m/s; (b) 9.2× 104 PA; (c) 10.3m
70. (a) 0.050; (b) 0.41; (c) no
71. (a) 1.8× 102 kN; (b) 81 kN; (c) 20 kN;

(d) 0; (e) 78 kPa; (f) no
72. 5.11 × 10−7 kg
73. (a) 3.1m/s; (b) 9.5m/s
74. 6× 109 capillaries
75. 4.4mm
76. 3.92m/s

2

77. 1.00 × 10−2m/s
78. 1.5 cm
79. (a) 0.38m; (b) C, D, B, A
80. 1.62 × 106 Pa
81. 1.07 × 103 g
82. 0.412 cm
83. 6.0× 102 kg/m3

84. (a) 1.21×107 Pa; (b) 1.22×107 Pa; (c) 3.82×
105N; (d) 5.26N; (e) 9.04m/s

2
; (f) down

85. 43 cm/s
86. (a) 2; (b) 3; (c) 4/3
87. 60MPa
88. −1.1× 103 Pa
89. (a) 42 h; (b) yes

90. 1.5 g/cm3

91. 1.5 g/cm
3

92. (a) 45m2; (b) car should be over the center
of the slab if the slab is to be level

93. (a) 6.06× 109 N; (b) 20 atm; (c) no
94. 0.031 kg
95. 0.50m
96. 2.79 g/cm

3

97. (a) 2.2; (b) 3.6

98. 0.12(1/ρ − 1/8)%, with ρ in g/cm3

Chapter 15

1. (a) 1.0mm; (b) 0.75m/s; (c) 5.7×102m/s2
2. (a) 10N; (b) 1.2× 102 N/m
3. (a) 6.28× 105 rad/s; (b) 1.59mm
4. 37.8m/s

2

5. (a) 0.500 s; (b) 2.00Hz; (c) 12.6 rad/s;
6. (a) 0.75 s; (b) 1.3Hz; (c) 8.4 rad/s
(d) 79.0N/m; (e) 4.40m/s; (f) 27.6N

7. (a) 0.50 s (b) 2.0Hz; (c) 18 cm
8. (a) 1.29× 105 N/m; (b) 2.68Hz
9. (a) 3.0m; (b) −49m/s; (c) −2.7×102m/s2;
(d) 20 rad; (e) 1.5Hz; (f) 0.67 s

10. +1.91 rad (or −4.37 rad)
11. 39.6Hz
12. −0.927 rad (or +5.36 rad)
13. (a) 498Hz; (b) greater
14. 2.08 h
15. 3.1 cm
16. 4.00m
17. (a) 5.58Hz; (b) 0.325 kg; (c) 0.400m
18. 1.03 rad (or −5.25 rad)
19. (a) 0.500m; (b) −0.251m; (c) 3.06m/s
20. (a) 25 cm; (b) 2.2Hz
21. (a) 0.183A; (b) same direction
22. 2π/3 rad
23. (a) 2.2Hz; (b) 56 cm/s; (c) 0.10 kg;

(d) 20.0 cm
24. 54Hz
25. 22 cm
26. 18.2Hz
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27. (a) 0.525m; (b) 0.686 s
28. (a) 200N/m; (b) 1.39 kg; (c) 1.91Hz
29. 37mJ
30. (a) yes; (b) 12 cm
31. (a) 0.75; (b) 0.25; (c) xm/

√
2

32. 8.3× 102 N/m
33. (a) 2.25Hz; (b) 125 J; (c) 250 J; (d) 86.6 cm
34. 0.333
35. (a) 3.1ms; (b) 4.0m/s; (c) 0.080 J; (d) 80N;

(e) 40N
36. 2.4 cm
37. (a) 1.1m/s; (b) 3.3 cm
38. 12 s
39. (a) 39.5 rad/s; (b) 34.2 rad/s;

(c) 124 rad/s
2

40. (a) 1.64 s; (b) equal
42. (a) 0.499m; (b) 0.940mJ
43. (a) 0.205 kg ·m2; (b) 47.7 cm; (c) 1.50 s
44. 0.366 s
45. 5.6 cm
46. 8.77 s
47. 1.83 s
48. (a) 0.84m; (b) 0.031 J
49. 0.0653 s
50. (a) 16 cm; (b) circle
51. (a) 0.53m; (b) 2.1 s
52. 0.18 s
53. (a) 0.845 rad; (b) 0.0602 rad
54. 1.3× 10−5 kg ·m2
55. (a) 2.26 s; (b) increases; (c) same
56. (a) 2.00 s; (b) 18.5N ·m/rad
57. 0.39
58. 6.0%
59. (a) 14.3 s; (b) 5.27
60. (a) 4.9× 102N/cm; (b) 1.1× 103 kg/s
61. d and e
62. (a) Fm/bωd; (b) Fm/b
63. 5.0 cm
64. +1.82 rad or −4.46 rad
65. (a) 1.2 J; (b) 50

66. (a) 11m/s; (b) 1.7× 103m/s2
67. 1.53m
68. 65.5%
69. (a) 1.72ms; (b) 11.2ms
70. 0.19g
71. (a) 16.6 cm; (b) 1.23%
72. (a) (r/R)

0
k/m; (b)

0
k/m; (c) 0 (no os-

cillation)
73. (a) 8.11× 10−5 kg ·m2; (b) 3.14 rad/s

74. (a) 0.015; (b) no
75. (a) 1.23 kN/m; (b) 76.0N
76. (a) 2.8× 103 rad/s; (b) 2.1m/s;

(c) 5.7 km/s
2

77. 7.2m/s

78. (a) 1.6 × 104m/s2; (b) 2.5m/s; (c) 7.9 ×
103m/s

2
; (d) 2.2m/s

79. (a) 1.1Hz; (b) 5.0 cm
80. (a) 2.1× 104N/m; (b) 1.5× 104N/m;

(c) 3.1 × 102Hz; (d) 2.6× 102 Hz
81. (a) 1.3× 102N/m; (b) 0.62 s; (c) 1.6Hz;

(d) 5.0 cm; (e) 0.51m/s
82. (a) 0.735 kg ·m2; (b) 0.0240N ·m;

(c) 0.181 rad/s
83. (a) 0.873 s; (b) 6.3 cm
84. 14.0◦

85. (a) 0.35Hz; (b) 0.39Hz; (c) 0 (no oscilla-
tion)

86. 3.5 s
87. (a) 4.0 s; (b) 1.57 rad/s; (c) 0.37 cm;

(d) (0.37 cm) cos[(1.57 rad/s)t];
(e) (−0.58 cm/s) sin[(1.57 rad/s)t];
(f) 0.58 cm/s; (g) 0.91 cm/s

3
; (h) 0;

(i) 0.58 cm/s
88. (a) 7.90N/m; (b) 1.19 cm; (c) 2.00Hz
89. (a) 147N/m; (b) 0.733 s
90. 1.6 kg
91. (a) 1.6Hz; (b) 1.0m/s; (c) 0; (d) 10m/s2;

(e) ±10 cm; (f) (−10N/m)x
92. (a) 10N, up; (b) 0.10m; (c) 0.90 s; (d) 0.50 J
93. (a) 0.20 s; (b) 0.20 kg; (c) −0.20m;

(d) −2.0× 102m/s2; (e) 4.0 J
94. (a) 0.30m; (b) 0.28 s; (c) 1.5× 102m/s2;

(d) 11 J
95. (a) 3.5m; (b) 0.75 s
96. (a) 62.5mJ; (b) 31.3mJ
97. (a) 3.2Hz; (b) 0.26m;

(c) x = (0.26m) cos[(20 rad/s)t− 1.57 rad]
98. (a) 0.21m; (b) 1.6Hz; (c) 0.10m
99. 0.079 kg ·m2
100. (a) 0.20m; (b) 25; (c) 4.0 J; (d) 2.1m/s
101. (a) 0.45 s; (b) 0.10m above and 0.20m be-

low; (c) 0.15m; (d) 2.3 J
102. 831.5mm
103. (a) 0.30m; (b) 30m/s

2
; (c) 0; (d) 4.4 s

104. (a) 0.44 s; (b) 0.18m
105. (a) 245N/m; (b) 0.284 s
106. 7× 102N/m
107. (a) 1.0× 102N/m; (b) 0.45 s
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108. (a) 0.102 kg/s; (b) 0.137 J
109. (a) 8.3 s; (b) no
110. (a) F/m; (b) 2F/mL; (c) 0
111. 50 cm
112. (a) ym = 0.008m, T = 0.18 s, ω = 35 rad/s;

(b) ym = 0.07m, T = 0.48 s, ω = 13 rad/s;
(c) ym = 0.03m, T = 0.31 s, ω = 20 rad/s

Chapter 16

1. (a) 0.68 s; (b) 1.47Hz; (c) 2.06m/s
2. (a) 3.49m−1; (b) 31.5m/s
3. 1.1ms
4. −0.64 rad or 5.64 rad
5. (a) 11.7 cm; (b) π rad
6. (a) 6.0 cm; (b) 1.0× 102 cm; (c) 2.0Hz;
(d) 2.0× 102 cm/s; (e) −x direction;
(f) 75 cm/s; (g) −2.0 cm

7. (a) 64Hz; (b) 1.3m; (c) 4.0 cm; (d) 5.0m−1;
(e) 4.0 × 102 s−1; (f) π/2 rad; (g) negative
sign

8. 4.24m/s
9. (a) 3.0mm; (b) 16m−1; (c) 2.4 × 102 s−1;
(d) negative sign

10. 1.3 cm
11. (a) negative sine functions; (b) 4.0 cm;

(c) 0.31 cm−1; (d) 0.63 s−1; (e) π rad;
(f) negative sign; (g) 2.0 cm/s;
(h) −2.5 cm/s

12. 3.2
13. 129m/s
14.
√
2

15. (a) 15m/s; (b) 0.036N
16. 135N
17. (0.12mm); (b) 141m−1; (c) 628 s−1;

(d) positive sign
18. (a) 30m/s; (b) 17 g/m
19. (a) 5.0 cm ; (b) 40 cm; (c) 12m/s;

(d) 0.033 s; (e) 9.4m/s;
(f) 16m−1; (g) 1.9 × 102 s−1; (h) 0.93 rad;
(i) positive sign

20. (a) 0.64Hz; (b) 63 cm;
(c) (5 cm); (d) 0.10 cm−1; (e) 4.0 s−1;
(f) negative sign; (g) 0.064N

21. 2.63m
22. (a) 28.6m/s; (b) 22.1m/s; (c) 188 g;

(d) 313 g
24. 198Hz
25. 3.2mm

26. 1.75m/s
27. 0.20m/s
28. 0.20m/s
29. 1.4ym
30. (a) 82.8◦; (b) 1.45 rad; (c) 0.23 wavelength
31. (a) 9.0mm; (b) 16m−1; (c) 1.1 × 103 s−1;

(d) 2.7 rad; (e) negative sign
32. (a) 10W; (b) 20W; (c) 40W; (d) 26W;

(e) 0
33. 5.0 cm
34. 84◦

35. (a) π rad; (b) 3.0mm; (c) 0; (d) 13mm;
(e) 9.4mm

36. 0
37. (a) 3.29mm; (b) 1.55 rad; (c) 1.55 rad
38. (a) 4; (b) 8; (c) none
39. 7.91Hz; (b) 15.8Hz; (c) 23.7Hz
40. (a) 66.1m/s; (b) 26.4Hz
41. (a) 82.0m/s; (b) 16.8m; (c) 4.88Hz
42. 10 cm
43. (a) 144m/s; (b) 60.0 cm; (c) 241Hz
44. (a) 2f3; (b) λ3
45. (a) 105Hz; (b) 158m/s
46. 260Hz
47. (a) 0.25 cm; (b) 1.2× 102 cm/s; (c) 3.0 cm;

(d) zero
48. (a) 4.0m; (b) 24m/s; (c) 1.4 kg; (d) 0.11 s
49. (a) 0.50 cm; (b) 3.1m−1; (c) 3.1 × 102 s−1;

(d) negative sign
50. (a) 0; (b) 0.20m; (c) 0.40m; (d); 50ms;

(e) 8.0m/s; (f) 0.020m; (g) 0; (h) 25ms;
(i) 50ms

51. (a) +4.0 cm; (b) 0; (c) 0; (d) −0.13m/s
52. 0.25m
53. (a) 2.00Hz; (b) 2.00m; (c) 4.00m/s;

(d) 50.0 cm; (e) 150 cm; (f) 250 cm;
(g) 0; (h) 100 cm; (i) 200 cm

54. (a) 4.5mm; (b) 16m−1; (c) 5.2 × 102 s−1;
(d) negative sign

55. (a) 323Hz; (b) eight
56. 0.845 g/m
57. 2.8 rad or −3.5 rad
58. 2.9 rad or −3.4 rad
59. (a) 5.0 cm/s; (b) +x
60. (a) 0.31m; (b) 1.64 rad; (c) 2.2mm
61. (a) 0.83y1; (b) 37

◦

62. (a) 3.0mm; (b) 31m−1; (c) 7.5 × 102 s−1;
(d) minus

63. 1.2 rad
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65. (a) 0.16m; (b) 2.4× 102 N; (c) y =
(0.16m) sin[(1.57m−1)x] sin[(31.4 s−1)t]

66. (a) 3.77m/s; (b) 12.3N; (c) 0; (d) 46.4W;
(e) 0; (f) 0; (g) ±0.50 cm

67. (a) 2πym/λ; (b) no
68. 300m/s
69. (a) 1.00 cm; (b) 3.46×103 s−1; (c) 10.5m−1;

(d) plus
70. (a) 2.0 cm; (b) 0.63 cm−1; (c) 2.5× 103 s−1;

(d) minus; (e) 50m/s; (f) 40m/s
71. (a) 6.7mm; (b) 45◦

72. (a) 1.33m/s; (b) 1.88m/s; (c) 16.7m/s
2
;

(d) 23.7m/s
3

73. (a) 75Hz; (b) 13ms
74. (a) 880Hz; (b) 1320Hz
75. (a) 240 cm; (b) 120 cm; (c) 80 cm
76. (a) −3.9 cm; (b) 0.15m; (c) 0.79m−1;

(d) 13 s−1; (e) plus; (f) −0.14m
77. (a) 144m/s; (b) 3.00m; (c) 1.50m;

(d) 48.0Hz; (e) 96.0Hz
78. (a) 2P1; (b) P1/4
79. (a) 2.0mm; (b) 95Hz; (c) +30m/s;

(d) 31 cm; (e) 1.2m/s
80. (a) 5.0 cm/s; (b) 3.2 cm; (c) 0.25Hz
81. (a) 0.52m; (b) 40m/s; (c) 0.40m
82. 1.3m; (b) (2.0mm) sin[(9.4m−1)x] cos[(3.8

×103 s−1)t]
83. 36N
84. (a) 0.50m; (b) 0; (c) 0.25m; (d) 0.50 s
85. (a) 8.0 cm; (b) 1.0 cm
86. (a) z = (3.0mm) sin[(60 cm−1)y−(31 s−1)t]

(b) 9.4 cm/s
87. (a)

0
k∆f(f+∆f)/m

88. (b) +x; (c) interchange their amplitudes;
(d) x = λ/4 = 6.26 cm; (e) x = 0 and x =
λ/2 = 12.5 cm; (f) the amplitude (4.00mm)
is the sum of the amplitudes of the original
waves; (g) the amplitude (1.00mm) is the
difference of the amplitudes of the original
waves

89. (a) 4.3× 1014 Hz to 7.5× 1014Hz; (b) 1.0m
to 2.0 × 102m; (c) 6.0 × 1016Hz to 3.0 ×
1019 Hz

91. (c) 2.0m/s; (d) −x
93. (b) kinetic energy of the transversely mov-

ing flat sections of the string
94. (a) 0.5TA, 0.75TA, 1.75TA; (b) TA, 2TA;

(c) 0.15TA, 1.25TA, 1.5TA;

(d) design b damps out the fundamental os-
cillations in both; design c does not affect
the fundamental oscillation in A but does
damp that in B

Chapter 17

1. 1.7× 102m
2. (a) 2.6 km; (b) 2.0× 102
3. (a) 79m, 41m; (b) 89m
4. 0.144Mpa
5. 40.7m
6. 44m
7. 1.9× 103 km
8. (a) 1.50Pa; (b) 158Hz; (c) 2.22m;
(d) 350m/s

9. (a) 76.2µm; (b) 0.333mm
10. 0.23ms
11. (a) 2.3× 102Hz; (b) higher
12. 960Hz
13. (a) 6.1 nm; (b) 9.2m−1; (c) 3.1 × 103 s−1;

(d) 5.9 nm; (e) 9.8m−1; (f) 3.1× 103 s−1
14. 4.12 rad
15. (a) 14; (b) 14
16. 17.5 cm
17. (a) 343Hz; (b) 3; (c) 5; (d) 686Hz; (e) 2;

(f) 3
18. (a) 0; (b) 0; (c) 4
19. (a) 143Hz; (b) 3; (c) 5; (d) 286Hz; (e) 2;

(f) 3
20. (a) 0; (b) fully constructive; (c) increase;

(d) 128m; (e) 63.0m; (f) 41.2m
21. 15.0mW
22. (a) 0.080W/m

2
; (b) 0.013W/m

2

23. 36.8 nm
24. 1.26
25. (a) 1.0× 103; (b) 32
26. (a) 8.84 nW/m

2
; (b) 39.5 dB

27. (a) 10µW/m
2
; (b) 0.10µW/m

2
; (c) 70 nm;

(d) 7.0 nm

28. (a) 0.26 nm; (b) 1.5 nW/m
2

29. (a) 5 dB; (b) 3.2

30. (a) 5.97× 10−5W/m2; (b) 4.48 nW
31. (a) 0.34 nW; (b) 0.68 nW; (c) 1.4 nW;

(d) 0.88 nW; (e) 0
32. (a) 86Hz; (b) yes, low frequency; (c) higher
33. (a) 2; (b) 1
34. 20 kHz
35. (a) 833Hz; (b) 0.418m
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36. (a) 57.2 cm; (b) 42.9 cm
37. (a) 405m/s; (b) 596N; (c) 44.0 cm;

(d) 37.3 cm
38. (a) 4; (b) 0.125m; (c) 0.375m
39. (a) 3; (b) 1129Hz; (c) 1506Hz
40. (a) 260Hz; (b) 4; (c) 840Hz; (d) 7
41. 12.4m
42. (a) 71.5Hz; (b) 64.8N
43. 45.3N
44. (a) 3; (b) 0.20m; (c) 0.60m; (d) 0.60m;

(e) 143Hz
45. 387Hz
46. 2.25ms
47. 0.020
48. (a) 10; (b) 4
49. (a) 526Hz; (b) 555Hz
50. zero
51. 4.61m/s
52. 0.195MHz
53. 155Hz
54. (a) 1.02 kHz; (b) 1.04 kHz
55. (a) 1.58 kHz; (b) 0.208m; (c) 2.16 kHz;

(d) 0.152m
56. 0.236
57. 41 kHz
58. (a) 2v/3; (b) 2v/3; (c) 2v/3; (d) 2v/3
59. (a) 485.8Hz; (b) 500.0Hz; (c) 486.2Hz;

(d) 500.0Hz
60. (a) 2.0 kHz; (b) 2.0 kHz
61. (a) 598Hz; (b) 608Hz; (c) 589Hz
62. 3.3× 102m/s
63. (a) 42◦; (b) 11 s
64. 33.0 km
65. 0.250
66. (a) 572Hz; (b) 1.14 kHz
67. (a) 0; (b) 0.572m; (c) 1.14m
68. (a) 221 nm; (b) 35 cm; (c) 24 nm; (d) 35 cm
69. 0
70. 0.33
71. (a) 2; (b) 6; (c) 10
72. (a) 2.10m; (b) 1.47m
73. 0.25
74. (a) 0.5; (b) 1.5
75. (a) L(vm − v)/vmv; (b) 364m
76. (a) 3.6× 102m/s2; (b) 150Hz
77. (a) 9.7× 102Hz; (b) 1.0 kHz; (c) 60Hz, no
78. 3.1m/s
79. (a) 5.5× 102m/s; (b) 1.1 × 103m/s; (c) 1
80. 39.7µW/m

2
; (b) 171 nm; (c) 0.893Pa

81. (2) 2.00; (b) 1.41; (c) 1.73; (d) 1.85
82. 7.9× 1010 PA
83. (a) 10W; (b) 0.032W/m

2
; (c) 99 dB

84. (a) 467Hz; (b) 494Hz
85. (a) 7.70Hz; (b) 7.70Hz
86. (a) 11ms; (b) 3.8m
87. 0.76µm
88. 2µW
89. 400Hz
90. (a) 5.0λ; (b) fully constructive; (c) 5.5λ;

(d) fully destructive
91. 3
92. (a) 0.30 cm; (b) 0.26 cm−1; (c) 1.6×102 s−1;

(d) 6.0m/s; (e) plus
93. (a) 59.7; (b) 2.81 × 10−4
94. (b) length
95. (a) 5.2 kHz; (b) 2
96. (a) 5.0× 103; (b) 71; (c) 71
97. 30◦

98. (a) 39.3Hz; (b) 118Hz
99. (a) 0.50m; (b) 0.34m; (c) 0.66m
100. (a) 14; (b) 12

101. (a) 88mW/mn
2
; (b) 0.75

102. (a) 3.9 × 102 to 9.2 × 102GJ; (b) 0.63 to
1.5W/m

2
; (c) 25 to 58 kW/m

2
; (d) surface

wave
103. 2.1m
104. (a) 880Hz; (b) 824Hz
105. 171m
106. (b) 0.8 to 1.6µs
107. (a) rightward; (b) 0.90m/s; (c) less
108. (a) node; (b) 22 s
109. 1 cm
110. 4.8× 102 Hz
111. (a) 482Hz; (b) 660Hz

Chapter 18

1. 0.05 kPa; (b) nitrogen
2. 1.366
3. 348K
4. (a) 320◦F; (b) −12.3◦F
5. (a) −96◦F; (b) 56.7◦C
6. 1375◦X
7. −91.9◦X
8. (a) 9.996 cm; (b) 68◦C
9. 2.731 cm
10. 1.1 cm
11. 29 cm3
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12. 49.87 cm3

13. 11 cm2

14. 23× 10−6/C◦
15. 0.26 cm3

16. (a) −0.69%; (b) aluminum
17. 360◦C
18. (a) 0.36%; (b) 0.18%; (c) 0.54%;

(d) 0.00%; (e) 1.8× 10−5/C◦
19. 0.13mm
20. 0.217K/s
21. 7.5 cm
22. 109 g
23. (a) 523 J/kg ·K; (b) 26.2 J/mol ·K;

(c) 0.600mol
24. 94.6L
25. 42.7 kJ
26. 0.25 kg
27. 160 s
28. (a) 52MJ; (b) 0◦C
29. 3.0min
30. (a) 2.03× 104 cal; (b) 1.11 × 103 cal;

(c) 873◦C
31. 33 g
32. (a) 68 kJ/kg; (b) 2.3 kJ/kg ·K
33. 33m2

34. 4.0× 102 J/kg ·K
35. 742 kJ
36. (a) 37W; (b) 2.0 kg; (c) 0.13 kg
37. (a) 5.3◦C (b) 0; (c) 0◦C; (d) 60 g
38. 82 cal
39. (a) 0◦C; (b) 2.5◦C
40. 13.5C◦

41. 8.71 g
42. (a) positive; (b) positive; (c) zero; (d) posi-

tive; (e) negative; (f) negative; (g) negative;
(h) −20 J

43. A: 1.2× 102 J; (b) 75 J; (c) 30 J
44. (a) −200 J; (b) −293 J; (c) −93 J
45. −30 J
46. (a) +8.0 J; (b)−9.3 J
47. 60 J
48. −5.0 J
49. (a) 6.0 cal; (b) −43 cal; (c) 40 cal; (d) 18 cal;

(e) 18 cal
50. (a) 0.13m; (b) 2.3 km
51. 1.66 kJ/s
52. (a) 8× 102W; (b) 2× 104 J
53. (a) 16 J/s; (b) 0.048 g/s
54. (a) 1.23 kW; (b) 2.28 kW; (c) 1.05 kWW

55. 0.50min
56. (a) 1.4W; (b) 3.3

57. (a) 1.7× 104W/m2; (b) 18W/m2
58. (a) 15.8C◦; (b) greater than; (c) 13.8C◦

59. −4.2◦C
60. 1.1m
61. 0.40 cm/h
62. 10%
63. 1.5
64. 0.27mm
65. (a) 6.61mm; (b) 3.006 606m; (c) 6.62mm;

(d) 2.999 985m; (e) 1.45 × 10−5m
66. (a) 2.5× 102K; (b) 1.5
67. (a) 90W; (b) 2.3 × 102W; (c) 3.3× 102W
68. 4.5× 102 J/kg ·K
69. (a) 10 000◦F; (b) 37.0◦C; (c) −57◦C;

(d) −297◦F
70. 0.432 cm3

71. 0.41 kJ/kg ·K
72. (a) −45 J; (b) +45 J
73. 1.87 × 104; (b) 10.4 h
74. (a) 84.3◦C; (b) 57.6◦C
75. 1.7× 102 km
76. 6.7× 1012 J
77. (a) 11p1V1; (b) 6p1V1
78. 766◦C
79. 4.83 × 10−2 cm3
80. 35.7m3

81. 23 J
82. 3.1× 102 J
83. (a) 80 J; (b) 80 J
84. 4.4× 10−3 cm
85. 1.17C◦

86. (a) 2.3× 102 J/s; (b) 15
87. −6.1 nW
88. 0.32 cm2

89. 10.5◦C
90. 33.3 kJ
91. 20MJ
92. −157◦C
93. 79.5◦C
94. 8.6 J
95. (a) 13× 10−6/F◦; (b) 4.2mm
96. (a) 1.2W/m ·K; (b) 0.70Btu/ft · F◦ · h;

(c) 5.3 × 10−3m2 ·K/W
97. 2.16 × 10−5m2
98. 45.5◦C
99. (a) 1.8W; (b) 0.024C◦

100. 66◦C
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101. 333 J
102. 2.5 kJ/kg ·K

Chapter 19

1. 0.933 kg
2. (a) 0.0127; (b) 7.64 × 1021 atoms
3. (a) 5.47×10−8mol; (b) 3.29×1016molecules
4. 25molecules/cm

3

5. (a) 0.0388mol; (b) 220◦C
6. 186 kPa
7. (a) 106mol; (b) 0.892m3

8. (a) 3.14× 103 J; (b) from
9. 0.2
10. 360K
11. 207 J
12. (a) 1.5mol; (b) 1.8× 103K; (c) 6.0× 102K;

(d) 5.0 kJ
13. 5.60 kJ
14. 1.0× 102 cm3
15. 2.0× 105 Pa
16. 442m/s
17. 1.8× 102m/s
18. 2.50 km/s
19. (a) 511m/s; (b) −200◦C; (c) 899◦C
20. 9.53 × 106m/s
21. 1.9 kPa
22. (a) 494m/s; (b) 27.9 g/mol; (c) N2
23. 3.3× 10−20 J
24. (a) 5.65× 10−21 J; (b) 7.72× 10−21 J;

(c) 3.40 kJ; (d) 4.65 kJ
25. (a) 6.75× 10−20 J; (b) 10.7
26. 3.7GHz
27. (a) 6× 109 km
28. 0.32 nm
29. (a) 3.27× 1010molecules/cm3; (b) 172m
30. (a) 1.7; (b) 5.0×10−5 cm; (c) 7.9×10−6 cm
31. (a) 6.5 km/s; (b) 7.1 km/s
32. (a) 3.2 cm/s; (b) 3.4 cm/s; (c) 4.0 cm/s
33. (a) 420m/s, 458m/s
34. (a) 2.7× 102K; (b) 4.9× 102m/s
35. (a) 1.0× 104K; (b) 1.6× 105K;

(c) 4.4 × 102K; (d) 7.0× 103K; (e) no;
(f) yes

36. 1.50
37. (a) 7.0 km/s; (b) 2.0× 10−8 cm;

(c) 3.5 × 1010 collisions/s
38. 4.7
39. (a) 0.67; (b) 1.2; (c) 1.3; (d) 0.33

40. 3.4 kJ
41. (a) 0; (b) +374 J; (c) +374 J;

(d) +3.11× 10−22 J
42. (a) +249 J; (b) +623 J; (c) +374 J
43. 15.8 J/mol ·K
44. (a) 15.9 J; (b) 34.4 J/mol ·K;

(c) 26.1 J/mol ·K
45. (a) 6.6× 10−26 kg; (b) 40 g/mol
46. (a) −5.0 kJ; (b) 2.0 kJ; (c) 5.0 kJ
47. (a) 7.72× 104 J; (b) 5.46 × 104 J;

(c) 5.17 J/mol ·K; (d) 4.32 × 104 J;
(e) 8.86 × 104 J; (f) 8.38 J/mol ·K

48. 50 J
49. 8.0 kJ
50. (a) 0.375mol; (b) 1.09 kJ; (c) 0.714
51. (a) 6.98 kJ; (b) 4.99 kJ; (c) 1.99 kJ;

(d) 2.99 kJ
52. 1.5× 103 N ·m2.2
53. (a) 14 atm; (b) 6.2 × 102K
54. (a) 2.46 atm, 336K; (b) 0.406L
55. −15 J
56. (a) diatomic; (b) 446K; (c) 8.10mol
57. −20 J
58. (a) 0.33; (b) polyatomic (ideal);

(c) 1.44
59. (a) 3.74 kJ; (b) 3.74 kJ; (c) 0; (d) 0;

(e) −1.81 kJ; (f) 1.81 kJ; (g) −3.22 kJ;
(h) −1.93 kJ; (i) −1.29 kJ; (j) 520 J; (k) 0;
(l) 520 J; (m) 0.0246m3; (n) 2.00 atm;
(o) 0.0373m3; (p) 1.00 atm

60. (b) 125 J; (c) to
61. (a) 22.4L
62. 38.8m
63. 349K
64. (a) 1.44×103m/s; (b) 5.78×10−4; (c) 71%;

(d) 2.03 × 103m/s; (e) 4.09 × 10−4; (f) in-
crease; (g) decrease

65. (a) 900 cal; (b) 0; (c) 900 cal; (d) 450 cal;
(e) 1200 cal; (f) 300 cal; (g) 900 cal;
(h) 450 cal; (i) 0; (j) −900 cal; (k) 900 cal;
(l) 450 cal

66. (a) diatomic with rotating molecules;
(b) 1.00; (c) 1.90

68. 1.40
69. (a) 1.37; (b) diatomic
70. 9.2× 10−6
71. (a) −374 J; (b) 0; (c) +374 J; (d) +3.11 ×

10−22 J
72. −1.33 × 104 J
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73. (a) −60 J; (b) 90K
74. 1.52 nm
75. 7.03 × 109 s−1
76. (a) 2.00 atm; (b) 333 J; (c) 0.961 atm;

(d) 236 J
77. (a) 122K; (b) 365K; (c) 0
78. (a) monatomic; (b) 2.7 × 104K; (c) 4.5 ×

104mol; (d) 3.4 kJ; (e) 3.4×102 kJ; (f) 0.010
79. (a) 9.0 atm; (b) 300K; (c) 4.4 kJ;

(d) 3.2 atm; (e) 120K; (f) 2.9 kJ;
(g) 4.6 atm; (h) 170K; (i) 3.4 kJ

80. 5.0m3

81. 653 J
82. (a) 38L; (b) 71 g
83. 3.11 kJ/kg ·K
84. (a) 22.5L; (b) 2.25; (c) 0.840µm;

(d) 0.840µm
85. −3.0 J
86. 307◦C
87. (a) 1.5; (b) 4.5; (c) 6; (d) 2
88. 4.67Pa
89. (a) 3/v30 ; (b) 0.750v0; (c) 0.775v0
90. (a) 3.49 kJ; (b) 2.49 kJ; (c) 997 J; (d) 1.50 kJ
91. (a) −2.37 kJ; (b) 2.37 kJ
92. (a) 2.5× 1025molecules/m3; (b) 1.2 kg
93. (a) −45 J; (b) 1.8× 102K
94. −6.9 kJ

Chapter 20

1. (a) 9.22 kJ; (b) 23.1 J/K; (c) 0
2. 1.86 × 104 J
3. 14.4 J/K
4. (a) 14.6 J/K; (b) 30.2 J/K
5. (a) 5.79× 104 J; (b) 173 J/K
6. 2.75mol
7. (a) 57.0◦ C; (b) −22.1 J/K; (c) +24.9 J/K;
(d) +2.8 J/K

8. 2.75mol
9. (a) −710mJ/K; (b) +710mJ/K;
(c) +723mJ/K; (d) −723mJ/K;
(e) +13mJ/K; (f) 0

10. 4.5× 102 J/kg ·K
11. (a) 0.333; (b) 0.215; (c) 0.644W ; (d) 1.10;

(e) 1.10; (f) 0; (g) 1.10; (h) 0; (i) −0.889;
(j) −0.889; (k) −1.10; (l) −0.889; (m) 0;
(n) 0.889; (o) 0

12. 0.0368 J/K
13. (a) 320K; (b) 0; (c) +1.72 J/K

14. (a) 4.5 kJ; (b) −5.0 kJ; (c) 9.5 kJ
15. +0.76 J/K
16. +0.64 J/K
17. (a) −943 J/K; (b) +943 J/K; (c) yes
18. (a) 3.00; (b) 6.00; (c) 0; (d)9.64 J/K; (e) 0
19. (a) 0.693; (b) 4.50; (c) 0.693; (d) 0;

(e) 4.50; (f) 23.0 J/K; (g) −0.693; (h) 7.50;
(i) −0.693; (j) 3.00; (k) 4.50; (l) 23.0 J/K

20. (a) 1.84 kPa; (b) 441K; (c) 3.16 kJ;
(d) 1.94 J/K

21. (a) 23.6%; (b) 1.49 × 104 J
22. (a) 31%; (b) 16 kJ
23. 97K
24. 99.999 95%
25. (a) 266K; (b) 341K
26. (a) 4.67 kJ/s; (b) 4.17 kJ/s
27. (a) 1.47 kJ; (b) 554 J; (c) 918 J; (d) 62.4%
28. 1.7 kJ
29. (a) 2.27 kJ; (b) 14.8 kJ; (c) 15.4%;

(d) 75.0%; (e) greater
31. (a) 33 kJ; (b) 25 kJ; (c) 26 kJ; (d) 18 kJ
32. (a) monatomic; (b) 75%
33. (a) 3.00: (b) 1.98; (c) 0.660; (d) 0.495;

(e) 0.165; (f) 34.0%
34. (a) 49 kJ; (b) 7.4 kJ
35. 20 J
36. 13 J
37. 440W
38. (a) 0.071 J; (b) 0.50 J; (c) 2.0 J; (d) 5.0 J
39. 0.25 hp
40. (a) 167 J; (b) 343 J
41. 2.03
42. 1.08MJ
44. (a) 1.26 × 1014; (b) 1.13 × 1015; (c) 11.1%;

(d) 1.01 × 1029; (e) 1.27 × 1030; (f) 8.0%;
(g) 9.25× 1058; (h) 1.61 × 1060; (i) 5.7%;
(j) decrease

45. (a) W = N !/(n1!n2!n3!);
(b) [(N/2)! (N/2)!]/[(N/3)! (N/3)! (N/3)!];
(c) 4.2 × 1016

46. −1.18 J/K
47. (a) 1; (b) 6; (c) 0; (d) 2.47 × 10−23 J/K
48. 13.1%
49. (a) 87m/s; (b) 1.2× 102m/s; (c) 22 J/K
50. (a) 4.45 J/K; (b) no
51. (a) 78%; (b) 82 kg/s
52. (a) 93.8 J; (b) 231 J
53. (a) 66.5◦C; (b) 14.6 J/K; (c) 11.0 J/K;

(d) −21.2 J/K; (e) 4.39 J/K
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54. (a) 40.9◦C; (b) −27.1 J/K; (c) 30.5 J/K;
(d) 3.4 J/K

55. (a) 6.34 J/K; (b) 6.34 J/K; (c) 6.34 J/K;
(d) 6.34 J/K

56. 4.46 J/K
57. 1.18 × 103 J/K
58. (a) 0; (b) 0; (c) −23.0 J/K; (d) 23.0 J/K
59. 75
60. (a) 7.2 kJ; (b) 9.6× 102 J; (c) 13%
61. (a) 1; (b) 1; (c) 3; (d) 10;

(e) 1.5 × 10−23 J/K; (f) 3.2× 10−23 J/K
62. 25%
63. +3.59 J/K
64. +5.98 J/K
65. (a) 1.95 J/K; (b) 0.650 J/K; (c) 0.217 J/K;

(d) 0.072 J/K; (e) decrease
66. (a) 25.5 kJ; (b) 4.73 kJ; (c) 18.5%
67. −40K
68. (a) −44.2◦C; (b) −1.69 J/K; (c) 2.38 J/K;

(d) 0.69 J/K
69. (a) 1.26× 1014; (b) 4.71 × 1013; (c) 0.37;

(d) 1.01× 1029; (e) 1.37 × 1028; (f) 0.14;
(g) 9.05 × 1058; (h) 1.64 × 1057; (i) 0.018;
(j) decrease

70. 0.141 J/K · s
71. (a) 3.73; (b) 710 J
72. (a) 700 J; (b) 0; (c) 50 J; (d) 700 J;

(e) 0.226m3; (f) 0.284m3; (g) 0;
(h) −1.25 kJ; (i) 0; (j) 1.25 kJ

73. (a) 42.6 kJ; (b) 7.61 kJ

Chapter 21

1. (a) 4.9× 10−7 kg; (b) 7.1× 10−11 C
2. 2.81N
3. 1.39m
4. 0.375
5. 0.500
6. (a) −2.83; (b) no
7. (a) 0.17N; (b) −0.046N
8. (a) 9.0; (b) −25
9. (a) −1.00µC; (b) +3.00µC
10. −4.00
11. (a) 1.60N; (b) 2.77N
12. (a) positive; (b) +9.0
13. (a) 14 cm; (b) 0
14. 1.333
15. (a) 35N; (b) −10◦; (c) −8.4 cm;

(d) +2.7 cm

16. (a) −83µC; (b) 55µC
17. (a) −0.444; (b) 3.00 cm; (c) 0
18. (a) 1.92 cm; (b) less than
19. 3.8× 10−8 C
20. (a) 0; (b) 12 cm; (c) 0; (d) 4.9× 10−26 N
21. (a) 3.2× 10−19 C; (b) 2
22. 2.89 × 10−9N
23. 6.3× 1011
24. (a) 8.99× 10−19 N; (b) 625
25. 122mA
26. 1.3× 107 C
27. 13e
28. (a) 0.654 rad; (b) 0.889 rad; (c) 0.988 rad
29. (a) 0; (b) 1.9× 10−9 N
30. (a) positron; (b) electron
31. (a) 9B; (b) 13N; (c) 12C
32. (a) −4; (b) +16
33. 0
34. −11.1µC
35. (a) (3.52 × 10−25N) î; (b) 0
36. +16e
37. 1.31 × 10−22N
38. (a) −6.05 cm; (b) 6.05 cm
39. (a) (0.829N î; (b) (−0.621N) ĵ
40. (a) 2.00 cm; (b) 9.21× 10−24 N
41. (a) 6.16× 10−24 N; (b) 208◦
42. (a) 2.00× 1010 electrons;

(b) 1.33× 1010 electrons
43. 2.2× 10−6 kg
44. 9.0 kN
45. 0.707
46. −45µC
47. 0.19MC
48. (a) (L/2)(1 + kqQ/Wh2); (b)

0
3kqQ/W

49. (a) (89.9N) î; (b) (−2.50N) î; (c) 68.3 cm;
(d) 0

50. (a) 5.1× 102N; (b) 7.7 × 1028m/s2
51. 3.8N
52. (a) 3.60µN; (b) 2.70µN; (c) 3.60µN
53. 1.2× 10−5 C
54. 0.50C
55. (a) 8.99× 109 N; (b) 8.99 kN
56. 2.25 × 1020
57. 4.68 × 10−19N
58. 0.375
59. 1.7× 108 N
60. −5.1m
61. 11.9 cm
62. 1018 N
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63. (a) 1.25 × 1013 electrons; (b) from you to
faucet; (c) positive; (d) from faucet to the
cat; (e) stroking the cat transfers electrons
from you to the fur, which then induces
charge in the cat’s body, with surfaces away
from the stroked region becoming charged
negatively; if you bring your positive hand
near the negative nose, electrons can spark
across the gap

64. (a) 0.5; (b) 0.15; (c) 0.85
65. (a) 5.7 × 1013 C; (b) cancels out; (c) 6.0 ×

105 kg
66. (b) 2.4× 10−8 C
67. (b) 3.1 cm
68. −2.25
69. (a) Let J = qQ/4π60d

2.
For x < 0, F = −J [α−2 + (1− α)−2;
for 0 < x < d, F = J [α−2 − (1− α)−2];
for d < x, F = J [α−2 + (α− 1)−2]

70. −1.32 × 1013 C
71. (a) 1.72L; (b) 0

Chapter 22

2. (a) 6.4× 10−18N; (b) 20N/C
4. 0.111 nC
5. 56 pC
6. (−6.39 × 105N/C) î
7. (a) 3.07× 1021 N/C; (b) outward
8. (a) 2.72L
9. −30 cm
10. 0
11. (1.02 × 105 N/C) ĵ
12. (a) 160N/C; (b) 45◦

13. (a) 1.38× 10−10 N/C; (b) 180◦
14. (a) 34 cm; (b) 2.2× 10−8N/C
15. (a) 3.93× 10−6 N/C; (b) −76.4◦
16. (a) 67.8◦; (b) −67.8◦
17. 6.88 × 10−28 C ·m
18. 0.98
19. (a) qd/4π60r

3; (b) −90◦
20. qd3/4π60z

5

22. 0.506
23. (a) −1.72× 10−15 C/m;

(b) −3.82× 10−14 C/m2;
(c) −9.56 × 10−15 C/m2;
(d) −1.443 × 10−12 C/m3

24. (a) 23.8N/C; (b) −90◦
25. (a) 20.6N/C; (b) −90◦

26. 1.70 cm
27. (a) −5.19×10−14 C/m; (b) 1.57×10−3 N/C;

(c) −180◦; (d) 1.52 × 10−8N/C; (e) 1.52 ×
10−8N/C

28. 1.57
29. (a) 12.4N/C; (b) 90◦

30. 6.3× 103 N/C
31. 0.346
32. 6.9 cm
33. 28%
34. (a) 2.03× 10−7 N/C; (b) up
35. 3.51 × 1015m/s2
36. (a) 1.02× 10−2 N/C; (b) west
37. 6.6× 10−15 N
38. (a) 4.8× 10−13N; (b) 4.8× 10−13N
39. (a) 1.5×103 N/C; (b) 2.4×10−16 N; (c) up;

(d) 1.6× 10−26N; (e) 1.5 × 1010
40. (a) 7.12 cm; (b) 28.5 ns; (c) 0.112

41. (a) 1.92× 1012m/s2; (b) 1.96 × 105m/s
42. −5e
43. (a) 2.7× 106m/s; (b) 1.00 kN/C
44. (a) (−2.1× 1013m/s2) ĵ;

(b) (1.5× 105m/s) î− (2.8× 106m/s) ĵ
45. 27µm
46. (1.53 × 106m/s) î− (4.34 × 105m/s) ĵ
47. (a) 0.245N; (b) −11.3◦; (c) 108m;

(d) −21.6m
48. (a) 1.16 × 1016m/s2; (b) 3.94 × 1016m/s2;

(c) 3.97 × 1016m/s2; (d) because the net
force due to the charged particles near the
edge of the disk decreases

49. (a) 27 km/s; (b) 50µm
50. (a) 0; (b) 8.5× 10−22 N ·m; (c) 0
51. (a) 9.30× 10−15 C ·m; (b) 2.05 × 10−11 J
52. 2.5× 10−28 C ·m
53. 1.22 × 10−23 J
54. (a) −90◦; (b) +2.0µC; (c) −1.6µC
56. 2.4× 10−16 C
57. 1.64 × 10−19 C (approx. 2% high)
58. (a) 0; (b) 0; (c) 0.707R; (d) 3.46× 107 N/C
59. (a) 14; (b) −4.6
60. 217◦

61. (1.08 × 10−5N/C î
62. −4.19Q
63. (a) 47N/C; (b) 27N/C
64. (a) 1.62× 106 N/C; (b) −45◦
65. (a) 6.0mm; (b) 180◦

66. (a) 3.60 × 10−6N/C; (b) 2.55 × 10−6N/C;
(c) 3.60 × 10−4N/C; (d) 7.09 × 10−7N/C;
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(e) As the proton nears the disk, the forces
on it from electrons es more nearly cancel

67. 5.39N/C
68. 5.0× 10−28 C ·m
69. (a) 0; (b) 9.96 pN
70. Q/3π60d

2

71. (a) −1.0 cm; (b) 0; (c) 10 pC
72. 3.6× 102 N/C
73. +1.00µC
74. (a) 0.10µC; (b) 1.3× 1017; (c) 5.0× 10−6
75. (a) 8.87× 10−15 N; (b) 120
76. −3.28 × 10−21 J
77. 61N/C
78. 38N/C

79. (a) 2.46× 1017m/s2; (b) 0.122 ns;
(c) 1.83mm

80. (a) (2q/4π60d
2)α/(1 + α2)3/2; (c) 0.71;

(d) 0.20 and 2.0
81. (a) −1.49× 10−26 J; (b) (−1.98× 10−26N ·

m) k̂; (c) 3.47 × 10−26 J
82. 9:30
83. (a) (−1.80N/C) î; (b) (43.2N/C) î;

(c) (−6.29N/C) î
85. (a) −0.029C; (b) repulsive forces would ex-

plode the sphere
86. (a) yes; (b) upper plate, 2.72 cm
87. (1/2π)

0
pE/I

88. (a) top row: 4, 8, 12; middle row: 7, 11, 16;
(b) 1.63× 10−19 C

89. (a) 1 kN/C; (b) nonuniform; (c) because the
field induces an electric dipole in a grain,
the grain then moves toward a region of
stronger electric field by moving toward the
bee and then toward the stigma; if the grain
were positively charged, it would not move
to the bee; if it were negatively charged,
it would move to bee but not then to the
stigma; (d) no, because if it did, the grain
would either fall off or be repelled off

91. (a) 2π
0
L/|g − qE/m|;

(b) 2π
0
L/(g + qE/m)

Chapter 23

1. −0.015N ·m2/C
2. (a) 0; (b) −3.92N ·m2/C; (c) 0; (d) 0
3. (a) −72N ·m2/C; (b) +24N ·m2/C;
(c) −16N ·m2/C; (d) 0; (e) −48N ·m2/C

4. −1.1× 10−4N ·m2/C

5. 2.0× 105 N ·m2/C
6. −4.3 nC
7. 3.01 nN ·m2/C
8. (a) −1.3× 10−8 C/m3;
(b) 8.2× 1010 charges/m3

9. 3.54µC
10. (−2.8× 104 N/C) î
11. (a) 0; (b) 0.0417
12. (a) +1.8µC; (b) −5.3µC; (c) +8.9µC
13. (a) 8.23N ·m2/C; (b) 72.9 pC;

(c) 8.23N ·m2/C; (d) 72.8 pC
14. 2.00N/C ·m
15. (a) 37µC; (b) 4.1× 106 N ·m2/C
16. 2.0µC/m

2

17. (a) 4.5× 10−7 C/m2; (b) 5.1 × 104N/C
18. (a) −8.0µC; (b) +12µC; (c) −5.3µC
19. (a) −3.0× 10−6 C; (b) +1.3 × 10−5 C
20. (a) 0; (b) 5.99 × 103N/C
21. 5.0µC/m

22. 2.1× 1017m/s2
23. (a) 0.32µC; (b) 0.14µC
24. 8.0 cm
25. (a) 2.3 × 106N/C; (b) outward; (c) 4.5 ×

105N/C; (d) inward
26. −5.8 nC/m
27. (a) 0.214N/C; (b) inward; (c) 0.855N/C;

(d) outward; (e) −3.40 × 10−12 C;
(f) −3.40× 10−12 C

28. (a) 0.24 kN/C; (b) −6.4 nC/m2;
(c) +3.2 nC/m

2

29. 3.8× 10−8 C/m2
30. (a) 1.9N/C; (b) 3.6N/C
31. (a) 5.3× 107N/C; (b) 60N/C
32. (a) (2.00×10−11 N/C) ĵ; (b) 0; (c) (−2.00×

10−11 N/C) ĵ
33. −1.5
34. (0.208N/C)k̂
35. (a) 0; (b) 0; (c) (−7.91 × 10−11 N/C) î
36. 2.9µC/m

2

37. 0.44mm
38. 4.9× 10−10 C
39. 5.0 nC/m2

40. (a) +69.1 cm; (b) −69.1 cm; (c) +69.1 cm
41. (a) 0; (b) 1.31µN/C; (c) 3.08µN/C;

(d) 3.08µN/C
42. 2.2µC
43. −7.5 nC
44. (a) −750N ·m2/C; (b) −6.64 nC
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45. (a) 2.50× 104 N/C; (b) 1.35 × 104N/C
46. −3.3 cm
47. 1.79 × 10−11 C/m2
48. +6.6µC
49. (a) 0; (b) 56.2mN/C; (c) 112mN/C;

(d) 49.9mN/C; (e) 0; (f) 0; (g) −5.00 fC;
(h) 0

50. (a) 0; (b) 0; (c) 0; (d) 7.32N/C;
(e) 12.1N/C; (f) 1.35N/c

51. (a) 7.78 fC; (b) 0; (c) 5.58mN/C;
(d) 22.3mN/C

52. 1.125
53. 6K60r

3

54. (a) E = |ρ|r/260; (b) increases; (c) inward;
(d) 3× 106 N/C, at inside pipe surface;
(e) yes, along inside pipe surface

55. (a) 3.62N ·m2/C; (b) 51.1N ·m2/C
56. (a) 0.125; (b) 0.500

57. (a) 4.9× 10−22 C/m2; (b) down
58. +0.213 nC
59. −1.70 nC
60. (a) 0.25R; (b) 2.0R
61. (a) +2.0 nC; (b) −1.2 nC; (c) +1.2 nC;

(d) +0.80 nC
62. (a) 4.2 kN/C; (b) 2.4 kN/C
63. (a) +4.0µC; (b) −4.0µC
64. (a) 0.41R; (b) 0.50R
65. (a) 5.4N/C; (b) 6.8N/C
66. 7.1N ·m2/C
67. (a) 0; (b) 2.88 × 104N/C; (c) 200N/C
68. (a) 0.50N ·m2/C; (b) 2.2 pC
69. (a) 15.0N/C; (b) 25.3N/C
70. (5.65 × 104 N/C) ĵ
71. 26.6 nC
73. (a) −2.53 × 10−2 N · m2/C; (b) +2.53 ×

10−2N ·m2/C
74. (a) 4.0× 106N/C; (b) 0
75. (a) 0.282 kN/C; (b) 0.621 kN/C
76. 2.00
77. (a) 0; (b) qa/4π60r

2; (c) (qa + qb)/4π60r
2

78. −4.2× 10−10 C
79. (a) 0.180N/C; (b) outward; (c) 0;

(d) 4.50mN/C
80. 0.875
81. −1.04 nC
84. 3.6 nC
85. (b) ρR2/260r
86. (a) 693 kg/s; (b) 693 kg/s; (c) 347 kg/s;

(d) 347 kg/s; (e) 575 kg/s

87. (a) −e/πa30; (b) 5e[exp(−2)]/4π60a20, radi-
ally outward

Chapter 24

1. (a) 3.0× 105 C; (b) 3.6× 106 J
2. 1.2GeV
3. 8.8mm
4. (a) 2.46V; (b) 2.46V; (c) 0
5. (a) 2.4× 104V/m; (b) 2.9 kV
6. (a) 30V; 40V; (c) 5.5m
7. (a) −1.87× 10−21 J; (b) −11.7mJ
8. +32.0V
9. (a) −0.268mV; (b) −0.681mV
10. −1.1 nC
11. (a) 3.3 nC; (b) 12 nC/m

2

12. (a) −4.5 kV; (b) −4.5 kV
13. (a) 6.0 cm; (b) −12.0 cm
14. none
15. 0.562mV
16. 2.21V
17. (a) 0.54mm; (b) 790V
18. −32e
19. 16.3µV
20. 5.6× 10−37 C ·m
21. (a) 24.3mV; (b) 0
22. −6.20V
23. (a) −2.30V; (b) −1.78V
24. 32.4mV
25. 47.1µV
26. 0
27. 13 kV
28. 7.39mV
29. 19.6mV
30. 6.7× 102 V/m
31. (−12V/m) î + (12V/m) ĵ
32. (a) 39V/m; (b) toward
33. 150N/C
34. (a) (2.90mV) ln[1 + (0.135m)/d];

(b) (0.392 nM ·m2/C)/[x(x+ 0.135m)];
(c) 180◦; (d) 32.1mN/C; (e) 0

35. (−4.0× 10−16 N) î + (1.6 × 10−16N) ĵ
36. (a) 31.6mV; (b) 0.298N/C
37. −0.192 pJ
38. 2.1× 10−25 J
39. (a) 1.15× 10−19 J; (b) decrease
40. 0
41. (a) +6.0×104 V; (b) −7.8×105 V; (c) 2.5 J;

(d) increase; (e) same; (f) same
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42. 1.8× 10−10 J
43. 2.5 km/s
44. 6.63 × 106m/s
45. 0.32 km/s
46. (a) proton; (b) 65.3 km/s
47. 1.6× 10−9m
48. −5.7µC
49. (a) 3.0 J; (b) −8.5m
50. 4.5× 10−12 C ·m
51. (a) 0; (b) 1.0× 107m/s
52. (a) −12.0µC; (b) +0.216 pJ
53. 2.5× 10−8 C
54. 400V
55. (a) −1.8× 102 V; (b) 2.9 kV, −8.9 kV
56. (a) equal; (b) 0.333; (c) 0.667; (d) 2.00
57. (a) 12 kN/C; (b) 1.8 kV; (c) 5.8 cm
58. (a) 1.69 kV/m; (b) 36.7 kV/m; (c) 0;

(d) 6.74 kV; (e) 27.0 kV; (f) 34.7 kV;
(g) 45.0 kV; (h) 45.0 kV; (i) 45.0 kV

59. 3.71 × 104V
60. (a) V = ρ(R2 − r2)/460; (b) 78 kV
61. 7.0× 105m/s
62. (a) 1.7 cm; (b) 20 km/s; (c) 4.8 × 10−17 N;

(d) positive; (e) 3.2× 10−17N; (f) negative
63. (a) 36V; (b) 18V
64. (a) 1.8 cm; (b) 8.4× 105m/s;

(c) 2.1 × 10−17 N; (d) positive; (e) 1.6 ×
10−17 N; (f) negative

65. 10.3mV
66. −1.7
67. (a) 3.6 kV; (b) 3.6 kV
68. 22 km/s
69. (a) 0.90 J; (b) 4.5 J
70. (a) +7.19 × 10−10 V; (b) +2.30 × 10−28 J;

(c) +2.43 × 10−29 J
71. 2.18 × 104V
72. (2.9 × 10−2m−2)A
73. 2.1 days
74. 0.956V
75. (a) 64N/C; (b) 2.9V; (c) 0
76. (a) 12; (b) 2
77. 2.30 × 10−28 J
78. 240 kV
79. 2.30 × 10−22 J
80. (a) −24 J; (b) 0
81. (a) none; (b) 0.41m
82. (a) 3.6× 105V; (b) no
83. 1
84. (a) −6.0V/m; (b) 0; (c) 3.0V/m;

(d) 3.0V/m; (e) 15V/m; (f) 0;
(g) −3.0V/m

85. (a) 1.48 nC; (b) 795V
86. 0.514mV
87. −187V
88. 2.5 kV
89. (a) 2.5MV; (b) 5.1 J; (c) 6.9 J
90. −1.93 J
91. −1.92MV
92. 1.48 × 107m/s
93. (a) 0.225 J; (b) A: 45.0m/s

2
, B: 22.5m/s

2
;

(c) A: 7.75m/s, B: 3.87m/s
94. (qQ/8π60)(1/r1 − 1/r2)
95. (a) 2.72×10−14 J; (b) 3.02×10−31 kg, about

1/3 of accepted value
97. 6.4× 108 V
98. 0.334
100. (a) q(3R2 − r2)/8π60R3; (b) q/8π60R
101. (a) Q/4π60r;

(b) (ρ/360)(1.5r
2
2 − 0.50r2 − r31r−1),

ρ = Q/[(4π/3)(r32 − r31)];
(c) (ρ/260)(r

2
2 − r21), with ρ as in (b);

(d) yes
102. 8.8× 10−14m
103. (a) −4.8 nm; (b) 8.1 nm; (c) no
105. 2.8× 105
106. 843V
107. p/2π60r

3

108. 2.90 kV
109. (a) spherical, centered on q, radius 4.5m;

(b) no
110. (a) 0.484MeV; (b) 0
111. (a) 25 fm; (b) 2.0
112. (a) −0.12V; (b) 1.8×10−8N/C; (c) inward
113. −1.2µJ
117. (a) 38 s; (b) 280 days
118. (c) 4.2V

Chapter 25

1. 3.0mC
2. (a) 3.5 pF; (b) 3.5 pF; (c) 57V
3. (a) 144 pF; (b) 17.3 nC
4. 8.85 × 10−12m
5. 0.280 pF
6. (a) 84.5 pF; (b) 191 cm2

7. 9.09 × 103
8. 7.33µF
9. 3.16µF
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10. 315mC
11. (a) 790µC; (b) 78.9V
12. (a) 100µC; (b) 20.0µC
13. 43 pF
14. (a) 60µC; (b) 60µC
15. (a) 3.00µF; (b) 60µC; (c) 10V;

(d) 30.0µC; (e) 10V; (f) 20.0µC;
(g) 5.00V; (h) 20.0µC

16. 12µC
17. (a) 50V; (b) 5.0× 10−5 C; (c) 1.5× 10−4 C
18. 3.6 pC
19. (a) 4.0µF; (b) 2.0µF
20. (a) 4.5× 1014; (b) 1.5× 1014; (c) 3.0× 1014;

(d) 4.5× 1014; (e) up; (f) up
21. (a) 32.0µC; (b) 16.0µC; (c) 16.0µC
22. (a) 10V; (b) 8.0µF; (c) 2.0µF
23. (a) 9.00µC; (b) 16.0µC; (c) 9.00µC;

(d) 16.0µC; (e) 8.40µC; (f) 16.8µC;
(g) 10.8µC; (h) 14.4µC

24. 99.6 nJ
25. 72F
26. (a) 35 pF; (b) 21 nC; (c) 6.3µJ;

(d) 0.60MV/m; (e) 1.6 J/m
3

27. 0.27 J
28. (a) 750µC; (b) 50V; (c) 18.8mJ;

(d) 500µC; (e) 50.0V; (f) 12.5mJ;
(g) 250µC; (h) 450.0V; (i) 6.25mJ

29. (a) 9.16×10−18 J/m3; (b) 9.16×10−6 J/m3;
(c) 9.16 × 106 J/m3; (d) 9.16 × 1018 J/m3;
(e) ∞

30. (a) 400µC; (b) 100V; (c) 20.0mJ;
(d) 333µC; (e) 33.3V; (f) 5.55mJ;
(g) 333µC; (h) 66.7V; (i) 11.1mJ

31. (a) 16.0V; (b) 45.1 pJ; (c) 120 pJ;
(d) 75.2 pJ

32. 0.11 J/m
3

33. (a) 190V; (b) 95mJ
34. 4.0
35. Pyrex
36. (a) 6.2 cm; (b) .28 nF
37. 81 pF/m
38. 1.06 nC
39. 0.63m2

40. (a) 0.73 nF; (b) 28 kV
41. 66µJ
42. 8.41 pF
43. 17.3 pF
44. 45.5 pF
45. (a) 10 kV/m; (b) 5.0 nC; (c) 4.1 nC

46. (a) 13.4 pF; (b) 1.15 nC; (c) 1.13×104 N/C;
(d) 4.33× 103 N/C

47. (a) 0.107 nF; (b) 7.79 nC; (c) 7.45 nC
48. (a) 7.2; (b) 0.77µC
49. (a) 89 pF; (b) 0.12 nF; (c) 11 nC; (d) 11 nC;

(e) 10 kV/m; (f) 2.1 kV/m; (g) 88V;
(h) −0.17µJ

50. (a) 4.9mJ; (b) no
51. 4
52. (a) 7.20µC; (b) 18.0µC; (c) battery sup-

plies charges only to plates to which it is
connected; charges on other plates are due
to electron transfers between plates, in ac-
cord with the new distribution of voltages
across the capacitors; so battery does not
directly supply charge on capacitor 4

53. (a) 2.0µF; (b) 6.0µF
54. (a) 2.0µF; (b) 0.80µF
55. (a) 1.1 pm
56. (a) 10µC; (b) 20µC
57. (a) five capacitors in series; (b) one possi-

ble answer: three rows in parallel, each row
containing five capacitors in series

58. (a) 2.0× 107; (b) away
59. (a) 32µC; (b) 2.0V
60. (a) −0.50µC; (b) 3.6mJ; (c) no
61. (a) 24.0µC; (b) 6.00V
62. 20µC
63. 45µC
64. (a) 36µC; (b) 12µC
65. (a) 100µC; (b) 20.0µC
66. 16µC
67. 2.28 pF
68. (a) 41µF; (b) 42µF
69. (a) 50.0V; (b) 0
70. 5.3V
71. (a) 2.40µF; (b) 0.480mC; (c) 80V;

(d) 0.480mC; (e) 120V
72. (a) 10.0µF; (b) 1.20mC; (c) 200V;

(d) 0.800mC; (e) 200V
73. 40µF
75. (a) 200 kV/m; (b) 200 kV/m;

(c) 1.77µC/m
2
; (d) 4.60µC/m

2
;

(e) −2.83µC/m2
76. (a) 0.480mC; (b) 240V; (c) 0.480mC;

(d) 60.0V; (e) 0.192mC; (f) 96.0V;
(g) 0.768mC; (h) 96.0V; (i) 0; (j) 0; (k) 0;
(l) 0

77. 4.9%
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78. (a) 24µC; (b) 4V
79. 6.0V
80. mica
81. 1.06 nC
82. (a) 0.708 pF; (b) 1.67; (c) −5.44 J;

(d) sucked in
83. (a) 0.708 pF; (b) 0.600; (c) 1.02 × 10−9 J;

(d) sucked in
84. 32.0µPC

Chapter 26

1. (a) 1.1 kC; (b) 7.5× 1021
2. 6.7µC/m2

3. 5.6ms
4. 14
5. (a) 6.4A/m2; (b) north; (c) cross-sectional
area

6. (a) 2.4× 10−5A/m2; (b) 1.8× 10−15m/s
7. 0.38mm
8. (a) 0.654µA/m

2
; (b) 83.4MA

9. 13min
10. 18.1µA
11. (a) 1.33A; (b) 0.666A; (c) Ja
12. 2.59mA
13. 2.0× 106 (Ω ·m)−1
14. (a) 5.32× 105 A/m2; (b) 1.01 kg/m;

(c) 3.27 × 105 A/m2; (d) 0.495 kg/m
15. 2.0× 10−8 Ω ·m
16. (a) 1.53 kA; (b) 54.1MA/m

2
;

(c) 10.6 × 10−8 Ω ·m; (d) platinum
17. 100V
18. 2R
19. 2.4Ω
20. (a) 1.55mm; (b) 1.22mm
21. 54Ω
22. 3.0mA
23. 3.0
24. (a) 6.00× 107 (Ω ·m)−1;

(b) 7.50× 106 (Ω ·m)−1
25. 1.9× 103◦C
26. 3.35 × 10−7 C
27. 8.2× 10−4 Ω ·m
28. (a) 3.24 pA/m

2
; (b) 1.73 cm/s

29. (a) 38.3mA; (b) 109A/m
2
; (c) 1.28 cm/s;

(d) 227V/m
30. (a) 0.40Ω
31. (a) 6.00mA; (b) 1.59 × 10−8V; (c) 21.2 nΩ
32. 5.44 × 10−9m/s

33. 981 kΩ
35. (a) 1.0 kW; (b) $0.25US
36. 14 kC
37. 0.135W
38. 11.1Ω
39. (a) 10.9A; (b) 10.6Ω; (c) 4.50MJ
40. (a) 28.8Ω; (b) 2.60 × 1019 s−1
41. (a) 5.85m; (b) 10.4m
42. 12mW
43. (a) $4.46US; (b) 144Ω; (c) 0.833A
44. 756 kJ
45. (a) 16.9mV/m; (b) 243 J
46. 0.224m
47. (a) 5.1V; (b) 10V; (c) 10W; (d) 20W
48. (a) i = ρπR2v; (b) 17µA; (c) no, because

current is perpendicular to the radial po-
tential difference; (d) 1.3W; (e) 0.27 J;
(f) exit of the pipe into the silo

49. (a) 64Ω; (b) 0.25

50. (a) yes; (b) 4.0 × 102A/m2
51. 2.1× 10−6 Ω ·m
52. 3.4× 104 s
53. (a) upward in the strip; (b) 12 eV; (c) 12 eV
54. 0.536Ω
55. (a) 2× 1012; (b) 5.0× 103; (c) 10MV
56. (a) 1.3× 105A/m2; (b) 94mV
57. 660W
58. (a) −8.6%; (b) smaller
59. (a) 1.74A; (b) 2.15MA/m

2
;

(c) 36.3mV/m; (d) 2.09W
60. (a) silver; (b) 51.6 nΩ
61. 150 s
62. (a) 1.3mΩ; (b) 4.6mm
63. (a) 1.37; (b) 0.730
64. 0.20 hp
65. 28.8 kC
66. 95 kJ
67. 146 kJ
68. 13.3Ω
69. 0.10V
70. 3.0× 106 J/kg
71. (a) 0.67A; (b) toward
72. 2.4 kW
73. (a) 1.5× 107A/m2; (b) toward
74. 57◦C
75. (a) 0.81mm; (b) 1.0mm
76. (a) 3.1× 1011; (b) 25µA; (c) 1.3 kW;

(d) 25MW
77. 560W
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78. (a) 0.43%; (b) 0.0017%; (c) 0.0034%; (d) R
79. (a) 250◦C; (b) yes
81. (a) 0.38mV; (b) negative; (c) 3min 58 s
82. 27 cm/s

83. (a) 0.920mA; (b) 1.08 × 104 A/m2

Chapter 27

1. (a) $3.2× 102 US; (b) $0.048 US
2. 11 kJ
3. 14.4 h
4. (a) 80 J; (b) 67 J; (c) 13 J
5. (a) 0.50A; (b) 1.0W; (c) 2.0W; (d) 6.0W;
(e) 3.0W; (f) supplied; (g) absorbed

6. −10V
7. (a) 14V; (b) 1.0× 102W; (c) 6.0 × 102W;
(d) 10V, 1.0× 102W

8. (a) 9.9× 102 Ω; (b) 9.9× 10−4W
9. (a) 50V; (b) 48V; (c) negative
10. (a) 12.0V; (b) 2.15mV; (c) 24.0W;

(d) 4.30mW
11. 8.0Ω
12. (a) 0.20Ω; (b) 0.30Ω
13. (a) 0.004Ω; (b) 1
14. (a) 1.0 kΩ; (b) 0.30V; (c) 0.23%
15. 5.56A
16. 4.0Ω and 12Ω
17. 4.50Ω
18. (a) 2.50Ω; (b) 3.13Ω
19. (a) 50mA; (b) 60mA; (c) 9.0V
20. 0.25V
21. 3d
22. (a) 0; (b) 1.25A
23. 48.3V
24. (a) same; (b) −2.0V
25. 1.43Ω
26. (a) providing; (b) 3.6× 102W
27. (a) 0.67A; (b) down; (c) 0.33A; (d) up;

(e) 0.33A; (f) up; (g) 3.3V
28. (a) 6.0V; (b) 20Ω; (c) 40Ω
29. 9
30. (a) 119Ω; (b) 50.5mA; (c) 19.0mA;

(d) 19.0mA; (e) 12.5mA
31. (a) 0.1‘50Ω; (b) 240W
32 (a) 24.0A; (b) 30.0A; (c) series; (d) 60.0A;
(e) 48.0A; (f) parallel

33. (a) 0.709W; (b) 0.050W; (c) 0.346W;
(d) 1.26W; (e) −0.158W

34. (a) 2.0 kΩ; (b) 4.0 kΩ

35. (a) 1.11A; (b) 0.893A; (c) 126m
36. (a) 19.5Ω; (b) 0; (c) ∞; (d) 82.3W;

(e) 57.6W
37. 0.45A
38. (a) 13.5 kΩ; (b) 1.50 kΩ; (c) 167Ω;

(d) 1.48 kΩ
39. −3.0%
40. (a) 12.5V; (b) 50.0A
41. (a) 55.2mA; (b) 4.86V; (c) 88.0Ω; (d) de-

crease
42. (a) 70.9mA; (b) 4.70V; (c) 66.3Ω; (d) de-

crease
44. (a) 0.41; (b) 1.1
45. 4.61
46. (a) 2.52 s; (b) 21.6µC; (c) 3.40 s
47. (a) 2.41µs; (b) 161 pF
48. 0.208ms
49. (a) 2.17 s; (b) 39.6mV
50. 0.72MΩ
51. (a) 1.0× 10−3 C; (b) 1.0× 10−3A;

(c) (1.0 × 103V) e−t; (d) (1.0 × 103V) e−t;
(e) P = e−2tW

52. 2.35MΩ
53. (a) 1.1mA; (b) 0.55mA; (c) 0.55mA;

(d) 0.82mA; (e) 0.82mA; (f) 0; (g) 4.0 ×
102V; (h) 6.0× 102 V

54. 411µA
55. (a) 0.955µC/s; (b) 1.08µW; (c) 2.74µW;

(d) 3.82µW
56. 162µs
57. 24.8Ω; (b) 14.9 kΩ
58. (a) 6.9 km; (b) 20Ω
59. (a) 6.0A; (b) 8.0V; (c) 60W; (d) 36W
60. 8
61. (a) 1.32× 107 A/m2; (b) 8.90V; (c) copper;

(d) 1.32× 107 A/m2; (e) 51.1V; (f) iron
62. 0.82mA
63. (a) 80mA; (b) 0.13A; (c) 0.40A
64. (a) 80Ω; (b) 200Ω
65. (a) VT = E − ir; (b) 13.6V; (c) 0.060Ω
66. (a) 60.0mA; (b) down; (c) 180mA; (d) left;

(e) 240mA; (f) up
69. 2.5A
70. 2.00A
71. (a) 12.0 eV; (b) 6.53W
72. (a) low position connects larger resistance,

middle position connects smaller resistance,
high position connects filaments in parallel;
(b) 72Ω; (c) 144Ω
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73. the cable
74. (a) 3.00A; (b) 3.75A; (c) 3.94A
75. (a) 7.50A; (b) left; (c) 10.0A; (d) left;

(e) 87.5W; (f) supplied
76. 20Ω
77. (a) 3.0A; (b) 10A; (c) 13A; (d) 1.5A;

(e) 7.5A
78. (a) 3.00A; (b) down; (c) 1.60A; (d) down;

(e) supply; (f) 55.2W; (g) supply;
(h) 6.40W

79. (a) 5.00A; (b) left; (c) supply; (d) 100W;
(e) supply; (f) 50.0W; (g) supply;
(h) 56.3W

80. (a) 0.333A; (b) right; (c) 720 J
81. (a) 85.0Ω; (b) 915Ω
82. (a) 4.00Ω; (b) parallel
83. 7.50V
84. (a) 38Ω; (b) 260Ω
85. (a) −11V; (b) −9.0V
86. (a) 1.0V; (b) 50mΩ
87. (a) 6.67Ω; (b) 6.67Ω; (c) 0
88. 0.143
89. −13µC
90. 13.3Ω
91. (a) 1.5mA; (b) 0; (c) 1.0mA
92. (a) 4.0A; (b) up; (c) 0.50A; (d) down;

(e) 64W; (f) 16W; (g) supplied; (h) ab-
sorbed

93. (a) 0; (b) 14.4W
94. (a) 5.25V; (b) 1.50V; (c) 5.25V; (d) 6.75V
95. (a) 38.2mA; (b) down; (c) 10.9mA;

(d) right; (e) 27.3mA; (f) left; (g) 3.82V
96. (a) 300Ω; (b) 2.00V; (c) 6.67mA
97. 2.5V
98. 4.0V
99. (a) 1.00A; (b) 24.0W
100. 0.90%
102. (a) Vc = E0e−t/τ ; (b) 12V; (c) 0.77 s;

(d) 3.8µF
103. 1.00 × 10−6
104. (a) 4.0A; (b) up
105. 3
106. 100E2x2R−20 (100RR−10 + 10x − x2)−2, x in

cm
107. (a) 3.41A; (b) 0.293A; (c) 0.586A;

(d) 1.71V
108. (b) yes
109. (a) put each contact roughly in the middle

of its range; adjust the current roughly with

B; make fine adjustments with A; (b) rela-
tively large percentage changes in A cause
only small percentage changes in the equiv-
alent resistance of the parallel combination,
thus permitting fine adjustment; any shift
in the A contact causes half as much change
as any equal shift in the B contact

110. (a) 3.0 kV; (b) 10 s; (c) 11GΩ
111. 250µJ
112. (a) i2 = i1+i4+i5, i3+i4+i5 = 0, −16V+

(7Ω)i1 +(5Ω)i2 +4V = 0, 10V+ (8Ω)i3−
(9Ω)i4− 4V− (5Ω)i2 = 0, 12V− (4Ω)i5+
(9Ω)i4 = 0;

(b) [A] =


1 −1 0 1 1
0 0 1 1 1
7 5 0 0 0
0 −5 8 −9 0
0 0 0 9 −4

 ohms,

[C] =


0
0
12
−6
−12

 volts;
(c) i1 = 0.717A, i2 = 1.40A,
i3 = −0.680A, i4 = −0.714A, i5 = 1.39A

113. (a) 6.43V; (b) 3.60W; (c) 16.7W;
(d) −5.60W; (e) a

114. (c) it gives the rate with which R dissipates
energy

Chapter 28

1. (a) 400 km/s; (b) 835 eV

2. (a) 6.2× 10−18N; (b) 9.5× 108m/s2;
(c) same

3. (a) (6.2×10−14 N) k̂; (b) (−6.2×10−14 N) k̂
4. (a) −3.5 km/s; (b) 7.0 km/s
5. −2.0T
6. 3.75 km/s
7. −0.267mT
8. (−11.4V/m) î−(6.00V/m) ĵ+(4.80V/m) k̂
9. 0.068MV/m

10. (a) 1.25V/m; (b) (25.0mT)k̂
11. 38.2 cm/s
12. 7.4µV
13. (a) (−600mV/m)k̂; (b) 1.20V
14. (a) 25 cm; (b) 30 cm; (c) 20 cm
15. 21µT
16. (a) 1.11× 107m/s; (b) 0.316mm
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17. (a) 2.05×107m/s; (b) 467µT; (c) 13.1MHz;
(d) 76.3 ns

18. (a) 2.60× 106m/s; (b) 0.109µs;
(c) 0.140MeV; (d) 70 kV

19. (a) 0.978MHz; (b) 96.4 cm
20. (a) 1.0MeV; (b) 0.5MeV
21. 65.3m/s
22. 2.09 × 10−22 J
23. (a) 0.358 ns; (b) 0.166mm; (c) 1.51mm
24. (a) 0.252T; (b) 130 ns
25. (a) 495mT; (b) 22.7mA; (c) 8.17MJ
26. 8.7 ns
27. (a) 5.07 ns
28. (a) 18.3MHz; (b) 17.2MeV
29. 2.4× 102m
30. (a) 0.787T; (b) 8.34MeV; (c) 23.9MHz;

(d) 33.2MeV
31. (a) 200 eV; (b) 20.0 keV; (c) 0.499%
32. 20.1N
33. (a) 28.2N; (b) horizontally west
34. (a) (−16N) ĵ; (b) 0
35. (a) 467mA; (b) right

36. (−2.50 × 10−3N) ĵ + (0.750 × 10−3N) k̂
37. (a) 0.10T; (b) 31◦

38. (−0.35N) k̂
39. (−4.3× 10−3 N ·m) ĵ
40. (a) 0; (b) 0.138N; (c) 0.138N; (d) 0
41. 0.60µN
42. 6.58 × 10−26N ·m
43. (a) 542Ω; (b) series; (c) 2.52Ω; (d) parallel
44. 3.0mA
45. 2.45A
46. 2.08GA
47. (a) 12.7A; (b) 0.0805N ·m
48. (a) 0.184A ·m2; (b) 1.45N ·m
49. (a) 0.30 J/T; (b) 0.024N ·m
50. (a) 77◦; (b) 77◦

51. (a) 2.86A ·m2; (b) 1.10A ·m2
52. (0.150A ·m2) ĵ− (0.300A ·m2) k̂
53. (a) (−9.7 × 10−4 N · m) î − (7.2 × 10−4 N ·

m) ĵ+(8.0×10−4N ·m) k̂; (b) −6.0×10−4 J
54. 4.8× 10−5 A ·m2
55. (a) 90◦; (b) 1; (c) 1.28 × 10−7N ·m
56. 110◦

57. 0.53m
58. 6.7× 10−2 T
59. 127 u
60. 1.2× 10−9 kg/C
61. (−500V/m) ĵ

62. (18.8µN) k̂
63. −40mC
64. (a) (1.44×10−18 N) k̂; (b) (1.60×10−19 N) k̂;

(c) (6.41 × 10−19N) î + (8.01 × 10−19 N) k̂
65. −(3.0T) î − (3.0T) ĵ − (4.0T) k̂
66. (a) 84◦; (b) no; (c) no; (d) 5.7 nm
67. (a) −72.0µJ; (b) (96.0µN ·m) î + (48.0µN ·

m) k̂
68. (a) 0.67mm/s; (b) 2.8 × 1029m−3
69. (0.80mN) k̂
70. (a) (12.8N) î + 6.41N) ĵ; (b) 90◦; (c) 173◦

71. (a) 3.34 cm/s; (b) left
72. (a) 3.8mm; (b) 19mm; (c) clockwise

73. (−61mT) k̂
74. (a) 4.99× 106m/s; (b) 7.10mm; (c) 8.93 ns
75. (−0.600N) k̂
76. (a) 9.56× 10−14 N; (b) 0; (c) 0.267◦
77. (a) 20min; (b) 5.9 × 10−2 N ·m
78. 8.2mm
79. (a) 0.50; (b) 0.50; (c) 14 cm; (d) 14 cm

80. (−0.34mT) k̂
81. (a) 2.84× 10−3
82. (b) out of the plane of the page

83. nv = v0x î+v0y cos(ωt) ĵ−v0y sin(ωt) k̂, where
ω = eB/m

84. (a) 1.4; (b) 1.0

85. (a) 6.3× 1014m/s2; (c) 3.0mm
89. (0.75T) k̂

Chapter 29

1. (a) 3.3µT; (b) yes
2. 0
3. (a) 16A; (b) east
4. (a) 1.67µT; (b) into
5. (a) 0.102µT; (b) out
6. (a) 0.118µT; (b) into
7. (a) opposite; (b) 30A
8. (a) 4.0 cm; (b) unchanged
9. 4.3A (b) out
10. (a) 0; (b) 3.82 cm
11. (−7.75 × 10−23N) î
12. (a) 30 cm; (b) 2.0 nT; (c) out; (d) into
13. 2 rad
14. (a) −7.0 cm; (b) 7.0 cm
15. (80µT) ĵ
16. 14.1
17. 50.3 nT
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18. 144◦

19. 132 nT
20 2.00 cm
21. (a) (253 nT) k̂; (b) (192 nT) î + (61.2 nT) k̂
22. 1.0 rad
23. (22.3 pT) ĵ
24. 2.3 cm
25. (a) 20µT; (b) into
26. 104◦

27. 88.4 pN/m
28. 800 nN/m
29. (a) (469µN) ĵ; (b) (188µN) ĵ; (c) 0;

(d) (−188µN) ĵ; (e) (−469µN) ĵ
30. (0.794mN/m) î− (0.794mN/m) ĵ
31. (−125µN/m) î + (41.7µN/m) ĵ
32. (a) 0.50A; (b) out
33. (3.20mN) ĵ
34. 28.3 nT ·m
35. (a) −2.5µT ·m; (b) 0
36. (a) −2.5µT ·m; (b) −16µT ·m
37. (a) 0; (b) 0.850mT; (c) 1.70mT;

(d) 0.850mT
38. (a) 3.00mA; (b) into
39. (a) 0; (b) 0.10µT; (c) 0.40µT
40. 5.71mT
41. 0.30mT
42. 108m
43. (a) 533µT; (b) 400µT
44. 0.272A
45. (a) 4.77 cm; (b) 35.5µT
46. 1.6× 106 rev
47. 0.47A ·m2
48. (a) 4.0; (b) 0.50
49. (a) 2.4A ·m2; (b) 46 cm
50. 8.78µT
51. (a) 0.497µT; (b) into; (c) 1.06mA ·m2;

(d) into
52. (a) (0.060A ·m2) ĵ; (b) (96 pT) ĵ,
53. (a) 79µT; (b) 1.1× 10−6 N ·m
54. (a) 0.90A; (b) 2.7A
55. (a) 1.0mT; (b) out; (c) 0.80mT; (d) out
56. 1.8 rad
58. 61.3mA
59. 256 nT
60. 157 nT
61. (a) 15.3µT
62. (a) −90◦; (b) 4.0A; (c) out; (d) 2.0A;

(e) into
63. 5.3mm

64. 3.0µT
65. 32.1A
66. (a) 15A; (b) −z
67. (a) 4.8mT; (b) 0.93mT; (c) 0

68. (a) (−52.0µT) k̂; (b) 8.13 cm; (c) 17, 5 cm
69. (a) 1.7µT; (b) into; (c) 6.7µT; (d) into
70. (a) (−400µT) î; (b) (400µT) ĵ
71. 7.7mT
72. 4.5× 10−6 T ·m
73. (a) 5.0mA; (b) downward
74. (a) 0.17mN; (b) 0.021mN

75. (a) (0.24 nT) î; (b) 0; (c) (−43 pT) k̂;
(c) (−43 pT) k̂; (d) (0.14 nT) k̂

76. (a) 27.5 nT; (b) into
77. 5.0µT
78. 1.28mm
79. 4.0mm
85. (−0.20mT) k̂
86. (b) 2.3 km/s
87. (a) 3.2× 10−16N; (b) 3.2× 10−16N; (c) 0
88. (1.25µT) î
92. (a) µ0ir/2πc

2; (b) µ0i/2πr;
(c) µ0i(a

2 − r2)/2π(a2 − b2)r; (d) 0

Chapter 30

1. 0.198mV
2. (a) 31mV; (b) left
3. (a) −11mV; (b) 0; (c) 11mV
4. 1.4T/s
5. 30mA
6. 0.452V
7. 0
8. 0
9. (a) 21.7V; (b) counterclockwise
10. 1.2mΩ
11. (b) 0.786m2

12. (a) 8.0µA; (b) counterclockwise
13. 29.5mC
14. 15.5µC
15. (a) 40Hz; (b) 3.2mV
16. (a) 0; (b) none; (c) 6.00mV; (d) clockwise;

(e) 1.00mV; (f) clockwise; (g) 0; (h) none;
(i) 0; (j) none

17. 5.50 kV
18. (a) 24µV; (b) from c to b
19. (a) µ0iR

2πr2/2x3; (b) 3µ0iπR
2r2v/2x4;

(c) counterclockwise
20. 18mV
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21. (a) 1.26 × 10−4 T; (b) 0; (c) 1.26 × 10−4 T;
(d) yes; (e) 5.04 × 10−8V

22. (a) 0.598µV; (b) counterclockwise
23. (a) 80µV; (b) clockwise
24. (a) 14 nWb; (b) 10µA
25. (a) 13µWb/m; (b) 17%; (c) 0
26. 750 pJ
27. 3.66µW
28. 1.0mΩ
29. (a) 48.1mV; (b) 2.67mA; (c) 0.129mW
30. vt = mgR/B

2L2

31. (a) 0.60V; (b) up; (c) 1.5A; (d) clockwise;
(e) 0.90W; (f) 0.18N; (g) 0.90W

32. (a) 85.2Wb; (b) 56.8V; (c) 1
33. (a) 240µV; (b) 0.600mA; (c) 0.144µW;

(d) 2.87× 10−8 N; (e) 0.144µW
34. (a) −1.07mV; (b) −2.40mV; (c) 1.33mV
35. (a) 71.5µV/m; (b) 143µV/m
36. 0.030T/s
37. 0.15V/m
38. (a) 2.45mWb; (b) 0.645mH
39. 0.10µWb
40. (a) 0.27µT; (b) 8.0 nH
41. 1.81µH/m
42. (a) decreasing; (b) 0.68mH
43. 5.0A/s
44. (a) 16 kV; (b) 3.1 kV; (c) 23 kV

45. (b) Leq =

N3
j=1

Lj

46. (b)
1

Leq
=

N3
j=1

1

Lj

47. 59.3mH
48. 12.3 s
49. 6.91
50. (a) 1.00; (b) 0.135; (c) 0.693
51. 46Ω
52. (a) 3.33A; (b) 3.33A; (c) 4.55A; (d) 2.73A;

(e) 0; (f) −1.82A (reversed); (g) 0; (h) 0
53. (a) 8.45 ns; (b) 7.37mA
54. 7.1× 102 A/s
55. (42 + 20t)V
56. (a) 0.29mH; (b) 0.29ms
57. (a) i(1− e−Rt/L); (b) (L/R) ln 2
58. 1.23
59. 25.6ms
60. (a) 2.4 × 102W; (b) 1.5 × 102W; (c) 3.9 ×

102W

61. (a) 97.9H; (b) 0.196mJ
62. (a) 18.7 J; (b) 5.10 J; (c) 13.6 J

63. (a) 34.2 J/m
3
; (b) 49.4mJ

64. 5.58A
65. 1.5× 108 V/m
66. (a) 1.3mT; (b) 0.63 J/m3

67. (a) 1.0 J/m
3
; (b) 4.8 × 10−15 J/m3

68. 13H
69. (a) 1.67mH; (b) 6.00mWb
70. (a) 1.5µWb; (b) 1.0× 102mV; (c) 90 nWb;

(d) 12mV
71. (b) wrap the turns of the two solenoids in

opposite directions
72. there is a magnetic field only within the

solenoid cross section
73. 13µH
74. (a) 3.28ms; (b) 6.45ms; (c) infinite time;

(d) 0; (e) 3.00ms
75. (πB0r

2/τ) exp(−t/τ)
76. 8.0× 10−3 T/s
77. (a) 10µT; (b) out; (c) 3.3µT; (d) out
78. 1.15W
79. (a) 1.5 s
80. 2.9mV
81. 1.54 s
82. (a) 23mA; (b) 70mA
83. (a) 400A/s; (b) 200A/s; (c) 0.600A
84. (a) 0.600mH; (b) 120
85. (a) 0.40V; (b) 20A
86. (a) 25µT/s; (b) 13µT/s; (c) increasing

87. (a) (4.4 × 107m/s2) î; (b) 0; (c) (−4.4 ×
107m/s2) î

88. 81.1µs
89. (a) 2.0A; (b) 0; (c) 2.0A; (d) 0; (e) 10V;

(f) 2.0A/s; (g) 2.0A; (h) 1.0A; (i) 3.0A;
(j) 10V; (k) 0; (l) 0

90. 0.520ms
91. 95.4Ω
93. 221mA
94. 12A/s

95. (a) 1.0× 10−3 J/m3; (b) 8.4 × 1015 J
96. (a) 3.75mH; (b) 3.75mH; (c) 100 nWb;

(d) 4.24mV
97. (a) 0.50mA; (b) counterclockwise;

(c) 0.50mA; (d) counterclockwise; (e) 0;
(f) none

98. L1E(L1 + L2)−1R−1
99. (a) 0; (b) 8.0×102A/s; (c) 1.8mA; (d) 4.4×

102A/s; (e) 4.0mA; (f) 0
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100. (a) 10A; (b) 1.0× 102 J
101. (a) 51mV; (b) clockwise
102. 1.0 ns
103. 11mA
104. (a) 4.7mH; (b) 2.4ms
105. (a) 13.9H; (b) 120mA
106. (a) 0.10H/m; (b) 1.3V/m
107. 45H
108. (a) 20A/s; (b) 0.75A

Chapter 31

1. (a) 1.17µJ; (b) 5.58mA
2. 45.2mA
3. 9.14 nF
4. (a) 6.00µs; (b) 167 kHz; (c) 3.00µs
5. (a) 5.00µs; (b) 2.50µs; (c) 1.25µs
6. (a) 89 rad/s; (b) 70ms; (c) 25µF
7. (a) 1.25 kg; (b) 372N/m;
(c) 1.75 × 10−4m; (d) 3.02mm/s

9. 7.0× 10−4 s
10. 38µH
11. (a) 3.0 nC; (b) 1.7mA; (c) 4.5 nJ
12. (a) 6.0×102 Hz; (b) 7.1×102 Hz; (c) 1.1 kHz;

(d) 1.30 kHz
13. (a) 275Hz; (b) 364mA
14. ω
15. (a) 6.0; (b) 36 pF; (c) 0.22mH
17. (a) 1.98µJ; (b) 5.56µC; (c) 12.6mA;

(d) −46.9◦; (e) +46.9◦
18. (a) 0.500; (b) 0.866
19. (a) 0.180mC; (b) 70.7µs; (c) 66.7W
20. (a) 3.60mH; (b) 1.33 kHz; (c) 0.188ms
21. (a) 356µs; (b) 2.50mH; (c) 3.20mJ
22. (a) 46.1µs; (b) 6.88 n; (c) 6.88 nJ; (d) 1.02×

103A/s; (e) 0.938mW
24. (a) 5.85µC; (b) 5.52µC; (c) 1.93µC
25. 8.66mΩ
26. (L/R) ln 2
28. (a) 0.283A; (b) 2.26A
29. (a) 95.5mA; (b) 11.9mA
30. (a) 0.600A; (b) 0.600A
31. (a) 0.65 kHz; (b) 24Ω
32. (a) 5.22mA; (b) 0; (c) 4.51mA
33. (a) 6.73ms; (b) 11.2ms; (c) inductor;

(d) 138mH
34. (a) 39.1mA; (b) 0; (c) 33.8mA
35. (a) 218Ω; (b) 23.4◦; (c) 165mA
36. (a) 8.0µF; (b) 2.0Ω

37. (a) 267Ω; (b) −41.5◦; (c) 135mA
38. (a) 500Ω; (b) 40µF
39. (a) 206Ω; (b) 13.7◦; (c) 175mA
40. (a) 40Ω; (b) 60mH
41. 89Ω
42. −8.00V
43. (a) yes; (b) 1.0 kV
44. (a) 100Ω; (b) 30.6µF; (c) 301mH
45. (a) 224 rad/s; (b) 6.00A; (c) 219 rad/s,

(d) 228 rad/s; (e) 0.040
46. (a) 16.6Ω; (b) 422Ω; (c) 0.521A; (d) in-

crease; (e) decrease; (f) increase
48. (b) 318Hz; (c) +45◦; (d) 2.00 × 103 rad/s;

(e) 53.0mA
49. (a) 796Hz; (b) no change; (c) decreased;

(d) increased
50. 100V
51. 1.84A
52. 141V
53. (a) 12.1Ω; (b) 1.19 kW
55. (a) 0.743; (b) lead; (c) capacitive; (d) no;

(e) yes; (f) no; (g) yes; (h) 33.4W
56. (a) 76.4mH; (b) yes; (c) 17.8Ω
57. (a) 117µF; (b) 0; (c) 90.0W; (d) 0; (e) 1;

(f) 0; (g) −90◦; (h) 0
58. (a) 41.4W; (b) −17.0W; (c) 44.1W;

(d) 14.4W; (e) equal
59. (a) 2.59A; (b) 38.8V; (c) 159V; (d) 224V;

(e) 64.2V; (f) 75.0V; (g) 100W; (h) 0;
(i) 0

60. 1.0 kV
61. (a) 2.4V; (b) 3.2mA; (c) 0.16A
62. (a) 1.25; (b) 4.00; (c) 5.00; (d) 0.200;

(e) 0.250; (f) 0.800
63. (a) 1.9V; (b) 5.9W; (c) 19V; (d) 5.9 ×

102W; (e) 0.19 kV; (f) 59 kW
64. 10
67. (a) 177Ω; (b) no
68. 1.84 kHz
69. 7.61A
70. (b) 159Hz; (c) −45◦; (d) 1.00 × 103 rad/s;

(e) 170mA
72. (a) 8.84 kHz; (b) 6.00Ω
73. (a) 39.1Ω; (b) 21.7Ω; (c) capacitive
74. (a) 5.77× 103 rad/s; (b) 1.09ms
75. (a) 45.0◦; (b) 70.7Ω
76. 1.59µF
77. (a) 0.689µH; (b) 17.9 pJ; (c) 0.110µC
78. (a) 707Ω; 32.2mH; (c) 21.9 nF
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79. (a) 6.73ms; (b) 2.24ms; (c) capacitor;
(d) 59.0µF

81. (a) 2.41µH; (b) 21.4 pJ; (c) 82.2 nC
82. (a) 0.588 rad; (b) inductive; (c) 12.0V
84. (a) 64.0Ω; (b) 50.9Ω; (c) capacitive
85. (a) 4.60 kHz; (b) 26.6 nF; (c) 2.60 kΩ;

(d) 0.650 kΩ
86. (a) −0.405 rad; (b) 2.76A; (c) capacitive
87. (a) 165Ω; (b) 313mH; (c) 14.9µF
88. 0.115A
89. (a) 0.577Q; (b) 0.152
90. (a) 37.0V; (b) 60.9V; (c) 113V; (d) 68.6W
91. (a) 1.27µC; (b) 83.1µs; (c) 5.44mW
92. (a) 168Ω; (b) decrease; (c) decrease;

(d) decrease
93. (a) +1.22 rad; (b) 0.288A
94. 69.3Ω
95. 7.08mH
96. (a) 79.6 kHz; (b) 4.00mA; (c) 16.0 nJ;

(d) 2.00 kA/s
97. (a) 4.00µF, 5.00µF, 5.00µF, 5.00µF;

(b) 1.78 kHz, 1.59 kHz, 1.59 kHz, 1.59 kHz;
(c) 12.0Ω, 12.0Ω, 6.00Ω, 4.00Ω; (d) 19.8Ω,
22.4Ω, 19.9Ω, 19.4Ω; (e) 0.605A, 0.535A,
0.603A, 0.619A

98. (a) 36.0V; (b) 29.9V; (c) 11.9V;
(d) −5.85V

100. (b) 61Hz; (c) 90Ω; (d) 61Hz

Chapter 32

1. (a) 1.1mWb; (b) inward
2. +3Wb
3. (a) 47.4µWb; (b) inward
4. (µ0iL//π) ln 3
5. 2.4× 1013 V/m · s
6. (a) 30mm; (b) 53mm; (c) 3.0× 10−5 T
7. (a) 1.9 pT
8. (a) 1.18× 10−19 T; (b) 1.06 × 10−19 T
9. (a) 3.54× 10−17 T; (b) 2.13 × 10−17 T
10. (a) 5.01× 10−22 T; (b) 4.51 × 10−22 T
11. (a) 3.09× 10−20 T; (b) 1.67 × 10−20 T
12. 7.5× 105 V/s
14. 7.2× 1012 V/m · s
16. (a) 2.1 × 10−8A; (b) downward; (c) clock-

wise
17. (a) 0.63µT; (b) 2.3× 1012 V/m · s
18. (a) 1.33A; (b) 0.300 cm and 4.80 cm
19. (a) 0.71A; (b) 0; (c) 2.8A

20. 8.40 × 10−13 T
21. (a) 2.0A; (b) 2.3× 1011 V/m · s; (c) 0.50A;

(d) 0.63µT ·m
22. (a) 0.089mT; (b) 0.18mT; (c) 0.22mT;

(d) 6.4 × 10−22 T; (e) 6.4 × 10−22 T; (f) 0;
(g) out; (h) out

23. (a) 75.4 nT; (b) 67.9 nT
24. (a) 2.22µT; (b) 2.00µT
25. (a) 27.9 nT; (b) 15.1 nT
26. (a) 20.0µT; (b) 12.0µT
27. 55µT
28. (a) 13MWb; (b) outward
29. (a) −9.3× 10−24 J/T; (b) 1.9× 10−23 J/T
30. 4.6× 10−24 J
31. (a) 0; (b) 0; (c) 0; (d) ±3.2× 10−25 J;

(e) −3.2 × 10−34 J · s, 2.8× 10−23 J/T,
+9.7× 10−25 J, ±3.2× 10−25 J

32. 32.3mT
33. (a) 0; (b) −1, 0, 1; (c) 4.64 × 10−24 J
34. (a) +x; (c) clockwise; (d) +x
35. e2r2B/4m
36. 0.48K
37. 20.8mJ/T
38. (a) 1.5× 102 T; (b) 6.0× 102 T; (c) no
39. yes
40. 0.30
41. (b) Ki/B; (b) −z; (c) 0.31 kA/m
42. 25 km
43. (a) 3.0µT; (b) 5.6 × 10−10 eV
44. (a) 8.9A ·m2; (b) 13N ·m
45. 5.15 × 10−24A ·m2
46. (a) 1.49× 10−4 N ·m; (b) −72.9µJ
47. (a) 0.14A; (b) 79µC
48. 3.19 × 10−9 kg ·m2
49. (a) 1.8× 102 km; (b) 2.3× 10−5
50. 52 nT ·m
51. (a) 16.7 nT; (b) 5.00mA
52. (b) in the direction of the angular momen-

tum vector
53. (a) (1.2× 10−13 T)e−t/(0.012 s);

(b) 5.9× 10−15 T
54. (a) 222µT; (b) 167µT; (c) 22.7µT;

(d) 1.25µT; (e) 3.75µT; (f) 22.7µT
55. (a) 4K; (b) 1K
56. (a) 9; (b) 3.71 × 10−22 J/T; (c) +9.27 ×

10−24 J; (d) −9.27 × 10−24 J
57. (a) 0.324V/m; (b) 2.87×10−16 A; (c) 2.87×

10−18

58. (a) −2.78×10−23 J/T; (b) 3.71×10−23 J/T
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59. 8.0A
60. 0.84 kJ/T
61. (a) 7.60µA; (b) 859 kV ·m/s; (c) 3.39mm;

(d) 5.16 pT
62. 0.300A
63. (a) 7; (b) 7; (c) 3h/2π; (d) 3eh/4πm;

(e) 3.5h/2π; (f) 8
64. 3.5× 10−5 A
65. (b) −x; (c) counterclockwise; (d) −x
66. (a) 5.3×1011 V/m; (b) 20mT; (c) 6.6×102
67. (a) 6.3× 108A; (b) yes; (c) no
68. (a) −8.8× 1015 V/m · s; (b) 5.9× 10−7 T ·m
70. (a) 9.2mWb; (b) inward
72. (a) 31.0µT; (b) 0◦; (c) 55.9µT; (d) 73.9◦;

(e) 62.0µT; (f) 90.0◦

73. (a) 1.66 × 103 km; (b) 383µT; (c) 61.1µT;
(d) 84.2◦

74. (a) 27.5mm; (b) 110mm
75. (b) sign is minus;

(c) no, because there is compensating pos-
itive flux through the open end nearest to
magnet

Chapter 33

1. 30 cm
2. (a) 515 nm, 610 nm; (b) 555 nm,
5.41 × 1014Hz, 1.85× 10−15 s

3. (a) 4.7× 10−3Hz; (b) 3min 32 s
4. 7.49GHz
5. 5.0× 10−21 H
6. 4.7m
7. 1.07 pT
8. 6.7 nT; (b) y; (c) negative y direction
9. 0.10MJ
10. 4.8× 10−29W/m2
11. 1.2MW/m2

12. (a) 16.7 nT; (b) 33.1mW/m2

13. (a) 1.03 kV/m; (b) 3.43µT
14. (a) 1.4× 10−22W; (b) 1.1× 1015W
15. (a) 6.7 nT; (b) 5.3mW/m2; (c) 6.7W
16. 3.44 × 106 T/s
17. (a) 87mV/m; (b) 0.29 nT; (c) 6.3 kW
18. (a) 30.1 nm; (b)345 nm
19. 1.0× 107 Pa
20. 3.3× 10−8 Pa
21. 5.9× 10−8 Pa
22. (a) 6.0× 108N; (b) 3.6 × 1022N
23. (a) 1.0× 108Hz; (b) 6.3× 108 rad/s;

(c) 2.1m−1; (d) 1.0µT; (e) z; (f) 1.2 ×
102W/m

2
; (g) 8.0× 10−7N;

(h) 4.0× 10−7 Pa
24. (a) 3.97GW/m

2
; (b) 13.2Pa; (c) 1.67 ×

10−11 N; (d) 3.14 × 103m/s2
26. 491 nm
27. 1.9mm/s
28. 0.96 km2

29. 0.25 kW
30. (a) 4.68 × 1011W; (b) any chance distur-

bance could move the sphere from directly
above source, so the two force vectors are
no longer along the same axis

31. 4.4W/m
2

32. 19W/m
2

33. 3.1%
34. 4.5× 10−2%
35. (a) 1.9V/m; (b) 1.7× 10−11 Pa
36. 44%
37. 20◦ or 70◦

38. 9.4%
39. 0.67
40. (a) 19.6◦; (b) 70.4◦

41. (a) 0.16; (b) 0.84
42. 7.38
43. (a) 2 sheets; (b) 5 sheets
44. 180◦

45. 1.48
46. (a) greater; (b) greater; (c) 1.4; (d) 1.9
47. 1.26
48. (a) greater; (b) greater; (c) 1.9; (d) 1.4
49. 1.07m
50. (a) 1.7; (b) 38◦

51. (a) 56.9◦; (b) 35.3◦

52. (a) 3.1◦; (b) 0 (no rainbow)
54. 34◦

55. 182 cm
56. (a) 26.8◦; (b) yes
57. (a) 1.39 (b) 28.1◦; (c) no
58. (a) 35.1◦; (b) 49.9◦; (c) 35.1◦; (d) 26.1◦;

(e) 60.7◦; (f) 35.3◦

59. 23.2◦

60. (a) 3; (b) 2; (c) 40◦; (d) none; (e) 2;
(f) 3; (g) none; (h) 70◦

61. (a) 49◦; (b) 29◦

62. (a) 35.6◦; (b) 53.1◦

63. (a)
0
1 + sin2 θ; (b)

√
2; (c) yes; (d) no

64. (a) 53◦; (b) yes
65. 49.0◦
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66. 1.0
67. 0.50W/m2

68. (a) 0; (b) 20◦; (c) 0; (d) 20◦

69. (a) 15m/s; (b) 8.7m/s; (c) higher; (d) 72◦

70. (a) 1.6; (b) need more information; (c) 39◦

71. (a) 4.56m; (b) increase
72. (a) 0.33◦; (b) 0
73. (a) −y; (b) z; (c) 1.91 kW/m2; (d) Ez =

(1.20 kV/m) sin[(6.67×106 m−1)y+(2.00×
1015 s−1)t]; (e) 942 nm; (f) infrared

74. (a) 54.3◦; (b)yes; (c) 51.1◦; (d) no
75. 1.22
76. 1.5× 10−8m/s2
77. (c) 139.3◦; (d) 137.6◦; (e) 1.7◦

78. (b) 230.4◦; (c) 233.5◦; (d) 3.1◦; (e) 317.5◦;
(f) 321.9◦; (g) 4.4◦

79. (a) 1.60; (b) 58.0◦

81. 0.031
83. 22◦

84. 1.3
86. (a) 1.91× 108 Hz; (b) 18.2V/m;

(c) 0.878W/m
2

87. (a) 55.8◦; (b) 55.5◦

88. 0.024
89. (a) 0.50ms; (b) 8.4min; (c) 2.4 h;

(d) 5446B.C.

90. (a) 83W/m2; (b) 1.7MW
91. 1.7× 10−13 N
92. (a) 4.7× 10−6 Pa; (b) 4.7× 10−11
93. (a) (16.7 nT) sin[(1.00×106 m−1)z+(3.00×

1014 s−1)t]; (b) 6.28µm; (c) 20.9 fm;
(d) 33.2mW/m

2
; (e) x; (f) infrared

94. pr1 cos
2 θ

95. (a) 3.5µW/m2; (b) 0.78µW;

(c) 1.5× 10−17W/m2; (d) 1.1× 10−7V/m;
(e) 0.25 fT

96. (a) (236 nT) sin[(2.51× 107m−1)z+(7.53×
1015 s−1)t]; (b) 3.83 × 10−20 N

97. 0.21
98. bZ = (2.50×10−14 t) sin[(1.40×107m−1)y+

(4.19 × 1015 s−1)t]
99. 0.034
100. 35◦

101. (a) 0.33µT; (b) −x
102. 9.2µN
103. 9.16µT
104. 9.43 × 10−10 T
106. (b) 5.8× 10−7m
107. (a) z axis; (b) 7.5× 1014 Hz; (c) 1.9 kW/m2

108. 0.125
109. (a) white; (b) white dominated by red end;

(c) no refracted light
110. (a) cover the center of each face with an

opaque disk of radius 4.5mm; (b) about
0.63

111. (a) steadily increase; (b) summed discrep-
ancies between the apparent time of eclipse
and times observed from x; the radius of
Earth’s orbit

Chapter 34

1. 40 cm
2. 9.10m
3. 1.11
4. 1.5m
5. 351 cm
6. −2.5
7. 10.5 cm
8. +28 cm
9. (a) +24 cm; (b) +36 cm; (c) −2.0; (d) R;
(e) I; (f) same

10. (a) +20 cm; (b) +30 cm; (c) −2.0; (d) R;
(e) I; (f) same

11. (a) +36 cm; (b) −36 cm; (c) +3.0; (d) V;
(e) NI; (f) opposite

12. (a) +72 cm; (b) −72 cm; (c) +3.0; (d) V;
(e) NI; (f) opposite

13. (a) −20 cm; (b) −4.4 cm; (c) +0.56; (d) V;
(e) NI; (f) opposite

14. (a) −70 cm; (b) −14 cm; (c) +0.61; (d) V;
(e) NI; (f) opposite

15. (a) −16 cm; (b) −4.4 cm; (c) +0.44; (d) V;
(e) NI; (f) opposite

16. (a) −28 cm; (b) −7.7 cm; (c) +0.45; (d) V;
(e) NI; (f) opposite

17. (b) 0.56 cm/s; (c) 11m/s; (d) 6.7 cm/s
18. +0.32
19. (b) plus; (b) +40 cm; (c) −20 cm;

(e) −20 cm; (f) +2.0; (g) V; (h) NI; (i) op-
posite

20. (a) plane; (b)∞; (c) ∞; (e) −10 cm; (g) V;
(h) NI; (i) opposite

21. (a) concave; (c) +40 cm; (e) +60 cm;
(f) −2.0; (g) R; (h) I; (i) same

22. (a) concave; (b) +20 cm; (c) +40 cm;
(e) +30 cm; (g) R; (h) I; (i) same

23. (a) convex; (b) −20 cm; (d) +20 cm;
(f) +0.50; (g) V; (h) NI; (i) opposite
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24. (a) convex; (b) minus; (c) −40 cm;
(d) +1.8m; (e) −18 cm; (g) V; (h) NI;
(i) opposite

25. (b) −20 cm; (c) minus; (d) +5.0 cm; (e) mi-
nus; (f) +0.80; (g) V; (h) NI; (i) opposite

26. (a) concave; (b) +8.0 cm; (c) +16 cm;
(d) +12 cm; (f) minus; (g) R; (i) same

27. (a) convex; (c) −60 cm; (d) +30 cm;
(f) +0.50; (g) V; (h) NI; (i) opposite

28. (a) concave; (b) plus; (c) +40 cm;
(e) +30 cm; (f) −0.50; (g) R; (h) I

29. (a) concave; (b) +8.6 cm; (c) +17 cm;
(e) +12 cm; (f) minus; (g) R; (i) same

30. (a) concave; (b) +16 cm; (c) +32 cm;
(e) +28 cm; (g) R; (h) I; (i) same

31. (a) convex; (b) minus; (c) −60 cm;
(d) +1.2m; (e) −24 cm; (g) V; (h) NI;
(i) opposite

32. (a) 2.00; (b) none
33. 7.4 cm
34. (d) −18 cm; (e0 V; (f) same
35. (c) −33 cm; (e) V; (f) same
36. (b) +71 cm; (e) R; (f) opposite
37. (c) +30; (e) V; (f) same
38. (b) +10 cm; (e) V; (f) same
39. (d) −26 cm; (e) V; (f) same
40. (a) 1.0; (e) R; (f) opposite
41. 1.86mm
42. +43 cm
43. (a) 45mm; (b) 90mm
44. −16 cm
45. (a) +40 cm; (b) ∞
46. −2.5
47. 5.0mm
48. +0.30
49. 22 cm
50. (a) +5.3 cm; (b) −0.33; (c) R; (d) I;

(e) opposite
51. (a) −48 cm; (b) +4.0; (c) V; (d) NI;

(e) same
52. (a) −3.8 cm; (b) +0.38; (c) V; (d) NI;

(e) same
53. (a) −4.8 cm; (b) +3.5; (c) V; (d) NI;

(e) same
54. (a) −88 cm; (b) +3.5; (c) V; (d) NI;

(e) same
55. (a) −8.6 cm; (b) +0.39 (c) V; (d) NI;

(e) same
56. (a) −8.7 cm; (b) +0.72; (c) V; (d) NI;

(e) same
57. (a) +36 cm; (b) −0.80; (c) R; (d) I; (e) op-

posite
58. (a) converging; (b) 26.7 cm; (c) 8.89 cm
59. (a) +84 cm; (b) −1.4; (c) R; (d) I; (e) op-

posite
60. (a) −26 cm; (b) +4.3; (c) V; (d) NI;

(e) same
61. (a) −18 cm; (b) +0.76; (c) V; (d) NI;

(e) same
62. (a) −9.7 cm; (b) +0.54; (c) V; (d) NI;

(e) same
63. (a) −30 cm; (b) +0.86; (c) V; (d) NI;

(e) same
64. (a) −63 cm; (b) +2.2; (c) V; (d) NI;

(e) same
65. (a) +55 cm; (b) −0.74; (c) R; (d) I; (e) op-

posite
66. (a) −15 cm; (b) +1.5; (c) V; (d) NI;

(e) same
67. (a) +7.5 cm; (b) +0.75; (c) V; (d) NI;

(e) same
68. (a) −9.2 cm; (b) +0.92; (c) V; (d) NI;

(e) same
69. (a) C; (b) plus; (d) −13 cm; (e) +1.7; (f) V;

(g) NI; (h) same
70. (a) D; (b) minus; (d) −5.7 cm; (e) +0.71;

(f) V; (h) same
71. (a) D; (b) −5.3 cm; (d) −4.0 cm; (f) V;

(g) NI; (h) same
72. (a) C; (b) +3.2 cm; (d) +4.0 cm; (f) R;

(g) I; (h) opposite
73. (a) C; (b) +80 cm; (d) −20 cm; (f) V;

(g) NI; (h) same
74. (b) plus; (d) +20 cm; (e) −1.0 (f) R; (g) I;

(h) opposite
75. (a) C; (d) −10 cm; (f) V; (g) NI; (h) same
76. (a) C; (b) plus; (d) −10 cm; (e) +2.0 cm;

(f) V; (g) NI; (h) same
77. (a) D; (b) minus; (d) −3.3 cm; (e) 0.67;

(f) V; (g) NI
78. (a) D; (b) −10 cm; (d) +5.0 cm; (f) V;

(h) same
79. (a) C; (b) +3.3 cm; (d) +5.0 cm; (f) R;

(g) I; (h) opposite
80. (a) +10 cm; (b) −0.75; (c) R; (d) I; (e) op-

posite
81. (a) +24 cm; (b) +6.0; (c) R; (d) NI; (e) op-

posite
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82. (a) −23 cm; (b) −13; (c) V; (d) I; (e) same
83. (a) +3.1 cm; (b) −0.31; (c) R; (d) I;

(e) opposite
84. (a) +9.8 cm; (b) −0.27; (c) R; (d) I;

(e) opposite
85. (a) −4.6 cm; (b) +0.69; (c) V; (d) NI;

(e) same
86. (a) −3.4 cm; (b) −1.1; (c) V; (d) I; (e) same
87. (a) −5.5 cm; (b) +0.12; (c) VR; (d) NI;

(e) same
88. 2.1mm
89. (a) 13.0 cm; (b) 5.23 cm; (c) −3.25; (d) 3.13;

(e) −10.2
90. (a) 3.5; (b) 2.5
91. (a) 2.35 cm; (b) decrease
92. −125
93. (a) 5.3 cm; (b) 3.0mm
94. (a) 20 cm; (b) 60 cm; (c) 80 cm; (d) 1.0m

95. (a) 5.8mm; (b) 1.6 kW/m
2
; (c) 4.0 cm

96. −21 cm
97. (a) 3.00 cm; (b) 2.33 cm
98. (a) 2f1; (b) −1.0; (c) real; (d) left; (e) in-

verted
99. 2.2mm2

100. (a) 40 cm; (b) real; (c) 80 cm; (d) real;
(e) 2.4m; (f) real; (g) −40 cm; (h) virtual;
(i) −80 cm; (j) virtual; (k) −2.4 cm; (l) vir-
tual

101. (a) 20 cm; (b) 15 cm
102. (a) 3; (b) 7; (c) 5; (d) 1; (e) 3
107. (a) 0.15m; (b) 0.30mm; (c) no
108. (a) 80 cm; (b) 0 to 12 cm
109. (b) Pn
111. (a) 40 cm; (b) 20 cm; (c) −40 cm; (d) 40 cm
113. (a) +7.5 cm; (b) −0.75; (c) R; (d) I;

(e) opposite
114. (a) +10 cm; (b) +0.75; (c) R; (d) NI;

(e) opposite
115. (a) +8.6 cm; (b) 2.6; (c) R; (d) NI; (e) op-

posite
116. (a) −4.0 cm; (b) −1.2; (c) V; (d) I; (e) same
117. (a) +24 cm; (b) −0.58; (c) R; (d) I; (e) op-

posite
118. (a) −5.2 cm; (b) +0.29; (c) V; (d) NI;

(e) same
119. (b) 8.4mm; (c) 2.5 cm
121. (a) (0.5)(2 − n)x/(n− 1); (b) right
122. 1.14
123. (a) +36 cm; (b) 1.3 cm; (c) real; (d) inverted

124. (a) −30 cm; (b) not inverted; (c) virtual;
(d) 1.0

125. (a) −50 cm; (b) 5.0; (c) virtual; (d) inverted
126. (a) −12 cm
128. +10.0 cm
129. 2.67 cm
130. (a) 8.0 cm; (b) 16 cm; (c) 48 cm
131. (a) convex; (b) 1.60m
132. 28.0 cm
133. (a) 3.33 cm; (b) left; (c) virtual; (d) not in-

verted
134. (a) 3.00 cm; (b) left; (c) virtual; (d) not in-

verted
137. (a) 0.60m; (b) 0.20; (c) real; (d) left (e) not

inverted
138. (a) 1.50 cm; (b) negative; (c) virtual
139. 42mm
140. (a) α = 0.500 rad: 7.799 cm; α = 0.100 rad:

8.544 cm; α = 0.0100 rad: 8.571 cm; mir-
ror equation: 8.571 cm; (b) α = 0.500 rad:
−13.56 cm; α = 0.100 rad: 12.05 cm; α =
0.0100 rad: −12.00 cm;
mirror equation: −12.00 cm

Chapter 35

1. 4.55 × 107m/s
2. (a) 5.09× 1014 Hz; (b) 388 nm;
(c) 1.97 × 108m/s

3. 1.56
4. 2.0× 108m/s
5. (a) 155 nm; (b) 310 nm
6. (a) 0.25; (b) 0.75; (c) 1.25
7. (a) 3.60µm; (b) intermediate, closer to fully
constructive interference

8. (a) 2; (b) 0.03
9. (a) 1.55µm; (b) 4.65µm
10. (a) 50◦; (b) 0.14 ps
11. (a) 1.70; (b) 1.70; (c) 1.30; (d) all tie
12. (a) 52.50 nm; (b) 157.5 nm
13. (a) 0.833; (b) intermediate, closer to fully

constructive interference
14. (a) 0.010 rad; (b) 5.0mm
15. 648 nm
16. (a) 0.216 rad; (b) 12.4◦

17. 16
18. (a) 2.90; (b) 18.2 rad; (c) between m = 2

minimum (third minimum from the center)
and m = 3 maximum (third maximum to
one side of center maximum)
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19. 2.25mm
20. 0.15◦

21. 72µm
22. (a) 600 nm to 700 nm; (b) decreased;

(c) 0.20µm
23. 0
24. 7.5
25. 7.88µm
26. (a) 0; (b) 0; (c) ∞; (d) 6.00; (e) 1.71;

(f) intermediate, closer to minimum
27. 6.64µm
28. 3.5µm
29. 2.65
30. 17 sin(ωt+ 13◦)
31. 27 sin(ωt+ 8.5◦)
32. (a) between central maximum and first min-

imum (m = 0); (b) 0.101
33. (17.1µV/m) sin[(2.0 × 1014 rad/s)t]
34. (a) 2.33µV/m; (b) 0.338; (c) between m =

6 maximum (sixth side maximum) andm =
6 minimum (seventh minimum); (d) 1.26×
1015 rad/s; (e) 39.6 rad

35. (a) 0.117µm; (b) 0.352µm
36. (a) 4; (b) 3
37. 70.0 nm
38. (a) 567 nm; (b) 425 nm; (c) longer
39. 120 nm
40. 840 nm
41. 560 nm
42. 608 nm
43. 409 nm
44. 455 nm
45. 509 nm
46. 528 nm
47. 478 nm
48. 339 nm
49. 273 nm
50. 248 nm
51. 161 nm
52. 329 nm
53. 338 nm
54. 673 nm
55. (a) 552 nm; (b) 442 nm
56. 450 nm
57. 608 nm
58. 560 nm
59. 455 nm
60. 409 nm
61. 528 nm

62. 509 nm
63. 339 nm
64. 478 nm
65. 248 nm
66. 273 nm
67. 161 nm
68. 329 nm
69. 140
70. 11
71. 1.89µm
72. 1.00025
73. 0.012◦

74. (a) 10.3m/s; (b) 1.09µm
75.
0
(m+ 1/2)λR, for m = 0, 1, 2, . . .

76. (a) 34; (b) 46
77. 1.00m
78. 1.67 × 10−11m3/s
79. 588 nm
80. 5.2µm
81. 1.00030
82. 0.345mm
83. (a) 50.0 nm; (b) 36.2 nm
84. (a) 2.90; (b) intermediate, closer to fully

constructive
85. (a) 22◦; (b) refraction reduces θ
86. (a) 1.6; (b) 1.4
87. 0.032%
88. (a) ∞; (b) 0; (c) 0; (d) 6.00; (e) 5.80;

(f) intermediate, closer to maximum
89. (b) 51.6 ns
90. (a) 1.8; (b) 2.2; (c) 1.25
91. x = (D/2a)(m + 0.5)λ, for m = 0, 1, 2, . . .
92. (a) 1500 nm; (b) 2250 nm; (c) 0.80
93. 1.95 × 108m/s
94. 450 nm
95. 0.23◦

96. 310.0 nm
97. (a) 1.6 rad; (b) 0.79 rad
98. (a) 411.4◦; (b) 51.4◦

99. 6.4m
100. (a) dark; (b) dark; (c) 4
101. (a) 110 nm; (b) 220 nm
102. 8.0µm
103. (a) 169 nm; (b) they are reflected; (c) blue-

violet will be sharply reduced
104. (a) 1; (b) 4.0 fs; (c) 7.5
105. (a) 0.87; (b) intermediate, closer to maxi-

mum brightness; (c) 0.37; (d) intermediate,
closer to complete darkness
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106. (a) 48.6◦; (b) away; (c) 1.49m
107. (a) 1.75µm; (b) 4.8mm
108. 33µm
109. (a) 42.0 ps; (b) 42.3 ps; (c) 43.2 ps;

(d) 41.8 ps; (e) 4
110. 492 nm
111. 600 nm
113. 0.20
114. 2.4µm
115. Im cos

2(2πx/λ)
116. 2.1× 108m/s
117. (a) 0.253mm; (b) 2.5λ minimum
118. (a) 39.6; (b) intermediate, closer to com-

plete darkness
119. (a) 88%; (b) 94%
120. (a) 1.80µm; (b) 9
121. I = I0[1 + 8 cos

2(φ/2)],
with φ = (2πd/λ) sin θ

122. (a) 0; (b) fully constructive; (c) increase;
(d) fully constructive; (e) ∞; (f) fully de-
structive; (g) 7.88µm; (h) fully construc-
tive; (i) 3.75µm; (j) fully destructive;
(k) 2.29µm; (l) fully constructive;
(m) 1.50µm; (n) fully destructive;
(o) 0.975µm

Chapter 36

1. 60.4µm
2. (a) 0.430◦; (b) 0.118mm
3. (a) 700 nm; (b) 4; (c) 6
4. (a) decrease; (b) 11◦; (c) 0.23◦

5. (a) 70 cm; (b) 1.0mm
6. (a) 2.5mm; (b) 2.2 × 10−4 rad
7. 1.77mm
8. 24.0mm
9. 160◦

10. (a) 2.33µm; (b) 6; (c) 15.2◦; (d) 51.8◦

11. (a) 0.18◦; (b) 0.46 rad; (c) 0.93
12. (a) 0.256; (b) between the center and the

first minimum
13. (d) 52.5◦, 10.1◦, 5.06◦

15. (b) 0; (c) −0.500; (d) 4.493 rad; (e) 0.930
(f) 7.725 rad; (g) 1.96

16. 31µm
17. (a) 1.3× 10−4 rad; (b) 10 km
18. (a) 50m; (b) no; (c) light pollution on the

night side of Earth would be a sure sign
19. 50m

20. 30m
21. (a) 1.1× 104 km; (b) 11 km
22. 53m
23. (a) 19 cm; (b) larger
24. (a) 17.1m; (b) 1.37 × 10−10
25. (a) 0.346◦; (b) 0.97◦

26. 27 cm
27. (a) 8.8× 10−7 rad; (b) 8.4× 107 km;

(c) 0.025mm
28. (a) red; (b) 0.13 nm
29. 5
30. 3
31. (a) 4; (b) every fourth bright fringe is miss-

ing
32. λD/d
33. (a) 9; (b) 0.255
34. (a) 11.1µm; (b) 51; (c) 0; (d) 79.0◦

35. (a) 5.0µm; (b) 20µm
36. (a) 7.43 × 10−3; (b) between the m = 6

minimum (the seventh one) and the m =
7 maximum (the seventh side maximum);
(c) between the m = 3 minimum (the third
one) and the m = 4 minimum (the fourth
one)

37. (a) 62.1◦; (b) 45.0◦; (c) 32.0◦

38. 635 nm
39. 3
40. 2µm
41. (a) 6.0µm; (b) 1.5µm; (c) 9; (d) 7; (e) 6
42. (a) 3; (b) 0.051◦

43. 1.09 × 103 rulings/mm
44. 523 nm
45. 470 nm to 560 nm
48. (a) 23 100; (b) 28.7◦

49. (a) 0.032◦/nm; (b) 4.0×104; (c) 0.076◦/nm;
(d) 8.0× 104; (e) 0.24◦nm; (f) 1.2× 105

50. 491
51. 3.65 × 103
52. (a) 56 pm; (b) none
53. (a) 10µm; (b) 3.3mm
54. (a) tan θ; (b) 0.89
55. 0.26 nm
56. 6.8◦

57. (a) 25 pm; (b) 38 pm
58. 39.8 pm
59. (a) 0.17 nm; (b) 0.13 nm
60. 0.570 nm
61. (a) 0.7071a0; (b) 0.4472a0; (c) 0.3162a0;

(d) 0.2774a0; (e) 0.2425a0
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62. 130 pm; (b) 3; (c) 97.2 pm; (d) 4
63. (a) 15.3◦; (b) 30.6◦; (c) 3.1◦; (d) 37.8◦

64. 13
65. 41.2m
66. (a) 1.3× 10−4 rad; (b) 21m
67. 4.7 cm
68. 4× 10−13
70. 164
71. (a) 80 cm; (b) 1.8mm
72. (a) 2.4µm; (b) 0.80µm; (c) 2
73. (a) 625 nm; (b) 500 nm; (c) 416 nm
74. 1.6× 103 km
75. 691 nm
76. (a) 2.1◦; (b) 21◦; (c) 11
77. 106◦

78. 500 nm
79. 3.0mm
80. 9.0
81. (a) fourth; (b) seventh
82. 1.41
83. (a) 6.8◦; (b) no
84. 2.9◦

85. 2.27m
86. 11
87. 0.15 nm
88. (a) 32 cm; (b) 2.7m; (c) The required aper-

ture is too large; the fine-scale resolution is
due to “computer enhancement” in which a
computer removes much of the blurring due
to turbulence.

89. 53.4 cm
90. 2
91. 9
92. 59.5 pm
93. (a) 13; (b) 6
94. 6.1mm
96. 11
97. 4.9 km
98. 3.3
99. 1.36 × 104
100. 4.84 × 103
101. 36 cm
102. 30.5µm
106. 2
114. θ = 0.143 rad, I/Im = 4.72 × 10−2;

θ = 0.247 rad, I/Im = 1.65 × 10−2;
θ = 0.353 rad, I/Im = 8.35 × 10−3

Chapter 37

1. 0.990 50
2. (a) 0.140 370 76; (b) 0.994 987 44;
(c) 0.999 950 00; (d) 0.999 999 50

3. 2.68 × 103 y
4. 0.9959
5. 0.446 ps
6. 40 s
7. (a) 0.999 999 50
8. 1.53 cm
9. (a) 87.4m; (b) 394 ns
10. 0.63m
11. 1.32m
12. (a) 0.866; (b) 2.00
13. (a) 26 y; (b) 52 y; (c) 3.7 y
14. 0.25m
15. (a) 0.999 999 15; (b) 30 ly
16. (a) 0; (b) 2.29 s; (c) 6.54× 108m; (d) 3.16 s
17. (a) 138 km; (b) −374µs
18. (a) 0; (b) −2.5µs; (c) reverse
19. (a) 25.8µs; (b) small flash
20. 2.40µs
21. (a) 1.25; (b) 0.800µs
22. (a) 09.500m; (b) 1.00m; (c) 1.00m;

(d) 19.2m; (e) 35.5 ns; (f) event 2
23. (a) 0.480c; (b) negative; (c) big flash;

(d) 4.39µs
24. 0.63µs
25. (a) γ[1.00µs−β(400m)/(2.998×108 m/s)];

(d) 0.750; (e) 0 < β < 0.750; (f) 0.750 <
β < 1; (g) no

26. (a) γ[400m− βc(1.00µs)]; (d) 0.750;
(e) 265m

27. 0.81c
28. 0.588
29. (a) 0.35; (b) 0.62
30. (a) 0.84c î; (b) 1.1c î; (c) 0.21c î; (d) 0.15c î
31. 1.2µs
32. (a) −0.36c; (b) −c
33. (a) 1.25 yr; (b) 1.60 yr; (c) 4.00 yr
34. (a) 7000 km/s; (b) away
35. 22.9MHz
36. (a) 1× 106m/s; (b) receding
37. 0.13c
38. 2.97 nm
39. (a) 550 nm; (b) yellow
40. (a) 79.1 keV; (b) 3.11MeV; (c) 10.9MeV
41. (a) 196.695; (b) 0.999 987
42. 8.12MeV
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43. (a) 1.0 keV; (b) 1.1MeV
44. 7.28MeV
45. (a) 0.222 cm; (b) 701 ps; (c) 7.40 ps
46. (a) 1.2× 108 N; (b) truck or train; (c) 25N;

(d) backpack
47. 2.83mc
48. (a) 1.001 957; (b) 0.0624 695 2;

(c) 2.956 951; (d) 0.941 079 23;
(e) 1.957 951 4 × 103; (f) 0.999 999 87

49. 18 smu/y
50. (a) 20.57; (b) 0.9988; (c) 1.011; (d) 0.1448;

(e) 1.003; (f) 0.0731,
51. (a) 0.707; (b) 1.41; (c) 0.414
52. (a) 0.439; (b) 0.866
53. 1.01 × 107 km
54. (c) 207
55. 110 km
56. (a) mv2/2 + 3mv4/8c2; (b) 1.0 × 10−16 J;

(c) 1.9×10−19 J; (d) 2.6×10−14 J; (e) 1.3×
10−14 J; (f) 0.37

57. (a) γ(2πm/|q|B); (b) no; (c) 4.85mm;
(d) 15.9mm; (e) 16.3 ps; (f) 0.334 ns

58. (a) 0.948; (b) 226MeV; (c) 314MeV/c
59. (a) 2.08MeV; (b) −1.21MeV
60. (a) γ[1.00µs−β(240m)/(2.998×108 m/s)];

(d) 0.801; (e) 0.599µs; (f) yes
61. (d) 0.801
62. 0.79m
63. (a) vt sin θ; (b) t[1− (v/c) cos θ]; (c) 3.24c
64. (a) −0.86c; (b) −c
65. (a) 1.93m; (b) 6.00m; (c) 13.6 ns;

(d) 13.6 ns; (e) 0.379m; (f) 30.5m;
(g) −101 ns; (h) no; (i) 2; (k) no; (l) both

66. (a) 2.59µs; (b) 0.572µs; (c) 2.59µs;
(d) 16.0µs

68. (a) 1/9; (b) +0.80; (c) +0.80c
69. (b) +0.44c
70. 0.999 90
71. 6.4 cm
72. 7
73. 55m
74. (a) 5.71GeV; (b) 6.65GeV; (c) 6.58GeV/c;

(d) 3.11MeV; (e) 3.62MeV; (f) 3.59MeV/c
75. 8.7× 10−3 ly
76. (a) 1/

0
τ0(1− v2/c2)

77. 0.678c
78. (a) 2.21× 10−12; (b) 5.25 d
79. 0.95c
80. 0.27c

81. 2.46MeV/c
82. (a) 2.24× 10−13 s; (b) 64.4µm
83. 189MeV
84. (a) 1.87× 104 km/s
85. (a) 2.7×1014 J; (b) 1.8×107 km; (c) 6.0×106
86. (a) 256 kV; (b) 0.745c
87. (a) 5.4× 104 km/h; (b) 6.3× 10−10
88. 0.75

Chapter 38

1. 2.1µm, infrared
2. 2.11 eV
3. 1.0× 1045 photons/s
4. 1.7× 1021 photons/m2 · s
5. 2.047 eV
6. 8.6× 105m/s
7. 4.7× 1026 photons
8. 3.6× 10−17W
9. (a) infrared lamp; (b) 1.4× 1021 photons/s
10. (a) 3.61 kW; (b) 1.00 × 1022 photons/s;

(c) 60.2 s
11. (a) 2.96× 1020 photons/s; (b) 4.86× 107m;

(c) 5.89 × 1018 photons/m2 · s
12. 3.3× 1018 photons/s
13. 170 nm
14. barium and lithium
15. 676 km/s
16. 10 eV
17. (a) 1.3V; (b) 6.8 × 102 km/s
18. 233 nm
19. (a) 2.00 eV; (b) 0; (c) 2.00V;

(d) 295 nm
20. 1.07 eV
21. (a) 382 nm; (b) 1.82 eV item22.(a) 4.12 ×

10−15 eV · s; (b) 2.27 eV; (c) 545 nm
23. (a) 3.1 keV; (b) 14 keV
24. 9.68 × 10−20A
25. (a) 2.73 pm; (b) 6.05 pm
26. (a) 0.511MeV/c; (b) 2.43 pm; (c) 1.24 ×

1020 Hz
27. (a) 8.57× 1018 Hz; (b) 3.55× 104 eV;

(c) 35.4 keV/c
28. (a) +4.86 pm; (b) −40.6 keV; (c) 40.6 keV;

(d) 0◦

29. (a) 2.43 pm; (b) 1.32 fm; (c) 0.511MeV;
(d) 939MeV

30. (a) 2.43 pm; (b) 4.86 pm; (c) 0.255MeV
31. (a) −8.1× 10−9%; (b) −4.9× 10−4%;
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(c) −8.8%; (d) −66%
32. 2.64 fm
33. 300%
34. 1.12 keV
35. (a) 2.43 pm; (b) 4.11 × 10−6; (c) −8.67 ×

10−6 eV; (d) 2.43 pm; (e) 9.78 × 10−2;
(f) −4.45 keV

37. (a) 41.8 keV; (b) 8.2 keV
38. 44◦

39. 7.75 pm
40. (a) 0.0388 nm; (b) 1.24 nm;

(c) 9.06 × 10−13 nm
41. 4.3µeV
42. (a) 3.96× 106m/s; (b) 81.7 kV
43. (a) 1.24µm; (b) 1.22 nm; (c) 1.24 fm;

(d) 1.24 fm
44. (a) 3.3× 10−24 kg ·m/s; (b) 3.3× 10−24 kg ·

m/s; (c) 38 eV; (d) 6.2 keV
45. (a) 1.9× 10−21 kg ·m/s; (b) 346 fm
46. (a) 1.24 keV; (b) 1.50 eV; (c) 1.24GeV;

(d) 1.24GeV
47. 0.025 fm; (b) 2.0× 102
48. (a) 5.2 fm; (b) no, the de Broglie wavelength

is much less than the distance of closest ap-
proach

49. neutron
50. (a) 15 keV; (b) 120 keV
51. 9.76 kV
58. (d) x = n(λ/2), where n = 0, 1, 2, 3, . . .
59. 2.1× 10−24 kg ·m/s
60. (a) 124 keV; (b) 40.5 keV
62. 5.1 eV
63. (a) 9.02 × 10−6; (b) 3.0MeV; (c) 3.0MeV;

(d) 7.33× 10−8; (e) 3.0MeV; (e) 3.0MeV
64. (a) 10104 years; (b) 2× 10−19 s
65. (a) −20%; (b) −10%; (c) +15%
66. 4.14 × 10−15 eV · s; (b) 2.31 eV
67. 5.9µeV
68. (a) no; (b) 544 nm, green
69. (a) 73 pm; (b) 3.4 nm; (c) yes, their average

de Broglie wavelength is smaller than their
average separation

70. (a) 38.8meV; (b) 146 pm
72. T = 10−x, where x = 7.2 × 1039 (T is very

small)
73. 0.19m
74. (a) no; (b) plane wavefronts of infinite ex-

tent, perpendicular to the x axis
75. 1.7× 10−35m

81. (a) cesium; (b) both
82. 4.14 eV · fs

Chapter 39

1. 1.41
2. (a) 9.42 eV; (b) 5.13 × 10−3 eV
3. 1.9GeV
4. 0.020 eV
5. 0.85 nm
6. 90.3 eV
7. 0.65 eV
8. (a) 13; (b) 12
9. 68.7 nm, 25.8 nm, 13.7 nm
10. (a) 11; (b) 10
11. (a) 72.2 eV; (b) 13.7 nm; (c) 17.2 nm;

(d) 68.7 nm; (e) 41.2 nm; (g) 68.7 nm;
(h) 25.8 nm

12. 350 pm
13. (a) 0.050; (b) 0.10; (c) 0.0095
14. (a) 0.091; (b) 0.091; (c) 0.82
15. 59 eV
16. 280 eV
18. 0.734 eV
19. 3.08 eV
20. (a) 1.25; (b) 2.00; (c) 5.00; (d) 1.00
21. (a) 8; (b) 0.75; (c) 1.00; (d) 1.25; (e) 3.75;

(f) 3.00; (g) 2.25
22. (a) 3.00; (b) 9.00; (c) 2.00; (d) 3; (e) 6
23. (a) 7; (b) 1.00; (c) 2.00; (d) 3.00; (e) 9.00;

(f) 8.00; (g) 6.00
24. 1.17 eV
25. 4.0
26. 2.6 eV
27. (a) 12.1 eV; (b) 6.45 × 10−27 kg ·m/s;

(c) 102 nm
28. (a) −3.4 eV; (b) 3.4 eV
30. (a) 0; (b) 10.2 nm−1; (c) 5.54 nm−1

31. (a) 291 nm−3; (b) 10.2 nm−1

32. (a) 12.8 eV; (b) 6; (c) 12.8 eV; (d) 12.1 eV;
(e) 10.2 eV; (f) 0.661 eV; (g) 1.89 eV;
(h) 2.55 eV

33. (a) 13.6 eV; (b) 3.40 eV
34. 4.1m/s
35. (a) 13.6 eV; (b) −27.2 eV
36. (a) 31 nm; (b) 8.2× 1014 Hz; (c) 0.29µm;

(d) 3.7× 1014 Hz
38. (a) 2; (b) 1; (c) Lyman
39. 0.68
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40. (a) 2.6 eV; (b) 4; (c) 2
42. 0.439
43. (a) (r4/8a5)e−r/a cos2 θ;

(b) (r4/16a5)e−r/a sin2 θ
44. (a) 3; (b) 1; (c) Lyman
45. (a) 0.0037; (b) 0.0054
46. 4.3× 103
48. (c) (r2/8a3)(2− r/a)2e−r/a
50. (a) 1.3× 10−19 eV; (b) 1.2× 1019; (c) 1.2×

1013; (d) yes
51. (a) n; (b) 2f+ 1; (c) n2

52. (b) ±(2π/h)√2mE
53. (b) (2π/h)

0
2m (U0 −E)

54. (b) no; (c) no; (d) yes
55. (b) meter−2.5

57. (a) 4; (b) 2; (b) Balmer
58. (a) 658 nm; (b) 366 nm

Chapter 40

1. (a) 3; (b) 3
2. (a) 14; (b) 6; (c) 6; (d) 2
3. (a) 3.65× 10−34 J · s; (b) 3.16 × 10−34 J · s
4. (a) 32; (b) 2; (c) 18; (d) 8
5. 24.1◦

6. (a) 3; (b) 2; (c) 14
7. (a) 4; (b) 5; (c) 2
8. 50
9. (a) 3.46; (b) 3.46; (c) 3; (d) 3; (e) −3;
(f) 30.0◦; (g) 54.5◦; (h) 150◦

10. (a) 3; (b) 5; (c) 2; (d) 18; (e) 3
12. (a) 58µeV; (b) 14GHz; (c) 2.1 cm, short

radio wave region
13. (a) 54.7◦; (b) 125◦

14. (a) 1.5× 10−21 n; (b) 20µm
15. 72 km/s

2

16. 51mT
17. 5.35 cm
18. 19mT
19. 44
20. 17.25
21. (a) 51; (b) 53; (c) 56
22. (a) 18.00; (b) 18.25; (c) 19.00
23. 42
24. (a) 45; (b) 47; (c) 48
25. (a) 4p; (b) 4; (c) 4p; (d) 5; (e) 4p; (f) 6
26. (a) (1, 0, 0, +1/2); (b) (1, 0, 0, −1/2)
27. (a) (2, 0, 0, +1/2), (2, 0, 0, −1/2);

(b) (2, 1, 1, +1/2), (2, 1, 1, −1/2),

(2, 1, 0, +1/2), (2, 1, 0, −1/2),
(2, 1, −1, +1/2), (2, 1, −1, −1/2)

28. (a) 15; (b) 21

30. 12.4 kV

31. 49.6 pm, 99.2 pm

32. (a) 5.7 keV; (b) 87 pm; (c) 14 keV;

(d) 220 pm; (e) 5.7 keV

33. (a) 35.4 pm; (b) 56.5 pm; (c) 49.6 pm

34. 6.44 keV

36. (a) 24.8 pm; (b) same

37. 0.563

38. 2.2 keV

39. (a) 69.5 kV; (b) 17.8 pm; (c) 21.3 pm;

(d) 18.5 pm

41. 80.3 pm

42. (a) (Z−1)2/(ZI−1)2; (b) 57.5; (c) 2.07×103
43. (a) −24%; (b) −15%; (c) −11%;

(d) −7.9%; (e) −6.4%; (f) −4.7%;
(g) −3.5%; (h) −2.6%; (i) −2.0%;
(j) −1.5%

44. 1.3× 1015 moles
45. (a) 3.60mm; (b) 5.25 × 1017
46. 1.0× 104K
47. 9.0× 10−7
48. −2.75 × 105K
49. 7.3× 1017 s−1
50. 4.7 km

51. 2× 107
52. 2.0× 1016 s−1
53. (a) 3.03×105; (b) 1.43GHz; (d) 3.31×10−6
54. 1.8 pm

55. (a) 0; (b) 68 J

56. (a) 7.33µm; (b) 7.07 × 105W/m2;
(c) 2.49 × 1010W/m2

57. (a) 2.13meV; (b) 18T

58. (a) 4.3µm; (b) 10µm; (c) infrared

59. (a) no; (b) 140 nm

60. (a) 6.9µeV; (b) radio waves

62. (a) 20 keV; (b) 18 keV; (c) Zr; (d) Nb

63. (a) 6.0; (b) 3.2× 106 y
64. (a) 2.55 s; (b) 0.50 ns; (c) (4.5 × 10−4)◦ or

1.6” of arc

67. argon

68. (a) 3× 1074; (b) 6× 1074; (c) 6× 10−38 rad
69. n > 3; f = 3; mf = +3, +2, +1, 0, −1, −2,
−3; ms = ±1/2
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Chapter 41

1. 8.49 × 1028m−3
3. (b) 6.81× 1027m−3 · eV−3/2;
(c) 1.52 × 1028m−3 · eV−1

4. 5.90 × 1028m−3
5. (a) 0; (b) 0.0955
6. 1.9× 1028m−3 · eV−1
8. 0.91
9. (a) 2.50× 103K; (b) 5.30 × 103K
10. 5.52 eV
11. (a) 6.81 eV; (b) 1.77 × 1028m−3 · eV−1;

(c) 1.59 × 1028m−3 · eV−1
12. (a) 90.0%; (b) 12.5%; (c) sodium
13. (a) 1.36× 1028m−3 · eV−1;

(b) 1.68× 1028m−3 · eV−1;
(c) 9.01 × 1027m−3 · eV−1;
(d) 9.56× 1026m−3 · eV−1;
(e) 1.71 × 1018m−3 · eV−1

15. (a) 1.0; (b) 0.99; (c) 0.50; (d) 0.014; (e) 2.4
×10−17; (f) 700K

16. about 10−42

17. 3
18. (a) 2.7× 1025m−3; (b) 8.43× 1028m−3;

(c) 3.1 × 103; (d) 3.3 nm; (E) 0.23 nm
19. (a) 5.86× 1028m−3; (b) 5.49 eV; (c) 1.39×

103 km/s; (d) 0.522 nm
20. 57meV
22. (a) 1.31× 1029m−3; (b) 9.43 eV;

(c) 1.82 × 103 km/s; (d) 0.40 nm
23. 57.1 kJ
24. (a) 0.0055; (b) 0.018
25. 472K
26. (a) 19.7 kJ; (b) 197 s
27. (a) 226 nm; (b) ultraviolet
28. (a) +3e; (b) +5e; (c) 2
29. (a) 1.5× 10−6; (b) 1.5× 10−6
31. 0.22µg
32. (a) n-type; (b) 5× 1021m−3; (c) 2.5× 105
33. (a) 4.79× 10−10; (b) 0.0140; (c) 0.824
34. (a) above; (b) 0.744 eV; (c) 7.13 × 10−7
35. 6.0× 105
36. (b) 2.5× 108
37. 4.20 eV
38. opaque
39. 13µm
40. (a) 5.0× 10−17 F; (b) 3.1× 102
41. (b) 1.8× 1028m−3 · eV−1
42. 0.03
43. (a) 109.5◦; (b) 238 pm

46. (a) +8×10−11 Ω·m/K; (b) −2×102 Ω·m/K
47. 3.49 × 103 atm

Chapter 42

1. 15.8 fm
2. 1.3× 10−13m
3. (a) 0.390MeV; (b) 4.61Mev
4. (a) 6; (b) 8
5. (a) +7.825 × 10−3U; (b) +7.290MeV/c2;
(c) +8.664×10−3 u; (d) +8.071MeV/c2; (e)
−9.780 × 10−2 u; (f) −91.10MeV/c2

6. (a) yttrium; (b) iodine; (c) 50; (d) 74; (e)
19

7. 13 km
8. (a) blow apart; (b) 1.15GeV;
(c) 12.2MeV/proton;
(d) 4.81MeV/nucleon; (e) strong force is
strong

9. (a) 2.3× 1017 kg/m3; (b) 2.3× 1017 kg/m3;
(d) 1.0× 1025 C/m3; (e) 8.8× 1024 C/m3

10. (b) 0.05%; (c) 0.81%; (d) 0.81%; (e) 0.74%;
(f) 0.71%; (g) no

11. (a) 6.2 fm; (b) yes
12. 7.31MeV
13. (a) 9.303%; (b) 11.71%
14. (a) 19.8MeV; (b) 6.26MeV; (c) 2.23MeV;

(d) 28.3MeV; (e) 7.07MeV; (f) no
16. 1.6× 1025MeV
18. 1.0087 u
19. (b) 7.92MeV
20. 0.49
21. (a) 0.250; (b) 0.125
22. 280 d
23. (a) 7.5× 1016 s−1; (b) 4.9× 1016 s−1
24. 3.0× 1019
25. (a) 64.2 h; (b) 0.125; (c) 0.0749
26. (a) 5.04× 1018; (b) 4.60 × 106 s−1
27. 5.3× 1022
28. 1× 1013 atoms
29. 9.0× 108 Bq
30. 3.2× 1012 Bq = 86Ci
31. (a) 2.0× 1020; (b) 2.8 × 109 s−1
32. (a) β− decay; (b) 8.2 × 107; (c) 1.2× 106
33. 265mg
34. 209 d
35. 1.12 × 1011 y
36. 87.9mg
38. 0.66 g
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39. (a) 8.88× 1010 s−1; (b) 1.19 × 1015;
(c) 0.111µg

40. (a) 4.25MeV; (b) −24.1MeV; (c) 28.3MeV
41. (a) 1.2× 10−17; (b)0
42. (a) −9.50MeV; (b) 4.66MeV;

(c) −1.30MeV
43. 4.269MeV
44. (a) 31.8MeV; (b) 5.98MeV; (c) 86MeV
45. 1.21MeV
46. (a) 0.90 pm; (b) 6.4 fm; (c) no; (d) yes
47. 0.783,Mev
49. (b) 0.961MeV
50. (b) 2.7× 1013W
51. 78.3 eV
52. 1.61 × 103 y
53. (a) 1.06× 1019; (b) 0.624× 1019; (c) 1.68×

1019; (d) 2.97× 109 y
54. 132µg
55. 1.8mg
56. 4.28 × 109 y
57. 1.02mg
58. 145Bq; (b) 3.92 nCi
59. 13mJ
60. (a) 18mJ; (b) 2.9mSv; (c) 0.29 rem
61. (a) 6.3× 1018; (b) 2.5 × 1011; (c) 0.20 J;

(d) 2.3mGy; (e) 30mSv
62. 3.87 × 1010K
63. (a) 6.6MeV; (b) no
64. (a) 18O, 60Ni, 92Mo, 144Sm, 207Pb;

(b) 40K, 91Zr, 121Sb, 143Nd;
(c) 13C, 40K, 49Ti, 205Tl, 207Pb

65. (a) 25.4MeV; (b) 12.8MeV; (c) 25.0MeV
66. (b) 1.00; (c) 70.8; (d) 0.0100; (e) 0.708;

(f) no
67. (a) 59.5 d; (b) 1.18
68. (a) 7× 107 electrons;

(b) (7× 107 electrons)e[−(ln 2)(D−1996)/T1/2].
where D is the current year and T1/2 =
30.2 y

69. 730 cm2

70. (a) 3.667 Bq; (b) 3.66 × 107 Bq; (c) 6.42 ng
71. 600 keV
72. 28.3MeV
73. 30MeV
74. 4.9× 1013 Bq
75. 3.2× 104 y
76. (b) 4n + 3; (c) 4n; (d) 4n + 2; (e) 4n + 3;

(f) 4n; (g) 4n+ 1; (h) 4n+ 2; (i) 4n+ 1;
(j) 4n+ 1

77. 7Li
79. 225Ac
80. (a) 4.8× 10−18 s−1; (b) 4.6 × 109 y
84. (a) 142Nd, 143Nd, 146Nd, 148Nd, 150Nd;

(b) 97Rb, 98Sr, 99Y, 100Zr, 100Sr, 101Nb,
102Mo, 103Tc, 105Rh, 109In, 110Sn, 111Sb,
112Te;
(c) 60Zn, 60Cu, 60Ni, 60Co, 60Fe, 60Mn,
60Cr, 60V

85. (a) 11.906 83 u; (b) 236.2025 u
86. 4× 10−22 s
87. 27

Chapter 43

1. 3.1× 1010 s−1
2. (a) 95Sr; (b) 95Y; (c) 134Te; (d) 3
3. (a) 2.6×1024; (b) 8.2×1013 J; (c) 2.6×104 y
4. 4.54 × 1026MeV
5. −23.0MeV
6. (a) +5.00MeV
7. (a) 16 fissions/day; (b) 4.3× 108
8. 181MeV
9. (a) 153Nd; (b) 110MeV; (c) 60MeV;
(d) 1.6× 107m/s; (e) 8.7 × 106m/s

10. (a) +25%; (b) 0; (c) −36%
11. (a) 252MeV; (b) typical fission energy is

200MeV
12. (a) 10; (b) 226MeV
13. 462 kg
14. yes
15. 557W
16. (a) 44 kton
17. (a) 1.2MeV; (b) 3.2 kg
19. (a) 84 kg; (b) 1.7 × 1025; (c) 1.3× 1025
20. 8.03 × 103MW
21. (b) 1.0; (c) 0.89; (d) 0.28; (e) 0.019; (f) 8
22. 1.6× 1016
23. 0.99938
24. (a) 75 kW; (b) 5.8 × 103 kg
25. 3.6× 109 y
27. 1.7× 109 y
29. 170 keV
30. (a) 170 kV
31. 1.41MeV
32. 0.151
35. (a) 4.3× 109 kg/s; (b) 3.1 × 10−4
37. (a) 1.8× 1038 s−1; (b) 8.2× 1028 s−1
38. (a) 4.0× 1027MeV; (b) 5.1× 1026MeV
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39. (a) 4.1 eV/atom; (b) 9.0MJ/kg; (c) 1.5 ×
103 y

41. 1.6× 108 y
42. 5× 109 y
43. (a) 24.9MeV; (b) 8.65megaton TNT
45. 14.4 kW
46. (a) 6.3× 1014 J/kg; (b) 6.2 × 1011 kg/s;

(c) 4.3 × 109 kg/s; (e) 1.5 × 1010 y
47. (a) 3.1×1031 protons/m3; (b) 1.2×106 times
48. 3.5MeV; (b) 14.1MeV
49. 238U+ n→ 239U→ 239Np+ e + ν,

239Np→ 239Pu+ e + ν
50. (b) 5.0× 105m/s
51. 6× 102 kg
54. (a) 30MeV; (b) 6MeV

Chapter 44

1. 18.4 fm
2. 2.4× 10−43
3. 1
4. π− −→ µ+ + ν
5. 2.7 cm/s
6. (a) 1.90× 10−18 kg ·m/s; (b) 9.90m
7. 769MeV
8. 31 nm
10. (a) 2e+, e−, 5ν, 4ν; (b) boson; (c) meson;

(d) 0
11. (a) angular momentum, Le; (b) charge, Lµ;

(c) energy, Lµ
12. b and d
13. (a) 0; (b) −1; (c) 0
14. (a) 605MeV; (b) −181MeV
15. (a) energy; (b) strangeness; (c) charge
17. (a) K+; (b) n; (c) K0

18. 338MeV
19. (a) 37.7MeV; (b) 5.35MeV; (c) 32.4MeV
20. (a) n; (b) Σ+; (c) Ξ−

21. (a) uud; (b) udd
22. (a) sud; (b) uss
23. (a) not possible; (b) uuu
25. Σ0, 7.51 km/s
26. 1.4× 1010 ly
27. 668 nm
28. 2.77 × 108 ly
29. (b) 0.934; (c) 1.28× 1010 ly
30. (b) 5.7H atoms/m3

31. (a) 0.26µmeV; (b) 4.8mm
32. 102MS

33. (a) 121m/s; (b) 0.00406; (c) 248 y
34. (b) 2πr3/2/

√
GM

35. (b) 2.39× 109K
36. (a) 2.6K; (b) 976 nm
37. 1.08 × 1042 J
38. (a) A; (b) J ; (c) I; (d) F ; (e) G; (f) C; (g)

H; (h) D; (i) E
40. 13× 109 y
41. (a) 0.785c; (b) 0.993c; (c) C2; (d) C1;

(e) 51 ns; (f) 40 ns
43. (c) rα/c+(rα/c)2+(rα/c)3+ . . .; (d) rα/c;

(e) α = H; (f) 6.5 × 108 ly; (g) 6.9 × 108 y;
(h) 6.5×108 y; (i) 6.9×108 ly; (j) 1.0×109 ly;
(k) 1.1× 109 y; (l) 3.9× 108 ly

44. 6.03 × 10−29 kg
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SECTION SEVEN

COMPARISON OF PROBLEMS

WITH THE SIXTH EDITION

In the table below, the left column of each group gives the numbers of problems and exercises
in the last edition (the sixth) of Fundamentals of Physics and for each entry the right column gives
the number of the same problem or exercise in this edition (the seventh). The titles (Standard
Edition Problems, Enhanced Edition Problems, and Supplement Problems) refer to sixth edition
sources.

Standard Edition Problems

Chapter 1

1—1 1—3
1—2 1—32
1—3 1—1
1—4 1—4 revised
1—5 1—5
1—6 1—31
1—7 1—7
1—8 1—34
1—9 1—9
1—10 1—10
1—12 1—58
1—13 1—13
1—14 1—17
1—15 1—47
1—16 1—14
1—17 1—18 revised
1—18 1—16
1—19 1—21
1—20 1—20
1—21 1—19
1—22 1—48
1—23 1—23
1—24 1—33
1—25 1—8

1—26 1—25
1—28 1—53
1—29 1—27

Chapter 2

2—1 2—96
2—2 2—2 revised
2—3 2—3
2—4 106 revised
2—5 2—11
2—6 2—6
2—7 2—5
2—8 2—10
2—9 2—9 revised
2—11 2—12
2—12 2—13
2—13 2—61
2—17 2—15 revised
2—18 2—18
2—19 2—97
2—20 2—16
2—21 2—19 revised
2—22 2—112
2—23 2—20
2—24 2—110
2—25 2—21

2—26 2—98
2—27 2—23
2—28 2—111
2—29 2—25
2—30 2—26
2—31 2—28
2—32 2—31 revised
2—33 2—27
2—34 2—64 revised
2—35 2—68
2—36 2—63 revised
2—37 2—95
2—38 2—37
2—39 2—29
2—40 2—40
2—41 2—39
2—42 2—38
2—43 2—41
2—44 2—116
2—45 2—70
2—46 2—117
2—47 2—42
2—48 2—91
2—49 2—47
2—50 2—92
2—51 2—49 revised
2—53 2—51 revised
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2—54 2—56
2—55 2—53 revised
2—56 2—58
2—57 2—94
2—58 2—93
2—59 2—43
2—60 2—52
2—61 4—117
2—62 2—89
2—63 2—90
2—64 2—105
2—65 2—55

Chapter 3

3—1 3—74
3—2 3—75
3—3 3—1
3—4 3—2
3—5 3—3
3—6 3—4 revised
3—7 3—39
3—8 3—37 revised
3—9 3—7
3—10 3—10
3—11 3—51
3—12 3—8
3—13 3—11
3—14 3—12
3—15 3—62
3—16 3—14
3—17 3—15
3—18 3—49
3—19 3—17
3—20 3—20
3—21 3—19 revised
3—22 3—18
3—24 3—48
3—26 3—59
3—27 3—25 revised
3—28 3—46
3—29 3—45
3—30 3—79 revised
3—31 3—31
3—32 3—78 revised
3—33 3—77
3—34 3—32
3—35 3—76
3—36 3—34

3—37 3—35
3—38 3—38

Chapter 4

4—1 4—2
4—2 4—1
4—3 4—92
4—4 4—85
4—5 4—5
4—6 4—7
4—7 4—6
4—8 4—81
4—9 4—9
4—10 4—95
4—11 4—11
4—12 4—97
4—13 4—15
4—14 4—14
4—15 4—99
4—16 4—16
4—17 4—87
4—18 4—20
4—19 4—32
4—20 4—21
4—21 4-104
4—22 4—18
4—23 4—24
4—24 4—34
4—25 4—31
4—26 4—106
4—28 4—30
4—29 4—19
4—30 4—42
4—31 4—108
4—32 4—25
4—33 4—23
4—34 4—29
4—35 4—41
4—36 4—28
4—37 4—27
4—38 4—110
4—39 4—37
4—40 4—26
4—41 4—39 revised
4—42 4—44
4—43 4—112
4—44 4—48
4—45 4—115

4—46 4—47 revised
4—47 4—116
4—48 4—88
4—49 4—45 revised
4—50 4—82
4—51 4—53
4—52 4—96
4—53 4—55 revised
4—54 4—56 revised
4—55 4—118
4—56 4—58
4—57 4—59
4—58 4—86
4—59 4—63
4—60 4—65
4—61 4—61
4—62 4—136
4—63 4—66
4—64 4—68

Chapter 5

5—1 5—2 sig. figs.
5—2 5—3
5—3 5—1
5—4 5—7
5—5 5—62
5—6 5—4
5—7 5—5 sig. figs.
5—8 5—61
5—9 5—9
5—10 5—10 revised
5—11 5—81
5—12 5—80
5—13 5—64
5—15 5—13
5—16 5—88
5—17 5—19
5—18 5—18
5—19 5—17
5—20 5—22 revised
5—21 5—23
5—22 5—20
5—23 5—25
5—24 5—32
5—25 5—27
5—26 5—89
5—27 5—21 revised
5—28 5—87
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5—29 5—31
5—30 5—28
5—31 5—43
5—32 5—86
5—33 5—33
5—34 5—42 revised
5—35 5—85
5—36 5—45
5—37 5—72
5—38 5—63
5—39 5—83
5—40 5—48
5—41 5—39 revised
5—43 5—51
5—44 5—54
5—45 5—29
5—46 5—82
5—47 5—49
5—48 5—40 revised
5—49 5—41
5—50 5—50 revised
5—51 5—60
5—52 5—24 revised
5—53 5—53
5—54 5—56 revised
5—55 5—35 revised
5—56 5—34

Chapter 6

6—1 6—3 revised
6—2 6—1
6—3 6—2
6—4 6—4 revised
6—5 6—5
6—6 6—81
6—7 6—104
6—8 6—102
6—9 6—15 sig. figs.
6—10 6—10 revised
6—12 6—11 revised
6—13 6—13 revised
6—14 6—8
6—15 6—28
6—16 6—7
6—17 6—14 revised
6—18 6—20 revised
6—19 6—21 revised
6—20 6—19 revised

6—21 6—27 revised
6—22 6—26
6—23 6—25 (c) removed
6—24 6—22 revised
6—25 6—29 revised
6—26 6—68
6—27 6—30 revised
6—28 6—76
6—29 6—67
6—30 6—17 revised
6—31 6—31
6—32 6—35 revised
6—33 6—100
6—34 6—32
6—35 6—33
6—36 6—38
6—37 6—36
6—38 6—40 revised
6—39 6—37
6—40 6—44 revised
6—41 6—49 revised
6—42 6—99
6—43 6—45 revised
6—44 6—46
6—45 6—47 revised
6—46 6—98
6—47 6—51 revised
6—48 6—53

Chapter 7

7—2 7—2
7—4 7—5
7—5 7—3
7—6 7—8
7—7 7—52
7—8 7—9 revised
7—9 7—11
7—10 7—35
7—11 7—13
7—12 7—6
7—13 7—14
7—14 7—16
7—15 7—63
7—16 7—51
7—17 7—17
7—18 7—22
7—19 7—19
7—20 7—24

7—22 7—50
7—23 7—29
7—24 7—32
7—25 7—31
7—26 7—49
7—27 7—33
7—28 7—36
7—29 7—65
7—30 7—40
7—31 7—41
7—32 7—44
7—33 7—43
7—34 7—42
7—35 7—45
7—36 7—46
7—38 7—67
7—39 7—77
7—40 7—64

Chapter 8

8—1 8—1
8—2 8—2
8—3 8—3
8—4 8—5 revised
8—5 8—4 revised
8—6 8—7 revised
8—7 8—6
8—8 8—8
8—9 8—9
8—10 8—10
8—11 8—12
8—12 8—11
8—13 8—13
8—14 8—20
8—15 8—14
8—16 8—28
8—17 8—17
8—18 8—26 revised
8—19 8—31 revised
8—20 8—21 revised
8—21 8—29 revised
8—22 8—24
8—23 8—23 sig. figs.
8—24 8—25
8—25 8—18
8—26 8—22
8—27 8—43 revised
8—28 8—16
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8—29 8—64 revised
8—30 8—76
8—31 8—69 revised
8—32 8—30
8—33 8—70 revised
8—35 8—36 revised
8—36 8—71 revised
8—37 8—38 revised
8—38 8—39 revised
8—39 8—40
8—40 8—105
8—41 8—43
8—42 8—41
8—43 8—45
8—44 8—68
8—45 8—44
8—46 8—46
8—47 8—47
8—48 8—131
8—49 8—48
8—50 8—52
8—51 8—51 revised
8—52 8—49 revised
8—53 8—72
8—54 8—54
8—55 8—106 revised
8—56 8—55
8—57 8—57 revised
8—58 8—73
8—59 8—50
8—60 8—56
8—61 8—58 revised
8—62 8—65 revised
8—63 8—59 revised
8—64 8—62
8—65 8—66
8—66 8—117

Chapter 9

9—1 9—133 revised
9—2 9—102 revised
9—3 9—1 revised
9—4 9—3 revised
9—5 9—82 revised
9—6 9—6 revised
9—7 9—5 revised
9—8 9—7 revised
9—9 9—8 revised

9—10 9—10

9—11 9—104

9—12 9—89 revised

9—13 9—9

9—14 9—11

9—15 9—15 revised

9—16 9—12

9—17 9—81 revised

9—18 9—16

9—19 9—17 revised

9—22 9—18

9—23 9—19

9—24 9—20 revised

9—25 9—87

9—26 9—22

9—27 9—25 revised

9—28 9—106 revised

9—29 9—108 revised

9—30 9—36

9—31 9—37 revised

9—32 9—80 revised

9—33 9—85

9—34 9—39

9—35 9—110 revised

9—36 9—44

9—37 9—43 revised

9—38 9—40

9—39 9—41 revised

9—40 9—93 revised

9—41 9—72

9—42 9—112

9—43 9—71

9—44 9—70

9—45 9—114

9—46 9—79

9—47 9—73

9—48 9—135

9—49 8—110

9—50 8—112

9—51 8—113

9—52 8—103

9—53 8—107

9—54 8—108

9—56 8—84

9—57 8—85

9—58 8—75

Chapter 10

10—4 9—24 revised
10—5 9—23 revised
10—6 9—25
10—7 9—26
10—8 9—27
10—9 9—101
10—10 9—29 revised
10—13 9—99
10—14 9—32
10—15 9—100
10—16 9—103
10—17 9—33 revised
10—19 9—105
10—20 9—45
10—22 9—46
10—25 9—48 revised
10—26 9—49
10—28 9—51
10—29 9—107
10—30 9—50
10—31 9—109 revised
10—33 9—53
10—34 9—54
10—35 9—56
10—36 9—111
10—37 9—55
10—40 9—60
10—41 9—59
10—42 9—88
10—43 9—57
10—44 9—113 revised
10—45 9—63
10—46 9—66
10—47 9—65
10—48 9—67
10—49 9—132
10—50 9—68
10—51 9—69
10—52 9—131 revised
10—53 9—130 revised
10—56 9—30
10—57 9—129

Chapter 11

11—1 10—110
11—2 10—1
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11—3 10—106
11—4 10—4
11—5 10—6
11—6 10—7
11—7 10—5
11—8 10—9
11—9 10—107
11—10 10—10
11—11 119 sig. figs.
11—12 10—11
11—13 10—13
11—14 10—18
11—15 10—17 revised
11—16 10—16
11—17 10—15 revised
11—20 10—121
11—21 10—122
11—22 10—21
11—23 10—22
11—24 10—23
11—25 10—29
11—26 10—30 revised
11—27 10—27
11—28 10—26
11—29 10—28
11—30 10—25
11—31 10—32 revised
11—32 10—31
11—33 10—33
11—34 10—123
11—35 10—35
11—36 10—120
11—37 10—39 revised
11—39 10—37
11—40 10—42
11—41 10—41
11—42 10—43
11—43 10—85
11—44 10—44
11—45 10—45
11—46 10—46
11—47 10—47(a) deleted
11—48 10—48
11—49 10—49
11—50 10—50
11—51 10—108
11—52 10—53
11—54 10—83
11—55 10—55

11—56 10—57
11—57 10—54
11—58 10—59
11—59 10—58
11—60 10—60
11—61 10—61 revised
11—62 10—124
11—63 10—63
11—64 10—64
11—65 10—84 revised
11—66 10—67
11—67 10—66
11—68 10—73
11—69 10—111
11—70 10—75

Chapter 12

12—1 11—1
12—2 11—2 revised
12—3 11—3
12—4 11—74
12—5 11—5
12—6 11—81
12—7 11—4
12—8 11—6 revised
12—9 11—9
12—10 11—68 revised
12—11 11—7 revised
12—12 11—8 revised
12—13 11—70
12—14 11—64
12—15 11—15
12—16 11—89
12—17 11—98
12—18 11—17 revised
12—19 11—18 revised
12—20 11—22
12—21 11—21
12—22 11—20
12—23 11—25 revised
12—24 11—24 revised
12—25 11—27
12—26 11—26
12—27 11—67 revised
12—28 11—78
12—29 11—31
12—30 11—30 revised
12—31 11—32 revised

12—32 11—71 revised
12—33 11—35
12—34 11—34
12—35 11—37 revised
12—36 11—100
12—37 11—101
12—38 11—39
12—39 11—41
12—40 11—40
12—41 11—43
12—42 11—42 revised
12—43 11—95
12—44 11—46
12—45 11—45 revised
12—46 11—47 revised
12—47 11—48 revised
12—48 11—77 revised
12—49 11—49
12—50 11—51 revised
12—51 11—59
12—52 11—52 revised
12—53 11—92
12—54 11—54
12—55 11—55
12—56 11—58 revised
12—57 11—56
12—58 11—57
12—59 11—60 revised

Chapter 13

13—1 12—2
13—2 12—81
13—4 12—4
13—5 12—3
13—6 12—6
13—7 12—5 revised
13—8 12—8
13—9 12—7 revised
13—10 12—10
13—11 12—9 sig. figs.
13—12 12—12
13—13 12—11 revised
13—14 12—15 revised
13—15 12—45 revised
13—16 12—14 revised
13—17 12—47
13—18 12—20 revised
13—19 12—13

Comparison of Problems: Standard Edition 237



13—20 12—22 revised
13—21 12—19 revised
13—22 12—24 revised
13—23 12—21 revised
13—24 12—53
13—25 12—23 revised
13—26 12—26 revised
13—27 12—25
13—28 12—28 revised
13—29 12—31
13—30 12—27 revised
13—31 12—35
13—32 12—32 revised
13—33 12—29
13—34 12—79
13—35 12—33 revised
13—36 12—36
13—37 12—37
13—38 12—40
13—39 12—39
13—40 12—41 revised
13—41 12—80
13—42 82

Chapter 14

14—1 13—1
14—2 13—104
14—3 13—75
14—4 13—2
14—5 13—3
14—6 13—92
14—7 13—5
14—8 13—4 revised
14—9 13—6 revised
14—10 13—9
14—11 13—81
14—12 13—73
14—13 13—11 revised
14—14 13—14 revised
14—15 13—15
14—16 13—16
14—17 13—98
14—18 13—17
14—20 13—18
14—21 13—19
14—22 13—20
14—23 13—21
14—24 13—76

14—25 13—23
14—26 13—24
14—27 13—74
14—28 13—26
14—29 13—25
14—30 13—27
14—31 13—31 revised
14—32 13—32
14—34 13—84
14—35 13—33
14—36 13—83
14—37 13—35 sig. figs.
14—38 13—34
14—39 13—77
14—40 13—40
14—41 13—39
14—43 13—41
14—44 13—42
14—45 13—43
14—46 13—44
14—47 13—45
14—48 13—46
14—49 13—47
14—50 13—48
14—51 13—49
14—52 13—50
14—53 13—51
14—54 13—103
14—55 13—53
14—56 13—58 revised
14—57 13—55
14—58 13—56 revised
14—61 13—57
14—62 13—60
14—63 13—61
14—64 13—62

Chapter 15

15—1 14—3
15—2 14—2
15—3 14—1
15—4 14—6
15—5 14—5
15—6 14—4
15—7 14—7
15—8 14—9
15—12 14—93
15—13 14—11 slight change

15—14 14—14 revised
15—15 14—15 revised
15—16 14—16 revised
15—18 14—18
15—19 14—19 revised
15—20 14—20
15—21 14—21
15—22 14—22
15—23 14—75
15—24 14—24
15—25 14—25
15—26 14—26
15—27 14—29
15—29 14—31
15—30 14—91
15—31 14—33
15—32 14—38 sig. fig.
15—33 14—35
15—34 14—98
15—35 14—92
15—36 14—27
15—38 14—37
15—39 14—41
15—40 14—42
15—41 14—43
15—42 14—44
15—43 14—45
15—44 14—48
15—45 14—47
15—46 14—46 revised
15—47 14—49
15—50 14—52 revised
15—51 14—54
15—52 14—73
15—53 14—53 revised
15—54 14—55 revised
15—55 14—59
15—56 14—60
15—57 14—61
15—58 14—62
15—59 14—71
15—60 14—64
15—61 14—70

Chapter 16

16—1 15—7
16—2 15—6
16—3 15—5
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16—4 15—4
16—5 15—13 revised
16—6 15—75
16—7 15—3
16—8 15—2
16—9 15—1
16—10 15—76
16—11 15—8
16—12 15—9
16—13 15—77
16—15 15—14
16—16 15—25
16—17 15—15
16—18 15—20
16—19 15—17
16—20 15—19
16—21 15—23 revised
16—22 15—22
16—23 15—21
16—24 15—11 revised
16—25 15—24 revised
16—26 15—78
16—27 15—26 revised
16—28 15—27 revised
16—29 15—80 revised
16—30 15—79 revised
16—31 15—29
16—32 15—28
16—33 15—33
16—35 15—81
16—36 15—37 revised
16—37 15—31
16—38 15—35 revised
16—39 15—71 sig. figs.
16—40 15—82 sig. figs
16—41 15—39
16—42 15—109
16—44 15—46
16—45 15—45
16—46 15—44 revised
16—47 15—55 revised
16—48 15—83
16—49 15—43 revised
16—50 15—40
16—51 15—41
16—52 15—51 revised
16—53 15—49
16—54 15—86
16—55 15—85

16—56 15—84
16—58 15—72
16—59 15—57
16—60 15—58
16—61 15—59
16—62 15—60
16—63 15—62 revised
16—64 15—63

Chapter 17

17—1 16—2
17—2 16—89
17—3 16—1
17—4 16—69 revised
17—6 16—6
17—7 16—70 revised
17—8 16—11 revised
17—9 16—5
17—10 16—12
17—11 16—13
17—12 16—14
17—13 16—15
17—14 16—18
17—15 16—17 revised
17—16 16—68 sig. figs.
17—17 16—67
17—18 16—20 revised
17—19 16—19 revised
17—20 16—22
17—21 16—21 revised
17—22 16—87
17—23 16—23
17—24 16—24
17—25 16—66
17—26 16—30
17—27 16—29 sig. figs.
17—28 16—60
17—29 16—33
17—30 16—34
17—31 16—61
17—32 16—44
17—33 16—43 sig. figs.
17—34 16—42
17—35 16—41
17—36 16—40
17—37 16—39 revised
17—38 16—38 revised
17—39 16—45

17—40 16—93
17—41 16—47
17—42 16—84 revised
17—43 16—49
17—44 16—83
17—45 16—82
17—46 16—48
17—47 16—53 sig. figs, revised
17—48 16—50 revised
17—49 16—92
17—50 16—51 sig. figs.
17—51 16—55
17—52 16—85

Chapter 18

18—1 17—91
18—3 17—3 revised
18—4 17—1
18—5 17—7
18—6 17—75 revised
18—7 17—5
18—9 17—9
18—10 17—92 revised
18—11 17—8
18—13 17—17 revised
18—14 17—14
18—15 17—19 revised
18—16 17—16
18—17 17—21
18—18 17—22
18—19 17—23
18—20 17—24
18—21 17—25 sig. figs.
18—22 17—26
18—23 17—93
18—26 17—96
18—27 17—94
18—28 17—30
18—29 17—95
18—30 17—35
18—31 17—36
18—32 17—38 revised
18—33 17—37
18—35 17—39 revised
18—37 17—41
18—38 17—42
18—39 17—108
18—40 17—44 revised
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18—41 17—43
18—42 17—46
18—43 17—45
18—44 17—48
18—45 17—47 revised
18—46 17—50
18—48 17—51
18—49 17—49
18—50 17—52
18—51 17—54
18—52 17—55
18—53 17—53
18—54 17—57
18—55 17—59
18—56 17—60
18—57 17—61
18—58 17—97
18—59 17—63
18—60 17—64

Chapter 19

19—1 18—1
19—2 18—2
19—3 18—3
19—4 18—4
19—6 18—5
19—9 18—7 note added
19—10 18—10
19—12 18—8
19—13 18—9
19—14 18—12 sig. figs
19—15 18—11
19—17 18—15
19—18 18—14
19—19 18—17 sig. figs.
19—20 18—16
19—22 18—18
19—24 18—20
19—25 18—21
19—26 18—24
19—27 18—23
19—28 18—22
19—29 18—25
19—32 18—26
19—34 18—28
19—35 18—27
19—36 18—30
19—38 18—29

19—39 18—35
19—41 18—38
19—42 18—33
19—43 18—31
19—44 18—37 revised
19—45 18—39
19—46 18—40
19—47 18—41
19—48 18—44
19—49 18—43
19—50 18—42 revised
19—51 18—45
19—52 18—48
19—53 18—49
19—54 18—78
19—55 18—50
19—56 18—86
19—57 18—51
19—58 18—52
19—59 18—53
19—61 18—55
19—62 18—54
19—63 18—57
19—64 18—59
19—65 18—61
19—66 18—60
19—67 18—67

Chapter 20

20—1 19—1
20—2 19—2
20—5 19—3
20—6 19—4
20—7 19—5
20—8 19—6
20—9 19—7
20—10 19—81
20—11 19—11 revised
20—12 19—9
20—13 19—13 sig. figs
20—14 19—12
20—15 19—14
20—17 19—15
20—18 19—18
20—19 19—17
20—20 19—16
20—21 19—20
20—22 19—19

20—23 19—21
20—24 19—22
20—25 19—23
20—26 19—24
20—27 19—25
20—30 19—28
20—31 19—27
20—32 19—26
20—34 19—30
20—35 19—29
20—36 19—32
20—37 19—31
20—38 19—33 revised
20—39 19—35 revised
20—40 19—36
20—41 19—37
20—42 19—38 sig. figs.
20—43 19—39
20—44 19—40
20—46 19—44
20—47 19—43 revised
20—48 19—46
20—49 19—45
20—50 19—48
20—51 19—49 revised
20—52 19—50
20—53 19—51
20—54 19—54 sig. figs.
20—55 19—53
20—56 19—52
20—58 19—67
20—59 19—68
20—60 19—58 revised
20—61 19—59

Chapter 21

21—1 20—3
21—2 20—2
21—3 20—1 sig. figs.
21—4 20—6
21—5 20—5
21—6 20—6
21—7 20—4
21—8 20—14
21—9 20—7
21—10 20—9
21—12 20—11
21—13 20—13
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21—14 20—19 revised
21—15 20—15
21—16 20—16
21—17 20—17
21—19 20—18
21—20 20—20
21—21 20—22
21—22 20—23
21—23 20—21
21—24 20—24
21—25 20—25 revised
21—26 20—26
21—27 20—27
21—29 20—29 revised
21—30 20—30
21—31 20—51
21—32 20—32
21—33 20—33 revised
21—35 20—35
21—36 20—36
21—37 20—37
21—38 20—38
21—39 20—39
21—40 20—42
21—41 20—41 revised
21—42 20—43
21—44 20—44
21—45 20—45

Chapter 22

22—1 21—3
22—2 21—2
22—3 21—1
22—4 21—4 revised
22—5 21—7 revised
22—6 21—8 revised
22—7 21—9 revised
22—8 21—10 revised
22—9 21—17 revised
22—10 21—13 revised
22—11 21—65 revised
22—12 21—15 revised
22—13 21—5 revised
22—14 21—6 revised
22—15 21—66 revised
22—16 21—67 revised
22—17 21—48
22—18 21—22

22—19 21—70
22—20 21—47
22—21 21—21
22—22 21—24
22—23 21—23
22—24 21—60 revised
22—25 21—25
22—26 21—26
22—27 21—29
22—28 21—59
22—29 21—31
22—30 21—64 revised

Chapter 23

23—1 22—2
23—2 22—1
23—3 22—3
23—4 22—4
23—5 22—5
23—6 22—6 revised
23—7 22—7 revised
23—9 22—9 revised
23—10 22—8 sig. figs.
23—11 22—10 revised
23—12 22—12 revised
23—13 22—11 revised
23—14 22—90
23—15 22—17
23—16 22—19 revised
23—17 22—21
23—18 22—22 sig. figs.
23—19 22—84
23—20 22—24 revised
23—21 22—25 revised
23—22 22—26 revised
23—23 22—27 revised
23—24 22—29 revised
23—25 22—55
23—26 22—30
23—27 22—31 revised
23—28 22—36 revised
23—29 22—35
23—30 22—34
23—31 22—37
23—32 22—38
23—33 22—39 revised
23—34 22—85
23—35 22—41

23—36 22—40
23—37 22—42
23—38 22—57
23—39 22—43
23—40 22—44
23—41 22—45
23—42 22—47
23—43 22—86
23—44 22—51
23—45 22—50
23—46 22—53 revised
23—47 22—87
23—48 22—89

Chapter 24

24—1 23—86
24—2 23—1 revised
24—3 23—2
24—5 23—5
24—6 23—4 revised
24—7 23—13 revised
24—8 23—8
24—9 23—9
24—10 23—6
24—11 23—11 revised
24—12 23—16
24—13 23—15
24—14 23—17
24—15 23—19
24—16 23—23
24—17 23—21
24—18 23—20 revised
24—19 23—27 revised
24—20 23—29
24—21 23—25 revised
24—22 23—30
24—23 23—84
24—24 23—28
24—25 23—85
24—26 23—32 revised
24—27 23—31
24—28 23—34 revised
24—29 23—39
24—30 23—35 revised
24—31 23—37 revised
24—32 23—38
24—33 23—41 revised
24—34 23—44
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24—35 23—43
24—36 23—45
24—37 23—83
24—38 23—82
24—39 23—81
24—41 23—51 revised
24—42 23—87
24—43 23—49 revised
24—44 23—50 revised
24—45 23—47 revised
24—46 23—72
24—47 23—53
24—48 23—54

Chapter 25

25—1 24—1
25—2 24—2
25—4 24—4
25—5 24—3
25—6 24—5
25—8 24—9 revised
25—9 24—100 revised
25—10 24—7 revised
25—11 24—101
25—12 24—10
25—13 24—12
25—14 24—99
25—15 24—13 revised
25—16 24—14
25—17 24—17
25—18 24—11
25—19 24—97
25—20 24—98 revised
25—21 24—15 revised
25—22 24—19
25—23 24—96
25—24 24—21 revised
25—25 24—23 revised
25—26 24—22 revised
25—27 24—25 revised
25—28 24—28 revised
25—29 24—29 revised
25—30 24—30
25—31 24—31 revised
25—32 24—32 revised
25—33 24—114
25—34 24—36 revised
25—35 24—34 revised

25—36 24—39
25—37 24—37 revised
25—38 24—113
25—39 24—41
25—40 24—40 revised
25—41 24—94
25—43 24—43
25—44 24—42
25—45 24—93
25—46 24—44 revised
25—47 24—45
25—48 24—92
25—49 24—47
25—50 24—54
25—51 24—53
25—52 24—56 revised
25—53 24—55 revised
25—54 24—57
25—55 24—112 revised
25—56 24—58
25—57 24—60

Chapter 26

26—2 25—2
26—3 25—1
26—5 25—3 sig. figs.
26—6 25—4 revised
26—7 25—5 revised
26—8 25—6
26—10 25—8
26—11 25—7
26—12 25—10
26—13 25—9
26—14 25—11 sig. figs.
26—16 25—12 sig. figs.
26—17 25—13
26—18 25—15 revised
26—19 25—17
26—20 25—23 revised
26—21 25—21 revised
26—22 25—24
26—23 25—25
26—24 25—26
26—25 25—27
26—28 25—28 revised
26—29 25—31 revised
26—30 25—30 sig. figs.
26—31 25—74

26—32 25—32
26—34 25—34
26—35 25—35
26—36 25—36
26—37 25—37
26—38 25—40
26—39 25—39
26—40 25—42 revised
26—41 25—43 revised
26—42 25—44 revised
26—43 25—45
26—44 25—46
26—45 25—47 revised
26—46 25—48
26—48 25—50

Chapter 27

27—1 26—1 revised
27—2 26—2
27—3 26—3
27—4 26—6
27—5 26—5
27—6 26—4
27—7 26—7
27—8 26—8
27—9 26—55
27—10 26—11 revised
27—11 26—9
27—12 26—13
27—13 26—15
27—14 26—54
27—15 26—17
27—16 26—16 revised
27—17 26—19
27—18 26—79
27—19 26—21
27—20 26—18
27—21 26—23
27—22 26—31
27—23 26—27
27—24 26—29
27—25 26—25
27—26 26—28 revised
27—27 26—78 revised
27—28 26—30
27—29 26—33 revised
27—30 26—34
27—31 26—77 sig. figs.
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27—32 26—36
27—33 26—35 revised
27—34 26—38
27—35 26—37
27—36 26—40
27—37 26—39
27—38 26—41
27—39 26—57
27—40 26—43 revised
27—41 26—76 revised
27—42 26—56
27—43 26—45 sig. figs.
27—44 26—48

Chapter 28

28—1 27—1
28—2 27—2
28—3 27—3 sig. figs.
28—5 27—5 revised
28—6 27—4 revised
28—7 27—7
28—8 27—114
28—9 27—9
28—10 27—6 revised
28—11 27—97
28—12 27—8
28—13 27—11
28—14 27—73
28—15 27—13 revised
28—16 27—14 revised
28—17 27—68
28—18 27—16 revised
28—19 27—15
28—20 27—17 revised
28—21 27—19 revised
28—22 27—74 revised
28—24 27—20 revised
28—25 27—21
28—26 27—18
28—27 27—29
28—28 27—30 sig. figs.
28—29 27—31 revised
28—30 27—32 revised
28—31 27—33 revised
28—32 27—36 revised
28—33 27—27 revised
28—34 27—25 revised
28—35 27—35 revised

28—36 27—38 sig. figs.
28—37 27—37
28—38 27—40 sig. figs.
28—39 27—39

28—40, 42 27—42 revised
28—41, 42 27—41 revised

28—43 27—43
28—44 27—44 revised
28—45 27—45 sig. figs.
28—46 27—46
28—47 27—47
28—48 27—50
28—49 27—55
28—50 27—67
28—51 27—49
28—52 27—52
28—53 27—51
28—54 27—57 revised
28—55 27—53 revised

Chapter 29

29—1 28—2 revised
29—2 28—76
29—3 28—1
29—4 28—3
29—5 28—85 revised
29—6 28—64 revised
29—7 28—80 revised
29—8 28—6 revised
29—9 28—7 sig. figs.
29—10 28—8
29—11 28—9 revised
29—12 28—12 revised
29—13 28—81
29—14 28—11
29—15 28—15 sigfigs
29—16 28—16
29—17 28—17
29—18 28—59
29—19 28—19
29—20 28—18
29—21 28—82
29—22 28—57
29—23 28—20
29—24 28—84 revised
29—25 28—25
29—26 28—83
29—27 28—23 sig. figs.

29—28 28—24
29—29 28—27 revised
29—30 28—28 sig. figs.
29—31 28—29 sig. figs.
29—32 28—30 revised
29—33 28—33 revised
29—34 28—32
29—35 28—35 revised
29—36 28—36 sig. figs.
29—37 28—37 revised
29—38 28—96
29—39 28—39 revised
29—40 28—40 revised
29—41 28—55 revised
29—42 28—86
29—43 28—41 revised
29—44 28—87
29—45 28—43
29—46 28—42 revised
29—47 28—45
29—48 28—46
29—49 28—47
29—50 28—48
29—51 28—49
29—52 28—77
29—53 28—51 revised
29—54 28—52 revised
29—55 28—53
29—56 28—62 revised
29—58 28—50
29—59 28—5

Chapter 30

30—1 29—1
30—3 29—3
30—4 29—79
30—5 29—11 revised
30—6 29—2
30—7 29—13 sig. figs.
30—8 29—4 revised
30—9 29—5 revised
30—10 29—6 revised
30—11 29—17 revised
30—12 29—81
30—13 29—19 revised
30—14 29—82
30—15 29—83
30—17 29—84
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30—18 29—25 revised
30—19 29—23 revised
30—20 29—85 revised
30—21 29—7 revised
30—22 29—8 revised
30—23 29—9 revised
30—24 29—29 revised
30—25 29—15 revised
30—26 29—30 revised
30—27 29—31 revised
30—28 29—86
30—29 29—33 revised
30—30 29—34 revised
30—31 29—35 revised
30—32 29—37 revised
30—33 29—93
30—34 29—36 revised
30—35 29—39 revised
30—37 29—61 revised
30—38 29—38 revised
30—39 29—89
30—40 29—40
30—41 29—41
30—42 29—42
30—43 29—43
30—46 29—44
30—47 29—45
30—48 29—48
30—49 29—47
30—50 29—50 revised
30—51 29—49
30—54 29—52 revised
30—55 29—80
30—56 29—51 revised
30—57 29—53
30—58 29—21 revised

Chapter 31

31—2 30—1 revised
31—3 30—2 revised
31—4 30—3
31—5 30—4 revised
31—7 30—5
31—8 30—6
31—9 30—19
31—10 30—7
31—12 30—21 revised
31—13 30—13

31—14 30—14
31—15 30—9
31—16 30—18
31—17 30—11 revised
31—18 30—15 revised
31—19 30—17
31—20 30—8
31—21 30—23 revised
31—22 30—22
31—23 30—25
31—24 30—24 revised
31—25 30—27
31—26 30—26 revised
31—27 30—29
31—28 30—30
31—29 30—31 revised
31—30 30—32
31—31 30—33
31—32 30—34 revised
31—33 30—35
31—34 30—37
31—36 30—38
31—37 30—39
31—38 30—40 revised
31—39 30—41 revised
31—40 30—42
31—41 30—43
31—42 30—44
31—43 30—45 revised
31—44 30—46 revised
31—45 30—49 revised
31—46 30—48
31—47 30—51
31—48 30—50 revised
31—49 30—53
31—50 30—55
31—52 30—56
31—53 30—52 revised
31—54 30—89 revised
31—55 30—57 revised
31—56 30—58 revised
31—57 30—59
31—58 30—60 sig. figs.
31—59 30—61
31—60 30—62
31—62 30—64
31—63 30—63
31—65 30—65
31—66 30—66

31—67 30—67
31—68 30—70 revised
31—69 30—69
31—70 30—68
31—71 30—71
31—72 30—72
31—74 30—92
31—75 30—73 revised

Chapter 32

32—2 32—2
32—3 32—3 revised
32—4 32—28 revised
32—5 32—27
32—6 32—71
32—7 32—72 revised
32—8 32—73 revised
32—9 32—29
32—10 32—30
32—11 32—31 revised
32—12 32—34 revised
32—13 32—35
32—14 32—36
32—15 32—37
32—16 32—65 revised
32—17 32—39
32—18 32—38
32—19 32—41 revised
32—20 32—42
32—21 32—43
32—22 32—44
32—23 32—45
32—25 32—49
32—26 32—74 revised
32—27 32—5
32—28 32—7
32—29 32—13
32—30 32—12
32—31 32—15
32—32 32—14
32—33 32—17
32—34 32—16 revised
32—35 32—19 revised
32—37 32—21 revised
32—38 32—18 revised
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Chapter 33

33—1 31—3
33—2 31—2
33—3 31—1
33—4 31—4
33—5 31—5 revised
33—6 31—6
33—7 31—7
33—8 31—10
33—9 31—9
33—10 31—8
33—11 31—11
33—12 31—20
33—13 31—13
33—14 31—12
33—15 31—15 revised
33—16 31—18 revised
33—17 31—17
33—18 31—16
33—19 31—19 revised
33—20 31—14
33—21 31—21
33—24 31—99
33—25 31—25
33—26 31—24 revised
33—27 31—26
33—29 31—27
33—30 31—28
33—31 31—29
33—32 31—30
33—33 31—31
33—34 31—32
33—35 31—33
33—36 31—34
33—37 31—35 revised
33—38 31—37 revised
33—39 31—39 revised
33—40 31—98 revised
33—41 31—43 revised
33—42 31—98
33—43 31—41
33—44 31—46
33—45 31—45 revised
33—46 31—112 revised
33—47 31—47
33—48 31—49
33—49 31—51
33—50 31—50
33—51 31—52

33—54 31—66
33—55 31—53
33—56 31—58 revised
33—57 31—55 revised
33—58 31—54
33—59 31—57 revised
33—60 31—56 revised
33—61 31—59 revised
33—62 31—60
33—63 31—61 revised
33—64 31—62 revised
33—65 31—64 revised

Chapter 34

34—1 33—89
34—2 33—3
34—3 33—2 revised
34—4 33—4
34—5 33—111
34—6 33—6
34—7 33—5
34—8 33—7
34—9 33—8 revised
34—11 33—9
34—12 33—10
34—14 33—11
34—15 33—12
34—16 33—13 revised
34—17 33—15
34—18 33—14
34—19 33—17 revised
34—20 33—20
34—21 33—19
34—22 33—22
34—23 33—21
34—24 33—24
34—25 33—23 revised
34—26 33—26 revised
34—27 33—25
34—29 33—27
34—30 33—28
34—31 33—106
34—33 33—35
34—34 33—34
34—35 33—33
34—36 33—37
34—37 33—31
34—38 33—32

34—39 33—39
34—40 33—41
34—41 33—43
34—42 33—44
34—43 33—45
34—44 33—84 revised
34—45 33—47 revised
34—46 33—51
34—47 33—49 revised
34—49 33—85
34—50 33—82
34—51 33—53
34—52 33—54
34—53 33—75 revised
34—54 33—55
34—55 33—61
34—58 33—62
34—57 33—110
34—58 33—62
34—59 33—63 revised
34—60 33—64
34—61 33—65
34—62 33—87 revised
34—63 33—69
34—65 33—66
34—66 33—1

Chapter 35

35—1 34—1
35—2 34—2

35—3, 35—4 34—102 revised
35—5 34—120
35—6 34—4
35—7 34—3 revised
35—8 34—5
35—9 34—7

35—10(a) 34—19 revised
35—10(b) 34—20 revised
35—10(c) 34—21 revised
35—10(d) 34—22 revised
35—10(e) 34—23 revised
35—10(f) 34—24 revised
35—10(g) 34—25 revised
35—10(h) 34—26 revised
35—11 34—110
35—12 34—17
35—13 34—32

35—14(a) 34—34 revised
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35—14(b) 34—35 revised
35—14(c) 34—36 revised
35—14(e) 34—37 revised
35—14(f) 34—38 revised
35—14(g) 34—39 revised
35—14(h) 34—40 revised
35—15 34—112
35—16 34—139
35—17 34—126
35—18 34—41
35—19 34—43 revised
35—20 34—45
35—21 34—103
35—22 34—47
35—23 34—49

35—24(a) 34—74 revised
35—24(b) 34—75 revised
35—24(c) 34—76 revised
35—24(d) 34—77 revised
35—24(e) 34—66 revised
35—24(f) 34—67 revised
35—24(g) 34—68 revised
35—24(h) 34—78 revised
35—24(i) 34—79 revised
35—25 34—104
35—26 34—123 revised
35—27 34—123 revised
35—28 34—125 revised
35—29 34—105
35—30 34—58
35—31 34—106
35—32 34—88
35—33 34—89
35—34 34—90 revised
35—35 34—91
35—36 34—92
35—37 34—93

Chapter 36

36—1 35—2
36—2 35—1
36—3 35—3
36—4 35—116
36—5 35—85
36—6 35—8 revised
36—7 35—7
36—8 35—11 revised
36—9 35—13

36—10 35—9
36—11 35—16
36—12 35—133
36—13 35—19
36—14 35—14
36—15 35—15
36—16 35—20
36—17 35—17 revised
36—18 35—23 revised
36—19 35—21
36—20 35—25 revised
36—21 35—27
36—22 35—117 revised
36—23 35—29
36—24 35—30
36—25 35—31
36—26 35—131
36—27 35—130 revised
36—28 35—129
36—29 35—121 revised
36—30 35—5 revised
36—31 35—134
36—32 35—6 revised
36—33 35—35 revised
36—34 35—113 revised
36—35 35—37
36—36 35—132
36—37 35—39
36—39 35—55
36—40 35—54
36—41 35—112
36—42 35—53
36—43 35—69
36—45 35—71
36—46 35—40
36—47 35—114
36—48 35—72
36—49 35—75
36—50 35—76
36—51 35—77
36—52 35—123
36—53 35—91
36—54 35—80
36—55 35—79
36—56 35—82
36—57 35—81
36—58 35—115 revised
36—59 35—122 revised

Chapter 37

37—1 36—1
37—2 36—2
37—3 36—3 revised
37—4 36—6
37—5 36—5
37—6 36—65 revised
37—7 36—7
37—8 36—9
37—9 36—105
37—10 36—11
37—11 36—13 revised
37—12 36—14
37—13 36—15 revised
37—14 36—16 revised
37—15 36—17
37—16 36—66
37—17 36—19
37—18 36—20
37—19 36—21
37—20 36—22
37—21 36—26
37—22 36—67
37—23 36—25 revised
37—24 36—28
37—25 36—27
37—26 36—68 revised
37—27 36—29
37—28 36—30
37—29 36—31
37—30 36—32
37—31 36—33
37—32 36—35
37—33 36—37
37—34 36—38 revised
37—35 36—39
37—36 36—40
37—37 36—41 revised
37—38 36—42
37—39 36—43
37—40 36—44
37—41 36—69
37—42 36—108
37—43 36—107
37—44 36—45
37—45 36—47
37—46 36—50
37—47 36—51
37—48 36—52
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37—49 36—103
37—50 36—53
37—51 36—109
37—52 36—54 revised
37—53 36—55
37—54 36—57 revised
37—55 36—58
37—56 36—59
37—57 36—110
37—58 36—60
37—59 36—61 revised
37—60 36—62 revised
37—61 36—63 revised
37—62 36—4
37—63 36—18

Chapter 38

38—3 37—1 sig. figs.
38—4 37—2 revised
38—5 37—5
38—6 37—7 sig. figs.
38—7 37—11
38—8 37—8
38—9 37—10
38—10 37—12 revised
38—11 37—9
38—12 37—15 revised
38—13 37—13
38—14 37—16 revised
38—15 37—17 revised
38—16 37—18 revised
38—17 37—19
38—18 37—23 revised
38—19 37—21
38—20 37—20 revised
38—21 37—27 revised
38—22 37—30 revised
38—23 37—29 revised
38—24 37—28 revised
38—25 37—31
38—26 37—33
38—27 37—35
38—28 37—34
38—29 37—36 revised
38—30 37—37
38—31 37—39 revised
38—32 37—40
38—33 37—48 revised

38—34 37—50 revised
38—35 37—41
38—36 37—42
38—37 37—49
38—38 37—43
38—39 37—51
38—40 37—52 revised
38—41 37—47 sig. figs.
38—42 37—54 revised
38—43 37—53
38—44 37—58 revised
38—45 37—55
38—51 37—59
38—52 37—65
38—53 37—63

Chapter 39

39—1 38—82
39—2 38—1
39—3 38—83
39—4 38—2
39—5 38—3
39—6 38—4
39—7 38—67
39—8 38—6
39—9 38—5
39—10 38—8
39—11 38—7
39—12 38—12
39—13 38—9
39—14 38—10
39—15 38—11
39—16 38—68 revised
39—17 38—14
39—18 38—81 revised
39—19 38—13
39—20 38—16
39—21 38—15
39—22 38—17
39—23 38—19
39—24 38—20
39—25 38—18
39—26 38—22
39—27 38—21
39—28 38—66
39—29 38—24
39—30 38—23
39—31 38—25

39—32 38—26 revised
39—33 38—27 revised
39—34 38—28 revised
39—35 38—79
39—36 38—30
39—37 38—29
39—38 38—32
39—39 38—33
39—40 38—31
39—41 38—80
39—42 38—78
39—43 38—37
39—44 38—35 revised
39—45 38—34
39—46 38—71
39—47 38—38
39—48 38—36
39—49 38—76
39—50 38—75
39—51 38—39
39—52 38—40
39—53 38—41
39—54 38—42
39—55 38—70
39—56 38—44 revised
39—57 38—43 revised
39—58 38—69
39—59 38—45
39—60 38—46 revised
39—61 38—47 revised
39—62 38—48 revised
39—63 38—49
39—64 38—50
39—65 38—51 revised
39—66 38—52
39—67 38—53
39—68 38—54
39—69 38—55
39—70 38—77
39—71 38—57
39—72 38—56
39—73 38—58 revised
39—74 38—74
39—75 38—73
39—76 38—59 revised
39—77 38—61
39—78 38—60 revised
39—79 38—63 revised
39—80 38—62
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39—81 38—65
39—82 38—64
39—83 38—72

Chapter 40

40—1 39—2 revised
40—2 39—1 revised
40—3 39—3
40—4 39—5
40—5 39—4
40—6 39—7
40—7 39—6
40—8 39—8 revised
40—9 39—49
40—10 39—10 revised
40—11 39—9 revised
40—12 39—11 revised
40—13 39—50
40—15 39—54
40—16 39—14
40—17 39—13
40—18 39—55
40—19 39—15 revised
40—20 39—16
40—21 39—53 revised
40—22 39—52 revised
40—23 39—17
40—24 39—18
40—25 39—19
40—26 39—20
40—27 39—21 revised
40—28 39—22
40—29 39—23 revised
40—30 39—56
40—31 39—26
40—32 39—24
40—33 39—25
40—34 39—28
40—35 39—27
40—36 39—58
40—37 39—29
40—38 39—31
40—39 39—30
40—40 39—32 revised
40—41 39—33
40—42 39—34
40—43 39—57 revised
40—44 39—36 revised

40—45 39—35
40—46 39—38 revised
40—47 39—40 revised
40—48 39—59
40—49 39—39
40—50 39—44 revised
40—51 39—37
40—52 39—42
40—53 39—41
40—54 39—51
40—55 39—45
40—56 39—46
40—57 39—47
40—58 39—48
40—59 39—43 revised

Chapter 41

41—1 40—70
41—2 40—2
41—3 40—1
41—4 40—3
41—5 40—4
41—6 40—6 revised
41—7 40—5 revised
41—8 40—7 revised
41—9 40—69
41—10 40—8
41—11 40—9 revised
41—12 40—10
41—13 40—11
41—14 40—68
41—15 40—13 revised
41—16 40—12 revised
41—17 40—15
41—18 40—14
41—19 40—17
41—20 40—16 revised
41—21 40—57 revised
41—22 40—18 revised
41—23 40—19 revised
41—24 40—20 revised
41—25 40—21 revised
41—26 40—22 revised
41—27 40—23 revised
41—28 40—24 revised
41—29 40—66
41—30 40—25 revised
41—31 40—67

41—32 40—26 revised
41—33 40—27 revised
41—34 40—28 revised
41—35 40—29
41—36 40—30
41—37 40—65
41—38 40—61
41—39 40—31 revised
41—40 40—32 revised
41—41 40—35
41—42 40—36 revised
41—43 40—33
41—44 40—34
41—45 40—37
41—46 40—38
41—47 40—40
41—48 40—62 revised
41—49 40—39 revised
41—50 40—41
41—51 40—42
41—52 40—43 revised
41—53 40—63
41—54 40—44
41—55 40—47
41—56 40—64
41—57 40—46
41—58 40—48
41—59 40—45
41—60 40—49
41—61 40—50
41—62 40—51
41—63 40—52
41—64 40—54
41—65 40—53
41—66 40—55
41—67 40—59
41—68 40—56
41—69 40—58
41—70 40—60

Chapter 42

42—1 41—1
42—2 41—49
42—3 41—47
42—4 41—2
42—5 41—46
42—6 41—4
42—7 41—3
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42—8 41—48
42—9 41—5
42—10 41—6
42—11 41—7
42—12 41—10
42—13 41—8
42—14 41—11 sig. figs.
42—15 41—9
42—16 41—44
42—17 41—12 sig. figs.
42—18 41—13 revised
42—19 41—18 revised
42—20 41—16 revised
42—21 41—15 revised
42—22 41—14
42—23 41—17
42—24 41—20
42—25 41—19
42—26 41—22
42—27 41—41 revised
42—28 41—45
42—29 41—21
42—30 41—23
42—31 41—26
42—32 41—24
42—33 41—25 sig. figs.
42—34 41—42
42—35 41—27 sig. figs.
42—36 41—28 revised
42—37 41—43
42—38 41—29
42—39 41—30
42—40 41—32
42—41 41—31
42—42 41—34 revised
42—43 41—33 revised
42—44 41—36
42—45 41—35
42—46 41—38
42—47 41—37
42—48 41—39
42—49 41—40 revised

Chapter 43

43—1 42—72
43—2 42—1
43—3 42—3
43—4 42—87

43—5 42—82
43—6 42—7
43—7 42—4
43—8 42—84
43—9 42—83
43—10 42—6 revised
43—11 42—8 revised
43—12 42—9 revised
43—13 42—15 revised
43—14 42—10 revised
43—15 42—11
43—16 42—16
43—17 42—73 revised
43—18 42—18 revised
43—19 42—17
43—20 42—14 revised
43—21 42—13 revised
43—22 42—5 revised
43—23 42—16
43—24 42—18 revised
43—25 42—19 revised
43—26 42—21 sig. figs.
43—27 42—22
43—28 42—24
43—29 42—23
43—30 42—80
43—31 42—25
43—32 42—26
43—33 42—27
43—34 42—33
43—35 42—31
43—36 42—67
43—37 42—34
43—38 42—36
43—39 42—35
43—40 42—78
43—41 42—37
43—42 42—38
43—43 42—39 revised
43—44 42—70 revised
43—45 42—69
43—46 42—81
43—47 42—41 revised
43—48 42—40
43—49 42—43
43—50 42—42
43—51 42—44 revised
43—52 42—52 revised
43—53 42—77

43—54 42—46
43—55 42—45
43—56 42—48
43—57 42—47
43—58 42—58
43—59 42—49
43—60 42—50
43—61 42—51
43—62 42—52
43—63 42—53 revised
43—64 42—54
43—65 42—55
43—66 42—58 revised
43—67 42—57
43—69 42—59
43—70 42—60 revised
43—71 42—61
43—72 42—62
43—73 42—63
43—74 42—64
43—75 42—65
43—76 42—66
43—77 42—20
43—78 42—29
43—79 42—32
43—80 42—68
43—81 42—30
43—82 42—79
43—83 42—56
43—84 42—28
43—85 42—2
43—86 42—12
43—87 42—75
43—88 42—74

Chapter 44

44—1 43—3
44—2 43—2 revised
44—3 43—1
44—4 43—4
44—5 43—53
44—6 43—6
44—7 43—5
44—8 43—7
44—9 43—8
44—10 43—52
44—11 43—9 revised
44—12 43—12
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44—13 43—11
44—14 43—10
44—15 43—13
44—16 43—51
44—17 43—14
44—18 43—16
44—19 43—15
44—20 43—17
44—21 43—49
44—22 43—18
44—23 43—19 revised
44—24 43—22
44—25 43—23 sig. figs.
44—26 43—20
44—27 43—21 revised
44—28 43—25
44—29 43—24
44—30 43—26
44—31 43—27
44—32 43—54
44—33 43—29
44—34 43—28
44—35 43—30
44—36 43—31
44—37 43—32
44—38 43—50
44—41 43—47
44—42 43—36
44—43 43—35
44—44 43—38
44—45 43—37
44—46 43—40
44—47 43—39
44—48 43—42
44—49 43—41
44—50 43—46
44—51 43—43
44—52 43—44
44—53 43—45
44—54 43—48

Chapter 45

45—1 44—44
45—2 44—2
45—3 44—1
45—4 44—4
45—5 44—37
45—6 44—3

45—7 44—5
45—8 44—8
45—9 44—7
45—10 44—6
45—11 44—9
45—12 44—42
45—13 44—11
45—14 44—10 revised
45—15 44—13
45—16 44—12
45—17 44—15
45—18 44—14
45—19 44—18
45—20 44—16
45—21 44—17 revised
45—22 44—19 revised
45—23 44—21
45—24 44—20
45—25 44—23
45—26 44—22
45—27 44—24
45—28 44—39
45—29 44—25 revised
45—30 44—26
45—31 44—27
45—32 44—28
45—33 44—30
45—34 44—29
45—35 44—31
45—36 44—32 revised
45—37 44—33
45—38 44—34
45—39 44—35
45—40 44—36
45—41 44—41
45—42 44—38 revised
45—43 44—43
45—44 44—40

Enhanced Edition Problems

Chapter 1

1—N1 1—51
1—N2 1—26
1—N3 1—50
1—N4 1—24
1—N5 1—49
1—N6 1—29

1—N7 1—46
1—N8 1—11
1—N9 1—41
1—N10 1—2
1—N11 1—52
1—N12 1—45 revised
1—N13 1—44
1—N14 1—6 revised
1—N15 1—54
1—N16 1—15
1—N17 1—43
1—N18 1—28 revised
1—N19 1—55

Chapter 2

2—N1 2—30
2—N2 2—65
2—N3 2—44
2—N4 2—45
2—N5 2—100
2—N6 2—48
2—N7 2—1
2—N8 2—46
2—N10 2—8
2—N11 2—66
2—N12 2—35
2—N13 2—107
2—N14 2—75
2—N15 2—69
2—N16 2—33
2—N17 2—115
2—N18 2—99
2—N19 2—24
2—N20 2—32
2—N21 2—67
2—N23 2—17
2—N24 2—108
2—N29 2—109
2—N32 2—36

Chapter 3

3—N1 3—24
3—N2 3—40 revised
3—N3 3—21
3—N4 3—22
3—N5 3—41
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3—N6 3—42
3—N7 3—43
3—N8 3—44 revised
3—N9 3—27
3—N10 3—33
3—N11 3—36
3—N12 3—52
3—N13 3—73
3—N14 3—50
3—N15 3—53
3—N16 3—56
3—N17 3—57
3—N18 3—58
3—N19 3—47
3—N20 3—23
3—N21 3—30
3—N22 3—55
3—N23 3—54
3—N24 3—60
3—N25 3—16
3—N26 3—61

Chapter 4

4—N1 4—67
4—N2 4—75
4—N3 4—122
4—N4 4—54
4—N5 4—121
4—N6 4—64
4—N8 4—52 revised
4—N9 4—120
4—N10 4—38
4—N11 4—102
4—N12 4—78
4—N13 4—62
4—N14 4—40
4—N15 4—125
4—N16 4—71 revised
4—N17 4—60 revised
4—N18 4—51
4—N19 4—127
4—N20 4—46
4—N21 4—113
4—N22 4—57
4—N23 4—50 revised
4—N24 4—70
4—N25 4—84
4—N26 4—76

4—N27 4—72 revised
4—N28 4—73
4—N29 4—124
4—N30 4—74
4—N31 4—114
4—N32 4—35
4—N33 4—49
4—N34 4—83 revised
4—N35 4—11
4—N36 4—13
4—N37 4—12 revised

Chapter 5

5—N1 5—57
5—N2 5—79 revised
5—N3 5—65 revised
5—N4 5—44
5—N5 5—58
5—N6 5—36
5—N7 5—6
5—N8 5—59
5—N9 5—30
5—N10 5—15
5—N11 5—26
5—N12 5—11
5—N13 5—90
5—N14 5—38
5—N16 5—46
5—N17 5—66
5—N18 5—8
5—N19 5—91
5—N20 5—52
5—N21 5—92
5—N22 5—55
5—N23 5—104
5—N22 5—55

Chapter 6

6—N1 6—55 revised
6—N2 6—54
6—N3 6—57 revised
6—N4 6—56
6—N5 6—6
6—N6 6—58
6—N7 6—59
6—N8 6—60

6—N9 6—61 revised
6—N10 6—18
6—N11 6—62 revised
6—N12 6—63
6—N13 6—64
6—N14 6—24
6—N15 6—65 revised
6—N16 6—48
6—N17 6—43
6—N18 6—41
6—N19 6—52
6—N20 6—66 revised
6—N21 6—84
6—M22 6—42
6—N23 6—103 revised
6—N24 6—69 revised
6—N25 6—16
6—N26 6—70
6—N27 6—71
6—N28 6—23 revised
6—N29 6—72
6—N30 6—73
6—N31 6—39
6—N32 6—9
6—N33 5—74 revised
6—N34 5—75

Chapter 7

7—N1 7—37
7—N2 7—54
7—N3 7—76
7—N4 7—30
7—N5 7—7
7—N6 7—55
7—N7 7—56
7—N8 7—80
7—N9 7—47
7—N10 7—21
7—N11 7—57
7—N12 7—18
7—N13 7—75
7—N14 7—12
7—N15 7—74
7—N16 7—58
7—N18 7—59
7—N19 7—73
7—N20 7—60
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Chapter 8

8—N1 8—60
8—N2 8—53
8—N3 8—104
8—N4 8—27
8—N5 8—102
8—N6 8—82
8—N7 8—130
8—N8 8—80 revised
8—N9 8—81
8—N10 8—101
8—N11 8—79
8—N12 8—100
8—N13 8—99 revised
8—N14 8—134
8—N15 8—98
8—N16 8—42
8—N17 8—63 revised
8—N18 8—78
8—N19 8—109
8—N20 8—97
8—N21 8—96
8—N22 8—129
8—N23 8—95
8—N24 8—128
8—N25 8—132
8—N26 8—77
8—N27 8—135
8—N28 8—67
8—N29 8—61 revised

Chapter 9

9—N1 9—42
9—N2 9—77
9—N3 9—91 revised
9—N4 9—13
9—N5 9—78
9—N6 9—116
9—N8 9—138 revised
9—N10 9—38
9—N11 9—118
9—N13 9—2 revised
9—N14 9—21
9—N15 9—120 revised
9—N16 9—14
9—N17 9—83
9—N18 9—95

9—N19 9—122
9—N20 9—140
9—N22 9—4

Chapter 10

10—N1 9—62 revised
10—N2 9—64
10—N3 9—34
10—N4 9—75
10—N6 9—76
10—N8 9—58 revised
10—N9 9—115
10—N10 9—117 revised
10—N11 9—94
10—N12 9—47 revised
10—N13 9—86
10—N14 9—92
10—N15 9—28
10—N16 9—31 revised
10—N17 9—134
10—N19 9—119 revised
10—N20 9—90
10—N21 9—84
10—N22 9—74
10—N23 9—52
10—N24 9—61

Chapter 11

11—N1 10—38
11—N2 10—72
11—N3 10—56
11—N4 10—52
11—N5 10—36
11—N6 10—3 revised
11—N7 10—14
11—N8 10—8
11—N9 10—40 revised
11—N10 10—20 revised
11—N11 10—62
11—N12 10—65
11—N13 10—105
11—N14 10—12
11—N15 10—34
11—N16 10—51
11—N17 10—71
11—N18 10—100

11—N19 10—82
11—N20 10—68 revised
11—N21 10—103 revised
11—N22 10—102 revised

Chapter 12

12—N1 11—73
12—N2 11—44
12—N3 11—33
12—N4 11—13
12—N5 11—63 sig. figs.
12—N6 11—14
12—N7 11—38
12—N8 11—12
12—N9 11—11
12—N10 11—66 sig. figs.
12—N11 11—91
12—N12 11—10
12—N13 11—65
12—N14 11—29
12—N15 11—23
12—N16 11—36 sig. figs.
12—N17 11—99
12—N18 11—53
12—N19 11—72 sig. figs.
12—N20 11—50
12—N21 11—28

Chapter 13

13—N1 12—34
13—N2 12—46
13—N4 12—30
13—N5 12—43 revised
13—N6 12—48 revised
13—N7 12—78
13—N8 12—17
13—N9 12—70
13—N10 12—1
13—N11 12—62 revised
13—N12 12—44
13—N13 12—77 revised
13—N14 12—16 sig. figs.
13—N15 12—49
13—N16 12—61
13—N17 12—38
13—N18 12—18 revised
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13—N19 12—58
13—N20 12—60
13—N21 12—54 revised

Chapter 14

14—N1 13—63
14—N2 13—28
14—N3 13—65
14—N4 13—37 revised
14—N6 13—29
14—N7 13—7 revised
14—N8 13—12 revised
14—N9 13—13 revised
14—N10 13—10 revised
14—N11 13—93
14—N12 13—95
14—N13 13—91
14—N14 13—8
14—N16 13—64
14—N17 13—68
14—N18 13—36
14—N19 13—22
14—N20 13—30 revised
14—N21 13—96
14—N22 13—90

Chapter 15

15—N1 14—56
15—N2 14—58 revised
15—N4 14—50
15—N5 14—72
15—N6 14—30
15—N7 14—65
15—N8 14—32
15—N9 14—8
15—N10 14—36
15—N11 14—17
15—N12 14—13
15—N13 14—40
15—N14 14—67
15—N15 14—90
15—N16 14—23
15—N18 14—89
15—N19 14—85
15—N20 14—34
15—N22 14—68

15—N23 14—88
15—N24 14—28
15—N25 14—66

Chapter 16

16—N1 15—10
16—N2 15—12
16—N3 15—64
16—N4 15—34
16—N5 15—61 revised
16—N6 15—18
16—N7 15—32
16—N8 15—52
16—N9 15—30 revised
16—N10 15—65
16—N11 15—42 sig. figs.
16—N12 15—50 revised
16—N13 15—66
16—N14 15—54 sig. figs.
16—N15 15—74
16—N16 15—73
16—N17 15—67
16—N18 15—68
16—N19 15—112
16—N20 15—16
16—N21 15—56
16—N22 15—36
16—N24 15—53
16—25N 15—69 sig. figs.
16—N26 15—111

Chapter 17

17—N1 16—9 revised
17—N2 16—10
17—N3 16—57
17—N4 16—4
17—N5 16—58
17—N6 16—63
17—N7 16—8
17—N8 16—25
17—N9 16—3
17—N10 16—35
17—N11 16—65
17—N12 16—62 revised
17—N13 16—37
17—N14 16—36

17—N15 16—64
17—N16 16—52
17—N17 16—32
17—N18 16—31 revised
17—N19 16—56
17—N20 16—54
17—N21 16—46

Chapter 18

18—N2 17—12 sig. figs.
18—N3 17—13 revised
18—N4 17—27 revised
18—N5 17—56 revised
18—N6 17—65 revised
18—N7 17—29
18—N8 17—58
18—N9 17—68
18—N10 17—10
18—N11 17—15
18—N12 17—100
18—N13 17—31
18—N14 17—99
18—N16 17—18 revised
18—N17 17—98 revised
18—N18 17—40
18—N19 17—34
18—N20 17—69
18—N22 17—74
18—N24 17—70 revised
18—N25 17—71 revised
18—N26 17—72 sig. figs.
18—N28 17—90
18—N30 17—62
18—N31 17—89 sig. figs.
18—N32 17—33

Chapter 19

19—N2 18—34
19—N4 18—68
19—N5 18—101
19—N6 18—32
19—N8 18—66
19—N10 18—58 sig. figs.
19—N12 18—36
19—N14 18—65
19—N17 18—64
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19—N18 18—93
19—N19 18—100
19—N20 18—47
19—N22 18—63 revised
19—N23 18—79
19—N24 18—46
19—N25 18—89

Chapter 20

20—N2 19—10
20—N4 19—34
20—N5 19—60
20—N6 19—77
20—N7 19—70
20—N8 19—71 revised
20—N9 19—63
20—N10 19—8
20—N11 19—64
20—N12 19—72
20—N14 19—73
20—N16 19—57
20—N18 19—74
20—N19 19—56
20—N20 19—75
20—N21 19—47 revised
20—N22 19—76 sig. figs.

Chapter 21

21—N1 20—50
21—N2 20—8
21—N3 20—12
21—N4 20—28
21—N6 20—49 revised
21—N8 20—10
21—N10 20—40
21—N12 20—55
21—N13 20—74
21—N14 20—73
21—N16 20—56 revised
21—N17 20—53
21—N18 20—72
21—N19 20—71
21—N20 20—48
21—N21 20—70
21—N22 20—57

21—N23 20—47

Chapter 22

22—N1 21—38
22—N2 21—37 revised
22—N3 21—27
22—N4 21—35 revised
22—N5 21—12 revised
22—N6 21—20 revised
22—N7 21—44
22—N8 21—36
22—N9 21—71 revised
22—N10 21—14
22—N11 21—34
22—N12 21—33 revised
22—N13 21—45 revised
22—N14 21—32
22—N15 21—28 revised
22—N16 21—18 revised
22—N17 21—30
22—N18 21—40
22—N19 21—69
22—N20 21—56

Chapter 23

23—N1 22—33
23—N2 22—54
23—N3 22—23
23—N4 22—14
23—N5 22—56
23—N6 22—58 revised
23—N7 22—67 revised
23—N8 22—62
23—N9 22—60
23—N10 22—28
23—N11 22—88
23—N12 22—18
23—N13 22—83 revised
23—N14 22—16
23—N15 22—69 revised
23—N16 22—20
23—N17 22—63
23—N18 22—52
23—N19 22—70
23—N20 22—48
23—N21 22—49

23—N22 22—46
23—N24 22—66 sig. figs.
23—N25 22—13
23—N26 22—64
23—N27 22—61 revised
23—N28 22—32
23—N30 22—68

Chapter 24

24—N1 23—12
24—N2 23—18
24—N3 23—40 revised
24—N4 23—10 revised
24—N5 23—26
24—N6 23—48
24—N7 23—61
24—N8 23—60 revised
24—N9 23—62
24—N10 23—58
24—N11 23—59 revised
24—N12 23—46
24—N13 23—56 revised
24—N14 23—24
24—N15 23—66
24—N16 23—42
24—N17 23—80 revised
24—N18 23—33
24—N19 23—52
24—N20 23—64 revised
24—N21 23—22
24—N22 23—36
Chapter 25

25—N1 24—49
25—N2 24—18 revised
25—N3 24—16 revised
25—N4 24—48
25—N5 24—67
25—N6 24—20
25—N7 24—69
25—N8 24—50
25—N9 24—68
25—N10 24—26
25—N11 24—70 revised
25—N12 24—71 sig. figs.
25—N13 24—77
25—N14 24—78
25—N15 24—79
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25—N16 24—38

25—N17 24—46 revised

25—N18 24—59

25—N19 24—95

25—N20 24—62 revised

25—N21 24—118

25—N22 24—64 revised

25—N23 24—102

25—N24 24—35 revised

25—N25 24—72

25—N26 24—66

25—N27 24—73

25—N28 24—51

25—N29 24—103

25—N30 24—52

25—N31 24—80

25—N32 24—27 revised

25—N33 24—81

25—N34 24—61

25—N35 24—117 revised

25—N37 24—104

Chapter 26

26—N1 25—51

26—N2 25—52 sig. figs.

26—N3 25—14 revised

26—N4 25—22

26—N5 25—18

26—N6 25—19

26—N7 25—53 revised

26—N8 25—20 revised

26—N9 25—38 revised

26—N10 25—54

26—N11 25—61 sig. figs.

26—N12 25—55 revised

26—N13 25—62

26—N14 25—16

26—N15 25—63

26—N16 25—56 revised

26—N17 25—64

26—N18 25—58

26—N19 25—81

26—N20 25—65 sig. figs.

26—N22 25—66

Chapter 27

27—N2 26—32 revised
27—N4 26—22
27—N5 26—72
27—N6 26—53
27—N7 26—71 revised
27—N8 26—20
27—N9 26—70
27—N10 26—24
27—N12 26—46 sig. figs.
27—N14 26—69
27—N16 26—10
27—N18 26—26
27—N19 26—68
27—N20 26—42
27—N21 26—44
27—N22 26—50
27—N23 26—67 sig. figs.
27—N24 26—66
27—N25 26—75
27—N26 26—65

Chapter 28

28—N1 27—22 revised
28—N2 27—34 revised
28—N3 27—103
28—N4 27—24
28—N6 27—10 revised
28—N8 27—48
28—N10 27—69
28—N11 27—65
28—N12 27—12
28—N13 27—75 revised
28—N14 27—60
28—N15 27—76
28—N16 27—64 sig. figs.
28—N17 27—77 revised
28—N18 27—28
28—N19 27—78 revised
28—N20 27—79 revised
28—N21 27—80 revised
28—N22 27—62 revised
28—N23 27—26 revised
28—N24 27—112
28—N25 27—111 revised
28—N26 27—56
28—N27 27—113

28—N28 27—102 sig. figs.

Chapter 29

29—N1 28—4

29—N2 28—10 revised

29—N3 28—54

29—N4 28—44

29—N6 28—60

29—N8 28—22

29—N9 28—89

29—N10 28—21

29—N12 28—58

29—N14 28—31

29—N15 28—67

29—N16 28—66

29—N17 28—26

29—N18 28—56

29—N20 28—14

Chapter 30

30—N1 29—16 revised

30—N2 29—10

30—N3 29—64

30—N4 29—26 revised

30—N5 29—22

30—N6 29—62 revised

30—N7 29—12

30—N8 29—56

30—N9 29—78

30—N10 29—18

30—N11 29—77

30—N12 29—54

30—N13 29—59

30—N14 29—14

30—N15 29—76 revised

30—N16 29—24

30—N17 29—60 revised

30—N18 29—27

30—N20 29—32 revised

30—N22 29—20

30—N24 29—46

30—N25 29—58
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Chapter 31

31—N1 30—74 revised

31—N2 30—76

31—N3 30—10

31—N4 30—78 sig. figs.

31—N5 30—20

31—N6 30—54 sig. figs.

31—N7 30—80

31—N8 30—28

31—N9 30—12 revised

31—N10 30—82

31—N11 30—84 sig. figs.

31—N12 30—86

31—N13 30—94

31—N14 30—96 sig. figs.

31—N15 30—88 sig. figs.

31—N16 30—36

31—N17 30—91 sig. figs.

31—N18 30—90

31—N19 30—75

31—N20 30—16 revised

31—N21 30—77 revised

Chapter 32

32—N1 32—1

32—N2 32—22 revised

32—N3 32—32

32—N4 32—51

32—N5 32—50

32—N6 32—48

32—N7 32—8

32—N8 32—9

32—N9 32—10 sig. figs

32—N10 32—11

32—N11 32—20

32—N12 32—46

32—N13 32—54

32—N15 32—56 revised

32—N16 32—40

32—N17 32—23

32—N18 32—24

32—N19 32—25

32—N20 32—26

Chapter 33

33—N1 31—76
33—N2 31—36
33—N3 31—74
33—N4 31—38
33—N5 31—72
33—N6 31—70
33—N7 31—68
33—N8 31—48
33—N10 31—40
33—N11 31—78
33—N12 31—42
33—N13 31—80
33—N14 31—22
33—N15 31—23
33—N16 31—81
33—N20 31—84
33—N21 31—100
33—N22 31—86
33—N23 31—97
33—N24 31—44
33—N25 31—88
33—N27 31—90

Chapter 34

34—N2 33—46
34—N3 33—95
34—N4 33—48
34—N6 33—50
34—N8 33—70
34—N9 33—94
34—N10 33—29
34—N11 33—100
34—N12 33—36
34—N13 33—97
34—N14 33—60
34—N16 33—38
34—N17 33—81 revised
34—N18 33—42
34—N19 33—40
34—N20 33—18
34—N21 33—56
34—N22 33—52
34—N23 33—58
34—N24 33—86
34—N25 33—16
34—N26 33—30

34—N27 33—72
34—N28 33—98
34—N29 33—67
34—N30 33—102
34—N31 33—107

Chapter 35

35—N1 34—6
35—N2 34—8
35—N3 34—9 revised
35—N4 34—11 revised
35—N5 34—13 revised
35—N6 34—15 revised
35—N7 34—12 revised
35—N8 34—16 revised
35—N9 34—14 revised
35—N10 34—10 revised
35—N12 34—96
35—N13 34—29 revised
35—N14 34—31 revised
35—N15 34—27 revised
35—N16 34—30 revised
35—N17 34—28 revised
35—N18 34—18
35—N24 34—42
35—N25 34—50
35—N26 34—51
35—N27 34—52
35—N28 34—53
35—N29 34—54
35—N30 34—55
35—N31 34—56
35—N32 34—57
35—N33 34—59
35—N34 34—60
35—N35 34—61
35—N36 34—62
35—N37 34—63
35—N38 34—64
35—N39 34—65
35—N40 34—44
35—N41 34—46
35—N42 34—48
35—N43 34—69 revised
35—N44 34—70 revised
35—N45 34—71 revised
35—N46 34—72 revised
35—N47 34—73 revised
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35—N48 34—80
35—N49 34—81
35—N50 34—82
35—N51 34—83
35—N52 34—84
35—N53 34—85
35—N54 34—86
35—N55 34—87
35—N56 34—109
35—N57 34—121 revised
35—N58 34—122
35—N59 34—127
35—N60 34—136
35—N61 34—140
35—N62 34—113
35—N63 34—114
35—N64 34—115
35—N65 34—116
35—N66 34—117
35—N67 34—118

Chapter 36

36—N1 35—36
36—N2 35—78
36—N3 35—135
36—N4 35—86
36—N5 35—127
36—N6 35—26
36—N7 35—126
36—N8 35—88
36—N9 35—124
36—N10 35—34
36—N12 35—32
36—N14 35—4
36—N15 35—98
36—N16 35—22 revised
36—N17 35—70
36—N18 35—74
36—N19 35—38 revised
36—N20 35—18
36—N21 35—100
36—N22 35—24
36—N23 35—12
36—N24 35—96
36—N25 35—94
36—N26 35—56
36—N27 35—90
36—N28 35—92

36—N29 35—10 revised
36—N30 35—84
36—N31 35—28

Chapter 37

37—N1 36—102
37—N2 36—12
37—N3 36—24
37—N4 36—10
37—N5 36—101
37—N6 36—36 sig. figs.
37—N7 36—106
37—N8 36—34
37—N9 36—104
37—N10 36—100
37—N11 36—99
37—N12 36—46
37—N13 36—113
37—N14 36—98
37—N15 36—112
37—N16 36—97
37—N17 36—95
37—N18 36—96
37—N19 36—56
37—N20 36—94
37—N21 36—93
37—N22 36—64
37—N23 36—92
37—N24 36—91
37—N25 36—111
37—N26 36—90
37—N27 36—89
37—N28 36—114

Chapter 38

38—N1 37—25 revised
38—N2 37—26 revised
38—N3 37—70

38—N4 (part) 37—60 revised
38—4 (part) 37—61 revised

38—N5 37—46
38—N6 37—22
38—N8 37—62
38—N9 37—56 revised
38—N10 37—4 revised
38—N11 37—67

38—N12 37—68
38—N13 37—69
38—N14 37—24
38—N15 37—32
38—N16 37—14
38—N17 37—6
38—N18 37—64

Supplement Problems

Chapter 1

1—31 1—12
1—32 1—42
1—33 1—40
1—34 1—22
1—35 1—59
1—36 1—39 revised
1—37 1—38
1—39 1—37
1—40 1—57 revised
1—41 1—30 revised
1—43 1—56
1—44 1—35 revised

Chapter 2

2—66 2—81
2—67 2—74
2—68 2—113
2—69 2—76
2—70 2—77
2—71 2—114
2—72 2—78
2—73 2—79
2—74 2—54
2—75 2—80
2—76 2—101
2—77 2—14
2—78 2—82 revised
2—79 2—34
2—80 2—4
2—81 2—73 revised
2—82 2—83
2—83 2—72
2—85 2—84
2—86 2—50
2—87 2—71
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2—89 2—85 revised
2—91 2—7
2—94 2—86
2—95 2—22
2—96 2—87
2—97 2—102
2—98 2—103
2—100 2—104
2—103 2—57
2—104 2—88

Chapter 3

3—39 3—71
3—40 3—66
3—42 3—28
3—43 3—29
3—44 3—65
3—47 3—67
3—48 3—64
3—49 3—13
3—50 3—9
3—51 3—63
3—52 3—68
3—53 3—26 revised
3—55 3—69
3—56 3—5
3—57 3—6 revised
3—58 3—70
3—59 3—72

Chapter 4

4—65 4—109
4—67 4—134
4—68 4—3
4—69 4—10
4—70 4—107
4—71 4—105 revised
4—72 4—133
4—75 4—103
4—76 4—100
4—77 4—98
4—78 4—4 revised
4—79 4—119
4—80 4—94 revised
4—81 4—131
4—82 4—80

4—83 4—22 revised
4—84 4—93
4—85 4—130
4—86 4—17
4—87 4—91
4—88 4—89
4—89 4—129
4—90 4—128
4—91 4—126 revised
4—92 4—90 revised
4—93 4—101
4—94 4—8 revised
4—95 4—135 revised
4—97 4—132 revised
4—98 4—79 revised
4—99 4—77
4—100 4—123
4—104 4—36
4—105 4—33 revised
4—106 4—43 revised
4—107 4—69 revised

Chapter 5

5—57 5—37 revised
5—58 5—67 revised
5—59 5—12 revised
5—60 5—93
5—61 5—94 revised
5—62 5—68
5—63 5—95 revised
5—64 5—16 revised
5—65 5—69
5—66 5—96
5—67 5—70 revised
5—68 5—71
5—69 5—101
5—70 5—73
5—71 5—74 revised
5—72 5—75 revised
5—73 5—97
5—74 5—98
5—75 5—14 revised
5—77 5—76 revised
5—78 5—78
5—79 5—100 revised
5—80 5—77 revised
5—81 5—99 revised

5—82 5—84

Chapter 6

6—49 6—77 revised
6—50 6—108
6—51 6—106
6—52 6—12
6—53 6—34
6—54 6—78
6—55 6—79
6—56 6—80 revised
6—57 6—101
6—58 6—82
6—59 6—83
6—60 6—85
6—61 6—86
6—62 6—87 revised
6—63 6—88
6—64 6—89 revised
6—65 6—90 revised
6—66 6—91
6—67 6—92
6—68 6—107
6—70 6—50
6—73 6—94
6—74 6—95
6—75 6—105
6—76 6—96 revised
6—77 6—97 revised

Chapter 7

7—41 7—66
7—42 7—34
7—43 7—61
7—44 7—62
7—45 7—78
7—46 7—72
7—47 7—1
7—48 7—71
7—49 7—70
7—50 7—69
7—51 7—68
7—53 7—79
7—54 7—48
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Chapter 8

8—68 8—94
8—69 8—136
8—70 8—126
8—71 8—125
8—72 8—93
8—73 8—133
8—74 8—124 revised
8—75 8—123 revised
8—76 8—122
8—77 8—127
8—78 8—33
8—79 8—116
8—80 8—92
8—81 8—115
8—82 8—118
8—83 8—121
8—84 8—111
8—85 8—114
8—86 8—32 revised
8—87 8—91
8—88 8—90 sig. figs.
8—89 8—89 revised
8—90 8—88 revised
8—91 8—87
8—92 8—19 revised
8—94 8—86
8—95 8—83
8—96 8—119
8—97 8—120

Chapter 9

9—60 9—96
9—61 9—125
9—62 9—127

Chapter 10

10-60 9—136
10—61 9—121
10—62 9—137
10—63 9—139 revised
10—67 9—124 revised
10—68 9—126 revised
10—80 9—98 revised
10—81 9—128

Chapter 11

11—71 10—80 sig. figs.
11—72 10—79 revised
11—73 10—19
11—74 10—70
11—75 10—86
11—76 10—78 sig. figs
11—77 10—101
11—78 10—104
11—79 10—69 revised
11—80 10—93
11—81 10—77 revised
11—82 10—98 revised
11—84 10—97
11—86 10—96
11—87 10—95
11—88 10—91
11—89 10—109
11—90 10—90
11—91 10—89 revised
11—92 10—87
11—93 10—88 revised
11—94 10—113
11—96 10—99
11—98 10—117
11—99 10—24
11—100 10—115
11—101 10—114
11—102 10—118
11—103 10—2

Chapter 12

12—61 11—16 revised
12—62 11—87 revised
12—63 11—76 revised
12—64 11—86
12—65 11—88 revised
12—66 11—69 revised
12—67 11—93
12—68 11—19
12—69 11—85 revised
12—70 11—84
12—71 11—103
12—72 11—90
12—73 11—75
12—74 11—79
12—75 11—97

12—76 11—94
12—77 11—96
12—78 11—82
12—79 11—80

Chapter 13

13—43 12—68
13—44 12—64
13—45 12—76
13—46 12—59 revised
13—47 12—75 revised
13—48 12—74 revised
13—49 12—69 revised
13—50 12—67 revised
13—51 12—73 revised
13—52 12—63
13—53 12—51 revised
13—54 12—66 revised
13—55 12—42 revised
13—56 12—57 revised
13—57 12—55 revised
13—58 12—72
13—59 12—56
13—60 12—50 revised
13—61 12—71 revised
13—62 12—52 revised
13—63 12—65

Chapter 14

14—65 13—70
14—66 13—38
14—67 13—66
14—68 13—94
14—69 13—72
14—70 13—52
14—71 13—82 revised
14—72 13—89
14—73 13—97
14—74 13—99
14—75 13—88 revised
14—76 13—100
14—78 13—80
14—81 13—101
14—82 13—87
14—83 13—69
14—84 13—71
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14—85 13—67 revised
14—87 13—86
14—88 13—79
14—89 13—54
14—90 13—78
14—91 13—85
14—92 13—59 revised
14—94 13—102

Chapter 15

15—64 14—39
15—66 14—87
15—67 14—10
15—68 14—69
15—69 14—86
15—70 14—12
15—71 14—76
15—72 14—51
15—73 14—84
15—74 14—83
15—75 14—96
15—76 14—82
15—77 14—97
15—79 14—81
15—83 14—80
15—84 14—94
15—86 14—95
15—87 14—78
15—88 14—77
15—89 14—57

Chapter 16

16—65 15—113
16—66 15—110
16—67 15—70
16—69 15—108
16—73 15—93
16—74 15—92
16—75 15—91 revised
16—77 15—90
16—78 15—89
16—79 15—88
16—80 15—107
16—81 15—106 sig. figs.
16—82 15—105
16—83 15—104

16—85 15—103
16—89 15—47
16—90 15—102
16—91 15—101
16—92 15—100
16—93 15—48
16—94 15—38
16—95 15—99
16—96 15—98
16—98 15—97
16—99 15—96 sig. figs.
16—101 15—95
16—102 15—94
16—103 15—87

Chapter 17

17—53 16—94
17—54 16—80
17—55 16—81
17—57 16—91 revised
17—58 16—79 revised
17—59 16—59
17—60 16—78
17—61 16—16
17—62 16—77 revised
17—63 16—76 revised
17—64 16—86
17—65 16—75 revised
17—66 16—90
17—67 16—74 revised
17—68 16—73
17—69 16—72 sig. figs.
17—70 16—7 revised
17—71 16—71 revised
17—72 16—88

Chapter 18

18—61 17—88
18—62 17—32
18—63 17—28
18—64 17—87
18—65 17—79
18—66 17—103
18—67 17—105
18—68 17—102
18—69 17—86

18—70 17—107
18—71 17—2
18—72 17—73 revised
18—76 17—85
18—77 17—84
18—80 17—11
18—81 17—110
18—82 17—20 revised
18—83 17—82
18—84 17—6
18—86 17—81 revised
18—87 17—80
18—88 17—109
18—89 17—4
18—91 17—67
18—92 17—11
18—93 17—101
18—96 17—78
18—97 17—77
18—98 17—76
18—99 17—104

Chapter 19

19—69 18—74 revised
19—70 18—91
19—71 18—94
19—72 18—62
19—73 18—72 revised
19—74 18—77
19—75 18—90
19—76 18—85
19—77 18—84
19—79 18—13
19—81 18—69 revised
19—82 18—76
19—83 18—75
19—84 18—88
19—85 18—96
19—86 18—70
19—87 18—87
19—88 18—92
19—91 18—81
19—93 18—56
19—96 18—82
19—97 18—83
19—98 18—98
19—99 18—95
19—100 18—19
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19—103 18—71
19—106 18—80
19—107 18—73
19—108 18—6
19—109 18—99
19—110 18—97

Chapter 20

20—62 19—65 revised
20—63 19—78 revised
20—64 19—79 revised
20—65 19—80
20—67 19—69
20—70 19—82
20—71 19—66 revised
20—73 19—83
20—74 19—84
20—75 19—55
20—76 19—85
20—77 19—86
20—78 19—87 revised
20—79 19—61
20—80 19—88 sig. figs.
20—81 19—89
20—82 19—90
20—84 19—62
20—86 19—91 sig. figs.
20—87 19—92
20—89 19—93
20—91 19—94

Chapter 21

21—46 20—7
21—47 20—31
21—50 20—69 revised
21—53 20—54
21—54 20—68
21—55 20—67
21—56 20—66
21—57 20—65 revised
21—58 20—63 revised
21—59 20—64
21—61 20—58
21—62 20—62
21—63 20—61
21—64 20—60

21—66 20—46
21—67 20—59
21—68 20—34
21—69 20—52

Chapter 22

22—31 21—55
22—32 21—63
22—33 21—54
22—34 21—53 revised
22—35 21—11 revised
22—36 21—52 revised
22—37 21—62 revised
22—38 21—61
22—39 21—51
22—40 21—50
22—41 21—49 revised
22—42 21—39 revised
22—43 21—16 revised
22—44 21—46
22—45 21—43
22—46 21—19
22—47 21—42
22—48 21—57
22—49 21—58
22—50 21—68 revised
22—51 21—41 revised

Chapter 23

23—49 22—82
23—50 22—81
23—52 22—80
23—53 22—79
23—54 22—78
23—55 22—77
23—58 22—15 revised
23—59 22—76
23—60 22—91 revised
23—61 22—75
23—62 22—74
23—63 22—73
23—65 22—72
23—66 22—65
23—67 22—59 revised
23—68 22—71 revised

Chapter 24

24—49 23—79 revised
24—50 23—76 revised

24—52 23—73 revised

24—53 23—71
24—54 23—3 sig. figs.

24—55 23—78
24—56 23—70 revised

24—57 23—69 revised
24—58 23—68

24—59 23—55 sig. figs.

24—61 23—67 sig. figs.
24—61 23—75 sig. figs.

24—63 23—7 revised

Chapter 25

25—58 24—65 revised

25—60 24—82

25—61 24—105
25—62 24—83 revised

25—63 24—106
25—64 24—84 revised

25—65 24—107

25—66 24—85
25—67 24—116

25—68 24—108
25—69 24—24 revised

25—70 24—115
25—71 24—74 revised

25—72 24—75

25—73 24—86 revised
25—74 24—63

25—75 24—109 sig. figs.
25—76 24—87 sig. figs.

25—77 24—6
25—78 24—88

25—79 24—8 sig. figs.

25—80 24—89
25—81 24—110

25—82 24—111 revised
25—83 24—90 sig. figs.

25—84 24—91 sig. figs.
25—85 24—33 sig. figs.

25—86 24—76 revised
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Chapter 26

26—50 25—60
26—52 25—59
26—53 25—41
26—56 25—68
26—57 25—69 revised
26—58 25—67 revised
26—59 25—70
26—60 25—71 revised
26—61 25—72 revised
26—62 25—73
26—63 25—57 revised
26—64 25—29 revised
26—65 25—33
26—66 25—75
26—67 25—76 revised
26—68 25—77
26—69 25—78
26—71 25—79
26—72 25—80
26—74 25—82 revised
26—75 25—83 revised
26—76 25—84 sig. figs.
26—78 25—49 revised

Chapter 27

27—49 26—63 revised
27—50 26—62
27—51 26—74
27—52 26—80
27—53 26—81
27—54 26—82
27—55 26—61 sig. figs.
27—56 26—52
27—57 26—83
27—58 26—60
27—59 26—64
27—60 26—59
27—61 26—14 revised
27—62 26—58
27—63 26—51
27—65 26—73 revised
27—66 26—12 revised
27—67 26—49
27—68 26—47

Chapter 28

28—58 27—110
28—59 27—63
28—60 27—61 revised
28—61 27—81 revised
28—62 27—98
28—63 27—82 revised
28—64 27—83 revised
28—65 27—101
28—66 27—109 revised
28—67 27—84 revised
28—68 27—108
28—69 27—23 revised
28—70 27—54 revised
28—71 27—99 revised
28—72 27—70 revised
28—73 27—85
28—74 27—59 revised
28—75 27—71 revised
28—76 27—58
28—77 27—86
28—78 27—107 revised
28—80 27—87
28—81 27—105
28—82 27—106
28—83 27—72 revised
28—84 27—88 revised
28—85 27—100
28—86 27—89 revised
28—87 27—90 revised
28—88 27—91 revised
28—89 27—92 revised
28—91 27—93 revised
28—92 27—104 revised
28—93 27—96 revised
28—94 27—66 revised
28—95 27—95 revised
28—96 27—94

Chapter 29

29—60 28—75
29—61 28—13 revised
29—62 28—74
29—63 28—72
29—64 28—73
29—65 28—63
29—66 28—79

29—68 28—71 revised
29—69 28—68
29—70 28—61 revised
29—71 28—70
29—72 28—34 revised
29—73 28—69
29—74 28—65
29—76 28—78 revised
29—77 28—88
29—78 28—38

Chapter 30

30—59 29—91
30—60 29—92
30—61 29—55 revised
30—62 29—75
30—63 29—88 revised
30—65 29—74
30—66 29—73 revised
30—67 29—72
30—68 29—57
30—69 29—71
30—70 29—70 revised
30—71 29—69 revised
30—72 29—68 revised
30—73 29—67
30—74 29—90
30—75 29—87 revised
30—76 29—65
30—78 29—66 revised
30—79 29—63
30—80 29—28 revised

Chapter 31

31—76 30—98
31—78 30—81
31—81 30—102
31—84 30—85
31—85 30—83
31—86 30—105
31—87 30—106
31—88 30—107
31—90 30—87 revised
31—91 30—108
31—92 30—109
31—94 30—93
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31—95 30—79
31—97 30—95
31—101 30—97 revised
31—103 30—99
31—104 30—101 revised
31—105 30—103

Chapter 32

32—39 32—57
32—40 32—6 revised
32—41 32—61
32—42 32—4
32—43 32—55
32—44 32—63 revised
32—45 32—53
32—46 32—70 revised
32—47 32—62
32—48 32—64
32—49 32—69
32—50 32—66
32—51 32—60
32—52 32—59
32—53 32—58
32—55 32—67
32—56 32—52
32—57 32—33 sig. figs.
32—58 32—47
32—60 32—68

Chapter 33

33—66 31—67
33—67 31—69
33—69 31—71
33—70 31—63 revised
33—71 31—73
33—72 31—75
33—73 31—77
33—74 31—79
33—76 31—82
33—79 31—83
33—81 31—85 revised
33—82 31—65
33—83 31—87 revised
33—85 31—89
33—86 31—91 revised
33—87 31—92 sig. figs.

33—88 31—93 sig. figs.
33—89 31—94
33—91 31—95
33—92 31—96

Chapter 34

34—67 33—77
34—68 33—78
34—69 33—71
34—71 33—96
34—75 33—80
34—77 33—92
34—78 33—68
34—79 33—83
34—81 33—99
34—82 33—93
34—83 33—76
34—84 33—91
34—85 33—104
34—86 33—105
34—87 33—101 revised
34—88 33—90
34—89 33—108
34—91 33—79
34—92 33—57
34—93 33—88 revised
34—94 33—73
34—95 33—103
34—98 33—59
34—99 35—89
34—100 33—74

Chapter 35

35—39 34—119
35—40 34—97
35—41 34—111 revised
35—42 34—1012
35—43 34—138
35—45 34—100 revised
35—46 34—135
35—47 34—134 revised
35—48 34—133
35—49 34—132
35—50 34—108
35—51 34—131
35—52 34—98

35—54 34—99
35—55 34—107 revised
35—56 34—130
35—57 34—129
35—58 34—33
35—59 34—128
35—60 34—137

35—61, 35—62 34—95 revised
35—64 34—94 revised

Chapter 36

36—61 34—120
36—62 34—119 revised
36—63 34—119
36—64 34—87
36—65 34—93
36—66 35—33
36—67 34—118
36—68 34—136
36—70 34—111 revised
36—71 34—110
36—72 34—109 revised
36—73 34—108
36—74 35—73
36—75 34—107 revised
36—76 34—106 revised
36—77 34—105 revised
36—78 34—104 revised
36—79 34—128
36—80 34—103
36—81 34—102
36—83 34—101
36—84 34—95
36—85 34—99
36—86 34—83
36—87 34—98

Chapter 37

37—65 36—88
37—66 36—87
37—67 36—86
37—68 36—85
37—69 36—48
37—70 36—84
37—71 36—83
37—72 36—82

Comparison of Problems: Problem Supplement 263



37—73 36—81
37—74 36—80
37—75 36—79
37—76 36—49 revised
37—77 36—78 sig. figs.
37—78 36—23
37—79 36—8 revised
37—80 36—77
37—81 36—76
37—82 36—70
37—83 36—71
37—84 36—72
37—85 36—73 revised
37—86 36—74
37—87 36—75

Chapter 38

38—54 37—45 revised
38—58 37—88 revised
38—60 37—87
38—61 37—86
38—62 37—85
38—63 37—84
38—64 37—83
38—66 37—66 revised
38—67 37—82
38—68 37—71
38—69 37—72
38—70 37—38
38—71 37—73
38—72 37—74 revised

38—73 37—75
38—74 37—76
38—75 37—77
38—76 37—3
38—77 37—78
38—78 37—79
38—79 37—80
38—80 37—44
38—81 37—81
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SECTION EIGHT

PROBLEMS IN THE STUDENT SOLUTION MANUAL,

IN THE STUDENT’S COMPANION, AND ON THE WILEY WEBSITE

The Student Solution Manual contains fully worked out solutions to about one-third of the odd
numbered end-of-chapter problems and the study guide (A Student’s Companion) contains hints
for about another third. The Wiley website duplicates three or four solutions of each chapter from
the Student Solution Manual and slightly less than half the hints in A Student’s Companion. The
Student Solution Manual andA Student’s Companion are available to students as print supplements.
The wiley Website is can be reached at the address given in the text. The problem solutions included
in the Student Solution Manual and the hints in A Student’s Companion are listed here. Those
that appear on the website are underlined.

As part of each assignment you may wish to have students study a few of the solutions in the Student
Solution Manual before attempting their own solutions to other problems. You may also wish to
include in the assignment several of the problems discussed in A Student’s Companion. These will
help students develop problem-solving strategies and learn effective problem-solving techniques.

Chapter 1
Solution Manual: 1, 5, 7, 13, 19, 23, 29, 33, 37, 41, 47, 57

Study Guide: 3, 9, 11, 17, 21, 27, 31, 35, 39, 43, 45, 49, 59

Chapter 2
Solution Manual: 3, 5, 15, 19, 23, 25, 27, 39, 41, 43, 47, 49, 51, 65, 69, 75, 87, 93, 103, 107, 115

Study Guide: 7, 13, 17, 21, 31, 35, 37, 45, 53, 57, 61, 67, 73, 79, 89, 105, 109, 113, 117

Chapter 3
Solution Manual: 1, 3, 7, 11, 15, 19, 25, 31, 35, 41, 45, 47, 55, 65, 67, 77

Study Guide: 5, 13, 21, 23, 27, 29, 33, 37, 39, 43, 53, 61, 69, 73

Chapter 4
Solution Manual: 5, 9, 15, 25, 27, 31, 37, 39, 41, 53, 59, 61, 63, 69, 75, 79, 81, 87, 97, 99, 103, 107,

115, 119, 127, 135
Study Guide: 7, 19, 23, 29, 33, 35, 43, 45, 51, 57, 67, 71, 73, 83, 89, 91, 101, 105, 111, 117, 123,

129, 133

Chapter 5
Solution Manual: 5, 9, 13, 17, 23, 29, 39, 43, 49, 53, 59, 63, 67, 73, 77, 83, 89, 99

Study Guide: 3, 15, 21, 25, 35, 37, 45, 47, 55, 61, 69, 75, 81, 85, 87, 93, 97

Chapter 6
Solution Manual: 3, 5, 13, 15, 21, 25, 27, 31, 45, 47, 49, 51, 55, 61, 67, 69, 73, 77, 87, 91, 99, 105

Study Guide: 1, 7, 9, 17, 19, 23, 29, 37, 39, 43, 57, 59, 65, 75, 79, 83, 93, 101, 107
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Chapter 7

Solution Manual: 3, 13, 17, 19, 29, 33, 41, 43, 45, 55, 59, 63, 65, 71, 73, 77
Study Guide: 7, 9, 11, 15, 23, 25, 35, 37, 39, 47, 51, 53, 61, 67, 69, 75

Chapter 8

Solution Manual: 1, 3, 9, 13, 17, 29, 43, 45, 51, 67, 69, 71, 83, 89, 99, 105, 115, 119, 125, 127, 129
Study Guide: 5, 11, 19, 21, 27, 35, 39, 49, 57, 65, 75, 79, 87, 91, 97, 103, 109, 121, 123, 135

Chapter 9

Solution Manual: 1, 15, 17, 23, 35, 43, 55, 59, 63, 69, 71, 73, 75, 79, 81, 89, 95, 99, 101, 105, 107,
121, 125, 131, 133, 135

Study Guide: 5, 7, 11, 13, 21, 31, 39, 49, 53, 65, 77, 83, 87, 97, 109, 113, 119, 123, 127, 137

Chapter 10

Solution Manual: 13, 21, 27, 29, 33, 35, 37, 41, 45, 47, 49, 55, 63, 69, 71, 77, 83, 85, 89, 97, 101,
107, 111, 123

Study Guide: 11, 15, 17, 23, 25, 31, 39, 51, 53, 59, 61, 65, 75, 79, 81, 87, 93, 99, 105, 109, 117

Chapter 11

Solution Manual: 3, 9, 15, 21, 27, 31, 35, 37, 41, 43, 45, 59, 67, 75, 83, 85, 95
Study Guide: 7, 9, 13, 25, 29, 39, 47, 51, 55, 61, 63, 69, 73, 81, 87

Chapter 12

Solution Manual: 5, 7, 9, 11, 19, 21, 25, 29, 31, 33, 35, 37, 39, 41, 45, 47, 51, 55, 61, 69, 75
Study Guide: 1, 3, 13, 15, 17, 23, 27, 43, 49, 53, 63, 73, 81

Chapter 13

Solution Manual: 1, 5, 11, 15, 23, 25, 31, 33, 35, 41, 53, 55, 61, 67, 69, 75, 79, 85, 97, 99, 103
Study Guide: 3, 9, 13, 19, 27, 29, 37, 39, 43, 47, 51, 59, 63, 71, 73, 83, 87, 93, 101

Chapter 14

Solution Manual: 1, 3, 7, 11, 15, 19, 21, 25, 29, 31, 35, 41, 43, 45, 49, 59, 67, 69, 71, 75, 79, 85, 89,
97

Study Guide: 5, 9, 13, 17, 23, 27, 37, 39, 47, 51, 55, 61, 73, 77, 81, 83, 87, 93

Chapter 15

Solution Manual: 1, 5, 13, 15, 21, 23, 29, 31, 39, 43, 49, 55, 59, 65, 71, 77, 79, 81, 85, 97, 113
Study Guide: 7, 9, 17, 19, 25, 27, 33, 37, 41, 47, 53, 61, 63, 67, 73, 83, 89, 99, 101

Chapter 16

Solution Manual: 13, 17, 19, 23, 29, 33, 39, 41, 45, 47, 49, 53, 55, 61, 65, 67, 77, 85, 87
Study Guide: 3, 7, 11, 15, 25, 27, 31, 37, 43, 51, 57, 63, 71, 79, 83, 91
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Chapter 17

Solution Manual: 3, 5, 7, 9, 11, 21, 25, 37, 39, 43, 47, 59, 63, 77, 83, 93, 95, 107
Study Guide: 13, 15, 27, 29, 31, 33, 41, 53, 55, 61, 65, 79, 85, 99, 109

Chapter 18

Solution Manual: 11, 15, 21, 25, 27, 39, 41, 45, 49, 51, 61, 63, 77, 79, 81, 89, 93, 99
Study Guide: 7, 13, 17, 19, 29, 31, 37, 47, 55, 59, 67, 73, 75, 83, 91, 97, 101

Chapter 19

Solution Manual: 5, 13, 17, 21, 27, 31, 39, 43, 51, 59, 63, 65, 71, 75, 79, 85, 89, 91
Study Guide: 7, 9, 15, 25, 35, 37, 45, 47, 53, 57, 67, 69, 73, 77, 87

Chapter 20

Solution Manual: 1, 7, 15, 17, 21, 25, 27, 35, 37, 41, 45, 49, 51, 57, 61, 73
Study Guide: 5, 9, 11, 13, 23, 39, 43, 53, 63, 67, 71

Chapter 21

Solution Manual: 3, 5, 9, 17, 21, 29, 31, 37, 41, 43, 53, 57, 61, 71
Study Guide: 1, 7, 13, 19, 25, 27, 33, 39, 45, 49. 59, 65, 67

Chapter 22

Solution Manual: 3, 5, 7, 9, 11, 17, 21, 27, 31, 35, 39, 41, 45, 51, 55, 65, 71, 81, 87
Study Guide: 1, 13, 15, 19, 25, 29, 33, 53, 61, 67, 75, 85, 91

Chapter 23

Solution Manual: 1, 9, 11, 15, 19, 21, 27, 31, 37, 39, 41, 43, 47, 55, 57, 59, 61, 63, 77, 81, 85
Study Guide: 7, 17, 23, 25, 27, 29, 33, 41, 45, 51, 53, 65, 69, 71, 73, 79, 83

Chapter 24

Solution Manual: 1, 3, 15, 17, 23, 25, 33, 37, 41, 45, 49, 53, 55, 61, 63, 73, 75, 91, 97, 101, 107, 117
Study Guide: 5, 7, 9, 13, 19, 21, 27, 29, 35, 43, 51, 57, 59, 65, 69, 79, 81, 85, 95, 103, 105, 109

Chapter 25

Solution Manual: 3, 5, 7, 13, 17, 21, 27, 31, 35, 37, 39, 43, 45, 47, 53, 59, 63, 69, 73, 75, 81
Study Guide: 1, 9, 11, 15, 19, 23, 25, 29, 33, 41, 49, 51, 57, 61, 65, 67, 77

Chapter 26

Solution Manual: 3, 5, 15, 17, 19, 21, 23, 27, 33, 35, 39, 45, 47, 55, 57, 63, 69, 75, 79
Study Guide: 1, 7, 11, 13, 25, 29, 31, 37, 41, 43, 49, 53, 59, 65, 73, 81

Problems in the Student Solution Manual, in the Student’s Companion, and on the Wiley Website 267



Chapter 27

Solution Manual: 5, 9, 13, 19, 21, 31, 33, 35, 45, 53, 55, 57, 61, 67, 73, 77, 81, 85, 91, 93, 101

Study Guide: 3, 7, 11, 17, 23, 25, 29, 37, 41, 43, 47, 51, 59, 69, 71, 75, 83, 99, 103, 111

Chapter 28

Solution Manual: 1, 9, 17, 23, 29, 33, 37, 39, 41, 45, 47, 51, 55, 59, 61, 63, 67, 71, 75, 79, 81, 85,
89, 89

Study Guide: 5, 7, 11, 13, 19, 21, 25, 27, 31, 35, 43, 53, 57, 65, 69, 77, 83, 87

Chapter 29

Solution Manual: 3, 5, 7, 13, 15, 17, 19, 23, 27, 35, 43, 45, 47, 49, 53, 59, 61, 75, 77, 83, 85, 89, 91,
93

Study Guide: 1, 9, 11, 21, 25, 29, 31, 33, 37, 39, 41, 51, 57, 63, 67, 73, 79, 81, 87

Chapter 30

Solution Manual: 5, 9, 19, 25, 27, 33, 35, 41, 49, 53, 57, 61, 63, 67, 69, 71, 77, 85, 87, 89, 99

Study Guide: 3, 11, 13, 15, 23, 31, 37, 45, 47, 51, 59, 65, 73, 75, 79, 83, 93, 95, 97

Chapter 31

Solution Manual: 7, 15, 19, 27, 33, 39, 45, 47, 53, 55, 57, 61, 65, 71, 75, 77, 89

Study Guide: 1, 11, 13, 17, 25, 29, 31, 35, 37, 41, 43, 49, 59, 63, 73, 77, 83, 91, 97

Chapter 32

Solution Manual: 3, 5, 13, 19, 21, 27, 29, 31, 35, 37, 43, 49, 53, 57, 63, 69, 71
Study Guide: 1, 9, 11, 17, 23, 25, 33, 39, 41, 45, 47, 55, 61, 65, 75

Chapter 33

Solution Manual: 5, 19, 23, 25, 27, 33, 43, 49, 53, 61, 65, 75, 85, 89, 93, 95, 105, 109

Study Guide: 3, 13, 17, 21, 29, 35, 39, 47, 51, 57, 63, 67, 71, 73, 79, 83, 87, 91, 101, 107

Chapter 34

Solution Manual: 5, 9, 11, 13, 25, 31, 35, 39, 43, 49, 53, 57, 65, 73, 77, 83, 89, 91, 95, 103, 105, 111

Study Guide: 3, 15, 17, 21, 27, 39, 47, 55, 61, 71, 75, 85, 93, 97, 101, 109, 115, 121, 125, 131,
135

Chapter 35

Solution Manual: 7, 15, 17, 19, 21, 27, 29, 39, 43, 45, 49, 55, 61, 65, 69, 71, 75, 79, 81, 91, 95, 107,
111, 115, 121, 123

Study Guide: 5, 11, 23, 25, 33, 37, 41, 51, 59, 67, 73, 77, 83, 87, 97, 99, 105, 109, 113, 121
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Chapter 36

Solution Manual: 3, 5, 7, 13, 15, 17, 21, 25, 33, 39, 41, 43, 47, 51, 63, 69, 73, 79, 83, 93, 103, 105,
107, 109

Study Guide: 1, 9, 11, 19, 27, 29, 35, 37, 49, 55, 57, 59, 65, 77, 81, 89, 95

Chapter 37

Solution Manual: 1, 9, 11, 13, 17, 19, 21, 27, 29, 31, 35, 39, 41, 49, 51, 53, 55, 63, 73, 75, 81, 83,
87, 93, 99

Study Guide: 3, 5, 15, 23, 33, 37, 43, 45, 47, 59, 65, 71, 77, 89, 91

Chapter 38

Solution Manual: 9, 13, 19, 25, 29, 33, 39, 41, 45, 49, 51, 55, 57, 61, 65, 73, 83
Study Guide: 7, 15, 17, 21, 23, 31, 37, 43, 51, 59, 63, 69, 75, 79

Chapter 39

Solution Manual: 3, 9, 13, 17, 21, 25, 29, 33, 37, 41, 43, 45, 47, 53, 57
Study Guide: 5, 11, 15, 19, 23, 27, 31, 35, 39, 51, 55

Chapter 40

Solution Manual: 9, 11, 15, 17, 23, 27, 33, 35, 37, 47, 59, 63
Study Guide: 3, 7, 13, 19, 21, 25, 31, 39, 43, 45, 53, 57, 67

Chapter 41

Solution Manual: 5, 9, 15, 19, 21, 27, 31, 35, 37, 45
Study Guide: 1, 11, 13, 17, 23, 25, 29, 33, 41, 47

Chapter 42

Solution Manual: 11, 15, 19, 25, 31, 37, 41, 45, 51, 57, 65, 69, 75, 77
Study Guide: 3, 13, 23, 33, 39, 43, 49, 53, 61, 67, 79, 85, 87

Chapter 43

Solution Manual: 3, 9, 11, 15, 19, 21, 23, 27, 29, 39, 45
Study Guide: 5, 7, 13, 17, 23, 31, 35, 37, 43, 47, 51, 53

Chapter 44

Solution Manual: 7, 11, 15, 23, 33, 37, 39, 43
Study Guide: 1, 5, 13, 17, 27, 31, 35, 41
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