
Complete Idiot's Guide to JavaScript

Complete Idiot's Guide to
JavaScript, Second Edition

Part 1: What's It All About?

Chapter 1: Coffee? In My Computer? I Prefer Decaf...
Chapter 2: Navigator and Explorer: The World Wide Web on a Caffeine High

Part 2: Let's Get Jivin'

Chapter 3: Tag...You're It!
Chapter 4: Off and Running...With Someone Else's Help

Part 3: JavaScript: Espresso for the Masses

Chapter 5: Objects, Names, and Literals
Chapter 6: Operators and Expressions
Chapter 7: Making a Statement
Chapter 8: Conjuction Junction, What's a Function?
Chapter 9: An Eye on Events
Chapter 10: How Much Is That Object in the Window?
Chapter 11: Mapping and Tracking: Locations and Histories
Chapter 12: The Document Shuffle
Chapter 13: Fiddling with Forms and Emulating Events
Chapter 14: Navigating with Navigator
Chapter 15: "Array" (A Ray) of Organization
Chapter 16: Image-ine That!
Chapter 17: Care for a Cookie?

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/TOC.HTM (1 of 2) [01.06.2001 00:30:57]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#credits
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#copy
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#hear
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#contents
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#intro
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/info.htm#Ack

Complete Idiot's Guide to JavaScript

Part 4: Scripting the Whole Bean

 Chapter 18: Script Example 1: Hello World!
Chapter 19: Script Example 2: Random Chatter
Chapter 20: Script Example 3: Which Way Do We Go?
Chapter 21: Script Example 4: Loan Calculator
Chapter 22: Script Example 5: BlackJack
Chapter 23: Script Example 6: Creating an eZine
Chapter 24: Script Example 7: Welcome Back!
Chapter 25: What to Do When It Won't Work: Debugging Your Scripts
Chapter 26: Ideas
Chapter 27: Stepping Up to Straight Java

Appendix A: JavaScript: The Complete Overview
Appendix B: Speak Like a Geek: The Complete Archive

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 1
Coffee? In My Computer? I Prefer Decaf...

In This Chapter

❍ How HTML got a boost from CGI
❍ Java takes CGI one step farther

Extending the Web

In the "old days" of the World Wide Web (three whole years ago), there were two ways to get information (also
called content) to the user. The primary way was through HTML (HyperText Markup Language), the language
used to write Web pages. HTML enables you to present text and certain types of graphics (as well as links to
connect one page to another page) either on the same computer or somewhere else in the world. As HTML has
evolved (the current standard being worked on is version 3.2), other features have been added, such as forms,
frames, tables, and so on. However, even with all the new features, HTML basically deals with Web content by:

❍ Formatting and displaying the content of a page.
❍ Waiting for the user to click something in the page.
❍ Depending on what the user clicks on, fetching something else (a new page, for example) and repeating

the process.

Although this provides a wealth of possibilities for content manipulation (just spend a little time on the Web to
see for yourself), it doesn't allow for more advanced things like accessing a database, ordering catalog items
online, or making animated graphics within a Web page. For these capabilities, you need to understand the
Common Gateway Interface, or CGI.

CGI provides a means of extending the capabilities of HTML by allowing the Web designer to write custom
programs that interact with Web pages to do more complex things. A CGI program is a file that resides on the
Web server and that the server runs in response to something inside the Web page. With CGI, you can:

❍ Create image maps, which are graphics that you can click on. Different areas of the graphic behave like
unique HTML links, taking you to individual pages. (You used to have to know CGI programming to
create one of these.)

An image on the image map

Which part of an image you click determines what happens next.

❍ Dynamically (on demand) create custom HTML pages and graphics. A common use is the “You are the
34251th visitor” line you find on many pages.

❍ Create simple animations by having CGI send a sequence of graphics to the browser. This produces the
Web equivalent of a “flip-book,” where one graphic replaces the previous one.

Pushy Servers The technical term for CGI "flip-book" animation is server push.It's so named because

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap01.htm (1 of 5) [01.06.2001 00:31:16]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#38

Complete Idiot's Guide to JavaScript

the CGI program instructs the server to send (or "push") one graphic after another to the browser.
Conversely, you could also use CGI to instruct the browser to "pull" one graphic after another from the
server. This technique is (not surprisingly) called client pull.

❍ Interface with a database on the server to retrieve or add information. Online catalog ordering uses
 CGI, as well as the earch engines (such as Yahoo, Lycos, and WebCrawler) that keep track
 of everything there is to find on the Web

One disadvantage of CGI is that you must be a programmer to use it. Secondly, C GI requires
that the user's actions be reported back to the server for interpretation and processing. The results of this
processing then must be sent back to the user from the server. These extra transfers take time and reduce
the "immediacy" of certain Web page interactions. Furthermore, you are limited to the CGI capabilities
of your server; your provider might offer a Web server w ith incomplete CGI tools or with none at all. In
addition, multimedia (sound, graphics, animation) has become all the rage, and everything in c omputers
today has to support multimedia. CGI doesn’t do this well.

Most CGI Programs Are Written in Perl

Because the Internet originated within the UNIX world (before Windows computers or Macintoshes
were hooked up to it), much of what drives the Internet (and the Web) is based in UNIX. CGI stems
from this same root, and the Perl language is a UNIX-based language. However, a CGI program
can be written in any language that the Web server supports.

Finally, to use CGI, you must have access to the CGI interface of the Web server that’s serving up your pages. As
I’ve mentioned, some providers might not support CGI access, or it might be offered for an extra (in many cases,
costly) fee.

In other words, CGI is more complex than most Web authors are interested in, and doesn’t support all of the
visually fancy things authors want to include in their pages. But something else is necessary, and that something
is Java.

Java: Web Programming for the Common Man

You can’t surf the Web today without hearing about Java. Java, a programming language developed by Sun
Microsystems, was designed to allow more power and flexibility for the presentation of material on the Web.
With Java, you can...

❍ Create animations that sing and dance.
❍ Include prompts and dialog boxes that pop up while a user is filling out a form.
❍ Develop games and programs that actually run—right on the Web page.
❍ Calculate a loan in real-time based on user input.
❍ Display an accurate on-screen invoice reflecting a user's current purchases.
❍ Access databases and other information sources.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap01.htm (2 of 5) [01.06.2001 00:31:16]

Complete Idiot's Guide to JavaScript

❍ Let your imagination wander.

Java works the floor in 3D rotating glory.

Before Java, if you wanted to view a graphic, play a movie, or listen to a sound file on the Web, you had to have
a helper application (an independent program unrelated to the browser) installed on your computer and
connected to your browser. Whenever a particular file (movie, sound, or whatever) was retrieved from the Web,
the helper would be run to display or play back the file. If you didn’t have the necessary helper, you had to find
it, download it, and install it.

Java handles these things internally. No more helper applications, and no more CGI programming. All you need
is a Java-enabled browser to view Java programs, and the Java Developers Kit to design them (it’s available for
free from Sun’s Java Home Site, http://java.sun.com/). And, as an added bonus, the Java programs you create
(called applets or mini-applications) will run on any Java-enabled browser on any platform: Macintosh,
Windows, or UNIX. You don’t need to create a program for each machine type. One size fits all.

However, Java is not without its problems. It also is a programming language, and as with all programming
languages, you must learn it relatively well in order to use it. The applets you create must be compiled (by a
compiler) before you can use them. A compiler is a special program that reads your own program and crunches it
into machine-readable binary code. In spite of the existence of several nice development packages for building
Java applets, compilers can be a hassle because you have to use them every time you make a change to your
program, and it can take a long time to compile a program.

Scrolling ticker tape Scrolling ticker tapes—trust me; they scroll.

So what you need is a way of getting the capability of Java without the added baggage of a full-blown
programming language. Well, this time, Netscape comes to the rescue (with a little help from Sun) with
JavaScript.

Enter JavaScript

JavaScript is a scripting language specifically designed to work with the World Wide Web. With JavaScript, you
can take the power of HTML and the World Wide Web and extend it in a variety of ways.

Once upon a time (not too long ago), Sun Microsystems conjured up the complex and powerful programming
language now known as Java. Although Java is highly capable, it's best suited for more complex tasks and
experienced programmers. Netscape Communications saw the need for an in-between language—one that would
allow individuals to design Web pages that could interact with the user or with Java applets, but that would
require a minimum of programming experience. Always one to be first on the block, Netscape whipped up
LiveScript.

LiveScript was more of a proposal than an actual language, but it convinced people that this "bridge-the-gap"
idea was attractive. LiveScript was designed in the spirit of many simple scripting languages, but tailored with
capabilities specifically designed for Web pages (HTML and form interaction, for example). To help the
marketability of their new language, Netscape paired up with Sun, and JavaScript was born.

In theory, JavaScript is available for free to those who design Web browsers; this enables the designers to
incorporate JavaScript compatibility into their browsers. In reality, Microsoft was the first to implement a version

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap01.htm (3 of 5) [01.06.2001 00:31:16]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/01fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#5
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/01fig03.jpg

Complete Idiot's Guide to JavaScript

of JavaScript (which they named JScript), but they did not refer to the official JavaScript specifications. Thus,
Microsoft Internet Explorer 3.0 is “mostly” JavaScript-compatible, but it’s not 100% (I explain this issue in more
detail in Chapter 2).

Recently, Netscape handed JavaScript over to an independent standards organization with the hope that all
potential developers of Web browsers will have equal access to the official JavaScript implementation. As a
result, hopefully, Internet Explorer 4.0 (due out sometime in the spring of 1997) will support JavaScript better
than version 3.0 does.

What’s a “Scripting Language”?

It’s impossible for a computer program to be all things to all people. Software publishers try their
best to make sure their programs can handle most of what users want, but they can never anticipate
everything. To make their programs more flexible, many provide the capability to extend or change how t
heir program behaves through a script.

A script is nothing more than a sequence of program instructions (called statements). The program
steps through the statements one at a time and performs whatever the script tells it. This is exactly the
same as "programming," except that scripts tend to have simpler rules and require less learning time.
Some examples of programs that provide scripting are dBASE, Paradox, and Microsoft Access (though
there are many more). Some examples of stand-alone scripting languages are Perl and REXX.

Scripting languages make extending these packages easy. (And you don’t have to be a programmer,
purchase an expensive compiler, learn some strange pseudo-English language, or start wearing plaid
shirts and pocket protectors.)

Based on Java, JavaScript supports most of Java’s expression constructs (another word for statements). However,
JavaScript doesn’t require a compiler or a knowledge of programming to get up and running. All you really need
is an understanding of HTML and a little logic.

Thinking of Objects

Like Java, JavaScript is built on the concept of objects. Unlike Java, however, JavaScript provides a basic
collection of objects for you to work with. While you can easily create new objects and object types, the ones
provided give you a great deal of power.

As the word implies, an object is a thing—any thing. I don’t mean to sound vague, but the term object is used to
generically group a collection of different “blocks of stuff” together. In the world of computers, objects are
different pieces (or building blocks) that make up a computer system or program. Objects shield a programmer
(or a JavaScript writer) from having to understand how the operating system works.

You can think of objects as little black boxes. You poke things into it (which is called “setting an object's
properties”), and the black box does something in response. Actually how it works isn’t important, just that it

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap01.htm (4 of 5) [01.06.2001 00:31:16]

Complete Idiot's Guide to JavaScript

does work. This is the basis for the concept of object-oriented programming, in which the programmer is more
concerned with what an object is doing than how it gets the job done.

For example, if you had a “screen object,” we could change the color of the computer screen by telling the screen
object to set it’s color property to, say, green. Whether the computer is a Macintosh or an IBM PC, the object
would do the same thing.

In Chapter 5, you begin an up-close and personal look at objects in their natural habitat.

The Least You Need to Know

In this chapter, you took a quick look at the origin of JavaScript.

❍ The World Wide Web got its start through HTML, and HTML was extended and enhanced through CGI
programming.

❍ Java came into being to satisfy the need to do more through the Web than either HTML or CGI could
provide.

❍ JavaScript took Java one step further by making the power of Java available to Web authors who don’t
want to learn how to program.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#6
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#7

Complete Idiot's Guide to JavaScript

Chapter 2
Navigator and Explorer: The World Wide Web on a Caffeine
High

In This Chapter

● Browser wars: The JavaScript confusion
● Setups and configurations
● When browsers disagree

The JavaScript Confusion

Readers of the first edition of this book may recall simpler times—when JavaScript and Netscape Navigator 2.0
were the only team in town. For better and worse, the world of JavaScript has changed since those halcyon days
of year past. Two major notes mark the evolution of JavaScript in the past year:

● Microsoft Internet Explorer 3.0 was released, with approximate support for JavaScript 1.0 (further
explanation shortly).

● Netscape released JavaScript 1.1, which at the time of this writing, is supported only by Netscape
Navigator 3.0.

The two points above have led to a fair amount of confusion among JavaScript authors and users. Talking about
2.0, 3.0. 1.1—it’s enough to drive someone into a dark corner with only a spoon and a brownie pie. Let’s try to
clarify the situation.

A Not-So-Zen Look at Browsers

Two versions of JavaScript are now on the market: 1.0 and 1.1. The previous edition of this book (The Complete
Idiot’s Guide to JavaScript) covered JavaScript 1.0. This edition covers JavaScript 1.1, which is largely similar to
its predecessor but sports a few additional features.

At the time of this writing, only Netscape Navigator 3.0 supported JavaScript 1.1. For this reason, throughout this
coverage, I’ll denote any features of JavaScript that are new to version 1.1.

Both Netscape Navigator 2.0 and Microsoft Internet Explorer 3.0 support JavaScript 1.0. Therefore, any
JavaScript programs that don’t include the new 1.1 features should work with both of these browsers.

Jscript versus JavaScript

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap02.htm (1 of 4) [01.06.2001 00:31:43]

Complete Idiot's Guide to JavaScript

To add further confusion to the brew, although it is said that Microsoft Internet Explorer 3.0 supports
JavaScript 1.0, that is not wholly, technically true.

Microsoft did not design their JavaScript support based on the official reference documentation. Depending
upon whom one believes, this was either because Netscape prevented Microsoft from accessing this
reference material or because Microsoft did not want to “get into bed” with Netscape. In any case, M
icrosoft decided to “reverse engineer” JavaScript—to observe how JavaScript behaves and then create
a programming language that behaves the same way. After doing so, Microsoft named their language “
JScript” because it is a copy of JavaScript but not the “real thing.” However, in their promotional press,
Microsoft has vacillated, sometimes claiming that Internet Explorer supports “JScript” and other times
saying that it supports “JavaScript.”

Ultimately, JScript, or whatever one calls it, is mostly compatible with JavaScript 1.0. This means that
most programs written in JavaScript 1.0 will work properly with both Netscape Navigator 2.0 and M
icrosoft Internet Explorer 3.0. However, in certain instances, JScript behaves different from JavaScript.
I’ll cover a few of those instances later in this book.

A Brief Editorial

One hopes that in the near future the disparities between versions of JavaScript and browser support will fade
away. Without some assurance of consistency between browsers’ support for JavaScript, the language may face a
dim future. Lack of standardization is the most fatal of flaws in technology. JavaScript’s future health and well-
being depends upon its reliability across platforms and across browsers.

By the time you read this book, the situation described may have changed—hopefully for the better. In a best-
case scenario, Microsoft will include full official support for JavaScript 1.1 in their next release of Internet
Explorer. If so, readers of this book, all JavaScript authors, and all users of the Web will be better off. A recent
announcement that Netscape has handed JavaScript over to an independent standards body may prove to be the
solution, allowing future browser revisions to support JavaScript equally.

Up and Running

Whether you currently use Netscape Navigator or Microsoft Internet Explorer, it’s probably best to have both. If
you need one or the other, you can get them from the Internet:

Netscape Navigator 2.02, 3.0, and 4.0 (also known as “Communicator” when available) can be found at
http://www.netscape.com

● Microsoft Internet Explorer 3.0 and 4.0 (when available) can be found at
http://www.microsoft.com/ie/default.asp

If you choose to write JavaScript programs for Netscape 3.0 (JavaScript 1.1), remember that they will not work

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap02.htm (2 of 4) [01.06.2001 00:31:43]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#8
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#9

Complete Idiot's Guide to JavaScript

in Internet Explorer 3.0. Ideally, installing a copy of each browser (Netscape 2.0, 3.0, and Internet Explorer 3.0)
provides the best environment for testing JavaScript programs. However, if you need to choose one, use Netscape
Navigator 3.0 or 4.0, which support JavaScript 1.1. They lean more towards the future.

When it comes to configuring your browser to support JavaScript, there’s little to do. By default, each browser
above installs with JavaScript support enabled. To enable or disable JavaScript (obviously, one wants to enable
JavaScript to make use of this book), follow these instructions:

● Netscape Navigator 3.0: Select Options, Network Preferences, Languages, Enable JavaScript.
● Netscape Navigator 2.0: The original release of 2.0 does not include an option for enabling or disabling

JavaScript; it’s always enabled. Install Navigator 2.02, which includes such a feature in Options, Security
Preferences.

● Microsoft Internet Explorer 3.0: Select View, Options, Security, Run ActiveX Scripts. Despite its
misleading label, enabling this option will enable JavaScript, and vice versa.

Browser Bias: Which JavaScript to Support?

Unfortunately, due to the currently inconsistent state of JavaScript support, you may need to decide which Web
browser you “most” want to support.

To get the most out of this book, you’d write JavaScript programs that conform to version 1.1 (the subject of this
book). In doing so, you support only Netscape Navigator 3.0 users.

If you write JavaScript programs that do not use version 1.1’s special features, Netscape Navigator 2.0 users will
be able to view your program. Additionally, users of Microsoft Internet Explorer 3.0 may also be able to view
these JavaScript programs. Then again, they may not; as I explained earlier, there are a few compatibility
differences between Internet Explorer’s and Netscape Navigator’s JavaScript support!

Confusing as this is, here’s what it boils down to:

● Write JavaScript 1.1 programs to exploit the full feature set of JavaScript and reach the most future users.
Test these programs in Netscape Navigator 3.0.

● If you need to write JavaScript 1.0 programs, make sure they work best in Netscape Navigator 2.0.
Certainly, you should still test them in Internet Explorer 3.0, but it is impossible to guarantee that every
JavaScript program will functional equally in both browsers.

Our Bias

Yes, I’m biased. This is not a form of corporate loyalty or blind nationalism. Rather, simplicity. I’m writing this
book with Netscape Navigator 3.0 in mind. Therefore, I’ll be covering JavaScript 1.1. Although I cannot
comprehensively discuss every difference between JavaScript versions and browser support, I’ll make these two
efforts:

● When a feature is being discussed that is new to JavaScript 1.1 or has changed since 1.0, that will be
noted.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap02.htm (3 of 4) [01.06.2001 00:31:43]

Complete Idiot's Guide to JavaScript

● From time to time, I’ll also point out differences in JavaScript support under Microsoft Internet Explorer
3.0. This is not meant to be a comprehensive survey of differences; no such list exists. However, certain
variations have become well-known in the programming community.

The Least You Need to Know

● There are two versions of JavaScript. The original, covered in the previous edition of this book, was 1.0.
A new version, 1.1, has been released; it sports some new features.

● As of the time of this writing, only Netscape Navigator 3.0 supports JavaScript 1.1.
● Both Netscape Navigator 2.0 and Microsoft Internet Explorer 3.0 support the older version of JavaScript

(1.0).
● Microsoft Internet Explorer’s support of JavaScript 1.0 is not perfect, but it is adequate in most cases.
● This book’s bias is toward JavaScript 1.1 and Netscape Navigator 3.0.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#28
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 3:
Tag...You’re It!

In This Chapter

❍ How JavaScript hooks into HTML
❍ In-page scripting
❍ Handling old browsers
❍ JavaScript privacy

Giving HTML a Caffeine Boost

If you're interested in learning JavaScript programming (and I assume you are; this is the wrong book to be reading just
for fun), you must be at least somewhat familiar with HTML by now. To quickly summarize, HTML is a markup
language used to "describe" how a Web page should look. HTML is expressed through tags, which are written in the
form:

❍ <TAG>

Most tags surround the text on which they operate and, therefore, have to be paired in the manner:

❍ <TAG> text to affect </TAG>

Web browsers such as Netscape and Internet Explorer interpret these markup tags and render the page to the screen
according to the instructions built into the tags.

If this is material is new or surprising, I strongly recommend that you read a primer on HTML, such as Que's The
Complete Idiot's Guide to Creating an HTML Web Page, by Paul McFedries.

Tag Attributes

Because this chapter refers to attributes of an HTML tag several times, you need to know what they are.
As stated, a typical HTML tag looks like this: <TAG>. However, many tags accept further specifications
that determine their final effect, such as:

❍ <TAG attribute1=x attribute2=y>

That's all there is to it. When you use a tag that requires attributes or that can include attributes, it will be
pointed out within the chapter.

The <SCRIPT> Tag

The tag to know for JavaScript programming is the <SCRIPT> tag. In short, it looks like this:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap03.htm (1 of 5) [01.06.2001 00:32:58]

Complete Idiot's Guide to JavaScript

❍ <SCRIPT attributes> JavaScript program code </SCRIPT>

The opening <SCRIPT> tag can include either of two attributes: the LANGUAGE attribute or the SRC attribute.

This is the standard opening <SCRIPT> tag, with the LANGUAGE attribute:

❍ <SCRIPT LANGUAGE="JavaScript">

This tag simply defines the start of JavaScript program code and identifies the language the code is written in (which,
obviously, is JavaScript). JavaScript’s official documentation claims that the language attribute is mandatory; you
cannot simply begin a section of code with <SCRIPT> alone because it helps the browser identify not only script code,
but also the language the code is written in. (Currently, one other scripting language—VBScript from Microsoft—also
uses the <SCRIPT> tag.) It should be noted, though, that in practice, omitting the LANGUAGE attribute from the
<SCRIPT> tag doesn’t cause any problems in most cases—especially when pages are viewed with a browser that
supports only one scripting language (such as Navigator). For the future, however, it would be a good idea to stick to the
rule and mark the end of a JavaScript code section with </SCRIPT>.

As an alternative to writing the JavaScript code within the Web page source itself, you can refer to JavaScript code that
is saved in its own text file elsewhere on the server. This will behave just as if the code were typed directly into the Web
page source (as it is in all of these examples). The following is the general format for such a code, which uses the SRC
attribute:

❍ <SCRIPT SRC="URL to your script file"> ... </SCRIPT>

The URL (Earl) of Web?

URL stands for Uniform Resource Locator. It’s a fancy way of identifying anything on the Internet anywhere in the world (a
file, a document, a graphic, or a Web site, for example) with a unique address. Think of it as a global CyberZipCode: No two
Web pages, FTP files, UseNet newsgroups, Gopher menus, or whatever can have the same URL.

This would be an efficient way of reusing the same JavaScript code in several Web pages, without having to explicitly
enter it into each one. You'd merely insert the call to the file. The text file of the JavaScript program must have a file
name ending in .JS, as in the following example:

<SCRIPT SRC="http://www.epicmedia.com/funscript.js"> ... </SCRIPT>

Beware of Outside Sources!

Currently, the SRC= attribute of the <SCRIPT> tag is only supported by Netscape Navigator 3.0
and greater. If you want your JavaScript pages to work with other browsers, such as Internet
Explorer 3.0 and earlier versions of Netscape, you might want to avoid using the SRC= attribute
and incorporating our JavaScript code within your pages. The possible exception to this might be
Internet Explorer 4.0 (which might be released by the time you read this book). It might support
the SRC attribute; however, at press time, this is not known for certain.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap03.htm (2 of 5) [01.06.2001 00:32:58]

Complete Idiot's Guide to JavaScript

You place JavaScript code between <SCRIPT> tags wherever you want the code executed within a page. A tiny
example of the HTML code of a Web page, with embedded JavaScript code, might look like this:

<HTML>
<HEAD>
<TITLE>My Nifty Web Page</TITLE>
</HEAD>
<BODY>
<H1>
Welcome to my Exciting Home Page,

Where I talk about ME
</H1>
<HR>
<SCRIPT LANGUAGE="JavaScript">
JavaScript program code goes here
</SCRIPT>
</BODY>
</HTML>
Note that you needn't put all of the JavaScript code within one set of <SCRIPT> tags. You can use numerous <SCRIPT>
</SCRIPT> pairs, inserting them wherever in the page you want to include JavaScript code. Having said that, there are
three caveats to note:

❍ Place all JavaScript function definitions between the <HEAD> and </HEAD> tags at the top of the HTML page,
as in this example:

<HTML>
<HEAD>
<TITLE>My Funky JavaScript Page</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function func1(x, y, z) {
statements
}
function func2(a, b, c) {
statements
}
...
</SCRIPT>
</HEAD>
...

❍ Functions must be defined before they can be called. (You might not understand what that means just yet, but
after you read Chapter 8, the skies will be clear.) To summarize, a function is a section of code that performs a
specific task. It is like a self-contained miniprogram. For many reasons, in other areas of JavaScript code, you
will find the need to call these functions—that is, refer to them by name and have them executed. You'll learn
about functions in gruesome detail in Chapter 8. In the meantime, simply remember that following this rule will
ensure that all functions have been defined before they are called in any JavaScript code further down the page.

❍

Can You Keep a Secret?

With all the concern about security in CyberSpace these days, you're probably wondering about the
"secrecy" of JavaScript. After all, if your prized script is written in the middle of an HTML file, all someone
has to do is select the View Source option from the browser’s menu, and your hard work is displayed plain
as day...right?

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap03.htm (3 of 5) [01.06.2001 00:32:58]

Complete Idiot's Guide to JavaScript

Unfortunately, that is right. If you want to keep your script from being seen, place it in an external file
and include it using the SRC= attribute of the <SCRIPT> tag. But, remember two important things when
you do this:

■ Make sure that the file ends in .JS.
■ Understand that only users of Netscape Navigator 3.0 will be able to use your pages

correctly (as neither Navigator 2.0 nor Internet Explorer 3.0 support the SRC= attribute).

■ Any and all JavaScript code, including function definitions, applies only to the page it resides on. If you
wanted to use the same JavaScript code in more than one page (and didn't want to type it over and over
again), you could either save the JavaScript code as an external file and use the SRC= attribute of the
<SCRIPT> tag to load it, or store the JavaScript code in one document of a framed collection of
documents and reference the JavaScript functions from the other framed documents.

■ Enclose all JavaScript code within HTML comment tags. An HTML comment tag looks like:
■ <!-- comments -->

■ Anything within HTML comment tags is ignored by most browsers—except browsers that support
JavaScript, which will recognize the presence of the JavaScript code and not ignore it. The rationale
behind this is that those browsers that know nothing of JavaScript might display the code in the Web page
itself, which would not be desirable at all. This also can be used to allow all browsers—whether or not
they’re JavaScript-capable—to view the contents of your page (if the contents itself can be viewed
without the JavaScript support). Therefore, in the end, the recommended manner of including JavaScript
code into a page is as follows:

<SCRIPT LANGUAGE="JavaScript">
<!--
JavaScript program code goes here
// -->
</SCRIPT>

❍ Also, notice that the tail end of the comment statement includes two slash characters. The slashes tell JavaScript
to ignore the rest of the line, so that JavaScript doesn't try to process the closing comment tag as a JavaScript
statement. This is covered in more detail in the upcoming section "What About Browsers That Don't Read
JavaScript?"

It doesn’t matter where your JavaScript statements go in your page; they are always evaluated (a fancy term for "made
ready to run") after the page has finished loading into the browser (but before the browser actually displays the page to
the user).

Rules of the Web

You need to keep some fundamental rules in mind when you're building your JavaScript pages:

❍ JavaScript scripts (enclosed within a <SCRIPT> tag) are not evaluated until after the page loads (but before the
page is actually displayed).

❍ Scripts stored as separate files (read in with the SRC= attribute of the <SCRIPT> tag) are evaluated before any in-
page script commands.

The Least You Need to Know

This chapter has introduced you to the new <SCRIPT> tag that extends HTML to allow you to plug JavaScript
commands into your Web pages. You also learned the following rules about scripts:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap03.htm (4 of 5) [01.06.2001 00:32:58]

Complete Idiot's Guide to JavaScript

❍ Scripts are evaluated after a page has finished loading but before the page is displayed.
❍ Any functions defined in scripts are not automatically executed when the page loads. They are stored until called

by something else in the page.
❍ Scripts loaded through the SRC= attribute (in other words, scripts that are kept in separate files) are evaluated

before inline (or “in-page”) scripts.
❍ Netscape Navigator 3.0 and greater support the SRC= attribute (i.e., can load scripts from other files outside the

page). Although Internet Explorer 3.0 does not support the SRC attribute, it’s possible that Internet Explorer 4.0
might.

❍ It’s a good idea to place scripts inside comment tags to keep browsers that can’t handle JavaScript from
displaying them on the page.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 4:
Off and Running—with Someone Else's Help

In This Chapter

❍ Learning by observing and adapting from others

 Starting the learning curve with anything can be a major task, and computer-related things always seem to be the
worst. After gathering up your courage to actually begin, you have a pile of books, the computer screen blinking
“unknown command” at you, and a growing frustration with the inhabitants of Silicon Valley. Computer
languages can be very frustrating.

To try to take the edge off the process and "ease" your way into the world of JavaScript, take a page from some
of the computer gurus that wander the Web:

❍ Observe what other people are doing with what you want to learn
❍ Analyze how they did it
❍ Adapt it to your own needs

Where Can I Find the Experts?

In other words, borrow from those who've already gotten the bugs out. No, this is not plagiarism; I'm not
suggesting that you simply take someone else's hard work and put your name on it. (That would be
ethically—and perhaps even legally—challengeable.) Instead, look at the script code that they wrote and use
what they did to help you better understand how JavaScript interacts with the Web. If you want to try to play with
the script (make your own changes), all you have to do is save the HTML document as a file on your computer.

With the explosion of JavaScript on the Web today, several sites have sprung up (literally overnight) that make
excellent starting points for you to explore further. In this chapter, you'll take a quick tour through several of the
newest, neatest, and best places to learn more about JavaScript.

Remember that Netscape Navigator 3.0 is our browser of choice. Depending on which version of JavaScript
some of the sites below are programmed with, they may or may not function correctly using alternative browsers.

Netscape: Home of JavaScript

Point your browser at:

❍ http://home.netscape.com/comprod/products/navigator/version_3.0/index.htm

You'll be whisked into the world of Netscape and Netscape Navigator 3.0, the company that developed
JavaScript. Netscape Navigator has been the most popular browser on the Web to date, and although Microsoft
Internet Explorer is catching up, as far as JavaScript goes, Netscape still holds the torch.

Netscape's pages change regularly, so you'll want to stop in from time to time to catch the latest information and

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap04.htm (1 of 6) [01.06.2001 00:33:26]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#10

Complete Idiot's Guide to JavaScript

updates to Navigator and the other products Netscape sells.

Finding your way from the Netscape Navigator 3.0 page to JavaScript information is as easy as one click. From
the opening page, scroll down until you see the subsection titled Building Blocks. Then click the JavaScript
link, and you’re all set. From there, you will land smack-dab on the JavaScript page, wherein lie several
examples of code (Java Resources and Examples) and a link leading to the "official" JavaScript documentation
(JavaScript Authoring Guide).

Click here....for JavaScript information. The paved route to JavaScript goodies.

Eyeing Some Code

Earlier I suggested that you take a long, hard look at other authors' JavaScript programs. Doing so requires that
you first store a copy of the program itself, so let's see how you do that. It's relatively painless.

Several example JavaScript programs are on the Netscape JavaScript page. One of them is an "Interest
Calculator," which calculates interest on a loan based on data the user inputs into the table. Click the link to the
Interest Calculator to see it in action.

That’s gonna cost ya. Calculating loan payments—oh, the fun!

Because JavaScript code is embedded within the HTML, merely save the HTML code for this page, and you will
find the JavaScript program within it. You can easily see the HTML code by choosing the Navigator menu
command View, Document Source. Alternatively, if the document in question resides within a frame (as is the
case with the Interest Calculator mentioned above), click within the frame to bring it focus, and then select the
View, Frame Source menu command. The following figure shows JavaScript source code.

Viewing the HTML source for inspection and perusal.

Depending on what source viewer you've configured, you may or may not be able to save the file right from
there. If you can't, you can simply select the Navigator command File, Save As. This displays a Save File dialog
box, in which you can choose where to save the file. Be sure HTML Files is selected in the Save As Type list
box, as shown in the following figure.

Select “HTML File” as your file type.

When you save the HTML source code, be sure to save it as an HTML file.

The resulting file, with the name "somefile.htm" or "somefile.htm" (depending on your system), can be viewed
with any text editor. It is simply a plain text file, and within it you will find all the HTML tags that define the
page, including any JavaScript programs.

Caveat Capture

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap04.htm (2 of 6) [01.06.2001 00:33:26]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig03.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig04.jpg

Complete Idiot's Guide to JavaScript

There is one exception to everything we've said about capturing the JavaScript code from a page. It all
assumes that the code was embedded directly into the HTML. Some authors may keep the code in a s
eparate file, using the SRC= attribute of the <SCRIPT> tag. In these cases, you can't retrieve the JavaScript
program code.

Gamelan

Before Gamelan, there wasn't a central clearinghouse for Java and JavaScript material. Now, if you set your
browser to http://www.gamelan.com/, you'll find an excellent collection of JavaScript pages, Java applets, and
other Java-related nifties. The folks at EarthWeb (who maintain Gamelan) update the site daily, so there is
always something new to check out. Gamelan breaks Java applets down into categories, and the areas covered are
rather diverse: animation, communications, finance, games, special effects, networking, and so on. There's also
an impressive list of links to other Java and JavaScript sites around the Net. At last glance, there were more than
180 sites in Gamelan's listing alone!

While you're poking around Gamelan, you might want to check out the Java Message Exchange (you'll find it
listed in the sites category). The Message Exchange is a message board for the purpose of exchanging
information on Java, JavaScript, and new Java/Script sites.

Gamelan: Learn to pronounce it right (“gamma-lahn”), and you’re on your way to geekdom!

JavaScript Index

While Gamelan is Java-generic (it covers both Java and JavaScript), the JavaScript Index is devoted to JavaScript
and its uses. Check out http://www.c2.org/~andreww/javascript/, and you'll find a comprehensive categorical
breakdown of JavaScript pages and implementations. Some are pure JavaScript; others merge JavaScript with
Java and other HTML techniques.

One nice section of the JavaScript Index is its Widgets section. A widget is simply a little bit of code which does
something. From the standpoint of JavaScript, a widget is usually a little script that does something nifty: maybe
a scroll bar, a background changer, or a pop-up help display. Widgets are great little scripts that you can borrow
and combine with your own JavaScript code to create truly unique Web pages.

To borrow a widget, simply follow the same procedures outlined earlier with the Netscape example. Go to the
page with the JavaScript program, and then save the HTML source (either by viewing the source and saving it
from there, or by using your browser’s File, Save As menu command.

The JavaScript Index is just for us JavaScripters.

Conversations on JavaScript

Gamelan and the JavaScript Index are great for collecting JavaScript widgets and tutorial information. However,
you’re also likely to encounter a real stumper: the sort of problem that you simply can’t solve. Perhaps your
program doesn’t work properly—or at all—and you cannot figure out why. Tutorials haven’t helped, ice cream
hasn’t helped, and long bouts of sleep prove ineffective. In these cases, it’s often best to chat with others on the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap04.htm (3 of 6) [01.06.2001 00:33:26]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#11
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig05.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#12
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/04fig06.jpg

Complete Idiot's Guide to JavaScript

subject. Often, someone else can offer advice for your specific problem.

Chat about JavaScript is available on the Internet via the same routes on which people chat about everything
else.

UseNet

Your typical newsfeed, provided by your Internet service provider, should carry the newsgroup
comp.lang.javascript. This is one great place to ask questions or answer questions!

Using Netscape Navigator, you can also connect to Netscape’s private newsserver, secnews.netscape.com, and
participate in the newsgroup netscape.devs-javascript. If you’re not sure how to make this connection with
Navigator, try the URL snews://secnews.netscape.com/netscape.devs-javascript.

Lastly, Live Software, the creators of JavaScript (back when it was known as LiveScript, for the ancient history
buffs out there), also offers two JavaScript-oriented chat groups on its newsserver. Point any news reader to
news.livesoftware.com and check out the newsgroups livesoftware.javascript.examples (which contains
examples of JavaScript code) and livesoftware.javascript.developer.

Mailing Lists

Another common, and often more content-driven, form of conversation occurs via mailing lists. When you join a
mailing list, you receive messages that other users send to the list. You can merely read their messages, or you
can respond by sending new messages back to the readers of the list. To participate in a mailing list, you must
first “join” it.

To join the mailing list called JavaScript Talk, for example, send an e-mail message to the address
majordomo@listserv.bridge.net. In the body of the message, type the line subscribe javascript-talk. Shortly
thereafter, you’ll receive a welcome message from the list, containing instructions for participation, and so forth.

Some additional mailing lists which discuss JavaScript include:

❍ Obscure/Inquiry JavaScript List To join, send e-mail to javascript-request@inquiry.com with
message body subscribe.

❍ JavaScript Mailing List To join, send e-mail to javascript-request@NETural.com with message body
subscribe.

Sample Platter of What You're Likely to Find

Now that you know where to look for lists of JavaScript-powered pages, here's a sampling of the many diverse
things those pages can do.

JavaScript 1040EZ

Just in time for April 15, here's a site that uses JavaScript to fill out the 1040EZ form (known by some wags as
"1040 STU-PID").

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap04.htm (4 of 6) [01.06.2001 00:33:26]

mailto:majordomo@listserv.bridge.net
mailto:javascript-request@inquiry.com
mailto:javascript-request@NETural.com

Complete Idiot's Guide to JavaScript

❍ http://www.homepages.com/fun/1040EZ.htm

You have a company known as Home Pages to thank for this little marvel.

Unit Conversion Calculator

These few nifties can convert from various units of measurement to others, all with the magic of JavaScript,
authored by Jonathan Weesner.

❍ http://www.cyberstation.net/%7Ejweesner/conv.htm

Mastermind

If you have any idea how to play the game Mastermind, JavaScripted by Ian Cameron, this page might appeal to
you.

❍ http://dingo.uq.edu.au/~zzdcamer/master.htm

ColorCenter

This nifty JavaScript incarnation enables you to test various Web page color combinations; it’s a quick way to
decide what colors will work in your own design. By Bill Dortch of hIdaho Design.

❍ http://www.hidaho.com/colorcenter/cc.htm

Scrolling Text and Banners

Some textual animation for those with a sweet tooth for eye candy; this script is the spawn of Craig Slagel (this
site does not seem to work properly with Internet Explorer 3.0).

❍ http://www.boots.com/~craigel/java2.htm

These Are Nifty and New...

All of the above examples, while perfectly smart and snazzy, were also included in the first edition of this book.
Below are some additional examples of JavaScript programs which take advantage of new features available in
JavaScript 1.1/Netscape Navigator 3.0.

Follow the Bouncing Block

Using the image replacement capability of JavaScript 1.1, we see some nifty visual effects. From the mind of
Jason Bloomberg.

❍ http://www.lhouse.com/~jbloomberg/colors

Simple Animation

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap04.htm (5 of 6) [01.06.2001 00:33:26]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#13
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#14
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#15
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#16
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#17
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#18

Complete Idiot's Guide to JavaScript

This is a basic but educational example of creating an animation with JavaScript 1.1, by Tim Wallace.

❍ http://www.essex1.com/people/timothy/30-anim.htm

Animated Menu

A useful example of using JavaScript 1.1 to highlight menu options as the mouse passes over, also by Tim
Wallace.

❍ http://www.essex1.com/people/timothy/30-menu.htm

The Least You Need to Know

You've taken a whirlwind tour around the globe and through the Internet and have found that JavaScript is
expanding at an explosive rate. You've seen that there are hundreds of sites (more and more springing up each
day) with scripts and applets you can download and use or adapt to your own needs. You also learned that using
someone else's scripting idea as a basis for your own is as simple as saving the script document and editing it.

Now that you have a few scripts from other JavaScripters, you're probably wondering what the devil those new
lines in the script actually mean. That's what the next chapters cover: the inner workings of JavaScript.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#19
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#20
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 5:
Objects, Names, and Literals

In This Chapter

● Variables—such as the weather
● Value Village: the variable's better half
● Literal(ly)
● Objects: variables with an attitude

 As you learned in Chapter 3, JavaScript programs reside within the HTML code of a page and enable
you to perform a variety of tasks that interact with the user or the user's input. JavaScript is relatively
easy to program—even for those who are unfamiliar with computer programming—and it is not
generally intended for creating extremely large or complex programs. Readers who have had experience
with other programming languages will find JavaScript extremely accessible. New users, however, might
want to read the following chapters a few times, to make sure they grasp the concepts involved.

What's in a Name? (A Variable Name, That Is)

One of the basic fundamentals of a programming language is the variable. A variable is essentially a
label to which you assign a "value" (what this value might be, you'll learn about shortly). Variables are
also commonly used in mathematics. Anyone who recalls having stayed awake during those classes
might still be scarred by such statements as "x=5." But that’s good; the trauma will help you when it
comes to JavaScript. (And students always want to know of what use algebra will be....)

JavaScript has variables (also known as names or variable names) all over the place, many of them
created by you, the programmer. So, first spend some quality time understanding the ubiquitous variable:

● Because it is a label, the variable is used to refer to a given "value" in a program.
● The value that the label refers to may change, but the label will stay the same. For example, at one

point in our program, the variable x might refer to the value 5, but at a later point in the program,
x might refer to 10. This is not arbitrary; perhaps we have used x to track the number of items a
user has chosen to purchase an item, and one user ordered 5 while another bought 10.

● The variable enables you to instruct the computer to perform a series of tasks or calculations,
regardless of what the actual values might be. This, in a sense, is the heart (or one of the hearts, if
that's possible) of a program—a JavaScript program in particular.

Tom, Dick42, and _Harry

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (1 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

Generally, it is up to you, the programmer, to decide on variable names. But as you might guess,
JavaScript has a few rules that govern what names are allowable:

● The variable name must begin with a letter or an underscore character (_). The first character of a
variable name cannot be a number or some other nonalphabetical character.

● You cannot use a space within a variable name.
● JavaScript is case-sensitive, so a is a completely different letter than "A." This has two important

ramifications:
● Watch your variable names. Although cost, Cost, and COST are all valid variable names, they are

all different variable names.
● Built-in JavaScript statements, which you'll learn about in subsequent chapters, are all lowercase.

(You'll be reminded of this when the time comes.)
● You cannot use a "reserved word" as a variable name. A reserved word is a word that JavaScript

already uses for some other purpose, such as a built-in command (an expression, object, or
function, all of which are covered later).To give you an example, JavaScript reserves the word
“if” for programming purposes. Therefore, you cannot create a variable named if. (For a complete
list of JavaScript's reserved words, see Appendix A, "JavaScript: The Complete Overview," at the
end of this book.)

As long as you abide by the preceding rules, JavaScript doesn't care what you choose to name a variable.
As far as JavaScript is concerned, the same variable name will always refer to the same value
placeholder, whether that name is x or inventory. However, you should care. As the programmer, you
want to maximize your ability to understand and follow your own program. This is especially true when
you inevitably must debug it (that is, find where problems are and attempt to fix them). So it is in your
best interest to make up variable names that hold some human meaning in relation to the values they will
represent.

For example, let's suppose that you have a Web page you’re using to sell a product: You're hawking
novelty mugs with pictures of your dog wearing a bikini. The prices of these may vary, depending on
how many mugs the consumer chooses to purchase at one time. The first variable you'll need to name is
the one that refers to the number of mugs ordered. Remember, you can name this variable anything
(within the rules above), such as x or bazoo. But, for the sake of programming clarity to the human mind,
mugs is probably a good choice for a variable name. (Of course, orders would suffice, too, but you get
the concept.)

There is a second variable in the preceding example, and that is the price of each mug. Let’s say the
single-mug purchase price is $9.95, but two mugs sell for $15.95, and three sell for $22.95. Because the
price may vary and cannot be assumed to be constant, it will require a variable name, as well. Again, you
could name the price variable mary or y, but something like price or cost seems to be a more reasonable
choice.

Full of Value(s)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (2 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

As you've read, variables are references to values. Now that you understand what a variable is, look at
the values a variable might hold. In JavaScript, a variable might refer to any of three types of values, plus
a special bonus value (I know this doesn't make sense yet, but bear with me.)

● Numeric value This is what first comes to mind when people think of a variable. As in the
previous examples, a variable name may refer to a numeric value; for example, price refers to the
value 9.95, and mugs refers to the value 2.

● String value A string, in programming parlance, is a group of characters that is not a numeric
value. For example, "bob" is a string. "]]]#!!!" is also a string. A string can be any length and can
be made up of any characters, including numbers. Thus "a" is a string, and so is "400”. Note,
however, that the string "400" is not the numeric value 400. It is merely the characters "4," "0,"
and "0." It does not hold mathematical meaning to the computer. A variable may refer to a string.
For example, you might create a variable called surname, and it might refer to the string
“Caruthers”. Or maybe you have a variable called model, which could refer to “C3PO”.

● Strings are always enclosed with quotation marks. Do the same in JavaScript code. JavaScript is
only able to distinguish between a variable name cost and a string value "cost" if you enclose
string values within quotation marks. You can use either double or single quotation marks to
enclose a string ("cost" or 'cost'). In the case of nested strings—where you have to insert one
string value within a phrase that is already within quotation marks—use double quotation marks
to set off the whole phrase, and use single quotation marks to set off each value within it (for
example, "callmyfunction ('bob','jane','white')"). You will see another example of this when we
discuss event handlers in Chapter 9.

● Boolean value "Boolean" is a humorous-sounding word that simply means "true or false." It
comes from the lingo of logic studies. A variable may refer to a Boolean value, which means it
can be true or false. In this sense, the variable is referring to a condition, and not to substantive
content as in the two previous examples.

And the special bonus value is this:

● null Lastly, a variable may refer simply to the word and concept "null." In JavaScript, null means
"nothing." No value, nada. Note that this is not zero because zero is a numeric value. Null is
simply nothing. A little weird, I admit, but it has its uses on certain occasions. And it's good talk
at parties. (Joe: "So, can there ever really be total 'nothingness?'" Bill: "Yes, in JavaScript there
can be.")

Handing Out Assignments

When you create a variable name and refer it to a value, you are making an assignment. For example, in
our earlier example, we "assigned the numeric value 5 to the variable mugs." Although you'll discover
more complex assignments in Chapter 7, the basics below serve as a useful grounding (you'll learn
exactly how and where to place these commands as part of a JavaScript program in Chapter 7).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (3 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

Your Basic Assignment

A basic assignment in JavaScript is made with this construction:

var variablename = value;
where var is the keyword that precedes all assignments, variablename stands for the name of the
variable, and value stands for the value you are assigning to the variable. For example:
var mugs = 2;
var price = 9.95;

Assigning a String to a Variable

When making an assignment to a string value, it is vital to place the string within quotation marks
(either the double or single kind). Here are two examples:

var surname = "Carruthers";
var model = 'C3PO';
Note that if you do not include the quotation marks, JavaScript will think you are assigning the
value of one variable to another variable; for example:
var surname = carruthers;
JavaScript will think you want to assign the value of the variable carruthers to the variable
surname. Because carruthers is a nonexistent variable, JavaScript will display an error message to
alert you. This is not what you want in this case (although at other times, you might want to assign
one variable's value to another).

Boolean Assignments

Boolean values usually represent conditions such as matters in which there can be only a true or
false status. A Boolean value assigned to a variable simply looks like this:

var married = true;
var dead = false;

...And Don't Forget Null

And, for the sake of closure, an assignment of the special bonus value, null:

var variablename = null;
You may or may not encounter actual applications of the null value assignment in later chapters.
It's not crucial, and it may not come up very often. A common technique among programmers
who want a variable to contain "nothing" is to assign numeric variables the value 0 (for example,
total = 0) and to assign string variables the value "" (for example, surname = ""). This is because,

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (4 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

in many instances, we want numerical variables to begin with a value of zero (as in variables
which keep count of something, for example), and we often want string variables to begin as a
string with no characters.

The Plain (Literal) Truth

A value that is not married (assigned) to a variable is known as a literal. This is such a simple
concept that it might actually be a tad confusing at first. To wit:

❍ The numeric value 5 is a literal.
❍ The string "mary worth" is a literal.

What is the point of any of this? Recall that variables are most often used to track potentially
changing values. In some instances, you will want to refer to a value, but it may be one constant
amount. For example, perhaps the price of your product is 9.95, and it is always 9.95 in all cases.

In these instances, you still have the option to assign a variable name to a constant value, which
often makes reading the JavaScript program easier for human debugging purposes. However, you
do not need to use a variable at all in these cases. You may simply want to write out 9.95
whenever it is needed in a calculation within the JavaScript program. This is a reasonable practice
in some cases, but in others it would be more comprehensible to use a meaningful variable name.

Stay Still

A constant is a label whose value never changes. A typical example from "the real world" is PI. We use

the label PI or that funny symbol , yet it always represents the same actual number. We may choose
to use a similar technique in JavaScript programming for ease of reading and ease of future program
modifications.

The following examples use a variable assignment and the * sign, which is a multiplication
symbol (we'll learn more about that in the next chapter). To illustrate a literal versus a variable
name, consider the following:
Using variables:
var price = 9.95;
var total = mugs * price;
Using literals:
var total = mugs * 9.95;
Although both sets of commands yield the same results, there are different reasons to select one
approach or the other. In the first case (using variables), the calculation for the variable total is
very easy for a human reading the program code to understand (for debugging purposes). In the
second case, it might not be so obvious to a human reader just what the 9.95 represents. If there is

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (5 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

a problem with the program, analyzing it may be more difficult because of this.

Secondly, imagine that there might be many instances of calculations within the program that
utilize the 9.95 price. If the price were to change, it would take some time to manually edit the
JavaScript program to reflect the price change. On the other hand, in the first example, you would
only need to change the value assigned to price one time, and because price is used to represent
the value throughout the remainder of the program, all other calculations would remain accurate
without your having to find them and change them.

Treating Values Like Objects

So far, you've learned about two important topics (variable names and their assigned values) and
one minor topic(literals). Now, it is time to move up one rung on the ladder of abstraction to a
very relevant concept in JavaScript programming: the object.

In JavaScript, an object is an umbrella concept under which a set of variables resides. This may be
a tough concept at first, so let me explain it several different ways. Consider a sweater. A sweater,
by the JavaScript definition, is an "object" that possesses several noteworthy qualities or
properties. For example, a sweater may possess properties of material, size, color, and price.

Note that each property sounds like the variables discussed earlier. That is exactly what they are.
Thus, an object is a sort of "supervariable" that contains a set of subvariables. Another example of
an object would be an individual person. A person, as an object, contains a set of properties, some
of which are useful for our particular application—such as first name, surname, age, gender, and
marital status.

Also take note of how objects can fit inside other larger objects. For example, a person object
could be part of a family object. A family object might have properties such as size, ethnicity,
combined income, and persons (each of which, in turn, possesses its own individual person object
properties previously described). Therefore, an object can also be a property of another object.
Confusing? Somewhat, but useful as well, as you shall see.

In JavaScript lingo, you denote an object and its properties in the form object.property. For
example, recall the sweater object. Imagine that in JavaScript, you create an object called sweater
(for now, don't worry about how you create an object). You then create several properties for the
sweater object: material, size, color, and price. In JavaScript syntax, you would refer to those
properties in program code like this:

sweater.material
sweater.size
sweater.color
sweater.price

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap05.htm (6 of 8) [01.06.2001 00:34:42]

Complete Idiot's Guide to JavaScript

Each of the preceding is a variable of the same sort discussed at the opening of this chapter.
Therefore, you can assign appropriate values to each of them. Examples include the following:
sweater.material = "argyle";
sweater.size = "M";
sweater.color = "violet";
sweater.price = 29.95;
Objects are common in JavaScript programs, so this is an important concept to nail down. Object
properties exist in the order in which they were originally defined. You won't learn how to define
objects until Chapter 8, but you should remember this point.

A la Carte versus Prepackaged Objects

Keep in mind that you don't have to create objects. They're necessary only if they are useful to the
tasks of your JavaScript program. A simple program that merely performs calculations using two
variables may not need any objects. However, in addition to objects that you may choose to
create, JavaScript also includes a number of premade objects. These exist to help you achieve
certain ends in your program. But before you take a closer look at some built-in objects, you need
to learn about functions, and all of that fun takes place in Chapter 8.

So far, you've looked at variables, the values that may be assigned to them, literals, and objects,
which are superset groups of variables (known as properties). Here, break for tea and crackers,
which are provided in the rec room down the hall. See you in a bit.

The Least You Need to Know

❍ A variable name is a label that you use to refer to some sort of value. You should choose
meaningful variable names so that you can tell what they stand for when you have to
debug (look for problems in) your program.

❍ A value is the contents assigned to a variable. Values may take the form of numeric data,
character strings, Boolean values, or the special null symbol (written as the word null).

❍ A literal is simply a value used in code without being assigned to a variable. (That is, it is
written out explicitly.) Literals have specific uses in particular circumstances, but they
generally make code more difficult for human readers to understand .

❍ An object in JavaScript is a superset variable, under which a set of subvariables (or
properties) relate. It is easiest to understand by example: a sweater is an object that
possesses the properties of material, size, color, and price. Objects can also serve as
properties for other objects.

Complete Idiot's Guide to JavaScript

Chapter 6:
Operators and Expressions

In This Chapter

❍ Operating with numbers
❍ Operating with comparisons
❍ Using logic in everyday operations
❍ Stringy operations
❍ Poetry in programming: the expression

If this chapter were a sequel to the previous one—and it is—it would pick up where we left
off—and it will. Variables, values, and objects are merely part of the JavaScript story. They all
deal with ways to contain data. In this chapter, you're going to look at methods of manipulating
data in order to generate new and improved (or at least useful) data. I guarantee this will be fun. If
it’s not, you get a free video rental from your local video store down the street. Tell them I sent
you; they'll take care of you.

Let's Play Operation!

An operator is a command that interprets given values or variables and produces a result. Does
that make any sense? Perhaps not, but that's a textbook definition. As usual, examples are the best
explanation.

A common and easy-to-understand form of operators are arithmetic operators. They are used to
perform calculations on given data. Here is an arithmetic operator:

❍ +

Neat, huh? That's not nearly so confusing as the definition made it seem. Of course, + can't
perform anything on its own—it needs data to work with. Here's where values come in, either in
the form of variables or literals. In techno-talk, the values used with an operator are called
operands. Thus, consider the following:

❍ 3 + 8

In the above, 3 and 8 are operands, and the + is the operator. That example used literals for
values; more commonly in JavaScript programs, you would see operands that are variables:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (1 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

❍ total = mugs * price

The asterisk (*) is the operator for "multiply." JavaScript offers a wide array of arithmetic
operators, which you can use with your values, whether they are literals or variables (or variables
in the form of properties of objects). The following table attractively highlights some of the
common arithmetic operators available in JavaScript.

Common Arithmetic Operators for Fun and Profit

Operator

What It Does

+

addition

-

subtraction

*

multiplication

/

division

%

modulus (returns the remainder of a division)

One Lump or Two? Binary and Unary Operators

The preceding arithmetic operators are known as binary operators. This is because they work their
magic given two values (binary meaning "two"). That is why the binary syntax, as illustrated in

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (2 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

the examples, can generally be described as operand1 operator operand2.

A couple of notable unary operators exist. These only call for one operand, which will be a
variable. There are three unary operators in JavaScript to know: increment, decrement, and
negation. Here's an example of each.

Unary Increment ++

This operator will increase by one the value of the operand (variable) supplied to it. Thus,
mugs++ will increase the value of the current value of mugs by 1. You might (as further detailed
later in this chapter) use this in an assignment:

❍ sales = mugs++;

Note the position of the ++ relative to mugs. In the preceding example, sales will be assigned the
current value of mugs, and then the value of mugs will be increased by 1. Because the value of
mugs was increased after mugs’ value was assigned to sales, sales does not gain the benefit of the
increment. This is as opposed to

❍ sales = ++mugs;

where mugs will first be increased by 1, and that result will be assigned to sales. This is an
important distinction because if you use one when you mean the other, your later calculations may
be off by 1.

Unary Decrement ––

This operator works just like the unary increment, but in the opposite direction. It decreases the
value of the specific variable operand by one. Therefore, the operator mugs– will decrease the
value of mugs by 1.

You can use the unary decrement operator in assignments just as you use the unary increment.
Again, keep in mind the difference between –mugs and mugs– when used in an assignment (as
explained in the previous unary increment section).

Unary Negation –

Finally, there is the unary negation operator. Simply, it negates the value of the operand. Thus, if
the variable mugs currently holds the value 5, –mugs would return the value –5. Of course, if
mugs was already –5, the unary negation operator would return the value 5 (because the negation
of –5 is 5).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (3 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

No More Math, But More Operators

There are several other varieties of operators besides arithmetic. Each one works by relating two
or more variables in some way. Operators are of central importance in JavaScript programming,
as they are the main way to evaluate current conditions and change future conditions. Let's take a
spin through the nonarithmetic operators: assignments, comparisons, and logicals.

Assignment Operators

You've already encountered one form of assignment operator: the equal sign (=). This is the most
basic and common assignment operator and, as you’ve learned, it is used to assign one
value—either a literal or a variable—to a variable.

price = 9.95;
price = cost;
In the first case, a literal is assigned to the variable price. In the second case, the current value of
the variable cost (whatever that may be) is assigned to the variable price. Simple enough.

The other assignment operators are shortcuts to arithmetic operators, which combine assignments
and arithmetic in one fell swoop. Witness:

❍ total += price;

In longhand, using the aforementioned arithmetic operators, the above could also be written like
this:

❍ total = total + price;

One common application of this technique is updating a running total. Perhaps you're keeping
track of cumulative gross profit and want to keep adding new purchase orders to that gross. If the
current value of total was 10, and price was 5, the above would sum those two values and assign
the new result (15) back to the variable total. Note that both of the above methods produce exactly
the same result. The += method is simply shorter to write.

Similarly, you can also use the following hybrid assignment operators:

total -= price; SAME AS total = total — price;
total *= price; SAME AS total = total * price;
total /= price; SAME AS total = total / price;
total %= price; SAME AS total = total % price; (see arithmetic operator table)
Comparison Operators

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (4 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

Often, you have to compare two values to make some sort of determination of what to do next.
These comparisons can grow to be quite complex, but you will, of course, start with the basics.
The rationale behind these operators should be fairly understandable if you can avoid getting
bogged down in the symbols.

The most basic and obvious comparison operator is the equals operator (==). This operator can
compare two values and determine if they are equal. The result of any comparison, including this
one, is true or false.

Here is a very simple equality comparison:

❍ mugs == 10

If the value of the variable mugs is 10, and thus equal to the literal value 10, the above
comparison will yield a true result. If mugs refers to any value other than 10, the result will be
false. This result is most commonly used to direct the flow of the program or to generate a
condition-specific action (which you’ll learn more about later).

Similarly, you could use the not equals (!=) comparison operator, as in this example:

❍ mugs != 10

Now this is where you might get confused. The above will again compare the value of mugs with
the literal value 10. However, this time we asked if they were "not equal." Therefore, if mugs is 5,
the above comparison will yield a true result. If mugs is 10, the above will be false.

Two other common comparison operators are greater than (>) and less than (<). They are used in
the following manner:

mugs > 10
mugs < 10

If mugs is a value greater than (but not including) 10, the first statement above yields true;
otherwise it yields false. Similarly, if mugs is a value less than (but not including) 10, the second
statement above yields true; otherwise it yields false.

Lastly, a pair of comparison operators is inclusive of the tested value: greater than or equal to (>=)
and less than or equal to (<=). Here are examples of their use:

mugs >= 10
mugs <= 10

These work the same as the > and < operators, except that they do include the tested value (10, in

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (5 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

our example). Note, therefore, that if the value of mugs is 10, both comparisons above would
yield true.

Not Just for Vulcans Anymore: Logical Operators

Some of the previously mentioned folks who stayed awake in algebra class may recall that
horrific week spent learning "logic." The magic words of a logician are AND, OR, and NOT.
Although this makes for less-than-stimulating dinner date conversation, it has many uses in
JavaScript programs.

Logical operators are quite similar in usage to comparison operators. They also sort of "compare"
two values and provide a true or false result. The major difference in practice is that the logical
operators usually "compare" comparison operators. What?? Once again, some examples are in
order.

&& (a.k.a the AND Operator)

The && operator looks at two comparisons, and if each is true in and of itself, the && operator
returns a true. Try it this way:

❍ (mugs > 5) && (price < 10)

The above statement first evaluates the comparison mugs > 5. That will be either true or false.
Then it evaluates price < 10. That will also be either true or false. Finally, if the first comparison
is true AND the second comparison is true, the logical operation will yield true. If either or both
comparisons are false, the whole result is false.

It helps a lot to think of these logical comparisons in the context of an English sentence. We use
them exactly the same way in verbal language: "If your father comes home early AND my
paycheck cleared, we will go out for dinner." The example sentence contained both a logical
comparison and a resulting action. But for now, as far as JavaScript goes, just consider the logical
comparison. The resulting actions will come later.

|| (a.k.a the OR Operator)

The OR operator is less finicky than the AND operator. It requires that only one of the two
comparisons be true in order for it to return a true for the whole logical comparison. For example:

(mugs > 5) || (price < 10)

Just as with the && operator, both comparisons above are evaluated. If either is true, the OR
operator returns a true. Of course, if both are true, it still returns a true. Only if both comparisons

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (6 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

yield false results will the || operator yield a false result.

Take this English sentence for example: "If your father comes home early OR my paycheck
cleared, we'll go out for dinner." Only one condition needs to be satisfied for the family to chow
down, in this case.

! (a.k.a the NOT Operator)

This one is twisted. The NOT operator is a unary operator and, therefore, takes only one operand.
That operand is often a comparison operator, in which case the negation of the comparison is
returned. Try selling that on a T-shirt! To explain from another angle, if the operand is true, a !
operation on it will result in false. And vice versa.

In the following example, let's assume that mugs holds the value 5.

❍ !(mugs == 5)

Above, mugs == 5 results in true because it is true. However, because it's included in a NOT
operation, the result of the whole phrase above is false. Of course, if you're clever, you might
realize that the comparison (mugs != 5) would return the same result as !(mugs == 5); that result
would be false. This is correct, and therefore, in many cases, the NOT operator is unnecessary
because the same evaluation can be made with a comparison operator. However, programmers
tend to like NOT operators because they often result in more compact code (although not in the
previous example, where the comparison operator is, in fact, shorter).

String Operators: The Loom of JavaScript

You've reached the last of the operators. Whew. String operators are intended to work with string
values, which you should recall are not numerals or arithmetic expressions. In addition, the
comparison operators can be used with strings. Because strings are not numerals, how string
operators work requires a little explanation.

Checking for equality between two strings is fairly straightforward. Suppose you supply the
following test (use literals for clarity, although in many cases you'd be using variable names):

❍ "dogs" == "cats"

Clearly, the two strings are not equal (the same), so the comparison has a false result. For two
strings to pass an equality test, they have to be exactly the same, character for character.

However, because "dogs" cannot be greater than "cats" (depending who you ask!), the statement

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (7 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

"dogs" > "cats" is simply nonsensical to JavaScript. The same applies to the <, >=, and <=
operators. Of course, the "not equal" != operator could apply to two strings.

The exception to the above rule that strings cannot be compared with greater than and less than is
if the strings represent possible numerals. Let's suppose the string in question is "54". In this case,
JavaScript will attempt to convert the string to a numeral for comparison purposes (remember:
strings cannot actually be compared to numbers, but JavaScript automatically tries to convert the
string to a number). Therefore, "54" > "12" does make sense to JavaScript and is exactly the same
as 54 > 12. But JavaScript can perform this conversion only if the string contains only numerals;
"dog54" would not be converted to a numeral, and the above comparison would again be
nonsensical and generate an error or unpredictable results.

Lastly, strings can be concatenated with the + operator, or the += assignment operator.
Concatenation is the process of combining multiple strings to yield one new, bigger string. You
may want to construct a message for the user, tailored to be appropriate for varying conditions.
For example, the line

❍ "dogs " + "are cute"

would yield the string "dogs are cute" (note the space in the above, which prevents the words
"dogs" and "are" from being directly smooshed together). Also, if you had previously assigned
"dogs " to the variable named phrase, this line

❍ phrase += "are cute"

would assign the entire string "dogs are cute" to the variable named phrase.

Full of Expressions

Programming types like to throw around the term “expressions.” In a sense, by now, you're
already familiar with what an expression is, even though I haven't explicitly defined it yet. I
wanted to keep some suspense in this tale, after all.

An expression, in programming circles, is any phrase of program code that represents one
evaluation, result, or assignment. You've already used a variety of expressions so far, such as:

mugs = 5;
and
(price > 10)
There is no critical need for a specific definition of an expression; it's just a term that
programmers use to refer to these little portions of code. Every little segment covered in examples
thus far is an expression.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap06.htm (8 of 10) [01.06.2001 00:35:53]

Complete Idiot's Guide to JavaScript

There is one sort of JavaScript that's worth special note, though. A conditional expression is
basically a shorthand way to assign a value to a variable based on the results of a certain
condition. A conditional expression looks like this:

❍ (condition) ? valueiftrue : valueiffalse

If the condition is true, the resulting value is whatever is specified in the position where
valueiftrue is above; if the condition is false, the value returned is whatever is positioned where
valueiffalse is above. A common use for this sort of conditional expression is in an assignment
operation, in which a variable is assigned the result of the above expression. For a clearer
example, imagine that you include a bonus gift—a pencil—with all mug orders fewer than 10, and
you include a teddy bear with all orders of 10 mugs or more. You can use the following
conditional expression to make this determination:

❍ bonus = (mugs >= 10) ? "teddy" : "pencil";

The variable bonus will be assigned a string value of "teddy" for orders of 10 or more mugs, or it
will be assigned "pencil" on orders for fewer than 10 mugs.

The Least You Need to Know

❍ Operators serve to bring values and/or variables together and yield new results.
❍ Arithmetic operators are used for basic math calculations, as well as for incrementing and

decrementing numeric variables.
❍ Comparison operators are used to evaluate specified cases, such as whether one variable

has a greater value than another, whether they are equal, and so forth.
❍ Logical operators evaluate comparisons against AND, OR, and NOT conditions to

determine whether a series of conditions is true or false.
❍ String operators compare and/or concatenate strings of characters.
❍ Expressions are JavaScript "phrases" that yield assignments, evaluations, or results.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

Chapter 7:
Making a Statement

In This Chapter

● A statement about statements
● Conditional: if...else
● Loop de loops: while and for
● Dealing with objects
● Leftovers: the remaining statements
● The philosophy of the statement

By now, you've explored most of the building blocks of a mature JavaScript program. Variables are assigned
values, and objects are made up of subvariables known as properties. Variables can be operated on for
mathematical purposes, or they can be compared or in some other way evaluated, thereby making expressions.
An expression is any one "phrase" of JavaScript code, such as an assignment operator or a comparison operator.
Finally, you have the statement, which just happens to be the subject of this chapter.

The Anatomy of a Statement

A statement brings expressions together with certain keywords to make the JavaScript equivalent of an English
sentence. That is, using any or all of the building blocks discussed thus far to create program logic is the whole
purpose of a JavaScript. Statements define and control the flow of the program.

Think of statements as the bones of a JavaScript program. All of the statements in your code comprise the
skeleton, which determines the overall shape of the program. The JavaScript language provides a small but useful
set of statements that you can use to direct program flow.

Execute and Flow

Two common terms in programming jargon are necessary in this chapter. When JavaScript reads and
performs the actions specified in each statement of code, it is executing the program. Normally, JavaScript
executes each statement in sequence, in the order in which the statements are written. This is called the flow.
By default, execution flow follows in sequence. Many of the statements described in this chapter are used to
alter program flow—that is, to move execution to a specified region of code. In this way, you build the
overall logic of the program. Doing this correctly is one of the challenges of programming, and it often
takes some debugging to correct errors in your original logic.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (1 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

The If...else Statement

It's no coincidence, then, that statements are bookended by keywords that strongly resemble English language
statements. One very common JavaScript statement is the If...else statement functions just as it sounds in English.
The following would be an English usage version of an If...else statement:

● "If I earn at least $500 this week, I can pay the electric bill; I must pay the bill, or else my lights will be
shut off."

You can generate the exact same sentiment in JavaScript using only two variables: income and lights. Presume
that the variable income has been previously assigned some numeric value representing this week's earnings. The
variable lights will be assigned on the condition of the income and will receive a Boolean value (true or false)
because there are only two possible outcomes for the lights: remain on or shut off. Given all this, the JavaScript
version of the above statement, using the JavaScript If...else construction, would look like this:

if (income >= 500) {
lights = true;
} else {
lights = false;
}

Given this statement, JavaScript would first evaluate the expression (income >= 500). If this returns a true result,
JavaScript executes the statements within the first set of brackets {}. If the expression is false, JavaScript skips
ahead to the else clause and executes the statements within the set of brackets immediately below the else
keyword. You can include as many statements as you want within the brackets of a clause, but you must
remember to end each statement with a semicolon (;) as in this example:

if (income >= 500) {
lights = true;
savings = income - bills;
}

To JavaScript, the semicolon is the signal that one statement has finished and another is about to begin.

Partnering
Parentheses

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (2 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

One very simple
way to keep track of
parentheses is to
indent all the code
within a pair of
parentheses to the
same level (as the
examples
demonstrate). If you
have another pair of
parentheses within a
pair...indent again.
That way, all the
statements that are
part of one "block"
of code will be
visually lined up,
and mismatched
parentheses will be
much easier to spot.

The formatting in both of the previous examples is purely a matter of taste. JavaScript doesn't care where you put
breaks in the lines, as long as you include all of the correct syntax (the brackets, the semicolons, and so on).
However, for the human reader, using a consistent and somewhat logical format throughout the code will make
debugging in the future much easier and much less insanity-inducing.

Now you see how a statement in JavaScript serves as the outline in which most assignments, expressions, and
function calls (we haven't covered those just yet) occur. The If...else statement is merely one way to control the
logic flow of a JavaScript program.

The while Statement

The while statement is another way to control program flow and execution. It functions in the following way:

while (condition) {
statements
}

In this example, the series of statements within the brackets are executed for as long as the specified condition
holds true. The simplest example of a while statement is a simple loop. A loop results when a statement or series
of statements are repeated some number of times until some condition changes. Therefore, the while statement is
a classic loop. In this simple example, you will keep appending the string "repeat" to a variable named phrase
until the loop has executed 10 times:

count = 1;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (3 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

phrase= "";
while (count <= 10) {
phrase += "repeat ";
count++;
}

Let's consider a line-by-line analysis of the above code, which pulls together several concepts from previous
chapters.

In line one, you assign the value 1 to the variable count. Because you will be using this as a counter, you must
assign it an initial value. In this case, you would like count to begin with the value 1, so that is your initial
assignment.

In line two, you want to be sure that the string variable phrase starts out empty. To do this, you can assign an
"empty string" to it, as you can see in this syntax:

phrase="";

This will prepare the string for usage in the loop that follows.

In line three, you construct a while statement. The while loop is defined to proceed as long as the value of count
is less than or equal to 10.

In line four, you begin the statements that comprise the body of the while loop; therefore, an opening bracket
precedes the first statement. In this line, you use an assignment operator to concatenate (combine) the string
value "string" to the existing value of the variable phrase.

● In line five, you increment the counter variable count by 1, using the unary increment operator.

The final result of the example will be that count will hold the value 11, and phrase will hold the string "repeat
repeat repeat repeat repeat repeat repeat repeat repeat repeat". Notice that when count has reached 10, it will
move through the loop one last time, adding the final "repeat" to phrase and incrementing count to 11. Then,
when the while condition is tested again, it will be false, and the loop will cease. JavaScript would then drop
down to the next statement following the while condition's bracketed statements.

The for Statement

The for statement is another statement that creates a loop circumstance. It is much like the while statement and,
in fact, in many programming situations, either statement could serve the same role even though their particular
syntaxes differ. The real difference is that for statements are more specifically tailored to handle numerical loops.
The while statement, although capable of the same (as illustrated in the previous example), is somewhat more
flexible in its capability to function on conditions other than numerical loops.

Update That Loop

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (4 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

In any loop, it is
presumed that the
variable in the test
condition is going to
change. If the test
condition does not
change, the loop will
never execute if the
condition is false, or
it will never stop
executing if the
condition is true
(this is called an
"endless loop"). In a
counting loop, you
change the counter
variable with the
"loop update
expression." This
expression is part of
the statement
definition, as in the
for statement. In this
example, you use
the unary increment
operator as your
loop update
expression; it
increases the value
of the loop counter
count by 1 at each
pass through the
loop.

The for statement is followed by an initial expression (which is often a variable assignment, but may be another
statement), a test condition, a loop update expression, and finally, a block of statements to execute. An example
would look frighteningly similar to this:

phrase = "";
for (count = 1; count <= 10; count++) {
phrase += "repeat ";
}

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (5 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

Watch Your Syntax

In programming, syntax refers to the "rules of grammar" (in other words, what words or symbols go where).
For example, most statements begin with a keyword such as for identifying the statement . They are
followed by a set of parentheses in which special conditions are specified. All of this is syntax: The order of
what goes where. If you accidentally violate a syntax rule, such as leaving out a parenthesis or semicolon,
you will experience a syntax error. JavaScript will alert you of this when you try to execute the program
(load the Web page), and then you'll have to fix it.

Again, let’s analyze the example line by line:

In line one, you assign an empty string to the variable phrase as preparation.

In line two, you define the for statement. The counter variable count is set to 1 to start with, and your test
condition for the loop determines whether count is less than or equal to 10. The loop update expression uses the
unary increment operator to bump the value of count up by 1.

● In line three, you use the statement that makes up the loop itself. It will be executed as long as the test
condition remains true. In this case, you use an assignment operator to concatenate the value "repeat" to
the string variable phrase.

This example would produce the same results as the while loop: The variable count would hold the value 11, and
the variable phrase would hold the string "repeat" in ten consecutive repetitions.

As stated, this is quite similar in logic to the previously described while statement. The major differences are that
the initial variable assignment for the loop counter and the expression that increments the loop counter are both
included in the for statement definition heading (they are the expressions within parentheses following the
keyword for). This is why the for statement is more suited for these sorts of arithmetic loops, whereas the while
statement is flexible enough for other sorts of loops; the while statement has fewer restrictions on the expressions
that can affect the test condition.

The break and continue Statements Bring It All Together

Sometimes you will want to jump out of the execution of a loop (as in the while and for statements) in mid-loop.
Here is a classic scenario that might demand this sort of "eject from loop" capability. Suppose that you want a
facility in your Web page that will total the gross profit of all the purchases made from your site that day.
However, you are running a promotion, and every 10th person to make a purchase receives the order for free!
Therefore, when you’re calculating the total gross for the day, you must make exceptions for every 10th order.

This is how the loop will work: Look at each purchase made, and then add its price to a running total until you've
reached the end of the purchases. Simple loop. Now for the exception: Check each purchase to see if it is a whole
integer multiple of 10 (which would mean it was a 10th purchase). If it is, do not add its price to the grand

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (6 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

running total. This example will use the continue statement, which is used to drop out of a series of statements
within a loop and return to the top of the loop.

The example code contains three simple variables:

● orders, which holds the current number of orders for the day.
● count, which is the loop counter (this begins at 0).
● total, which contains the gross running total (this begins at 0).

In addition, you have one object, named price. Price has the properties 1, 2, 3, and so on, where each property
represents one item purchased and holds the value of its price. For example, price.1 might equal 9.95, price.2
might equal 14.95, and so on.

Also, recall that you can refer to objects and properties in the format object[property], as in price[1], which is
how you will describe them within the loop code itself.

Here is the code you will use:

total = 0;
for (count = 1; count <= orders; count++) {
if ((count % 10) == 0)
{continue;}
total += price[count];
}

Notice: Count Those Parentheses

In the continue statement example, take note of the line containing the if keyword. It is followed by double
parentheses because you have two sets of "nested" parenthetical expressions. Nesting occurs when you h
ave one parenthetical expression within another parenthetical expression. For example: the if comparison
must be in one set of parentheses, as in if (comparison). However, the comparison itself is also enclosed
in parentheses, as in (count % 10), to prevent any possible misinterpretation by JavaScript. As you can s
ee, it's very important that you keep track of your opening and closing parentheses, and that every pair
matches up; otherwise, you're likely to get syntax errors. And going back through your program to look
for missing parentheses is less than fun. Therefore, refer to the “Partnering Parentheses” sidebar (earlier
in this chapter) for tips on visually aligning them in your code to make counting the pairs easier.

Now let’s consider what took place in the previous example. Several concepts are going on in the previous
example, all of which are covered at some point in this book.

In the first line (total = 0), you initialize the summation variable total to zero.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (7 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

In the second line, you declare the parameters of the for loop. You begin count at 0 on the presumption that the
properties of the object price also began numbering from 0. (Be sure to keep an eye out for such things in your
own program.) You set the for loop condition to remain true while count is less than or equal to the total number
of orders. Finally, you set the loop updater to increment count by one. Note that count is not incremented on the
first pass through the loop, and thus remains at 0 until the second pass.

On the third line, below the for declaration, you have the set of brackets within which the loop statements are
enclosed. In this case, your loop statement is an if statement. (Recall that the if statement is followed by its own
bracketed statements, which is why there are two sets of brackets in the example. If you follow them closely, you
will see that they make sense.)The if statement checks to see whether the current order in question was a 10th
purchase. It does this by using the "modulo" arithmetic operator. Consider: you could divide the current value of
count by 10. If the current order were a 10th purchase (an even multiple of 10), this division would yield a
remainder of 0. The modulo operator can be used to return the remainder of a division. Therefore, the expression
count%10 will return the value 0 on every 10th purchase.

On the fourth line, you’ve got the bracketed expression immediately below the if clause, which determines what
to do if the condition is true (that is, if this is a 10th purchase). Note that your if-true statement is continue. This
will cause JavaScript to ignore the remainder of the statements in the brackets of the for statement and return to
the top of the for loop. This will not re-initialize count to zero; it will just continue with the loop as normal.

On the fifth line, you do not need an else statement because the previous if statement will ignore the remainder
of the loop statement on this pass when the condition is true. If the condition is false (that is, if count represents
any purchase other than a 10th one), execution will necessarily drop to the final statement in the for loop.

On the last line, the final statement adds the value of the current property of the object price to the running total.

The break statement is similar to the continue statement in usage, but it behaves in one notably different way.
Instead of causing the loop to skip ahead to its next trip through, the break statement immediately drops out of
the loop entirely. That is, it aborts the loop on the spot and moves on to the next statement following the loop in
the JavaScript program. If you were to replace continue in the previous example with break, when you reached
the first 10th purchase in the loop—which would be purchase number 10—the whole loop would end. Clearly,
that's not what you want in this example, but in other cases, it might be.

Object-Related Statements

Two statements are designed specifically for the purpose of dealing with objects. Recall once again that an object
is a variable that contains a set of subvariables known as properties. Your prototypical object example was the
sweater object, which contained the properties material, color, size, and price.

The following statements work with a given object to help you navigate and/or manipulate its properties. As
always, this will make more sense after you look at examples.

The for...in Statement

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (8 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

The for...in statement is a specialized loop that’s similar to the for statement, but with the purpose of looping
through the properties of a particular object. Imagine again your sweater object. Perhaps a customer has chosen
to order a sweater, and in other portions of your Web page, he has selected each property that interests
him—maybe cotton, black, and XL. Of course, the price property is determined by you, the retailer, based on the
sort of sweater he chose.

Now the sweater object’s four properties have each been assigned a value. Imagine then that you are outputting
an invoice to the screen for the customer to verify. You need to state the values of each of the sweater's
properties, which requires moving through each property in sweater and printing its value. Sound like a loop? It
is a loop! And, because it is a loop within an object, you need a for...in statement. Quel coincidence!

The loop parameters in the for...in statement are much simpler than the for statement. There is no need to
initialize a counter, to test for a condition, or to update the counter (such as by incrementing it). The for...in loop
works only one way: From the first property to the last in the given object. Therefore, the for...in statement looks
like this:

for (counter in objectname) {
statements
}

The counter is any variable name you want to supply as a counter. Objectname is the name of the object whose
properties you are interested in. Let's take an easy example. Loop through the properties of the sweater object and
add the value of each to a string. Later, that string may be used for some other purpose, such as to output to the
screen. Your counter will be named count, your object is sweater, and your string will be named descrip (as in
"purchase description").

descrip = "";
for (count in sweater) {
descrip += sweater[count] + " ";
}

Voila! In this example, you first assign the variable descrip to an empty string. Then you define the for...in
statement. One statement follows within the loop. It simply concatenates the value of each property of sweater to
the current contents of the variable descrip. Note that you are, in fact, adding the expression sweater[count] + " "
to the variable descrip. This inserts blank spaces between the values so the string value will be more readable if
and when it is output later.

At the conclusion of this JavaScript program, the variable descrip might contain a string value such as "cotton
black XL 24.95". The exact order of the values in the string depends on the order in which the properties in the
object sweater were originally created.

The with Statement

Yet again, you are concerned with only one object. The purpose of the with statement is to tell JavaScript which
object you are currently concerned with. After you identify the object, any references to variables in the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (9 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

bracketed statements that follow are assumed to be properties of that object.

In practice, the with statement looks like this:

with (objectname) {
statements
}

Imagine that you are going to assign values to the sweater object’s properties. You don't need to use the with
statement; after all, you could assign values in the format sweater.color = black. However, you can also use the
with statement in the following way:

with (sweater) {
material = cotton;
color = black;
size = XL;
}

Granted, the with statement doesn't exactly rival sliced bread or those nifty sandwich makers as far as inventions
of the century go, but it does save on keystrokes, and it also helps improve the formatting and readability of the
JavaScript program. Those are always positive qualities when it comes time to debug.

The Comment Statement

If you found the with statement to be short on excitement, this one is even duller. The comment statement is
simply a way by which you can insert your own comments into the JavaScript program for future reference.
JavaScript itself completely ignores them. This isn't to denigrate the utility of comments. Including comments in
your program is an extremely useful way of reminding yourself what the heck is going on in case you must return
to the code at a later date. Programming is one of those things where, when you are steeped in the development
of a program, everything you do makes sense to you; however, if you return to the program two months later to
make some changes or corrections, you'll have absolutely no idea what your code means anymore. This, then,
requires you to carefully reread the code to understand it again.

Therefore, including English commentary in code is a good thing; it's just not an exciting thing.

[ic:check]Comments Comments Everywhere

This is the second appearance of comments in this book. Previously, you saw how comments work in
relation to HTML code. If you recall, the big pep talk was about including the entire JavaScript program
within HTML comment tags in order to prevent non-JavaScript browsers from displaying the code o
n-screen.

The comments you are learning about now are meant to prevent the JavaScript browser from attempting

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (10 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

to execute in-code reminders for humans. Comments are used to explain to you, the human, what is going
on in the code. Therefore, you don't want JavaScript to attempt to execute the comments because it will
only wind up producing errors.

There are two ways to denote comments in your JavaScript program, depending on whether they fit on one line
or span multiple lines. For one-liners, simply precede the commentary with double slash marks (//). For multiline
comments, place the symbols /* at the beginning of the text and place the symbols */ at the end.

Here are two examples of well-commented code:

// this counter will be used to track the number of sweaters ordered
count = 0;
/* the following loop will go through each order and process it accordingly.
First, we'll check to see if the size is in stock. Then we'll see if the color is
in stock.
Lastly, we'll see if the purchaser's name is on our blacklist, in which case we
will secretly jack up the price by adding unreasonable shipping and handling costs */
for (count=1; count <= orders ; count++) {
...

The var Statement

The var statement is included more often as a matter of style than for necessity. In theory, you should precede
variable assignments with the word var. For example, the following statement:

counter = 0;
should theoretically be written like this:
var counter = 0;

As you may have noticed, you have not been doing this throughout your examples, and I keep using the words
"in theory." That's because you don't actually have to use it. JavaScript knows when you are assigning a variable,
but some purists consider it good form to include the var word for program readability.

Having said that, I need to tell you that it is necessary in one case to write out var; however, you haven't
encountered that scenario yet. But you will encounter it when you learn about functions, which just happens to be
in the next chapter.

The Least You Need to Know

● Statements serve as the connective tissue of a JavaScript program. They control a program's flow.
● ™B7 Statements have this syntax: statement definition, followed by statements to execute if definition is

true—which are enclosed in curly brackets { }.
● The if...else statement tests a condition, and then it executes the stuff within the first set of brackets if true,

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm (11 of 13) [01.06.2001 00:36:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap07.htm

or it executes the whatever is within the second set of brackets if false:
if (condition) {
statements if true
} else {
statements if false
}

● The while statement sets up a loop if the given condition is true:
while (condition) {
statements
}

● The for statement sets up a loop that performs the bracketed statements until a specified counter meets a
condition:

for (initialize counter; condition; update counter) {
statements
}

● You can deal solely with an object using the for...in statement:
for (counter in object) {
statements
}

● and the with statement:
with (object) {
statements
}

● Commenting your code is unexciting, but it is strongly recommended. Use // before single-line comments,
and surround multiline comments with /* and */:

//This is a single-line comment
and
/*Here we have a multiple line comment
which goes into some detail about the code which follows*/

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 8
Conjunction Junction, What's a Function?

In This Chapter

● The function of a function
● Parameters and results
● Defining a function
● Calling a function
● The power of object creation
● Making a method

If statements are the connective tissue of a JavaScript program, and functions are the blood. (See, that high
school anatomy course really has paid off.) Any JavaScript program beyond the most basic is going to include
functions. Some are built into JavaScript (those are listed in Appendix A at the end of this book); however, you
will create other functions.

That's great, and very nice to know, but what is a function? A very apropos question. Could you ask it again, and
this time a little louder?

What Is a Function?

Much better. A function is like a miniprogram unto itself. It can be "called" from the rest of the JavaScript
program. A function is composed of JavaScript code, which, if executed, accomplishes some task. The set of
code composing the function is given a name or label of some sort. That name then comes to represent a
particular function, or set of code. Creating a function is not the same as calling a function. In this chapter, you
will see how a function is "defined" (that is, how you write out the code that belongs to the labeled function).
When it is executed, a function is called from some other section of JavaScript code. You will see how this is
done, as well.

[ic:check]Calling All Functions! When you "call" a function, you are instructing JavaScript to execute that
function. Remember that a function is a miniprogram of JavaScript code. So "calling" it means to execute the
code that comprises a particular function.

You often use a function to define a procedure that will be called upon regularly. By doing so, you program and
name a set routine so you can call it repeatedly without having to redefine it over and over. To make an analogy
to real life, throughout the day you have many functions in your daily activities. You might consider sleep a
function. Likewise, eating lunch is a function. Between these predefined activities, you act out other tasks, which

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (1 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

are sometimes similar to loops and conditional statements.

For example, perhaps you are watching television. While doing so, certain conditions may occur: if hungry; if
sleepy; if bladder full. These are like conditional statements in a JavaScript program. Upon evaluation of these
conditions, you may choose to call upon a predefined function. For example, if hungry, eat lunch; if bladder full,
run to bathroom. In each case, eat lunch and run to bathroom are functions because they refer to a defined series
of actions. That series, however, must have been defined only once sometime in the past. For instance, the
function "run to bathroom" may have been "defined" when you were toilet-trained. Since then, you have simply
called that function to execute it when necessary. A vivid image, no doubt.

So far in the statements you have used in this book, you have called upon only very simple actions. Soon you will
learn how to create and define functions—whole sets of actions that can vary in size from one statement to a
whole other program in and of itself—which can then be called from statements.

The Role of Parameters

Functions frequently, although not necessarily, accept parameters when they are called. A parameter is a
specified value that somehow plays a role in the doings of the function's actions. Let's recall the lunch function
from real life. Although the procedure for eating lunch is predefined, there are a few variables you do need to
take note of. The most obvious being, what food will you be eating for lunch? What beverage will accompany
this food?

[ic:check]Function Notation You specify the variables included in a function by listing them within
parentheses beside the function name. An example might be lunch (food,beverage). It is common practice,
in a book such as this, to write a function name in the format lunch(). This simply means that you're speaking
of the function named lunch, although you're not considering its particular variables at this time.

In this sense, you can say that the function lunch() takes two parameters: foodstuff and beverage. When you feel
peckish just around noon, you call your lunch function with these two parameters, which you could note in the
following way:

lunch("pizza", "Coke");

In this example, you invoke your lunch() function with the specifics of a pizza and a Coke. Similarly, functions in
JavaScript can also take parameters. When you define the function (which you will do shortly), you must decide
which parameters the function will require. When you define a function, you don't know what the specific
parameter values will be. That is determined when you call the function, somewhere else in the JavaScript
program. When you define the function lunch(), you might name the parameters foodstuff and beverage, for
instance. Only when you later call the function lunch() will you use actual values for these parameters.

Returned Results

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (2 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

At the conclusion of a function, you will often (but not always) want to return some sort of result to the program.
Again, with the lunch example, you might say that the function lunch() accepts two parameters, foodstuff and
beverage, and returns one result: a variable called satisfaction, which will contain a logical value true or false.

By this logic, the lunch() function processes the foodstuff and beverage specified to it ("pizza" and "Coke" in this
case) and then returns a true or a false value for the variable satisfaction. The calling program (in this example,
that would be you, the person) then examines this result and decides what to do from there. It may choose to call
the function again with new parameters (for example, if satisfaction was returned as false, you might want to run
for more food), or it may choose to move on with the remainder of the program (if satisfaction is returned as true,
for example).

Now I'm Hungry: Defining and Calling a Function

The formal template for a function definition looks like this:

function functionname(parameter1, parameter2, ...) {
statements
}

Therefore, the formal JavaScript definition for the lunch() function would have looked like this:

function lunch(foodstuff, beverage) {
eat foodstuff;
drink beverage;
satisfaction = (evaluation of satisfaction);
return satisfaction;
}

Of course, the statements within brackets in this example are all fake, because there are no real JavaScript
statements that define eating food. Remember that the above function is not executed unless it is called from
somewhere else in the JavaScript program. Merely defining it does not execute it.

In addition, let me pass along an important word about parameters that I briefly touched upon earlier. When you
name parameters in the function definition, you are essentially creating variables. Whatever values are passed to
the function in the function call, will be assigned to the variables you have named in the function definition (in
the order that they are listed in the function call). So if you called the previous function with the following call:

lunch("pizza", "Coke");

Within the statements of the function lunch(), the variable foodstuff will contain the string value "pizza", and the
variable beverage will contain the string value "Coke". In this function call, you have passed literals as the
parameter values. Alternatively, if you call the function with this statement,

lunch(choice1, choice2);

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (3 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

the variable foodstuff will contain the value of the variable choice1; likewise, beverage will contain the value of
the variable choice2. In this function call, you have passed the contents of variables as parameter values.

Would You Like Parameters with That Function?

A function does not have to accept any parameters. The one you are writing may not need any. In these
cases, you simply continue to use the () where they are required (in the function definition and function calls),
but you put nothing in between, as in these examples:

function noparams() {
statements
}
or
noparams();

More About Function Calls

You'll see several function calls in action in later examples. For now, however, you should get a grasp on the two
forms of function calls. You have just seen one common form: the plain function call. It exists, as written, in the
following form:

functionname(parameter1, ...);

However, recall the role of the "return" value. In the lunch() example, after the function completes (the meal has
been consumed), the function returns the value of the variable satisfaction, which is a logical value of true or
false. Where is this value returned to? Mid-air? In the plain function calls above, the value is not returned
anywhere. It has nowhere to go. To make a function call that can accept a returned value, you make the call
within an assignment. For example:

morefood = lunch("pizza", "Coke");

In this case, the function lunch() will be called, and the food will be processed just as in the plain function call. In
addition, though, the logical value that is returned from the function will be assigned to the variable morefood.
From there, you might use morefood in future conditional evaluations later in the program.

Therefore, for the calling program to accept a return value from a function, the call is made in the form

variableforreturn = functionname(parameter1, ...);

Let's Make a Function!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (4 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

Now you're ready to define a real JavaScript function. No more talk about lunch. You will build on an example
that was already coded in the previous chapter. In Chapter 7, you wrote a small segment of JavaScript code that
calculated the daily gross profit on product purchases via a Web page. The special exception was that every 10th
purchase was free, so for every 10th purchase, a zero was added to your cumulative total.

Now let’s turn that segment into an official function. The task: Calculate daily gross profit, leaving every 10th
purchase out of the total. Return total gross.

To do that, you first define the function, which will be called promotion():

function promotion(orders, price) {

As you can see, you are sending two parameters to the function: orders, which represents the total number of
orders for the day, and price, which is an object for which each property is a price of sale for a given order.

Note that price is an object, which must have been created prior to calling the function; however, you have not
yet learned how to create an object because doing so is a variation on creating functions. For now, assume the
object price was created elsewhere in the JavaScript program. By the end of this chapter, you'll know how to
create objects for real.

Finally, write the { statements } section of the function.

var total = 0;
for (var count = 1; count <= orders; count++) {
if ((count % 10) == 0) {
continue;
}
total += price[count];
}
return total
}

For the most part, the example above is the same as the example code for the continue statement that was used in
Chapter 7. There are a couple of differences to note:

● The semicolons Remember that each statement should end with a semicolon. In this case, the variable
assignment to total is one statement; the entire for statement is one statement; and so is the if clause within
the for statement. The final statement—return—does not need a semicolon because it is the final statement
before the closing bracket. If you refer to the code above, you’ll find that this paragraph does make sense.

● Having said the above, I should add that JavaScript is flexible about the semicolon rule. Code without
semicolons works fine as well as long as two statements aren’t on the same line. However, if you type two
statements on the same line (such as “sales=0;price=9.95”), the semicolon is mandatory.

● The var statement, which is used twice In the previous chapter, you learned that the var statement is
superfluous except in one special case. Welcome to the special case. The "special case" is when you're

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (5 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

making new variables within a function. Any variables you create solely for use within the function (such
as a loop counter), should be made with a var statement. If you do it this way, the variable holds its value
only within the function statements. One advantage to this is that it might prevent you from overwriting
the value of a variable with the same name that exists elsewhere in the JavaScript program.

[ic:check]Motherly Advice

It’s because of this “special case” var situation that you’re encouraged to always use a var statement when
assigning values to variables. Doing so would prevent any possible mistakes that might occur if you forgot
to use a var statement when it really was necessary. Ultimately, the choice is yours. If you trust yourself to
remember to use var statements within functions, you may opt to forego them elsewhere. On the other
hand, if you tend to forget where you put your pen down five seconds ago, perhaps the recommended
var usage is the way to go.

The Whole Burrito: A Finished Function

For the purposes of science and education, in the previous example, you sort of decapitated the function
definition from the entire function body. Now you'll rejoin the two parts and wind up with one fully mature,
living, working function.

function promotion(orders, price) {
var total = 0;
for (var count = 1; count <= orders; count++) {
if ((count % 10) == 0) {
continue;
}
total += price[count];
}
return total;
}

Because this function's entire purpose in life is to calculate and return a value, you want to call it in an
assignment. So, wherever it is in your JavaScript program that you want to execute this function and use its
result, you would call it with an expression such as:

total = promotion(orders, price);

Although you needn't call the function with variable names that match the parameter names, in this case, you
have done so simply because the variable names are equally sensible labels in both portions of the program.

Making the Call

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (6 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

You can make a function call in any valid location for a statement. For example, you might include a function
call in an if...else statement, as in

if (hunger == true) {
morefood = lunch("pizza", "Coke");
} else {
watchtv("NBC");
}

Here, the fictitious function lunch() is called if the hunger condition is true, and the equally fictitious function
watchtv is called if the hunger condition is false.

Also note that a function can call another function in the course of its { statements }. However, there is an
important rule (which you’ll see again in a later chapter) that a function must have been defined before any calls
are made to it. Therefore, if you are calling one function from another, the function being called has to have been
defined previously in the JavaScript program (before the definition of the function making the call).

Top Loading

 Because functions
must be defined
before they can be
called, the best way
to avoid potential
problems is to
simply place all
function definitions
at the top of your
JavaScript program,
above any other
programming. Some
people recommend
placing all of the
function definitions
at the very top of the
Web page between
the <HEAD> and
</HEAD> tags so
they will always be
loaded before
anything else.
(You'll see an
example of that in a
later chapter.)

Even more interesting, a function can be passed as a parameter to another function. This
makes sense if you think about it. Consider the promotion() function defined earlier. It
returns a result of the gross profit for the day. Suppose you have another function, weekly,
which performs a weekly gross summary and takes two parameters: total sales for the
week (wkorders) and gross daily profit for the current day (the promotion() function). It
returns the value for current gross weekly sales. One might then call weekly with the
statement

weektotal = weekly(wkorders , promotion(orders, price));

Method Programming

Supposedly, Marlon Brando was a classic method actor. Of course, he was largely before
my time (and I stress "largely"), but there are methods in JavaScript programming as well.
Follow this closely: In JavaScript, a method is a function that is a property of an object.

Thus far, you have seen one type of object property: the common garden-variety variable.
An example was

sweater.color

However, it is possible for the property—and not the variable—to be a function. Thus,
imagine you have a function that calculates the price of a sweater based on other
characteristics, such as its material. The function itself doesn't matter now. You'll just
assume that the function fprice() has been defined and takes the parameter material. It is
assigned to the object property price. Now your whole sweater object looks like this:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (7 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

sweater.material
sweater.color
sweater.size
sweater.price()

The first three properties are variables and may be assigned values (as in the first example below) or may be
assigned to other variables (as in the second example):

sweater.material = "argyle";
or
buystock = sweater.material;

However, the fourth property is a method—a function within the object. Therefore, assigning a value to it is
nonsensical. Instead, it is something that you call. For instance, you might call the method sweater.price() and
assign the returned result to some other variable, as in this example:

total += sweater.price();

That's really all there is to a method. It is a function just like those discussed throughout this chapter; the only
difference is that it exists as a property of an object instead of "on its own."

Methods are created when an object is created. You haven't yet learned how to create an object, and doing so is
the only remaining building block you need to know for writing full-fledged JavaScript programs. Therefore,
Que proudly presents...the creation process.

Object Creationism

An object is, truth be told, a function. To use an object such as sweater in your program, you first need to define
its function. That provides the structure for the object.

The function, in this case, takes parameters that represent each property. But, as you'll repeat, the function merely
defines the structure of the object; it does not create the object itself. Thus, although you are ultimately interested
in creating a sweater object, its definition needn't be called sweater. Imagine, for example, that you sell several
sorts of topwear, such as sweaters, T-shirts, and tank tops. All of these may be defined by the same object
definition. Later, however, you'll create separate objects to represent each. Let’s do this by example.

For your first example, define a topwear object that does not contain a method. Instead, it contains three regular
variable properties: material, color, and size. Succeeding the function definition, watch the { statements } section.

function topwear(material, color, size) {
this.material = material;
this.color = color;
this.size = size;
}

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (8 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

Again, this example merely defines the structure of the object; it does not actually create an instance of the
object. You'll do that in a minute. Note, in the example, the use of the term “this.” In a sense, think of it as
JavaScript shorthand for "this object which you're considering." (There is another situation in which you will use
the this keyword; you’ll find out about it in a later chapter. For now, just note its use in defining an object.)

At this stage of the play, you have created the skeleton for any object that will be based on topwear. By skeleton,
I mean that you have defined what sort of properties and methods this object would contain. But you haven't yet
created an actual instance of an object, such as a sweater object with properties containing actual values. You do
that by assigning the above function to a variable, using a special function call known as the new function call.
Here’s an example:

sweater = new topwear("cotton" , "black" , "XL");

This example accomplished two feats. First, it created an actual object sweater—just like the one you've been
referring to throughout these chapters (except this one doesn't have a price property). Second, it assigned some
values to each of sweater's properties. Therefore, after executing the above expression, the following now exists
in the mind of your JavaScript program:

● sweater.material which is currently the value "cotton"
● sweater.color which is currently the value "black"
● sweater.size which is currently the value "XL"

Now this object and its properties may be used in the program in any of the circumstances in which you've used
objects. So you can create any number of new objects based on the topwear object definition. Simply use the new
function call, as shown here:

tanktop = new topwear("nylon" , "white" , "M");
tshirt = new topwear("twill" , "pink" , "XXL");

Now you have tanktop.material, tanktop.color, tanktop.size, and so on and so on for as many new objects as you
choose to create. Go wild.

Method Making

Defining an object that contains method properties is basically the same procedure as above. Recall that a method
is a property that is, itself, a type of function. So, re-create the topwear definition to include a price calculating
function—the one based on material, which you used in an earlier method example and called fprice.

First, you have to create the fprice() method definition (here, you'll use some silly formula to determine the
garment price):

function fprice() {
// Base price is $10, add various amounts based on material
var startprice = 10.00;
var addcost = 0;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (9 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

if (this.material == "cotton") {
addcost = 5.50;
}
if (this.material == "nylon") {
addcost = 2.50;
}
if (this.material == "argyle") {
addcost = 20.00;
}
return startprice + addcost;
}

Notice, above, the use of this.material. This is a useful form of JavaScript shorthand. Because fprice() is not an
independent function but a method of an object, this.property refers to properties in the parent object (topwear).
Now that this method definition is created, you will include a call to it in your topwear object definition.

function topwear(material , color , size) {
this.material = material;
this.color = color;
this.size = size;
this.price = fprice;
}

Above, when you create the "hook" between the price method of the topwear object and the fprice() function, you
simply type the name of the function (with no parentheses or parameters). At this time, you don't want to call the
fprice() function, so you merely attach it to the topwear object type.

Finally, create the new object sweater once again.

sweater = new topwear("cotton" , "black" , "XL");

This time, the object sweater contains these properties:

sweater.material
sweater.color
sweater.size
sweater.price()

To access the price of a particular sweater, you would call the method sweater.price() with an expression such as

price = sweater.price();

So, quick quiz. Given all of the above, what would the value of price be?

Answer: price is assigned the value of sweater.price. sweater.price, in turn, refers to the method fprice(), which is

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap08.htm (10 of 12) [01.06.2001 00:37:38]

Complete Idiot's Guide to JavaScript

part of the object sweater. sweater is an object with properties defined by the definition topwear. sweater.material
holds the value "cotton". fprice calculates a total cost based on this material property, which works out to 15.50.
Therefore, sweater.price holds the value 15.50, and finally then, price is assigned the value 15.50.

As is good practice when reading programming books, read the previous passage a few more times and follow its
logic through the code segments illustrated in the example.

Congratulations are in order. This completes the last of the building blocks of JavaScript programming.
Everything you do from now on in JavaScript is based on the concepts covered in Chapters 5 through 8:
variables, objects, literals, operators, statements, functions, and methods. The next few chapters will explore how
these apply to specific JavaScript and Web-related applications. But first, it’s time for an intermission for rest and
recovery (for me, that is; you can continue reading whenever you want).

The Least You Need to Know

This chapter strongly demands a close reading. Nonetheless, contractual obligations being what they are, here’s
the obligatory summary:

● A function is a self-contained program code element that is defined one time. It may be called upon by the
remainder of the JavaScript program at any time to perform its actions.

● Functions may accept parameters—values given to them upon calling—and may return results to the
calling program.

● Functions are defined with this statement
function funcname(parameter1, parameter2, ...) {
statements
}

● Functions can be called with a plain call:
funcname(parameter1, ...);

● or in an assignment operator expression if returned results are desired:
variable = funcname(parameter1, ...);

● Object definitions are created by defining a function that describes the properties of the object (really, it's
a good idea to read the chapter to grasp this).

● Methods are functions that are properties of objects. First their functions are defined, and then they are
assigned to a property in the object definition.

● An actual instance of an object is created by making an assignment operator call to an object-defining
function using the keyword new. Huh? It’s like this:

objectname = new objfunction(property1, property2, ...);
● All functions should be defined in the JavaScript program prior to any other code.

Complete Idiot's Guide to JavaScript

Chapter 9
An Eye on Events

In This Chapter

● Behind the events
● Watching and waiting
● Ready, set, trigger—event handlers
● Homework examples

Welcome back from intermission. (I had cookies.) Thus far, we’ve looked at several building blocks for writing
JavaScript programs: operators, names, statements, and functions. The natural question, then, begs: “How do I
make something useful out of all this?"

In answer to this question, I’ll first show you several interactive and reactive facilities of JavaScript (in this case,
event handling). In short, that is what enables your JavaScript program to recognize and react to user actions
within a Web page. First, however, allow me to finish my cookie...crunch crunch—mmm—okay. Thanks.

The Main Event

By and large, the execution of your JavaScript programs needs to be "triggered" by something. Although you
may, in some cases, want code to execute immediately when the page loads, much of JavaScript's usefulness
comes in its capability to be triggered.

Consider the mugs and sweaters you've been selling in program examples in the previous chapters. Most of those
examples revolve around calculations you would upon receipt of a new purchase order from a Web user. Thus,
receiving a new order triggers those JavaScript programs. Anything that might trigger execution of JavaScript
code is known as an event.

Events are most often triggered by the user of your Web page. Common events include clicking on page elements
(radio buttons, form submit buttons, URL links, and so on), entering values, and positioning the mouse pointer
over certain elements. Your JavaScript program and/or programs that reside in the HTML source of the page will
usually be triggered by these various events. Therefore, you need to learn what these events are, how to watch for
them, and how to trigger JavaScript code in response.

Who They Are

Each event has a name by which you'll refer to it, so the logical place to begin is with a name and description of
each event JavaScript is capable of recognizing. The eight events are covered in the following subsections:

Click

The Click event occurs when a user clicks the mouse button on either a link or a form element. Form

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (1 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

elements include buttons, check boxes, and "reset" or "submit" buttons (see the following figure).

Clicking any of these areas generates a Click event.

New to JavaScript 1.1 is the ability for the Click event to cancel an action. For instance, imagine that a
user clicks a hyperlink. The new Click event can be called to display a confirmation box; from there, if the
user chooses “Cancel,” his browser will not follow the hyperlink.

Focus

The Focus event occurs when a user clicks or uses the Tab key to bring attention to a given form element.
That is, when a user clicks a form element to activate it and prepare it to accept an entry, a Focus event
occurs. For certain form elements, such as a button, clicking on it triggers both a Click and Focus event.
Form elements such as text boxes, though, don’t possess Click events, although they do trigger a Focus
event when clicked on. Note that the Focus event occurs before the user enters data into the element; focus
merely occurs when the element is activated for use. (Because some people use the Tab key to move
between form elements, that also triggers a Focus event as each element becomes active.)

Blur

The Blur event is the opposite of the Focus event: it occurs when a user removes the focus from a
currently in-focus form element, either by clicking or tabbing to another form element (thus moving the
focus to a new element) or by clicking on some inactive region of the page (thus removing focus from all
elements).

Both the Focus event and the Blur event are enhanced in JavaScript 1.1. Bringing focus into a window
(such as the browser window) or a frame can now trigger the Focus event. You can use this feature, for
example, to change the background color of a frame when the user brings focus to it. Likewise, the Blur
event can be trigged by removing the focus from a window or a frame. For example, imagine a scenario in
which a user clicks within a frame to bring it focus, and the Focus event changes the background frame
color. You might choose a certain color, such as medium blue, to represent that this frame is “active.”
When the user clicks outside the frame, the Blur event is triggered, which might change the background
frame color to some other shade, such as light blue, to represent that its “inactive.”

Change

The Change event occurs after a user modifies the input into a form element such as a text input area. It
also occurs if a selection is made from a selection box (the form element that allows a user to make a
selection from a scrolling list of choices). Note that the Change event occurs only after a modified entry
loses focus. That is, the moment a user begins entering data into a form element, the Change event is not
triggered. It is triggered when the user finishes entering data (i.e., when he removes focus from the
element by clicking elsewhere).

Modifying the text input area or choosing an entry from the selection box generates a Change event (when

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (2 of 11) [01.06.2001 00:38:39]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig02.jpg

Complete Idiot's Guide to JavaScript

focus leaves the element).

MouseOver

The MouseOver event occurs when the mouse pointer is over a link. While using the Web, you may have
noticed that when you move the pointer over a link within a page, the URL address of that link appears in
the status bar. That is an example of a MouseOver event.

New to JavaScript 1.1, the MouseOver event can also be triggered when the pointer passes over a defined
area within a client-side image map.

MouseOut (New to JavaScript 1.1)

Somewhat the reverse of the MouseOver event is the MouseOut event, which occurs when the mouse
leaves the region over a hyperlink or an area within a client-side image map. If areas or hyperlinks are
adjacent to one another on a Web page, a MouseOut event might also lead to a MouseOver event as the
user moves the pointer away from one link and over another. You can use this combination, for instance,
to highlight an option as the user passes his mouse pointer over it.

Select

A Select event occurs when a user selects text within a form's text entry element (highlights the area of
text by dragging the mouse across it while holding down the left button). A user might do this just before
modifying the text in the entry. The following figure shows selected text in a form entry element.

In this text input form, the user has selected some text prior to modifying it, which generates a Select
event.

Submit and Reset

A Submit event occurs when a user clicks the "Submit" button of a form element (see the following
figure). Note that this event occurs before the form is actually submitted (as defined in the <FORM> tag).
This enables you to trigger JavaScript code that might perform some analysis or evaluation, and as a
result, it allows or prevents the form from actually being submitted.

A Submit event is generated when the user clicks the Submit button. In JavaScript 1.1, clicking the Reset
button triggers a Reset event.

New to JavaScript 1.1 is Reset, a sibling to the Submit event. The Reset event occurs when the user clicks
the “Reset” button in a form. Any JavaScript code triggered by this event is executed before the form data
is reset.

The eight events you just read about are the basic events that may occur in a Web page as a result of user

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (3 of 11) [01.06.2001 00:38:39]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig03.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig03.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig04.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig04.jpg

Complete Idiot's Guide to JavaScript

interaction. From these events, you will choose which are relevant to watch for within your particular
page, and what JavaScript code to trigger as a result.

One Eye Open: Watching for Events

For each particular page element (link, form, and so on), you specify events to watch for in the form of an
attribute of the tag that defines that element. Event attributes take this form:

onEvent="JavaScript code"

First, consider a simple example; after all, specifics make more sense than general definitions.

Recall the link tag in HTML. In typical HTML, you would define a link in the following way:

Text to appear highlighted in page

The user browsing your Web page sees "Text to appear highlighted in page" as a colored link. If he clicks that
link, he is taken to the new page defined by the URL specified in the HREF attribute.

This is typical HTML. Now, let's add event watching to it. Suppose you want to launch a certain JavaScript
program if the user moves the mouse over the link. That would require a MouseOver event trigger. Recall that
you watch for an event with the attribute—in this case, you watch for onMouseOver="JavaScript code". To do
so, you add the attribute into the tag that defines the link, modifying the example in this way:

Text to
appear highlighted in page
For example, you can change the message in the browser’s status bar to display the resulting action of

clicking a button:
<form>
<input type=button value=”Roll Dice” onMouseOver=”window.status=’Click this
button to roll the dice and begin a new round’>
</form>

Keystone Caps

Remember that JavaScript is case-sensitive. Within JavaScript code, it matters whether you refer to a
variable with upper- or lowercase letters. Referring to JavaScript statements with uppercase letters will
result in errors. However, HTML code is not case-sensitive. Tags and their attributes (which includes
onEvent attributes) can be in either upper- or lowercase. For the purposes of writing this book, though,
I use “onEvent” because it is easier to read than “onevent.” Do remember that any JavaScript code
included between the quotation marks in the onEvent attribute is subject to JavaScript's case-sensitivity.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (4 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

Between the Lines: Calling an Event Handler

Let's consider the portion of the preceding link that you've been labeling "JavaScript code" (which follows
the onEvent= portion of the attribute). What should go in there?

The first rule is that you must include the surrounding double quotation marks as previously written. So
no matter what, the event watcher must say onEvent="somethingsomething". The actions specified
between the double quotation marks are known as the event handler. This makes sense because they
describe how to handle the event when it’s triggered. The event handler is your JavaScript program code.

Basically, you would call two types of JavaScript event handlers between those double quotation marks:
the function call and explicit code. In JavaScript 1.1, you have a third option: resetting an event handler in
JavaScript. The following sections cover the three types of event handlers in greater detail.

Function Call

The function call is the most common and desirable event handler. This is why functions are so useful. In
a nicely constructed Web page, you define each function intended to handle a particular event at the top of
the page in the <HEAD> section. Then, in the course of the page, you call each function as required by
your event watchers (the onEvent attributes).

In the case of a function call event handler, the previous link example might resemble this:

Text to appear
highlighted in page

In this example, when a user positions the mouse pointer over the link (which would take him to
http://www.yahoo.com if he actually clicked it), the JavaScript function myfunction(parameter) is called.

Important Parameter Bulletin

Note that the onEvent attribute requires double quotation marks around its definition. This means
that if you want to send a string literal as a parameter in the function call, you cannot use double
quotation marks to specify the literal. For example, suppose you want to call printfancy ("Nice work!")
as the event handler. To do so, you have to use single quotation marks for the string literal so it won’t
be misinterpreted as the close of the onEvent attribute. Thus, you have to write
onEvent="printfancy ('Nice work!')".

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (5 of 11) [01.06.2001 00:38:39]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#21

Complete Idiot's Guide to JavaScript

Explicit Code

Besides the elegant solution of a function call, you can write out explicit JavaScript statements within the double
quotation marks. You can write an entire JavaScript program of any length, but anything more than a statement
or two is probably a good candidate for a function. You should remember two notable rules if you write out
JavaScript code as an event handler:

● You cannot use any double quotation marks. You're limited to using single quotation marks (‘) anywhere
a quotation mark is needed, because a double quotation mark (“) would be interpreted as closing the
onEvent attribute.

● You should separate the JavaScript statements with semicolons.

Here is an example of the same link definition, but with explicit JavaScript code as the event handler:

<A HREF="http://www.yahoo.com" onMouseOver="total=0 ;
for (count=0;count<=10;count++) {total += 5} ;
half=total/2">Text to appear highlighted in page

Now, I didn't say this example did anything useful; in this case, when the user moves the pointer over the link,
the event handler is executed. It adds the value 5 to the variable total ten times in a loop, and then assigns half of
total to the variable half. Perhaps at some later stage in the Web page, these variables will be used for some
further calculations. In any case, the above is an example of explicit JavaScript code as an event handler.

Event Handler
Rules

You cannot specify
an external file as
the JavaScript event
handler within the
onEvent attribute.
However, as
previously
discussed, you can
include external
JavaScript functions
at the HEAD of the
Web page with the
<SCRIPT src="URL
of myfuncs.js"> and
</SCRIPT> tags,
and those functions
may then be called
normally as event

Resetting an Event Handler in JavaScript 1.1

Both event handlers above (function calls and explicit code) were specified within HTML
tags. In JavaScript 1.1, it’s also possible to set an event handler within JavaScript code.

For instance, suppose your Web page has a form button named ClickMe. You can define
an event handler for ClickMe within JavaScript code as follows:

document.formname.ClickMe.onclick = function1

In the above example, ClickMe is a button within the form formname. We’ve assigned
function1 to be the event handler for a Click event of ClickMe. Note that the function
above is not followed by the traditional parentheses, as in function1(). When setting an
event handler in JavaScript code, you leave out the parentheses; including them would
cause the function to execute immediately.

Using code like that above, you can change the event handler assigned to an event, even if
that event handler was previously defined in HTML tags. You’ll see a simple example of

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (6 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

handlers in the
onEvent attribute.

this later in the chapter.

Examples, Exemplars, and Instantiations

At this point, you know the events, you know how to watch for them in HTML tags, and you know how to call
the JavaScript event handlers. In fact, that's all you need to know. However, for the sake of clarity, let’s run
through examples of event triggers for some more types of events. Although they all follow the same rules
(outlined earlier), it's nice to see how a specific event is handled so you can refer to it later on.

onClick

Imagine a form in which the user will click a check box to indicate his marital status. Upon
clicking—whether they check it on or off—you might want to trigger a JavaScript function that uses the
marital status in some other calculation. (Keep in mind that forms are defined with <FORM> tags in
HTML; however, the specifics of that are not the subject of this book.) Assuming you know how to define
a form element, the following is the line that defines the check box and onClick event trigger:

<INPUT name=married TYPE="checkbox" onClick="marstat(this.checked)">Married?

The preceding line first defines a check box according to conventional HTML standards. Then you
include the onClick attribute discussed in this chapter. Note that you make a function call as the event
handler. And presumably, you defined the JavaScript function "marstat()" earlier in the page. So far, this
is just like previous examples of event triggers.

However, what might strike you as different, upon first glance, is the fact that you pass the parameter
this.checked to the function marstat(). What is this.checked? It's composed of two parts—this and
checked. Let's consider each, as this concept will reappear in subsequent examples.

The above is a form, and after all, it is the data entered into this form that you want to pass to the event-
handling function. A form is considered an object in JavaScript, and as you may recall, an object
possesses a set of properties. Because the form above happens to be a check box form, as far as JavaScript
is concerned, it’s a check box object. The check box object is a built-in JavaScript object that contains
four properties, one of which is named checked. The checked property is a Boolean value indicating
whether the check box is checked on (true) or off (false).

Therefore, this.checked refers to the property checked, which is part of the object "this form," which
happens to be a check box object. So in the previous function call, this.checked represents a Boolean value
reflecting the state of the check box, and that is the parameter that the JavaScript function marstat desires.

onClick and Canceling an Event

As I mentioned earlier in the chapter, JavaScript 1.1 adds the capability to cancel an onClick event. Let’s
look at a typical use of this. Suppose you have a form with a Submit button. When the user clicks the
Submit button, you want him to confirm that he truly wants to submit the form data. Below is the HTML
code for the Submit button:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (7 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

<INPUT NAME=submit TYPE=”submit” VALUE="Submit Data" onClick="return confirm('Submit
Data?')">

Notice the event handler you’ve assigned to the onClick event above: “return confirm(‘Submit Data?’)”.
This calls the JavaScript confirm() function, which displays an “OK or Cancel” window for the user. If the
user selects Cancel, it is returned to the onClick event, which cancels the process of submitting the form.
Obviously, then, if the user selects OK, the onClick event proceeds with the form submission.

onFocus

In this case, you will create an event trigger that will occur if the user moves the page focus to this form.
The form will be a simple one-line entry blank, but that doesn't matter; this action is triggered by the
activation of the form element, not by the data that is placed into it. When focus is placed on this element,
an explicit JavaScript statement is executed.

<INPUT NAME=age TYPE="" ROWS=1 SIZE="3" onFocus="window.status='Nice
_focus'">Your age?

Again, you watch for and trigger this event just as in all previous examples. Instead of calling a JavaScript
function upon triggering, you execute a JavaScript statement. In this case, you assign a string value (note
the single quotation marks) to an object property. You won't learn about the window object until the next
chapter; for now, just note that this particular JavaScript statement will cause the specific string value to
appear in the Web browser's status line.

When the user brings focus to the form element, the onFocus event changes the message in the window’s
status line.

onSubmit

In this example, you'll watch for the user attempting to submit a form. Perhaps you’ve provided a text box
in which the user is to enter an e-mail address. After entering the address, the user must click the Submit
button (typical HTML form design). Suppose you also wrote a JavaScript function that can look at the
information the user entered and determine whether it is a plausible e-mail address (i.e., that it has the
proper format for an e-mail address). The following code will trigger this hypothetical function, evalform
(address), when the user attempts to submit the form.

<FORM onSubmit="evalform(this.email.value)">
<INPUT NAME=email TYPE="text" ROWS=1 SIZE="20">Enter your e-mail address
<INPUT NAME=submit TYPE="submit">
<INPUT NAME=reset TYPE="reset">
</FORM>

Alrighty then. As this is the final onEvent example, it's the most complicated. Let's tear this beast apart
and see what's going on up there.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (8 of 11) [01.06.2001 00:38:39]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig05.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/09fig05.jpg

Complete Idiot's Guide to JavaScript

For now, completely ignore the onSubmit attribute; we'll look at it last. Everything else should look like a
typical HTML form. After the <FORM> tag, you define a text entry blank that is one row high and 20
spaces wide. You name this element email, using the NAME= attribute. (This name does not appear on
the screen; it is for program reference only.) The text following the <INPUT> tag will appear on the
screen beside the element. Again, this is standard HTML form syntax.

Below that line, you create another element, a Submit button, and below that, you create a Reset button (in
case the user wants to clear the text-entry element). Now look at the event handling in this form, which is
defined in the opening <FORM> tag. Because you want to call your function when the user submits the
form via the Submit button, you use an onSubmit event watcher. Then, as in the previous examples, you
define the event handler as a function call to the function evalform(). This should be familiar territory by
now. What's worth special note, however, is the syntax of the parameter you are sending to the evalform()
function. The evalform() function (if it existed) would accept the user's input into the text-entry element of
the form and determine whether it were a plausible e-mail address. You refer to this data with the name
this.email.value. Why?

As usual, “this” refers to the main object in question: this form. The text-entry element is a property of the
form, and it is named whatever you named it with the NAME= attribute. (Psst! You named it email.)
Finally, email itself (the text-entry element) is also an object—another built-in JavaScript object (the text-
entry form element is a built-in object, which you named email within this particular page). One of the
properties of the text element object is value, which contains the actual data entered into the element. So
there it is: this.email.value refers to the data entered into the text element named email, which is a
property of "this" form in question.

The preceding code will pass the correct user input to the function evalform(parameter). This function
should then return a true or false value upon making its evaluation—because the JavaScript statement
return true or return false is the last statement in the function definition. If it returns a value of true, the
submission will proceed in whatever manner you intend to handle it (usually this is done with the
METHOD= attribute of the <FORM> tag, but you didn't include it here because it is the stuff of HTML
coding, not JavaScript). If it returns a false value, the submission will not proceed.

Resetting Event Handlers in JavaScript 1.1

Earlier in this chapter, you learned that in JavaScript 1.1, you can set or assign event handlers within JavaScript
code. You saw that in the following example:

document.formname.ClickMe.onclick = function1

Now let’s elaborate on the above code to see how you can better take advantage of this new feature of JavaScript
1.1. Imagine, for instance, that your page contains two form elements: a button and a check box. When the user
clicks the button, the onClick event calls an event handler; however, which event handler it calls depends upon
whether the check box is checked or unchecked.

Consider the JavaScript 1.1 code below:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (9 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

<SCRIPT>
function event1()
{window.alert("Checkbox enabled")}
function event2()
{window.alert("Checkbox disabled")}
function check()
{
if (document.Formica.checkbox.status == true)
{document.Formica.ClickMe.onclick = event1}
else {document.Formica.ClickMe.onclick = event2}
}
</SCRIPT>
<FORM NAME="Formica">
<INPUT TYPE="checkbox" NAME=checkbox STATUS=true onClick="check()">Checkbox

Enabled<HR>
<INPUT TYPE="button" NAME=ClickMe VALUE="Click Me!">
</FORM>
<SCRIPT>check()</SCRIPT>

In the above code, you first defined three functions: event1(), event2(), and check(). Both event1() and event2()
are event handlers for an onClick event of the ClickMe button. The function check() is our focal point: it
determines the status of the check box and sets the appropriate event handler (either event1 or event2) to the
onClick event for the ClickMe button.

In action, if the user enables the check box and then clicks the ClickMe button, a JavaScript alert window
appears, stating that the check box is enabled. Conversely, if the user disables the check box and then clicks the
ClickMe button, an alert window appears, stating that the check box is disabled.

Notice that you define an onClick event in the HTML tag for the check box, thus calling the check() function and
properly assigning the event handler for the ClickMe button.

Lastly, notice the final line of code in the above example:

<SCRIPT>check()</SCRIPT>

This explicitly calls the check() function one time so that the ClickMe event handler is properly set before the
user first clicks the check box.

The Least You Need to Know

Once again, reading the full chapter is an excellent idea. The following list is a fair summary, but it’s far from
detailed instruction.

● An event is any user action such as a click, mouse movement, text selection, or form entry.
● Event handlers are the JavaScript programs that execute when triggered by a specified event.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap09.htm (10 of 11) [01.06.2001 00:38:39]

Complete Idiot's Guide to JavaScript

● Event handlers can be triggered using the onEvent="javascript code" attribute within the tag defining the
element being watched.

● Events that can be triggered include onClick, onFocus, onBlur, onChange, onMouseOver, onSelect, and
onSubmit.

● In JavaScript 1.1, the onBlur and onFocus events now also apply to windows and frames.
● JavaScript 1.1 now includes the events onReset and onMouseOut.
● Event handlers can be set or reset in JavaScript 1.1 within JavaScript code, as in:

document.formname.button.onclick = functionname

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 10
How Much Is That Object in the Window?

In This Chapter

● What's behind your window
● Setting the status bar
● Referring to frames
● User interactions
● Building new windows and razing them
● Geraldo Rivera finds Twix bars buried in the Andes

As you've seen, the purpose of JavaScript is to play a role in the workings of a Web page. In Chapters 5–8, you first
learned the programming foundations of the JavaScript language itself. Then I ate cookies. In Chapter 9, you saw
one way to integrate JavaScript programs in the functionality of a Web page—via event triggers.

Welcome, then, on to Chapter 10. You now begin a journey into using JavaScript to interact with and/or control
various characteristics of the Web page itself. You'll start at the top with what is known to programming
cognoscenti and exterior decorators alike as "the window."

The Looking Glass

Imagine launching your Web browser. After some hard drive activity, the browser pops onto the screen, and you are
presented with an initial Web page. It is that space on your screen where the Web page appears that is the
"window." In fact, your Web browser is mostly one huge window, although it has some navigational controls above
the window and perhaps some status information below the window.

Your “window into the Web” is, in fact, “the window.”

Everything that appears within a Web page, therefore, must appear within the window. For this reason, the window
is called the "top-level" object. Recall the JavaScript definition of an object (such as the sweater object). Everything
about the sweater—material, color, size, and price—is a property of the sweater. In this case, everything about the
Web page—its colors, background image, form elements, and so on—is a property of the window. In terms of
JavaScript, then, the window is considered an object.

That is the thrust of this chapter: looking at the window instead of merely looking through it.

Properties

The window object contains several properties that you might need to reference, along with some nifty examples as
your bonus gift. Keep reading.

The status Property

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (1 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/10fig01.jpg

Complete Idiot's Guide to JavaScript

Look at the bottom of the window in the previous picture. The small area in the bottom frame of the window
currently reads "Document: Done."

That area is the status line, and the Web browser uses it to report...well...status messages to the person using
the browser. In this case, the status message tells you the document has finished loading. You, as a proprietor
of JavaScript and controller of the window object, can conjure up your own messages to display on the status
line.

The basic template for setting the status message text is

window.status = "messagetext"

The most likely places you would use the status property are in an onEvent trigger or the function that acts as
an event handler. To create an example of the latter, you can create a Web page with two buttons on it. Label
one "Try me!" and the other "Over here!" When the user clicks either, the status line will display an
appropriate message. You'll define a function msg(msgtext) to act as the event handler.

<html><body><head>
<script language="JavaScript">
function msg(msgtext)
{window.status=msgtext}
</script></head>
<form><input type=button value="Try me!" onClick="msg('That was nice')"></form>
<form><input type=button value="Over here!" onClick="msg('Hey there')"></form>
</body></html>

The function accepts a parameter from the onEvent call and assigns that value to window.status. That's the
relevant heart of this example. Down below, where you define the form element buttons, you use the
traditional onEvent call as discussed in Chapter 9. Note that you pass string literals to the function; you
enclose them in single quotation marks.

If you load the above file into your Web browser, you'll see a window with two buttons. Clicking either of
them brings up its associated status line message, as shown here.

Have fun clicking buttons and setting the window’s status message.

The opener Property

As you’ll see later in this chapter, you can cause a window to open a new window by using the open()
method. A new feature of JavaScript 1.1 is the opener property, which refers to the window that opened the
current window. For example, suppose you have these two windows: Window1 (which caused Window2 to
open) and Window2 (assuming you’re currently within Window2). In this case, the following code:

window.opener
would refer to Window1.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (2 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/10fig02.jpg

Complete Idiot's Guide to JavaScript

Using the opener property, you can cause changes to the opening window using code within the current
window. For instance, suppose again that Window1 has opened Window2. In JavaScript code that has been
loaded into Window2, you could make the statement

window.opener.close()
which would close the window that opened the current window (Window1, in this example).
In a similar vein, you could change the background color of the opening window with this statement:
window.opener.document.bgColor=”yellow”

The self Object

Some claim it pretentious to refer to yourself, but in JavaScript you won't be ostracized for doing so. In fact,
sometimes, you have good reason to. Technically, self is a synonym for window. Therefore

self.status = "Wake up!"

is the same as

window.status = "Wake up!"

However, the JavaScript creators realized the potential conflict. Let's say you created a form element in your
page that has the internal name "status" (as defined by the NAME= attribute of the form element tag). In this
case, if you ever referred to it in a window property construction, it would be unclear whether you meant the
window status line property or the form named status.

Therefore, you have the option of using self.property in cases where there may be ambiguity. Of course, you
might not create any ambiguity in the first place when naming your form elements—but just in case, self is
there for you.

Frames

Frames aren't discussed much in this book because they are a Netscape HTML invention. And, in general,
I've avoided overly complex HTML codes because this is a book about JavaScript and not HTML.
Nonetheless, the two are bedfellows: They both contribute to a Web page's design and functionality.

If you don't already know how to code frames into HTML, this book isn't the place to learn. But as a
reminder, frames are subwindows within the main window of a Web page. Thus, the top-level window of the
Web page pictured here contains three frames.

This window object contains three frames.

It's quite logical, then, that each frame is a property of the window object. In turn, each frame has its own
properties because each is its own minidocument and thus possesses the properties that any document would
have (Chapter 12 covers all this).

Each frame is referred to as window.frame[0], window.frame[1], and so on. Therefore, as you'll see when we

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (3 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#22

Complete Idiot's Guide to JavaScript

talk about document properties in Chapter 12, the properties within a frame can be described as
window.frame[0].property. For now, this is all you need to know: each frame is a property of the window
object.

Methods

In the spirit of "many different names for the same thing," you might remember that a method is a function that is
part of an object. (You coded a method called sweater.price() back in Chapter 8.) Thus, the object window also has
a set of methods associated with it. You can (and will) use these for a variety of useful purposes; therefore, you will
now embark on a guided tour of window object methods.

alert()

What better way to let the user know something than by shoving it in his face? Enter the alert. An alert, in
general-speak, is one of those message windows that appears on-screen to tell you something. Usually, it has
an "OK" button you click to signal that you've read this urgent message and would like to continue. The
following figure shows a typical alert.

Code red! Alert! Abandon ship! This is a common alert window.

Consider the hypothetical example where you requested that the user enter his e-mail address into a form text-
entry element. You saw previously (in Chapter 9) that you can use an onSubmit event trigger to check the
user's entry for validity before allowing the submission to proceed. Let's build on that example. Suppose the
submitted address is deemed nonplausible, and you want to display an alert telling the user that he is an
abject liar.

The format for the alert method is: window.alert ("message").

After the user acknowledges the alert by clicking the "OK" button, JavaScript will move on to the next
statement in your code or function. To reprise, your function evalform() was triggered by the following:

<FORM onSubmit="evalform(this.email.value)">
<INPUT NAME=email TYPE="text" ROWS=1 SIZE="20">Enter your e-mail address
<INPUT NAME=submit TYPE="submit">
<INPUT NAME=reset TYPE="reset">
</FORM>

Presumably, then, you have defined the function evalform() earlier in your document. It might go a little
something like this:

function evalform (address)
{ crucial = address.indexOf ("@") ;
//the above uses a method of the string object to locate an at-sign in
//the submitted form
if (crucial != —1)
{ return true } ;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (4 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/10fig04.jpg

Complete Idiot's Guide to JavaScript

 else
 { window.alert ("Your e-mail address is invalid! You are an abject liar!") ;

return false }
}

The preceding function accepts a parameter, which is the submitted e-mail address to validate. The
address.indexOf property is a method of the string object (covered in Appendix A at the end of this book),
which returns the position of the specified character within the string. In this case, you're searching for an @
symbol because all valid e-mail addresses have this symbol. The position of that symbol is assigned to the
variable crucial and will be a value of –1 if the symbol is not found in the string. This will be your only test
because this is simply an example.

Following that, you use a standard if...else clause: if the @ symbol is not located, the window.alert method is
called to give an appropriate scolding to the user. Also note that the Boolean false is returned to prevent
submission of the form. Lastly, the else clause takes care of the condition where the @ was located and
simply returns a logical true, which allows the submission to proceed.

confirm()

The confirm() method is another type of message box. If you've ever used a computer—and at this stage of
the book, I deeply hope you have—you've seen confirmation messages. They typically pose a question or
proposition, and you are asked to choose between OK and Cancel.

This is how you use the confirm() method of the window object:

window.confirm ("message")

This method returns a true value if the user opts for the OK option or a false if he selects Cancel. In some
cases, because a result is returned, you might want to call this method as somevariable = window.confirm
("message").

Next, you add a confirm() method to the e-mail validation function. In this case, if you determine that the
address is valid, you repeat it to the user in a confirmation message so he can verify its accuracy. To do so,
simply add the following highlighted code to your evalform() function:

function evalform (address)
{ crucial = address.indexOf ("@") ;
if (crucial != —1)
{ message = "You entered " + address + " —— is this correct?";
return window.confirm (message) } ;
else

 { window.alert ("Your e-mail address is invalid! You are an abject liar!") ;
 return false }
 }

You've added only two lines to the previous version of this function, and both occur in the true (address is

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (5 of 10) [01.06.2001 00:39:18]

Complete Idiot's Guide to JavaScript

valid) condition. First, you created the message to use in the confirm() method by making a variable message
to which you assigned three concatenated strings using the string concatenate operator (+). Below that, you
called the window.confirm() method with the previously made message, which is what the user will see.
Note that you make the method call as part of a return statement; the confirm() method will return a true or
false, and you want to pass that result back to the calling form, which will then proceed with or cease the
submission.

Now let’s assume you executed this little e-mail entry JavaScript program and entered an e-mail address that
passed validation. The above would generate something that looked like the following figure:

You’re being asked to confirm your entry. JavaScript is fun.

prompt()

The prompt() method displays a nifty message box, into which you may ask the user to enter some sort of
information. That information is then assigned to the variable to which this method is assigned, to be used as
you may want for any other purpose. For this example, consider a new scenario: You present a series of form
buttons, each one of which represents an astrological sign. Somewhere in the Web page, the user is told to
click whichever sign belongs to him. Upon doing so, you then prompt the user to enter his age.

The prompt() method works as follows:

somevariable = window.prompt ("prompt message" , defaultvalue)

The prompt message represents the proposition you want to put to the user. The defaultvalue represents some
data that you'd like to appear in the prompt by default. If you have no preferred default value, just enter two
double quotation marks in that spot like this: "".

In this example, you'll validate the age the user enters to be somewhere within the known human lifespan. If
it fails this test, a scolding alert will appear, and then he will be asked to enter his age again. If the age he
enters this time passes, the user will be thanked.

You Make the
Call

 Note that although
you don't do
anything else with
his age in this
particular example,
you may choose to
use it for any other
programming
purpose you like.

Here is the full code of your little programming feat:

<script language="JavaScript">
function getage ()
{ age=window.prompt ("How old are you?","") ;
if ((age<1) || (age>120))
{ window.alert ("Why must you turn this page into a house of lies?") ;
getage () }
else
{ window.alert ("Thank you.") }
}
</script>
<FORM>
<INPUT NAME=gemini TYPE=button value="Gemini" onClick="getage()">Click your

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (6 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/10fig05.jpg

Complete Idiot's Guide to JavaScript

sign</FORM>

Several examples are worth noting in this program. Jump to the final line first—the <FORM> definition.
Here, as usual, you define a form element (a button) and include the onClick event trigger. To handle the
event, you call the function getage(), which takes no parameters. Standard stuff.

Now up to the function definition itself (at the top of the program). The first statement in the function
definition is your prompt() method. It asks the user "How old are you?" and presents her with an entry blank
with no default value. Whatever the user enters is assigned to the variable age. You then test age for validity,
using an if...else statement. Note the nifty conditional in the if clause, which uses a logical operator (OR) on
two comparison operators.

Should the age be deemed invalid (outside the range 1–120), an alert appears, accusing the user of duplicity.
Note that after the accusatory alert, the function getage() is then called again. (Yes, it calls itself.) That
essentially restarts the function, thus letting the user start all over with the age prompt.

On the other hand, if the age falls within the acceptable range, an alert appears, merely thanking the user for
his input and ending the function. The following figure shows the prompt method in action:

Not poking or prodding, just prompting.

focus() and blur()

Newcomers to JavaScript 1.1, these two methods simply enable you to bring focus to or remove focus from a
specific window object. For instance, recall the new opener property (covered earlier in the chapter):

window.opener.focus()

This would return focus to the window that opened the current window. Similarly, you could remove focus
from the current window using this code:

window.blur()

scroll()

Another neat addition to JavaScript 1.1 is the scroll() method. This allows you to scroll a specified window
to an x,y pixel coordinate point. For reference, the coordinate 0,0 always refers to the upper-left corner of a
window. Thus,

window.scroll(0,0)

would scroll the current window to its upper-left corner. Increasing the y value scrolls the window further
down the document, while increasing the x value scrolls the window further toward the right of the
document. You can even scroll a window other than the current one by using this statement:

window.opener.scroll(0,200)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (7 of 10) [01.06.2001 00:39:18]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/10fig06.jpg

Complete Idiot's Guide to JavaScript

open() and close()

Finally, at the sunset of your journey into the window object, consider methods that give rise and fall to
windows themselves.

You can use the open() method to create an entirely new browser window. When you do, the current window
remains in place, but a new window is opened on the desktop. The new window is essentially another Web
browser, and you define its characteristics—including size, title, document to open, navigation buttons to
make available, and so forth—with the open() method.

Why would you use this method? Perhaps, in your Web page, you want to show the user an example of
something on another Web page. Instead of loading that example page within your current window and
eliminating your explanation from the screen, you might open a new adjacent window that contains the
example. At the end of the example, the user could either manually close the new window himself or choose
some "I'm done" button, which would trigger the close() method to close the new window.

The formats for these methods are

window.open ("UrlToOpen","windowname","feature1,feature2,feature3,etc.")
window.close ()

The window.close() method must be contained in JavaScript code within the window to be closed. One
window can't close another window; a window can only close itself (window suicide). Therefore, using the
window.close() method is simple; just include a call to it as the event handler for some element, such as a
form button, that indicates to the user he is done with the window.

The window.open() method has a few more parameters, as you can see. However, the first two parameters
are straightforward:

❍ UrlToOpen is the address of the document you want to be opened in that window (for example,
http://mydoc.htm).

❍ windowname gives the window an internal name, which may be used for other references. (Note, this
name doesn't seem to appear anywhere on the visible window itself.)

Finally, you may provide any, all, or none of the list of possible feature characteristics of the new window.
Separate each feature by a comma but not a space, just as presented in the template example for the previous
method. The possible features include:

❍ toolbar=yes or no Determines whether to include the standard Back, Forward, Home toolbar.
❍ location= yes or no Determines whether to show the current URL location.
❍ directories=yes or no Determines whether to show "What's New," "What's Cool," or other buttons.
❍ status=yes or no Determines whether a status bar is displayed at the bottom of the window.
❍ menubar=yes or no Determines whether to include a menu bar at the top of the window.
❍ scrollbars=yes or no Determines whether to create scroll bars if the document exceeds the window

size.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (8 of 10) [01.06.2001 00:39:18]

Complete Idiot's Guide to JavaScript

❍ resizable=yes or no Determines whether the user may resize the window.
❍ copyhistory=yes or no Determines whether this new window should inherit the current window's

session history.
❍ width=# pixels Defines how wide the window should be, measured in pixels.
❍ height=# pixels Defines how tall the window should be, measured in pixels.

How Many Pixels in an Inch?

Noncomputer nerds might not be used to measuring sizes in pixels. But that is the standard measurement
tool for the images on a computer screen. For the purposes of creating your window sizes, use the following
guidelines: a standard VGA screen on a 13–14 inch monitor (which is the most common screen size in use)
is 640 pixels wide by 480 pixels high. Therefore, determine what percentage of the screen you want your
new window to eat up, and use the 640x480 scale accordingly. Furthermore, many users use screen sizes
of 800x600 on 14–15 inch monitors, while those with 17-inch monitors more commonly use 1,024x768
pixels. At this point, 640x480 is still considered the most common standard size against which to measure
your windows.

Given all of the features previously described, let's create an onEvent trigger that will create a new window
using some of the above features.

<INPUT NAME=newwin TYPE=button value="Click me for a new window"
_onClick="window.open
 ('http://mydoc.htm','newwin','toolbar=no,status=yes,scrollbars=no,_resizable=no,width=320,height=240')">

I know that looks messy, but it's really just a long list of parameters. Note the use of single quotation marks
within the open method call, which are used because of the double quotation marks that must surround the
onClick definition.

[ic:check]Assume True If you don't specify a window feature in the open() method call, it will
default to yes. Therefore, if you want a feature false, be sure to list it and assign it "no" in the
open() method call.

As a certain animated pig who shall remain nameless used to say, "As far as window objects go, th-th-th-
that's all folks!" (Well, he said something like that. It was a long time ago.)

The Least You Need to Know

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap10.htm (9 of 10) [01.06.2001 00:39:18]

Complete Idiot's Guide to JavaScript

● The entire window through which a Web page is viewed is a JavaScript object known as window.property.
● All elements and characteristics of a Web page are properties of the window object.
● window.status="message" defines the status bar message.
● window.opener refers to the window that opened the current window.
● window.frame[x].property refers to property of frame number x.
● window.alert ("message") is a method that displays an alert box.
● window.confirm ("message") is a method that displays a confirmation box; it returns true if the user selects

OK and false if the user clicks CANCEL.
● somevariable=window.prompt ("message","defaultvalue") is a method that displays a prompt box and

assigns the user's input to somevariable.
● window.focus() and window.blur() can bring focus to or remove focus from a specified window.
● window.scroll(x,y) scrolls the specified window to the pixel coordinates x,y. (0,0 always refers to the upper-

left corner of the document.)
● window.open ("UrlToOpen","windowname","feature1,feature2,etc") launches a new window with feature

characteristics.
● window.close() kills the window that uses this method call (window suicide).

Complete Idiot's Guide to JavaScript

Chapter 11
Mapping and Tracking: Locations and Histories

In This Chapter

● Picking apart a meaty URL
● URLs back in time
● Guiding visitors by the wallet

The location object refers to the current URL—that is, the address of the page currently loaded. This object
provides several properties with which you can play with various characteristics of the URL. The history object
contains the current list of other URLs that have been visited in the present session. It, too, can be sliced, diced,
and analyzed.

Wherefore Art Thou, URL?

The location object contains the current URL. Therefore, imagine that the address of your Web page is this:

http://my.isp.com/~me/mypage.htm

In this case, the location object refers to that address. The object's properties will seek out various portions of the
URL. The location object is rather straightforward and nonconfusing, which is a good thing. The location object
contains eight properties, and they behave in the following manners.

href

location.href contains the string value of the entire URL. Thus, given the previous sample URL, the value
of location.href would be "http://my.isp.com/~me/mypage.htm".

One possible use of this property is to pass it as a parameter to the window.open call. Perhaps you want to
open a new window, which connects to the same URL as the current window (so you can look at another
portion of the same page at the same time you're looking at the current portion of the page). Simply use
this call:

window.open(location.href, "windowname", "feature1, feature2, ...");

You can also launch a new page without opening a new window. If you simply assign a new URL to
location.href, the browser will attempt to connect to a new page. For example:

location.href = " http://my.isp.com/~me/mypage.htm ";

Of course, if you do this, you'll effectively be leaving your current page, including any other JavaScript
programs that are in it.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (1 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

host

The location.host property holds only the hostname and port of the current page's URL. Take a look at the
previous example URL

http://my.isp.com/~me/mypage.htm

where the "hostname" would be my.isp.com. That's the Internet name of the computer on which the page
resides. In the previous example, no port is specified in the URL and, therefore, location.host will only
contain the value "my.isp.com". If a port were specified in the URL, it might look like this:

http://my.isp.com:80/~me/mypage.htm

"80" is the port in this example. If this were your URL, location.host would contain the string value
"my.isp.com:80". (Because the default port for a Web page is 80, it is usually not specified; but some
URLs use a different port, in which case, it will be specified.) One possible use for this property is to
construct a string for a user message or HTML link. That is, suppose you want to write a JavaScript
function that you might use in numerous Web pages. The purpose of the function is to provide an HTML
link on-screen that the user can click to jump to another document in a set of pages. Because your function
doesn't know which machine it will be on, it could use the location.host property to concatenate an
appropriate string for later output in the window as a link.

Home Port

 A computer is more like an apartment
block than a single family home: It has a
street address (its IP address, such as
my.isp.com), but it also has a series of
“apartments” within that address. In net-
speak, these apartments are called ports. A
computer “listens” on different ports for
different types of connections. Generally
speaking, Web servers listen for requests on
port 80. However, some servers are
configured differently and listen on another
port. In such cases, when addressing this
machine with a URL, you must specify the
alternate port to send the request to.
Therefore, if my.isp.com listens for Web
requests on port 8080, you could send open
an URL such as:
http://my.isp.com:8080/~me/mypage.htm.

Assigning a value to location.host will generate an error
because it is nonsensical. Whereas you can assign an entire
URL to location.href, which would then connect to that
URL. You cannot connect to just a host. Thus, assigning a
value to location.host is of no use.

hostname

At the risk of sounding redundant, let me say that the
property location.hostname will return just the hostname
portion of the URL. Recall in the case above that host
refers to hostname:port. Likewise, hostname refers only to
the name. Yes, it is true: If there is a URL with no port
specified, location.host and location.hostname contain the
same value.

port

The property location.port simply contains the value of the port number in the URL, if specified, as
explained previously. Note that if a port was not specified in the URL, location.port contains no value. It
does not contain the default 80 port unless the 80 was specified in the URL.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (2 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

pathname

Once again, let's look at your example URL:

http://my.isp.com/~me/mypage.htm

The pathname is the portion of the URL that describes the location of the Web document on the host
computer. The pathname begins with and includes the slash (/) immediately succeeding the hostname (or
the port, if it were specified). In the above,

/~me/mypage.htm

is the pathname. Therefore, this is the value that location.pathname would contain.

Assigning a value to this property, as in

location.pathname = "~me/otherdocs/newdoc.htm";

will cause the Web browser to load that document into the current window. This is similar to when you
assigned a value to location.href, except that the new document will come from the same host as the
current document.

protocol

The protocol property contains the leftmost portion of the URL, which contains the name of the protocol
to use in retrieving the specified file (Web document). The example URL used the HTTP protocol, as is
most common on the Web. However, some URLs may contain different protocols, such as

file://hostname/pathname
gopher://hostname/pathname

FTP, for instance, is the File Transfer Protocol and is another common way in which files can be delivered
across the Internet. Gopher is yet another information-retrieval protocol, which had its heydey before the
explosion of the Web (and http—the hypertext transport protocol). Many sites still offer information via
the Gopher protocol.

In your http://my.isp.com/~me/mypage.htm example, location.protocol would contain the value "http:". In
the previous examples, location.protocol would contain "file:" and "gopher:", respectively.

By checking the location.protocol property, the JavaScript program can determine if the page it currently
resides in was delivered by HTTP, FTP, or Gopher. Conceivably (although not commonly), this could
later be used in the JavaScript program to direct the user elsewhere, or to inform the user of restrictions
(e.g. “Sorry, but to hear the streaming audio on this page you must retrieve the page using HTTP”).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (3 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

hash

Some URLs contain special hash mark values following the pathname. For example:

http://my.isp.com/~me/mypage.htm#tuesday

The hash mark (#) specifies the name of an anchor to jump to in the Web page. An anchor is a place on a
page that has been marked (via the HTML tags that make up the page) as a jump-to point. This allows
users to be directed to specific spots within a page, instead of always at the very top. The above URL
attempts to bring the user to the anchor known as "tuesday" in the page mypage.htm.

Bookmanchor

Readers who are familiar with the popular application FrontPage should note that the folks at Microsoft
have broken from tradition a bit—possibly causing some confusion with their terminology. Commonly,
marked locations within a page are called anchors, as we’ve described them in this section. However,
Microsoft has apparently decided to call these locations “bookmarks” instead of “anchors.” What’s more,
Netscape Navigator uses the term bookmarks to refer to URLs that have been saved by the user for future
use (a “hot list”). Microsoft uses the term “Favorites” to refer to the same item as Netscape’s “Bookmarks.”
Confused yet? The point is, sometimes you might see these hash marked locations referred to as anchors,
and sometimes as bookmarks.

Thus, the location.hash property would contain the value following the hash mark (in the preceding case,
it would be tuesday).

Assigning a value to location.hash will cause the Web page to jump to that anchor. Note that of the
properties you've seen so far, this may be one of the most useful.

Jump Aroundsearch

Yet another variation on the URL is a search parameter following the pathname,
denoted with a question mark (?). A form entry is probably the most common use
for a search parameter. When a user enters form data into a form element and then
clicks the "submit" button, the following URL is called:

http://my.isp.com/~me/myprogram?formdata

The property location.search would contain the value following the question mark.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (4 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

Because it jumps to
new locations within
the same page,
location.hash is
more desirable than
throwing out your
current page, such as
when you assign
new values to
location.href or
location.pathname.
You can use the
location.hash
property in event
handlers, for
example, to bring
the user to specific
locations within the
current page.

The most sensible use of this parameter would be in the page that receives the
submitted form data.

For example, suppose you have two pages. One of them accepts user input in a
form entry. It then sends that input to another page. This other page contains a
JavaScript function that evaluates the submitted form data. Therefore, you can
make a call to this function with evalform(location.search), which would pass the
submitted form as a parameter.

Re-Form School

As per my usual disclaimer, this book isn't an HTML guide. However, just to refresh your
memory, I'll
briefly mention how a form is submitted. You define a form element with the <FORM>
tag. This tag may
take several attributes, one of which is the METHOD= attribute. METHOD= may be
assigned either
GET or POST. This defines how the form data will be submitted to the server. The details are technical,
but GET is the most popular method. It is also the method that generates the ?formdata syntax in a URL.

The ACTION= attribute specifies which URL to send the submitted data to. This URL will presumably
be designed to process the form data in some way.

Thus, a <FORM> definition might look like this:

<FORM METHOD=GET ACTION="http://some.isp.com/~someone/someprogram">

The preceding set of properties for the location object gives you all you need to pluck the current URL for
any relevant information. Next, you look at the history object, which keeps track of previously visited
URLs.

Let's Do the Time Warp Again: The history Object

The history object is an interesting beast. You're probably familiar with the standard browser history list, which is
usually available via a menu (in Netscape Navigator, it's on the Go menu). Upon accessing the history list, you're
presented with a list of the pages you accessed in this browsing session. You may then choose to quickly jump to
one of those previously visited URLs.

The history object lets you send the user to somewhere in the history list from within a JavaScript program. The
object contains two properties and three methods. So let's take a drive past each, shall we?

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (5 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

Historic Properties

First, here's a look at the properties: current and length.

current

The history.current property contains the value of the current URL. Yes, that would make it equivalent to
location.href. Note that, as you'll see in a moment, the history list is referenced in a relative manner. That
is, however, that many items are in the list, position 0 is the current item. (This will become relevant in a
few short paragraphs.)

length

Depending on how many pages the user has visited during this session, the history list can be of any
length. The property history.length contains the current length of the history list.

It's worth noting that the history object does not contain any values that reflect the actual URLs in the
history list. Therefore, you cannot, for example, perform some action that reads the value of "URL
number 3 in the history list." The history object is designed for navigating the history list. That's where its
methods come into the picture.

Ways of Old: Historic Methods

Now here is a discussion of the history object's three methods: back(), forward(), and go().

back()

This method has a very logical behavior: history.back() simply moves the user to the URL one place
previous in the history list (previous to the current position). It is the same as if the user clicked the "back"
or left-pointing arrow in the Web browser's navigation toolbar.

Just as with any instance where you bring the user to a new page, you give up control from your
JavaScript program. The user may never return—or he may go anywhere else that the new page links to.
Therefore, it usually makes the most sense to utilize these JavaScript methods (which call up new pages)
between sets of pages you have designed. In this way, your pages can all contain appropriate JavaScript
programs within each to move the user along to where you want them to go.

forward()

Can you guess what this method does? I bet you can. history.forward() moves the user one URL forward,
relative to current position, in the history list.

go(offset) or go(substring)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (6 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

Lastly, you can use the go() method to jump to a particular position in the history list, instead of merely
making one hop backward or forward. You can use this method to refer to the desired position in the
history list in two different ways.

go(offset) accepts an integer parameter, positive or negative, as offset. If the parameter is a positive
integer, the program will move the user that many places forward in the history list. If the parameter is
negative, it'll move the user that many places backward (previous to the current position) in the history
list. Your current position is always place zero. Note, however, that this applies only to Netscape
Navigator, and not to Internet Explorer 3.0. Internet Explorer’s handling of the go() method is very
unreliable. For example, this line:

history.go(2);

will send the user two locations forward in the history if he is using Netscape. On the other hand, if he’s
using Internet Explorer 3.0, the line will send the user forward in the history, but not necessarily the
number of locations specified! Likewise, this line:

history.go(-3);

will send the user three locations backward in the history list if he’s using Netscape. Similarly, this
negative number will also send the user backward in Internet Explorer’s history list, but not necessarily
the specified number of locations. This is a real quirk in Internet Explorer 3.0, one that many hope to find
rectified in version 4.0. For now, I would advise coding for Netscape Navigator, because it follows the
“official” JavaScript rules for behavior.

Alternatively, you can send go() a string instead of an integer value. For example:

history.go("mugs.htm");

In this case, JavaScript will search for the newest history list URL that contains the specified string
somewhere within its URL string. Again, this only works properly in Netscape Navigator, not Internet
Explorer 3.0. Therefore, if the history list contains the URL http://some.isp.com/~someone/mugs.htm,
that's where the user will be sent by the above example (unless, of course, there is another URL that also
contains "mugs.htm" and has been added to the list more recently).

Remember that URLs are added to the history list when the user visits a page. Therefore, the URLs closest
to the end of the history list are the newest; those closest to the beginning are the oldest.

In Closing...

You now have an eyeful of the JavaScript objects that allow you to play around with URL references. Their most
applicable use is probably in guiding users around your pages, within functions that determine where to guide
them based on certain conditions. For example, let's say you offer a special offer to customers who order 10 or
more mugs from your page. You might want to take them to another page from which they can select a gift of
their choice. Thus, you can create a JavaScript function based on an if...else statement, which sends them to the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap11.htm (7 of 9) [01.06.2001 00:39:59]

Complete Idiot's Guide to JavaScript

gift-choosing page on the true condition (perhaps by assigning the gift page's URL to location.href), or which
doesn't send them on to the gift page in the false condition. (Or perhaps you might send them to some other page
that advertises the "buy 10, get a free gift" deal.)

Briefly, that example would look like this:

function giftdeal(mugs) {
if (mugs>=10) {
location.href = "http://mysite.com/~me/giftpage.htm";
} else {
location.href="http://mysite.com/~me/giftad.htm";
}
}

The Least You Need to Know

● The location object possesses several properties that relate to portions of the current URL.
● location.href contains the value of the entire URL.
● Properties host, hostname, port, pathname, and protocol each contain the value of their respective portions

of the URL.
● location.hash and location.search contain the values of the strings following an anchor specification and

form data, respectively.
● The history object allows for navigation through the current session's URL history list.
● history.back() and history.forward() move the user back or forward one URL in the history list.
● history.go(integer) moves to the URL that is integer places away from the current URL; negative integers

move backward (earlier) in the list from the current URL, and positive integers move forward (later in the
list).

● history.go("substring") moves to the newest URL in the history list that contains "substring" somewhere
within it.

● The history.go() method does not work reliably in Internet Explorer 3.0, but it might be corrected in
version 4.0.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1

Complete Idiot's Guide to JavaScript

Chapter 12
The Document Shuffle

In This Chapter

● This is a document
● Colorful changes
● Objects of objects—links and anchors
● Output is good
● Hello, good-bye: interactive events

At various times throughout these chapters, the terms "Web page" and "document" are used somewhat
interchangeably. At least, I've never made clear if there is any distinction between the two. In this spin 'round the
chapter-o-wheel, you're going to look at documents. More specifically, you’re going to learn how you can fiddle
with documents using JavaScript.

This, then, is the second chapter in which you examine JavaScript practices that interact with the Web page.
Previously, you saw how to affect window elements (by opening new windows and creating message boxes, for
example). Now you'll define what a document is and learn how to manipulate it. And if there's time, I'll also
explain how to make no-fail chicken soup from scratch.

Document Defined

In Web parlance, a document is the file of HTML codes that describe a given page. A page is what appears
within the browser window.

A typical HTML document contains a variety of characteristics other than the content of the page itself. These
include a background image (often called a background "texture"), background color, foreground color, and the
colors of hypertext links. In traditional HTML, these traits are all defined as attributes of the <BODY> tag.

Like the Web browser's window, the document object is also a built-in object of JavaScript. It has its own set of
properties and methods with which you can influence various aspects of the current document. Like your
previous tours of duty, this chapter takes you through the properties and methods of the document object and
shows you how to use them in everyday life.

Welcome to the Property

The document object has a whole gaggle of properties associated with it. Most of these properties mimic
characteristics that may have been defined in HTML tags. But it's far from redundant mimicry; allowing you to
access the properties via JavaScript opens up the possibility of changing a document's original characteristics, if
you want.

The first property examples that follow illustrate this concept.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (1 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

bgColor and fgColor

Two of the most basic characteristics of a document are its colors. A document has two main colors: a
background color and a foreground color. The background color defines the color of the "page" itself,
while the foreground color defines the color of the text that appears on the page.

In documents, colors are specified in what is known as a hexadecimal triplet. Each color specification
actually contains three specifications: red, blue, and green. Thus, you define the background color, for
instance, by specifying how much red, blue, and green to mix together to yield the final color. Each color
will have a value from 0 to 255, 0 being a complete lack of the color, and 255 being 100 percent of the
color.

Quick Art School
Lesson #1

A background color
that has 0 red, 0
blue, and 0 green
would be black. A
color that has 255
red, 255 blue, and
255 green (that's 100
percent of each)
would be pure
white.

 Okay, that explains the "triplet" part of "hexadecimal triplet." Now let's explain
the "hexademical" part. You see, JavaScript doesn't like "normal" numbers, such as
255. It prefers a different numbering system known as hexadecimal. The system
we humans commonly use is known as decimal. Many computer programs can
convert decimal numbers to hexadecimal for you, but for a brief tutorial on how to
do that, see the "I'm a Human Calculator" sidebar.

The value of document.bgColor is the hexadecimal triplet that defines the current
page's background color. A possible value would be “000000,” or pure black. Note
that the long hexadecimal number is, in fact, three 2-digit hexadecimal numbers in
a row. The leftmost two digits represent the Red value, the second two represent
Green, and the rightmost two represent Blue. Another possible value would be
"FFFFFF", which is pure white. Likewise, "FF0000" would be pure red. You can,
in turn, alter the current background color by assigning a new hexadecimal triplet to document.bgColor.
For example, regardless of what the current page's background color is, the JavaScript assignment

document.bgColor = "#00FF00"

changes the background to pure green. Note the hash mark (#) in the above assignment. It is traditional to
place the hash mark in front of a hexadecimal number. If you leave it out of the assignment, it will still
work. But note that if you retrieve the value of document.bgColor, it will contain a hash mark preceding
the hexadecimal triplet regardless of whether you included it or not.

Along these same lines, document.fgColor will contain the hexadecimal triplet that represents the text
color. And, similarly, assigning a new value to this property will change the text color.

Manipulating all of these possible combinations is a pain. Although this is the only way to fine-tune the
exact color you will use, JavaScript does provide a shortcut. Instead of the hexadecimal triplet, you can
assign a string literal specifying one of JavaScript's built-in color names. JavaScript has a long list of
predefined colors, such as "aliceblue" and "crimson" and “palegreen.” (See Appendix A at the end of this
book for the full list.)Therefore, instead of using an assignment such as this:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (2 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

document.bgColor="#000000"
you can write this instead:
document.bgColor="black"

[ic:techno]I'm a Human Calculator

Hexadecimal is a base-16 numbering system, which contains the base values 0–F. That is, beyond 9 comes A, B,
C, D, E, and F. Your common decimal system uses base-10 numbering, which only has the base values 0–9.
Converting a decimal number, which you're used to, to a hexadecimal number, requires some addition and
multiplication.

In this chapter, you're only considering 2-digit hexadecimal numbers that represent red, green, or blue values
(although in decimal, these same values would be 3 digits long because decimal has fewer possible values for one
digit to hold). To convert a hexadecimal number to decimal, then, use the following formula:

(lefthand hexadecimal digit * 16) + (righthand hexadecimal digit)
Note that a hex. digit of A = 10, B = 11, etc., to F = 15
What?? To put it to work, consider the hexadecimal value 05:
(0 * 16) + (5) = decimal value of 5
Okay, that one was easy. So now consider the hexadecimal value 1A:
(1 * 16) + (10) = decimal value of 26
For another example, use hexadecimal value C5:
(12 * 16) + (5) = 197
Finally, here’s the maximum 2-digit hex value of FF:
(15 * 16) + (15) = 255
This should give you enough knowledge to guess-timate hex values for the color specification; from there,
you can fiddle with the exact values to create the exact color you're looking for.

More Colors alinkColor, vlinkColor, and linkColor

You can specify three other colors in a document. Each of these properties functions the same way as the
previous two—they simply affect the color of different characteristics of the page.

❍ alinkColor Defines the color of an "activated" link. An activated link is a link that has been clicked,
but for which the mouse button has yet to be released.

❍ vlinkColor Defines the color of a link that has already been visited.
❍ linkColor Defines the color of a link that has not yet been visited and is not currently being clicked.

You can use each of the above in the standard ways for object properties: you can either retrieve the value
from or assign a new value to document.alinkColor, document.vlinkColor, and document.linkColor. If
you've coded HTML before, you might have noticed that you can set these same colors in standard HTML

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (3 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

tags. So why bother with JavaScript? Because by using JavaScript, you can change the colors in a given
page at any time you want—on the fly—perhaps as a result of certain user events. In HTML, you can
define the colors only once for the life of the page.

The title Property

The property document.title holds the value of the title of the document as defined in the HTML tags
<TITLE> and </TITLE>. The title is what appears in the browser window's upper border and in the
bookmark list if the page is bookmarked by a user. The title does not actually appear within the content of
the page itself.

As usual, you can retrieve the document's title from this property, or you can assign a new title to the
document via this property.

The anchors Property

An anchor is a spot in a page that has been marked with a "name" within the HTML code. Links can then
point to anchors to send a user to specific locations within a single page. Anchors are defined in HTML
with the tag.

The document.anchors property is an array (that is, an object in and of itself) that contains the value of
each anchor on the page, in the order in which they were defined in the HTML code. Suppose your page
has five anchors defined within it. In that case, there are five properties in the object document.anchors:

document.anchors[0]
document.anchors[1]
...etc...
document.anchors[5]

Each of the above contains the name of the anchor corresponding to the order in which it was defined. So
if you named and defined your anchors in the order Monday, Tuesday, Wednesday, Thursday, Friday,
those would be the values contained in document.anchors[0] to document.anchors[5], respectively.

You may use the property length, as in document.anchors.length to retrieve the total number of anchors
defined.

Note that you would not use an assignment to document.anchors to bring the user to an anchor within the
document. That could be done several ways in JavaScript. Remember that an anchor is specified in an
URL with a hash mark following the pathname. Thus, you could assign the entire URL with a hash mark
and desired anchor name to document.URL.

The links Property

In the same spirit as the anchors property, you have the links property. Most pages contain several link
definitions throughout the HTML code, as created by the tag.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (4 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

document.links is another object array that contains each of the links specified in the current page. As with
document.anchors, there are as many properties of document.links as there are links in the page, as
indicated here:

document.links[0]
document.links[1]
...etc...

You can retrieve the total number of links in the document using the property document.links.length. As
usual, you can change the value of a particular link by assigning a new string to one of the above
properties, as in document.links[2] = "http://www.yahoo.com".

Imagine a scenario where this reassignment may be useful. Say you have a link in the page that (on-
screen) reads “Click here to continue.” Perhaps, though, you would like that link to take some users to one
URL and take other users to a different URL, depending on some other condition, such as whether they've
purchased more than a certain quantity of mugs.

Image Maps and
Hyperlinks

More advanced
readers may be
wondering how
image maps fold
into the mix. An
image map is an
image with
subregions defined
as hyperlinks. The
answer is quite
easy: each area
within the image
map is simply a
hyperlink and thus
part of the
document.links[]
array. So if the
third hyperlink on
a page is an area
region of an image
map, it can be
referred to as
document.links[2]
(remember that the
first hyperlink is

To do so, you can use an if...else statement to evaluate the user's mug purchase, and
on each condition, you can assign a different URL specification to the above link.
This would be transparent to the user. He would simply click the link labeled “Click
here to continue,” and he'd be taken to an appropriate page as determined by your
JavaScript program.

Some Miscellaneous Properties

A few properties aren't of vital consequence and don't require particularly detailed
explanation. Each is relatively straightforward and may not find tremendous usage in your
JavaScript programs. However, they're nice to know, especially when you get into those
typical JavaScript arguments with friends and colleagues.

The lastModified Property

This property simply contains a string value reflecting the date that the document
was last modified. A function might use this property, for instance, to communicate
to the user how "fresh" the current page is, in case some of its information may
potentially become outdated.

The referrer Property

This property contains the URL of the page that led to the current page. That is, if
the user reached the current page via a link from another page, this property contains
the URL of the page that linked him here. You might consider using this property to

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (5 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

element 0 of the
array).

track statistics about which sites users are jumping to yours from.

The URL Property

Lastly, this property allows us to change which document is displayed in the current browser window.
Executing a statement such as this:

document.URL=”nextpage.htm”

will immediately load nextpage.htm into the current window.

Forms

As with anchors and links, the document object contains an array of properties for each form defined in
the document. However, there's more to forms than simply a value (as was the case for anchors and links).
Therefore, you will learn about forms in depth in their own chapter, Chapter 13.

Images

New to JavaScript 1.1, the document object now contains an array property that refers to each image in the
current page. This array and its related Image object allow for a variety of new possibilities; that is the
detailed subject of Chapter 16.

Applets

Also newly added to JavaScript 1.1 is the applets array and Applet object of the document object. With
the ability to reference Java applets in the current page, you can communicate between JavaScript and
Java applets. In unifying this partnership between siblings, I point you towards Chapter 27 for a full
discussion on using the applets array and Applet object.

Methods to This Madness

In fact, there are five methods to this madness called the document object. The methods of the document object
are, fortunately, relatively straightforward and useful.

The clear() Method

It shouldn't take the Amazing Kreskin to deduce the function of the document.clear() method. Once
called, it clears the contents of the current window. Note that this doesn't affect the actual contents of the
document as defined in the HTML tags. Nor does the clear() method clear any variable values or anything
else. It is purely cosmetic: It merely clears the display window. Of course, you may not want to clear the
window unless you plan to display further text in it. Fortunately, there are two methods for doing just that.

write() and writeln()

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (6 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

You can use both of these methods to output HTML to the current window. As the parameter to either
method, you pass on a string that contains the HTML code that contains what you want sent to the
window.

For example, suppose you want the string "Thank you for ordering" written in the window in large type.
The HTML <H1> and </H1> tags are one way to generate text in a large font size. Therefore, you could
simply use this method call:

document.write ("<H1>Thank you for ordering!</H1>")

Alternatively, you might have constructed a string somewhere else in your JavaScript code and assigned
that to a variable, such as phrase. In this case, you can simply pass the variable phrase as the parameter to
the method call, like this:

document.write (phrase)

The difference between write() and writeln() is that the writeln() appends a newline character to the end of
the output. A newline character is basically like a carriage return. However, keep in mind that these
methods output their parameters as HTML. And remember that HTML ignores newline characters when it
comes to outputting to the screen.

What does the above mean? It means that HTML does not insert line breaks in screen output unless you
specify a line break using either
 or <P> tags. Any "natural" line breaks in your HTML code, such
as those created when you hit return, are ignored. The only time this is not true (when carriage returns are
honored) is for text that resides between <PRE> and </PRE> tags. Those tags define a section of text that
is "preformatted," and it appears on-screen in the browser's defined monospace font—a font in which all
characters are of equal width (it’s often Courier).

Thus, in most cases, there will be no effective difference between the write() and writeln() methods unless
your string parameter contains HTML code that places the output within <PRE> and </PRE> tags.

Bonus Events

It so happens that the document object also has two relevant event triggers worth mentioning: onLoad and
onUnload.

The onLoad Event

You can use this event trigger to launch a particular JavaScript program or function upon the completion
of initially loading the document. Perhaps you coded a JavaScript function that displays an alert message
to the user before he even begins reading the page. The onLoad event would be useful for this purpose.

You include the event as an attribute of the document's <BODY> tag, as in:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap12.htm (7 of 9) [01.06.2001 00:42:32]

Complete Idiot's Guide to JavaScript

<BODY onLoad="welcome()">

In this example, the onLoad event handler is set to call the function welcome(), which performs some feat
of programming, such as displaying an alert window that requires the user to read an important disclaimer
before he begins looking at the page. (Users will likely find this very annoying, but you could program it.)

[ic:check]Watch Your HEAD The <BODY> tag occurs very early on in the HTML document. This
highlights the need to define your functions as early in the document as possible—specifically, within the
<HEAD> </HEAD> section, which is one of the only places prior to the <BODY> tag that you have an
opportunity to do so.

The onUnload Event

This event is triggered when the user "unloads" or exits the document. It would also be defined as an
attribute of the <BODY> tag. You might, for example, use this to show a message to the user after he
chooses to leave your page, such as by calling a function that writes the text "You come back now, you
hear?" into the document window.

<BODY onLoad="welcome()" onUnload="bye()">

As it stands, the only major aspect of JavaScript remaining to be covered is the forms objects (although
there are a few more advanced topics lying in wait beyond the forms chapter). And wouldn't you know, I
have it covered—in the next chapter in fact. So don't stop reading here. This is like the last 50 steps in an
8K run. Just a few more properties...maybe a method or two...you're almost there!

The Least You Need to Know

● The document is the HTML file that loads as a Web page in the browser window.
● JavaScript contains a document object, which possesses a number of properties through which you can

read or modify characteristics of the current document.
● You can use document.bgColor and document.fgColor to alter the colors of the background or foreground

text, respectively. Colors are defined in hexadecimal RGB values.
● document.anchors and document.links are arrays that contain the values of a document's defined anchors

or links, respectively. For example, document.link[2] refers to the third link defined in the document
(remember, the first link is link[0]).

● You can use the method document.write("string") to output HTML tagged text to the current window.
● Use the event triggers onLoad and onUnload to watch for users opening or exiting your page. Both are

defined as attributes in the <BODY> tag.

Complete Idiot's Guide to JavaScript

Chapter 13

Fiddling with Forms and Emulating Events

In This Chapter

● Forming a form
● The elements of a form
● "This" object
● Let your JavaScript do the clicking: event emulation

Welcome to the end of this semester's JavaScript course. You'll close out the day with some fun stuff—just like the last
day of class in grade school, when you cracked the windows, broke out the Yahtzee, and ate pizza on the same desk you
took math quizzes on all year. Actually, I'm just fooling. This chapter is about form objects and emulating events,
neither of which hold a candle to pizza and Yahtzee.

Behind the Form

The form is a staple of virtually any page that interacts with the user. Forms can take the "form" of several incarnations,
from buttons to check boxes to blank text entry boxes. You will probably want to create JavaScript functions that in
some way interpret the data produced by these forms.

Because of our close examination of forms in this chapter, you’d better break tradition and refresh yourself with HTML
form tags.

You define a form in HTML with the tag <FORM>. This tag may contain several possible attributes, as listed here:

Attribute Description

● METHOD=get or post Indicates how to submit form data. (get is the default, and it's the usual method.)
● ACTION=URL Indicates where to submit form data.
● TARGET=name of window Indicates which window will display responses to the form. (You will usually leave

this attribute out unless you want responses to be generated in a new window.)
● onSubmit="JavaScript code" Designates the event handler for a submit event.
● onReset="JavaScript code" Designates the event handler for a reset event. (This event handler is new in

JavaScript 1.1.)

You should keep in mind the following information about forms:

● Forms are made up of elements (as they are known in HTML-speak), which the user uses to indicate responses.
Form elements include generic buttons, radio buttons, check boxes, text entries, and Submit and Reset buttons. A
form can have any number of these elements in it.

● An element is defined with the <INPUT> tag, which also takes a series of attributes that define the form element.
I can't go into detail for each element, but as a refresher, a typical definition for a button element might look like

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (1 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

this:
<INPUT TYPE="button" name="ad" value="Click to see our Ad" onClick="showad()">

● Any elements defined within one set of <FORM> </FORM> tags are considered to be part of one form. Just as
there can be any number of elements within one form, there can be any number of forms within one page.

● Within the context of JavaScript, each form element is also a JavaScript object. Therefore, each check box, text
input area, and so forth has its own set of properties. Although referenced in more detail in Appendix A,
"JavaScript: The Complete Overview," the properties of these objects are typically parallel to the HTML
attributes of the element.

● There are also properties that contain status information about the element; for instance, the checkbox object
contains the property "checked," which contains the current logical status of the check box element.

Having established all this, let's begin looking at how the forms object works within JavaScript.

Element and Object

To avoid confusion throughout this chapter, let's clear up the difference between the terms "element" and
"object." A form element, such as a check box, is an "element" when you are speaking from an HTML
perspective. However, the same check box is an object when you are speaking from a JavaScript perspective.
At times, I may seem to use these terms interchangeably because they do ultimately refer to the same "thing.”
But when I say "element," I'm looking at it from an HTML point of view, and when I say "object," I'm
considering it from a JavaScript point of view.

Object of Form

The previous chapter briefly mentioned that forms was a property of document. This is true, but furthermore,
document.forms is an object itself. Each form within the document is one property of document.forms. This is
important, so let's take this concept again—slowly.

Remember that a form is defined by anything between one set of <FORM> tags:

<FORM>

form element definitions

</FORM>

Thus, document.forms[0] refers to the first form defined in the document. Likewise, document.forms[1] refers to the
second form; that is, any form elements defined within a second set of <FORM> </FORM> tags somewhere else in the
document.

Now each form in a document is also an object. Therefore, document.forms[0] is an object whose properties are each an
element of that form. The elements are referred to in the manner document.forms[x].elements[y], where x is the form in
question, and y is the element within that form.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (2 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

Imagine that your HTML document contains the following lines:

<FORM name=someform>
<INPUT TYPE="button" name="ad" value="Click for Ad" onClick="showad()">
<INPUT TYPE="checkbox" name="married">Are you married?
</FORM>

This form contains two elements: a button and a check box. If this is the first form defined in your document, you can
refer to its parts in the following manner:

● document.forms[0].elements[0] would contain the definition for the button element.
● document.forms[0].elements[1] would contain the definition for the check box element.

Alternatively, you can refer to each form element by its name if it is defined in the <INPUT> tag. You can also refer to
each form by its name if it is defined in the <FORM> tag. If so, the following statements would be true:

● document.someform.ad would contain the button element.
● document.someform.married would contain the check box element.

What do I mean when I say, "would contain the definition for the button element?" It means that the value
of document.forms[0].elements[0] in this example would be the following string:

"<INPUT TYPE="button" name="ad" value="Click for Ad" onClick="showad()">".

Shortly, you'll see how to refer to specific portions of each element, so you don’t have to use its entire definition.

Properties of Forms

The forms object, like every other object, has a set of built-in properties. Basically, these simply help you to retrieve or
modify the main attributes of the form. The following subsections give you all the details.

The action Property

This property allows you to retrieve or alter the value of the action attribute of the form in question. For example,
suppose you want to submit the form data to one URL if the user has bought more than a certain number of
mugs, or to another URL if he purchased fewer. You might use the classic if...else statement to change the
property documents.forms[0].action. This could take place in a function called buymugs(mugs), which accepts
the parameter of how many mugs were bought. The function would be called as an event handler from the event
trigger onSubmit, an attribute of <FORM>.

Let's play out the code for this scenario:

<SCRIPT language="JavaScript">
function buymugs (mugs)
{
if (mugs>=10)
{ documents.forms[0].action = "http://invoice1.htm" }

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (3 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

else
{ document.forms[0].action = "http://invoice2.htm" }
}
<FORM method=get onSubmit="buymugs(this.quantity.value)">
<INPUT TYPE="text" name="quantity" ROWS=1 COLUMNS=3>Quantity of order
</FORM>

Looking first at the HTML code, you define a form that contains one element: a text entry box that is three spaces
wide. This text entry box is given the reference name “quantity.” The FORM definition specifies an onSubmit
event handler. It calls the function buymugs() with the parameter this.quantity.value. this refers to this whole
object (the form) from which you are interested in the property “quantity,” which is the specific element within
the form named quantity. value is a property of the text entry object, which contains the data the user enters.

The function itself is much the same as previous functions you coded in these chapters. It simply uses an if...else
statement to determine a condition and to modify the ACTION= attribute of the first form in your document
accordingly.

The method Property

Just like the action property, the method property refers to the METHOD= attribute of the FORM definition.
(Don't confuse this property name with the JavaScript function known as a "method"; they are unrelated.) You
can similarly use this to change the METHOD of a particular form from GET to POST, or vice versa. A function
exactly like the one used above would do the trick:

documents.forms[0].method = "get"

The target Property

This property enables you to retrieve or modify the TARGET= attribute of the FORM. You use it just like the
method and action properties.

Elements, Up Close and Personal

I’ve touched on the fact that the array (or object) elements point to each particular element within a given form. Good.
Then recall again the example in the form you defined earlier in this chapter: document.forms[0].elements[0] would
contain the definition for the button element. Now the button element in question here also contains several properties of
its own. So consider the button element definition again:

<INPUT TYPE="button" name="ad" value="Click for Ad" onClick="showad()">

The button has a name, which in this case is ad. Thus, you can retrieve or modify its name in JavaScript with a reference
like this:

document.forms[0].elements[0].name

You might assign the value of the preceding line to a new variable, or you might assign a new string to the line. Each
particular form element has its own slightly different set of built-in properties. The button object contains a name
property, as you've just seen, as well as a value property. In the case of the button, the value property (as well as the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (4 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

value HTML attribute) is the text that appears on the button itself on-screen. Thus, you can also refer to this value:

document.forms[0].elements[0].value

The checkbox Element

Because each form element serves a slightly different purpose, each object has a slightly different set of built-in
properties. Let's consider the check box element, which could be defined in this way:

<INPUT TYPE="checkbox" name="marstat" onClick="married(this.marstat.value)">Married?

Imagine that the preceding is the second element of the same form that contains the previous button, thus making
it documents.forms[0].elements[1]. The name property of this checkbox object works the same way as the name
property of the button object.

The checkbox object also contains two unique properties: checked and defaultChecked. These are logical values
that, when assigned a true or false value, determine the starting state of the check box (before the user gets his
hands on it). Sometimes, you might want a check box to begin in a checked state. You can make it so either by
changing the HTML definition of the element or by assigning a true value, as in the following:

documents.forms[0].elements[1].checked = true.

Note that the value property works differently for the checkbox than for the button. In the preceding checkbox,
the property documents.forms[0].elements[1].value is a Boolean that contains the state of the check box. This is
what you would refer to if you were processing this form.

In the "Built-In Objects" section of Appendix A, you can find details about the properties available for each
particular form element object. Here, you looked at only the button and check box elements.

A New Type of Property

In JavaScript 1.1, the type property has been added to each form element object. Simply, the type property reflects the
“type” of form element, as defined in the HTML <INPUT TYPE=”elementtype”> tag or the <SELECT> <SELECT
MULTIPLE> and <AREA> tags, in the cases of selection boxes or image map areas.

For instance, imagine that your HTML document contained the following form element definition:

<form name=formica>
<input type="text" size="3" name="age">
</form>
The following JavaScript 1.1 code would yield the value “text”:
formtype = document.formica.age.type

Radio Button Matters

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (5 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

In the case of a radio button, the radio button set is an array containing each individual button. For instance,
consider this HTML code:

<form name=formica><input type="radio" checked name="sex" value="m">Male

<input type="radio" name="sex" value="f">Female
</form>

To access the type property of the “male” radio button, you use this:

formtype = document.formica.sex[0].type

More generally, to access any property of the radio button set, use this:

variable = document.formica.sex[buttonidx].propertyName

The this Object

One of the most important constructions with which you refer to form elements is the this construction. By now,
you've seen it pop up several times. Take an official look at it now.

Clearly, a construction such as document.forms[0].elements[1].value is somewhat long and unwieldy. However,
when you are referring to form elements from within a particular form definition, you don't have to use such a
long construction.

If you are between <FORM> </FORM> tags, the form to which you are referring is a given: this form.
Therefore, document.forms[x] can be assumed.

Secondly, you can refer to individual form elements by their name, instead of by elements[y], which makes more
sense to the human programmer. Thus, the first element—a button—in your continuing form example from
above, could be called elements[0], or it could be called ad. (Recall that you named it ad with the NAME=
attribute.)

Therefore, when you refer to a form from within its definition (which you do anytime you define an event
handler for the form or element), you can use the simpler construction this.elementname.property. You've seen
this in practice a few times. Here's an example that combines a couple of your previous this uses:

<FORM onSubmit="evalform(this.email.value)">
<INPUT NAME=email TYPE="text" ROWS=1 SIZE="20">Enter your email
<INPUT NAME="marstat" TYPE="checkbox" _onClick="married(this.marstat.value)">Married?
<INPUT NAME=submit TYPE="submit">
<INPUT NAME=reset TYPE="reset">
</FORM>

Two event handlers are defined in the preceding form. One handles the onSubmit event and passes to its function
the parameter this.email.value. That, then, would be the data entered (value) into the form element email (the text
box defined in the second line of the example).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (6 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

The second event handler occurs in the onClick event of the check box element. It passes to its function the
parameter this.marstat.value, which would contain the Boolean state of the check box named marstat.

When in Doubt, Be Specific I have found some inconsistencies in the way JavaScript handles this in
practice versus how it claims that it should be handled. The simplest solution to any strange errors or
difficulties with this is simply to replace the use of this with document.forms[x].

Keep in mind, though, that this works only from within the form definition. If you want to refer to a form other
than the one currently being defined, you'll need to use the full document.forms[x].elements[y] construction.
That's the only way to explicitly specify which form or element you are talking about to JavaScript. The this
construction is basically a shortcut for those instances when it can be assumed which form you're talking about.

The Faked Event

Remember that an "event" usually occurs when a user clicks something. There are a variety of possible events,
depending on what the user clicks on. In addition, it is possible to emulate a click in JavaScript.

Meaning...? If you have a check box element, you could use JavaScript code to instigate a click on it yourself
instead of waiting for the user to click it manually. Why would you want to do this? I don't know. Just kidding....
Actually there are a couple of possible reasons:

❍ To guide the user. Perhaps on your particular page, you would like to show the user what to do—sort of
like a "help" procedure. This way, you can use JavaScript to go around clicking elements as an example
for the user's eyes.

❍ To straighten up necessarily related elements. I’ll delve into this possibility below.

Suppose you have the following two elements in your form: a check box that poses the question, "Do you like
spicy foods?" and a radio button set that asks the user to choose which spicy food is his favorite. The radio
buttons offer three choices: "Mexican," "Indian," and "I said I didn't like spicy foods."

Suppose the user deselects the latter check box (which indicates a lack of enthusiasm for spicy foods). In that
case, it would be nonsensical for the user to then check one of the regional food types in the radio button set. So
how can you prevent the user from saying he doesn't like spicy foods but that his favorite spicy food is Indian?

Using event emulation! (Boy, you knew that was coming, I hope.) This would be the programming logic:

❍ If the user clicks the radio button, check the status of the check box.
❍ If the check box is unchecked, emulate a click event to select "I said I didn't like spicy foods" in the radio

button.

This way, no matter what the user tries to select in the radio buttons, his selection will be overridden if it conflicts
with a previous selection.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (7 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

You will code the above logic shortly. But first let's see how to emulate an event.

It's All in the Method

Event emulators are methods of the form element objects. Each of the form element objects has a click() method. Simply
call this method for the object in question, and it will be clicked. Therefore, to click a check box, you might use the call

document.forms[0].checkboxname.click()

Important note: A click() method does not initiate an event trigger. Only a "real" click on the check box would trigger
the onClick event handler, if defined. If you want to emulate a click and trigger the appropriate event call, simply call
the proposed event handler manually after the click() method. For example, let's say your onClick event handler is
defined as "married(this.checkbox.value)". If you want to emulate a click and call the event handler, simply use the
following JavaScript statements:

document.forms[0].checkboxname.click() ;
married(this.value)

All you did was call the event handler explicitly following the emulated click because it would not have been triggered
by the onClick definition.

Before you run through the example code for the "spicy food" logic, remind yourself how radio buttons work. A radio
button is basically a multiple-choice question, from which the user can select only one of the proposed choices. What
makes the radio button slightly different from other form elements is that it may contain several subelements; that is, the
radio button named "spicetype" could have three subelements, each representing a choice: Mexican, Indian, or Don't
like.

The following is the HTML code wherein you define the check box and radio buttons for the spicy foods example.

<FORM>
<INPUT NAME="spicy" TYPE="checkbox">Do you like spicy foods?<p>

Please select which spicy food is your favorite:

<INPUT NAME="spicetype" TYPE="radio" value="mexican"
onClick="checkspicy(document.forms[0].spicy.checked)">Mexican<INPUT NAME="spicetype" TYPE="radio"
value="indian" onClick="checkspicy(document.forms[0].spicy.checked)">Indian<INPUT NAME="spicetype"
TYPE="radio" value="notype" onClick="checkspicy(document.forms[0].spicy.checked)"> I said I don't like
_spicy foods!</FORM>

Note how each part of the radio button is defined to the same NAME= attribute. This is important. Also, see how each
radio button definition contains the same onClick event handler? As a result, anytime a user makes a choice from the
radio button, the verification function checkspicy(document.forms[0].spicy.checked) will be called. This is the heart of
the logic.

The function's role will be to look at the Boolean (logical) state of the check box named "spicy"
(document.forms[0].spicy.value) and either allow the user's radio button selection to remain or force a different
selection. You would force a different selection under two conditions:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (8 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

● The user has left spicy unchecked, in which case he must select "I said I don't like spicy foods!" from the radio
button.

● The user has checked spicy, in which case he cannot select "I said I don't like spicy foods!" from the radio button.
Because one of the radio buttons must be selected, in this case, you'd have to select one of the others by default.
So you choose Mexican simply because it's first on the list.

Here is the function code in JavaScript:

<SCRIPT language="JavaScript">
function checkspicy (likes)
{
if (likes == true)
{ if (document.forms[0].spicetype[2].checked == true)
{ document.forms[0].spicetype[0].click() } }
else
{ if (document.forms[0].spicetype[2].checked == false)
{ document.forms[0].spicetype[2].click() } }
}
</SCRIPT>

Use the construction spicetype[x] to refer to an individual choice x within the radio button set. Here, first consider
whether spicy is checked true. If so, look to see if the last radio button choice (button number 2 because they start
counting from 0) is selected. If so, it should not be (because the user indicated that he does like spicy foods). Therefore,
you emulate a click event to check "Mexican" (radio button choice 0).

If the user has indicated a distaste for spicy foods, look at the else clause above and determine if the final radio button
choice has been selected. If not, emulate a click event to select it because it must be selected in this case.

The reset() method

Here’s another addition to JavaScript 1.1 that you can now call:

document.forms[x].reset() or document.formname.reset()

This emulates a reset event for the form, which would clear the data currently input into the form. Although
emulating actions via methods does not usually trigger event handlers, the reset() method is an exception: It does
generate a reset event, which is handled by the event handler defined in <FORM onReset=”JavaScript code or
function”>.

The Least You Need to Know

● The elements of a form are an array of properties of the form object. The object document.forms[x] contains the
properties document.forms[x].elements[y], where y is each element defined within a single set of <FORM> tags.

● You can also refer to elements[y] by the name of the element as defined in the NAME= attribute of the HTML
<INPUT> tag that defines that element.

● Each form element is an object with its own properties. For example, the property of the check box element that
contains the current Boolean state of the check box is called checked and would be referred to as

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap13.htm (9 of 10) [01.06.2001 00:43:06]

Complete Idiot's Guide to JavaScript

document.forms[x].elements[y].checked or document.forms[x].checkboxname.checked.
● this.property can be used to refer to the current form being defined.
● Form elements can emulate clicking themselves by using the method document.forms[x].elementname.click().
● Emulating an event does not trigger any event handler specified for that event; only "real" events can be triggers.

However, the formname.reset() method is an exception: It does trigger the onReset event handler.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 14
Navigating with Navigator

In This Chapter

● Name your browser
● Turned on, plugged in, mime typed
● Redirection magic

Back when I was a nervous youth, our board of education, possibly motivated by revenge, felt that it was
necessary to provide three strata of physical education classes. Each strata was oriented towards a
different Phys. Ed. capacity: budding professional, middling-but-mobile, and victim. Several weeks into
the semester, we’d be run through a battery of quasi-legal “tests,” several of which probably violated the
Geneva Convention. Result cards in hand, we’d stand in queue as the gym instructor (officially, “herr
gym instructor”) looked us over and pointed us towards a collection point for one of the three strata.

Fortunately, those extended years of trauma now yield a poignant analogy: the Navigator Object, which
identifies the Web browser being used to load the Web page, can be used to tailor a Web site towards a
particular browser. It enables you to detect the presence of certain plug-ins or redirect users to new pages
created for their browser’s capabilities.

Identity, Please

Built into JavaScript 1.0 and enhanced in JavaScript 1.1, the Navigator Object reports several variants on
the identity and capability of the browser being used to load the current page. By cleverly using this
information, you can tailor the behavior of a Web page. For example, you can display a Shockwave plug-
in if a Shockwave plug-in is installed, or you can send the visitor to a page designed for Microsoft
Internet Explorer 3.0 if that’s his browser.

What’s in a Name?

Understanding and using the Navigator Object is fairly simple. So there’s no point in “prevaricating
around the bush.” Let’s begin!

Under both JavaScript 1.0 and JavaScript 1.1, the Navigator Object supports the properties described in
the following sections.

appCodename

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap14.htm (1 of 6) [01.06.2001 00:44:04]

Complete Idiot's Guide to JavaScript

The “codename” is the internal name by which the Web browser identifies itself. Netscape Navigator, for
instance, identifies itself as Mozilla. (Curiously, Microsoft Internet Explorer 3.0 also identifies itself as
Mozilla; this is a compatibility trick, which allows some pages and servers to offer the same content to
Internet Explorer as it would to Netscape Navigator.)

Thus, the JavaScript expression

navigator.appCodename

will yield “Mozilla” if the visitor is using either Netscape Navigator or Microsoft Internet Explorer.

Mozilla?

“Mozilla” is sort
of a joke—one that
Netscape has
encouraged to live
on. For several
years in history,
when Netscape
Navigator was first
released, it was not
called
“Navigator.” In
fact, it was called
simply
“Netscape,” which
later became the
name of the
company.
Actually, Netscape
was called
“Mozilla.” Huh??
In written form,
the first versions
of Netscape were
written as
“Mozilla,” but
pronounced
“Netscape.” This,
apparently, was
the result of some
strange sense of

appName

As opposed to the browser’s internal identification, this property reflects the
external name of the browser. Thus, this expression:

navigator.appName

yields “Netscape” when using Netscape Navigator, or yields “Microsoft
Internet Explorer” when using said browser. We’ll use this property later to
determine which browser a visitor is using and to redirect him to a suitable
page.

appVersion

This property yields the version number and platform of the browser. In
some cases, such as with Internet Explorer, it also yields the Netscape
version with which it is compatible. Thus, if the user is using the 32-bit
Netscape Navigator 3.01 under Windows 95, this expression:

navigator.appVersion

yields “3.01 (Win95; I).” And if the user is using Microsoft Internet
Explorer 3.01 under Windows 95, the above yields “2.0 (compatible; MSIE
3.01; Windows 95).” This is Internet Explorer’s way of saying “I’m just like
Netscape 2, although I’m actually MSIE 3.01.”

userAgent

Technically, the userAgent is what the browser sends to the Web server as a
form of identity. For our purposes, though, this property is basically a

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap14.htm (2 of 6) [01.06.2001 00:44:04]

Complete Idiot's Guide to JavaScript

humor on the
developers’ part.
However, as
Netscape morphed
into a rising
corporate star and
their browser
began to reach the
limelight, they
realized that
spelling “Mozilla”
and pronouncing
“Netscape” was a
confusing
marketing scheme
(and it’s also not
that funny). Hence,
Mozilla was
dropped in favor
of the more sober
“Navigator.”

concatenation of appCodename and appVersion. This certainly doesn’t
make it useless; if you want to parse the browser identity for some
reference, you can use the userAgent property to get an all-in-one string. For
instance, a visitor using 32-bit Netscape Navigator 3.01 under Windows 95
would generate a value of “Mozilla/3.01 (Win95; I)” if you checked the
value of navigator.userAgent.

Who Goes Where?

Conceptually, making use of the above properties of the Navigator Object is easy.
For instance, imagine that your site contains two home pages, one designed for
Netscape users and one for Internet Explorer users. You could create a “false”
home page, which actually contains JavaScript that determines the visitor’s
browser. It then automatically loads the correct page.

Another idea: Because JavaScript 1.1 is currently supported only in Netscape
Navigator 3.0, you could test for that browser. If present, you proceed with
executing certain JavaScript 1.1-specific functions (such as using an array or
replacing images with the Image Object). If Navigator 3.0 is not present, you stick
to only JavaScript 1.0 code and forego the added capabilities of 1.1. At the least,
this allows users of both types of browsers to receive some functionality from the
page.

Speaking of JavaScript 1.1, three additions to the Navigator Object are introduced in that version, which
further expand your ability to sniff out features of the user’s browser.

javaEnabled()

This method returns a value of true if the user’s browser has Java capabilities enabled; otherwise
it returns false. Using an expression such as this:

if (navigator.javaEnabled()) { … } else { … }

you can execute a Java applet only if the user has Java enabled. Alternatively, if Java is disabled,
perhaps you could write a message alerting the user to enable Java to fully experience this page.

plugins Array

This array, named plugins, contains information on each plug-in installed for the browser (such as
Shockwave, Quicktime, and so on). In using it most simply, you can check for the presence of an
installed plug-in as shown here:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap14.htm (3 of 6) [01.06.2001 00:44:04]

Complete Idiot's Guide to JavaScript

isplugin = navigator.plugins[“Quicktime”]
if (isplugin)
{ document.writeln (“<EMBED SRC='jurassic.mov' HEIGHT=100 WIDTH=100>” }
else { document.writeln (“You cannot view the film preview without the Quicktime plug-
in.”) }

Using the above code snippet, you can tailor the page’s behavior to the presence or absence of a
particular plug-in.

mimeTypes Object

Also a part of the Navigator Object, mimeTypes is an array containing each of the mime types
configured for the user’s browser. Mime types are types of files as configured either for plugins or
for Helper Apps in the browser. For instance, a commonly configured mime type is “image/jpeg,”
which then calls a defined jpeg image viewer.

To see this in action, you could verify the existence of a configured image/jpeg mime type with
this code:

if (navigator.mimeTypes[“image/jpeg”])
{ some code which loads a jpeg image }
else { document.writeln (“You do not have jpeg image viewing configured.”) }

He Went That-a-Way

Using some of the knowledge in this chapter, you can use the Navigator Object to instantly and
automatically redirect a visitor to the page designed for his browser.

Imagine, for instance, that you’re a very industrious sort. You’ve designed two versions of your home
page: one with layout optimized for Netscape Navigator and one optimized for Microsoft Internet
Explorer. For example, Internet Explorer 3.0 supports graphic backgrounds within table cells, but
Navigator 3.0 does not. You’ve saved your two home pages as nspage.htm and msiepage.htm,
respectively.

Thus, you now code the redirection page (saved as home.htm). It is this page, home.htm, that users will
initially visit (having jumped there from a link at another site). From there, they’ll automatically be taken
to the “real” home page designed for their browser. The redirection page need not contain any content,
only a small bit of JavaScript code. Logically, it’s simple: determine whether the user is using Navigator
or Internet Explorer, and then send him to the appropriate home page.

<html>
<head>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap14.htm (4 of 6) [01.06.2001 00:44:04]

Complete Idiot's Guide to JavaScript

<title>Browser Redirection</title>
</head>
<body bgcolor="#FFFFFF">
<script>
if (navigator.appName.indexOf("Explorer")==-1)
{ url ="nspage.htm" }
else { url = "msiepage.htm" }
</script>
</body>
</html>

That’s all! In the above, you merely check for the string “Explorer” anywhere in the appName property
of the Navigator Object. If it’s not present (–1), the user is not using Internet Explorer, and he is sent to
the Netscape page (url = “nspage.htm”). (Of course, he may not be using Navigator, either, but that is
your only alternative page.)

On the other hand, if the string “Explorer” is found within the appName property, the string indexOf()
method returns its position (anything other than –1), and you know that the user is browsing with Internet
Explorer. Thus, he is sent to msiepage.htm.

Similarly, you can use any of the Navigator Object properties and methods discussed in this chapter to
tailor the behavior of a Web page.

The Least You Need to Know

● The Navigator Object can help you identify the user’s browser and which plug ins and mime
types are installed for that browser.

● navigator.appCodename contains the internal code name of the browser (“Mozilla” for both
Netscape Navigator and Microsoft Internet Explorer).

● navigator.appName contains a more accurate reflection of the browser name (“Netscape” or
“Microsoft Internet Explorer”).

● navigator.appVersion contains the version number of the browser and possibly the version
number of Netscape with which the browser is compatible.

● navigator.userAgent contains the user agent header sent to the Web server. This is a string
concatenation of the appCodename and appVersion.

● In JavaScript 1.1, the Navigator Object supports the method navigator.javaEnabled(), which
returns true if the user has enabled Java support or returns false otherwise.

● Also new to JavaScript 1.1 is the plugins array, which contains data on each plug-in currently
installed. For example, navigator.plugins[“Quicktime”] returns true if the Quicktime plug-in is
installed or returns false otherwise.

● The mimeTypes object in JavaScript 1.1 contains data on the configured mime types. For
example, navigator.mimeTypes[“image/jpeg”] returns true if the image/jpeg mime type is

configured or returns false otherwise.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 15
Array (“A Ray”) of Organization

In This Chapter

● Inside the array (literally)
● Array acrobatics: reordering elements
● Two-dimensional arrays
● A mini JavaScript database

Consider the file cabinet: Psychologically speaking, one can learn a great deal about a person by looking at the
person’s cabinet (if he even has one). Nonetheless, many can get by in life with a seemingly random pile of
papers, documents, and old bills piled in a corner. Not so for the computer. In some ways, it’s a crusty old man
that wants things the way it wants them, darnit! Which means that data needs to be neatly ordered. The array is
the JavaScript 1.1 object that enables you to keep your data organized.

Getting to Know Array

Like the file cabinet, an array is a set of subelements. It is a way of organizing data into groups. An array can
contain any number of elements, and each element can be any type of data (including another array). We use
arrays in real life every day without thinking twice about it: for instance, my “clothing array” consists of a pair of
blue pants, a pair of black pants, a striped shirt, eight white socks, etc. My clothing array even consists of shoes,
which itself is an array containing the elements sneakers, casuals, Birkenstocks, etc.

Conceptually speaking (“Oh daaarling, speak conceptually to me again!”), the array is not a new object to us in
JavaScript-Land. This is because the array is merely an object, in the JavaScript sense. Recall that a JavaScript
object is also a set of elements, be they properties or methods.

In the old days of JavaScript 1.0, we created arrays by creating new objects. This worked, but it required extra
steps and was a hassle. In JavaScript 1.1, the new Array object allows us to create arrays quickly and easily,
without any hassles.

Arrays in JavaScript are quite straightforward to implement. Imagine, for instance, that you have an array that has
been named automodels. This array can contain any number of elements such as Toyota, Honda, Ford, and
Lexus. (No product endorsements expressed or implied, although the author wouldn’t refuse any free samples).
Each element has an index number, such as 0, 1, 2, and so on, which marks its ordered position in the array. The
syntax for describing an array is

array[idx]=value

Thus, an array could be written as:

automodels[0]=”Toyota”

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (1 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

automodels[1]=”Honda”
automodels[2]=”Ford”
...and so on.

In this respect, the array is like a filing cabinet whose contents are associated with index numbers. This allows
you to easily access the data within the filing cabinet. Within a Web page (depending upon its application), you
may code several arrays into your JavaScript programs, which contain data relevant to the function of the page.

For example, say you have a form that asks a series of questions of the user—first name, last name, age, address,
phone number, and e-mail address. You could store each of these pieces of data in an array such as userinfo,
which might look like this:

userinfo[0]=”Henry”
userinfo[1]=”Kissinger”
userinfo[2]=68
userinfo[3]=”2001 Accent Ave.”
userinfo[4]=”(555) 976-9760”
userinfo[5]=”kisser@oldstatesman.com”

That array could later be accessed in your JavaScript program for any number of purposes—perhaps to create a
cookie (Chapter 17) or to store the information in a database that you manage to keep track of registered users of
your site.

In JavaScript code, you define an array as follows:

arrayname = new Array ()

Quite simple. Optionally, you can even define the elements of the array at the same time as you create it:

arrayname = new Array (“Toyota”, “Camry”, 1990)

Of course, the above only applies if you know in advance what values the array will contain.

The length of an array is a property defined by how many elements it contains. In the earlier Kissinger example,
userinfo.length would contain a value of 6.

Methods Without Madness

The Array object possesses three methods, each of which enables you to manipulate the elements in the array.
Each method is fairly straightforward, so let’s take a moment to consider each.

join() method

A method of convenience, the join() method will concatenate each element in the array into one string
value. For instance, consider again the following array which contains three elements:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (2 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

car = new Array (“Toyota”, “Camry”, 1990)

If you then called upon car.join() in an assignment statement such as this:

model = car.join()

the string variable model would contain the value “Toyota,Camry,1990.” By default, the join() method
uses commas to separate the elements within the string. You can easily specify a different delimiter. For
instance, this example:

model = car.join(“ “)

would separate elements with a space rather than a comma, resulting in the string value “Toyota Camry
1990.”

reverse() method

This one’s a no-brainer. Simply, calling the reverse() method for an array will reverse the positions of
each element. Suppose you have this four-element array named classes:

classes[0] = “Freshman”
classes[1] = “Sophomore”
classes[2] = “Junior”
classes[3] = “Senior”

You can call the reverse() method in this way:

classes.reverse()

As a result, the array would look like this:

classes[0] = “Senior”
classes[1] = “Junior”
classes[2] = “Sophomore”
classes[3] = “Freshman”

sort() method

This method, as its name implies, can be used to sort the elements in an array. Instead of simply reversing
them, as the reverse() method does, the sort() method re-orders the elements in the array based upon
certain sorting criteria.

The simplest usage of the sort() method is as follows, using the same original classes array from the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (3 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

previous example:

classes.sort()

The above expression will sort the array’s elements alphabetically. If an element in the array is a number,
it is also sorted alphabetically (e.g. “500” comes before “95”). The resulting element sequence would look
like this:

classes[0] = “Freshman”
classes[1] = “Junior”
classes[2] = “Senior”
classes[3] = “Sophomore”

Roll Your Own Sort

For the advanced JavaScript programmer, it’s also possible to devise a custom sorting algorithm for the
sort() method to use. Using the function call arrayName.sort(sortfunc), you can sort the array using the
algorithm coded into your function sortfunc() (or whatever you choose to name it).

The sort() method will re-index the array elements in a manner dependent upon the values your custom
sort function returns:

● If sortfunc(a, b) returns a value less than zero, sort b to a lower index than a.
● If sortfunc(a, b) returns zero, leave a and b unchanged with respect to each other, but sorted

with respect to all different elements.
● If sortfunc(a, b) returns a value greater than zero, sort b to a higher index than a.

Thus, you should code your custom sorting function to receive two parameters, which the sort() method
will automatically send to it. In the body of the function, perform whatever comparison operations you n
eed and return the appropriate value as indicated in the bulleted list above to report the result to the
sort() method.

Double-Dipping: A Two-Dimensional Array

In and of itself, the array is a simple concept. This is partially because the basic array is one-dimensional: its
elements are indexed only as 0, 1, 2, 3, and so on. One way to increase the flexibility of an array is to build it two-
dimensionally.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (4 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

In a two-dimensional array, each element may also be an array in its own right. Thus, each element in an array
can be an array with its own elements. Confusing? It takes some re-reading to get the mental hang of it. Recall a
basic array declaration:

cars = new Array ()

As usual, then, you could say this:

cars[0] = “Toyota”

The above is a typical one-dimensional array. Suppose, though, that you’d like to store the types of Toyota
models within the cars array. Instead of assigning a string value (such as “Toyota”) to cars[0], you can assign a
new array!

cars[0] = new Array ()

Now cars[0] is its own array, with a set of elements. Next, assign the automobile make to index 0 of cars[0] and
assign each model name to succeeding elements:

cars[0][0]=”Toyota”
cars[0][1]=”Camry”
cars[0][2]=”Celica”
cars[0][3]=”4Runner”

Moving along, you can add another make and other models to your cars array:

cars[1][0]=”Ford”
cars[1][1]=”Mustang”
cars[1][2]=”Taurus”

What you’ve done is create an array-within-an-array! This tends to cause some people’s brains to hurt at first
glance, but it just takes some practice.

Read this section on two-dimensional arrays several more times if necessary, until you feel you have at least a
reasonable idea of what’s going on. It’s important because you’re going to use this type of array in your main
programming example for this chapter: the mini JavaScript database.

The Mini JavaScript Database

Although it’s certainly nothing to rival Microsoft Access or Borland Paradox, you’ll use JavaScript code and the
Array object to create a small Web-based database. In fact, this is just the beginning of a database, but it will
illustrate the relevant points.

On the surface, the mini database should operate according to these guidelines:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (5 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

● The user can fill out several form fields: name, age, sex, and income level. When he finishes, he clicks a
button labeled Add Record. The form is then cleared so that new data can be entered and then added as
another record.

● A Clear Record button is provided to erase the current data in the form without adding it to the database.
● A View Records button gives the user the option of opening an addition browser window, in which the

contents of each record is displayed.

First, then, you’ll create the HTML code for the page, including the forms and event handlers (although
you have yet to write the actual event handler functions):

<html>
<head>
<title>The Mini JavaScript Mini-Database</title>
</head>
<body bgcolor="#FFFFFF" onLoad="init()">
<p><H2>The Tiny JavaScript Mini-Database</H2></p>
<p>To add a record, please complete the following fields and then click Add Record. To view all

current
records, click View Records.</p><p>
<form name=bio>
<p>First Name<input type="text" size="10" name="firstname">
Last Name<input type="text" size="10" name="lastname">Age
<input type="text" size="3" name="age"></p><p>
<input type="radio" checked name="sex">Male

<input type="radio" name="sex">Female</p>
<p>Income Range:

<select name="income" size="5">
<option>Scraping By (<$10,000)</option>
<option>Enjoys Ketchup ($10-20,000)</option>
<option>Average Jane ($20-40,000)</option>
<option>Can't Complain ($40-80,000)</option>
<option>Outta My Way ($80,000+)</option>
</select></p><p>
<input type="button" name="add" value="Add Record" onClick="addrec()">
<input type="reset" name="clear" value="Clear Record">
<input type="button" name="view" value="View Records" onClick="viewrec()"></p>
</form>
<p><p>Thanks for using the mini database!</p>
</body>
</html>

In the above HTML, you create a reasonably straightforward Web page. It contains one form, named bio, with
three text form fields (firstname, lastname, and age), a pair of radio buttons (sex), and a selection box (income).
Lastly, the form contains these three buttons:

● A button named add, which has an onClick event handler calling the JavaScript function addrec().

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (6 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

● A button named clear, which is defined as a reset button and clears the current form data. This button has
no event handler because reset buttons are a built-in feature of HTML and JavaScript.

● A button named view, which has an onClick event handler calling the JavaScript function viewrec().

In addition, call your attention to the fifth line in the above code, which reads

<body bgcolor="#FFFFFF" onLoad="init()">

Notice the onLoad event handler specified in the <BODY> tag. It calls the function init().

Although non-functional, the above page would look like the following figure when loaded into a Web browser.

The mini JavaScript database looks good, but it’s non-functional until you write the JavaScript code.

Having created the HTML, you now need to write three JavaScript functions to make this page come alive: init(),
addrec(), viewrec().

init()

The init() function, which is called upon loading of the page into the Web browser, simply prepares the
necessary variables for the database.

function init()
{
recidx=0
record = new Array ()
}

In the first line of this function body, you initialize the record counter, recidx, to zero. Next, you create the
main array, record.

Later, recidx will be used to keep track of which record is currently at issue, and record will be a two-
dimensional array within which the form data is stored.

addrec()

Now you want to code the addrec() function, which places the data in the form fields into the array.

function addrec()
{
record[recidx]=new Array ()
record[recidx][0]=document.bio.firstname.value
record[recidx][1]=document.bio.lastname.value
record[recidx][2]=document.bio.age.value
record[recidx][3]=document.bio.sex[0].checked

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (7 of 11) [01.06.2001 00:45:08]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#37

Complete Idiot's Guide to JavaScript

record[recidx][4]=document.bio.income.selectedIndex
recidx++
document.bio.clear.click()
}

After the user has filled out the form, he clicks the Add Record button, which triggers this function. In the
first line of the function body, you create the second dimension of the two-dimensional array. You do that
by assigning a new array to the recidx element of the record array.

In the next five lines of the function, you assign the data in each form field to successive elements of the
second-dimension array (record[recidx]). This is the heart of the database, as the input data is stored in the
array. To re-iterate, the form data is stored into the array record[recidx], which itself is an element of the
array record.

Next, the record counter recidx is incremented by one to prepare for the next record (in case the user adds
another). Lastly, the current form is cleared by calling the click() method of the clear button. The user will
now be in a position to enter new data into the form, should he want to create another record.

viewrec()

When the user clicks the View Records button, this function is launched.

function viewrec()
{
viewwin=window.open("","View_Records","scrollbars=yes,width=640,height=400")
viewwin.document.writeln("<H2>View of "+recidx+" Current Record(s)</H2><p>")
for (var j=0; j<recidx; j++)
{ if (record[j][3]==true) {sex="male"} else {sex="female"}
viewwin.document.write("<H3>"+record[j][0]+" "+record[j][1]+"</H3>")
viewwin.document.write("<H4><i>Age:</i> "+record[j][2]+"
<i>Sex:</i> "+sex+"
<i>Income
Level:</i> " +record[j][4]+"<p>")
}
viewwin.document.writeln("<p><form><input type=button value='Close Record View'
onClick='window.close()'></form>")
}

Even though it’s the most complex-looking function of the three, viewrec() isn’t as tangled as it appears. In the
first line of the function body, you open a new browser window, which has the name viewwin, has dimensions of
640[ts]400 pixels, and can display scroll bars if necessary.

In the second line, you write some HTML code to the new window, creating a title and displaying the total
number of records being viewed.

Next, you create a for loop that begins with zero and increments by one until it reaches one-less-than the value of
recidx. Within this for loop, you write the HTML code to display the contents of each record. This begins with an

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (8 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

if...else statement to determine which sex was selected in the radio buttons. You then incorporate the appropriate
array elements into HTML code, which is then written to the new window. In doing so, you display the full
name, followed by the age, sex, and income level stored in each record.

Finally, when the for loop finishes, you write an additional line of HTML code to the new window, creating a
form button the user can click to close the View Records window.

Take a look at the mini JavaScript database in action. This figure shows the page after a user has entered several
records into the form and clicked View Records.

After entering several records into the page, the user clicks the View Records button, which launches the
JavaScript function viewrec().

This, then, is the entirety of your page—HTML and JavaScript code combined:

<html>
<head>
<title>The Mini JavaScript Mini-Database</title>
<script>
function init()
{
recidx=0
record = new Array ()
}
function addrec()
{
record[recidx]=new Array ()
record[recidx][0]=document.bio.firstname.value
record[recidx][1]=document.bio.lastname.value
record[recidx][2]=document.bio.age.value
record[recidx][3]=document.bio.sex[0].checked
record[recidx][4]=document.bio.income.selectedIndex
recidx++
document.bio.clear.click()
}
function viewrec()
{
viewwin=window.open("","View_Records","scrollbars=yes,width=640,height=400")
viewwin.document.writeln("<H2>View of "+recidx+" Current Record(s)</H2><p>")
for (var j=0; j<recidx; j++)
{ if (record[j][3]==true) {sex="male"} else {sex="female"}
viewwin.document.write("<H3>"+record[j][0]+" "+record[j][1]+"</H3>")
viewwin.document.write("<H4><i>Age:</i> "+record[j][2]+"
<i>Sex:</i> "+sex+"
<i>Income
Level:</i> "
record[j][4]+"<p>")
}

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (9 of 11) [01.06.2001 00:45:08]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/15fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/15fig02.jpg

Complete Idiot's Guide to JavaScript

viewwin.document.writeln("<p><form><input type=button value='Close Record View'
onClick='window.close()'></form>")
}
</script>
</head>
<body bgcolor="#FFFFFF" onLoad="init()">
<p><H2>The Tiny JavaScript Mini-Database</H2></p>
<p>To add a record, please complete the following fields and then click Add Record. To view all current
records, click View Records.</p><p>
<form name=bio>
<p>First Name<input type="text" size="10" name="firstname">
Last Name<input type="text" size="10" name="lastname">Age
<input type="text" size="3" name="age"></p><p>
<input type="radio" checked name="sex">Male

<input type="radio" name="sex">Female</p>
<p>Income Range:

<select name="income" size="5">
<option>Scraping By (<$10,000)</option>
<option>Enjoys Ketchup ($10-20,000)</option>
<option>Average Jane ($20-40,000)</option>
<option>Can't Complain ($40-80,000)</option>
<option>Outta My Way ($80,000+)</option>
</select></p><p>
<input type="button" name="add" value="Add Record" onClick="addrec()">
<input type="reset" name="clear" value="Clear Record">
<input type="button" name="view" value="View Records" onClick="viewrec()"></p>
</form>
<p><p>Thanks for using the mini database!</p>
</body>
</html>

The Least You Need to Know

● An array is an object that contains any number of elements. Each element may contain a value or be
defined as another array.

● To create a new array in JavaScript, use this expression:
arrayname = new Array ()

● An array element is referred to by its index:
arrayname[0] = elementvalue

● The length property contains the number of elements currently in the array:
numelements = arrayname.length

● The Array object has three methods:
❍ join(“separator”) concatenates all element values into a single string value, separating the values

by “separator” (which is a comma if nothing else is specified).
❍ reverse() flips the order of elements.
❍ sort() re-orders the elements alphabetically. Numbers are converted to strings and are also sorted

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (10 of 11) [01.06.2001 00:45:08]

Complete Idiot's Guide to JavaScript

alphabetically (not numerically).
● You can create a two-dimensional array by assigning a new Array () to an element of an existing array:

arrayname[0]=new Array ().
● You then refer to two-dimensional arrays using both index numbers:

arrayname[0][1] = value

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap15.htm (11 of 11) [01.06.2001 00:45:08]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 16
Image-ine That!

In This Chapter

● Out with the old image, in with the new
● The truth about the Image object
● Glamorous enhanced menus
● Wow! Illustrated catalogs!

Among the modest delivery of new features that have arrived on the JavaScript 1.1 ship, image manipulation has
been one of the more popular. This chapter explores the new Image object, which enables you to replace images
on a Web page without reloading the entire page. In doing so, you can achieve several nice, although less-than-
vital, page enhancements. Consider this chapter a handful of rainbow sprinkles (or “jimmies,” depending on your
longitude) with which JavaScript 1.1 can add some extra bite to your Web pages.

Inside the Image Object

Traditional HTML coding allows you to place images at specified positions on a Web page—nothing new here.
But what if you’d like to change one of the images on the page without loading a whole new HTML document?
That’s the mission of JavaScript 1.1’s new Image object.

At its heart, the Image object provides a way for JavaScript code to change the source file of an image. Imagine,
for instance, that you have a Web page that contains an image of a dog in the upper-left corner. Using the Image
object and the right JavaScript code, you can change this dog image into, say, a cat image. The rest of the page
remains unchanged.

Several applications of the Image object have become popular among JavaScript authors:

● Animations Authors are creating animations by rotating several image files in one position on the page.
● Enhanced menus When the user passes his mouse over an image, it changes into another image. This can

be used to highlight selection buttons, for instance, as the user passes over each.
● Illustrated catalogs A user can select an item, and an image of that item appears in a specific location on

the page. Selecting a different item changes the image. The page never needs to be re-loaded, nor does a
form need to be submitted to activate the new selection.

More experienced (read: jaded) Web authors may recognize that the above enhancements have been possible for
some time, but they required more complicated programming methods. However, JavaScript 1.1 helps speed
development for the experienced author and offers these enhancements even to novice Web programmers.

In this chapter, you’ll learn to use the Image object through an examination of two examples: the enhanced menu
and the illustrated catalog. There are some good reasons why the animation application isn’t particularly
wonderful; I’ll dish you that dirt towards the chapter’s close.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (1 of 9) [01.06.2001 00:45:34]

Complete Idiot's Guide to JavaScript

Let’s begin, though, with a look at creating an enhanced menu.

Glitz with Ease: Enhanced Menus

As simple and straightforward as text hyperlinks are, many Web designers prefer to add graphical menus to their
pages. A common graphical menu, like the one shown here for instance, consists of a series of adjacent images.
The user clicks one of these images, which presumably leads to some further activity.

A typical button menu, composed of several adjacent images.

Using JavaScript 1.1’s Image object, you can add some glitz to the above menu. Imagine that as the user passes
his mouse pointer over each button, it becomes highlighted. In addition to adding aesthetic appeal, this also
provides helpful feedback to the user, indicating which button is ready to respond to a click.

The enhanced button menu, which highlights each button as the mouse pointer passes over it. Note the change in
border thickness and the minor spotlight effect on the selected button. Slick!

Before we get down and dirty with the enhanced menu JavaScript code, let’s talk specifics about the Image
object.

Image Objectified

The Image object is similar to any other JavaScript object (which you learned about in Chapter 5, “Objects,
Names, and Literals”). Thus, it has its own set of properties. As far as we’re concerned, the most important and
effective property of the Image object is its source property, written as src, which you use to specify the image
file you want to display, as in:

image.src = “kitty.jpg”

Picture a Web page that contains an image of a dog. The image has been specified in the HTML code in typical
fashion:

There are two ways in which you can use the JavaScript Image object to alter the image that appears where the
dog image currently resides on the page. You can reference the image by its index or by its name.

By Index

The document object for the page contains an array known as images (also new to JavaScript 1.1). Each element
of document.images[x] refers to an image on the page, in the order in which they were defined in the HTML
code. For instance, in the page containing only the dog image, document.images[0] is the Image object that refers
to it. If the page contained another image after the dog, its Image object would be document.images[1], and so

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (2 of 9) [01.06.2001 00:45:34]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig02.jpg

Complete Idiot's Guide to JavaScript

forth.

Thus, to alter the image that appears in the dog’s place, you could change the order of the images in this way:

document.images[0].src = “kitty.jpg”

By Name

Often, you don’t include the NAME attribute in the tag. However, you can do so, thereby giving the
image an internal reference name:

Having done that, you can bypass the images array and refer to this Image object in JavaScript by its name:

document.dogimage.src = “kitty.jpg”

Naming Names

Important note: If the image is defined within a form, and you want to refer to it by name, you must specify
that form in the JavaScript expression, as in:

document.formname.dogimage.src = “kitty.jpg”

Ready to Code!

Now you’re ready to consider the code for your enhanced menu. Recalling how to use the src property of the
Image object to change the image on a page, let’s walk through the logic of your proposed Web page and
JavaScript program.

The Web page will be a mock clothing catalog. Its main page features a menu of four adjacent images: Help,
Shirts, Hats, and Ties. Suppose you’ve saved these images as button1a.jpg, button2a.jpg, button3a.jpg, and
button4a.jpg.

When designing these images in your image processing software, you also created “highlighted” versions of each
image. Each highlighted version has a higher brightness level, a black border, and a spotlight effect (thanks to
Adobe PhotoShop!). Suppose these highlighted images are saved as button1b.jpg, button2b.jpg, button3b.jpg,
and button4.jpg.

Each of the menu images you’ve prepared for this page. No great artistic skill necessary!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (3 of 9) [01.06.2001 00:45:34]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#36

Complete Idiot's Guide to JavaScript

Watch Your
Dimensions!

Ideally, when using
the JavaScript Image
object to replace
images on a page,
the new image
should possess the
same physical
dimensions as the
original. If it does
not, the Web
browser will scale
the new image to fit
the dimensions of
the image defined in
the original
tag.

The JavaScript logic, then, goes as follows:

● Detect the mouse passing over an image (onMouseOver). When it does, change
that image to the highlighted version.

● Detect the mouse passing away from an image (onMouseOut). When it does,
change that image to the non-highlighted version.

Simple enough? Basically, yes, although there is one trick to point out. MouseOver and
MouseOut events cannot be triggered for standalone images. Rather, they apply only to
hyperlinks and to defined areas in an image map (the latter of which is too complicated
for this book). The trick: for each image, create a hyperlink that has no text and insert the
 tag within the hyperlink definition. It might look like this:

<a href="help.htm" <img src="button1a.jpg" border="0" width="100"
height="50">

The above HTML code creates a hyperlink that consists only of the specified and
leads to “help.htm.” If you do not want the image to link anywhere, you can simply
include a null href, as in:

<a href=""

Using this trick, you can trigger MouseOver and MouseOut events when the mouse pointer passes over the
image!

Taking that into account, the full HTML code for your page would look quite a bit like this:

<html>
<head>
<title>Kiwi Republic Clothing, Ltd., Inc., Corp.</title>
</head>
<body bgcolor="#FFFFFF">
<p><H2>Welcome to Kiwi Republic Clothing, Ltd., Inc, Corp.</H2></p><p>

</p>
<p>The Kiwi Republic has been serving important man with important fashions
for half a century. Now offering lines ranging from overpriced shirts to
overpriced neckties, we're proud to make our catalog available on the "Web".</p>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (4 of 9) [01.06.2001 00:45:34]

Complete Idiot's Guide to JavaScript

</body>
</html>

Function Fun

As illustrated above, you’ve created four images—each within a hyperlink definition—for each of button1a.jpg,
button2a.jpg, and so on. As you might have noticed, you’ve also set two event handlers for each hyperlink:
onMouseOut, which calls the JavaScript function unselect(), and onMouseOver, which calls select(). So now it’s
time to code these two JavaScript functions!

First, unselect():

function unselect(butnum)
{ document.images[butnum-1].src = "button"+butnum+"a.jpg"}

Quite a compact little function, isn’t it?! This function takes one parameter, butnum, which specifies which
button to change to the un-highlighted image. The function also contains a single line of code, which changes the
image in question. And notice the document.images[x].src expression: In this case, x is butnum–1 because
JavaScript considers the first image to be index zero (even if we humans prefer to call it button number one).

In the second half of the statement, you simply assign a string to the Image object, which represents the correct
file name for the un-highlighted button, as in “button2a.jpg.”

Now for select():

function select(butnum)
{ document.images[butnum-1].src= "button"+butnum+"b.jpg"}

Hmm, sure looks familiar. In fact, select() is virtually the same function as unselect() except that it assigns the
“b” file name to the Image object, as in “button2b.jpg.”

Thus, to change button one to its un-highlighted image, you simply need to call unselect(1). To highlight it, you
call select(1). And that is exactly the logic behind this expression:

That’s all there is to it! You’ve created your images within hyperlinks, mixed in some event handlers, and added
your JavaScript functions. Loading this page into your browser, you see the enhanced menus in glorious action.

When you slide the mouse pointer over an image, your JavaScript enhanced menu kicks in, replacing the plain
image with a snazzy highlighted version.

For your reference, I’ve included the fully intact HTML code for this page, complete with the JavaScript

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (5 of 9) [01.06.2001 00:45:34]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig04.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig04.jpg

Complete Idiot's Guide to JavaScript

functions described above.

<html>
<head>
<title>Kiwi Republic Clothing, Ltd., Inc., Corp.</title>
<script>
function unselect(butnum)
{ document.images[butnum-1].src = "button"+butnum+"a.jpg"}
function select(butnum)
{ document.images[butnum-1].src= "button"+butnum+"b.jpg"}
</script>
</head>
<body bgcolor="#FFFFFF">
<p><H2>Welcome to Kiwi Republic Clothing, Ltd., Inc, Corp.</H2></p><p>

</p>
<p>The Kiwi Republic has been serving important man with important fashions
for half a century. Now offering lines ranging from overpriced shirts to
overpriced neckties, we're proud to make our catalog available on the "Web".</p>
</body>
</html>

Slick: Illustrated Catalog

The Image object can also be used to change an image based upon user selection in a form. For instance, consider
the Necktie Shopping page offered by Kiwi Republic, in which a selection box displays a list of available necktie
styles. When the user selects any one style, its image appears on the right side of the page.

By and large, the basic concepts of this example remain unchanged from the enhanced menus. You begin your
work by gathering the collection of necktie images to use. In this case, you’ve acquired five images, each of the
same dimensions, with the file names tie0.jpg, tie1.jpg, tie2.jpg, and so on.

Next, you create the HTML code for the selection box form. Using this form, the user will select which tie to
view.

<form name=tieform>
<select name="tiebox" size="5" onChange="ShowTie()">
<option selected>Plain Jane </option>
<option>Hearty Red </option>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (6 of 9) [01.06.2001 00:45:34]

Complete Idiot's Guide to JavaScript

<option>Green w/Envy </option>
<option>Power Blue </option>
<option>Crazy! </option>
</select>
</p>
</form>

Pop-Up Image

In the previous script, you created the form and named it tieform. You then defined the selection box with the
name tiebox, and you specified each necktie option. Following the selection box definition, you placed the initial
necktie image and named it tiephoto. Because Plain Jane is the initially selected item (<option selected>Plain
Jane), tie0.jpg will be the initial image displayed.

Re-focusing on the selection definition tag, you see that an event handler is specified: onChange=”ShowTie()”.
As a result, whenever the user changes the selected item, the JavaScript function ShowTie() is called. Let’s take a
peek:

function ShowTie()
{
tieidx=document.tieform.tiebox.selectedIndex
document.tieform.tiephoto.src="tie"+tieidx+".jpg"
}

This is a mere two-statement function. In the first, you determine which item is currently selected. You do this by
assigning the selectedIndex property of tiebox to the variable tieidx. Next, you use tieidx to construct the file
name of the necktie image to assign to the src property of the tiephoto Image object. Making this assignment
causes the tie image to change to reflect the currently selected item (see the following figure). Voila[ag]!

Capitalizing on the Image object, you change the necktime image that’s displayed to match the item selected in
the form.

Here’s a complete rendition of the page’s code:

<html>
<head>
<title>Shopping for Neckties at the Kiwi Republic</title>
<script>
function ShowTie()
{
tieidx=document.tieform.tiebox.selectedIndex
document.tieform.tiephoto.src="tie"+tieidx+".jpg"
}
</script>
</head>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (7 of 9) [01.06.2001 00:45:34]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig05.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/16fig05.jpg

Complete Idiot's Guide to JavaScript

<body bgcolor="#FFFFFF">
<h2>Shopping for Neckties at the Kiwi Republic</h2>
<p>From the list below, select a necktie. An image of the tie appears to the right. If none of the
neckties in our catalog suit your taste, there is something quite dubious about your tastes.</p>
<form name=tieform>
<select name="tiebox" size="5" onChange="ShowTie()">
<option selected>Plain Jane </option>
<option>Hearty Red </option>
<option>Green w/Envy </option>
<option>Power Blue </option>
<option>Crazy! </option>
</select>
</p>
</form>
</body>
</html>

Future Projects

At the outset of this chapter, I implied that the Image object could be used to create animations. After having seen
the Image object in action, you can probably imagine how an animation would be constructed:

● Gather a series of image frames, each in a separate file.
● Using the image.src= assignment, replace an initial image with each successive frame image.

It certainly works, but there are some real drawbacks. For one, the result isn’t much different from a typical
animated GIF. What’s more, with an animated GIF, all the frames are stored in one file, which cause much less
network delay than loading each individual image file does.

On the other hand, if you create an animation using JavaScript code, you could program interactiveness that GIF
animations lack. For instance, form buttons could be tied to a delay variable, which would speed up or slow down
the rotation of image frames.

The Least You Need to Know

● JavaScript 1.1 introduces the Image object, whose properties enable you to replace images on a page
without reloading the page.

● The images on a page are indexed in the order in which they appear in the HTML code; the first image on
the page is number zero.

● Each image on a page may also be named using the NAME= attribute of the tag.
● To replace an image on the page, you can assign the path of the new image to the src property of the

Image object you want to change.
● Image objects can be referred to by index number in the document.images[] array, as in

document.images[0].src=”kitty.jpg.”
● Image objects can be referred to by a name defined in the tag, as in

document.petphoto.src=”kitty.jpg.” Images that reside within a form must also specify the form name, as

in document.someform.petphoto.src=”kitty.jpg.”

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap16.htm (9 of 9) [01.06.2001 00:45:34]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 17
Care for a Cookie?

In This Chapter

● Cookie basics
● Recipe for success: inside a cookie
● JavaScript, meet cookie
● Cookie-making functions
● Ambition: future recipes

It’s one of the tastiest of morsels. That’s why most of us experience a specific pleasant sensation when we think
of the word cookie. With that in mind, we placidly consider the Web-based cookie, which—though coined with
the driest of technogeek humor—has absolutely nothing to do with the aforementioned snack food. In fact,
there’s no good reason why the subject of this chapter is called a cookie. Nonetheless, what it lacks in taste, the
Web cookie possesses in style: It’s a useful little critter, despite its non-sequitir name.

Using Web cookies, you can personalize Web pages and keep track of information about a user. In this chapter,
I’ll introduce the concept of a cookie, and you’ll learn to create and access them with JavaScript.

Behind the Ball of Dough: Cookie Basics

Cookies allow a Web page to “track” information about a particular visitor. Introduced with the release of
Netscape Navigator 2.0, cookies have become widely used on Web sites in the months and year(s) since.

To better illustrate the function of a cookie, let’s look at a typical, but simple, example. You own a Web page. A
user, whom we’ll call Mark Harmon (for no particular reason), visits your Web page. He might have reached it
by typing its URL into his Web browser, or he might have simply clicked on a link from a different page. But it
makes no difference how he got there.

When Mark Harmon visits your page, you assign him a specific identification number behind the scenes; Mark
Harmon is not aware of this (unless he’s configured his browser to alert him of cookie requests). Using a cookie,
you then save this identification number to Mark Harmon’s hard drive. The next time Mark Harmon visits your
Web page, you know it’s him—or, more accurately, you know that it’s the same computer from which Mark
Harmon first visited your page.

The above concept is an example of one use of a cookie: You have stored information to track a particular visitor
to your page. You can expand on that concept in a variety of ways. You might use cookies to record past options
that Mark Harmon has selected on your site so you can personalize your site and show only information that is
relevant to Mark Harmon, based on his past selections.

Cookies have been applied to a wide variety of Web sites, from mail order catalogs to search engines. Using

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (1 of 11) [01.06.2001 00:46:05]

Complete Idiot's Guide to JavaScript

cookies in an ethical manner, you have the potential to mold your Web pages to fit each visitor by remembering
their past preferences, and so forth.

In this chapter, I’m going to show you how you can use JavaScript to create some simple cookies. Then you’ll
retrieve these cookies and customize your Web page to reflect the cookie. While the potential applications and
implementations of cookies can grow quite complex, I’ll stick to the basics. (Or should that read “non-stick”!?)

Cookie Crumbs: Ethical Issues

The widespread use of cookies has raised the hackles of paranoia among a growing segment of Web users. For
many, the mere notion that a Web page can “track” their actions conjures up frightening implications. Others
dissent from this view, believing that cookies are by-and-large a harmless convenience. In reality(as usual), both
sides have valid points.

It is true that a cookie can be used to keep a record of a fair amount of information about your visit to a site. The
cookie can “remember” which links you’ve selected, which products you’ve ordered, and so forth. Using this
data, many Web marketers hope to collect demographic statistics that they can use to target promotions and so
forth.

However, there are certain limitations to exactly how much information a cookie can track and how personal that
information can be. Consider these restrictions on cookies:

● Only the domain that created the cookie can access it. For example, cookies created by a Web page at
dominos.com cannot be changed or referenced by a Web page at pizzahut.com.

● Netscape Navigator allows only 20 cookies to be stored per domain. Thus, dominos.com can save a
maximum of 20 cookies.(Of course, they can still store a fair amount of tracking information in those 20
cookies.) In contrast, Microsoft Internet Explorer 3.0 allows only one cookie to be stored per domain.

● While a cookie can track the behavior of the user at a particular computer, it can’t know who the person
using the computer is. At most, the cookie can recognize that a particular computer is visiting a Web page
again, but it has no way of knowing which specific human being is at the other end!

● Perhaps most importantly, a cookie cannot acquire any information from your computer’s data. The
cookie itself is only a piece of data that has been stored on your computer and retrieved by a Web page.
The cookie cannot “spy” into your personal files—or any files at all for that matter.

While the above points make a strong case for the safety of data security with regards to cookies, they do not
necessarily prevent cookies from being used unethically. One question is this: Is it ethical to e-mail reams of
promotional messages based on the selections of a visitor on a Web page? Many would say no; some would say
yes. There is much subjectivity to ethical judgments, but the main point is that cookies simply track information;
what other people do with that information and how they use it is where social ethics begin and technology ends.

The Vanilla Cookie

To begin this culinary lesson, let’s start with a very basic cookie: merely tracking the date and time of the user’s
last visit to the Web page.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (2 of 11) [01.06.2001 00:46:05]

Complete Idiot's Guide to JavaScript

The mechanics behind a cookie are simple enough. When the user opens your page, you read any data that exists
in the currently stored cookie for this user. You use this data in whatever way you want, and then you update the
cookie—which contains a name, a value, and other possible information—to reflect the current visit.

In this particular example, you’ll check the existing cookie for the last time the user visited this page (if there is
any), display that information on the page, and then update the cookie to reflect the current date and time of this
visit.

Keep the above process in mind, or refer back to it if necessary as I explain each step in the cookie making
process. While the basic concept is simple, there are a lot of details that can become confusing. I’ll start simply.

What Are the Ingredients of a Cookie?

Glad you asked. Literally, a cookie is a piece of data that is stored either in the computer’s memory or on the hard
drive. This piece of data may contain such information as:

● A name for the cookie (such as lastvisit).
● A value for the cookie (such as Fri Dec 06 18:35:48 Atlantic Standard Time 1996).
● An expiration date for the cookie. After this expiration date, the cookie will no longer function, and a new

one would have to be created. (If you do not specify an expiration date, the cookie expires as soon as the
Web browser is closed, and the cookie is never saved to the hard drive.)

● A domain name and path for the cookie. These help determine which Web pages are allowed to access the
cookie.

● Whether or not the cookie must operate on secure encrypted Web connections only.

How Do I Create a Cookie?

Another excellent question. By combining the ingredients, of course! Specifically, using JavaScript, you assign a
string value to the cookie property of the current document:

document.cookie = “name = value; expires = date_to_expire”

Ingredients

Suppose, then, that you want to store a cookie that tracks the current date and time of the user’s visit to this Web
page. You’ll name the cookie lastvisit; the variable today will contain the current date and time; and the variable
expdate will contain the date on which the cookie expires.

document.cookie = “lastvisit = today; expires = expdate”

The above is fine and good, but here come the details. As it is, cookie syntax requires that the expiration date be
in a very specific format: Wdy, DD-MMM-YYYY HH:MM:SS GMT.

Wdy can be any valid three-letter abbreviation for a day name (such as Sun); DD represents a two-digit reflection
of the day of the month (such as 09); MMM represents any of the valid three-letter abbreviations for the month

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (3 of 11) [01.06.2001 00:46:05]

Complete Idiot's Guide to JavaScript

(such as Sep); YYYY is the four-digit year (such as 1996). Hours, minutes, and seconds are represented by two
digits each (such as 22:15:00). And finally, GMT is the only valid time zone. So if you are calculating an
expiration time, don’t neglect to account for the time difference between GMT and your own time zone.)

● Valid Day Abbreviations: Mon, Tue, Wed, Thu, Fri, Sat, Sun
● Valid Month Abbreviations: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Fortunately, you’ll soon learn about a JavaScript function that can construct the proper date format for you in
many cases. However, if you want to specify a specific expiration date that is not calculable in a JavaScript
function (in other words, if you want the cookie to expire on “January 1, 1998” as opposed to the calculable “30
days from today”), you still have to refer to the syntax rules above.

Unlike the expiration date, the variable today (which contains the date of the user’s lastvisit) can be stored in any
format you want. After all, that’s your data, which you can use however you want.

Procedure

Now you’re ready to write your first function. Combining the ingredients discussed so far, you’ll code a small
function named BakeCookie(), which creates the above-described cookie. First, the code, and then the
explanation.

function BakeCookie()
{
var today = new Date ();
var expdate = new Date ();
expdate.setTime(expdate.getTime() + (1 * 24 * 60 * 60 * 1000 * 365));
expdate=expdate.toGMTString();
document.cookie="lastvisit="+escape(today)+";expires="+expdate+";"
}

Following your function definition, you define two variables—today and expdate—and assign the current date to
each of them. Next, you use a somewhat complicated call to the setTime() method of expdate, setting it to 24
hours ahead of the current time. In doing so, you’re preparing to bake your cookie to expire in 24 hours (or one
day). To set expdate 30 days ahead, for instance, simply change the initial 1 to 30 in line 5 (where it begins 1 *
24).

After assigning the expiration date to expdate, you call its toGMTString() method, which converts the date into
the syntax needed for the cookie. Lastly, and most importantly, you make the assignment to document.cookie,
which bakes the cookie.

Notice that you add the expression escape(today) to the string value assigned to document.cookie, instead of
merely adding today. This is because the value of the cookie cannot contain white space or punctuation marks,
and calling escape(today) will insert the value of today without any such characters (by saving each illegal
character as a special code). Later, when you read the value of the cookie, you’ll reverse this effect so that any
white space and punctuation marks can be returned to the cookie’s value.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (4 of 11) [01.06.2001 00:46:05]

Complete Idiot's Guide to JavaScript

Hands Off! Domain Restrictions

Matters can become a little more complicated here. By specifying a domain name in your cookie, you limit which
Web pages have access to that cookie. For instance, if in your cookie creation, you appended the specification
domain=mysite.com, only Web pages that reside on mysite.com could access this cookie.

The example above assumes that your original Web pages does reside on mysite.com; remember that you cannot
specify a domain other than the one the Web page currently resides in! In other words, you cannot tell a Web
page located at beagledog.com that it can access cookies only at terrier.com. That would violate all attempts at
cookie privacy.

Every subdomain of the specified domain can access the cookie. To clarify, if you restrict a cookie’s domain to
mysite.com, all Web pages on bob.mysite.com and mary.mysite.com can access the cookie because those are
both subdomains of mysite.com. If you wanted to be even stricter, you could restrict the cookie to
mary.mysite.com, in which case pages on bob.mysite.com or mysite.com could not access the cookie.

Furthermore, you can also restrict which pages within a domain can access the cookie. This is done using the
path= specification in the cookie definition. For instance, if your Web pages reside within
http://mary.mysite.com/marypages/, you could specify path=/marypages. And if you combine that with the
domain restriction, you might wind up with a cookie assignment that looks something like this:

document.cookie = “lastvisit = today; expires = expdate; domain = mary.mysite.com; path=/marypages”

This would restrict access to the cookie to Web pages that are within /marypages on the server mary.mysite.com.
Whew, this can become quite a mouthful!

In the interest of shortcuts, I should note that leaving out the domain or path specifications does not leave your
cookie completely vulnerable. If you do not specify a domain restriction, a default restriction will be used (which
consists of the domain within which the Web page resides). Therefore, if your page is on a server at
mary.mysite.com, and you don’t specify the above domain restriction, access to the cookie will be restricted to
pages on mary.mysite.com anyway! Thus, in many cases, you can omit the domain restriction, as you did in the
earlier example function BakeCookie(). However, in certain unusual server configurations, you might find that
your page functions better if you do include the domain and/or path restrictions. When it comes to circumstances
where security matters, specifying restrictions is always safer than not doing so.

How Many Cookies in a Batch?

While creating a cookie from a Web page is simple enough (document.cookie=”cookie_attributes”), you
might be wondering how many cookies you can create from a page? The answer, in fact, lies not with
JavaScript but with the Web browser.

Netscape Navigator 2.0 and 3.0, for instance, honor up to 20 cookies per domain. This means that across

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (5 of 11) [01.06.2001 00:46:06]

Complete Idiot's Guide to JavaScript

all of the pages that reside in the same server domain, you can create a maximum of 20 cookies. Dramatically
different, however, is Microsoft Internet Explorer 3.0, which supports only one single cookie per domain!

As the JavaScript author, you should keep the above limitations in mind. If your pages are primarily
intended for Netscape users, you can bake a 20-cookie batch. But if you want to remain compatible
with Microsoft Internet Explorer users, you should pack as much information as you need to into a single
cookie(Internet Explorer will silently refuse to create a new cookie if a valid cookie from the same domain
already exists).

Setting the table

Now that you’ve created your BakeCookie() function, you’re ready to incorporate it into a very simple Web
page. Consider the HTML code below:

<html>
<head>
<script>
function BakeCookie()
{
var today = new Date ();
var expdate = new Date ();
expdate.setTime(expdate.getTime() + (1 * 24 * 60 * 60 * 1000 * 365));
expdate=expdate.toGMTString();
document.cookie="lastvisit="+escape(today)+";expires="+expdate+";"
}
</script>
</head>
<body bgcolor="#FFFFFF">
<p align="center"><H1>Welcome to the Cookie Monster!</H1></p>

<script>
BakeCookie()
</script>
</body>
</html>

Now you’ve created a simple page, which contains only the centered text “Welcome to the Cookie Monster!”.
Within the <HEAD> tags is your first function, BakeCookie(), and at the end of the document is a simple
JavaScript call to the function.

When a user loads this page for the first time, he sees only the welcome text; but the current date and time cookie
is stored. In this case, because you specified an expiration date, the cookie is stored to his hard drive. Had you not
specified an expiration date, the cookie would remain in RAM and would expire as soon as the user shut down
his Web browser.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (6 of 11) [01.06.2001 00:46:06]

Complete Idiot's Guide to JavaScript

That’s just wonderful, right? But how, then, do you make use of this cookie? Conceptually, it’s simple: When the
user loads this page, you read the value of the cookie and use it to customize the message on the page. Following
that, you update the cookie with the new date and time.

The First Bite: Reading the Cookie

To read the value of the cookie, you need to create a function. This function will search the user’s cookie list for
the named cookie of your choice. If it finds that cookie, and if the page has access to the cookie (as explained in
the earlier section on domain and path restrictions), it returns the value of that cookie. The skeleton of such a
function would look like this in pseudo-JavaScript:

function ServeCookie (cookie_name)
{statements which search for and retrieve value of cookie}

You could then incorporate a call to ServeCookie() into some other JavaScript code, which would use the value
of the cookie as in:

document.writeln (“Hi again! Your last visit to this page was on “ + ServeCookie(“lastvisit”))

The above code would add a message to the current Web page, greeting the user with the exact date and time of
his last visit, as recorded in the cookie. Of course, if the cookie has expired since the user’s last visit, the situation
will be as if the person had never visited before and has no pre-existing cookie for this page.

Before you, then, lies the matter of coding the ServeCookie() function. The truth is, this function is a bit
complicated. Needless to say, I don’t want to burden an audience new to JavaScript with a complex, long, and
possibly confusing explanation. Fortunately, this function is very portable: You can use it, as is, in any Web
page, without having to understand exactly how it works. All you have to do is call it with the name of the cookie
to serve, and it delivers that cookie’s value. If the cookie does not exist or has expired, this function returns the
value null. Here is the function ServeCookie():

function ServeCookie(name)
{
var namestr = name + "="
var namelen = namestr.length
var cooklen = document.cookie.length
var i = 0
while (i < cooklen)
{ var j = i + namelen
if (document.cookie.substring(i, j) == namestr)
{ endstr = document.cookie.indexOf (";", j)
if (endstr == -1) {endstr = document.cookie.length}
return unescape(document.cookie.substring(j,endstr))
}
i = document.cookie.indexOf(" ", i) + 1
if (i == 0) break

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (7 of 11) [01.06.2001 00:46:06]

Complete Idiot's Guide to JavaScript

}
return null
}

The Confessions of ServeCookie()

A technically curious sort, eh? You really want to know what is going on inside the ServeCookie() function?
Well, I’m not going to spell it out line by line, but here’s a basic summary.

Using a combination of string properties, such as length, and string methods, such as substring() and
indexOf(), as well as several if statements, this function locates the first character to the right of the equal
sign following the cookie name and extracts the string of characters from that position to the character
immediately preceding the first semicolon. If the cookie name cannot be found, a value of null is returned.
Well, now look, I’ve gone and spilled all the secrets. Happy now?

Got Milk? Washing It Down

All of the essential elements have been covered: you know the functions for creating the cookie, as well as for
reading its value. You have the basic HTML for your Web page, and you’ve seen how to incorporate a call to
ServeCookie in a document.writeln JavaScript statement. Now, then, you dunk:

<html>
<head>
<script>
function BakeCookie()
{
var today = new Date ();
var expdate = new Date ();
expdate.setTime(expdate.getTime() + (1 * 24 * 60 * 60 * 1000 * 365));
expdate=expdate.toGMTString();
document.cookie="lastvisit="+escape(today)+";expires="+expdate+";"
}
function ServeCookie(name)
{
var namestr = name + "="
var namelen = namestr.length
var cooklen = document.cookie.length
var i = 0
while (i < cooklen)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (8 of 11) [01.06.2001 00:46:06]

Complete Idiot's Guide to JavaScript

{ var j = i + namelen
if (document.cookie.substring(i, j) == namestr)
{ endstr = document.cookie.indexOf (";", j)
if (endstr == -1) {endstr = document.cookie.length}
return unescape(document.cookie.substring(j,endstr))
}
i = document.cookie.indexOf(" ", i) + 1
if (i == 0) break
}
return null
}
</script>
</head>
<body bgcolor="#FFFFFF">
<p align="center"><H1>Welcome to the Cookie Monster!</H1></p>

<script>
if (ServeCookie("lastvisit") == null)
{document.writeln ("<H2>Hello stranger! Enjoy your first visit to this page.</H2><HR>")}
else {document.writeln("<H2>You’re back! Last visit to this

page:
"+ServeCookie("lastvisit")+"</H2><HR>")}
BakeCookie()
</script>
</body>
</html>

The only new bit above is the logic added to the end of the document between the final set of <SCRIPT> tags
(seven lines up from the last line). You test to see if the value for the lastvisit cookie is null, in which case the
user has not visited this page before (or his cookie has expired). If his cookie is null, you write an appropriate
first-time greeting to the page. If his cookie does contain a value, you welcome him back and display the time
and date of his last visit. Finally, you call the BakeCookie() function and update the cookie.

An initial visit to this page, then, would result in a screen resembling the one shown here.

Either this is the user’s first visit to this page, or his cookie has expired.

Someone who’s re-visiting this page and has a valid cookie would receive the familiar greeting shown in the
following figure.

This is no stranger; he’s been to this page before! Cookies remember.

Chips, Almonds, and Assorted Cookie Magic

In this chapter, we’ve looked in detail at constructing a relatively simple cookie. The basic procedure, however,
can be applied to any level of complexity. For instance, you could do any of the following:

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (9 of 11) [01.06.2001 00:46:06]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/17fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/17fig02.jpg

Complete Idiot's Guide to JavaScript

● Design a text form, wherein the user submits his name. You then store the value of this form in a cookie
and greet the user by name upon his next visit.

● Create an online catalog so that whenever the user adds an item to his shopping cart, a cookie stores that
information. When the user chooses to advance to the cashier, an invoice appears, showing the user’s
name and each item in the cart.

● Manipulate a search engine so it stores a user’s preferred options, such as how many hits to display at
once, which criterion to sort hits by, and so forth. When the user re-visits the page, his preferred options
are already selected.

You can do any of these things by building on the JavaScript concepts and code shown in this chapter. Certainly,
the code will grow more complex as you send the values from form fields to cookie-baking functions. To repeat a
standard recommendation, learn by watching others! When you come across a Web page which is
“remembering” your choices, it’s using cookies. Spend some time studying the source code for that Web page to
see how the author created it.

Remember, though, that not all Web pages use JavaScript to track cookies. Obviously, look for Web pages whose
source code indicates that they are using JavaScript!

All Together Now

The tools provided throughout these chapters should serve as a good overview of JavaScript and its applications.
I've avoided delving into highly complex programming examples in part because this is an introduction to the
language and in part because such examples are more about programming science than the JavaScript language
itself.

The best way to learn a programming language is, as my irritating piano teacher used to say, through “Practice,
practice, practice.” And experimentation, although she didn't ever mention that. You'll need to read these chapters
multiple times, in different manners. For the first read-through, you might look to pick up the general concepts
behind JavaScript programming. On a second read-through, try focusing on the specific syntax of the JavaScript
statements and expressions.

Then, at each example, attempt to throw together your own code that varies slightly from the example. See if it
works, and if so, vary it further with new ideas. Eventually, you work toward combining concepts from multiple
examples, and before you know it, you're constructing your own programs from scratch. Be sure to read through
the script example chapters in Part 4, “Scripting the Whole Bean.” They provide full examples of JavaScript
programs, with explanations, which pull together all the concepts from throughout this book.

One word of advice is not to be beset by frustration when programs don't work the first time through. Errors and
malfunctions are the stuff that programs and programmer's lives are made of. Sometimes, the error is caused by
something silly, such as forgetting a closing bracket or parenthesis. Other times, you haven't a clue why the
program is not working. In those cases, it's a good idea to try other approaches to the end, and see if they work.
Or just scream. There is a whole science to debugging—which is of great value to learn if you become heavily
involved in programming—but when all else fails, I always recommend the "clear head" approach. That is, walk
away. Come back another day. Many dastardly bugs are resolved this way. The rested, clear mind can solve some
problems in minutes that the haggard mind struggles with for hours. A perusal through Chapter 25, “What to Do

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap17.htm (10 of 11) [01.06.2001 00:46:06]

Complete Idiot's Guide to JavaScript

When It Won’t Work: Debugging Your Scripts,” might be beneficial, as well. There you'll find some further
consideration given to script debugging and pest extermination.

Now that you’ve had that not-exactly-a-pep talk, you're off and programming!

The Least You Need to Know

● Cookies are used to track information about a particular visitor to a Web page, such as the last time of
visit or which links he selected.

● A cookie is a bit of data that is stored in either the user’s RAM or hard drive; the cookie contains a name
and a value, and possibly an expiration date and other access restrictions

● You create a cookie in JavaScript by assigning its specifications to document.cookie, the template of
which looks like this:

document.cookie = “name=value; expires=expiry_date; domain=domain_restriction;
path=path_restriction; secure”

● By coding functions to create a cookie and read a cookie, you have the two elements necessary to use and
manipulate cookies from the Web page.

● Using the value contained in a cookie (obtained via the cookie reading function), you can customize Web
pages or process the value in any way you want.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 18
Script Example 1: Hello World

In This Chapter

● A simple template for creating JavaScript scripts
● Positioning the <SCRIPT> tag to control output
● Writing HTML tags from within the <SCRIPT>
● Providing "controlled access" to parts of the document

Putting It All Together

If you've made it this far, you’ve probably been wondering when the background information, command lists,
statement explanations, and other groundwork would stop and the real fun—creating your own real JavaScript
Web pages—would begin. Wait no longer! The fun starts now! Because no introduction to a new computer
language would be complete without the requisite "Hello World" application, that's where you'll start. Your little
"Hello World" script will also give you a basic HTML framework that you can use for the rest of the examples in
this book.

[ic:check]Hello World? Every discipline has its traditions, and programming is no exception. One
long-standing ritual found in almost every introductory book on any computer programming language
is to have the first program be one that displays the phrase "Hello World" on the screen.

The Basic Template

You can use the following template as a framework for all of your JavaScript files. From time to time, you may
want to move things around a bit, but that's what templates are for: to give you a starting point. Don't consider
them to be the only way to script—they’re just one possibility.

<HTML>
<HEAD>
<TITLE>Your Title Here</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide script from non-JavaScript browsers
// your script statements go here
//-->
</SCRIPT>
</HEAD>
<BODY>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (1 of 8) [01.06.2001 00:47:30]

Complete Idiot's Guide to JavaScript

// Your HTML display statements go here
</BODY>
</HTML>

As I mentioned in Chapter 3, the <SCRIPT> tag serves as a wrapper around JavaScript statements, and you can
place it anywhere within the HTML file. For the sake of consistency, place it in the <HEAD> tag.

Hello World 1

Suppose you want to present a simple page that displays a JavaScript dialog with the phrase "Hello World from
the Land of JavaScript!" when the user clicks a button. If you remember back a bit, you can accomplish this
through the use of an event handler that runs a function. The event handler you need to use is onClick, and the
function is a simple one:

function HelloWorld()
{
alert("Hello World from the Land of JavaScript!")
}
So, putting it together, you get:
<HTML>
<TITLE>Hello World</TITLE>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide script from non-JavaScript browsers
function HelloWorld()
{
alert("Hello World from the Land of JavaScript!")
}
//-->
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Click on the button below to receive a _special message:
<P>
<INPUT TYPE="submit" VALUE="Click Me!" _ONCLICK="HelloWorld()">
</FORM>
</BODY>
</HTML>

[ic:check]Run Script, Run

"Running" a JavaScript program is as simple as loading the HTML document into the Web browser.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (2 of 8) [01.06.2001 00:47:30]

Complete Idiot's Guide to JavaScript

If you've created the script file on the same computer on which the browser is installed, you will load a
"local file." Do this opening the File menu and choosing an option named something like Open file or
Open local file.

When you fire up Netscape Navigator and run this script, you should get something like what you see in the next
figure.

Hello World!

There are a couple of things to note here. First, the JavaScript code for buttons needs to go inside a <FORM> tag;
otherwise, it's simply ignored (you can test this by removing the <FORM> tag from the above script and running
it again). One of the most common mistakes beginning Web writers make is forgetting to use the <FORM> tag;
and then they wonder why their buttons and check boxes aren't being displayed.

Note that, in the previous example, you're using a Submit button (as defined by the <INPUT> tag attribute
TYPE="submit"). The Submit button also generates an onSubmit event, which you could have used to equal
effectiveness as the onClick event in this case. However, the onSubmit event handler is defined in the <FORM>
tag not the <INPUT> tag. You can check this out for yourself by replacing the previous example with the
following one, which will yield the exact same results:

<FORM ONSUBMIT="HelloWorld()"><INPUT TYPE="submit" VALUE="Click Me!"> </FORM>

Congratulations, you're now a JavaScripter!

Hello World 2

Okay, so your first little example wasn't all that elaborate. Well, you have to start somewhere! Now you’re ready
to deviate from your template a little and look at a more significantly useful way to place text on the screen. Now
you will generate new messages directly into the on-screen document.

You may remember (from Chapter 12) that one of the objects JavaScript gives you is the document object, which
provides a way to program the currently displayed document. Normally, when you load a Web page, the HTML
statements within it are interpreted and displayed by the browser. With JavaScript, you can write HTML
statements directly into the document at any time, as generated on-the-fly by your JavaScript program. To see
what I mean, consider the following example:

<HTML>
<TITLE>Hello World</TITLE>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide script from non-JavaScript browsers
document.write("<H2>Hello World from the Land of JavaScript!</H2>")
//-->

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (3 of 8) [01.06.2001 00:47:30]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/18fig01.jpg

Complete Idiot's Guide to JavaScript

</SCRIPT>
</HEAD>
<BODY>
<P>

(the previous message compliments of JavaScript)

</BODY>
</HTML>

Running this document produces the same output as the following non-JavaScript page:

<HTML>
<TITLE>Hello World</TITLE>
<HEAD>
<H2>Hello World from the Land of JavaScript!</H2>
</HEAD>
<BODY>
<P>

(the previous message compliments of JavaScript)

</BODY>
</HTML>

Interactive Style

Given the previous two examples, you might be thinking, "So what was the point of that?" Consider, though, that
in the JavaScript version, you could have output that message at any time as a result of certain conditions having
been met or a certain type of user interaction. In the HTML version, the message is plopped onto the screen, and
it's there for good. Thus, JavaScript enables you to generate on-screen messages via HTML code in reaction to
conditions or user events.

A New Spin

Now let’s rework the first example so that you wind up with something truly JavaScripty. The following program
will be a mini "tour guide" front-end to a display on the history of spices. Two buttons will appear in the window,
each containing the name of a spice. When the user chooses the spice, a JavaScript function is called that
generates new HTML code on-the-fly for display on the screen. This new code will display two appropriately
phrased links that lead toward new (hypothetical) documents: one containing recipes that use the spice, and the
other containing a history of trade for that spice. This sounds complicated, but it is, in fact, simple with
JavaScript.

<HTML>
<TITLE>Spice Tours 96</TITLE>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (4 of 8) [01.06.2001 00:47:30]

Complete Idiot's Guide to JavaScript

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--Hide script from non-JavaScript browsers
function tour(spice)
{
var recipes="See recipes using " + spice + "<p>";
var trading="See history of the " + spice + " trade<p>" ;
document.write("<H2>Please select one of the guided tours below<H2>") ;
document.write(recipes) ;
document.write(trading) }
//-->
</SCRIPT>
</HEAD>
<BODY>

Please click on the desired spice below:

<FORM>
<INPUT TYPE="button" VALUE="Garlic" ONCLICK="tour('garlic')">
<INPUT TYPE="button" VALUE="Cinnamon" ONCLICK="tour('cinnamon')">
</FORM>
</BODY>
</HTML>

The following two figures illustrate what the user would see when interacting with the this program.

Here, the salivating user can select which spice to learn more about.

After the user has selected a spice trail to follow, the JavaScript program generates some new HTML code on-the-
fly, reflecting the user’s choice and displaying a suitable page. As pictured here, the new page refers to the spice
the user has chosen. As well, the hyperlinks lead to pages specific to the chosen spice.

The JavaScript function then generates new HTML code to display the above spice-appropriate hyperlinks.

Let's consider the previous program. It basically contains two segments. The JavaScript function definition comes
first, and the HTML code defining the button options comes second. First consider the HTML code. It should
look familiar by now: You created a form in which there are two button elements, and you labeled each button
with a spice name. You could have coded as many buttons as you wanted. Both buttons contain an onClick event
handler, calling the function tour(). Notice how you pass a string literal, representing the spice in question, as the
parameter to tour().

Now consider the tour() function. The first line of statements, an assignment to the variable recipes, looks
complicated but is actually simple. The purpose of this line is to paste together a string containing the full HTML
code for a hyperlink. It then assigns that whole string to the variable recipes. You can assume, for example, that
the document containing garlic recipes will be called "garlic.htm," and so you use a combination of

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (5 of 8) [01.06.2001 00:47:30]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/18fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/18fig03.jpg

Complete Idiot's Guide to JavaScript

concatenations to construct this string. Recall that the variable spice contains either the string "garlic" or
“cinnamon,” depending on which button the user clicked. Therefore, according to JavaScript, the following string
winds up being assigned to recipes:

"See recipes using garlic<p>"

This is HTML for a hyperlink and will momentarily be output to the browser window.

The second statement line constructs a similar link for the history of trading. This is followed by three
document.write() statements, which simply output all of this HTML to the browser window, as shown in the
previous figure.

Web Etiquette

If you've done a bit of Web surfing, no doubt you've encountered many pages that have links "for text-based
browsers" or "for non-Netscape browsers." Because there are several "standards" on the Web today, not all
browsers can handle all things. Thoughtful Web authors try to accommodate this by creating different collections
of pages that are tailored to different types of browsers.

Although the most popular browsers (Netscape Navigator 2.0 or greater and Internet Explorer 3.0 or greater)
support JavaScript, some other browsers are still in use out there . For those who do not use JavaScript-capable
browsers, it's nice to still be able to view your pages, even if the pages’ features and functionality are reduced in
some way. You can do this quite neatly by taking advantage of what you just learned.

Because you can generate HTML using the document.write() method, you can create the following JavaScript-
aware page:

<HTML>
<TITLE>Welcome to My JavaScript</TITLE>
<BODY>
<H1>So...you're interested in JavaScript?</H1>

Hello World! Well, you've come to the right place for JavaScript.

But, if you don't have Netscape

Navigator or Microsoft Internet Explorer, you
won't be able to see any of the fun!

<SCRIPT LANGUAGE="JavaScript">
<!-- Hide from non-JavaScript browsers
document.write("<HR>")
document.write("<P>")
document.write("To proceed to my JavaScript pages,")
document.write('Click here.')

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap18.htm (6 of 8) [01.06.2001 00:47:30]

Complete Idiot's Guide to JavaScript

//-->
</SCRIPT>
</BODY>
</HTML>

The following figure shows the resulting page. With this little trick, you can keep people from trying to view
your JavaScript pages if they don't have a browser that can handle it. That way, they won't be disappointed by the
gibberish they see on-screen.

Only a JavaScript-enabled browser will display the last line.

The Least You Need to Know

Having seen all that makes up JavaScript in the earlier chapters of this book, you now embark on the adventure
of creating your own pages. In your first example, you displayed a simple "Hello World" message in two ways:
from within the document through the document object and from the JavaScript alert() function. You then
constructed a user-interactive program that generated context-appropriate messages on-screen. Finally, you saw
that you can hide URL links inside a script to keep non-JavaScript browsers from displaying things that wouldn't
work for them.

Clarify Your Marks

Note that when you have to use double quotation marks for something else in the display line
(such as an URL), you can use single quotation marks to bracket the entire display string. Or you can use
double quotation marks to bracket the entire string and single quotation marks within it. Either way works,
as long as you are consistent: If you start the string with a double quotation mark, be sure to bracket the end
of the string with a double quotation mark and use single quotation marks when necessary w
ithin. (And vice versa.)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#35
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1

Complete Idiot's Guide to JavaScript

Chapter 19
Script Example 2: Random Chatter

In This Chapter

● Generating "random" numbers with JavaScript
● Easily creating an array of things
● Making changes to the page itself (randomly)

When Is Random Not Random?

Computers are "linear" machines, very logical and precise. Humans have no problem picking a number between
1 and 10, but computers don't have the capability to randomly select things. And yet, card games, dice
games—just about any game you can think of—involves some sort of random selection. And we do love to play
games on computers. So how, then, do computers take a "shot in the dark"? By using a formula that's dependent
on something that is always changing: the time of day.

Using military time (where hours are numbered from 0 to 23 instead of "a.m." and "p.m."), you can create a
pseudo-random number, or a number that seems random because it changes every second. Simply speaking, take
the hour of the day, the minute of the hour, and the second of the minute and multiply them together. In the first
edition of this book, the above is exactly how we acquired random numbers in JavaScript. It worked well, but it
involved an understanding of the Date() object and modulus math to massage the hours, minutes, and seconds
into a random number within our desired range.

Fortunately, JavaScript 1.1 introduces a new method, random(), which is a method of the Math object. While the
random number is still based on the date and time as I just described, the calculations are automatic. Using the
random() method, you’ll see how generating random numbers with JavaScript 1.1 is a snap.

The Rebirth of random()

Actually, the random() method of the Math object is not new to JavaScript 1.1 In fact, the same method
was available in JavaScript 1.0; however, it only worked on UNIX-based computers. Therefore, for most
of us using our browsers in Windows, the random() method was of no help. The new feature introduced
with JavaScript 1.1 is the compatibility of random() across all platforms. Yay, progress!

Random numbers are used commonly in computer programs, especially games. Lottery-style games, gambling
games, and so forth tend to be common beginners' programs. Perhaps if you were designing an online "store" for
your wares, you might offer customers a chance at a discount via a lottery or slot-machine style game. Using the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap19.htm (1 of 7) [01.06.2001 00:48:09]

Complete Idiot's Guide to JavaScript

random() method, it's just a short hop to implementing a random-number generator into your JavaScript
programs.

Random Numbers with the random() Method

As I alluded to earlier, random() is a method of Math, a built-in JavaScript object. Generating a basic random
number, then, is as simple as this:

rnumber = Math.random()

Note the capitalization of Math in that expression. The Math object must begin with the capital “M.” That code
will generate a random number between 0 and 1 and assign the result to the variable rnumber.

Notice what I just said, though: It “will generate a random number between 0 and 1.” Under many circumstances,
this is too narrow a range to deal with. Usually, when you want a random number, it needs to fall within certain
bounds. For example, there are only 52 cards in a deck (unless you count the jokers), so a card game should
choose random numbers within the range of 1 to 52. You need to be able to scale the range of numbers, a feat
which is easily accomplished with a little multiplication. For example, to generate a random number between 0
and 52, you simply multiply the result of the random() method by 52:

rnumber = Math.random() * 52

Of course, for the deck of cards example, you actually want a number between one and 52, not zero. An easy fix:
simply generate the random number between 0 and 52-minus-1 and then add 1 to the result:

rnumber = Math.random() * (52-1))+1

One last hitch: That last expression can generate any real number between 1 and 51, including 4.532, 8.991, and
so on. When choosing from a deck of cards (or in many similar examples), you want only integers within the
range—for example, between 1 and 52 this could be 10, 15, or 23. To do that, you use the round() method of the
Math object to round the result to the nearest integer value:

rnumber = Math.round(Math.random() * (52-1))+1

Perfect! Based on the above, you can imagine a basic formula for generating any random integer between a lower-
bound and an upper-bound:

rnumber = Math.round(Math.random() * (upperbound-lowerbound))+lowerbound

Now that you can randomly generate a number within a particular range, you need to have a selection of things to
randomly pick from—and that's next.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap19.htm (2 of 7) [01.06.2001 00:48:09]

Complete Idiot's Guide to JavaScript

Internet Explorer and Random-ness

Earlier in this chapter, I stated that the random() method was essentially introduced with JavaScript 1.1.
Remember that only Internet Explorer 3.0 supports JavaScript 1.0. In an earlier sidebar, though, I also
noted that random() was a feature of JavaScript 1.0 but is only usable on UNIX-based computers. That
was true of Netscape. But with Internet Explorer, the random() method does work correctly, even in
Windows. The moral of this story? Both Internet Explorer 3.0 and Netscape Navigator 3.0 support the
random() method as discussed in this chapter!

The Random Chatter Example

Let’s create a simple example that randomly picks a phrase from an array of sentences. You saw how to create
and use arrays in Chapter 16, “Array (A Ray) of Organization.” Every time the user clicks the button, something
new appears on the screen. Here's the JavaScript page:

<HTML>
<TITLE>Random Chatter</TITLE>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--Hide from non-JavaScript browsers
function getrandom(maxValue)
{
rnumber = Math.round(Math.random()*(maxValue-1))+1
return rnumber
}
function showRandom(field)
{
textArray = new Array(10);
textArray[1] = "JavaScript is Fun!";
textArray[2] = "Let's Browse the Web in Style!";
textArray[3] = "We're now JavaScript-powered!";
textArray[4] = "Click again, I don't like this choice.";
textArray[5] = "And now ... something completely different.";
textArray[6] = "So far ... so good.";
textArray[7] = "Ok ... now what?";
textArray[8] = "A nice choice, if I do say so myself.";
textArray[9] = "Only one more to go ...";
textArray[10] = "That's it!";
field.value = textArray[getrandom(10)];
}
//-->
</SCRIPT>
</HEAD>
<BODY>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap19.htm (3 of 7) [01.06.2001 00:48:09]

Complete Idiot's Guide to JavaScript

<H1>Random Chatter</H1>
<HR>
JavaScript can be quite a talker, and can even randomly pick things
to say.
<P>
<FORM>
<HR>
Click on the button, I'll think of something to say
<INPUT TYPE="button" VALUE="Take a chance!" ONCLICK="showRandom(this.form.randomOut)">
<CENTER><INPUT TYPE=text NAME="randomOut" size="60"></CENTER>
</FORM>
</BODY>
</HTML>

There's your random-number function, getrandom(). In this case, it's returning a number between 1 and 10.
Notice that you pass the parameter 10 (your maxValue) to getrandom() in the function call in the final statement
of showRandom(). The value that random() returns (rnumber) is used by the showRandom() function to pick a
text line from textArray. The selected text is then loaded into the value property of the form field that is passed to
showRandom(). In the BODY of the page, you'll find the "Take a chance!" button that fires showRandom()
whenever you click it, as well as the randomOut form field that receives the text selected by showRandom().

Color Me Random

To see another mini-example of random numbers, you can add another button to your page that causes the
background color to change each time the button is clicked. To do so, follow these steps:

1. Build an array of the color codes. As you know from your HTML experience, color codes are stored in
hexadecimal triplet format (which specifies the amounts of red, green, and blue used in each color).

2. Pick a color randomly from this array.

3. Set the bgColor property of the JavaScript document object to this new value.

For a list of 138 of the most common colors, their RGB values, and their hexadecimal triplets, see Appendix A,
"JavaScript: The Complete Overview" at the end of this book. For a quicker reference, use this table of
hexadecimal triplets for some basic colors:

black 000000 lime 00FF00

blue 0000FF magenta FF00FF

brown A52A2A maroon 800000

cyan 00FFFF orange FFA500

gold FFD700 pink FFC0CB

gray 808080 purple 800080

Here's your function to pick a background color:

function SetBkgndColor()
{
colorArray = new Array(7);
colorArray[1] = "#FF0000";
colorArray[2] = "#00FF00";
colorArray[3] = "#FFFF00";

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap19.htm (4 of 7) [01.06.2001 00:48:09]

Complete Idiot's Guide to JavaScript

green 008000 red FF0000

silver C0C0C0 white FFFFFF

colorArray[4] = "#0000FF";
colorArray[5] = "#FF00FF";
colorArray[6] = "#00FFFF";
colorArray[7] = "#FFFFFF";
document.bgColor = colorArray[getrandom(7)];
}

Notice that all you need to do to cause the background color to change is set document.bgColor. Remember that
document is a predefined JavaScript object that gives you direct access to the current document and how it's
being displayed. (See Chapter 12, “The Document Shuffle,” for more information on the document object.)

Putting it all together, here's your new random chatter page:

<HTML>
<TITLE>Random Chatter</TITLE>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--Hide from non-JavaScript browsers
function getrandom(maxValue)
{
rnumber = Math.round(Math.random()*(maxValue-1))+1
return rnumber
}
function showRandom(field)
{
textArray = new Array(10);
textArray[1] = "JavaScript is Fun!";
textArray[2] = "Let's Browse the Web in Style!";
textArray[3] = "We're now JavaScript-powered!";
textArray[4] = "Click again, I don't like this choice.";
textArray[5] = "And now ... something completely different.";
textArray[6] = "So far ... so good.";
textArray[7] = "Ok ... now what?";
textArray[8] = "A nice choice, if I do say so myself.";
textArray[9] = "Only one more to go ...";
textArray[10] = "That's it!";
field.value = textArray[getrandom(10)];
}
function SetBkgndColor()
{
 colorArray = new Array(7);
 colorArray[1] = "#FF0000";
 colorArray[2] = "#00FF00";
 colorArray[3] = "#FFFF00";
 colorArray[4] = "#0000FF";
 colorArray[5] = "#FF00FF";

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap19.htm (5 of 7) [01.06.2001 00:48:09]

Complete Idiot's Guide to JavaScript

 colorArray[6] = "#00FFFF";
 colorArray[7] = "#FFFFFF";
 document.bgColor = colorArray[getrandom(7)];
}

 //-->
</SCRIPT>
</HEAD>
<BODY>
<H1>Random Chatter</H1>
<HR>JavaScript can be quite a talker, and can even randomly pick things
to say.
<P>
<FORM>
<HR>
Click on the button, I'll think of something to say
<INPUT TYPE="button" VALUE="Take a chance!"
ONCLICK="showRandom(this.form.randomOut)">
<CENTER><INPUT TYPE=text NAME="randomOut" size="60"></CENTER>
<HR>Or ... click here and I'll change color!
<INPUT TYPE="button" VALUE="Color Me!" ONCLICK="SetBkgndColor()">
</FORM>
</BODY>
</HTML>

The following figure shows you what that page looks like when it's running.

Randomly selecting text and changing document properties.

The Least You Need to Know

In this chapter's example, you learned how to:

● Get a JavaScript program to randomly pick from a list of selections.
● Create a function that you can use for a variety of things, such as the random() function, which can select

a random number within specified bounds.
● Pick up a nifty little function that makes creating arrays a snap.
● Create a Web page that randomly displays various strings and changes color at the click of a button.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/19fig01.jpg

Complete Idiot's Guide to JavaScript

Chapter 20
Script Example 3: Which Way Do We Go?

In This Chapter

● The question of audience
● Separate and equal
● Automatic redirection

Making the Grade

In this example, we’re going to look at a simple but important technique: browser-sensitive site
navigation. Even though JavaScript is supported by the major Web browsers Netscape Navigator and
Microsoft Internet Explorer, some users out there may be using a browser that does not support
JavaScript (such as Lynx, Opera, or Ibrowse).

When you’re creating a Web site, it’s important for you to consider whether you want it accessible to all
Web surfers or only those who use JavaScript-capable browsers. Of course, this depends in large part on
the function of the site: If the site is a BlackJack game that’s written in JavaScript (like Chapter 22 of this
book), it clearly is useful only to visitors with JavaScript-capable browsers. In fact, in the case of our
BlackJack program, only JavaScript 1.1-capable browsers can play it.

On the other hand, perhaps you’re using JavaScript to “jazz up” a site. Yet, its basic content (information
about you, your company, and so on) may be relevant to anyone. In this case, it’s sometimes best to
create two versions of your content pages: one version for users without JavaScript and one for users
with.

Parallel Universes

Imagine that your site consists of two “parallel universes”: one set of pages with graphics and JavaScript
code and one set without JavaScript code (whether or not they contain graphics is up to you). We’ll say
that each version of the site’s home page is named as follows:

● home_js.htm is the page which contains JavaScript code.
● home_nojs.htm is the page that does not contain JavaScript code.

All of the hyperlinks within home_nojs.htm also lead to non-JavaScript versions of pages, and the
hyperlinks within home_js.htm lead to JavaScript versions of pages where appropriate.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap20.htm (1 of 3) [01.06.2001 00:48:42]

Complete Idiot's Guide to JavaScript

The trick, then, lies in how to come up with a single URL that any surfer can visit and that will
automatically sweep the user to the correct version of the home page.

He Went That-Away!

Solving this proposition requires the creation of a “dummy” page, which performs the redirection to the
appropriate “real” home page, depending on the visitor’s browser.

Suppose your dummy page is named home.htm. The logic behind the redirection is based on these
points:

● You create a one-statement JavaScript program, which assigns a new URL to the location
variable. Hide this program, as usual, from non-JavaScript browsers.

● After the JavaScript code, add a <META> tag to the page to refresh the page with a new URL.

When a JavaScript-capable browser loads this page, it executes the single line of JavaScript code and
loads the new page into the window. A non-JavaScript browser can’t see this code and, therefore,
continues down until it hits the <META> tag, which causes it to load a new specified page.

<html>
<head>
</head>
<body bgcolor="#FFFFFF">
<script language="JavaScript">
<!-- Hide from non-JavaScript browsers
location = "home_js.htm"
//-->
</script>
<META HTTP-EQUIV="REFRESH" CONTENT="0; URL=home_nojs.htm">
</body>
</html>

When a visitor loads this page (which we’ve named and publicized as home.htm, so the user doesn’t
realize he’s actually opening a redirection page), a JavaScript browser will immediately open
home_js.htm. Alternatively, a non-JavaScript browser will immediately open home_nojs.htm, and the
deed is done. From that point on, everything else is taken care of by virtue of having employed the
correct hyperlinks in each version of the home page.

You can easily test this example, even with Netscape Navigator or Internet Explorer. To do so, create the
above dummy page and open it in Netscape. It should attempt to load home_js.htm (or whichever URL
you decide to code). Then disable JavaScript in Navigator using the Network, Preferences, Language
command and revisit the page. This time, it should try to load home_nojs.htm (or whichever URL you

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap20.htm (2 of 3) [01.06.2001 00:48:42]

Complete Idiot's Guide to JavaScript

code for the non-JavaScript page).

Easy!

The Least You Need to Know

In this short chapter, you learned the importance of audience-friendly Web sites. When offering content
that is relevant to readers with any browser, it’s often wise to offer said content in non-JavaScript forms
for users who don’t have capable browsers. By creating and publicizing a “dummy” home page, you can
automatically redirect visitors to the JavaScript-enabled or -disabled true home page. All it takes is a one-
statement JavaScript program and a <META> tag to redirect non-JavaScript browsers.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap20.htm (3 of 3) [01.06.2001 00:48:42]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Chapter 21
Script Example 4: Bank Loan Calculator

In This Chapter

● Review of the JavaScript Math object
● Fixed-decimal math (dollars and cents)
● Using advanced Math object methods
● Building HTML tables with JavaScript

Math on the Web?

For the most part, Web pages have traditionally consisted of pretty pictures and tons of text. That's nice if all you
want to do is make information available to the rest of the CyberCommunity; but for business applications, that
can limit you. Previously, if you wanted to have the user interact with your pages (doing more than simply
clicking links and form buttons), you had to master the CGI interface (which opened a whole new world of
frustrations).

Since the invention of JavaScript, your pages can do more than just display information. You can create custom
information tailored to the user. You can even have your pages do mathematical calculations. The example you
will look at in this chapter is a loan calculator that computes the monthly payments for a given amount of money
at a particular compound interest rate, and then displays an amortization table showing what the principal and
interest components are for each month's payment. This is the kind of math you'd have to deal with if you were
financing a car or a home mortgage.

Why a calculator? If you were an insurance salesman (for instance), you could have your site compute the
premium a person would have to pay for a particular policy. Instead of having to set up an appointment with a
potential clients, pitch them on the benefits of your program, and haul your laptop computer to their home to
construct and print a policy, you can make your company information available on the Web. Let users browse
your policy options, make selections, and discover right there what they would have to pay. Then, if they're
interested, they can send you e-mail to go to the next step. Makes your job easier, doesn't it? (And it beats "cold
calling"!)

Before you dive into setting up the calculator, you need to take a look at some of the math functions that are built
into JavaScript through the Math object. You can do most of what you need to with the Math object, but it does
have one minor drawback: it doesn't have a method for rounding to the nearest penny.

Before you tackle this problem, let’s quickly review what you can do with JavaScript math.

JavaScript Algebra 101

JavaScript's math functions provide some powerful flexibility for your scripts. In addition to the basic operations
(+, –, /, and *), the Math object has methods that perform most of the special functions you find on today's

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (1 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

calculators: abs(), acos(), asin(), atan(), cos(), exp(), log(), pow(), sin(), sqrt(), and tan(). As you learned in
Chapter 19, “Random Chatter,” the random() method even generates a random number. Additionally, you can
use parentheses to group various substeps of a math equation in order to control which part of the equation is
calculated first. Numbers in an expression are called constants, and variables are letters (or words) that represent
a value that changes depending on what's done to it.

If this looks like introductory algebra, it should. You can write JavaScript math expressions the same way you
write algebra expressions. For example, in algebra, you add two numbers together and assign the result to a
variable like this:

● a = 3 + 5

In JavaScript, you would type this:

● a = 3 + 5;

The only real difference is the added semicolon, which designates the end of the expression. And even that is
optional, as you can see from the sample scripts throughout this book.

Doing It Decimal

JavaScript math is decimal math. Any math operations performed (whether or not they involve integer constants)
are converted to decimal, and the decimal is computed. So an expression like this:

● a = 9 / 2;

would evaluate (a fancy word for "the answer is") to:

● a = 4.5

This is all well and good, but what about numbers that don't produce simple decimals? If you were to type in this
simple page and view it with your browser, you'd find the result (a number with many decimal places) displayed
on the Web page, as pictured here.

<HTML>
<BODY>
</BODY>
<SCRIPT LANGUAGE="JavaScript">
<!--
document.write("100 divided by 3 is " + (100 / 3));
//-->
</SCRIPT>
</HTML>

An example of JavaScript math.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (2 of 13) [01.06.2001 00:49:08]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/21fig01.jpg

Complete Idiot's Guide to JavaScript

That's 15 decimal places, which is plenty when you're doing something scientific, but way too many decimal
places for most uses.

That Last Digit Is Wrong!

Yep, it is. Computers aren't really good with fractions. You and I know that 1.3333333333 is the same
as 1/3, but a computer needs to be accurate, and 1/3 as a decimal doesn't ever end. So the computer
does its best to calculate the fraction out as far as it can (called number of digits precision). Because a
computer isn't an infinite thing (it has a fixed amount of memory, its processor chip is only so big, and
so on), it has a fixed number of digits precision (in this case, 14 digits).

After the 14th digit, if the fraction is still going, the computer pretty much gives up. What it does next is
basically anybody's guess: round up, round down, pick a number at random—anything. Because of this,
the last number is wrong, and although there are 15 decimal places, only 14 of them are precise.

In this case (dealing with dollars and cents), you need only two decimal places. Anything after that should be
dropped, not rounded (money is one area where everyone would love to round up to the nearest dollar, but it's
just not done unless you're filling out a tax form). Unfortunately, there is no method in the Math object that
allows you to automatically chop off those fractions of a penny. To do this, you need to "roll your own" function,
using the round() method of the Math object as a basis.

Dollars and Decimals

Because JavaScript math would have you working with thousandths of a penny, you need to create a function
that causes all those little copper shavings to be swept under the rug. To do that, you use the round() method of
the Math object.

The round() method does just what its name implies: it rounds a decimal number to the nearest whole number.
Using the earlier example, if you want to round the result of 100 divided by 3, you would type:

● a = Math.round(100 / 3);

You can check this with another short page:

<HTML>
<BODY>
</BODY>
<SCRIPT LANGUAGE="JavaScript">
<!--
document.write("100 divided by 3 (rounded) is " + Math.round(100 / 3));

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (3 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

//-->
</SCRIPT>
</HTML>

As a result, you see this displayed in your browser:

100 divided by 3 (rounded) is 33

When you use round(),all the digits to the right of the decimal are swept away and, if necessary, the number to
the left is rounded up. So if you were rounding 4.6, you'd get 5. For the money example, this gets half the job
done (rounds to the nearest dollar), but you want to keep two decimal places (the pennies). Therefore, you need
to do a bit more math.

Because you want round() to round to the nearest penny, you need to convert the number from dollars and cents
to just cents. You can do this by multiplying the dollar amount by 100 (1 dollar is equal to 100 pennies) and then
performing the round. After that, you just shift the decimal point to the left two places (divide by 100), and you
have a dollar and cents amount. Simple, right?

Not quite. Remember that computers aren't very good with dividing fractions. If you were to type the following
as a script:

a = 100 / 3
pennies = a * 100
document.write("100 divided by 3 is " + Math.round(pennies) / 100);

you'd see this displayed in your browser:

100 divided by 3 is 33.329999999999998

It’s still not right, but you're getting closer. Next, replace the document.write() line above with this:

document.write("100 divided by 3 (in pennies) is " + Math.round(pennies));

As a result, you would see this:

100 divided by 3 (in pennies) is 3333

Now you are figuring the right number of pennies. However, the computer's inability to handle decimal division
precisely remains.

To fix this, you need to take a different approach and just print out the number of pennies with a decimal point
stuck in the middle. You can do this with JavaScript because you can take any number and convert it to a string
by creating a new String object like this one (this feature is new in JavaScript 1.1 but is also supported by Internet
Explorer 3.0):

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (4 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

● strPennies = new String (pennies);

In the above, strPennies becomes a string version of the value in pennies.

Now, to plug a decimal point into the middle of strPennies, construct another string that consists of these things:

● All but the last two digits in strPennies
● A decimal point
● The last two digits from strPennies

Remember from Chapter 5, “Objects, Names, and Literals,” that the string object in JavaScript has a substring()
method, with which you can take a piece of a larger string. If you use a variable len to hold the number of digits
in strPennies, all but the last two digits in strPennies would be:

strPennies.substring(0, len — 2)

and the last two digits would be:

strPennies.substring(len — 2, len)

Remember that the first parameter of substring() is the character position to start at, and the second parameter is
the position to end before (in the computer world, you start counting character positions at 0 instead of 1). Putting
your number together, you would enter this:

strPennies.substring(0, len — 2) + "." + strPennies.substring(len — 2, len);

This takes 33.329999999999998 and turns it into 33.33. And, putting it all together makes this a function:

function roundToPennies(n)
{
pennies = n * 100;
pennies = Math.round(pennies);
strPennies = new String (pennies);
len = strPennies.length;
return strPennies.substring(0, len — 2) + "." + strPennies.substring(len — 2, len);
}

You now have a function that rounds to dollars and cents! You could extend this function to round to any number
of decimal places (up to 14 decimals, at which point the computer loses accuracy). But I'll leave that as an
exercise, and I’ll go on to show you how you can build the function that computes the monthly payment.

The Monthly Payment

If you've ever borrowed money (from a bank, not your uncle), you've had to pay interest—a percentage of

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (5 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

"profit" the bank makes for letting you use its money. Because bank people are so fond of math, they use a very
detailed formula to calculate the interest on a bank loan—and one look at the printout that comes with loan
papers (showing what your monthly payment is, what part is principal, and what part is interest) proves it.

The figures in the amortization table show that you pay mostly interest (the money the bank makes) for the
beginning of the loan, and then you pay more and more principal (the actual money you borrowed) as you go
along. This is because the interest for a given month is computed against whatever the unpaid principal is. As you
make more payments, the amount of remaining principal decreases, and the amount of interest computed
decreases. And because you are paying a fixed amount each month, less interest means more principal from each
payment. (Even banks make their money "up front.")

If you look in a book on finance, you'll find that the formula for computing a monthly payment on an amortized
loan is rather complex:

monthly = principal * rate / (1 – (1 / (1 + rate)payments))

This table breaks that down into its individual components:

Variable Meaning

● monthly Amount of monthly payment.
● principal Total amount borrowed.
● rate Monthly rate (annual rate divided by 12 months). For example, an APR (annual percentage rate) of

12% equals a monthly interest rate of 0.01 (1%/month).
● payments Total number of monthly payments.

With JavaScript's Math object, this formula is easily tamed. The worst piece of it is:

(1 + rate)payments

The pow() method is designed to handle just such a problem (remember that pow() takes two parameters and
raises the value of the first parameter to the power of the second). Therefore, in JavaScript-ese, this becomes:

Math.pow(1 + rate, payments);

Putting this together with the rest of the formula, you have:

monthly = principal * rate / (1 — (1 / Math.pow(1 + rate, payments)));

And, you can now write your function:

function Monthly(principal, years, apr)
{
rate = apr / 12;
payments = years * 12;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (6 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

return principal * rate / (1 — (1 / Math.pow(1 + rate, payments)));
}

With this function complete, you have one last piece of your math puzzle to construct: for any given month, how
much of the monthly payment is interest, and how much is principal?

Amortization Tables

In an amortized loan, the interest incurred isn't computed all at once. Rather, the amount is figured out each
payment period (in your example, each month) against whatever the principal is at the time, much the same way
that you are charged interest on your credit card balance. Also, the amount of interest charged is the monthly
interest rate (the annual rate divided by 12).

So, if you were to borrow $50,000 at 8% over 10 years (120 payments), the monthly payment would be $606.64,
and the monthly interest rate would be 0.08 divided by 12, or 0.00666666666667 (remember, you can handle
only 14 digit precision). At the end of the first month, the principal is still $50,000, so the interest incurred that
first month would be computed in this way:

● $50,000.00 * 0.00666666666667 = $333.35

The amount of your payment that is actually principal is what's left over after paying off the interest: $273.29.
Therefore, at the end of the second month, the principal has been reduced:

● $50,000.00 – $273.29 = $49,726.71

This becomes the new principal, and the process continues until all the money has been paid back.

You can do this in JavaScript using a for loop that runs over the total number of payments:

for(i = 0; i < payments; i++)
{
interestPayment = principal * monthlyInterest;
principalPayment = monthlyPayment — interestPayment;
principal -= principalPayment;
}

Notice the use of -= in the loop. This is a nice shorthand for

principal = principal — principalPayment;

For each pass through the loop, principal is reduced by the amount of principalPayment (the part of the payment
that is not interest). As principal gets smaller, so does interestPayment, meaning that what's left over will
increase—which is exactly what happens in an amortized loan.

Finally, suppose you want to print out this information for each month. Using document.write(), you can write

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (7 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

HTML statements right out to the current page (no need for CGI here!). Adding the following to the for loop
above gives you the monthly amortization function:

function MonthlyAmortization(principal, years, apr)
{
payments = years * 12;
monthlyInterest = apr / 12;
monthlyPayment = Monthly(principal, years, apr);
for(i = 1; i <= payments; i++)
{
document.write(i);
interestPayment = principal * monthlyInterest;
document.write("$" + roundtoPennies(interestPayment));
principalPayment = monthlyPayment — interestPayment;
document.write("$" + roundToPennies(principalPayment));
principal -= principalPayment;
document.write("$" + roundToPennies(principal));
document.write("
");
}
}

This prints one line per payment, displaying the payment number, the amount of interest paid, and the amount of
principal paid. Using roundToPennies(), you make sure that only dollars and cents appear. Adding a dollar sign
in front of each number makes it look even better.

The
 tag at the end forces a carriage return; without it, the displayed data would wrap around the screen.
There is, however, a better way, which you'll learn about next.

Forms in a Function

A better method of presenting a table of information like this would be to use the <TABLE> tag in HTML to
format your information automatically (saves having to compute widths and margins and all that ugly stuff). But,
can you create a table dynamically? Yes, and you won't believe how easy it is.

Remember that the basic structure for an HTML table is this:

<TABLE>
<TR>
<TD>column 1</TD>
<TD>column 2</TD>
</TR>
</TABLE>

This displays a table that contains one row and two columns. Because the document.write() function allows you
to write out HTML statements as well as regular (display) text, you can just as easily write out table control tags.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (8 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

To see this put to use, look back at the MonthlyAmortization() function. Each pass through the for loop generates
one row of information. This means that you can rewrite this loop with <TR> and <TD> tags like this:

for(i = 1; i <= payments; i++)
{
document.write("<TR>");
document.write("<TD>" + i + "</TD>");
interestPayment = principal * monthlyInterest;
document.write("<TD>$" + roundToPennies(interestPayment) + "</TD>");
principalPayment = monthlyPayment — interestPayment;
document.write("<TD>$" + roundToPennies(principalPayment) + "</TD>");
principal -= principalPayment;
document.write("<TD>$" + roundToPennies(principal) + "</TD>");
document.write("</TR>");
}

This generates a table exactly the right size and makes sure everything lines up the way you want it to. The only
thing left to do is add a table heading and put your page together.

Amortized Loans: The Whole Picture

With the individual pieces built, you can now construct the entire page:

<HTML>
<HEAD>
<TITLE>Loan Calculator</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!-- hide from non-JavaScript browsers
function roundToPennies(n)
{
pennies = n * 100;
pennies = Math.round(pennies);
strPennies = new String(pennies);
len = strPennies.length;
return strPennies.substring(0, len — 2) + "." +
_strPennies.substring(len — 2, len);
}
function Monthly(principal, years, apr)
{
rate = apr / 12;
payments = years * 12;
return roundToPennies(principal * rate / (1 — (1 / Math.pow(1 +
_rate, payments))));
}
function MonthlyAmortization(principal, years, apr)
{

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (9 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

payments = years * 12;
monthlyInterest = apr / 12;
monthlyPayment = Monthly(principal, years, apr);
document.write("<CENTER>");
document.write("<H1>Amortization Table</H1>");
document.write("<HR>");
document.write("<TABLE BORDER>");
document.write("<TR>");
document.write("<TH COLSPAN=4>");
document.write("$" + roundToPennies(principal));
document.write(" at " + roundToPennies(apr*100) + "%");
document.write(" over " + years + " years.
");
document.write("Monthly payment: $" + Monthly(principal, years, apr));
document.write("</TH>");
document.write("</TR>");
document.write("<TR>");
document.write("</TH>");
document.write("<TH COLSPAN=2>Payment</TH>");
document.write("</TR>");
document.write("<TR>");
document.write("Month</TH>");
document.write("Interest</TH>");
document.write("Principal</TH>");
document.write("Balance</TH>");
document.write("</TR>");
for(i = 1; i <= payments; i++)
{
document.write("<TR>");
document.write("<TD>" + i + "</TD>");
interestPayment = principal * monthlyInterest;
document.write("<TD>$" + roundToPennies(interestPayment) +
_"</TD>");
principalPayment = monthlyPayment - interestPayment;
document.write("<TD>$" + roundToPennies(principalPayment) +
_"</TD>");
principal -= principalPayment;
document.write("<TD>$" + roundToPennies(principal) + "</TD>");
document.write("</TD>");
}
document.write("</TABLE>");
document.write("</CENTER>");
}
function compute(form)
{
if((form.principal.value.length != 0) &&
(form.apr.value.length != 0) &&

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (10 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

(form.years.value.length != 0))
{
principal = eval(form.principal.value);
apr = eval(form.apr.value) / 100.0;
years = eval(form.years.value);
if(years == 0.0)
{
alert(
"You have no monthly payment, since the number of years is zero.");
}
else
{
MonthlyAmortization(principal, years, apr);
}
}
else
{
alert("You must fill in all the fields.");
}
}
//-->
</SCRIPT>
</HEAD>
<BODY>
<CENTER><H1>Loan Calculator</H1></CENTER>
<HR>
<CENTER>
<FORM>
<CENTER>
Fill in the fields, then click
<INPUT TYPE=BUTTON VALUE="Amortize!" onClick=compute(this.form)>
</CENTER>
<P>
<TABLE BORDER=3>
<TR>
<TD>Amount of the loan ($)</TD>
<TD><INPUT TYPE=TEXT NAME=principal></TD>
</TR>
<TR>
<TD>Annual interest rate (%)</TD>
<TD><INPUT TYPE=TEXT NAME=apr></TD>
</TR>
<TR>
<TD>Total number of years</TD>
<TD><INPUT TYPE=TEXT NAME=years></TD>
</TR>
</TABLE>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap21.htm (11 of 13) [01.06.2001 00:49:08]

Complete Idiot's Guide to JavaScript

</FORM>
</CENTER>
</BODY>
</HTML>

As you can see in the following figure, this script also demonstrates the use of HTML tables to create a page that
has a pleasing layout.

A loan amortizer in JavaScript.

When the user clicks Amortize!, the monthlyAmortization() function goes to work, producing the amortization
table. In addition, you'll notice (when you try this in your browser) that this method of writing directly to the
active page causes the page to be reloaded with the new data. The following figure shows what the page might
look like with data entered in the table.

The amortization table produced by the calculator.

The Least You Need to Know

This chapter presented another math example: computing the monthly payment on a loan and producing an
amortization schedule based on that information. You learned how JavaScript deals with decimal numbers and
learned a way around JavaScript's lack of control over the number of decimal places. You also learned how to
format the page using HTML tables to create a pleasing layout, as well as how to get JavaScript to create a table
for you dynamically. All of these things enable you to customize your pages to the user's specific needs.

It Looks Different, But It's Still the Same Page

HTML statements written with document.write() are not written back to your page. They are created by
the browser when needed but are not saved back over your page on your site. As a result, you can run
the program again and again with different figures.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/21fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#34

Complete Idiot's Guide to JavaScript

Chapter 22
Script Example 5: BlackJack

In This Chapter

● More randomness
● Updating the data in FORM fields
● Using the JavaScript while loop

Game Time

After last chapter’s return-to-algebra and the headaches that go with it, it’s time for some fun and games! Let’s
play a few hands of cards and prove that JavaScript is an effective environment for game creation. To this end,
you'll cook up a little script that plays a simple game of BlackJack.

First, let’s define the ground rules for the game:

● For this demonstration, Aces have the value of 11.
● All "face" cards (Jack, Queen, and King) have the value of 10.
● All cards will be dealt "face up." This means you'll know what the dealer (house) has from the start.
● The deck is "infinite," meaning you can draw more than one Ace of Spades in a row. (For those of you

fond of Las Vegas or Atlantic City, this is called a multiple-deck shoe.)
● The user will click a Hit or Stand button, depending on whether he wants another card.
● After the user clicks Stand, the dealer starts drawing cards. The dealer continues to draw until either the

house's hand totals more than 17 or the house busts. In other words, the house stands on 17.
● When both the dealer and the user have stopped taking cards, the winning hand is the one closest to 21

without going over (busting).
● If the dealer and the user have the same total at the end of a hand, they "push" (tie), and no one wins or

loses.

Okay, so we cut a few corners with the rules. If you want to extend the game to handle such things as splits,
doubles, betting, and Aces that are 1 or 11, please feel free to experiment.

Browser Caution

This particular BlackJack example is functional and attractive, but it does make use of the JavaScript 1.1
images[] array to display the playing cards on the page as each hand is drawn. However, don’t forget that
only Netscape Navigator 3.0 or greater supports JavaScript 1.1 (as of the time of this writing). Therefore,
this program will not work as-is on Internet Explorer 3.0, because IE doesn’t support the image

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (1 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

replacement functions.

To revise this example for Internet Explorer, you’d have to strip the image-related functions from the
program and replace them with a less-advanced feedback system (such as window alerts) in order to
report the results of each card drawn.

Pick a Card

In Chapter 19, “Random Chatter,” you learned how to generate a random number between some minimum value
and maximum value using the JavaScript Math.random() method. Recall that you could, for instance, generate a
random number between 1 and 4 using this expression:

rnumber = Math.round(Math.random() * (4-1))+1

This works quite nicely for your purposes here, because you need to randomly pick two things for each card
"drawn" from the deck:

● The suit: Spades, Clubs, Diamonds, or Hearts (one selection out of four)
● The face value of the card: Ace, number from 2–10, Jack, Queen, or King (a face value selection between

2 and 11 because Aces are given a value of 11).

Because there are four suits, you can easily write a function to pick a suit by randomly generating a number
between 1 and 4:

function pickSuit()
{
suit = Math.round(Math.random() * (4-1))+1;
if(suit == 1)
return "Spades";
if(suit == 2)
return "Clubs";
if(suit == 3)
return "Diamonds";
return "Hearts";
}

You really need to check suit only to see if it's 1, 2, or 3. If it isn't one of those, it must be 4 and you don't have to
use an if statement to make sure. This is an "old programmer's trick" that saves a few keystrokes and a couple of
steps when the program is running. (If you want to drop a buzzword at your next party, this is called program
optimization.)

The next step is to pick the card from the suit. There are 13 cards in each suit: Ace, 2 through 10, Jack, Queen,
and King. You need your card picker to return two things: the value of the card, which is a number from 2 to 11

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (2 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

(remember, Aces are 11) and the name of the card, which is either the card number or the word "Jack," for
instance. This causes a bit of a dilemma: "Jack", "Queen", "King", and "Ace" are all strings, but "2", "3", "5", and
so on are numbers. You need both.

Because you need two distinct things from your card picker, make two distinct functions: one to return the value
and one to return the name. The value function simply takes the number of your card (a number from 1 to 13) and
returns a value from 2 to 11:

function cardValue(card)
{
if(card == 1)
return 11;
if(card > 10)
return 10;
return card;
}

If the card is 1 (an Ace), you say it's worth 11. If the card is a face card, its number will be 11, 12, or 13, so you
say it's worth a value of 10. Otherwise, it's worth the number that's passed in.

Figuring out the card name is similar:

function cardName(card)
{
if(card == 1)
return "Ace";
if(card == 11)
return "Jack";
if(card == 12)
return "Queen";
if(card == 13)
return "King";
return new String(card);
}

Each face card has a different name, so you can't just say "If it's greater than 10...." Therefore, you need a
separate if statement for each face card. Finally, the number cards are simply returned, but you convert the value
to a string (using the “new String” expression).

Here’s how you construct your PickACard() function:

function PickACard(strWho)
{
card = Math.round(Math.random() * (13-1))+1;
suit = pickSuit();

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (3 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

ShowCard(strWho, cardName(card), suit);
return cardValue(card);
}

Return the card's value from PickACard() so you can use this function to add to the totals in the dealer's and
user's hands. Notice, though, the function call to ShowCard().You haven’t created this function yet, so let’s
discuss it.

Graphic Gaming

Remember from Chapter 15, “Image-ine That!,” that you can dynamically replace graphic images on a page
using the Image object and the images[] array of JavaScript 1.1. This applies perfectly to the BlackJack
games—or any card game for that matter. Here’s the basic theory behind adding card images to the page:

● You prepare a full set of 52 card images all of the same dimensions.
● In the HTML code for the page, you place a bunch of blank transparent GIF images where actual cards

may appear. For the BlackJack game in particular, you’ll place six blank images in a horizontal row to
represent the dealer’s hand, and six more blanks to represent the user’s hand.

● After each card is drawn, change the image source of the appropriate blank image to show the appropriate
playing card image.

Conjuring the Code

To accomplish the above, you’ll need to create the following items in the JavaScript program:

● Two counters, each of which keeps track of which card is being drawn for either the dealer or the user
(e.g. whether the card drawn is the first, second, third, etc. in his hand).

● A function ClearCards(), which simply replaces all card images with blank ones when the user starts a
new game.

● A function ShowCard(), which checks the currently drawn card (number and suit) and calculates the
correct filename. For this to work, the filenames for the card images must follow some determinable
pattern. In this example, you’ll save the card images as “2h.gif” for the 2 of Hearts, “kd.gif” for the King
of Diamonds, and so forth. After the filename has been calculated, ShowCard()replaces the appropriate
blank image (determined by the counter) with the card image.

Let’s code all of the above! First, however, you should create a small function named init(), which will initialize
the counters.

function init()
{
dealidx=0;
useridx=0;
gameon=true
}

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (4 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

In this function, you zero the two counters (dealidx and useridx), which keep track of which number card in the
hand is being drawn. In addition, you set the variable gameon to true. This variable will be used in other
functions to control game flow, preventing the user from hitting “Hit” or “Stand” if a game is not currently in
session.

Now you’re ready to code the ClearCards() function.

function ClearCards ()
{
for (i=0; i<12; i++)
{ document.images[i].src="cards/blank.gif" }
}

This is also a simple function. It sets up a for loop that counts from 0 to 11 (the blank placeholder cards placed on
the page) and sets each image’s source file to the blank card.

Finally, you create the most complex of these functions: ShowCard().

function ShowCard (who, name, suit)
{
//Construct filename for the card image
if (name.length > 2)
{ name1=name.substring(0,1) }
else { name1=name } ;
name1=name1.toLowerCase()
name2 = suit.substring(0,1);
name2 = name2.toLowerCase();
filename = "cards/"+ name1 + name2 + ".gif";
//Load filename into correct image slot
if (who=="Dealer")
{ document.images[0+dealidx].src = filename; dealidx++ }
else { document.images[6+useridx].src = filename; useridx++ }
}

This function takes three parameters: who has drawn the card (either “dealer” or “user”), the name of the card (2
through 10 for number cards or “Jack”, “King”, “Queen”, “Ace” for name cards), and the suit of the card
(“Hearts”, “Diamonds”, “Clubs”, or “Spades”). After the card is drawn, these parameters are sent to ShowCard()
by whichever function calls it.

In the first half of ShowCard(), the filename for the card image is constructed. The first if statement determines
whether the card name is longer than 2 characters, in which case it strips the first letter from the name and
converts it to lowercase. This results in a number between 2 and 10 or j, k, q, or a. Next, the first letter of the suit
is stripped and converted to lowercase. Finally, the two parts are concatenated into a string conforming to the
card image filename, as in cards/5h.gif (the 5 of hearts).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (5 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

In the second half of ShowCards(), an if statement determines whether this card was drawn by the dealer or user.
In either case, it then uses the JavaScript 1.1 images[] array to change the source file of an image on the page. To
determine which image, it adds the current index (dealidx or useridx) to the proper offset. Because the first six
blank cards on the page represent the dealer’s hand, his offset is zero. The sixth placeholder card on the page is
the first card in the user’s hand, so the useridx is added to an offset of 6. After that, the correct image file is
loaded into the correct placeholder on the page, and the index counter is incremented by one.

Dealer Takes a Card

The user takes a card only when he clicks the Hit me button. However, after the user clicks Stand, the dealer must
repeatedly take cards until the house's hand goes over 16. This means you have to set up a function that repeats
the pickacard() process until 17 is reached or exceeded. If you think this sounds like a job for a while loop, you're
right.

Recall the basic form of the while loop: "While {something} is 'true', keep doing something else." In this case,
you want to keep picking cards while the total in the dealer's hand is less than 17.

function Dealer()
{
if (gameon==false)
{message ("You must click 'New Hand' first!")}
else
{
while(form.dealer.value < 17)
{
form.dealer.value = eval(form.dealer.value) + PickACard("dealer");
}
}
}

Simple, isn't it? Note that the entire function is encased within the positive clause of an if statement. This
prevents the function from executing if a game has not yet begun (signaled by the gameon variable). If gameon is
false, the user is sent a message stating that he should begin the game by clicking the New Hand button.

Speaking of sending messages, note the call to a function named message(). This is a simple function (as you’ll
see in the final illustration of the program) that merely alters the value of a form button at the top of the browser.
This button is used as a “message board” to inform the user.

The function for when the user picks a card is equally straightforward:

function User()
{
if (gameon==false)
{message ("You must click 'New Hand' first!")}
else

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (6 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

{
form.you.value = eval(form.you.value) + PickACard("user");
if(form.you.value > 21)
{
gameon=false;
message("You busted! Game over, man. Click 'New Hand' to play again.");
}
}
}

And, after the players have taken all the cards they want, figuring out who won is a snap:

function LookAtHands(form)
{
if (gameon==true)
{
if(form.dealer.value > 21)
{ gameon=false;
message("House busts! You win! Click 'New Hand' to play again.");
}
else if(form.you.value > form.dealer.value)
{
gameon=false;
message("You win! Click 'New Hand' to play again.");
}
else
if(form.dealer.value == form.you.value)
{
gameon=false;
message("Push! Good match -- Click 'New Hand' to play again.");
}
else
{
gameon=false;
message("House wins! Click 'New Hand' to try again.");
}
}
}

To kick off a new game, you call the NewHand() function, which resets the score and board (image indexes,
game scores, and card images) and then deals the first card to the dealer and the user.

function NewHand(form)
{
ClearCards();
message ("New game started -- Good Luck!");

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (7 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

form.dealer.value = 0;
form.you.value = 0;
form.dealer.value = eval(form.dealer.value) + PickACard("dealer");
form.you.value = eval(form.you.value) + PickACard("user");
}

Using the eval() function guarantees that the information in form.you.value is treated as a number, not a string.
(JavaScript has a tendency to look at things as strings, whether they are strings or not.)

JavaScript Is Very Fond of Strings

JavaScript will convert any form fields that are nothing but numbers into their string equivalents. Therefore, if
you want to change the value of a number in a field, you should first use the eval() function to make sure that the
field value is treated as a number, not a string. For example, if you have a form field called number and it holds
the value 23, you add 5 to it like this:

form.number.value = form.number.value + 5;

The resulting number has the value "235", as though you were tacking strings together. However, you can use
eval() to keep this from happening:

form.number.value = eval(form.number.value) + 5;

In this case, the result will be "28".

Now that you’ve learned about the important functions in the logic of this game, it's time to "spread the felt."
Let’s set up the gaming table.

Deal Me In

The game page needs two text form fields (for the house's and user's totals) and three buttons: Hit, Stand, and
New Hand. Each button will have its own onClick event handler to process taking a card (for a hit) or having the
dealer take cards (if the user chooses to stand). From the functions you've compiled so far, you can see that the
following statements are true:

● The Hit button should run the User() function to see if the user has gone over 21.
● The Stand button should run the Dealer() function and then the LookAtHands() function to see who won.
● The New Hand button should reset the dealer's and user's hands to 0, clear the image index counter, clear

any card images currently in view, and pick a new starting card for each player.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (8 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

You create the game buttons with form fields that call the appropriate functions, such as:

<input type="button" value="Hit me!" onclick="User(this.form)">
<input type="button" value="Stand" onclick="Dealer(this.form);LookAtHands(this.form);">
<input type="button" value="New Hand" onclick="init();NewHand(this.form)">

These form fields are placed within a table on the page to improve the look of the page.

Knowing that, you’re ready for the complete script for the BlackJack game. Watch for the following things,
which appear beside all described functions: the message form field at the top of the page, the table containing
the scores and game buttons, and finally a table containing the 12 placeholder images for the cards.

<html>
<head>
<title>BlackJack</title>
</head>
<body onload="gameon=false;document.forms[1].reset()">
<script language="JavaScript">
<!-- Hide from non-JavaScript browsers
function init()
{
dealidx=0;
useridx=0;
gameon=true
}
function pickSuit()
{
suit = Math.round(Math.random() * (4-1))+1;
if(suit == 1)
return "Spades";
if(suit == 2)
return "Clubs";
if(suit == 3)
return "Diamonds";
return "Hearts";
}
function cardName(card)
{
if(card == 1)
return "Ace";
if(card == 11)
return "Jack";
if(card == 12)
return "Queen";
if(card == 13)
return "King";

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (9 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

return new String(card);
}
function cardValue(card)
{
if(card == 1)
return 11;
if(card > 10)
return 10;
return card;
}
function message (msg)
{
document.forms[0].message.value = msg
}
function ClearCards ()
{
for (i=0; i<12; i++)
{ document.images[i].src="cards/blank.gif" }
}
function ShowCard (who, name, suit)
{
//Construct filename for the card image
if (name.length > 2)
{ name1=name.substring(0,1) }
else { name1=name } ;
name1=name1.toLowerCase()
name2 = suit.substring(0,1);
name2 = name2.toLowerCase();
filename = "cards/"+ name1 + name2 + ".gif";
//Load filename into correct image slot
if (who=="dealer")
{ document.images[0+dealidx].src = filename; dealidx++ }
else { document.images[6+useridx].src = filename; useridx++ }
}
function PickACard(strWho)
{
card = Math.round(Math.random() * (13-1))+1;
suit = pickSuit();
ShowCard(strWho, cardName(card), suit);
return cardValue(card);
}
function NewHand(form)
{
ClearCards();
message ("New game started -- Good Luck!");
form.dealer.value = 0;
form.you.value = 0;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (10 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

form.dealer.value = eval(form.dealer.value) + PickACard("dealer");
form.you.value = eval(form.you.value) + PickACard("user");
}
function Dealer(form)
{
if (gameon==false)
{message ("You must click 'New Hand' first!")}
else
{
while(form.dealer.value < 17)
{
form.dealer.value = eval(form.dealer.value) + PickACard("dealer");
}
}
}
function User(form)
{
if (gameon==false)
{message ("You must click 'New Hand' first!")}
else
{
form.you.value = eval(form.you.value) + PickACard("user");
if(form.you.value > 21)
{
gameon=false;
message("You busted! Game over, man. Click 'New Hand' to play again.");
}
}
}
function LookAtHands(form)
{
if (gameon==true)
{
if(form.dealer.value > 21)
{ gameon=false;
message("House busts! You win! Click 'New Hand' to play again.");
}
else if(form.you.value > form.dealer.value)
{
gameon=false;
message("You win! Click 'New Hand' to play again.");
}
else
if(form.dealer.value == form.you.value)
{
gameon=false;

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (11 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

message("Push! Good match -- Click 'New Hand' to play again.");
}
else
{
gameon=false;
message("House wins! Click 'New Hand' to try again.");
}
}
}
//-->
</script>
<h2><center>BlackJack</h2></center>
<center><form>
<h5><input type=button name="message" value="To begin gambling, click 'New Hand'. (Dealer stands

on 17)">
</h5>
</form></center>
<hr>
<form>
<div align="center"><center><table border="3" width=40%>
<tr>
<td>Dealer has</td>
<td><center><input type="text" size="5" name="dealer"></center></td>
</tr>
<tr>
<td>You have</td>
<td><center><input type="text" size="5" name="you"></center></td>
</tr>
<caption align="bottom">
<input type="button" value="Hit me!" onclick="User(this.form)">
<input type="button" value="Stand" onclick="Dealer(this.form);LookAtHands(this.form);">
<input type="button" value="New Hand" onclick="init();NewHand(this.form)">
</caption>
</table>
</center></div>
</form>
<table border="0" width="100%">
<tr>
<td>Dealer's Hand</td>
<td>

</td>
</tr>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap22.htm (12 of 14) [01.06.2001 00:49:45]

Complete Idiot's Guide to JavaScript

<tr>
<td>Your Hand</td>
<td>

</td>
</tr>
</table>
</body>
</html>

When viewed from a browser, your BlackJack game looks like the following figure.

Gambling with JavaScript (it’s cheaper than Vegas).

Of course, this game will work best if you actually have the 52 card images to load. You can certainly make your
own, but remember to change the dimensions coded into the HTML program to fit your images (the images used
in this example were 97 pixels high and 73 pixels wide). However, if you don’t want to attempt that on your own,
visit the Web site for this book to download the card images used in this example.

Download the card images by clicking here.

See an online version of this game by clicking here.

The Least You Need to Know

In this example, you learned how to create a game with JavaScript. Using the tools you've collected from
previous chapters, you built a simple BlackJack player. You also saw how using the while statement makes it
possible to continue working inside a function until some condition is met. To make sure that the totals you were
building in the form were correct, eval() makes sure that field values are treated as numbers instead of strings.
And with JavaScript 1.1’s images[] array, you dynamically displayed images for the cards in each hand.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/22new01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/cards.zip
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/bjack.html

Complete Idiot's Guide to JavaScript

Chapter 23
Script Example 6: Creating an eZine

In This Chapter

● Use of <FRAME>s
● Multiple <SCRIPT> tags
● Non-function JavaScript statements
● Talking between frames

Start the Web-Presses!

By now, you may be thinking to yourself, "This author stuff doesn't seem that difficult. Heck, I could
write my own book or publish a magazine, and it'd be much better than what this guy has written." You
may be right...and through the magic of the Web, you can give it a shot. Publishing on the Web doesn't
require a contract with a publisher, a fleet of editors, or tons of money; all you need is you, your browser,
and an idea.

Many have already started down the path of the eZine, an electronic, online sibling of the magazines you
find at your favorite bookstore. Each day, another one is "published" through the Web. (I've even heard
there's a 'zine about chickens). If no one reads it but you, who cares? You've made your statement,
presented your case, told your story, whatever you want to do.

But you are a JavaScripter—you want to be different. You want to stand out in the crowd as someone
who knows his Web. That's what this example will do for you. It’s a Do-It-Yourself JavaScript-Enabled
eZine Framework (whew!).

At the same time, you'll get a chance to see a variety of JavaScript tricks all rolled into one power-
collection of pages.

JavaScript: The eZine!

Any magazine, electronic or otherwise, consists of the following parts:

● A cover page
● A table of contents
● Articles, articles, articles

You can put these together using the <FRAME> tag. The <FRAME> tag allows you to break the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (1 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

browser's display area into subsections (separated by frames) and display a different HTML document in
each frame. Because a picture is worth a thousand words, this figure shows you what our eZine will look
like when you finish.

JavaScript: The eZine!

Let's tear this apart and look at each piece.

I've Been Framed!

The first thing you see is that the screen is divided into three areas. Each area is referred to as a frame.
When the user first loads the eZine, he sees the cover page that you see in the figure. The frame that runs
down the left side of the screen serves as your Table of Contents. Each link listed there loads a particular
article when it’s clicked on. Articles that are loaded appear in the large frame on the right. Finally, the
third frame is a "help window," and you'll look at that more closely later.

So the first thing you need is an HTML document that sets up your frames. This is the document that the
user would load to read your eZine. By convention, the "main" or "primary" HTML document in a
directory is called index.htm, and you want to stick with convention. Here's your index.htm:

<!— index.htm: The "driver" of our eZine —>
<HTML>
<HEAD>
<TITLE>JavaScript: The eZine!</TITLE>
</HEAD>
<FRAMESET COLS="90,*">
<FRAME SRC="buttons.htm" NORESIZE NAME="Buttons" BORDER=1 SCROLLING=NO>
<FRAMESET ROWS="*,60">
<FRAME SRC="coverpage.htm" NORESIZE NAME="Main" SCROLLING=AUTO>
<FRAME SRC="helpwindow.htm" NORESIZE NAME="Help" SCROLLING=NO>
</FRAMESET>
</FRAMESET>
<NOFRAMES>
<BODY BGCOLOR=#FFFFFF>
<CENTER><H1>JavaScript: The eZine!</H1></CENTER>
<HR>

Since this is an eZine about JavaScript, you really ought to get a browser that supports it. Why not check
out

Netscape Navigator 3.0?
<HR>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (2 of 12) [01.06.2001 00:50:14]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/23fig01.jpg

Complete Idiot's Guide to JavaScript

Send your comments to the

Editor.
</BODY>
</NOFRAMES>
</HTML>

The <NOFRAMES> tag is basically a wrapper for what you want to display to people who don't have a
frames-enabled browser. In this case, you gently urge people to get a newer browser (and because you're
using JavaScript, I suggest Navigator 3.0 or 4.0).

Setting Frames

A collection (or set) of frames is defined with the <FRAMESET> tag. <FRAMESET> has two attributes,
ROWS and COLS, which enable you to define the width of the various frames you want.

<FRAMESET COLS="90,*">
<FRAME SRC="buttons.htm" NORESIZE NAME="Buttons" BORDER=1 SCROLLING=NO>
<FRAMESET ROWS="*,60">
<FRAME SRC="coverpage.htm" NORESIZE NAME="Main" SCROLLING=AUTO>
<FRAME SRC="helpwindow.htm" NORESIZE NAME="Help" SCROLLING=NO>
</FRAMESET>
</FRAMESET>

In this example, a <FRAMESET> is nested inside another <FRAMESET>. You can do this as deep (as
many nests) as you want, but don't get carried away with it. You can create frames too small to display
much of anything.

You can also look at your collection of frames from another perspective. My frames consist of two
columns. The left column is 90 pixels wide, and the right column is whatever's left of the screen width.
The left column is called "buttons" and loads "buttons.htm". The right column is further divided into two
frames, the bottom one being 60 pixels tall, and the top one being whatever's left. The top frame is called
"Main" and loads "coverpage.htm"; the bottom one is "Help" and loads “helpwindow.htm.”
Alternatively, you can also specify frame widths or heights as a percentage instead of in pixels. For
instance, you could specify a left-hand frame to be 30% wide (simply stick the % symbol after the size
number in the <FRAMESET> tag). This is often a better way to allow framesets to adjust to different
screen resolutions. On the other hand, if you have placed images within your frame, you may need to use
pixel widths to ensure that the frame is wide enough to incorporate the image’s dimensions.

By using the "*" value for the frame width, you tell the browser to make that frame whatever width is left
after the other fixed widths have been computed.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (3 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

Notice also the <FRAME> attributes NORESIZE and SCROLLING. NORESIZE tells the browser not to
let the user grab the frame and drag (resize) it. Without this attribute, moving the mouse over the frame
edge causes the mouse pointer to change to the familiar Windows resize cursor. If the user then grabs the
frame by clicking it, he can move the frame.

The SCROLLING attribute controls whether a scroll bar will be displayed. By default, the value of
SCROLLING is AUTO, meaning that a scroll bar will appear only if the page is bigger than the frame. In
this case, you don't want scrolling on the help window or the table of contents, so you set
SCROLLING=NO. Setting SCROLLING=YES would make a scroll bar always appear, even when the
document is smaller than the frame.

As you can see, the <FRAMES> tag doesn't really display any text. It simply defines the frames and
indicates which documents should be loaded into which frames.

Now, let's move through each piece of the eZine. We'll start with the more interesting one: the help
window.

Help Me!

You're probably wondering about that short frame at the bottom of the screen—the one with the words
"Article #3" in it. That's the help window, and it is powered by JavaScript. As the user moves the mouse
over the table of contents, the text in the help window changes to relate to whatever the user is pointing
to. With the help window, you can display a one-line description of each link in the table of contents.

The help window is a simple FORM with one field: a text field named "helpmsg" that will receive
information sent to it from the table of contents.

Here's the HTML file:

<!— helpwindow.htm: The eZine help window —>
<HTML>
<HEAD>
<TITLE>JavaScript: The eZine!</TITLE>
</HEAD>
<BODY BGCOLOR=#FFFFFF>
<CENTER>
<FORM>
<INPUT TYPE="text" NAME="helpmsg" SIZE=60>
</FORM>
</CENTER>
</BODY>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (4 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

</HTML>

Nothing fancy, but with the addition of the table of contents buttons, it produces a very nice effect.

In the previous programs, all of the frames have the same "title," as defined by the <TITLE> tag.
However, think back to just what the purpose of the HTML "title" is. It doesn't appear anywhere within
the document itself. The title pops up in two places only: the upper border of the browser window and on
the bookmark list. We've used the same title, "JavaScript: The eZine!" for each frame because it is
appropriate for either the browser windowframe or the bookmark.

The Table of Contents

The table of contents (the frame on the left) is your control center. As the user passes the mouse over one
of the links, a line of text describing that link is sent to the help window frame below.

How is this done? First, remember that the helpwindow.htm file contains a form with one field, helpmsg.
Forms are accessible from within JavaScript, and with JavaScript, the data in form fields can be changed.
Also, remember that because each frame is a document—and each document is attached to the main
window—you can "reach" from one frame into another and do something to it.

To begin with, create an array of help strings to display:

msg = new Array(7);
msg['story1'] = 'Article #1';
msg['story2'] = 'Article #2';
msg['story3'] = 'Article #3';
msg['story4'] = 'Article #4';
msg['story5'] = 'Article #5';
msg['index'] = 'Return to the cover page';
msg['expand'] = 'Remove the button bar and help window';

This uses the new Array () object that you learned about in Chapter 16, “Array (A Ray) of Organization.”
The message array, msg[], is created outside a JavaScript function, making the array "visible" to any
other JavaScript functions.

Now that you have the array, you need to display it. What you want to do is create a special link on the
page that handles the onMouseOver event. Here’s how:

<A HREF="story1.htm"
TARGET="Main"
ONMOUSEOVER="message('story1', this.href); return true;">
Story 1

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (5 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

The onMouseOver event handler simply calls the message() function and passes an "ID tag" (the index
into the msg[] array) and the HREF associated with this link. Because your TARGET is "Main", the
HREF that will be loaded (a story document, in this case) will be loaded into the frame named "Main",
which is the large frame on the right of the screen.

The message() function looks like this:

clearid = 0;
function message(button,url)
{
if(clearid)
{
clearTimeout(clearid);
}
window.parent.frames['Help'].document.forms[0].helpmsg.value = _msg[button];
self.status = url;
clearid =
setTimeout("window.parent.frames['Help'].document.forms[0].helpmsg.value = _''", 5000);
}

That rather long window.parent.frames['Help']... line is what does the magic. It loads the selected msg[]
text into the value property of the helpmsg field in the form of the helpwindow frame. That's a long-
winded way of saying that it copies a string somewhere else on the page—but it works!

Finishing the Table (of Contents)

Putting this all together, here's the table of contents document, buttons.htm:

<!-- buttons.htm: eZine table of contents -->
<HTML>
<HEAD>
<TITLE>JavaScript: The eZine!</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide from non-JavaScript browsers
msg = new Array(7);
msg['story1'] = 'Article #1';
msg['story2'] = 'Article #2';
msg['story3'] = 'Article #3';
msg['story4'] = 'Article #4';
msg['story5'] = 'Article #5';
msg['index'] = 'Return to the cover page';

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (6 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

msg['expand'] = 'Remove the button bar and help window';
clearid = 0;
function message(button,url)
{
if(clearid)
{
clearTimeout(clearid);
}
window.parent.frames['Help'].document.forms[0].helpmsg.value = _msg[button];
self.status = url;
clearid =
setTimeout("window.parent.frames['Help'].document.forms[0].helpmsg.value = _''", 5000);
}
//-->
</SCRIPT>
</HEAD>
<BODY BGCOLOR=#FFFFFF>
<CENTER>

CONTENTS

<HR SIZE=4 ALIGN=CENTER>
<A HREF="story1.htm"
TARGET="Main"
ONMOUSEOVER="message('story1', this.href); return true;">
Story 1
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF="story2.htm"
TARGET="Main"
ONMOUSEOVER="message('story2', this.href); return true;">
Story 2
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF="story3.htm"
TARGET="Main"
ONMOUSEOVER="message('story3', this.href); return true;">
Story 3
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF="story4.htm"
TARGET="Main"
ONMOUSEOVER="message('story4', this.href); return true;">
Story 4
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF="story5.htm"

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (7 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

TARGET="Main"
ONMOUSEOVER="message('story5', this.href); return true;">
Story 5
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF="index.htm"
TARGET="_top"
ONMOUSEOVER="message('index', this.href); return true;">
Index
<HR SIZE=2 WIDTH=25% ALIGN=CENTER>
<A HREF=""
TARGET="_top"
ONMOUSEOVER="message('expand', this.href); return true;"
ONCLICK="{
alert('You can restore the button bar by\npressing the BACK button.');
this.href = window.parent.frames['Main'].document.location;}">
Expand
<HR SIZE=4 ALIGN=CENTER>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide from non-Javascript browsers
function DisplayDate(dateString)
{
d = new Date(dateString);
return "" + (d.getMonth() + 1) + "/" + d.getDate() + "/" + d.getYear();
}
document.write("");
document.write("" + DisplayDate(document.lastModified) + "");
document.write("<P>");
//-->
</SCRIPT>
</CENTER>
</BODY>
</HTML>

I’d like to point out three things here before we move on. First, look at these lines:

<A HREF="index.htm"
TARGET="_top"
ONMOUSEOVER="message('index', this.href); return true;">
Index

Remember that when you assign _top as a target, the browser effectively reloads everything—not just a
particular frame. This is important to use, especially when you're linking to a page outside your eZine
that doesn't support frames. Otherwise, your browser will try to load the new page into whatever frame

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (8 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

you've specified (and if you don't specify a target, the current frame is used). Try to load your entire
home page into a window the width of the table of contents, and you'll understand why this is a problem.

Second, check out the following lines:

<A HREF=""
TARGET="_top"
ONMOUSEOVER="message('expand', this.href); return true;"
ONCLICK="{
alert('You can restore the button bar by\npressing the BACK button.');
this.href = window.parent.frames['Main'].document.location;}">
Expand

This does a _top load like the Index link, but it also hooks the onClick event handler to do something else
very nifty. Before the URL is loaded, the HREF attribute is set to whatever the HREF is of the document
currently displayed in the "Main" window. Think of it as a short way of saying, "Take whatever is
currently loaded in 'Main' and reload it, filling the full screen." Because this eliminates the frame
containing the button bar, the addition of the alert() method provides the user with an easy reminder of
how to get the bar back. (See the following figure.)

Clicking Expand generates a reminder, so that the user knows how to return to the frameset after reading
this page.

Third, the date displayed at the bottom of the table of contents has some properties of its own. It uses the
lastModified property of the document object to retrieve the date that you last changed the document.
With a little modification, it displays this date at the bottom of the screen. This is an easy way of showing
the user when the eZine was created or changed. It also shows off one other important JavaScript feature:
the capability to use the <SCRIPT> tag more than once in a document.

Stories

Okay, you've seen the tough stuff, and you're almost done. The story1.htm through story2.htm files are
nothing more than regular HTML files.

<!-- story1.htm: an example eZine story -->
<HTML>
<TITLE>JavaScript: The eZine!</TITLE>
<BODY BGCOLOR=#FFFFFF>
<H1>Article 1</H1>
<HR>
Article 1 goes here.
</BODY>

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (9 of 12) [01.06.2001 00:50:14]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#42
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#42

Complete Idiot's Guide to JavaScript

</HTML>

You can embellish these files to your heart's content. Just remember that if you add any links to pages
outside your eZine, you'll want to add the TARGET="_top" attribute to the <A> tag; otherwise, things
will start to look very strange.

Cover (Page) Me with JavaScript

The last part I’m going to talk about is the first part of the eZine your readers will see: the cover page.
This example cover page isn't incredibly fancy, but it does have a nice touch:

<!-- coverpage.htm: eZine coverpage -->
<HTML>
<TITLE>JavaScript: The eZine!</TITLE>
<BODY BGCOLOR=#FFFFFF>
<H1><CENTER>JavaScript: The eZine!</CENTER></H1>
<HR>
<SCRIPT LANGUAGE="JavaScript">
<!-- Hide from non-Javascript browsers
d = new Date();
hour = d.getHours();
if(hour < 5)
{
document.write("Doing a little late-night surfing, eh?");
}
else
if(hour < 6)
{
document.write("Up early, I see! Do you have your coffee?");
}
else
if(hour < 12)
{
document.write("Good morning!");
}
else
if(hour < 18)
{
document.write("Good afternoon!");
}
else
{
document.write("Good evening!");

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap23.htm (10 of 12) [01.06.2001 00:50:14]

Complete Idiot's Guide to JavaScript

}
document.write("<P>");
//-->
</SCRIPT>
So, you want to do the JavaJive ... but you don't want to program?
<P>
Well ... you've come to the right place. Check out the articles
here and you too can become a
<I>PowerJavaScripter</I>!
<HR>

<I>Send your comments to the Editor.</I>

</BODY>
</HTML>

Did you notice the JavaScript script in the <BODY>? It doesn't have any functions, just statements. This
means that the statements will be executed after the page loads (and before it is displayed), even before
the user clicks anything. In this example, it uses the Date object to figure out what time of day the user is
reading your eZine. Depending on what hour of the day it is, the user sees a different appropriate
message.

You have all the pieces for a basic eZine. So what are you waiting for? Get out there and publish!

The Least You Need to Know

This chapter took a final look at JavaScript by pulling different features together into a real application:
an eZine. You learned how to:

● Use <FRAMES>.
● Catch the mouse movements and do something with them.
● Send information from one frame to another.
● Use <SCRIPT>s in both the <HEAD> and <BODY> of a page.
● Use more than one <SCRIPT> in a page.
● Use JavaScript statements outside a function to dynamically change the document.

Complete Idiot's Guide to JavaScript

Chapter 24
Script Example 7: Welcome Back

In This Chapter

● Cookie recap
● Packing data into a cookie
● Extracting data from the cookie
● Custom content

A Warm Welcome

Everyone enjoys a warm welcome, even from a Web site. Back in Chapter 17, “Care for a Cookie?,” you
learned how a Web page can “remember” information about a visitor. Cookies make it possible to store
information on a user’s hard drive (or in his RAM), which can be retrieved when and if that person—or
someone else using his computer—revisits the page.

In Chapter 17, you used a basic example of a cookie that “remembered” the time and date of a user’s last
visit to the page. Let’s elaborate on that example in this chapter, and create a Welcome Back page, that
meets the following criteria:

● Keeps track of a visitor’s name, date of last visit, and number of visits in total.
● If no cookie is found for the user, he is asked to enter his name into a text form field, and the

cookie is then created.
● If a cookie is found for the user, a customized welcome page appears, and the cookie information

is updated. You’ll also add a button with which the user can delete the cookie if he would like to
become a “new visitor” again.

The major functions of this program are quite similar to those from Chapter 17; but they do boast a few
additional enhancements. As usual, you’ll begin by looking at each function of the Welcome Back
program.

Constructing the Cookie

The cookie will be saved on two occasions: after the user enters his name (if this is his first visit to the
page) and upon visiting the page (if this is not the user’s first visit).

Remember that for a single cookie, you can store one string of information. However, you can cleverly
pack as much useful data into this string as possible. When you code your GetCookie() function, you’ll

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (1 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

untangle the data to pull out the information you stored.

In this example, the cookie value actually contains three pieces of data: the date/time, the user’s name,
and the total number of visits so far. You’ll pack this data into the single cookie named lastvisit, as
follows:

● lastvisit = datetime_username#totalvisits

By doing this, you can use the GetCookie() function to pull the date (the characters prior to the
underscore), the user’s name (the characters between the underscore and the pound sign), and the total
number of visits (the characters to the right of the pound sign).

Setting Cookie

With that preamble, here is the code for SetCookie():

function SetCookie(name)
{
cookidx++
today = new Date ()
expdate = new Date ()
expdate.setTime(expdate.getTime() + (24 * 60 * 60 * 1000 * 365))
expdate=expdate.toGMTString()
document.cookie="lastvisit="+escape(today)+"_"+name+"#"+cookidx+"; expires="+expdate+";"
}

Notice that SetCookie() takes one parameter, name, which is the name of the cookie. In this example,
calls to SetCookie will pass it the name lastvisit because that’s the only cookie this page uses.

Aside from that, this function is not unlike that in Chapter 17. The current date and time is calculated,
and then a concatenated string containing the date, the user’s name, the visit total (cookidx), and the
expiration date is assigned to the cookie. Note also, though, cookidx, which is the counter to keep track
of the user’s visit total. At the top of this function, cookidx is incremented by one to add the current visit
to the total.

Getting Cookie

Moving along, the “opposite” of SetCookie() will be GetCookie(). The object of GetCookie() is clear
enough: to retrieve the cookie information and decode it into useful data. Although the following
function may look complicated, it’s not quite so bad. First it uses a while loop to locate and extract the
cookie value from the entire cookie, and then it parses that value for the date, user name, and visit total.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (2 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

function GetCookie (name)
{
var namestr = name + "="
var namelen = namestr.length
var cooklen = document.cookie.length
var i = 0
while (i < cooklen)
{ var j = i + namelen
if (document.cookie.substring(i, j) == namestr)
{ endstr = document.cookie.indexOf (";", j)
if (endstr == -1) {endstr = document.cookie.length}
tempstr = unescape(document.cookie.substring(j,endstr))
//entire cookie value extracted into tempstr, now we can parse for details
cookdate = tempstr.substring(0,tempstr.indexOf("_"))
cookname = tempstr.substring(tempstr.indexOf("_")+1,tempstr.indexOf("#"))
cookidx = tempstr.substring(tempstr.indexOf("#")+1,tempstr.length)
return tempstr
}
i = document.cookie.indexOf(" ", i) + 1
if (i == 0) break
}
return null
}

If GetCookie() fails to find a cookie with the specified name (e.g. lastvisit), it returns a null value.
Otherwise, cookdate contains the date and time, cookname contains the user’s name, and cookidx
contains the visit total.

Canceling Cookie

Lastly, you need a function to delete the cookie, in case the user wants to eliminate the record of his visit.
Though not vital, this is a courtesy function: Many Web surfers don’t appreciate someone keeping track
of them without their consent. If you provide a delete cookie function, the user at least has the
opportunity to “cover his tracks.”

function DeleteCookie (name)
{
var expdate = new Date()
expdate.setTime (expdate.getTime() - 1000000000)
document.cookie= name + "=" + GetCookie(name) + "; expires=" + expdate.toGMTString()
location=thispage
}

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (3 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

Deleting the cookie isn’t terribly difficult. Above, the current date is determined, and then a value
representing a date in the past is assigned to expdate. The cookie is then re-saved with the new expiration
date. Because this expiration date is before the current date, the cookie is now expired and, therefore,
cannot be retrieved by the Web browser.

Finishing Touches

Having written the heart of the Welcome Back program, you only need to add some Web page content to
make use of those functions.

In this case, you don’t know for certain which Web page content to display. After all, if this is the user’s
first visit to the page (in which case, GetCookie() returns null because the cookie is non-existent or
expired), you want to display a formal greeting and a request that the user enter his name to create the
cookie. On the other hand, if this is a repeat visit, you want to display some customized content such as
“Welcome back, Bill! This is visit #3, your last being on September 9, 1996.” It’s not unlike the well-
known letter from Publisher’s ClearingHouse, but the key is not to overdo the custom content (as in
“Welcome to my page, BILL. Here, BILL, you will find information of interest to BILL.”) You know
what I mean.

To achieve that goal, you write some JavaScript code outside of a function. Instead, it simply resides
between the <BODY> tags, where normal HTML code usually goes. As a result, this JavaScript code
will automatically execute whenever the page is loaded.

<body bgcolor="#FFFFFF">
<SCRIPT Language="JavaScript">
<!-- Hide from non-JavaScript browsers
thispage="welcomeback.htm"
cookidx=0
if (GetCookie("lastvisit") != null)
{ SetCookie(cookname)
document.clear()
document.writeln("<H2><center>Welcome back, "+cookname+"!</H2></center><p>")
document.writeln("Thanks for returning to my home site. This is visit #"+cookidx+" to this page,
the last
visit being on "+cookdate)
document.writeln("
<form><input type=button value='Delete Cookie'
onClick=DeleteCookie('lastvisit')></form>")
}
else
{ document.clear()
document.writeln("<H2><center>Welcome to my home site!</H2></center><p>")
document.writeln("Since this is your first time visiting my site, please enter your name below. It

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (4 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

will be
used to identify you on future visits to this page.<p>")
document.writeln("<form><input type=text name=cookname width=15>
<input type=button
value='Submit!'
onClick='SetCookie(this.form.cookname.value); location=thispage'></form>")
}
//-->
</SCRIPT>
</body>

The above code revolves around a basic if statement: if GetCookie() does not return null (therefore the
cookie exists, and this is not a first visit), a series of document.writeln statements constructs the
“Welcome Back, so-and-so” greeting. Also note that a button is created with an onClick event handler to
call the DeleteCookie() function, as a courtesy to the user. Alternatively, if GetCookie() does return null,
a different series of document.writeln statements constructs another greeting page, which contains a text
field for the user to submit his name.

In cases where the user either hits the Delete Cookie button or Submits his name to create the first-time
cookie, the page is automatically reloaded with the “location=thispage” statement to reflect the change
(thispage having been earlier assigned the true URL of this page).

Cookies Are Served!

Here it is: The entire Welcome Back page.

<html>
<head>
<title>My Home Site</title>
<SCRIPT Language="JavaScript">
<!-- Hide from non-JavaScript browsers
function SetCookie(name)
{
cookidx++
today = new Date ()
expdate = new Date ()
expdate.setTime(expdate.getTime() + (24 * 60 * 60 * 1000 * 365))
expdate=expdate.toGMTString()
document.cookie="lastvisit="+escape(today)+"_"+name+"#"+cookidx+"; expires="+expdate+";"
}
function GetCookie (name)
{
var namestr = name + "="

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (5 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

var namelen = namestr.length
var cooklen = document.cookie.length
var i = 0
while (i < cooklen)
{ var j = i + namelen
if (document.cookie.substring(i, j) == namestr)
{ endstr = document.cookie.indexOf (";", j)
if (endstr == -1) {endstr = document.cookie.length}
tempstr = unescape(document.cookie.substring(j,endstr))
//entire cookie value extracted into tempstr, now we can parse for details
cookdate = tempstr.substring(0,tempstr.indexOf("_"))
cookname = tempstr.substring(tempstr.indexOf("_")+1,tempstr.indexOf("#"))
cookidx = tempstr.substring(tempstr.indexOf("#")+1,tempstr.length)
return tempstr
}
i = document.cookie.indexOf(" ", i) + 1
if (i == 0) break
}
return null
}
function DeleteCookie (name)
{
var expdate = new Date()
expdate.setTime (expdate.getTime() - 1000000000)
document.cookie= name + "=" + GetCookie(name) + "; expires=" + expdate.toGMTString()
location=thispage
}
//-->
</SCRIPT>
</head>
<body bgcolor="#FFFFFF">
<SCRIPT Language="JavaScript">
<!-- Hide from non-JavaScript browsers
thispage="welcomeback.htm"
cookidx=0
if (GetCookie("lastvisit") != null)
{ SetCookie(cookname)
document.clear()
document.writeln("<H2><center>Welcome back, "+cookname+"!</H2></center><p>")
document.writeln("Thanks for returning to my home site. This is visit #"+cookidx+" to this page,
the last visit being on "+cookdate)
document.writeln("
<form><input type=button value='Delete Cookie'
onClick=DeleteCookie('lastvisit')></form>")

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap24.htm (6 of 8) [01.06.2001 00:50:45]

Complete Idiot's Guide to JavaScript

}
else
{ document.clear()
document.writeln("<H2><center>Welcome to my home site!</H2></center><p>")
document.writeln("Since this is your first time visiting my site, please enter your name below. It
will be used to identify you on future visits to this page.<p>")
document.writeln("<form><input type=text name=cookname width=15>
<input type=button
value='Submit!' onClick='SetCookie(this.form.cookname.value); location=thispage'></form>")
}
//-->
</SCRIPT>
</body>
</html>

When loaded into your Web browser for the first time, the Welcome Back page appears as pictured here.

The Welcome Back page upon first visitation.

Future visits to the page recall the saved cookie and generate the friendlier greeting shown in the next
figure.

When you return to the Welcome Back page, you see that you haven’t been forgotten!

The Least You Need to Know

In this chapter, we returned to the theme from Chapter 17, “Care for a Cookie?,” and took it to the “next
level” (as they say in sports clichés). You learned how to pack several pieces of information into a single
cookie and how to extract them later. You also saw how to use JavaScript to create custom content by
writing HTML code directly to the page, using the data retrieved from the cookie. Publisher’s
ClearingHouse, look out!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/24fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/24fig02.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm

Complete Idiot's Guide to JavaScript

Chapter 25
What to Do When It Won't Work: Debugging Your
Scripts

In This Chapter

● Who the bugs are
● Spelling, grammar, and an apple for the teacher
● Capitals count
● Logic and Design

Bugs! Bugs! Bugs!

Whether it's ants at a picnic or cockroaches in the closet, bugs aren't most people's favorite critters. They
get in things, spoil things, and generally cause a great deal of consternation. Their appearance usually
gets a standard response: insecticide, a fly swatter, or a call to the exterminator. Bugs just aren't
popular—unless maybe you're a bug collector. (Any bug collectors out there, please accept my apology;
I'll use the proper term: entomologist.)

Computer programs are often much like life: Programs don't always work, and when they don't, it is said
(in another humorous adaptation by programmers of yore), "This program has a bug." Whether you have
termites in your walls or errors in your code, a bug is a bug, and a bug isn't good.

As you embark down the path to JavaScript enlightenment, you'll no doubt encounter a few bugs of your
own. In the next few pages, you'll take a look at some of the more common causes of bugs and how to
exterminate them.

The End Result

A bug can occur in two forms, one of which is sometimes more insidious than the other. The first sort of
bug makes itself quite obvious—like a cockroach in the middle of the kitchen. These bugs prevent the
program from executing beyond a certain point due to some illegal statement. JavaScript can recognize
these and attempt to scold you, as you will learn shortly.

The more insidious bugs, perhaps not unlike termites deep in the foundation, are those that are not illegal
statements but are based on incorrect logic. Your program executes because the statements are "legal,"
but the results are incorrect because your programming logic was flawed at some point. These can be
extremely difficult to exterminate. We'll discuss such nasties second.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (1 of 9) [01.06.2001 00:51:20]

Complete Idiot's Guide to JavaScript

BZZT! The ERROR

When your bug is the result of an illegal statement, JavaScript will holler at you with a big pop-up alert
box like the one shown here.

A JavaScript error message.

The first line of the error window identifies the file (or URL) where the bug occurred, while the second
line tries to identify the bug. In this figure, the real problem was that a built-in JavaScript function was
misspelled—but the error states that the function (as it was misspelled) was "not defined." This is the
browser's way of saying, "I can't find a function by that name," and it makes an important point: errors
that you may get in JavaScript will help tell where the bug occurred, but they may not tell you exactly
what the error was. Therefore, figuring out what caused an error will sometimes require a bit of
sleuthing.

Another thing you might notice is that the first line ends with the word "line" and a number. This is the
line number in the HTML document where the error was found, which should at least help you find its
location. Note that every line of the HTML file is counted as one line (not just those containing
JavaScript code). Sometimes the URL is longer than the error window, and a scroll bar will appear so
you can scroll within the error window to see the whole message.

Because illegal statement errors are often the easier bugs to get rid of, the previous information is half the
battle if not more. JavaScript has already told you where and in which statement the problem lies. Thus,
you can spelunk into the code to where the bug resides with some accuracy. From there, your final
mission (which you should choose to accept) is to determine why the noted statement is illegal. There are
several possibilities you should consider; they are detailed in the following sections.

Tpyo...er...Tipo...uh...Spelling Errors

By far, the most common source of bugs is the typographical error. In a word: that darned misspelling.
Unlike humans, who can still get the general idea of what you're trying to say (whether you remember to
put the "i" before the "e" or not), computers aren't so flexible. If it isn't spelled exactly right, the
computer doesn't have a clue what you mean. The problem with "typos," as they're called, is that (as you
saw in the previous section) the browser isn't smart enough to say, "Ahh, you didn't spell it right." If it
were, the browser would know what the right value was...right?

Instead, a typo can cause one of several things to happen:

● Nothing is displayed. This happens, for example, when you misspell an HTML tag. By definition
of HTML, if a browser encounters a tag it doesn't recognize, it ignores it. This is especially a
problem when you get really fancy with JavaScript, as you can use document.write() and string
construction to dynamically build HTML statements to display (and because the HTML tags are

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (2 of 9) [01.06.2001 00:51:20]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/26fig01.jpg

Complete Idiot's Guide to JavaScript

being generated, they are harder to see).
● The HTML tag is displayed, even though you want it to format text and not show itself. Again,

this is a side effect of the browser's interpretation of HTML. Sometimes, when a browser can't
identify a tag, it assumes that the tag is actually text to be displayed.

● A property value is not set or changed. The JavaScript-enabled browser will obediently set the
"property" to the specific value. But because this isn't the same property you wanted to adjust, the
result will be different than you expected.

● A "??? is undefined" message is displayed. This is most common with functions because
JavaScript must be able to find the function code whenever it encounters a function call.

And the list goes on...and on...and on. In a nutshell, spelling something wrong is a lot like trying to order
food in a French bistro when you don't speak French: Depending on what word you get wrong, you could
end up with anything from a scoop of sorbet to a boiled shoe. Check your spelling!

A Capital Idea

"Kissin' cousins" to spelling errors are errors in capitalization. The JavaScript documentation notes that
JavaScript is case-sensitive (upper- and lowercase matter). Case is important, and capitalization is
critical.

Many functions, methods, and properties in JavaScript are "compound words" made up of multiple
words slapped together (for example, getDate()). In most cases, the second word is capitalized while the
first word is not. If you try to type in a JavaScript component and don't capitalize the second (or third, or
fourth) word, you'll probably generate an error.

FYI...

Appendix A,
"JavaScript: The
Complete
Overview," lists all
the components of
JavaScript. In
addition, Chapters
5 through 17 show
the proper
capitalization for
JavaScript
functions, objects,
and properties.

Matching Mates

On many occasions in JavaScript programming, you use paired bookends, such as
brackets { }, parentheses (), and both single- and double-quotation marks. As with
socks in the laundry, improperly matched pairs will result in a statement of
problematic fashion. It is vital that every open bracket and parenthesis have an
appropriate closing mate somewhere further down in the code. People most often
lose track when they are nesting parentheses or brackets, such as when they are
using a loop statement within a loop statement.

It is not uncommon to find multiple closing parentheses or brackets at the end of a
series of statements; each one pairs up with an opening mate that appears earlier. It
might look strange, but an eye for an eye and a bracket for a bracket, as they say
(don't they?). Well, it’s something to watch for.

JavaScript Errors

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (3 of 9) [01.06.2001 00:51:20]

Complete Idiot's Guide to JavaScript

If you're still stumped and you're positive you spelled everything correctly, move on to Phase 2:
Interpreting the JavaScript error message. JavaScript has a handful of errors that it kicks up for a variety
of situations. Take a look at each and note what to check for if you encounter one. For purposes of the
"error lineup," look at the second line of text displayed in the error window. Any parts of the message
that may change will be represented by a string of question marks (?????).

????? Is Not Defined

You've already met this guy. He's trying to tell you that either you misspelled something or you
have forgotten to include the function body (the guts of the function) in the script. It might also
mean that the function requires an uppercase letter or two, so you might want to check the
function against what you find here in the book.

????? Is Not a Function

You tried to call an object's function (for example, document.write()), but the function doesn't
exist. Check the spelling and capitalization.

????? Is Not a Numeric Literal

You attempted to perform some sort of math operation on a string. For example, if you wanted to
take the numeric value 2 and display “2nd” on the screen, something like this

document.write(2 + "nd");

will generate the error. This is because, as JavaScript evaluates the expression inside the
parentheses, the type of the expression is whatever variable type JavaScript encounters first when
reading from left to right (or whatever way is the default for evaluation; using more than one pair
of parentheses can change this order). In this example, JavaScript assumes that you want to print
out a numeric value, but then you try to tack a string on the end (which is a no-no).

To get around this, you need to "convert" the expression to a string before you start evaluating it.
You can easily do this by adding a "null" or "empty" string in front of the number like this:

document.write("" + 2 + "nd");

The Dreaded Crash

Sometimes things get really hairy, and you're presented with the infamous "illegal operation" dialog box.

This message means that something’s seriously wrong!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (4 of 9) [01.06.2001 00:51:20]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/26fig02.jpg

Complete Idiot's Guide to JavaScript

After you see this message, Netscape or Internet Explorer itself shuts down. First rule: don't panic.
Chances are you've made some simple mistake, and although the browser should have a better way of
handling it, instead it charges forward blindly until it gets hopelessly stuck.

A common way to cause this error (if you really like creating bugs instead of fixing them) is to try to
treat a numeric value like a string and manipulate it. For example, this code

var n = 264;
document.write(n.substring(0, 1));

will definitely cause a crash. However, if you convert the number to a string first, like this

var n = 264;
var strN = "" + n;
document.write(strN.substring(0, 1));

then everything's fine.

Along the same lines, calling a method of a numeric variable (even if it's not a string method) may cause
the browser to explode. There isn't any "solution." Rather, the best thing to do is to live by the punch line
to that old joke: don't do it. Actually, the fault isn't yours, it's the browser's—it should generate an error
in such circumstances, not crash. Presumably, future browser revisions will weed out these landmines.
On the other hand, they may also introduce others. Fortunately, at least, you won’t be the only one to
discover the problem, and if a browser has a true defect, it will become well known in the JavaScript
support areas (newsgroups, mailing lists, Web pages, etc).

Design Errors (or “Why Did My House Just Collapse?”)

Often sneakier and much more difficult to track down are outcome bugs. These do not result from an
illegal statement that JavaScript cannot understand. They are the results of errors in program design,
which produce the wrong results when you execute the program.

Think of an entire JavaScript program (or any computer program, for that matter) as a large exercise in
logic and grammar. Even if your grammar is impeccable (JavaScript makes no error complaints), your
logic may be flawed. It may be flawed in one tiny section of code or in several tiny sections of code, or
your entire design might be logically flawed.

Ultimately, the only solution to these problems requires three possible steps:

1. Locate the region of code likely to contain the design flaw.
2. Follow the logic, and then redesign where necessary.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (5 of 9) [01.06.2001 00:51:20]

Complete Idiot's Guide to JavaScript

3. Return to step 1 if the problem persists.

Finding the Holes Where the Rain Gets In

Suppose you've written a JavaScript program that calculates a loan payment schedule. The program
contains no syntax errors, but the alleged payment amount it reports is clearly incorrect. You have a
design flaw (don't feel too depressed; virtually every program contains some design flaw the first time
around).

To locate the region of code where the flaw most likely is, you have to consider the program itself.
Presumably, you have several functions in such a program, each of which performs some calculation.
Therefore, any of those would make good suspects at this point; after all, a wrong final tally is probably
caused by an erroneous calculation.

Look at the sections of code you might suspect. Read them over carefully and follow the logic in your
mind. If no flaw is immediately apparent, dip into the programmer's toolbox for handy debugging tool
number one: the inside scooper.

One of the most revealing ways to track down design bugs is to gain some insight into what is going on
"behind the scenes" while the program executes. A very common way to do this is to stick new lines of
code here and there that display the current values of particular variables. This way, when you execute
the program again, you have a better idea of what is going on "in there." In JavaScript, you can do this
using the window.alert() method. For example, imagine that the suspect code looks like this:

function evalform (address) {
crucial = address.indexOf("@");
if(crucial == -1) {
window.alert ("Your e-mail address is invalid! " +
"You are an abject liar!");
return false;
} else {
message = "You entered " + address + " — is this correct?";
return window.confirm(message);
}
}
To check behind the scenes, you need to find out just what JavaScript thinks the values of address
and crucial are. So you could stick the following two lines just after the second line above:
window.alert ("Value of address is "+address);
window.alert ("Value of crucial is "+crucial);

When the program executes again, the values for those variables are displayed, giving you a clue as to
whether they are at least what you were expecting them to be. If they aren't, you must begin your

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (6 of 9) [01.06.2001 00:51:20]

Complete Idiot's Guide to JavaScript

investigation again, but at least you've narrowed it down. (Do remember, though, to remove these lines of
code once the program is working because they're not intended to be part of the final program.)

In addition to variable values, another common test is for program flow. Did the execution even reach
your function? Perhaps your function was never even executed because of some other design flaw in
your logic. You can easily test for this just as you did before: somewhere within the questionable
function, stick a line that you're sure will generate some action if the function is, in fact, being executed.
You could insert the line window.alert ("Hi function bob was just called"), for instance.

Sigh and Rebuild

Using some combination of the previous example—perhaps many times, if necessary—you will
eventually track down the region of code that is logically flawed. From there, you must identify the flaw
and rebuild to correct it. Once you're certain you have the right portion of code, the only sure way to
identify the flaw, is to step through it mentally, bit by bit. In a Zen-like way, imagine that you are the
computer, and attempt to interpret the code exactly as the computer would. You might even grab a pencil
and paper and write down the values of variables as you progress through your mental exercise. This can
be very tough work. Sometimes the logic flaw will pop out at you quickly. In a most difficult case,
however, you might be completely stumped. This is the "art" of programming.

A clear head always helps, so time away from the screen can be a benefit. Equally useful are smart
people—or at least experienced ones; there are many places on the Internet where people exchange
programming hints and pose questions to others. Check out the UseNet newsgroup
comp.lang.javascript for just such chatter and support.

The Mighty Debugger

Internet Explorer users are often on the short end of the stick when it comes to JavaScript support, but
when it comes to bug extermination, you’re in for a treat. Microsoft has recently released a free
JavaScript debugger utility, which you can download from:

● http://www.microsoft.com/ie/activex/debug.htm

Once you download and install the debugger, it hooks into Internet Explorer’s View, Source feature.
Additionally, it will also pop up anytime Internet Explorer runs into an error when executing a JavaScript
program.

But what is this debugger? In short, it is a small utility that helps you follow the logic and flow of the
JavaScript program. Like a programmer’s VCR, when the debugger is launched you can “freeze frame”
or “step forward” and “step back” through the JavaScript code. The debugger shows which line of code
is currently being executed. In this way, you can see where if...then clauses are leading to, how loops are
functioning, and so on. This is an excellent way to find out when a program is skipping a bit of code or

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap25.htm (7 of 9) [01.06.2001 00:51:20]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#23

Complete Idiot's Guide to JavaScript

going to a different bit of code than you anticipated. And once you find the problem, you can fix your
program so that it flows correctly.

Remember, though, that the Microsoft Debugger only works with Internet Explorer, not Netscape
Navigator. This does limit its usefulness, because Netscape Navigator is the better browser for running
JavaScript programs on. Perhaps a debugger will be released for Navigator as well. Perhaps one already
has been by the time you read this!

The Least You Need to Know

Bugs are a common problem when you're creating any type of program, and a JavaScript program is no
exception. JavaScript tries to provide information on where the bug is and what it is, but it doesn’t
always offer the most accurate analysis of the problem. Furthermore, some bugs can generate errors that
makes no sense whatsoever—unless you understand a few tricks.

For the most part, mistakes in spelling or capitalization are the worst culprits when it comes to bugs. The
three questions you, as a JavaScripter, should ask are:

● Is everything spelled correctly?
● Is everything capitalized correctly?
● Do all my open parentheses and brackets have accompanying closed parentheses or brackets?

If your code is free from grammatical errors, it might be suffering from design flaw. You need to
examine the logic of your code. For that purpose, you might try these suggestions:

● Insert window.alert() methods in various places to reveal the values of variables. This gives you
behind-the-scenes insight.

● Use window.alert() methods to indicate whether a function is even being called at all.
● If your JavaScript program is compatible with Internet Explorer, download and install Microsoft’s

script debugger. It’s like a programmer’s VCR: It enables you to follow the logical flow of the
JavaScript code as it is executed and spot problems as they happen.

Complete Idiot's Guide to JavaScript

Chapter 26
Ideas

In This Chapter

● Things to try with JavaScript

Document Madness

Take the first example (your "Hello World" script in Chapter 18) and extend it to do other things to the
page. Remember that you can access the document object from inside a JavaScript function or outside.
Experiment with:

● Writing HTML tags inside the <SCRIPT> tag.
● Changing other attributes of the document (text color, link color, and so on).
● Placing the <SCRIPT> tag in the BODY of the document instead of the HEAD, so that any

JavaScript statements that aren't part of a function are executed whenever the script loads.
● Use script hiding to create parts of the document that are visible only to people running JavaScript-

enabled browsers.

To take one example, imagine that you'd like to present the user with an opening greeting and an
important message. You can ensure that the user reads this message before proceeding with the page by
inserting a window.alert() method immediately after the <BODY> tag.

This ensures its execution every time the page is loaded. Regardless of what else is in this page, you
might write code such as:

<BODY>
<SCRIPT language="JavaScript">
<!-- begin hide
window.alert("Thank you for visiting the Spice Tours 97. " +
"Before you read on, you must be 21 to continue.");
// end hide -->
</SCRIPT>
... rest of page HTML code and possibly more JavaScript ...
</BODY>

Whenever a user accesses this page, the first encounter he'll have will look like the following figure.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap26.htm (1 of 6) [01.06.2001 00:51:51]

Complete Idiot's Guide to JavaScript

Disclaimers—the wave of the future.

Custom Pages

Using the random() function you learned about in Chapter 19, create a page that changes its appearance
based on:

● The time of day
● The day of the week
● The month
● Whether it's a holiday

Or, just cook up something that's different every time a user loads it. Try changing the color, the text
that's displayed, or both. Many users create pages that never change again, which results in a certain
staleness. You can include the preceding items in your program to spice up a page without requiring a lot
of owner maintenance. For example, consider this function, which is called when the page is opened in a
browser:

function colorday() {
dateobj = new Date();
today = dateobj.getDay();
if (today == 1) {
document.bgColor="blue";
}
if (today == 2) {
document.bgColor="teal";
}
if ((today > 3) || (today == 0)) {
document.bgColor="salmon";
}
}

Using this function, the current day would be determined and assigned to today (in JavaScript, 0 is
Sunday, 1 is Monday, and so on). From there, you simply use a series of if...then statements to assign
various colors to the background depending on which day it is. Mondays are blue, Tuesdays are teal....
Clever, huh?!

Web Roulette

The window object has a method that allows you to load another URL. To see how it works, write a script
that randomly picks a URL from a list and takes the user there at the click of a button. For this, you'd rely
on the method window.open(), which would spawn a new browser window and connect to a URL you

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap26.htm (2 of 6) [01.06.2001 00:51:51]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig01.jpg

Complete Idiot's Guide to JavaScript

specify. Recall that this method is described in detail in Chapter 10, and it is also referenced in the list of
objects and functions in Appendix A, "JavaScript: The Complete Overview".

The design behind this should be comprehensible by now. This program would require three key
components:

● An array of URLs to choose from. You construct this array just as you did in Chapter 19, with the
MakeArray() function.

● The random() function, which will choose one of the URLs from the array.
● The window.open() method.

Given that you covered each of these components in detail previously in the book, a simple Web Roulette
script should be quick work—allowing you that much more time to design the nifty roulette wheel
graphics!

Tour Guide

Using the window object's URL loading method, create a sequence of pages that automatically take the
user from one page to the next. You could do this as a "slide show" of your favorite work or for an
automated "kiosk" that displays your company's products.

Games, Games, Games

Extend the blackjack example to handle these elements:

● Betting
● Aces that can be 1 or 11
● The house hitting on "soft 17"
● Splits, double-downs, insurance, and so on

Or try your hand at writing a different game. Perhaps Poker, Roulette, Craps, or Hearts. You can include
graphics of the cards and actually display the hands.

Would you like to play a game? By Stephen Wassell.

Sell T-Shirts

A basic catalog implementation might revolve around T-shirt sales. You might, for instance, include a
series of images or text descriptions representing the clever witticism on each shirt. These images or text
may be designed as either HTML links or standard HTML text accompanied by an "Add this item to
shopping cart" button. Use an onClick event to catch the order, and then add the price of the shirt to a

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap26.htm (3 of 6) [01.06.2001 00:51:51]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig02.jpg

Complete Idiot's Guide to JavaScript

cumulative total (as you did in Chapter 8 with your mug-selling venture).

You can even construct an invoice that is output to the Web browser using string concatenations and the
document.write() method when the visitor clicks on some appropriate "Go to Cashier" link. And you
might want to program in the option to remove items from the cart—in case the user has a last minute
change of heart.

A Script That Writes Scripts

JavaScript's text handling allows you to build text strings out of parts of strings. Create a script that
allows a user to pick options from a table and then generates an HTML document that incorporates those
selections. For example, you can create a "build your own home page" or a "list of favorite links" script.

Spreadsheet

A spreadsheet is nothing more than a table that performs operations on the data in its cells. Write a script
that makes a table act like a spreadsheet. With the substring parsing capabilities of JavaScript, you can
even build "formulas" that are analyzed when the user clicks Compute.

One form of a spreadsheet: a running purchase total, by David Nagy-Farkas.

Database Query Front-End

Given a table of options, the user can select various components and have the script build a query (using
SQL, for example) that can be submitted to a database. To actually utilize this, you would need access to
the Web server's CGI interface because JavaScript can't read information outside its document.

Loan Amortization

Take the loan calculator from Chapter 21 and extend it to compute any data field based on the
information provided in the other fields. You can also extend the script to compute and display the
principal and interest amounts of each payment for the life of the loan.

Tutoring

You can design a JavaScript-based Web site that offers tutoring services in a variety of subjects.
Programming the informational text itself would be simple enough, and even customizing it to an
individual user could rely on string concatenations and document.write() methods.

To test skills in either flash card or multiple-choice format you could use regular buttons and radio
buttons. Questions could either be presented in a relevant sequence or using the random() function. In

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap26.htm (4 of 6) [01.06.2001 00:51:51]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig03.jpg

Complete Idiot's Guide to JavaScript

addition, you could use event handling to interpret the student's answers and provide context-sensitive
responses—perhaps even correct answers, explanations, or repeated attempts at the question.

Keep track of cumulative right/wrong totals and output a customized "report card" at the end of each
lesson.

And the Scripting Goes On

Here are some other scripting ideas you might want to try:

● A "quote of the day" script
● A full-blown calculator (simple, financial, or scientific)
● A board game such as Monopoly, Mastermind, or Yahtzee
● Whatever else you can think of!

An inspired JavaScript calculator, which also controls a Java applet for the advanced calculations (in the
frame on the right).

The Least You Need to Know

● JavaScript is such a powerful extension to HTML and the Web that you can do almost anything
with JavaScript that you can do with Java—but without having to write and compile full-blown
programs.

● Take a little time to explore on the Web. Check out some of the sites covered in Chapter 4. See
what other JavaScripters are up to.

● When you've created your script and it is working "perfectly," load it onto your Web site and
invite the world to stop by.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig04.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig04.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1

Complete Idiot's Guide to JavaScript

Chapter 27:
Stepping Up to Straight Java

In This Chapter

● What is Java?
● The Java Developer's Kit
● Integrating Java into HTML
● How to get up to speed writing your own applets
● Connecting to Java with JavaScript

JavaScript's Big Brother

If you've made it this far in the book, good for you! As you've seen, JavaScript is a very powerful language for
extending the capabilities of your World Wide Web pages. No doubt, as you've surfed around checking out other
authors' uses of JavaScript (okay, and peeked at their source code to get more ideas), you've encountered talk
about a thing called Java. If you're the curious sort, you're probably wondering just what Java is and whether it's
worth looking into. In this chapter, I’ll explain what Java is and how you can start to develop your own Java
applets. Even if full-blown Java programming isn’t your “cup of tea,” as they say, you might want to use
JavaScript to connect with and control Java applets, which you’ll see in the final section of this chapter.

Java is a full-blown programming language, designed for the purpose of providing "truly interactive" content
through the World Wide Web; Java is the language on which JavaScript is based. Developed by Sun
Microsystems, Java attempts to bridge the "multiple platform" gap that exists on the Internet by creating
applications (called applets) that will run on any computer of any type—as long as a Java-enabled browser is
handy. The same Java applet will run on Windows 95, Windows NT, UNIX, and Macintosh, eliminating the need
for customizing the applet to the particular computer.

Java Relies on a "Virtual Computer"

In order to pull off the trick of being useable on a variety of platforms, Java applets actually run on what's
called the Java Virtual Machine. Look at it this way: Certain programs available today enable you to run
Windows software on a Macintosh, or UNIX software on a Windows computer, and so on. They do this
by emulating the behavior of a particular computer type (they "pretend" to be a Mac or Windows or
UNIX machine so that the software thinks it's running on the correct computer). The Java Virtual Machine
is another type of emulator, but it doesn't emulate Mac, Windows, or UNIX. Rather, it pretends to be a
totally different type of system. And by defining what the Java computer can and cannot do, Sun was able
to create a program that—no matter what physical hardware it's run on—will always look like a Java
computer to the applets.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (1 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

Confounded Compiling

Because Java is a programming language (like Pascal, BASIC, C, or C++), to work with it, you have to write a
program. Java programs are similar to JavaScript scripts, except that they are much more extensive and require a
lot of additional material in order to successfully complete the next phase of Java development: compiling.
Compiling an applet means to take the program you've written and run a special program on it that converts it
from "near-human-readable" format to "Java-machine-readable" format (called bytecode) so that a Java browser
can run the applet.

Java is an "object-oriented" programming language most closely related to C++. "Object-oriented" is a difficult
concept to explain clearly, but in essence, it means that the language revolves around manipulating end-results
instead of designing the tools for manipulation. An object-oriented sculptor, for instance, would be more
concerned with melding together various blocks of clay than with the tools that carve the clay initially. The
popular construction toy Legos is a nice example of an object-oriented activity.

In this chapter, you're not going to dig deep into the bowels of Java. Like JavaScript, Java is still evolving, and by
the time you're holding this book in your hands, there will no doubt be newer tools available for creating Java
applets. Instead, you'll take a quick glance at what it takes put together an applet and how to link applets into
your HTML pages.

To start, you'll need to do a little surfing and pick up a copy of the collection of utilities Sun puts out to aid Java
programmers. It’s called the Java Developer's Kit.

Java Browsing

As with JavaScript, you need to use a Java-capable browser to run Java applets. At the time of this writing, the 32-
bit versions of both browsers discussed in this book (Microsoft Internet Explorer 3.0 and Netscape Navigator 3.0)
support Java. For Windows 3.1 users (16-bit) interested in Java, both Netscape and Microsoft are planning to
release Java-capable versions of their browsers in 16-bit form within the year; they may have already done so by
the time you read this.

The Java Developer's Kit

Before you dive into Java programming, you need to pick up a copy of the Java Developer's Kit (JDK for short).
The JDK includes:

● A compiler to turn your applet program code into bytecode, the language the interpreter understands.
● An interpreter that runs your applets one line at a time.
● An applet viewer for testing and running applets.
● A debugger to help track down problems in your applet code.
● A collection of example applets to play with.
● A huge collection of documentation files in browser (HTML) format.
● An upgrade utility to convert any old applets (created before the Java specifications were solidified) to the

current standard.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (2 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

In a nutshell, the JDK has everything the budding Java programmer needs to start.

What? How much does it cost? Well, put your checkbook away! The JDK is available free off the Internet.
Simply fire up your browser (any browser will do) and point it at the Sun Java Homesite at the address below.
The following figure shows the Sun Java Homesite.

● http://www.javasoft.com/

Links to download the Java Developer’s Kit.

Browse your way into the Download section, and you'll find the links for downloading the JDK for your
machine. Note that, as pictured above, there are actually two JDK’s currently available: one for Java 1.02 and one
for Java 1.1. If you want to create applets compatible with the current crop of Java-capable browsers, stick with
1.02. Java 1.1 is the newest release of Java and contains special features that the 3.0 browsers don’t support yet
(presumably, the 4.0 versions of Internet Explorer and Netscape Navigator will support JDK 1.1 applets). The file
you'll be downloading is rather large (4M or more), so start the download process and then go get a cup of coffee.

When the file has been downloaded completely, follow these steps:

1. Move the file to the root of the drive where you want to install the JDK (C:\ for example). Make sure that
you have at least 5 megabytes of free space on the disk before going to the next step (that's 5 megabytes
after you copy the file to it).

2. Run the file (from a DOS window, or by selecting File, Run from Windows NT, or by the Run option on
Windows 95's Start menu).

An .EXE File That
Unpacks Itself?

This is called a self-
extracting archive,
and all you have to
do is "run" it. In
Windows 3.x, you
can choose File,
Run from the
Program Manager;
in Windows 95, you
choose Run from
the Start menu on
the taskbar. The file
then decompresses
and installs itself.

The file will automatically unpack itself, create a \java directory and a bunch of
subdirectories, and copy a ton of files into these new directories. When all this is done,
you can delete the original file (or store it in a safe place, if you like to keep a copy around
just in case).

Where Are the Manuals?

One of the nice things about the JDK is the existence of very thorough documentation.
What documentation, you ask? Well, if you fire up your browser and open the
\java\progguide\index.htm file, you'll be introduced to one of the nicest documentation
collections on Java and the JDK available (see the following figure).

JDK online documentation.

Now, scroll down a bit. As you can see in the next figure, below the Getting Started
heading, you'll find Duke, the Java mascot (a cute little guy who looks amazingly like the
Starfleet insignia). Look at that—he's waving at you! You guessed it. Duke's a Java applet!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (3 of 10) [01.06.2001 00:52:38]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#24
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig01.jpg
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig02.jpg

Complete Idiot's Guide to JavaScript

Duke waves a friendly greeting. Resist the temptation to wave back.

All of the documentation that comes with the JDK is available in HTML format, so you might want to browse
around a bit right now before going further in the book. One thing to note, though, is that not all the HTML files
in the JDK are linked to the other files. The JDK contains a collection of document sets. You can simply list all
of the JDK help files with the File Manager or the Windows Explorer and double-click any of the HTML files
you like. They will then be opened into your browser.

Back from your local surfing? Good! Take a quick detour into HTML to see how Java applets connect to Web
pages: the <APPLET> tag.

Introducing the <APPLET> Tag

Just as JavaScript scripts are identified by their own custom HTML tag (the <SCRIPT> tag you learned about
back in Chapter 3), Java applets are included in Web pages through their own custom tag: the <APPLET> tag. As
with other HTML tags, browsers that don't support Java will simply ignore the tag, so you can safely create Java-
enabled pages that don't limit their viewing to Java-enabled users. (However, you will need to do a little more
HTML to provide those who haven't caught up with the times something to look at).

The <APPLET> tag's structure is relatively simple. Actually, there are two tags that work together: APPLET and
PARAMS. The <APPLET> tag looks like this:

<APPLET CODE="appletFile" WIDTH=pixels HEIGHT=pixels>
<!-- Alternate HTML code goes here -->
</APPLET>

The CODE
Attribute Must Be
Relative

 Unlike most other
HTML tags and
attributes that use
URLs, the CODE
attribute cannot be
an absolute URL; it
must point to
something relative
to the current
directory the HTML
files are in.

The CODE attribute identifies the applet program and is a file with a ".class" extension
located in the same directory as the HTML document. To make your page do something
for those poor souls who don't have a Java-enabled browser, you can place any additional
alternative HTML statements inside the <APPLET> tag. Java browsers will ignore these
statements, and non-Java browsers will ignore the <APPLET> tag (which works out quite
well, don't you think?).

The WIDTH and HEIGHT attributes define the size of the applet on the page. An applet's
size is specified in pixels. In addition, there are several other optional attributes that you
can add to the <APPLET> tag to modify its behavior.

CODEBASE=

The CODEBASE attribute lets you specify a URL (directory path) where your
applet .class files are located (if they're in a place other than your HTML documents). As I mentioned
previously, if you don't specify CODEBASE, the applets are assumed to be in the same directory as the
HTML files.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (4 of 10) [01.06.2001 00:52:38]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/27fig03.jpg

Complete Idiot's Guide to JavaScript

ALT=

If, for some reason, a browser understands the <APPLET> tag but can't run applets (for example, if the
browser’s Java capability has been disabled by the user), you can specify some text to display with the
ALT attribute. This is similar to the ALT attribute of the tag, which displays the specified text
string on browsers that don’t show graphics (text-based browsers or browsers with image loading
disabled).

NAME=

The NAME attribute does the same thing for <APPLET> that it does for other HTML tags: It gives the
applet a name, allowing other applets on the same page to locate and talk with each other (in much the
same way JavaScript uses NAME to find and talk to different frames or fields in forms).

ALIGN=

Just like the tag attribute of the same name, ALIGN controls how the applet is lined up.
Acceptable values of the attribute are LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, ABSMIDDLE,
BASELINE, BOTTOM, and ABSBOTTOM.

VSPACE= and HSPACE=

These attributes also behave the same way their tag counterparts do: They specify the amount of
space (in pixels) to leave above and below the applet (VSPACE) and on each side of the applet
(HSPACE).

Passing Applet Parameters

Those of you who remember the days of DOS (those glory days before Windows, X-Windows, and the
Macintosh made pictures out of everything) might recall that you could run some programs by typing the name of
the program and adding additional information on the command line before pressing the Enter key. Those
additional pieces of information were called parameters.

You Can Spot Old
(pre-JDK) Applets
Easily

It's possible to create applets that can take parameters. (In the case of applets, parameters
are additional options that are unique to the applet and aren't covered by other <APPLET>
attributes.) Passing parameter values to an applet is done with the <PARAM> tag.
<PARAM> tags are placed after the <APPLET> tag and before any of the "alternate
HTML" statements and the </APPLET> tag. The <PARAM> tag looks like this:

<PARAM NAME=appletAttribute VALUE=value>

In that expression, NAME identifies the particular attribute, and VALUE identifies its
value. If you have more than one parameter, you use more than one <PARAM> tag. The
parameters available depend on the particular applet in question and are defined by the
applet’s programmer in the source code to the Java applet. For Java programmers, inside

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (5 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

 As you surf the
Web, if you come
across an applet
that's implemented
in HTML using an
<APP> tag instead
of the JDK
<APPLET> tag,
you've found an old
applet that was
created prior to the
standardization of
Java. For it to
function in today’s
browsers, it may
have to be upgraded
via the utilities
provided in the JDK.

the applet code, you access the values passed in with <PARAM> with the getParameter()
function.

For example, imagine an applet named ScrollText. As advertised, this applet can scroll a
text message across the browser window. It’s stored in the file ScrollText.class and can
take several parameters that customize its behavior:

<APPLET CODE=”ScrollText.class” NAME=”scroller” HEIGHT=100
WIDTH=300>

<PARAM NAME=text VALUE=”Welcome to my Home Page”>
<PARAM NAME=font VALUE=”Arial”>
<PARAM NAME=speed VALUE=20>
</APPLET>

In the above HTML example, you first specify the applet ScrollText.class, name it
scroller, and set its dimensions. Then, having referred to the applet’s documentation, you
set three parameters: text (with the message to scroll), font (with the font style to render
the text), and speed (which controls the pace of the scroll). Remember that these
parameters are individually programmed into each applet and are particular to an applet.

Java with Class

Java and JavaScript share many things, including the "objects" or things that give you access to different parts of
a Web page. Java extends this by allowing you to create your own types of objects, as well as by offering up a
larger collection of "canned" objects. Predefined objects in Java are bundled together in "classes" or collections
of objects that share a common purpose.

Classes are at the heart of what makes Java an object-oriented language. A class is like a library of objects, all of
which inherit certain characteristics from the class itself. "Class" is a hierarchical concept: One class could be a
subset of a higher-level class. In Java, there is an "abstract class," which is a parental class containing many child
classes. In this case, though, the abstract class is never directly used. Rather, it is defined solely to provide the
"genes" for its children classes.

If any of this seems confusing, that's because it is. That is why entire books are written about object-oriented
programming and Java in particular. Now, though, at least you have a taste for what object-orientedness is about:
modules that are part of larger modules, which are part of even larger modules.

C++ is a very common object-oriented programming language that also revolves around these class concepts.
One major difference between C++ and Java, in terms of how they deal with classes, is that Java programs can
more easily withstand changes in class definitions without breaking any programs based on the previous
definitions. In C++, on the other hand, if you change any class definitions, every program written using the
previous definitions must be recompiled. For this reason, Sun calls Java "dynamic."

Hello World!

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (6 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

Let's close with a quick look at making your own Java applet. As it was in JavaScript, your first applet should be
the traditional "Hello World" program. The Java program looks like this:

/* HelloWorld.java: Hello World...Java Style */
public class HelloWorld
{
public static void main(String args[])
{
System.out.println("Hello World!");
}
}

Save this file as HelloWorld.java. Then, after you type that, you need to compile the applet. Get yourself to a
DOS prompt (you'll need to open a DOS window to do this) and type the following:

javac HelloWorld.java

Finally, you can run your new applet right from DOS by typing this:

java HelloWorld

Congratulations! You've just taken another big step: Java programming!

Command Line? I'm Running a Mac!

If you're running a Macintosh (or a PowerPC), you're probably a bit confused by the reference to a
"command line" because the Mac operating system doesn't have one. Does this mean that Mac users are
out of luck when it comes to creating Java applets? Sadly, at this moment, the answer is "Yes—unless you're
willing to spend some money." There are no environments or library sets (source code) for Java compiling on
the Mac available for free off the Internet. Several companies (Symantec at http://www.symantec.com/ and
Metrowerks at http://www.metrowerks.com/ to name two) have announced that they will be integrating Java
applet creation into their compilers, but their products aren't available yet.

Natural Intelligence, however, does market a package called Roaster that gives Mac users the ability to
compile and develop Java applets on the Mac from inside the Mac OS. For more information, check out
Natural's web page at http://www.natural.com/.

Mating Java and JavaScript

A significant new feature in JavaScript 1.1 is called “LiveConnect.” Actually a set of features, LiveConnect

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (7 of 10) [01.06.2001 00:52:38]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#25
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#26
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#27

Complete Idiot's Guide to JavaScript

allows you, using JavaScript code, to poke into the core of an applet. By doing so, you can gain access to an
applet’s variables, methods, and classes. You can exploit this to change the way an applet behaves on the page in
response to other events.

LiveConnect supports a variety of interactions between JavaScript and Java, but several require a more detailed
understanding of Java than I’ve presented in this book. Therefore, I’ll focus solely on controlling applets with
JavaScript code.

Imagine, then, that your page contains one applet whose function is to scroll a text message. In JavaScript 1.1,
you can refer to this applet in either of two familiar ways:

● You can use document.appletName if you specify the NAME attribute in the <APPLET> tag. In this case,
say your HTML reads like this:

<APPLET CODE=”scroller.class” NAME=”scroller”HEIGHT=100 WIDTH=250>
● You can refer to this applet in JavaScript as document.scroller.
● You can use document.applets[idx], where the first applet on the page is number 0, the second is 1, and so

forth. Looking back at the above scroller applet, you could also refer to it as document.applets[0],
assuming it is the first applet on the page.

LiveConnect, for our purposes, allows you to call public methods within the Java applet. This is much like
calling a function in your JavaScript code, except that the “function” resides within the Java applet (and is called
a method instead of a function). To find out which public methods are available in an applet, you need to look at
its source code (not the .class file, but the applet source file, which often ends in the extension .java). If you’re
creating your own applets, this is easy because the author has the applet source code handy. However, if you’re
trying to LiveConnect to other author’s applets, things may get trickier; even if the author makes the applet
source code available, it may take a close reading of it to understand how it works.

Because we haven’t delved very deeply into authoring Java source code, let’s just consider a relevant snippet of
the scroller applet source:

public void start() {
if(thread == null) {
thread = new Thread(this);
thread.start();
}
}

If you haven’t programmed Java and are familiar only with JavaScript, the snippet of code above may look a bit
strange. Nonetheless, you can identify two important characteristics about the above:

● It looks like a JavaScript function definition. Although it’s not exact, you can at least recognize that this is
a method within the Java applet.

● This method is defined as “public,” as indicated by the word “public” that begins the method definition.
Because this method is public, you can access it from your JavaScript code. Methods that are not defined
as public (they won’t have the word “public” in the method definition) cannot be called from JavaScript.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (8 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

The lesson in all this is that, using JavaScript, you can call the above Java method with a statement such as:

document.scroller.start()

This statement will launch the start() method in the applet named scroller on the current page.

Similarly, this applet also contains a public method named stop(). As you can imagine, the statement
document.scroller.stop() would stop the applet’s execution.

Depending upon the particular applet, the above principles can be used to modify all sorts of applet behavior.
Suppose, for example, that the applet also had a public method named bgcolor().You could perhaps use the
JavaScript statement document.scroller.bgcolor(“green”) to change the applet’s background color to green.

To repeat, though, the public methods available in an applet all depend on what the applet’s author chose to
create. It can sometimes be difficult to understand other author’s programs, which is why LiveConnecting to any
old applet isn’t always easy. If you program your own applets, you can create public methods that interface most
successfully with JavaScript.

To close this chapter, take a look at a small sample page that pulls together the LiveConnect principles you’ve
learned. This page contains a text-scrolling applet, as well as two form buttons. By exploiting LiveConnect in
onClick event handlers, these form buttons can be used to start and stop the scrolling message.

<html>
<head>
<title>JavaScript Meets Java</title>
</head>
<body bgcolor="#FFFFFF">
<center><h2>Java Fun: See the pretty applet ...</h2></center><p>
<center>
<applet code="ScrollingText.class" name="scroller" width="350" height="128">
<param name="DIRECTION" value="RightLeft">
<param name="FONTSIZE" value="40"><param name="TEXT" value="This is a scrolling message ...

wheee ...">
</applet>
<p>
<center><h3>JavaScript Magic: Use the form buttons below to modify the applet</h3></center>
<form>
<input type=button value="Start" onClick="document.scroller.start()">
<input type=button value="Stop" onClick="document.scroller.stop()">
</form>
</body>
</html>

The Least You Need to Know

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (9 of 10) [01.06.2001 00:52:38]

Complete Idiot's Guide to JavaScript

● You learned that Java is a programming language, similar to C++ or Delphi that is built around objects.
Java is similar to JavaScript, but Java also enables you to create your own object and class types,
extending the language to do what you need it to.

● Java programs are called applets. After a program (applet) is written, it must be compiled before it can be
incorporated into an HTML document. After it’s compiled, the applet is linked into a Web page through
the <APPLET> tag.

● Using JavaScript 1.1, you can take advantage of LiveConnect, which enables you to access the Java applet
from JavaScript code. You can call any public methods in the applet source from JavaScript, with the
following syntax:

document.appletName.method(parameters)
● or

document.applets[idx].method(parameters)

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/chap27.htm (10 of 10) [01.06.2001 00:52:38]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/toc.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/!start_here.htm
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#1
file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#2

Complete Idiot's Guide to JavaScript

Appendix A

JavaScript: The Complete Overview

For those of you who want everything in one place, here's a complete reference to what makes up
JavaScript. All JavaScript objects, object properties, and methods are accessed via this expression:

object.xxxxx;

where object is the particular object and xxxxx is the property or method.

The <SCRIPT> Tag

This indicates that the enclosed text is JavaScript. In addition to using it, it is good practice to hide
the JavaScript statements within a <COMMENT> tag.

Syntax

<SCRIPT [LANGUAGE="JavaScript"] [SRC=”scriptURL”]>
<!--hide from non-JavaScript browsers —>
<!— JavaScript statements and functions go here —>
//-->
</SCRIPT>

Attributes

LANGUAGE Defines the scripting language—in this case, "JavaScript." This attribute
must be included, unless the SRC attribute is used and the extension of the URL defined
by SRC is .js.

SRC Defines a URL (alternate file) where the JavaScript statements are located. JavaScript
files should end with .js.

The window Object

The top-level object for each HTML document.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (1 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

Properties

❍ frames[] Array of child frames. Frames are stored in the order defined in the source
document.

❍ frames.length Number of defined child frames.
❍ self The current window.
❍ opener The window name of the calling window, if the current window was created with

the open() method.
❍ parent The parent window (if the current window is a subwindow in a <FRAMESET>).
❍ top The top-most window, which owns all visible frames. Top-most windows are their

own parents.
❍ status The message appearing in the browser status window.
❍ defaultStatus The default message appearing in the browser status window, when the

status property is not in effect.
❍ name The internal name, if any, defined for the window when opened with a

window.open() method.

Methods

● alert("message") Displays a "JavaScript Alert" dialog box with the specified message.
● blur() Removes focus from current window.
● confirm("message") Displays a "Confirm" dialog box (one with OK and Cancel buttons) with

the specified message. Returns TRUE if the user clicks the OK button; returns FALSE if the user
clicks the Cancel button.

● focus() Brings focus to current window.
● prompt("message") Displays a "prompt" dialog box, which queries the user to input data in

response to a displayed message.
● scroll(x,y) Scroll the current window to the pixel coordinates x,y. (The upper-left corner of the

window is 0,0.)
● open("URL," "name") Opens a new client window, gives it the specified name (equivalent to

the NAME attribute of a <FRAME> tag), and loads the specified URL.
● close() Closes the window.

The frame Object

Recall that a frame is a subwindow of the entire browser window. As such, the frame object
contains almost all the same properties and methods as the window object.

The frame object lacks only the status, defaultStatus, and name properties of the window object.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (2 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

The location Object

Contains information on the current URL.

Properties

● href The entire URL as a JavaScript string.
● protocol A string consisting of the first part of the URL (including the first colon); for example,

http:.
● host A string consisting of the hostname:port part of the URL; for example,

\\www.winternet.com\~sjwalter\.
● hostname A string consisting of the hostname part of the URL; for example, www.winternet.com.
● port A string consisting of the port (if any) from the URL. The port is a numerical value that (if it

exists) is located after the hostname and is preceded by a colon. If there is no specified port, this
string is empty.

● pathname A string consisting of everything in the URL after the third slash; for example,
~sjwalter\javascript\index.htm.

● hash A string consisting of any text after the # (CGI parameters).
● search A string consisting of any text after the ? (CGI parameters).

The document Object

Contains information on the current document.

Properties

● title Current document title. If no title is defined, title contains “Untitled.”
● location Full URL of the document.
● lastModified A Date object-compatible string containing the date the document was last modified.
● referrer Contains the URL of the calling document; that is, the page from which the user linked to the
current page.
● bgColor Background color, expressed as a hexadecimal RGB value compatible with HTML syntax
(for example, #FFFFF" for white). Equivalent to the BGCOLOR attribute of the <BODY> tag.
● fgColor Foreground (text) color, expressed as a hexadecimal RGB value compatible with HTML
syntax. Equivalent to
 the TEXT attribute of the <BODY> tag.
● linkColor Hyperlink color, expressed as a hexadecimal RGB value compatible with HTML syntax.
Equivalent to the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (3 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

 LINK attribute of the <BODY> tag.
● vlinkColor Visited hyperlink color, expressed as a hexadecimal RGB value compatible with HTML
syntax. Equivalent to
 the VLINK attribute of the <BODY> tag.
● alinkColor Activated (after button press, before button release) hyperlink color, expressed as a
hexadecimal RGB value
 compatible with HTML syntax. Equivalent to the ALINK attribute of the <BODY> tag.
● forms[] Array of form objects in the document, in the order specified in the source. Each form has its
own form object.
● forms.length The number of form objects within the document.
● links[] Array objects corresponding to all HREF links in the document, in the order specified in the
source.
● links.length The number of HREF links in the document.
● anchors[] Array of all "named" anchors (between the and tags) within the
document, in the order
 specified in the source.
● anchors.length The number of named anchors in the document.
● images[] Image objects that correspond to each image on the page.
● applets[] Java applet objects that correspond to each applet on the page.
● embeds[] Plugins object that represent each plug-in on the page.

Methods

● write("string") Writes string to the current window. string may include HTML tags.
● writeln("string") Performs the same as write(), but adds a carriage return. This affects only

preformatted text (inside a <PRE> or <XMP> tag).
● clear() Clears the window.
● close() Closes the window.

The form Object

Corresponds to a <FORM> tag set defined in a document. Each <FORM> tag has its own forms
object.

Properties

● name String value of the NAME attribute of <FORM>.
● method Numeric value of the METHOD attribute of <FORM>: "0" = GET; "1" = POST.
● action String value of the ACTION attribute of <FORM>.
● target Window targeted for form response after the form has been submitted, as specified in the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (4 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

<FORM> tag.
● elements[index] The elements property is an object that contains as its properties the object of

each element in the form. Thus, if your form has three elements (a text input box, a submit button,
and a checkbox), form.elements is an object that contains three properties, each one a respective
object (a text object, a submit button object, and a checkbox object).

● length Contains the number of elements in the form.

Methods

● submit() Submits the form.
● reset() Resets the form.

Event Handlers

● onSubmit() Identifies code to run (either JavaScript statements or functions) when the form is
submitted (when the user clicks a defined Submit button).

● onReset() Identifies code to run when the form is reset.

The text and textarea Objects

The text (specified by the <TEXT> tag) and textarea (specified by the <TEXTAREA> tag)
elements share the same object components.

Properties

● name String value of the NAME attribute.
● value String value of the contents of the field.
● defaultValue String value of the initial contents of the field.
● type Specifies what type of object this form field is (e.g. “text” or “Textarea”).

Methods

● focus() Sets input focus to the object.
● blur() Removes input focus from the object.
● select() Selects the object's input field.

Event Handlers

● onFocus Executes when input focus enters field (by tabbing in or by clicking but not selecting in

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (5 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

the field).
● onBlur Executes when input focus leaves the field.
● onSelect Executes when the field is input-focused by selecting some of its text.
● onChange Executes when input focus exits the field and the value of the field has changed from

when onFocus occurred.

The checkbox object

Corresponds to the <INPUT TYPE="checkbox"...> tag.

Properties

● name String value of the NAME attribute.
● value String value of the contents of the checkbox. If checked, value="on"; if unchecked,

value="off".
● checked Boolean value of the contents of the checkbox. If checked, status=TRUE; if unchecked,

status=FALSE.
● defaultChecked Boolean value that reflects the CHECKED attribute (the default state).
● type Specifies what type of object this form field is (e.g. “checkbox”).

Methods

● click() Selects the checkbox, causing it to be "on" (or TRUE).

Event Handlers

● onClick Executes when the user checks or unchecks the box.

The radio Object

Corresponds to the <INPUT TYPE="radio"...> tag. The form radio[index] is used to refer to a single
radio button of the radio object (that is, one of its multiple choices).

Properties

● name String value of the NAME attribute.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (6 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

● length The number of radio buttons in the radio object.
● value String value of the VALUE attribute.
● checked Boolean value. True if pressed; false if not pressed.
● defaultChecked Boolean property that reflects the value of the CHECKED attribute.
● type Specifies what type of object this form field is (e.g. “radio”).

Methods

● click() Selects the radio button.

Event Handlers

● onClick Executes when the radio button is selected.

The select Object

Corresponds to the <SELECT> tag. The JavaScript object consists of an array of option objects,
each of which has the following components.

Properties

● length Contains the number of objects in the select object.
● name The internal name of the select object as defined by the NAME= attribute.
● selectedIndex The index number of the currently selected option of the select object.
● type Specifies what type of object this form field is (e.g. “select”).
● options[]This property is an object reflecting the contents of the <OPTION> tag used when

defining a select object in HTML. It contains the following properties:
● text String containing the text after the <OPTION> tag. Assigning a new value to

options[idx].text will either change the menu item text or add a new item, in the case of an idx
higher than the current number of items.

● value Reflection of the VALUE attribute. This is sent to the server when the Submit button is
pressed.

● defaultSelected Boolean that reflects the SELECTED attribute of the <OPTION> tag.
● selected Boolean that indicates the current selected state of the option.

Event Handlers

● onFocus Executes when input focus enters the field.
● onBlur Executes when input focus leaves the field.
● onChange Executes when input focus exits the field and the field value has changed since the

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (7 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

onFocus event.

The button Object

There are three types of buttons in a FORM, defined by the TYPE attribute of the <INPUT> tag:

● Submit (TYPE="SUBMIT")
● Reset (TYPE="RESET")
● Custom (TYPE="BUTTON")

All button objects (regardless of type) have the following components outlined here.

Properties

● value String containing the VALUE attribute.
● name String containing the NAME attribute.
● type Specifies what type of object this form field is (such as “submit”, “reset”, or “button”).

Methods

● click() Selects the button.
● Event Handlers
● onClick Executes when a button is clicked.

The submit and reset Objects

The submit object relates to the button defined by the <INPUT TYPE="submit"> tag, whereas the
reset object refers to the <INPUT TYPE="reset"> tag. Both contain the same properties, methods,
and event handlers. Note that the submit button does not contain the onSubmit event handler; that
event handler belongs to the form object.

Properties

● name The contents of the NAME= attribute.
● value The contents of the VALUE= attribute, which in the case of a submit button is the text

displayed on the button face.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (8 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

Methods

● click() Selects the button.

Event Handlers

● onClick Triggers when the button is clicked.

The password Object

A password form element is a text-entry box that hides the user input by masking typing with
asterisks. It is defined with the <INPUT TYPE="password"> tag. The password object relates to
the characteristics of this element.

Properties

● defaultValue Contains the contents of the VALUE= attribute.
● name The contents of the NAME= attribute.
● value The current data entered into the password field.
● type Specifies what type of object this form field is (e.g. “password”).

Methods

● focus() Brings focus onto the password element.
● blur() Removes focus from the password element.
● select() Selects the current data in the password element, ready to be modified.

The navigator Object

This object is used to determine which version of Netscape Navigator a visitor to your page is
using.

Properties

● appCodeName Reflects the "codename" of the user's browser. For example, the codename for
Navigator is “mozilla.”

● appName Reflects the real name of the user's browser.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (9 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

● appVersion Reflects the version number of the user's browser.
● userAgent This property reflects the full information on the user's browser, including its

codename, version number, and platform (such as Win95).
● plugins[] This array reflects which plug-ins are installed on this user’s browser.
● mimeType[] An array that reflects which MIME types are configured for this user’s browser.

Methods

javaEnabled() This method returns a value of true if the user’s browser has Java enabled, or false
if it’s disabled.

The string Object

The string object provides a wealth of methods for manipulating the contents of a string. Create a
new string using this syntax:

strvar = new String(string)

Properties

length The length of the string—that is, how many characters long it is.

Methods

● big(), blink(), bold(), fixed(), italics(), small(), sub(), strike(), sup() Methods that add their
respective HTML tags to the string. For example, if the variable message currently contains the
string "Hello", then

● message.big() would yield the string "<BIG>Hello</BIG>"
● message.italics() would yield the string "<I>Hello</I>"and so forth, for the HTML tags

appropriate for the method names above.
● fontColor(color), fontSize(size) Adds respective HTML tags to a string, assigning font color or

font size as specified in the parameter passed to the method.
● charAt(index) Returns the character located at position index within the string.
● indexOf (searchValue, [fromIndex]) Searches the string for the first instance of the string

searchValue. If fromIndex is specified, it begins the search from that position within the string.
Returns value of index of first letter where the string is first found.

● lastIndexOf (searchValue, [fromIndex]) Searches for searchValue beginning at the (rightmost)
end of the string and working backward. Reports first instance found searching backward from
end, or fromIndex if specified.

● substring (indexA, indexB) Extracts the substring starting from position indexA to position

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (10 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

indexB.
● toLowerCase(), toUpperCase() Convert string to all lowercase or all uppercase letters.

The Date Object

To use the Date object, you must first create a new instance of a Date object. Do this by assigning
a variable of your choosing to new Date(), as follows:

variablename = new Date();

The object contains no properties and a plethora of methods, which can be used to extract or set
various characteristics of the date.

Methods

getDay(), getDate(), getHours(), getMinutes(), getMonth(), getSeconds(), getTime(),
getTimeZoneOffset(), getYear() Methods that return a value respective to the method name; for
example, getMinutes() returns the current number of minutes into the current hour.

setDate(), setHours(), setMinutes(), setMonth(), setSeconds(), setTime(), setYear()
Methods that can be used to set the respective values.

toGMTString() Returns current date in GMT format, which is exemplified by this:

Sun, 11 Feb 1996 13:18:21 GMT

toLocaleString() Returns the current date in "locale" format, which looks like this:

02/11/96 13:18:21

parse(date) This method is commonly used in combination with the setTime() method. The
setTime() method requires its parameter in the number of milliseconds since January 1, 1970 at
00:00:00 hours. The parse method can convert a traditional date string (such as "May 23, 1972")
into millisecond format for use with the setTime() method.

The Math Object

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (11 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

This object contains properties and methods that allow access to common mathematical constants
and calculations.

Properties

The following properties represent the following constant values:
LN10 (natural log of 10) 2.302
LN2 (natural log of 2) 0.693
PI 3.1415
SQRT1_2 (the square root of 1/2) 0.707
SQRT2 (the square root of 2) 1.414

Methods

● abs (x) Returns absolute value of x
● acos (x) Returns arc cosine of x
● asin (x) Returns arc sine of x
● atan (x) Returns arc tangent of x
● ceil (x) Returns the least integer greater than or equal to x
● cos (x) Returns the cosine of x
● exp (x) Returns e (Euler's constant) to the power x
● floor (x) Returns the greatest integer less than or equal to x
● log (x) Returns the natural log of x
● max (x, y) Returns the greater of x and y
● min (x, y) Returns the smaller of x and y
● pow (x, y) Returns x to the yth power
● round (x) Returns x rounded to the nearest integer (.5 cutoff)
● random() Returns a random real number between 0 and 1
● sin (x) Returns sine of x
● sqrt (x) Returns square root of x
● tan (x) Returns tangent of x

The Image Object

The Image object reflects the attributes of an image on the current page. An image on the page can be
referred to either via the images[] array or by the image name, as shown here:

document.images[2].propertyName

● document.dogimage.propertyName

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (12 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

Properties

● border Reflects the BORDER attribute
● complete Boolean value indicating whether Navigator has completed its attempt to load the

image
● height Reflects the HEIGHT attribute.
● hspace Reflects the HSPACE attribute.
● lowsrc Reflects the LOWSRC attribute.
● name Reflects the NAME attribute.
● prototype Lets you add properties to an Image object.
● src Reflects the SRC attribute (can dynamically change the image on a page).
● vspace Reflects the VSPACE attribute.
● width Reflects the WIDTH attribute.
● The images[] array also contains this property:
● length Reflects how many images are in the page (e.g. document.images.length).

The Array Object

You can create a new array using this syntax:

arrayvar = new Array(length)

Properties

length Reflects the number of elements in the array.

Methods

● join(separator) Joins all elements in the array into one string, each separated by the character
specified in separator (default separator is a comma).

● reverse() Reverses the index order of all elements in the array.
● sort(sortfunc) Sorts the index order of elements in the array. By default, sort is done

lexicographically, unless a custom sortfunc is specified.

Reserved Words

The following words are reserved words, which means that you cannot give your variables,
functions, methods, or objects any of these names. Some of these words are already used for
different purposes in JavaScript, and others are reserved for future use, such as further expansion

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (13 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

of the JavaScript language.

❍ abstract else instance of static
❍ boolean extends int super
❍ break false interface switch
❍ byte final long synchronized
❍ case finally native this
❍ catch float new throw
❍ char for null throws
❍ class function package transient
❍ const goto private true
❍ continue if protected try
❍ default implements public var
❍ do import return void
❍ double in short while
❍ with

Predefined JavaScript Colors

Here is a list of JavaScript's built-in color names. Instead of using a hexadecimal triplet to specify
the colors on your page, you can assign a string literal to specify one of the following built-in
color names (see Chapter 13 for details on how to do this):

Color Red Green Blue Hexadecimal Triplet

aliceblue 240 248 255 f0f8ff

antiquewhite 250 235 215 faebd7

aqua 0 255 255 00ffff

aquamarine 127 255 212 7fffd4

azure 240 255 255 f0ffff

beige 245 245 220 f5f5dc

bisque 255 228 196 ffe4c4

black 0 0 0 000000

blanchedalmond 255 235 205 ffebcd

blue 0 0 255 0000ff

blueviolet 138 43 226 8a2be2

brown 165 42 42 a52a2a

burlywood 222 184 135 deb887

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (14 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

cadetblue 95 158 160 5f9ea0

chartreuse 127 255 0 7fff00

chocolate 210 105 30 d2691e

coral 255 127 80 ff7f50

cornflowerblue 100 149 237 6495ed

cornsilk 255 248 220 fff8dc

crimson 220 20 60 dc143c

cyan 0 255 255 00ffff

darkblue 0 0 139 00008b

darkcyan 0 139 139 008b8b

darkgoldenrod 184 134 11 b8860b

darkgray 169 169 169 a9a9a9

darkgreen 0 100 0 006400

darkkhaki 189 183 107 bdb76b

darkmagenta 139 0 139 8b008b

darkolivegreen 85 107 47 55662f

darkorange 255 140 0 ff8c00

darkorchid 153 50 204 9932cc

darkred 139 0 0 8b0000

darksalmon 233 150 122 e9967a

darkseagreen 143 188 143 8fbc8f

darkslateblue 72 61 139 483d8b

darkslategray 47 79 79 2f4f4f

darkturquoise 0 206 209 00ced1

darkviolet 148 0 211 9400d3

deeppink 255 20 147 ff1493

deepskyblue 0 191 255 00bfff

dimgray 105 105 105 696969

dodgerblue 30 144 255 1e90ff

firebrick 178 34 34 b22222

floralwhite 255 250 240 fffaf0

forestgreen 34 139 34 228b22

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (15 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

fuchsia 255 0 255 ff00ff

gainsboro 220 220 220 dcdcdc

ghostwhite 248 248 255 f8f8ff

gold 255 215 0 ffd700

goldenrod 218 165 32 daa520

gray 128 128 128 808080

green 0 128 0 008000

greenyellow 173 255 47 adff2f

honeydew 240 255 240 f0fff0

hotpink 255 105 180 ff69b4

indianred 205 92 92 cd5c5c

indigo 75 0 130 4b0082

ivory 255 255 240 fffff0

khaki 240 230 140 f0e68c

lavender 230 230 250 e6e6fa

lavenderblush 255 240 245 fff0f5

lawngreen 124 252 0 7cfc00

lemonchiffon 255 250 205 fffacd

lightblue 173 216 230 add8e6

lightcoral 240 128 128 f08080

lightcyan 224 255 255 e0ffff

lightgoldenrod-yellow 250 250 210 fafad2

lightgreen 144 238 144 90ee90

lightgrey 211 211 211 d3d3d3

lightpink 255 182 193 ffb6c1

lightsalmon 255 160 122 ffa07a

lightseagreen 32 178 170 20b2aa

lightskyblue 135 206 250 87cefa

lightslategray 119 136 153 778899

lightsteelblue 176 196 222 b0c4de

lightyellow 255 255 224 ffffe0

lime 0 255 0 00ff00

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (16 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

limegreen 50 205 50 32cd32

linen 250 240 230 faf0e6

magenta 255 0 255 ff00ff

maroon 128 0 0 800000

mediumaquamarine 102 205 170 66cdaa

mediumblue 0 0 205 0000cd

mediumorchid 186 85 211 ba55d3

mediumpurple 147 112 219 9370db

mediumseagreen 60 179 113 3cb371

mediumslateblue 123 104 238 7b68ee

mediumspringgreen 0 250 154 00fa9a

mediumturquoise 72 209 204 48d1cc

mediumvioletred 199 21 133 c71585

midnightblue 25 25 112 191970

mintcream 245 255 250 f5fffa

mistyrose 255 228 225 ffe4e1

moccasin 255 228 181 ffe4b5

navajowhite 255 222 173 ffdead

navy 0 0 128 000080

oldlace 253 245 230 fdf5e6

olive 128 128 0 808000

olivedrab 107 142 35 6b8e23

orange 255 165 0 ffa500

orangered 255 69 0 ff4500

orchid 218 112 214 da70d6

palegoldenrod 238 232 170 eee8aa

palegreen 152 251 152 98fb98

paleturquoise 175 238 238 afeeee

palevioletred 219 112 147 db7093

papayawhip 255 239 213 ffefd5

peachpuff 255 218 185 ffda69

peru 205 133 63 cd853f

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (17 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

pink 255 192 203 ffc0cb

plum 221 160 221 dda0dd

powderblue 176 224 230 b0e0e6

purple 128 0 128 800080

red 255 0 0 ff0000

rosybrown 188 143 143 bc8f8f

royalblue 65 105 225 4169e1

saddlebrown 139 69 19 8b4513

salmon 250 128 114 fa8072

sandybrown 244 164 96 f4a460

seagreen 46 139 87 2e8b57

seashell 255 245 238 fff5ee

sienna 160 82 45 a0522d

silver 192 192 192 c0c0c0

skyblue 135 206 235 87ceeb

slateblue 106 90 205 6a5acd

slategray 112 128 144 708090

snow 255 250 250 fffafa

springgreen 0 255 127 00ff7f

steelblue 70 130 180 4682b4

tan 210 180 140 d2b48c

teal 0 128 128 008080

thistle 216 191 216 d8bfd8

tomato 255 99 71 006347

turquoise 64 224 208 40e0d0

violet 238 130 238 ee82ee

wheat 245 222 179 f5deb3

white 255 255 255 ffffff

whitesmoke 245 245 245 f5f5f5

yellow 255 255 0 ffff00

yellowgreen 154 205 50 9acd32

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appa.htm (18 of 19) [01.06.2001 00:53:01]

Complete Idiot's Guide to JavaScript

Speak Like a Geek:
The Complete Archive

absolute address An URL that includes the full Internet address of the machine on which the
HTML file resides; for example, http://www.machine.com/~username/index.htm.

address An URL that includes the full Internet address of the machine on which the HTML file
resides; for example, http://www.machine.com/~username/index.htm.

alert A pop-up window that displays a message to the user. The user must click the OK button to
proceed.

anchor A location within an HTML document that is invisibly "marked" with HTML tags. Links
can point to this anchor and take the user to specific locations within one HTML document.

applet Another name for a Java miniprogram. Applets are the Java elements that run through Java-
enabled browsers. In JavaScript, these are called "scripts" instead of applets.

arithmetic operator Any of the following symbols: * (multiply), +, –, / (divide), % (modulus), ++
(increment), –– (decrement), or – (negation). Arithmetic operators are used with variables or
numeric values in an expression to yield a mathematical result.

array An object with a list of properties. In an array, the properties are named in numerical
sequence, as in arrayname[0], arrayname[1], and so on.

assign To refer a value to a variable name.

assignment The act of designating a value to a variable name; for example, purchases = 10.

assignment operator One of the following symbols: =, +=, –=, *=, /=, or %=. All but = will
perform the indicated arithmetic on the current variable value and its assigned value.

assignment statement The whole syntactical construction of assignment: purchases +=
(mugs*orders);

attribute An HTML structure that sets a particular parameter value for a given HTML tag.

binary Numerical representation in base-2; for example, 10001100. This is the "alphabet" that the
computer ultimately understands.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (1 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

Boolean An element of logic: true, false, and (&&), or (||).

browser A program that enables you to navigate the World Wide Web. Browsers can be either text-
based or graphical. Some examples of browsers are Netscape Navigator, HotJava, and Microsoft
Internet Explorer.

bug An error in a computer program. See debugging.

C A common programming language, which JavaScript is partially based on.

C++: An object-oriented programming language; the closest relative to JavaScript.

call To tell JavaScript to execute a function.

case-insensitive In a case-insensitive language or operating system, the computer makes no
distinction between lower-and uppercase letters; it considers them equal. Thus, "cat" is the same
word as "Cat" and “CAT.”

case-sensitive In a case-sensitive language or operating system, the computer distinguishes
between lower- and uppercase letters; it considers them different characters. Thus, "cat" is a
different word from "Cat" and “CAT.”

CGI (Common Gateway Interface) The programming interface that enables Web servers to
perform special functions. CGI programs are commonly written in Perl and can perform such
tasks as complex database searches, custom Web page construction, or secure Web access control.
CGI is regarded as complex; JavaScript is a simpler alternative for performing similar
programming feats.

clause A portion of a full JavaScript statement. For example, within the if...else statement, both
the if portion and the else portion are clauses.

command Any "word" that tells the computer to do something.

comment-out To insert proper comment symbols into code, telling JavaScript not to attempt to
execute the words that follow.

comments Author-entered descriptions in program code that are meant for human programmers to
read, not for JavaScript interpretation.

comparison operator One of the following symbols: ==, <, >, <=, > =, or !=. Returns true if the
comparison is valid; otherwise, it returns false.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (2 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

compiler A program that converts a collection of programming language statements from "near-
human-readable" form (which is what the programmer writes) to "computer-readable" form so that
the computer can run them.

compressed files Computer files that have been reduced in size by a compression program.
Compression programs are available for all computer systems. For instance, PKZIP is used on
DOS machines, WinZip is used with Windows, tar and compress are used with UNIX, and StuffIt
is used on Macintosh computers.

concatenate Combine any number of strings into one longer string. For example, "my" + "dog" +
"loves" + "me" yields "my dog loves me".

conditional statement A JavaScript statement that directs program flow based on the validity or
invalidity of a comparison. Examples include if...else and while.

constant A variable that is assigned a value that is never meant to change.

cyberspace The "area" or space in which computer users travel when "navigating" or surfing
around on a network or the Internet.

debug The irritating act of attempting to track down errors or design flaws in a program.

debugger A program designed to help track down bugs in other programs. See bug.

decompress To convert compressed, unreadable data into uncompressed, readable data.

define In JavaScript, to describe the name, parameters, and statements of a function.

definition In JavaScript, the name, parameters, and statements that make up a function.

document object :The JavaScript object that contains properties and methods relevant to the
HTML document. These include colors, anchors, links, and form elements.

download: To transfer information from one computer to another. You download a file from
another computer to yours. The reverse process (transferring a file from your computer to another)
is called uploading.

element: A screen element is any widget on the computer screen. A form element is one portion of
an HTML form, such as a text box, a check box, a radio button, a submit button, or a selection
box.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (3 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

e-mail Short for electronic mail, this is the system that enables people to send and receive
messages with their computers.

embed To insert an item into a text file. JavaScript programs are "embedded" into HTML files.

empty string :A string variable that contains no value. You can create an empty string with the
assignment stringname="".

error An illegal statement in the JavaScript program that JavaScript cannot understand.

error handler A programming statement that changes program flow in case an error is
encountered.

evaluate To perform the specified calculation or comparison. JavaScript "evaluates" expressions
such as arithmetic operators or comparisons.

event When a user performs some action that JavaScript recognizes, such as a mouse click in a
certain location.

event handler A JavaScript structure that responds to (handles) a particular event or response by
the user of the browser. Event handlers are identified by special HTML attributes.

event watching When JavaScript keeps an "eye out" for an event to happen. Defining an event
handler for an event tells JavaScript to event watch.

execute To perform the actions specified in the program code.

explicit code Instead of calling a function, to write out the code to execute the function directly.
(Used in relation to defining an event handler.)

expression Virtually any "phrase" of JavaScript code, such as an assignment, arithmetic, or
comparison.

eZine An electronic magazine.

false The value returned from a comparison operation if the comparison is invalid.

FAQ Short for Frequently Asked Questions, a FAQ is a document that contains a collection of the
most commonly asked questions on a particular subject and their answers.

focus When a user clicks on a form element and it becomes "active" for interaction, it is said to

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (4 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

"have the focus."

form Any number of user-interactive features in a Web page, including text entry boxes, check
boxes, radio buttons, selection boxes, and any other buttons.

frame A subwindow within the browser window.

FTP (File Transfer Protocol) A protocol that defines how files are transferred from one
computer to another. Also, the name of a program that uses this protocol to move files between
computers. (Sometimes you'll find ftp used as a verb: “Ftp to ftp.netscape.com.”)

function A collection of JavaScript statements that perform a particular operation. Also called a
method.

function call When JavaScript is told to execute a named and defined function. Occurs in the form
functionname(parameters).

Gamelan The premier Web site of Java applets and Java/JavaScript-related information and links:
http://www.gamelan.com.

Gopher A hierarchical information-retrieval protocol that was popular on the Internet before the
Web (which uses the http protocol).

hash mark The symbol #. In an URL, the hash mark is used to specify an anchor to start the user
at; for example, http://www.machine.com/~userid/index.htm#anchorname.

helper application An independent program used to process files that the Web browser does not
know how to process.

history list The list of URLs that have been visited during the current Web browsing session.

hostname The Internet address (or "name") of a machine that holds a particular HTML document;
for example, www.machine.com.

HotJava The browser developed by Sun Microsystems that runs Java applets. HotJava itself is
written in Java. HotJava does not yet support JavaScript programs.

HTML (HyperText Markup Language) The formatting language supported by the World Wide
Web. Web documents are written using various HTML tags, which control how the information in
the document is presented through the browser.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (5 of 14) [01.06.2001 00:53:35]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#39

Complete Idiot's Guide to JavaScript

HTTP (HyperText Transfer Protocol) The protocol used by the World Wide Web to transfer
HTML documents.

hypertext A system in which documents contain links that, when clicked, enable readers to move
between areas of the document or between documents, following subjects of interest in a variety of
different paths. The World Wide Web is a hypertext system.

image map A Web page graphic that the user can click on and be directed to a certain place
depending where in the image he clicked.

increment To increase the value of a variable, usually by 1.

index number The number referring to one of the properties in an object. Alternate terminology
would refer to a list element of an array (both are the same in JavaScript).

initialize To assign a starting value to a variable. Often this is 0, but it doesn't have to be.

input When a user enters data requested by the program; also the name of an HTML tag
(<INPUT>), which defines a form element.

instance A particular object created from an object definition. An object definition defines the
skeleton structure of an object, whereas an instance refers to an actual object based on that
skeleton.

instantiate To create an instance of an object. This is done by assigning an object definition (a
function) to a new variable using the new keyword, such as instanceobject = new Objectdefn();

internet Spelled with a lowercase i, the term refers to computer networks that are joined together
(or interconnected).

Internet Spelled with a capital I, the term refers to the collective of interconnected networks that
are globally accessible.

Internet provider A company that provides connections to the Internet. See also service
provider.

interpreter A program that translates computer language statements into computer-readable form
and executes them at the same time (at "run time"). This is in contrast to a compiler, which
interprets and converts the statements into computer-readable form and then saves the result into a
separate file that can be executed later.

iterate To repeatedly move through a program loop.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (6 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

iteration One sweep through a program loop.

Java A programming language that extends the Web to handle the distribution of interactive
content: video, audio, multimedia, and so on. Java programs are called applets and run from within
a Java-enabled browser such as HotJava or Netscape Navigator 2.0.

JavaScript An English-like scripting language that supports much of Java's capabilities but
doesn't require extended programming knowledge.

JDK The Java Developer's Kit, created by Sun Microsystems to assist Java programmers in
creating Java applets.

.js extension If you are including a file of JavaScript code via the SRC= attribute of the
<SCRIPT> tag, the file's name must contain the extension .js.

keyword Any one word that JavaScript recognizes as having meaning to it (such as if, then, var,
new, and so on).

link Text or an image in a Web page that, if clicked, takes the user to another Web page or to
another location within the current Web page (an anchor).

literal An actual numeric value or string value such as "5" or "cats". String literals must be
enclosed in single- or double-quotation marks.

LiveScript The scripting language developed by Netscape that was the predecessor to JavaScript.

load To retrieve an HTML file and display it in the Web browser.

loading Retrieving data into a Web browser either from the local hard drive or from across the
Internet.

logging off The opposite of logging on, where the computer service is informed that you want to
terminate the connection. The process usually involves typing a command such as “exit,”
“logout,” “logoff,” or “bye.”

logging on Slang for the process of connecting to a central computer network or service from a
local computer (sometimes referred to as logging in). The process usually involves entering a
username and password, which ensures that only authorized individuals can use the computer
service.

logical operator Any of the following: && (AND), || (OR), ! (NOT). Used in conditional

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (7 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

expressions; returns true or false.

login The procedure of logging on.

loop A section of program code that is executed over and over in repetition until some condition
changes.

loop counter A variable that changes through each iteration of the loop in correlation with how
many times the loop has been executed. The loop counter is often used in the condition that
continues or ceases the loop.

Lycos A popular Web search engine that locates information anywhere on the World Wide Web;
http://www.lycos.com.

megabyte A measure of the quantity of data, disk space, or computer memory (RAM). One million
bytes.

method A function that is a property of a JavaScript object.

Microsoft Internet Explorer A Web browser from Microsoft, intended to compete directly with
Netscape Navigator. Internet Explorer 3.0 offers support for JavaScript 1.0.

MB The abbreviation for megabyte, which is roughly one million bytes.

module A miniprogram, essentially equivalent to a function.

modulo The % operator.

modulus The result of the modulo (%) operator, which returns the remainder of a division
operation. Thus, 10%3 results in 1.

multimedia Any computer program that uses one or more of the following: text, graphics, sound,
and video.

nest(ed) When a statement is used as part of another statement. For example, were the if clause of
a statement another if...else statement, these would be nested. Also, when bookending symbols
such as brackets { } or parentheses () are used within one another.

Netscape Short for Netscape Communications Corporation, the company that produces the highly
popular Netscape Navigator Web browser.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (8 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

Netscape Navigator The Web browser product available from Netscape
(http://home.netscape.com). Supports Java and JavaScript, and virtually every other Web
capability.

newline character The symbol that represents a linefeed to the computer. The JavaScript method
document.writeln() sends a newline character at the end of the output, whereas document.write()
does not.

null Literally "nothing." No value—especially not 0, which is a value. Just nothing.

numeric variable A variable that contains a numeric value, such as 5.

object A very important feature of JavaScript. An object is a variable that is, in fact, a set of
subvariables known as properties.

operand A variable or value used in an operator expression. For example, in the expression
orders*10, both orders and 10 are operands.

output Any data that is sent to the screen (or, perhaps, to the printer).

parameter Additional information that is passed to a Java applet or a JavaScript function.
Parameters supply applets and functions with information they need to complete their task.

parameter passing The act of sending values to a function or applet. Done either in a function
call or <APPLET> tag.

parent object If object A contains property B, where property B is also an object, A is the parent
object to B.

parse To pull desired data from a larger set of data. Often used in reference to a string, where one
uses a method to pull specified parts of the string out of the whole one.

Pascal Another programming language, somewhat similar to C.

pass To send data or values into a function or applet.

Perl A popular UNIX-based scripting language that’s often used in partnership with CGI.

pixel One dot of light on the computer screen. Common computer screens contain 640 horizontal
x 480 vertical pixels. Depending on the video configuration and monitor size, other computers
may have screen sizes of 800x600 pixels, 1024x768 pixels, or even 1200x1024 pixels (on a .21 dp

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (9 of 14) [01.06.2001 00:53:35]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#40

Complete Idiot's Guide to JavaScript

monitor, lest the user go blind).

placeholder A book convention wherein you insert some text that refers to actual variables or
values you would put in its place if you were actually writing the code. For example,
lunch(parameters) means to call the function lunch() with some parameters appropriate to the
particular situation.

port In the context of the Internet, a port is similar to a CB radio channel. Different Internet
applications (FTP, the World Wide Web, Telnet, and so on) communicate on different ports
throughout the Internet.

program flow The order in which program commands and statements are executed. Normally,
they are executed in sequence (from top to bottom), but conditional statements and function calls
are frequently used to alter program flow.

programming language Any set of keywords and syntax that you can combine to instruct the
computer to perform some tasks.

property A subvariable of an object. An object is a set of related variables known as properties,
and each property is a variable or function in and of itself. In JavaScript, they are referred to in the
form object.property. For example, status is a property of the object window, and it can be
assigned a string to display in the browser status line.

protocol A set of rules that defines how computers transmit information to each other, enabling
different types of computer hardware and software to communicate with each other. Each type of
Internet application (FTP, Telnet, and so on) has its own protocol.

public domain software Software that is not owned by anyone and is freely available for use and
redistribution.

relative address A URL without the machine name specified; it’s understood that such an address
starts at the same directory as the current document. For example, extras/more.htm is a relative
address referring to the specified subdirectory and file name, assuming the same starting path as
the current document.

reserved word One of the words that JavaScript recognizes for its own uses, and which, therefore,
cannot be used as a variable name. Reserved words include all keywords that are part of JavaScript
statements.

return A keyword that is used to return a value at the conclusion of a JavaScript function. This
value is assigned to a variable if the function was called in an assignment; for example,
result=functionname();

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (10 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

REXX A somewhat popular scripting language that’s similar to PERL. Commonly used in OS/2; a
variation is used on the Amiga (AREXX).

run To execute a computer program.

script A series of program statements that instruct the computer on how to accomplish a task.

scripting language The set of rules and keywords that comprise a functional script. Same as a
programming language, except that scripting languages are traditionally less strict and simpler to
learn.

self A synonym for a window object; self.status is equivalent to window.status. Can be used to
avoid conflicts with other labels in the JavaScript program.

self-extracting archive A compressed file that can be run like a regular program, except that the
"program" that runs is the decompressor, and the result is a reconstructed collection of programs or
files.

server A program or computer that "services" another program or computer (referred to as the
client). For example, within the World Wide Web, your browser is the client, and the computer
you connect to is the server.

service provider A company that provides a connection to the Internet for a fee. Different
providers charge different fees; shop around for the best deal before you subscribe to a particular
provider.

source code The actual text that comprises the program itself.

statement A JavaScript construction that usually winds up affecting program flow. Loops and
conditionals, such as for and if...else are statements.

status line The small message window at the bottom of the browser window. The status line can
be programmed to display specified messages using the window.status property.

string A value that consists of a series of alphanumeric characters enclosed in quotation marks.

submit To send the user-entered form data to a specified action, either another URL or some data
processing function in JavaScript.

subvariable A variable that is a property of an object.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (11 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

Sun Microsystems The company which, besides manufacturing very fast, very expensive UNIX
computers, also created the Java language and the HotJava browser. Sun partnered with Netscape
to create JavaScript.

supervariable An object. This is a variable that consists of a set of variables.

support In software lingo, refers to the capability of an application to handle some task. A
browser that "supports" JavaScript is capable of running JavaScript programs.

surf To view Web pages. Often implies moving from one page to another to another via links.
Surfing is supposed to make you cool.

syntax The grammatical rules of a programming language.

table An HTML design element that formats and displays data in an on-screen table structure.

tag An HTML "code" that defines how a portion of a Web document is to be formatted by the
browser for display.

Telnet An Internet facility by which you can connect ("log in") to another machine anywhere on
the Internet.

template A skeleton design. Serves to define an outline.

The Web More Internet shorthand for the World Wide Web.

this A JavaScript object that is used as shorthand to refer to the current object in question. Used in
relation to forms and method definitions.

trigger An onEvent definition, which tells JavaScript "what to do" when a specified event occurs.

true A logical (Boolean) value, returned from a comparison.

unary An operator that takes only a single operand; for example ++ (increment), –– (decrement),
and – (negate).

UNIX A computer operating system; one that the majority of hosts connected to the Internet run.
There are several different versions of UNIX available today, fondly referred to as flavors.

upload The process of transferring information from one computer to another, specifically from
your computer to someone else's (either another user's computer or a server).

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (12 of 14) [01.06.2001 00:53:35]

Complete Idiot's Guide to JavaScript

URL (Uniform Resource Locator) An "address" that defines the exact location (and protocol) of
a computer or document on the Internet.

UseNet The world's largest public "bulletin board," where folks post messages and reply to
messages from others. UseNet is divided into many thousands of subtopics of interest (known as
"newsgroups").

user Whoever is visiting your Web page and, therefore, "using" and interacting with your
JavaScript program.

validation The practice of evaluating data to see whether it meets some criteria.

value Some form of data. A numeric value is a number. A string value is a string. Either can be
assigned to a variable. A literal value is a specific number of string explicitly stated, not assigned
to a variable.

variable A "label" that refers to some value. Often, the value may change, which enables the
programmer to use named labels to keep track of various quantities or other forms of changeable
data.

W3 Internet shorthand for the World Wide Web.

WebCrawler Another (somewhat old) Web search engine; http://www.webcrawler.com.

widget A prewritten JavaScript program that creates a small user-interaction doohickey, such as a
scroll bar.

window The on-screen area in which the browser displays a Web page's contents related to the
current browser window.

window object The JavaScript object that contains properties related to the current browser
window.

World Wide Web A hypertext system that allows users to "travel through" (or surf) linked
documents, following any chosen route. World Wide Web documents contain a variety of topics;
selecting various links leads you from one document to the next. The nature of the system allows
links to span computers, literally taking you from one part of the world to the next with the click
of a mouse.

WWW Yet more Internet shorthand for the World Wide Web.

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/appb.htm (13 of 14) [01.06.2001 00:53:35]

file:///C|/Dokumente%20und%20Einstellungen/Tobias/Desktop/Neuer%20Ordner/tppmsgs/msgs0.htm#41

	Local Disk
	Index
	Coffee? In My Computer? I Prefer Decaf...
	Navigator and Explorer: The World Wide Web on a Caffeine High
	Tag... You're It!
	Off and Running --- with Someone Else's Help
	Objects, Names and Literals
	Operators and Expressions
	Making a Statement
	Conjunction Junction, What's a Function?
	An Eye on Events
	How much is that Object in the Window?
	Mapping and Tracking: Locations and Histories
	The Document Shuffle
	Fiddling with Forms and Emulating Events
	Navigating with Navigator
	Array of Organization
	Image-ine That!
	Care for a Cookie?
	Example 1: Hello World
	Example 2: Random Chatter
	Example 3: Which Way do we go?
	Example 4: Bank Loan Calculator
	Example 5: Black Jack
	Example 6: Creating an eZine
	Example 7: Welcome Back
	What to do, when it won't work: Debugging your Scripts
	Ideas
	Stepping up to Straight Java
	Appendix A: The Complete Overview
	Appendix B: Speak like Greek, the complete Archive

