
The JDBCTM API is the JavaTM standard call-level API for database access. This document
contains the final specification of the JDBC 2.0 Core API.

Please send technical comments on this specification to:

jdbc@eng.sun.com

Please send product and business questions to:

jdbc-business@eng.sun.com

Copyright 1998 by Sun Microsystems Inc.

901 San Antonio Road, Palo Alto, CA 94303.

All rights reserved.

Sun Microsystems Inc.

JDBCTM 2.0 API

microsystems

Seth White and Mark Hapner

May 30, 1998 8:02 pm
Version 1.0

JDBC 2.0 Core API

Sun Microsystems Inc. 2 May 30, 1998

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Java, JavaSoft, JavaBeans, and JDBC are trade-
marks or registered trademarks of Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MECHANTABILITY, FITNESS FOR A PAR-
TICULAR USE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TY-
POGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY
MAKE NEW IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JDBC 2.0 Core API

Sun Microsystems Inc. 3 May 30, 1998

Contents

1 Introduction 4

2 Goals 5

3 Overview of New Features 7

4 What’s Actually Changed 9

5 Result Set Enhancements 12

6 Batch Updates 22

7 Persistence for Java Objects 25

8 New SQL Types 29

9 Customizing SQL Types 36

10 Other New Features 45

11 Clarifications 48

Appendix A:Rejected Design Choices 50

Appendix B:Additional Suggestions 51

Appendix C:Change History 54

Appendix D:Motivation for the SQL3 Proposal 56

JDBC 2.0 Core API

Sun Microsystems Inc. 4 May 30, 1998

1 Introduction

1.1 Preface

This document contains the final specification of the JDBC 2.0 Core API.

1.2 Target audience

The target audience for this document includes the JDBC driver vendors whose prod-
ucts implement the JDBC API, other vendors who want to provide support for the
JDBC API in their products, and end-users developing applications using the JDBC
API.

1.3 Background

The initial release of the JDBC API has been well received by both end-users develop-
ing database applications using Java technology, and vendors of database products.
Due to its wide acceptance, the JDBC API has become a core Java API. We would like
to thank everyone who has worked on or used JDBC technology for helping to make it
successful.

Since the first release of the JDBC API, we have received valuable feedback from the
members of the JDBC community regarding new features that would make useful ad-
ditions to the API. We are continuing to solicit additional input and ideas from everyone
who has an interest in JDBC technology, and we encourage everyone to send us their
requests and ideas for new features and directions.

1.4 Organization

The JDBC 2.0 API has been separated into two parts: the JDBC 2.0 Core API and the
JDBC 2.0 Standard Extension API. Chapters 2 and 3 of this document discuss goals and
give an overview of the JDBC 2.0 API as a whole. The remainder of the document con-
tains a detailed specification of the JDBC 2.0 Core API. A detailed specification for the
JDBC 2.0 Standard Extension API is presented in a separate document.

1.5 Terminology

In this document we refer to the previous release of the JDBC API as the JDBC 1.0 API.

1.6 Acknowledgments

The JDBC 2.0 API design effort has been a broad industry effort that has involved over
twenty partner companies. We would like to thank the many reviewers who have con-
tributed to previous versions of the specification. We especially thank Gray Clossman
and Stefan Dessloch for making the initial proposal for adding SQL3 types to the JDBC
API.

JDBC 2.0 Core API

Sun Microsystems Inc. 5 May 30, 1998

2 Goals

This section outlines the main goals for the JDBC 2.0 API.

2.1 Leverage the strengths of the JDBC 1.0 and Java APIs

One of the important strengths of the JDBC 1.0 API is that it is relatively easy to use.
This ease-of-use is in some respects due to the Java language, which gives JDBC a “hi-
level” flavor, despite the fact that it is a call-level interface. For example, users of the
JDBC 1.0 API aren’t required to understand low-level memory-management details, or
byte-alignment, or data alignment details when transferring data to and from the data-
base.

Despite being easy to use, the JDBC API gives Java developers access to a powerful set
of database capabilities. JDBC technology can be used to build sophisticated, real-
world applications. The JDBC 2.0 API must continue to strike the proper balance be-
tween ease-of-use and providing a rich set of functionality.

2.2 Maintain compatibility with JDBC 1.0 applications and drivers

Existing JDBC drivers and the Java applications that use them shall continue to work—
unchanged—in a Java virtual machine that supports the JDBC 2.0 API. Applications
that don’t use any of the new features of the JDBC 2.0 API do not require any changes
to continue running. It should be straightforward for existing applications to migrate to
the new JDBC API.

2.3 Keep pace with the Java platform

The Java Platform has matured since the first release of the JDBC API. Some of the new
Java APIs that are important for the JDBC 2.0 API are: the Java Transaction Service
(JTS), the Java Naming and Directory Interface (JNDI), JavaBeans, Enterprise Java-
Beans (EJB), and Internationalization. The JDBC 2.0 API must leverage these other
Java APIs and support them well.

2.4 JavaBeans

The most important new Java API for JDBC is JavaBeans. When the JDBC API was
first released there was no component model for the Java platform. The JDBC API
should provide a foundation for developers creating data-aware JavaBeans compo-
nents. The JDBC API is a good place to provide this standard component foundation
since data access is a ubiquitous aspect of most applications. A new RowSet type has
been added to the JDBC Standard Extension API to meet this goal. Chapter 4 discusses
the differences between the JDBC 2.0 core and JDBC 2.0 Standard Extension APIs.

2.5 Advanced Database Features

There are some important features provided by databases that are not supported by the
JDBC 1.0 API, like scrollable cursors and advanced data types, such as Binary Large
OBjects (BLOBS). The JDBC 2.0 API must support these advanced features.

JDBC 2.0 Core API

Sun Microsystems Inc. 6 May 30, 1998

The JDBC API should provide a framework that allows developers to access instances
of user-defined data types that are stored in a database. The JDBC 2.0 API supports
both databases that provide storage for Java objects, and databases that store SQL3
structured types.

The JDBC API should provide some basic support for access to non-SQL tabular data,
such as data stored in files. The JDBC Standard Extension API provides some limited
support for tabular data. See Chapter 4 for a discussion of the differences between the
JDBC 2.0 core and JDBC 2.0 Standard Extension APIs.

JDBC 2.0 Core API

Sun Microsystems Inc. 7 May 30, 1998

3 Overview of New Features

This chapter contains an overview of the new features that are being added to the JDBC
2.0 API.

3.1 Result set enhancements

The JDBC 1.0 API provided result sets that had the ability to scroll in a forward direc-
tion only. Scrollable result sets allow for more flexibility in the processing of results by
providing both forward and backward movement through their contents. In addition,
scrollable result sets allow for relative and absolute positioning. For example, it’s pos-
sible to move to the fourth row in a scrollable result set directly, or to move directly to
the third row following the current row, provided the row exists.

The JDBC 2.0 API allows result sets to be directly updatable, as well.

3.2 Batch updates

The batch update feature allows an application to submit multiple update statements
(insert/update/delete) in a single request to the database. This can provide a dramatic
increase in performance when a large number of update statements need to be executed.

3.3 Advanced data types

Increased support for storing persistent Java objects and a mapping for SQL3 data types
such as binary large objects, and structured types, has been added to the JDBC 2.0 API.
An application may also customize the mapping of SQL3 structured types into Java lan-
guage classes.

3.4 Rowsets

As its name implies, a rowset encapsulates a set of rows. A rowset may or may not
maintain an open database connection. When a rowset is ‘disconnected’ from its data
source, updates performed on the rowset are propagated to the underlying database us-
ing an optimistic concurrency control algorithm.

Rowsets add support to the JDBC API for the JavaBeans component model. A rowset
object is a Java Bean. A rowset implementation may be serializable. Rowsets can be
created at design time and used in conjunction with other JavaBeans components in a
visual JavaBeans builder tool to construct an application.

3.5 JNDI for naming databases

The Java Naming and Directory Interface (JNDI) can be used in addition to the JDBC
driver manager to obtain a connection to a database. When an application uses JNDI, it
specifies a logical name that identifies a particular database instance and JDBC driver
for accessing that database. This has the advantage of making the application code in-
dependent of a particular JDBC driver and JDBC URL.

JDBC 2.0 Core API

Sun Microsystems Inc. 8 May 30, 1998

3.6 Connection Pooling

The JDBC 2.0 API contains ‘hooks’ that allow connection pooling to be implemented
on top of the JDBC driver layer. This allows for a single connection cache that spans
the different JDBC drivers that may be in use. Since creating and destroying database
connections is expensive, connection pooling is important for achieving good perfor-
mance, especially for server applications.

3.7 Distributed transaction support

Support for distributed transactions has been added as an extension to the JDBC 2.0
API. This feature allows a JDBC driver to support the standard 2-phase commit proto-
col used by the Java Transaction Service (JTS).

3.8 Other new features

Support for character streams has been added. This means that character data can be re-
trieved and sent to the database as a stream of internationalized Unicode characters.
Methods to allowjava.math.BigDecimal values to be returned with full precision
have also been added. Support for time zones has been added.

JDBC 2.0 Core API

Sun Microsystems Inc. 9 May 30, 1998

4 What’s Actually Changed

This chapter describes the practical differences between the JDBC 1.0 and JDBC 2.0
APIs.

4.1 A New Package

The JDBC 2.0 API has been factored into two complimentary components. The first
component, which is termed theJDBC 2.0 Core APIin this document, comprises the
updated contents of thejava.sql package. This document contains the specification
for the JDBC 2.0 Core API. The second component, termed the JDBC 2.0 Standard Ex-
tension API, comprises the contents of a new package,javax.sql , which as its name
implies will be delivered as a Java Standard Extension. The JDBC 2.0 Standard Exten-
sion API is described in a separate document.

Thejava.sql package contains all of the additions that have been made to the existing
JDBC interfaces and classes, in addition to a few new classes and interfaces. The new
javax.sql package has been introduced to contain the parts of the JDBC 2.0 API
which are closely related to other pieces of the Java platform that are themselves stan-
dard extensions, such as the Java Naming and Directory Interface (JNDI), and the Java
Transaction Service (JTS). In addition, some advanced features that are easily separable
from the JDBC Core API, such as connection pooling and rowsets, have also been add-
ed tojavax.sql . Putting these advanced facilities into a standard extension instead of
into core will help keep the JDBC Core API small and focused.

Since standard extensions are downloadable, it will always be possible to deploy an ap-
plication which uses the features in the JDBC standard extension that will “run any-
where”, since if a standard extension isn’t installed on a client machine, it can be
downloaded along with the application that uses it.

4.2 Changes to Classes and Interfaces

The list below contains all of the JDBC 2.0 core classes and interfaces. Interfaces and
classes that are new are listed in bold type. All of the interfaces and classes present in
the JDBC 1.0 API are also present in the JDBC 2.0 Core API, however, some of the
JDBC 1.0 interfaces have gained additional methods. The JDBC 1.0 interfaces that con-
tain new methods are listed in italics and those that have not changed are in normal type.

java.sql.Array
java.sql.BatchUpdateException
java.sql.Blob
java.sql.CallableStatement

java.sql.Clob
java.sql.Connection

java.sql.DatabaseMetaData

java.sql.DataTruncation

JDBC 2.0 Core API

Sun Microsystems Inc. 10 May 30, 1998

java.sql.Date

java.sql.Driver

java.sql.DriverManager

java.sql.DriverPropertyInfo

java.sql.PreparedStatement

java.sql.Ref
java.sql.ResultSet

java.sql.ResultSetMetaData

java.sql.SQLData
java.sql.SQLException

java.sql.SQLInput
Java.sql.SQLOutput
java.sql.SQLWarning

java.sql.Statement

java.sql.Struct
java.sql.Time

java.sql.Timestamp

java.sql.Types

The separate JDBC 2.0 Core API documentation contains the Java definitions of the
java.sql interfaces and classes listed above. The figure below shows the more impor-
tant core interfaces and their relationships. The important relationships between inter-
faces have not changed with the introduction of the JDBC 2.0 API.

JDBC 2.0 Core API

Sun Microsystems Inc. 11 May 30, 1998

The list below contains the classes and interfaces that comprise thejavax.sql pack-
age. A detailed specification of these new types is contained in a separate document.

javax.sql.ConnectionEvent
javax.sql.ConnectionEventListener
javax.sql.ConnectionPoolDataSurce
javax.sql.CursorMovedEvent
javax.sql.CursorMovedListener
javax.sql.DataSource
javax.sql.PooledConnection
javax.sql.RowSet
javax.sql.RowSetImpl
javax.sql.RowSetMetaData
javax.sql.RowSetMetaDataImpl
javax.sql.RowSetUpdatedEvent
javax.sql.RowSetUpdatedListener
javax.sql.XAConnection
javax.sql.XADataSource

modified

Connection

DriverManager

PreparedStatement

StatementResultSet

Data types: Date, Time,
TimeStamp, Numeric, CallableStatement

commit, abortcreateStatement

getXXX

subclass

subclass

executeQuery

prepareStatement

getXXX

getConnection

pr
ep

ar
eC

al
l

se
tX

XX

getMoreResults

execute

built-in Java types, etc.

executeQuery

JDBC 2.0 Core API

Sun Microsystems Inc. 12 May 30, 1998

5 Result Set Enhancements

This chapter discusses the new functionality that has been added to JDBC result sets.
The goal of the enhancements is to add two new basic capabilities to result sets: scroll-
ing and updatability. Several methods have also been added to enable a JDBC driver to
deliver improved performance when processing results. A variety of examples are in-
cluded to illustrate the new features.

5.1 Scrolling

A result set created by executing a statement may support the ability to move backward
(last-to-first) through its contents, as well as forward (first-to-last). Result sets that sup-
port this capability are called scrollable result sets. Result sets that are scrollable also
support relative and absolute positioning. Absolute positioning is the ability to move
directly to a row by specifying its absolute position in the result set, while relative po-
sitioning gives the ability to move to a row by specifying a position that is relative to
the current row. The definition of absolute and relative positioning in JDBC 2.0 is mod-
eled on the X/Open SQL CLI specification.

5.2 Result Set types

The JDBC 1.0 API provided one result set type—forward-only. The JDBC 2.0 API pro-
vides three result set types: forward-only, scroll-insensitive, and scroll-sensitive. As
their names suggest, the new result set types support scrolling, but they differ in their
ability to make changes visible while they are open.

A scroll-insensitiveresult set is generallynot sensitive to changes that are made while
it is open. A scroll-insensitive result set provides a static view of the underlying data it
contains. The membership, order, and column values of rows in a scroll-insensitive re-
sult set are typically fixed when the result set is created.

On the other hand, a scroll-sensitiveresult set is sensitive to changes that are made
while it is open, and provides a ‘dynamic’ view of the underlying data. For example,
when using a scroll-sensitive result set, changes in the underlying column values of
rows are visible. The membership and ordering of rows in the result set may be fixed—
this is implementation defined.

5.3 Concurrency types

An application may choose from two different concurrency types for a result set: read-
only and updatable.

A result set that usesread-only concurrency does not allow updates of its contents. This
can increase the overall level of concurrency between transactions, since any number
of read-only locks may be held on a data item simultaneously.

A result set that isupdatable allows updates and may use database write locks to me-
diate access to the same data item by different transactions. Since only a single write
lock may be held at a time on a data item, this can reduce concurrency. Alternatively,
an optimistic concurrency control scheme may be used if it is thought that conflicting

JDBC 2.0 Core API

Sun Microsystems Inc. 13 May 30, 1998

accesses to data will be rare. Optimistic concurrency control implementations typically
compare rows either by value or by a version number to determine if an update conflict
has occurred.

5.4 Performance

Two performance hints may be given to a JDBC 2.0 driver to make access to result set
data more efficient. Specifically, the number of rows to be fetched from the database
each time more rows are needed can be specified, and a direction for processing the
rows—forward, reverse, or unknown—can be given as well. These values can be
changed for an individual result set at any time. A JDBC driver may ignore a perfor-
mance hint if it chooses.

5.5 Creating a result set

The example below illustrates creation of a result set that is forward-only and uses read-
only concurrency. No performance hints are given by the example, so the driver is free
to do whatever it thinks will result in the best performance. The transaction isolation
level for the connection is not specified, so the default transaction isolation level of the
underlying database is used for the result set that is created. Note that this code is just
JDBC 1.0 code, and that it produces the same type of result set that would have been
produced by JDBC 1.0.

Connection con = DriverManager.getConnection(
"jdbc:my_subprotocol:my_subname");

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT emp_no, salary FROM employees");

The next example creates a scrollable result set that is updatable and sensitive to up-
dates. Rows of data are requested to be fetched twenty-five at-a-time from the database.

Connection con = DriverManager.getConnection(
"jdbc:my_subprotocol:my_subname");

Statement stmt = con.createStatement(
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

stmt.setFetchSize(25);

ResultSet rs = stmt.executeQuery(
"SELECT emp_no, salary FROM employees");

The example below creates a result set with the same attributes as the previous example,
however, a prepared statement is used to produce the result set.

JDBC 2.0 Core API

Sun Microsystems Inc. 14 May 30, 1998

PreparedStatement pstmt = con.prepareStatement(
"SELECT emp_no, salary FROM employees where emp_no = ?",
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

pstmt.setFetchSize(25);
pstmt.setString(1, "100010");
ResultSet rs = pstmt.executeQuery();

The methodDatabaseMetaData.supportsResultSetType() can be called to see
which result set types are supported by a JDBC driver. However, an application may
still ask a JDBC driver to create aStatement , PreparedStatement , or Call-

ableStatement object using a result set type that the driver does not support. In this
case, the driver should issue anSQLWarning on theConnection that produces the
statement and choose an alternative value for the result set type of the statement accord-
ing to the following rules:

1. If an application asks for a scrollable result set type the driver should use a
scrollable type that it supports, even if this differs from the exact type requested
by the application.

2. If the application asks for a scrollable result set type and the driver does not
support scrolling, then the driver should use a forward-only result set type.

Similarly, the methodDatabaseMetaData.supportsResultSetConcurrency() can
be called to determine which concurrency types are supported by a driver. If an appli-
cation asks a JDBC driver for a concurrency type that it does not support then the driver
should issue anSQLWarning on theConnection that produces the statement and
choose the alternative concurrency type. The choice of result set type should be made
first if an application specifies both an unsupported result set type and an unsupported
concurrency type.

In some instances, a JDBC driver may need to choose an alternate result set type or con-
currency type for aResultSet at statement execution time. For example, a SELECT
statement that contains a join over multiple tables may not produce aResultSet that is
updatable. The JDBC driver should issue anSQLWarning in this case on theStatement ,
PreparedStatement , or CallableStatement that produces theResultSet and
choose an appropriate result set type or concurrency type as described above. An appli-
cation may determine the actual result set type and concurrency type of aResultSet

by calling theResultSet.getType() andgetConcurrency() methods, respectively.

5.6 Updates

A result set is updatable if its concurrency type isCONCUR_UPDATABLE. Rows in an up-
datable result set may be updated, inserted, and deleted. The example below updates the
first row of a result set. TheResultSet.updateXXX() methods are used to modify the
value of an individual column in the current row, but do not update the underlying da-
tabase. When theResultSet.updateRow() method is called the database is updated.
Columns may be specified by name or number.

JDBC 2.0 Core API

Sun Microsystems Inc. 15 May 30, 1998

rs.first();
rs.updateString(1, "100020");
rs.updateFloat(“salary”, 10000.0f);
rs.updateRow();

The updates that an application makes must be discarded by a JDBC driver if the appli-
cation moves the cursor from the current row before callingupdateRow() . In addition,
an application can call theResultSet.cancelRowUpdates() method to explicitly
cancel the updates that have been made to a row. ThecancelRowUpdates() method
must be called after callingupdateXXX() and before callingupdateRow() , otherwise
it has no effect.

The following example illustrates deleting a row. The fifth row in the result set is de-
leted from the database.

rs.absolute(5);
rs.deleteRow();

The example below shows how a new row may be inserted into a result set. The JDBC
2.0 API defines the concept of aninsert row that is associated with each result set and
is used as a staging area for creating the contents of a new row before it is inserted into
the result set itself. TheResultSet.moveToInsertRow() method is used to position
the result set’s cursor on the insert row. TheResultSet.updateXXX() andResult-

Set.getXXX() methods are used to update and retrieve individual column values from
the insert row. The contents of the insert row is undefined immediately after callingRe-

sultSet.moveToInsertRow() . In other words, the value returned by calling aRe-

sultSet.getXXX() method is undefined aftermoveToInsertRow() is called until the
value is set by callingResultSet.updateXXX() .

CallingResultSet.updateXXX() while on the insert row does not update the underly-
ing database or the result set. Once all of the column values are set in the insert row,
ResultSet.insertRow() is called to update the result set and the database simulta-
neously. If a column is not given a value by callingupdateXXX() while on the insert
row, or a column is missing from the result set, then that column must allow a null val-
ue. Otherwise, callinginsertRow() throws anSQLException .

rs.moveToInsertRow();
rs.updateString(1, "100050");
rs.updateFloat(2, 1000000.0f);
rs.insertRow();
rs.first();

JDBC 2.0 Core API

Sun Microsystems Inc. 16 May 30, 1998

A result set remembers the current cursor position “in the result set” while its cursor is
temporarily positioned on the insert row. To leave the insert row, any of the usual cursor
positioning methods may be called, including the special methodResult-

Set.moveToCurrentRow() which returns the cursor to the row which was the current
row beforeResultSet.moveToInsertRow() was called. In the example above,Re-

sultSet.first() is called to leave the insert row and move to the first row of the re-
sult set.

Due to differences in database implementations, the JDBC 2.0 API does not specify an
exact set of SQL queries which must yield an updatable result set for JDBC drivers that
support updatability. Developers can, however, generally expect queries which meet
the following criteria to produce an updatable result set:

1. The query references only a single table in the database.

2. The query does not contain any join operations.

3. The query selects the primary key of the table it references.

In addition, an SQL query should also satisfy the conditions listed below if inserts are
to be performed.

4. The query selects all of the non-nullable columns in the underlying table.

5. The query selects all columns that don’t have a default value.

5.7 Cursor movement examples

A result set maintains an internal pointer called acursor that indicates the row in the
result set that is currently being accessed. A result set cursor is analogous to the cursor
on a computer screen which indicates the current screen position. The cursor main-
tained by a forward-only result set can only move forward through the contents of the
result set. Thus, rows are accessed sequentially beginning with the first row.

Iterating forward through a result set is done by calling theResultSet.next() method,
as with the JDBC 1.0 API. In addition, scrollable result sets—any result set whose type
is not forward only—implement the method,beforeFirst() , which may be called to
position the cursor before the first row in the result set.

The example below positions the cursor before the first row and then iterates forward
through the contents of the result set. ThegetXXX() methods, which are JDBC 1.0 API
methods, are used to retrieve column values.

rs.beforeFirst();
while (rs.next()) {

System.out.println(rs.getString("emp_no") +
 " " + rs.getFloat("salary"));

}

Of course, one may iterate backward through a scrollable result set as well, as is shown
below.

JDBC 2.0 Core API

Sun Microsystems Inc. 17 May 30, 1998

rs.afterLast();
while (rs.previous()) {

System.out.println(rs.getString(“emp_no”) +
“ “ + rs.getFloat(“salary”));

}

In this example, theResultSet.afterLast() method positions the scrollable result
set’s cursor after the last row in the result set. TheResultSet.previous() method is
called to move the cursor to the last row, then the next to last, and so on.Result-

Set.previous() returnsfalse when there are no more rows, so the loop ends after all
of the rows have been visited.

After examining theResultSet interface, the reader will no doubt recognize that there
is more than one way to iterate through the rows of a scrollable result set. It pays to be
careful, however, as is illustrated by the following example, which shows one alterna-
tive that is incorrect.

// incorrect!!!
while (!rs.isAfterLast()) {

rs.relative(1);
System.out.println(rs.getString("emp_no") +

 " " + rs.getFloat("salary"));
}

This example attempts to iterate forward through a scrollable result set and is incorrect
for several reasons. One error is that ifResultSet.isAfterLast() is called when the
result set is empty, it will return a value of false since there is no last row, and the loop
body will be executed, which is not what is wanted. An additional problem occurs when
the cursor is positioned before the first row of a result set that contains data. In this case
calling rs.relative(1) is erroneous since there is no current row.

The code sample below fixes the problems in the previous example. Here a call toRe-

sultSet.first() is used to distinguish the case of an empty result set from one which
contains data. SinceResultSet.isAfterLast() is only called when the result set is
non-empty the loop control works correctly, andResultSet.relative(1) steps
through the rows of the result set sinceResultSet.first() initially positions the cur-
sor on the first row.

if (rs.first()) {
while (!rs.isAfterLast()) {

System.out.println(rs.getString("emp_no") +
" " + rs.getFloat("salary"));

rs.relative(1);
}

}

JDBC 2.0 Core API

Sun Microsystems Inc. 18 May 30, 1998

5.8 Detecting and viewing changes

So far, we have introduced the different result set types and shown a few examples of
how a result set of a particular type can be created, updated, and traversed. This section
goes into more detail on the differences between result set types, and what these differ-
ences mean for an application that uses result sets.

The different result set types—forward-only, scroll-insensitive, and scroll-sensitive—
provided by the JDBC 2.0 API vary greatly in their ability to make changes in the un-
derlying data visible to an application. This aspect of result sets is particularly interest-
ing for the result set types which support scrolling, since they allow a particular row to
be visited multiple times while a result set is open.

5.8.1 Visibility of changes

We begin the discussion of this topic by describing the visibility of changes at the trans-
action level. First, note the seemingly obvious fact that all of the updates that a transac-
tion makes are visible to itself. However, the changes (updates, inserts, and deletes)
made by other transactions that are visible to a particular transaction are determined by
the transaction isolation level. The isolation level for a transaction can be set by calling

con.setTransactionIsolation(TRANSACTION_READ_COMMITTED);

where the variablecon has typeConnection . If all transactions in a system execute at
the TRANSACTION_READ_COMMITTED isolation level or higher, then a transaction will
only see the committed changes of other transactions. The changes that are visible to a
result set’s enclosing transaction when a result set is opened are always visible through
the result set. In fact, this is what it means for an update made by one transaction to be
visible to another transaction.

But what about changes made while a result set is open? Are they visible through the
result set by, for example, callingResultSet.getXXX() ? Whether a particular result
set exposes changes to its underlying data made by other transactions, other result sets
that are part of the same transaction (We refer to these two types of changes collectively
as ‘other’s changes’.), or itself while the result set is open depends on the result set type.

5.8.2 Other’s changes

A scroll-insensitive result set does not make any changes visible that are made by oth-
ers—other transactions and other result sets in the same transaction—once the result set
is opened. The content of a scroll-insensitive result set with respect to changes made by
others is static—the membership, ordering, and row values are fixed. For example, if
another transaction deletes a row that is contained in a static result set while it is open,
the row remains visible. One way to implement a scroll-insensitive result set is to create
a private copy of the result set’s data.

Scroll-sensitive result sets lie at the opposite end of the spectrum. A scroll-sensitive re-
sult set makes all of the updates made byothers that are visible to its enclosing trans-
action visible. Inserts and deletes may not be visible, however.

JDBC 2.0 Core API

Sun Microsystems Inc. 19 May 30, 1998

Let us define carefully what it means for updates to be visible. If an update made by
another transaction affects where a row should appear in the result set—this is in effect
a delete followed by an insert—the row may not move until the result set is reopened.
If an update causes a row to fail to qualify for membership in a result set—this is in ef-
fect a delete—the row may remain visible until the result set is reopened. If a row is
explicitly deleted by another transaction, a scroll-sensitive result set may maintain a
placeholder for the row to permit logical fetching of rows by absolute position. Updated
column values are always visible, however.

The DatabaseMetaData interface provides a way to determine the exact capabilities
that are supported by a result set. For example, the new methods:othersUpdatesAre-

Visible , othersDeletesAreVisible , andothersInsertsAreVisible may be used
for this purpose.

A forward-only result set is really a degenerate case of either a scroll-insensitive or
scroll-sensitive result set— depending on how the DBMS evaluates the query that pro-
duces the result set. Most DBMSs have the ability to materialize query results incre-
mentally for some queries. If a query result is materialized incrementally, then data
values aren’t actually retrieved until they are needed from the DBMS and the result set
will behave like a sensitive result set. For some queries, however, incremental materi-
alization isn’t possible. For example, if the result set is sorted, the entire result set may
need to be produced a priori before the first row in the result set is returned to the ap-
plication by the DBMS. In this case a forward-only result set will behave like an insen-
sitive result set.

For aTYPE_FORWARD_ONLY result set theothersUpdatesAreVisible , othersDelete-

sAreVisible , andothersInsertsAreVisible methods determine whether inserts,
updates, and deletes are visible when the result set is materialized incrementally by the
DBMS. If the result of a query is sorted then incremental materialization may not be
possible and changes will not be visible, even if the methods above return true.

5.8.3 A result set’s own changes

We have pointed out that the visibility of changes made by others generally depends on
a result set’s type. A final point that concerns the visibility of changes via an open result
set is whether a result set can see its own changes (inserts, updates, and deletes). A
JDBC application can determine if the changes made by a result set are visible to the
result set itself by calling theDatabaseMetaData methods:ownUpdatesAreVisible ,
ownDeletesAreVisible , and ownInsertsAreVisible . These methods are needed
since this capability can vary between DBMSs and JDBC drivers.

One’s own updates are visible if an updated column value can be retrieved by calling
getXXX() following a call toupdateXXX() . Updates arenot visible if getXXX() still
returns the initial column value afterupdateXXX() is called. Similarly, an inserted row
is visible if it appears in the result set following a call toinsertRow() . An inserted row
is not visible if it does not appear in the result set immediately afterinsertRow() is
called—without closing and reopening the result set. Deletions are visible if deleted
rows are either removed from the result set or if deleted rows leave ahole in the result
set.

JDBC 2.0 Core API

Sun Microsystems Inc. 20 May 30, 1998

The following example, shows how an application may determine whether a
TYPE_SCROLL_SENSITIVE result set can see its own updates.

DatabaseMetaData dmd;
...
if (dmd.ownUpdatesAreVisible(ResultSet.TYPE_SCROLL_INSENSITIVE))
{

// changes are visible
}

5.8.4 Detecting changes

TheResultSet.wasUpdated() , wasDeleted() , andwasInserted() methods can be
called to determine whether a row has been effected by a visible update, delete, or insert
respectively since the result set was opened. The ability of a result set to detect changes
is orthogonal to its ability to make changes visible. In other words, visible changes are
not automatically detected.

TheDatabaseMetaData interface provides methods that allow an application to deter-
mine whether a JDBC driver can detect changes for a particular result set type. For ex-
ample,

boolean bool = dmd.deletesAreDetected(
ResultSet.TYPE_SCROLL_SENSITIVE);

If deletesAreDetected returnstrue , thenResultSet.wasDeleted() can be used to
detect ‘holes’ in aTYPE_SCROLL_SENSITIVE result set.

5.9 Refetching a row

Some applications may need to see up-to-the-second changes that have been made to a
row. Since a JDBC driver can do prefetching and caching of data that is read from the
underlying database (seeResultSet.setFetchSize()), an application may not see
the very latest changes that have been made to a row, even when a sensitive result set
is used and updates are visible. TheResultSet.refreshRow() method is provided to
allow an application to request that a driver refresh a row with the latest values stored
in the database. A JDBC driver may actually refresh multiple rows at once if the fetch
size is greater than one. Applications should exercise restraint in callingrefre-

shRow() , since calling this method frequently will likely slow performance.

5.10 JDBC compliance

Although we expect most JDBC drivers to support scrollable result sets, we have made
them optional to minimize the complexity of implementing JDBC drivers for data
sources that do not support scrollability. The goal is that it be possible for a JDBC driver
to implement scrollable result sets using the support provided by the underlying data-
base system for systems that have such support. If the DBMS associated with a driver
does not support scrollability then this feature may be omitted, or a JDBC driver may

JDBC 2.0 Core API

Sun Microsystems Inc. 21 May 30, 1998

implement scrollability as a layer on top of the DBMS. Its important to note that JDBC
rowsets, which are part of the JDBC standard extension API, always support scrollabil-
ity, so a rowset can be used when the underlying DBMS doesn’t support scrollable re-
sults.

JDBC 2.0 Core API

Sun Microsystems Inc. 22 May 30, 1998

6 Batch Updates

The batch update facility allows multiple update operations to be submitted to a data-
base for processing at once. Submitting multiple updates together, instead of individu-
ally, can greatly improve performance in some situations.Statement ,
PreparedStatement , andCallableStatement objects can be used to submit batch
updates.

6.1 Use of batch updates

6.1.1 Statements

The batch update facility allows aStatement object to submit a set of heterogeneous
update commands together as a single unit, or batch, to the underlying DBMS. In the
example below all of the update operations required to insert a new employee into a fic-
titious company database are submitted as a single batch.

// turn off autocommit
con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();

In the example, autocommit mode is disabled to prevent JDBC from committing the
transaction whenStatement.executeBatch() is called. Disabling autocommit allows
the application to decide whether or not to commit the transaction in the event that an
error occurs and some of the commands in a batch fail to execute. For this reason, au-
tocommit should usually be turned off when batch updates are done.

In JDBC 2.0, aStatement object has the ability to keep track of a list of commands that
can be submitted together for execution. When a statement is created, its associated list
of commands is empty. TheStatement.addBatch() method adds an element to the
calling statement’s list of commands. AnSQLException is thrown whenState-

ment.executeBatch() is called if the batch contains a command that attempts to re-
turn a result set. Only DDL and DML commands that return a simple update count may
be executed as part of a batch. The methodStatement.clearBatch() (not shown
above) can be called to reset a batch if the application decides not to submit a batch of
commands that has been constructed for a statement.

TheStatement.executeBatch() method submits a batch of commands to the under-
lying DBMS for execution. Commands are executed in the order in which they were
added to the batch.ExecuteBatch() returns an array of update counts for the com-

JDBC 2.0 Core API

Sun Microsystems Inc. 23 May 30, 1998

mands that were executed. The array contains one entry for each command in the batch,
and the elements in the array are ordered according to the order in which the commands
were executed (which, again, is the same as the order in which commands were origi-
nally added to the batch). Calling executeBatch() closes the callingStatement ob-
ject’s current result set if one is open. The statements’s internal list of batch commands
is reset to empty onceexecuteBatch() returns.

ExecuteBatch() throws aBatchUpdateException if any of the commands in the
batch fail to execute properly. TheBatchUpdateException.getUpdateCounts()

method can be called to return an integer array of update counts for the commands in
the batch that were executed successfully. SinceStatement.executeBatch() stops
when the first command returns an error, and commands are executed in the order that
they are added to the batch, if the array returned byBatchUpdateException.getUp-

dateCounts() contains N elements, this means that the first N commands in the batch
executed successfully whenexecuteBatch() was called.

6.1.2 Prepared Statements

The batch update facility is used with prepared statements to associate multiple sets of
input parameter values with a singlePreparedStatement object. The sets of parame-
ter values together with the associated parameterized update command can then be sent
to the underlying DBMS engine for execution as a single unit.

The example below inserts two new employee records into a database as a single batch.
The PreparedStatement.setXXX() methods are used to create each parameter set
(one for each employee), while thePreparedStatement.addBatch() method adds a
set of parameters to the current batch.

// turn off autocommit
con.setAutoCommit(false);

PreparedStatement stmt = con.prepareStatement(
"INSERT INTO employees VALUES (?, ?)");

stmt.setInt(1, 2000);
stmt.setString(2, "Kelly Kaufmann");
stmt.addBatch();

stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution
int[] updateCounts = stmt.executeBatch();

Finally, PreparedStatement.executeBatch() is called to submit the updates to the
DBMS. Error handling in the case of PreparedStatement objects is analogous to er-
ror handling forStatement objects.

JDBC 2.0 Core API

Sun Microsystems Inc. 24 May 30, 1998

6.1.3 Callable Statements

The batch update facility works the same withCallableStatement objects as it does
with PreparedStatement objects. Multiple sets of input parameter values may be as-
sociated with a callable statement and sent to the DBMS together. Stored procedures
invoked using the batch update facility with a callable statement must return an update
count, and may not have out or inout parameters. TheCallableStatement.execute-

Batch() method should throw an exception if this restriction is violated.

JDBC 2.0 Core API

Sun Microsystems Inc. 25 May 30, 1998

7 Persistence for Java Objects

The JDBC 1.0 API provided some support for storing Java objects and retrieving Java
objects from a database via thegetObject() and setObject() mechanism. The
JDBC 2.0 API enhances the ability of a JDBC driver to implement persistence for Java
objects in general, by providing new metadata capabilities that can be used to retrieve
a description of the Java objects that a data source contains. Instances of a Java class
can be stored in a database as serialized Java objects, or in some other vendor specific
format. If object serialization is used then references between objects can be treated ac-
cording to the rules specified by Java object serialization.

The JDBC 2.0 API features described in this chapter are intended to support a new gen-
eration of Java-aware database management systems, termedJava-relational DBMSs.
A Java-relational DBMS extends the type system of a database with Java object types
and allows users to write queries that reference these types. Several database vendors
are creating products with Java-relational capabilities. The mechanisms described in
this chapter are optional. JDBC drivers that do not support the capabilities described in
this chapter are not required to implement them.

Lets take a look at how a typical Java application can make use of the JDBC API to
store and retrieve Java objects.

7.1 Retrieving Java objects

The example below shows how objects can be retrieved using JDBC. The example que-
ry references a table,PERSONNEL, that contains a column calledEmployee containing
instances of the Java classEmployee . Here, the column name,Employee , and the Java
class name are the same, but this is not required by JDBC. In fact, since there is current-
ly not a standard, agreed upon syntax for SQL queries that reference Java types, JDBC
does not mandate the use of any particular query syntax.

ResultSet rs = stmt.executeQuery(
“SELECT Employee FROM PERSONNEL“);

rs.next();
Employee emp = (Employee)rs.getObject(1);

The example selects all of theEmployee instances from thePERSONNEL table. TheRe-

sultSet.next() method is called to position the result set to the first row containing
an Employee . The example application then obtains anEmployee instance by calling
ResultSet.getObject() . This causes the JDBC driver to construct an instance of the
Employee class, possibly by deserializing a serialized object instance, and return the in-
stance as ajava.lang.Object which the application then narrows to anEmployee .

Note that the example above does not contain any additions to the JDBC 1.0 API aside
from possibly requiring some form of extended SQL query syntax which is not speci-
fied by JDBC. As an aside, we note that the JDBC code shown above can also be used

JDBC 2.0 Core API

Sun Microsystems Inc. 26 May 30, 1998

to retrieve data of an SQL user-defined type that is being mapped to a Java class. The
details on how this is done are specified in a later chapter.

7.2 Storing Java objects

The following example code illustrates the process of updating a Java object and mak-
ing the updated copy of the object persistent using JDBC.

emp.setSalary(emp.getSalary() * 1.5);
PreparedStatement pstmt = con.preparedStatement(

“UPDATE PERSONNEL SET Employee = ? WHERE Employee.no = 1001”);
pstmt.setObject(1, emp);
pstmt.executeUpdate();

The example gives an employee a 50% raise. First, theEmployee.setSalary() meth-
od is called to update the value of the employee’s salary. Note that the semantics of
methods on theEmployee class are not specified by JDBC. Here, we assume that the
Employee class is an ordinary Java class, so callingEmployee.setSalary() just
changes the value of some private data field contained in theEmployee instance. Call-
ing Employee.setSalary() does not update the database, for example, although an al-
ternative implementation could do this, in effect making database updates ‘transparent’
to applications that use theEmployee class.

Next, aPreparedStatement object is created using an extended SQL UPDATE com-
mand—the query syntax used in the example is again not mandated by JDBC. The UP-
DATE command specifies that theEmployee column in thePERSONNEL table is to be
changed for a specified row.PreparedStatement.setObject() is used to pass the
Employee object to the prepared statement, and theexecuteUpdate() method updates
theEmployee value stored in the database.

Note once again that the example above does not involve any syntactic additions to the
JDBC 1.0 API. In addition, the same JDBC code could be used if the Employee class
was being mapped to an SQL user-defined type.

7.3 Additional metadata

The JDBC 2.0 API contains new metadata support that allows an application to obtain
a complete description of the Java objects that are stored in a data source.

7.3.1 Identifying Java objects

A new type code,JAVA_OBJECT, has been added tojava.sql.Types to denote a Java
object type. TheJAVA_OBJECT type code is returned by methods such asData-

baseMetaData.getTypeInfo() and DatabaseMetaData.getColumns() . For exam-
ple, if a DBMS supports types that can be a Java class,
DatabaseMetaData.getTypeInfo() would return a result set containing the following
entry:

JDBC 2.0 Core API

Sun Microsystems Inc. 27 May 30, 1998

1. TYPE_NAME String => data source specific name (may be null)

2. DATA_TYPE short =>java.sql.Types.JAVA_OBJECT

3. etc.

The TYPE_NAME column contains the data source specific term for a Java object,
such as “JavaObject”, “Serialized” etc. TYPE_NAME may be null.

7.3.2 Retrieving schema-specific Java type descriptions

A Java class is typically registered with a particular database schema before it is used
in defining the schema’s tables. Information on schema-specific user-defined types—
of which JAVA_OBJECT types are one particular kind—can be retrieved by calling the
DatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.JAVA_OBJECT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the Java object typesdefined in thecatalog-name.schema-

name schema. If the driver does not support UDTs or no matching UDTs are found
then an empty result set is returned.

Each type description has the following columns:

TheTYPE_CAT , TYPE_SCHEM, DATA_TYPE , andREMARKS columns should
be self-explanatory. TheTYPE_NAME is, in effect, the SQL type name. This is the
name used in a CREATE TABLE statement to specify a column of this type.

WhenDATA_TYPE is JAVA_OBJECT, theJAVA_CLASS is the fully qualified Java
class name of the Java class associated withTYPE_NAME . All values actually stored
in aTYPE_NAME column must be instances of this class or one of its subclasses. In-

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the database type name

JAVA_CLASS String => a Java classname

DATA_TYPE short => value defined injava.sql.Types , e.g.
JAVA_OBJECT

REMARKS String => explanatory comment on the type

JDBC 2.0 Core API

Sun Microsystems Inc. 28 May 30, 1998

stances of this class or a subclass are materialized by the JDBC driver when values are
fetched from aTYPE_NAME column by an application that uses JDBC.

TheDatabaseMetaData.getUDTs() method also accepts a fully qualified SQL name
as its third parameter. In this case the catalog and schema pattern parameters are ig-
nored. The fully qualified SQL name may contain wildcards. For example, the code
sample below is equivalent to the previous example,

int[] types = {Types.JAVA_OBJECT};
ResultSet rs = dmd.getUDTs(null, null,

"catalog-name.schema-name.%", types);

Here we have assumed that the ‘.’ character is used to separate the elements of a fully
qualified name. Note that since the format of fully qualified names may vary between
database systems, one should generally not hardcode fully qualifed names as in the ex-
ample above. TheDatabaseMetaData interface provides information about the format
of fully qualified names that is supported by a particular JDBC driver.

7.3.3 Retrieving the Java class object

The JDBC 2.0 API doesn’t provide any special support for loading the Java class files
that correspond to Java objects being stored in a database. A JDBC application should
be able to obtain the class object that corresponds to an object in the database by calling
Class.forName() and passing the class name as a parameter. In other words, the JDBC
2.0 API assumes that the bytecodes for objects stored in the database are loaded via the
usual Java language mechanism.

JDBC 2.0 Core API

Sun Microsystems Inc. 29 May 30, 1998

8 New SQL Types

The next two chapters discuss additions to the JDBC 2.0 API that allow a Java applica-
tion to access new SQL data types, such as binary large objects and structured types.
JDBC drivers that do not support the new SQL types need not implement the methods
and interfaces described in these chapters.

8.1 Taxonomy of SQL Types

The next version of the ANSI/ISO SQL standard is commonly referred to asSQL3. The
working document specifying that standard is called theSQL3 draft. That draft is now
in a stage of the standardization process where no major additions or changes may be
made to it—only minor changes and corrections can be made. The basic kinds of data
types included in SQL3 will not change in the end-game of the standardization process.

The JDBC 2.0 API incorporates a model of the new SQL3 types that includes only
those properties that are essential to exchanging data between Java applications and da-
tabases. The JDBC 2.0 API should not be affected if some details of the syntax and
server-side semantics of the new SQL3 types are altered before the draft becomes an
official standard.

The SQL3 draft specifies these data types:

• SQL2 built-in types—the familiar SQL ‘column types’

• CHAR
• FLOAT
• DATE
• etc.

• New built-in types—new types added by SQL3

• BLOB—a Binary Large OBject
• CLOB—a Character Large OBject

• Structured types, for example:

• CREATE TYPE PLANE_POINT (X FLOAT, Y FLOAT)
• Distinct types—based on the representation of a built-in type, for example:

• CREATE TYPE MONEY AS NUMERIC(10,2)
• Constructed types—based on a given base type:

• REF(structured-type)—designates row containing a structured type instance
• base-type ARRAY[n]—an array of n base-type elements

• Locator types—designate a datum that resides on the server

• LOCATOR(structured-type)—locator to structured instance in server
• LOCATOR(array)—locator to array in server
• LOCATOR(blob)—locator to Binary Large Object in server
• LOCATOR(clob)—locator to Character Large Object in server

JDBC 2.0 Core API

Sun Microsystems Inc. 30 May 30, 1998

A REF value persistently denotes an instance of a structured type that resides in the da-
tabase. ALOCATOR exists only in the client environment and is a transient, logical point-
er to data that resides on the database server. A locator typically refers to data that is
too large to materialize on the client, for example, images or audio. There are operators
defined at the SQL level to retrieve random-access pieces of the data denoted by the
locator.

The remainder of this chapter discusses the default mechanism provided by the JDBC
2.0 API for accessing each of the new SQL types mentioned above. The JDBC 2.0 API
also provides a means for customizing the mapping of SQL distinct and structured types
into Java classes. This mechanism is discussed in the Chapter 9.

8.2 Blobs and clobs

8.2.1 Retrieving blobs and clobs

The binary large object (blob) and character large object (clob) data types are treated
similarly to the existing, built-in JDBC types. Values of these types can be retrieved by
calling thegetBlob() and getClob() methods that appear on theResultSet and
CallableStatement interfaces. For example,

Blob blob = rs.getBlob(1);
Clob clob = rs.getClob(2);

retrieves a blob value from the first column of the result set and a clob value from the
second column. TheBlob interface contains operations for returning the length of the
blob, a specific range of bytes contained in the blob, etc. TheClob interface contains
corresponding operations that are character based. See the accompanying API docu-
mentation for more details.

A JDBC application does not deal directly with the LOCATOR(blob) and LOCA-
TOR(clob) types that are defined in SQL. By default, a JDBC driver should implement
theBlob andClob interfaces using the appropriate locator type. Also, by defaultBlob

andClob objects only remain valid during thetransaction in which they are created.
A JDBC driver may allow these defaults to be changed. For example, the lifetime of
Blob andClob objects could be changed to session-scoped. However, the JDBC 2.0
API does not specify how this is done.

8.2.2 Storing blobs and clobs

A Blob or Clob value can be passed as an input parameter to aPreparedStatement

object just like other JDBC data types by calling thesetBlob() andsetClob() meth-
ods respectively. ThesetBinaryStream() , andsetObject() methods may be used to
input a stream value as a blob. ThesetAsciiStream() , setUnicodeStream() , and
setObject() methods may be used to input a stream as a clob value.

JDBC 2.0 Core API

Sun Microsystems Inc. 31 May 30, 1998

8.2.3 Metadata additions

Two new type codes,BLOB andCLOB, have been added to java.sql.Types. These
values are returned by methods such asDatabaseMetaData.getTypeInfo() andDa-

tabaseMetaData.getColumns() when a JDBC driver supports these data types.

8.3 Arrays

8.3.1 Retrieving arrays

Data of type SQL array can be retrieved by calling thegetArray() method of theRe-

sultSet andCallableStatement interfaces. For example,

Array a = rs.getArray(1);

retrieves anArray value from the first column of the result set. By default, a JDBC driv-
er should implement theArray interface using an SQL LOCATOR(array) internally.
Also, by defaultArray objects only remain valid during thetransaction in which they
are created. These defaults may be changed as for theBlob andClob types, but the
JDBC 2.0 API does not specify how this is done.

TheArray interface provides several methods which return the contents of the array to
the client as a materialized Java array orResultSet object. These methods aregetAr-

ray() andgetResultSet() , respectively. See the separate API documentation for de-
tails.

8.3.2 Storing arrays

ThePreparedStatement.setArray() method may be called to pass anArray value
as an input parameter to a prepared statement. A Java programming language array may
be passed as an input parameter by callingPreparedSatement.setObject() .

8.3.3 Metadata additions

A new type code,ARRAY, has been added to java.sql.Types. This value is returned
by methods such asDatabaseMetaData.getTypeInfo() and DatabaseMetaDa-

ta.getColumns() when a JDBC driver supports theArray data type.

8.4 Refs

8.4.1 Retrieving refs

An SQL reference can be retrieved by calling thegetRef() method of theResultSet

andCallableStatement interfaces. For example,

Ref ref = rs.getRef(1);

JDBC 2.0 Core API

Sun Microsystems Inc. 32 May 30, 1998

retrieves aRef value from the first column of the result set. By default, retrieving aRef

value does not materialize the data to which theRef refers. Also, by default a Ref value
remains valid while thesessionor connection on which it is created is open. These de-
faults may be overridden, but again the JDBC 2.0 API does not specify how this is done.

TheRef interface doesnot provide methods for dereferencing. Instead, aRef can be
passed as an input parameter to an appropriate SQL statement that fetches the object
that it references. See the separate JDBC API documentation for details.

8.4.2 Storing refs

The PreparedStatement.setRef() method may be called to pass aRef as an input
parameter to a prepared statement.

8.4.3 Metadata additions

A new type code,REF, has been added to java.sql.Types. This value is returned by
methods such asDatabaseMetaData.getTypeInfo() andDatabaseMetaData.get-

Columns() when a JDBC driver supports theRef data type.

8.5 Distinct types

8.5.1 Retrieving distinct types

By default, a datum of SQL type DISTINCT is retrieved by calling anygetXXX() meth-
od that is appropriate to the underlying type that the distinct type is based on. For ex-
ample, given the following type declaration:

CREATE TYPE MONEY AS NUMERIC(10,2)

a value of type MONEY could be retrieved as follows:

java.math.BigDecimal bd = rs.getBigDecimal(1);

since the underlying SQL NUMERIC type is mapped to thejava.math.BigDecimal

type by JDBC.

8.5.2 Storing distinct types

Any PreparedStatement.setXXX() method that is appropriate to the underlying type
of an SQL DISTINCT type may be used to pass an input parameter of that distinct type
to a prepared statement. For example, given the definition of type MONEY abovePre-

paredStatement.setBigDecimal() would be used.

JDBC 2.0 Core API

Sun Microsystems Inc. 33 May 30, 1998

8.5.3 Metadata additions

A new type code,DISTINCT , has been added to java.sql.Types. This value is re-
turned by methods such asDatabaseMetaData.getTypeInfo() andDatabaseMeta-

Data.getColumns() when a JDBC driver supports this data type.

An SQL DISTINCT type must be defined as part of a particular database schema before
it is used in a schema table definition. Information on schema-specific user-defined
types—of whichDISTINCT types are one particular kind—can be retrieved by calling
theDatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.DISTINCT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the SQL DISTINCT typesdefined in the catalog-

name.schema-name schema. If the driver does not support UDTs or no matching
UDTs are found then an empty result set is returned.

Each type description has the following columns:

Most of the columns above should be self-explanatory. TheTYPE_NAME is the SQL
type name given to the DISTINCT type—MONEY in the example above. This is the
name used in a CREATE TABLE statement to specify a column of this type.

WhenDATA_TYPE is Types.DISTINCT , theJAVA_CLASS column contains a fully
qualified Java class name. Instances of this class will be created ifgetObject() is
called on a column of this DISTINCT type. For example, JAVA_CLASS would default
to java.math.BigDecimal in the case of MONEY above. The JDBC 2.0 API does not
prohibit a driver from returning a subtype of the class named by JAVA_CLASS. The
JAVA_CLASS value reflects a custom type mapping when one is used. See Chapter 9
for details.

TYPE_CAT String => the type's catalog (may be null)

TYPE_SCHEM String => the type's schema (may be null)

TYPE_NAME String => the database type name

JAVA_CLASS String => a Java class or interface name

DATA_TYPE short => value defined injava.sql.Types , e.g. DIS-
TINCT

REMARKS String => explanatory comment on the type

JDBC 2.0 Core API

Sun Microsystems Inc. 34 May 30, 1998

8.6 Structured types

8.6.1 Retrieving structured types

A value of an SQL structured type is always retrieved by calling methodgetObject() .
By default,getObject() returns a value of typeStruct for a structured type. For ex-
ample,

Struct struct = (Struct)rs.getObject(1);

retrieves aStruct value from the first column of the current row of result setrs . The
Struct interface contains methods for retrieving the attributes of a structured type as
an array of java.lang.Object values. By default, a JDBC driver should materialize
the contents of aStruct prior to returning a reference to it to the application. Also, by
default aStruct object is considered valid as long as the Java application maintains a
reference to it. A JDBC driver may allow these defaults to be changed—to allow an
SQL LOCATOR to be used, for example—but the JDBC 2.0 API does not specify how
this is done.

8.6.2 Storing structured types

ThePreparedStatement.setObject() method may be called to pass aStruct as an
input parameter to a prepared statement.

8.6.3 Metadata additions

A new type code,STRUCT, has been added to java.sql.Types. This value is returned
by methods such asDatabaseMetaData.getTypeInfo() and DatabaseMetaDa-

ta.getColumns() when a JDBC driver supports structured data types.

A structured SQL type must be defined as part of a particular database schema before
it can be used in a schema table definition. Information on schema-specific user-defined
types—of whichSTRUCTtypes are one particular kind—can be retrieved by calling the
DatabaseMetaData.getUDTs() method. For example,

int[] types = {Types.STRUCT};
ResultSet rs = dmd.getUDTs("catalog-name", "schema-name",

"%", types);

returns descriptions of all the structured SQL typesdefined in the catalog-

name.schema-name schema. If the driver does not support UDTs or no matching
UDTs are found then an empty result set is returned. See section 8.5.3 for a description
of the result set returned bygetUDTs() .

When the DATA_TYPE returned by getUDTs() is Types.STRUCT , the
JAVA_CLASS column contains the fully qualified Java class name of a Java class. In-
stances of this class are manufactured by the JDBC driver whengetObject() is called
on a column of this STRUCT type. Thus,JAVA_CLASS defaults to ja-

JDBC 2.0 Core API

Sun Microsystems Inc. 35 May 30, 1998

va.sql.Struct for structured types. Chapter 9 discusses how this default can be mod-
ified by a Java application. We note here only that the JDBC 2.0 API does not prohibit
a driver from returning a subtype of the class named by JAVA_CLASS.

JDBC 2.0 Core API

Sun Microsystems Inc. 36 May 30, 1998

9 Customizing SQL Types

This chapter describes the support that the JDBC 2.0 API provides for customizing the
mapping of SQL structured and distinct types into Java classes. The customization
mechanism involves minimal extensions to the JDBC API. The new functionality is an
extension of the existinggetObject() andsetObject() mechanism.

9.1 The type mapping

An instance ofjava.util.Map is used to hold a custom mapping between SQL user-
defined types—structured and distinct types—and Java classes. The java.util.Map

interface is new in the JDK 1.2 and replacesjava.util.Dictionary . Such an object
is termed atype-map object. A type-map object implements a function from SQL
names of user-defined types to objects of typejava.lang.Class . A type-map object
determines the class from which to construct an object to contain data of a given SQL
user-defined type.

Each JDBCConnection has an associated type-map object. The type-map object con-
tains type-mappings for translating data of SQL user-defined types in operations on that
connection. Methods are provided for getting and setting a connection’s type map. For
example,

java.util.Map map = con.getTypeMap();
con.setTypeMap(map);

TheConnection.getTypeMap() method returns the type-map object associated with
a connection, whileConnection.setTypeMap() can be used to set a new type map-
ping.

The mapping mechanism is quite flexible. If a connection’s type mapping is not explic-
itly initialized by the JDBC application, then the default mappings described in Chapter
8 are used by operations on the connection. If a custom mapping is inserted into the
type-map for SQL typetype-name , then all operations on the connection will use this
custom mapping for values of typetype-name . Finally, we note that type-map objects
may even be provided explicitly when calling certaingetXXX() and setXXX() meth-
ods to override the custom or default mapping associated with aConnection .

9.2 Java class conventions

A Java class which appears in a custom type-map must implement a new interface—
java.sql.SQLData . TheSQLData interface contains methods that convert instances of
SQL user-defined types to Java class instances, and vice versa. For example, the meth-
od SQLData.readSQL() reads a stream of data values and builds a Java object, while
methodSQLData.writeSQL() writes a sequence of values from a Java object to a
stream. We anticipate that these methods will typically be generated by a tool which
understands the database schema.

JDBC 2.0 Core API

Sun Microsystems Inc. 37 May 30, 1998

This stream-based approach for exchanging data between SQL and Java is conceptually
similar to Java Object Serialization. The data are read from and written to an SQL data
stream provided by the JDBC driver. The SQL data stream may be implemented on var-
ious network protocols and data-formats. It may be implemented on any logical data-
representation in which the leaf SQL data items (of which SQL structured types are
composed) can be read from (written to) the data stream in a "depth-first" traversal of
the structured types. That is, the attributes of an SQL structured type appear in the
stream in the order in which they are declared in that type, and each (perhaps structured)
attribute value appears fully (its structure recursively elaborated) in the stream before
the next attribute. For data of SQL structured types that use inheritance, the attributes
must appear in the stream in the order that they are inherited. That is, the attributes of
a super-type must appear before attributes of a sub-type. If multiple inheritance is used,
then the attributes of super-types should appear in the stream in the order in which the
super-types are listed in the type declaration. This protocol does not require the data-
base server to have any knowledge of Java.

9.3 Streams of SQL data

This section describes the stream interfaces, SQLInput and SQLOutput, which support
customization of the SQL to Java type mapping.

9.3.1 Retrieving data

When data of SQL structured and distinct types are retrieved from the database, they
"arrive" in a stream implementing theSQLInput interface. TheSQLInput interface con-
tains methods for reading individual data values sequentially from the stream. The ex-
ample below illustrates how aSQLInput stream can be used to provide values for the
fields of anSQLData object. TheSQLData object—thethis object in the example—
contains three persistent fields: aString s , aBlob blob , and anEmployee emp .

this.str = sqlin.readString();
this.blob = sqlin.readBlob();
this.emp = (Employee)sqlin.readObject();

The SQLInput.readString() method reads aString value from the stream. The
SQLInput.readBlob() method can be used to retrieve aBlob value from the stream.
By default, theBlob interface is implemented using an SQL locator, so callingread-

Blob() doesn’t materialize the blob contents on the JDBC client. TheSQLIn-

put.readObject() method can be used to return an object reference from the stream.
In the example, theObject returned is narrowed to anEmployee .

There are a number of additionalreadXXX() methods defined on theSQLInput inter-
face for reading each of the JDBC types. TheSQLInput.wasNull() method can be
called to check if the value returned by areadXXX() method was null.

JDBC 2.0 Core API

Sun Microsystems Inc. 38 May 30, 1998

9.3.2 Storing data

When anSQLData object is passed to JDBC as an input parameter via asetXXX() meth-
od, the JDBC driver calls the object’sSQLData.writeSql() method to obtain a stream
representation of the contents of the object. MethodwriteSQL() writes data from the
object to anSQLOutput stream as the representation of an SQL user-defined type.
MethodwriteSQL() will typically have been generated by some tool from an SQL
type definition. The example below illustrates use of theSQLOutput stream object.

sqlout.writeString(this.str);
sqlout.writeBlob(this.blob);
sqlout.writeObject(this.emp);

The example shows how the contents of anSQLData object can be written to an
SQLOutput stream. TheSQLData object—thethis object in the example—contains
three persistent fields: aString s , aBlob blob , and anEmployee emp . Each field is
written in turn to theSQLOutput stream,sqlout . TheSQLOutput interface contains ad-
ditional methods for writing each of the JDBC types.

9.4 Examples

9.4.1 Example of SQL structured type

The following SQL example defines structured types PERSON, FULLNAME, and
RESIDENCE. It defines tables with rows of types PERSON and RESIDENCE, and in-
serts a row into each, so that one row references another. Finally, it queries the table.

CREATE TYPE RESIDENCE
(

DOOR NUMERIC(6),
STREET VARCHAR(100),
CITY VARCHAR(50),
OCCUPANT REF(PERSON)

);

CREATE TYPE FULLNAME
(

FIRST VARCHAR(50),
LAST VARCHAR(50)

);

CREATE TYPE PERSON
(

NAME FULLNAME,
HEIGHT NUMERIC,
WEIGHT NUMERIC,
HOME REF(RESIDENCE)

);

JDBC 2.0 Core API

Sun Microsystems Inc. 39 May 30, 1998

CREATE TABLE HOMES OF RESIDENCE (OID REF(RESIDENCE)
VALUES ARE SYSTEM GENERATED);

CREATE TABLE PEOPLE OF PERSON (OID REF(PERSON)
VALUES ARE SYSTEM GENERATED);

INSERT INTO PEOPLE (SURNAME, HEIGHT, WEIGHT) VALUES
(

FULLNAME('DAFFY', 'DUCK'),
4,
58

);

INSERT INTO HOMES (DOOR, STREET, CITY, OCCUPANT) VALUES
(

1234,
'CARTOON LANE',
'LOS ANGELES',
(SELECT OID FROM PEOPLE P WHERE P.NAME.FIRST = 'DAFFY')

);

UPDATE PEOPLE SET HOME = (SELECT OID FROM HOMES H WHERE
H.OCCUPANT->NAME.FIRST = 'DAFFY') WHERE
FULLNAME.FIRST = 'DAFFY'

The example above constructs three structured type instances, one each of types PER-
SON, FULLNAME, and RESIDENCE. A FULLNAME attribute is embedded in a
PERSON. The PERSON and RESIDENCE instances are stored as rows of tables, and
reference each other via Ref attributes.

The Java classes below represent the SQL structured types given above. We expect that
such classes will typically be generated by an SQL-to-Java mapping tool that reads the
definitions of those structured types from the catalog tables, and, subject to customiza-
tions that a user of the tool may provide for name-mappings and type-mappings of
primitive fields, will generate Java classes like those shown below.

Note: JDBC 2.0 does not provide a standard API for accessing the metadata needed by
a SQL-to-Java mapping tool. Providing this type of metadata introduces many subtle
dependencies on the SQL3 type model, so it has been left out for now.

In each class below, methodSQLData.readSQL() reads the attributes in the order that
they appear in the definition of the corresponding structured types in the database (i.e.,
in "row order, depth-first" order, where the complete structure of each attribute is read,
recursively, before the next attribute is read). Similarly,SQLData.writeSQL() writes
the data to the stream in that order.

public class Residence implements SQLData {
 public int door;
 public String street;
 public String city;
 public Ref occupant;

JDBC 2.0 Core API

Sun Microsystems Inc. 40 May 30, 1998

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 door = stream.readInt();
 street = stream.readString();
 city = stream.readString();
 occupant = stream.readRef();

}

 public void writeSQL (SQLOutput stream) throws SQLException {
stream.writeInt(door);

 stream.writeString(street);
 stream.writeString(city);
 stream.writeRef(occupant);
 }
}

public class Fullname implements SQLData {
 public String first;
 public String last;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 first = stream.readString();
 last = stream.readString();

}

 public void writeSQL (SQLOutput stream) throws SQLException {
 stream.writeString(first);
 stream.writeString(last);
 }
}

public class Person implements SQLData {
 Fullname name;
 float height;
 float weight;
 Ref home;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput stream, String type)
throws SQLException {

 sql_type = type;
 name = (Fullname)stream.readObject();

JDBC 2.0 Core API

Sun Microsystems Inc. 41 May 30, 1998

 height = stream.readFloat();
 weight = stream.readFloat();
 home = stream.readRef();
 }

 public void writeSQL (SQLOutput stream)
throws SQLException {

 stream.writeObject(name);
 stream.writeFloat(height);
 stream.writeFloat(weight);
 stream.writeRef(home);
 }
}

The following method uses those classes to materialize data from the tables HOMES
and PEOPLE that were defined earlier:

import java.sql.*;
.
.
.

public void demo (Connection con) throws SQLException {

// setup mappings for the connection
try {

java.util.Map map = con.getTypeMap();
map.put(“S.RESIDENCE", Class.forName("Residence"));
map.put("S.FULLNAME", Class.forName("Fullname"));
map.put("S.PERSON", Class.forName("Person"));

}
catch (ClassNotFoundException ex) {}

PreparedStatement pstmt;
ResultSet rs;

pstmt = con.prepareStatement("SELECT OCCUPANT FROM HOMES");
rs = pstmt.executeQuery();
rs.next();
Ref ref = rs.getRef(1);

pstmt = con.prepareStatement(
"SELECT FULLNAME FROM PEOPLE WHERE OID = ?");

pstmt.setRef(1, ref);
rs = pstmt.executeQuery();
rs.next();
Fullname who = (Fullname)rs.getObject(1);

// prints "Daffy Duck"
System.out.println(who.first + " " + who.last);

}

JDBC 2.0 Core API

Sun Microsystems Inc. 42 May 30, 1998

9.4.2 Mirroring SQL inheritance in Java

SQL structured types may be defined to form an inheritance hierarchy. For example,
consider SQL type STUDENT that inherits from PERSON:

CREATE TYPE PERSON AS OBJECT (NAME VARCHAR(20), BIRTH DATE);

CREATE TYPE STUDENT AS OBJECT EXTENDS PERSON (GPA NUMERIC(4,2));

The following Java classes can represent data of those SQL types. ClassStudent ex-
tendsPerson , mirroring the SQL type hierarchy. MethodsSQLData.readSQL() and
SQLData.writeSQL() of the subclass cascades each call to the corresponding method
in its super-class, in order to read or write the super-class attributes before reading or
writing the subclass attributes.

 import java.sql.*;
 ...
 public class Person implements SQLData {
 public String name;
 public Date birth;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)
throws SQLException {

sql_type = type;
 name = data.readString();
 birth = data.readDate();
 }

 public void writeSQL (SQLOutput data)
throws SQLException {

 data.writeString(name);
 data.writeDate(birth);
 }
 }

 public class Student extends Person {
 public float GPA;

 private String sql_type;
public String getSQLTypeName() { return sql_type; }

 public void readSQL (SQLInput data, String type)
throws SQLException {

sql_type = type;
 super.readSQL(data, type);
 GPA = data.readFloat();
 }

JDBC 2.0 Core API

Sun Microsystems Inc. 43 May 30, 1998

 public void writeSQL (SQLOutput data)
 throws SQLException {
 super.writeSQL(data);
 data.writeFloat(GPA);
 }
 }

The Java class hierarchy need not mirror the SQL inheritance hierarchy. For example,
classStudent above could have been declared without a super-class. In this case,Stu-

dent could contain fields to hold the inherited attributes of the SQL type STUDENT as
well as the attributes declared by STUDENT itself..

9.4.3 Example mapping of SQL distinct type to Java

An SQL distinct type, MONEY, and a Java class Money that represents it:

-- SQL definition
CREATE TYPE MONEY AS NUMERIC(10,2);

// Java definition
public class Money implements SQLData {

public java.math.BigDecimal value;

private String sql_type;
public String getSQLTypeName() { return sql_type; }

public void readSQL (SQLInput stream, String type)
throws SQLException {

sql_type = type;
value = stream.readBigDecimal();

}

public void writeSQL (SQLOutput stream) throws SQLException {
stream.writeBigDecimal(value);

}
}

9.5 Generality of the approach

Users have great flexibility to customize the Java classes that represent SQL structured
and distinct types. They control the mappings of built-in SQL attribute types to Java
field types. They control the mappings of SQL names (of types and attributes) to Java
names (of classes and fields). Users may add (to Java classes that represent SQL types)
fields and methods that implement domain-specific functionality. Users can generate
JavaBeans as the classes that represent SQL types.

JDBC 2.0 Core API

Sun Microsystems Inc. 44 May 30, 1998

A user can even map a single SQL type to different Java classes, depending on arbitrary
conditions. To do that, the user must customize the implementation ofSQLData.read-

SQL() to construct and return objects of different classes under different conditions.

Similarly, the user can map a single SQL value to a graph of Java objects. Again, that
is accomplished by customizing the implementation ofSQLData.readSQL() to con-
struct multiple objects and distribute the SQL attributes into fields of those objects.

A customization of theSQLData.readSQL() method could populate the type-map ob-
ject incrementally. And so on. We believe that these kinds of flexibility will allow users
of JDBC to map SQL types appropriately for different kinds of applications.

9.6 NULL data

A JDBC application uses the existinggetObject() andsetObject() mechanism of
JDBC to retrieve and storeSQLData values. We note that when the second parameter,
x, of method PreparedStatement.setObject() has the Java valuenull , then JDBC
executes the SQL statement as if the SQL literal NULL had appeared in place of that
parameter of the statement:

 void setObject (int i, Object x) throws SQLException;

When parameterx is null, there is no enforcement that the corresponding argument ex-
pression is of a Java type that could successfully be passed to that SQL statement if its
value were non-null. Java null carries no type information. For example, a null Java
variable of classAntiMatter could be passed as an argument to an SQL statement that
requires a value of SQL typeMATTER, and no error would result, even though the rele-
vant type-map object did not permit the translation ofMATTER to AntiMatter .

9.7 Summary

Chapters 8 and 9 presented JDBC extensions to support new categories of SQL types.
The extensions have these properties:

• All of the new SQL types are handled with uniform and extensible interfaces,
which may be staged into JDBC piecemeal.

• Minimal mechanism is added to JDBC. A JDBC implementation does little
more than transfer control to methodsSQLData.readSQL() and
SQLData.writeSQL() of classes that have been generated to represent the SQL
types.

• The extensions are based on existing interfacesjava.io.Serializable ,
java.io.DataInput , java.io.DataOutput , java.sql.ResultSet , and
java.sql.PreparedStatement

• Great flexibility is given to writers of database tools to add value by
customizing the Java classes that represent SQL data.

JDBC 2.0 Core API

Sun Microsystems Inc. 45 May 30, 1998

10 Other New Features

This chapter describes additional changes that have been made in the JDBC 2.0 API.

10.1 Changes to java.sql.ResultSet

A version of theResultSet.getBigDecimal() method that returns full precision has
been added.

10.2 Changes to java.sql.ResultSetMetaData

The ResultSetMetaData.getColumnType() method may now return the new SQL
type codes:STRUCT, DISTINCT , BLOB, etc. TheSTRUCT andDISTINCT type codes are al-
ways returned for structured and distinct values, independent of whether the default or
a custom type mapping is being used.

The ResultSetMetaData.getColumnTypeName() method should return the follow-
ing for the new SQL types.

A ResultSetMetaData .getColumnClassName() method has been added to return the
fully qualified name of the Java class whose instances are manufactured if Result-
Set.getObject() is called to retrieve a value from the column. See the separate API doc-
umentation for details.

The ResultSetMetaData.getColumnTypeName() method returns a fully qualified
SQL type name when the type code is STRUCT, DISTINCT, or JAVA_OBJECT.

10.3 Changes to DatabaseMetaData

The DatabaseMetaData.getColumns() method may now return DATA_TYPE val-
ues of the new SQL3 types: BLOB, CLOB, etc. TheDatabaseMetaData.getCol-

umns() method returns the same type names as those listed in Section 10.2 for the
SQL3 data types.

Column Type Column Type Name

JAVA_OBJECT the SQL name of the Java type

DISTINCT the SQL name of the distinct type

STRUCT the SQL name of the structured type

ARRAY data source dependent type name

BLOB data source dependent type name

CLOB data source dependent type name

REF data source dependent type name

JDBC 2.0 Core API

Sun Microsystems Inc. 46 May 30, 1998

Added methodDatabasemetaData.getConnection() to return theConnection ob-
ject that produced the metadata object.

Added methodDatabasemetaData.getUDTs() . See the separate API documentation
for details.

Added methods to support the newResultSet and batch update functionality:sup-

portsResultSetConcurrency() , supportsBatchUpdates() , etc. See the separate
API documentation for details.

10.4 Changes to java.sql.DriverManager

A DriverManager.setLogWriter() method that takes ajava.io.PrintWriter ob-
ject as input has been added. A new DriverManager.getLogWriter() method returns
a PrintWriter object. Theset/getLogStream() methods have been deprecated.

10.5 Date, Time, and Timestamp

The JDBC API follows the Java platform’s approach of representing dates and times as
a millisecond value relative to January 1, 1970 00:00:00 GMT. Since most databases
don’t support the notion of a time zone, the JDBC 2.0 API adds new methods to allow
a JDBC driver to get/setDate , Time , andTimestamp values for a particular time zone
using aCalendar . For example,

ResultSet rs;
...
Date date1 = rs.getDate(1);

returns aDate object that wraps a millisecond value which denotes a particular date,
like January 3, 1999, and a normalized time 00:00:00 in the default time zone. The time
component of the Date is set to zero in the default time zone since SQL DATE values
don’t have a time component. Since aCalendar was not supplied explicitly toget-

Date() , the default time zone (really the defaultCalendar) is used by the JDBC driver
internally to create the appropriate millisecond value assuming that the underlying da-
tabase doesn’t store time zone information.

The following example retrieves a date value in GMT—Greenwich Mean Time.

ResultSet rs;
...

TimeZone.setDefault(TimeZone.getTimeZone("GMT"));
Calendar cal = Calendar.getInstance();
Date date2 = rs.getDate(1, cal);

In the example above, aCalendar is passed explicitly togetDate() to inform the
JDBC driver how to calculate the appropriate millisecond value. Note that the same re-
sult could have been achieved by simply changing the default time zone, and not pass-

JDBC 2.0 Core API

Sun Microsystems Inc. 47 May 30, 1998

ing theCalendar explicitly since the JDBC driver will use the default time zone by
default.

Note that the twoDate objects created above will not compare as equal assuming that
the default time zone is not GMT, even if they represent the ‘same’ date.

if (date1.equals(date2))
//never get here

This is because each Java languageDate object really just wraps a normalized millisec-
ond time value and these millisecond values will differ across time zones. If an appli-
cation wishes to compare dates in different time zones it should first convert them to a
Calendar .

An application should create aDate object using aCalendar . The application is re-
sponsible for specifying the time as 00:00:00 on the desired date when using theCal-

endar since JDBC uses this convention. In addition when creating aTime value the
application must specify a date of January 1, 1970 to theCalendar used to create the
millisecond value for theTime as this is the convention specified by JDBC for time.

JDBC 2.0 Core API

Sun Microsystems Inc. 48 May 30, 1998

11 Clarifications

We have gotten several requests to clarify some aspects of the JDBC API. This chapter
contains additional explanation of some JDBC features.

11.1 Connection.isClosed()

TheConnection.isClosed() method is only guaranteed to return true afterConnec-

tion.closed() has been called.Connection.isClosed() cannot be called, in gen-
eral, to determine if a database connection is valid or invalid. A typical JDBC client can
determine that a connection is invalid by catching the exception that is thrown when a
JDBC operation is attempted.

11.2 Statement.setCursorName()

TheStatement.setCursorName() method provides a way for an application to spec-
ify a cursor name for the cursor associated with the next result set produced by a state-
ment. A result set’s cursor name can be retrieved by calling
ResultSet.getCursorName(). If Statement.setCursorName() is called prior to
creating a result set, thenResultSet.getCursorName() should always return the val-
ue specified in Statement.setCursorName().

We note that callingStatement.setCursorName() prior to creating a result set does
not mean that the result set is updatable, in other words, positioned update or delete may
not be allowed on a result set even ifStatement.setCursorName() was called. By de-
fault in JDBC, a result set is read-only.

The only use for a cursor name in JDBC is to embed it in a SQL statement of the form

UPDATE ... WHERE CURRENT OF <cursor>

The cursor name provides a way to do a positioned update or delete. To enable posi-
tioned update and delete on a result set, a select query of the form

SELECT FOR UPDATE ... FROM ... WHERE ...

should be used to create the result set. IfStatement.setCursorName() is not called to
specify a cursor name, then the JDBC driver or underlying DBMS must generate a cur-
sor name when aSELECT FOR UPDATE statement is executed, if positioned update/de-
lete is supported.ResultSet.getCursorName() should returnnull if the result set is
read-only andStatement.setCursorName() was not called to specify a cursor name.

11.3 Character conversion

JDBC driver implementations are expected to automatically convert the Java unicode
encoding of strings and characters to and from the character encoding of the database

JDBC 2.0 Core API

Sun Microsystems Inc. 49 May 30, 1998

being accessed. JDBC does not define how to override the character encoding of a da-
tabase. For example, JDBC does not define how to store unicode characters in an ASCII
database.

11.4 Streams as input parameters

When an application passes a stream as an input value via a setXXX() or updateXXX()
method, the application is responsible for maintaining the stream in a readable state un-
til one of the following methods is called: PreparedStatement.execute(), executeQue-
ry(), executeUpdate(), or executeBatch(), and ResultSet.insertRow() or updateRow().
A JDBC driver is not required to wait until one of these methods is called to read the
stream value.

11.5 Result sets not created by aStatement

A ResultSet object that is created by a metadata operation is only required to be for-
ward-only. Scrollability is not required for result sets produced byDatabaseMetaData

operations.

JDBC 2.0 Core API

Sun Microsystems Inc. 50 May 30, 1998

Appendix A: Rejected Design Choices

A.1 Design Alternative: Create new subtypes of the existing java.sql types.

We have chosen to add new methods to existing JDBC interfaces and classes in order
to add new functionality to the JDBC API.

An alternative design, which we considered, was instead to extend the existing java.sql
types with new subtypes that contained any new methods. This approach was judged to
be too unwieldy. For example, since we needed to add methods to theja-

va.sql.Statement interface, such asStatement.setFetchSize() , it would have
been necessary to create three new statement interfaces related to the old interfaces in
a fairly complex inheritance hierarchy (see below). This approach seemed to add too
much complexity to the JDBC API.

Statement

ExtendedStatement PreparedStatement

CallableStatement

ExtendedCallableStatement

ExtendedPreparedStatement

indicates subclass relationship

JDBC 2.0 Core API

Sun Microsystems Inc. 51 May 30, 1998

Appendix B: Additional Suggestions

This section contains a list of some of the suggested additions that we received for
JDBC 2.0 that havenot been added to the JDBC API. They are listed simply as a record
of some of the things that have been left out of JDBC 2.0. We welcome input concern-
ing the items listed here.

B.1 Other Suggestions for v0.1

Processing Results - Add a way to determine the value of an auto-incremented key after
an insert is done.

Enhanced Meta-Data - Add meta-data for prepared statement parameters and for pre-
pared statement result set. JDBC does not provide metadata describing a prepared state-
ments parameters; and, it does not provide metadata describing its results without
executing the statement (equivalent to SQL92 DESCRIBE OUTPUT and ODBC SQL-
DescribeParam.

New Data Types - Add the SQL time interval data type

Security - Allow the application to choose underlying transport properties, e.g., SSL.
Provide SSL Socket implementation. A JDBC application must be able to select Driver-
supported mechanisms for securing the wirelevel protocol (e.g., encryption). Relative
to SSL, one option is to allow the application to specify a specific Cyphersuite (key-
exchange algorithm, bulk-encryption, MAC [message authentication algorithm])

Security-Authentication - Allow a JDBC application to select Driver-supported mech-
anisms for performing authentication. The following mechanisms should be supported:
Username, password; Kerberos token; Digital Certificates

Command Complete event - Support a user provided event object that is fired when a
Command completes (both current command and regular command, sync or async). - -
Various events: Connect Event; Disconnect Event; Before Connect Event

Cursor Implementation Location - Support client-side vs server-side.

Parameter Management - Support: Append, GetCount, GetItem (by name/position),
Delete and Refresh.

Hybrid SQL/Java Integration - Provide a mechanism for defining Java ADTs and pro-
vide a hybrid SQL/Java query mechanism over Tables whose columns may be SQL
atomics or Java Classes.

Specialty Data Types - Provide extensions for OLAP, Spatial, TimeSeries and other
Specialty Data Types.

Serializing data, time, timestamps - Allow these types to be serializable.

Async Requests - Allow the caller to request that a Statement execute asynchronously.

Java ADTs - Introduce the notion of a SQL specialization of Java Classes/Java Beans
that introduces SQL3 concepts useful for dealing with Java objects in the context of da-
tabases and business applications. For example, it is useful for a database system to un-

JDBC 2.0 Core API

Sun Microsystems Inc. 52 May 30, 1998

derstand which method(s) definitions in a Class may be used to perform operations on
objects such as comparisons, etc. One approach would be to introduce "generic" meth-
od names. Those could also be used outside of the database by regular Business Appli-
cations.

Add support for SQL PSM.

Add additional SQL language functionality e.g. various forms of join.

Add *levels* of JDBC compatibility, as opposed to individual API calls to see if indi-
vidual features are supported by a drvier.

Add an API call that describes the format of the URL understood by a driver.

Add a row object that encapsulates database data in its native format.

Add immutability for Date, Time, Timestamp.

B.2 Additional suggestions for v0.7

• It was suggested that as an alternative to providing individual methods for each
new property on theStatement interface such as result set type, concurrency
type, etc., we could introduce a new Class,ResultSetProperties , that itself
contained all methods for getting and setting these properties. Statement would
then just contain two new methods for getting and setting a
ResultSetProperties property. This approach would help to simplify the
Statement interface.

• Add a new CursorResultSet interface which extends ResultSet and adds method
CursorStatement prepareUpdate() throws SQLException ; OR add the
prepareUpdate method to the existingResultSet interface - and define that it
may fail if there is no cursor associated with it. Add a newCursorStatement

interface which extendsPreparedStatement and adds the methods: void

update() throws SQLException and void delete() throws

SQLException . It would be helpful to introduce another intermediate
CursorResultSet which would sit in the interitance hierarchy between
ResultSet and ScrollableResultSet . The motivation for the
CursorStatement is to avoid the need to parse every query to look for cursor
operations. The reason to have CursorStatement extend PreparedStatement is to
get access to the setXXX methods. The setXXX() methods would be used to
provide new values to the corresponding columns of the current row in the
CursorResultSet. The executeUpdate() method would perform the actual update
(with the parameter values that had been set) or delete (parameter values are
ignored). The execute() and executeQuery() methods would be overridden so
that they always throw SQLException. Additionally, the CursorStatement
would be "bound" to the CursorResultSet which created it such that whenever
that CursorResultSet was repositioned (next, relative, absolute, first, last, etc.)
that the CursorStatement would automatically track this and update/delete
methods affect the right row. ** It is tempting to do away with the
CursorStatement and just add that functionality to the CursorResultSet because
these things are likely to be in 1:1 relationship.

JDBC 2.0 Core API

Sun Microsystems Inc. 53 May 30, 1998

• Add to the Statement interface: void

setCursorProperties(CursorProperties props) throws SQLException ;
Define a newjava.sql.CursorProperties class. I like the idea of adding
statement properties so that appropriate subclasses ofResultSet are returned
when the statement is executed. But, rather than adding a bunch of individual
accessors/mutators for all these properties toStatement , I would recommend
defining aCursorProperties class with public members and then add just a
single new method to Statement : void

setCursorProperties(CursorProperties props) throws SQLException ;
This would remove the need for the newStatement.setFetchSize and
getFetchSize methods for example.CursorProperties would have a public
constructor which returns aCursorProperties object with well defined
default values (TBD). Members of this class would include: 0. boolean
useCursors - if true the statement should return aCursorResultSet from
executeQuery. 1. String cursorName -Statement.setCursorName() would be
depricated. 2. boolean scrollable - if true the statement should return a
ScrollableResultSet from execute query. 3. boolean readonly - if true this
cursor is READONLY. 4. int rowCacheSize - hint to driver on how many rows
to retrieve from the database at a time. 5. boolean closeOnEndTransaction - in
ANSI SQL '92 cursors are automatically closed on commit/rollback, but many
databases allow cursors to remain open for efficiency 6. String[]
updatableColumns - list of columns which in SQL '92 grammar would be in the
"FOR UPDATE OF <column list>" clause. 7. boolean sensitive - if true
committed changes to the underlying tables which happened while the cursor
was open may be seen by the application as it scrolls over those rows.

• The result of any SQL query can be thought of as defining a simple structured
type. The fields of the structured type correspond to the columns of the query
result, and each row in the result set returned by the query represents an instance
of the type. JDBC could allow a mapping from a type that is defined implicitly
by an SQL query to a Java class, or even a bi-directional mapping between
regular relational tables and Java classes.

JDBC 2.0 Core API

Sun Microsystems Inc. 54 May 30, 1998

Appendix C: Change History

C.1 Changes between 0.10 and 0.70:

• Removed references to thejava.sql2 package. Substituted a proposal that
splits the JDBC API into two packages:javax.sql andjava.sql.

• Removed descriptions of the classes and intefaces injavax.sql. We plan to
add them in again later, or create a separate document for the extended JDBC
API.

• Removed theScrollableResultSet interface and associated methods on
other interfaces. Added methods for scrolling to theResultSet interface

• Added result set type, concurrency type, keyset size, fetch size, and fetch
direction properties toConnection , Statement , andResultSet interfaces.

• Deprecated Statement.setCursorName and ResultSet.getCursorName. Use of
“SELECT FOR UPDATE” is also deprecated. The new result set update
methods can be used instead.

• Added SQL3 APIs.

• Added new metadata for persistent Java objects.

C.2 Changes between 0.70 and 0.80

• The Struct interface no longer extends the SQLData interface.

• All occurrences of the SQLType interface have been removed and replaced with
'String'.

• The Array.getArray() method now returns Object instead of Object[]. This
allows an int[] array to be returned, for example.

• The specification now states that a Java programming language array may be
passed as an input parameter via PreparedStatement.setObject().

• The semantics of ResultSet.isDeleted(), etc. is clarified.

• The DatabaseMetaData.getClass() method has been dropped due to the
difficulties involved in loading classes directly from a database.

• The ResultSet.getBigDecimal() and CallableStatement.getBigDecimal()
methods which take an ‘int scale’ parameter have been deprecated.

• Statement.getResultSetType() now throws SQLException

• Added method Array.getBaseTypeName(). Array.getBaseType() now returns
an int type code.

• DatabaseMetaData.getUDTs() now allows a fully qualified SQL name which
may contain wildcard characters in the typeNamePattern parameter.

JDBC 2.0 Core API

Sun Microsystems Inc. 55 May 30, 1998

C.3 Changes between 0.80 and 0.90

• Section 9.4: Compiled code examples and removed syntax errors.

• Section 9.4.2: Added note on the independence of the Java language and SQL3
inheritance hierarchies.

• Section 6.1: Removed the requirement that indirect updates, such as those
performed by a trigger that is fired, be included in the update counts returned by
a batch update.

• Section 5.6: Clarified some technical details concerning inserting new rows in
a result set.

• Section 7.3.1: Noted that the TYPE_NAME returned by getTypeInfo() may
contain a vendor specific type name when the type code is JAVA_ODBECT.
Previously, the TYPE_NAME had to be null.

• Removed method SQLInput.readStruct() and SQLOutput.writeStruct(). Read/
writeObject() should be used instead.

• Chapter 5: Revised and simplified the scrollable result set model.

• Section 11.3: Added note on character conversion.

• Section 10.3: Added description of time zone support.

C.4 Changes between 0.90 and 0.91

• Section 5.5: Added rules for selecting a supported result set type and
concurrency type.

• Section 5.6: Added method ResultSet.cancelRowUpdates.

• Section 5.6: Added more description on the semantics of the update methods.

• Added Section 5.9.

C.5 Changes between 0.91 and 0.95

• Section 5.6: Added general description of the queries that yield updatable result
sets.

• Section 8.2: Clarified rules for passing blob and clob values as input parameters.

• Sections 11.4 and 11.5: Added these sections to the document.

C.6 Changes between 0.95 and 1.0

• no changes

JDBC 2.0 Core API

Sun Microsystems Inc. 56 May 30, 1998

Appendix D: Motivation for the SQL3 Proposal

The following observations and requirements have shaped this proposal:

• A Java program will retrieve a value of an SQL type as a single Java data item.
For example, an instance of a structured SQL type can be materialized in Java
as a single object, by a single method call (e.g., to method getObject()).

• A Java program will retrieve an SQL value as a "strongly typed" Java object.
For example, a structured type instance will be materialized in Java as an object
of a class with fields or methods that correspond to the attributes of that
particular structured type, and that allow the program to access the attributes of
the structured type.

• A client-side Java program can retrieve values of user-defined SQL types from
a database that is "unaware" of Java. No Java support is required in that
database. For example, no special definitions must be made in the database to
allow structured type data to be retrieved by Java programs.

• In particular, structured type values are retrieved into Java by means of
SELECT statements; are posted to the database by INSERT and UPDATE
statements; and so on.

• The SQL methods of a structured type execute in the server, and are not relevant
to the issue of retrieving structured type data from SQL into Java programs.

• Definitions of user-defined SQL types are visible in SQL catalog tables.
Similarly, definitions of Java classes are programmatically available thru the
reflection API. Therefore, tools that generate Java definitions for SQL data, or
vice versa, can be written by database tools vendors, independent of any
particular relational database vendor. Our mappings of SQL types to Java must
permit third-parties to write such tools.

• We assume that the mappings between SQL user-defined types any Java classes
will usually be generated by tools. It is not necessary to design the mappings so
that human programmers can easily write them "by hand".

• There is no reason to define exactly one mapping of an SQL type to a class as
the only "correct" mapping. Mapping tools may define different Java classes,
corresponding to a given SQL user-defined type, to serve different application
domains or execution environments. Such different classes may have different
type mappings for the primitive attributes, or auxilliary fields that are relevant
to a particular application. Our mappings of SQL user-defined types to Java
should allow such variations.

• We want to support Java programs that fetch data of SQL user-defined types in
a "dynamic SQL" style, without "knowing" in advance the number and kinds of
attributes of those data.

JDBC 2.0 Core API

Sun Microsystems Inc. 57 May 30, 1998

• An SQL structured type may contain an attribute of a REF(structured-type) type
that references a row containing another structured type instance. Despite a
superficial similarity, that SQL REF is not analogous to a Java field containing
another lightweight Java object. An SQL REF is a key value that designates a
row of a table; it does not designate an object in transient memory.

• Users will often want a 1-1 mapping between SQL types and Java classes. Java-
to-SQL mapping tools will generate a class for each distinct type, for each
structured type, for each REF(structured-type), for each array type, for each
Locator type, and so on.

• We want to allow flexibility in the mappings of SQL types to Java, so that tools
builders, and implementers of domain-specific "application service layers" can
add value by customizing the Java classes that implement SQL types. In
particular, the mapping of leaf SQL attributes and elements to Java fields and
variables permits all conversions that JDBC currently permits. SQL names may
be mapped to Java names in arbitrary ways. An SQL value may be represented
by one Java object, or by a graph of Java objects.

