
for
uses

y be
d the
a-

f
reated
s Java
rate
and in
with

ava
that
pen

for
it is
SP
lan-
Developing XML Solutions
with JavaServer Pages

Technology

XML (eXtensible Markup Language) is a set of syntax rules and guidelines
defining text-based markup languages. XML languages have a number of
including:

• Exchanging information

• Defining document types

• Specifying messages

Information that is expressed in a structured, text-based format can easil
transmitted between, transformed, and interpreted by entities that understan
structure. In this way XML brings the same cross-platform benefits to inform
tion exchange as the JavaTM programming language has for processing.

JavaServer PagesTM (JSPTM) technology provides specification and serving o
documents that combine static markup language elements and elements c
dynamically by Java programming language objects. JSP pages execute a
servlets, typically in the execution context of a Web server where they gene
content-dependent response documents using data stored in databases
other server-based application objects. JSP technology is a Java technology
specifications developed with broad industry participation through the J
Community Process (JCP). Application servers and development tools
support JSP technology are available from multiple vendors (including o
source groups) for a broad range of hardware-OS platforms.

JSP technology provides a number of capabilities that are ideally suited
working with XML. JSP pages can contain any type of text-based data, so
straightforward to generate documents that contain XML markup. Also, J
pages can use the full power of the Java platform to access programming
1

2 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

rticu-
s that
logy
f use

sed

ava-
pics,

age;
ource
ions,
guage objects to parse and transform XML messages and documents. In pa
lar, as part of the Java software environment, JSP pages can use object
leverage the new Java APIs for processing XML data. Finally JSP techno
provides an abstraction mechanism to encapsulate functionality for ease o
within a JSP page.

This paper highlights how JSP pages can

• Consume XML data

• Generate XML-based markup languages for various types of Web-ba
clients

The paper assumes that you are familiar with JSP technology, including J
Beans components and custom tag libraries. For information on these to
consult the resource and technical resource areas on theJSPtechnologyWeb
sites.

Using XML Data Sources in JSP Pages
It is easy to use multiple data sources, including XML sources, in a JSP p
Figure 1 illustrates the standard way to do so. A page connects to a data s
through a server-side object, transforms the information into data abstract
and then renders the data using JSP elements.

Figure 1 Accessing Heterogeneous Data Sources From a JSP Page

JSP Page

Clients Data SourcesWeb Layer

XML

JDBC

Enterprise
Bean

Bean

Custom
Tag

http://java.sun.com/jsp

USING XML DATA SOURCES INJSP PAGES 3

the

d by
nd
these

pile
Consider the following XML representation of a book inventory:

<?xml version="1.0" encoding="ISO-8859-1"?>

<books>

<book isbn="123">

<title>Web Servers for Fun and Profit</title>

<quantity>10</quantity>

<price>$17.95</price>

</book>

<book isbn="456">

<title>Web Programming for Mobile Devices</title>

<quantity>2</quantity>

<price>$38.95</price>

</book>

<book isbn="789">

<title>Duke: A Biography of the Java Evangelist</title>

<quantity>25</quantity>

<price>$15.00</price>

</book>

</books>

Example 1 XML Document Representing a Book Inventory

There are two ways you could use this XML data in a JSP page:

• Convert the XML elements into server-side objects and then extract
object properties.

• Invoke a transformation on the XML data.

Convert XML to Server-Side Objects and Extract
Object Properties
In the first approach, objects are created to represent the information carrie
the XML document. Currently you have to write code, using DOM or SAX a
encapsulated into a custom tag or a JavaBeans component, to create
objects. In the future, XML/Java Binding technology (JSR 31 in theJava Com-
munityProcess) will automate this process because it will enable you to com
an XML schema into Java classes.

http://java.sun.com/aboutJava/communityprocess
http://java.sun.com/aboutJava/communityprocess

4 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

nd
to a

an be

o
erties

and
In the following example, a JSP page retrieves XML data from two URLs a
uses the data to generate an HTML page. Note that the URL can point
source that dynamically generates XML data (SeeGeneratingXML Froma JSP
Page (page 9)) as well as a static XML document, and the same technique c
used to generate XML.

The JSP page uses theparse custom tag to extract and store XML data in tw
objects: a customer and a collection of books. The page then extracts prop
of the customer object and uses a custom tag to iterate through the collection
render a table that lists properties of the book objects.

<%@ taglib uri="..." prefix="tl" %>

<html>

<tl:parse id="customer" type="Customer"

xml="XML_Customer_URL"/>

<tl:parse id="saleBooks" type="BookInventory"

xml="XML_Book_Inventory_URL"/>

<head>

<title>Welcome</title>

</head>

<body>

Welcome

<jsp:getProperty name="customer" property="lastName"/>

<jsp:getProperty name="customer" property="firstName"/>

<table border="0" width="50%">

<tl:iterate id ="book" type=”Book”

collection=”<%= saleBooks.getBooks() %>” >

<tr>

<td>

<jsp:getProperty name="book"

property="title"/>

</td>

<td>

<jsp:getProperty name="book"

property="price"/>

</td>

USING XML DATA SOURCES INJSP PAGES 5

m-
he
e it,
me.
</tr>

</tl:iterate>

</table>

</body>

</html>

Example 2 Converting XML Data to Server-Side Objects

One of the XML documents in this example (the book inventory data) is co
posed of XML fragments (book elements). It is not really necessary to parse t
whole document into memory in order to extract the data—you can pars
using SAX or JDOM, for example, and extract data from one fragment at a ti
The following version of the example uses theiterateOnXMLStream custom tag
to implement this alternative:

<%@ taglib uri="..." prefix="tl" %>

<html>

<tl:parse id="customer" type="Customer"

xml="XML_Customer_URL"/>

<head>

<title>Welcome</title>

<body>

as above ...

<table border="0" width="50%">

<tl:iterateOnXMLStream id="book" type="Book"

xml="XML_Book_Inventory_URL">

<tr>

as above ...

</tr>

</tl:iterateOnXMLStream>

</table>

</body>

</html>

Example 3 Iteratively Converting XML Elements to Server-Side Objects

6 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

the
ans-
ssed

d to
u
y to

this

for
nd
Convert XML Using An XSLT Transformation
Another way to use XML data in a JSP page is to apply a transformation on
XML data source, either to extract the data, or to create a new format. This tr
formation can be done using a number of different mechanisms and acce
through custom tags.

XSLT is a transformational language standardized in W3C that can be use
transform XML data to HTML, PDF, or another XML format. For example, yo
can use XSLT to convert an XML document in a format used by one compan
the format used by another company.

To generate the HTML page discussed in the previous section using
approach you need an XSL stylesheet and a way to apply the stylesheet.

The XSL stylesheet in Example 4 performs the required transformation
books and customer elements. The stylesheet generates HTML markup a
extracts data from the elements.

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="books">

<table border="0" width="50%">

<xsl:for-each select="book">

<tr>

<td>

<i><xsl:value-of select="title"/></i>

</td>

<td>

<xsl:value-of select="price"/>

</td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

USING XML DATA SOURCES INJSP PAGES 7

m a

sing
e 5
<xsl:template match="customer">

<xsl:value-of select="first_name"/>

<xsl:value-of select="last_name"/>

</xsl:template>

</xsl:stylesheet>

Example 4 store.xsl

To apply the stylesheet, you programmatically invoke an XSLT processor fro
JSP scriptlet or custom tag. Thejakarta-taglibs project at the Apache Soft-
ware Foundation hosts a tag library that contains a number of tags for proces
XML input and applying XSLT transformations. The JSP page in Exampl
invokes theapply tag from this library withstore.xsl to transform customer
data and the book inventory.

<%@taglib uri="http://jakarta.apache.org/taglibs/xsl-1.0"

prefix="xsltlib" %>

<html>

<head>

<title>Book Inventory</title>

</head>

<body bgcolor="white">

<center>

Welcome

<xsltlib:apply xml="XML_Customer_URL" xsl="store.xsl"/>!

<p></p>

On Sale Today ...

<p></p>

<xsltlib:apply xml="XML_Book_Inventory_URL" xsl="store.xsl"/>

</center>

</body>

</html>

Example 5 Applying an XSL Stylesheet in a JSP Page

8 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

reas-
ent
for

oice
sume
fol-
The result of executing this JSP page appears below.

Generating Markup Languages Using JSP
Pages

In order for Web-based services to have the broadest use it has become inc
ingly important that they be accessible from the widest variety of clients. Rec
years have witnessed a proliferation of different types of user-oriented clients
Web-based applications: PDAs, WAP-enabled mobile phones, and landline v
clients. With the rise of business-to-business transactions, servers that con
XML can also be clients. The scenario we envision supporting looks like the
lowing:

Figure 2 Web Application With Heterogeneous Clients

JSP
Pages

Clients Data
Sources

Web Layer

Beans

Custom
Tags

PDA

Browser

Phone
(wireless,
landline))

XSLT

Server

GENERATING MARKUP LANGUAGESUSING JSP PAGES 9

on
ow:
elop

erate
ocu-

busi-
sumer
ta.
These clients speak the following languages:

The effort required to support all of these clients will dwarf that expended
HTML applications during the 1990s. Fortunately better tools are available n
JSP technology and XML. Next we describe how to use these tools to dev
multilingual Web applications.

Generating XML From a JSP Page
We have already seen how JSP pages can consume XML data to gen
dynamic content. JSP pages can also generate XML data. Recall the XML d
ment introduced at the beginning of this paper:

<?xml version="1.0" encoding="ISO-8859-1"?>

<books>

<book isbn="123">

<title>Web Servers for Fun and Profit</title>

<quantity>10</quantity>

<price>$17.95</price>

</book>

...

</books>

A JSP page could generate a response containing this document to satisfy a
ness-to-business request for the contents of a book warehouse. The con
examples described earlier could also use this page as a source of XML da

Client Markup Language

PC-based browser HTML, DHTML, XHTML

PDA WML, XHTML

mobile phone WML, XHTML

landline phone VoiceXML

server application-specific XML languages

http://www.voicexml.org
http://www.xml.com/pub/Guide/WML
http://www.xhtml.org
http://www.w3.org/MarkUp
http://www.dhtml-zone.com

10 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

tent

t can

om a

lient-
pe

s are
The main requirement for generating XML is that the JSP page set the con
type of the page appropriately:

<%@ page contentType=”text/xml”%>

... XML document

With this change, the techniques described earlier to generate HTML conten
be used to generate XML.

Generating Multiple Markup Languages
There are several approaches to generating multiple markup languages fr
Web application:

• Single pipeline

• Multiple pipeline

• Combination pipeline

Single Pipeline

In the single pipeline approach, the Web application’s JSP pages generate c
specific markup by applying transformations to incoming XML data. Each ty
of client requires a different stylesheet and the bulk of the development cost
associated with creating and maintaining these stylesheets.

Figure 3 Single Pipeline Generating Multiple Markup Languages

Parse and Transform
via Custom Tag

Clients Data
Sources

Web Layer

JSP Page XML

XSL(HTML)
XSL(WML)
XSL(XML)

WML

HTML

XML

DHTML

XSL(DHTML)

GENERATING MARKUP LANGUAGESUSING JSP PAGES 11

of a

of
iler,
nce
sheet

full-
ent

dvan-
on

lated
ies of

ow
uire
y a
dis-
both
This approach defers generation of both the static and dynamic portions
response to runtime. The runtime costs are associated with:

• Parsing the XML data

• Parsing the stylesheet

• Applying the transformation

If you are using XSLT transformations, you can improve the performance
transformations by creating a binary representation (using an XSLT comp
for example,XSLTC) of a stylesheet. However, this also makes the maintena
process more complex: each time the presentation is changed, the style
must be recompiled.

Sometimes the differences between clients are minor and may not merit a
fledged transformation. For example, there are a number of slightly differ
browser-based desktop clients. In some cases, one may want to take full a
tage of the differences instead of generating content for the minimum comm
denominator. Often the differences between these clients can be encapsu
into a custom tag that generates different content depending on the propert
the client.

Generating the presentation for clients with different interaction models and fl
of control (for example, PC-based browsers versus WAP phones) will req
very different transformations. For example, a mobile phone cannot displa
table containing book inventory data. Instead the data would have to be
played as a set of nested lists. Supporting such transformations increases
the development and runtime costs.

http://www.sun.com/xml/developers/xsltc/

12 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

erate

k of
tent

are
ppli-
line
ctive

tion.

per-
Multiple Pipeline

The multiple pipeline approach uses a set of client-specific JSP pages to gen
output.

Figure 4 Multiple Pipelines Generating Multiple Markup Languages

As compared with using XSLT transformations, this approach keeps the wor
creating the static content in the development phase with the dynamic con
generation occurring at runtime.

Aside from creating the client-specific JSP pages, development costs
incurred in creating and maintaining server-side objects that represent the a
cation’s data abstractions. This step is not required in the single pipe
approach. Nevertheless the multiple pipeline approach can be more cost effe
than the single pipeline for the following reasons:

• Data abstractions can be reused by different kinds of JSP pages.

• Data abstractions typically change at a much lower rate than presenta

• Executing a JSP page to generate markup is much more efficient than
forming an XSLT transformation to generate the same markup.

JSP Page

Clients Data
Sources

Web Layer

Bean

Custom
Tag

JSP Page

JSP Page

XMLWML

HTML

XML

DHTML

CONCLUSION 13

nts
lan-

tions

Web
l cli-

equire-
The following table summarizes the costs of each approach:

Combination

You can combine the single and multiple pipeline approaches. If your clie
speak different languages you probably should use one pipeline for each
guage. To generate dialects of a language, you can apply XSLT transforma
to that language’s pipeline.

Figure 5 Combination Pipeline Generating Multiple Markup Languages

Conclusion
JavaServer Pages technology and XML are natural partners for developing
applications that use heterogeneous data sources and support multilingua
ents. This paper has described several approaches to addressing these r

Pipeline Development Runtime

Single Client-specific stylesheets
Parse XML data
Parse stylesheet
Apply transformation

Multiple
Data abstractions
Client-specific JSP pages

Parse XML data
Instantiate and initialize data abstraction
components
Execute JSP page

JSP Page

Clients Data
Sources

Web Layer

Bean

Custom
Tag

WML

HTML

XML
JSP Page

JSP Page

XML

WML
XSLT

a
L

b

DHTML

14 DEVELOPING XML SOLUTIONS WITH JAVASERVER PAGESTECHNOLOGY

s part
evel-
cture
nts.

the
ments that trade off development and maintenance versus runtime costs. A
of the general-purpose Java software platform, JSP technology provides d
opers with the capability to evaluate these trade-offs and to adopt an archite
for XML processing that best satisfies their particular application requireme

Resources
For further information about the technologies described in this paper, see
following resources:

• http://java.sun.com/products/jsp - JSP technology

• http://java.sun.com/products/servlet - Java Servlet technology

• http://java.sun.com/xml - Java technology and XML

• http://www.sun.com/xml - XML at SUN

• http://jakarta.apache.org/taglibs - Jakarta Taglibs

http://java.sun.com/products/jsp
http://java.sun.com/products/servlet
http://java.sun.com/xml
http://www.sun.com/xml
http://jakarta.apache.org/taglibs

	Using XML Data Sources in JSP Pages
	Convert XML to Server-Side Objects and Extract Object Properties
	Convert XML Using An XSLT Transformation

	Generating Markup Languages Using JSP Pages
	Generating XML From a JSP Page
	Generating Multiple Markup Languages
	Single Pipeline
	Multiple Pipeline
	Combination

	Conclusion
	Resources

