
Designing Java Applications for
Network Computers

SG24-5111-00

International Technical Support Organization

http://www.redbooks.ibm.com

Oscar Cepeda, Jens Andexer, Craig Grossi, Timothy Luke

Designing Java Applications for

Network Computers

SG24-5111-00

August 1998

International Technical Support Organization

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (August 1998)

This edition does not apply to any specific operating system or application other than those described
within this document.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. DHHB Building 045 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 141.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii

Chapter 1. Network Computing and Java Environment 1
1.1 Network Computing . 1

1.1.1 Network Computer. 2
1.2 A Network Computer—The IBM Network Station 2
1.3 IBM Network Station Hardware. 2

1.3.1 IBM Network Station Server Software . 3
1.3.2 How the IBM Network Station Works . 3

1.4 Servers . 5
1.4.1 Boot Server . 5
1.4.2 Internet Server . 6
1.4.3 Application Server . 6

1.5 Networks . 6
1.5.1 Network Function . 6

1.6 Java—A Good Language for Network Computing. 7
1.6.1 Java Development Kit . 8
1.6.2 Java Development Environment . 9
1.6.3 Java Run-Time Environment . 9

1.7 Java Program Types . 12
1.7.1 Java Applications . 13
1.7.2 Java Applets. 13
1.7.3 Servlets . 14
1.7.4 Basic Program Constructs . 14
1.7.5 Java in the Network Environment . 15

1.8 Network Computing using WorkSpace On-Demand 18

Chapter 2. Network Computing Framework . 21
2.1 Overview . 21
2.2 Basic NCF Principles . 23
2.3 Building NCF Solutions . 24

2.3.1 Content Management Solutions . 25
2.3.2 Collaboration Solutions. 25
2.3.3 Commerce Solutions . 25

2.4 NCF Architecture . 26
© Copyright IBM Corp. 1998 iii

2.4.1 Key Elements . 27
2.4.2 Clients . 27
2.4.3 Network Infrastructure . 28
2.4.4 Foundation Services . 30
2.4.5 Connectors . 31
2.4.6 Web Application Programming Environment 31
2.4.7 Development Tools. 32
2.4.8 Systems Management . 32
2.4.9 e-business Application Services . 33

2.5 NCF Development . 34
2.5.1 Dynamic Web Applications . 34
2.5.2 JavaBeans . 35
2.5.3 Enterprise JavaBeans. 36
2.5.4 Developing e-business Applications . 37

2.6 Software. 38
2.6.1 Servers. 38
2.6.2 Connectors . 39
2.6.3 Clients . 40

Chapter 3. Application Example - WorldWide Trucking Company . . . 43
3.1 Programming Introduction . 43
3.2 WorldWide Trucking Company . 43
3.3 Transport Request Application . 46

3.3.1 Application Re-Use. 48
3.4 Truck Tracking Application . 50

Chapter 4. Application Design Issues . 51
4.1 Thin Client . 51

4.1.1 Issue: Limited Local Resources . 52
4.1.2 Principle: Minimize Footprint Size . 52
4.1.3 Principle: Keep Software Local . 52

4.2 Thin Data . 53
4.2.1 Issue: Limited Local Space . 53

4.3 Portability . 54
4.3.1 Issue: Different Versions of the JDK . 55
4.3.2 Issue: Different Behavior of Platforms. 55

4.4 Soft Failure . 56
4.5 Transaction Processing . 57

4.5.1 Issue: Transaction Rollback in a Diskless Environment 57
4.6 Session Context . 59

4.6.1 Issue: Providing Session Context for NC-Based Applications . . . 59
4.7 Remote Object Persistence and Serialization 62

4.7.1 Issue: JavaBean Serialization vs. Externalization 63
iv Designing Java Applications for Network Computers

4.7.2 Can NC Applications Use JavaBeans and Generate Events? . . . 64
4.8 Concurrency. 65

4.8.1 Issue: Race Conditions. 65
4.9 Distributed Object Synchronization. 67

4.9.1 Threads in Java . 67
4.9.2 JavaBean Synchronization . 69

Chapter 5. Designing, Developing, and Distributing Java Objects . . . 71
5.1 Distributed Application Environment . 71

5.1.1 Roles and Responsibilities . 71
5.2 Implementing the NCF Model Using the Java Language 71

5.2.1 Java Development Kit . 72
5.2.2 Java Enterprise APIs . 73
5.2.3 JavaBean Communication . 74
5.2.4 Applets . 74
5.2.5 Servlets . 88
5.2.6 Basic Communication . 90
5.2.7 Applet/Applet Communication. 92
5.2.8 Servlet/Servlet Communication. 93

5.3 Distributed Object Architecture . 93
5.3.1 Remote Method Invocation (RMI) . 94
5.3.2 Common Object Request Broker Architecture (CORBA) 111
5.3.3 RMI over IIOP. 117

Chapter 6. Maintenance . 119
6.1 What Makes Maintenance Difficult . 119
6.2 What Makes Maintenance Expensive . 119

6.2.1 Corrective Maintenance . 119
6.2.2 Perfective Maintenance . 122
6.2.3 Adaptive Maintenance . 124

6.3 Conclusion . 126

Appendix A. Network Basics . 127
A.1 Local Area Network. 127

A.1.1 Network Infrastructure . 127
A.1.2 Ethernet . 127
A.1.3 Token Ring . 127

A.2 Wide Area Networks . 128
A.3 Bridges / Routers / Switches. 128
A.4 Network Resources. 128

A.4.1 Resource Providers . 129
A.4.2 Resource Users . 129
 v

Appendix B. Protocol Layers . 131
B.1 Physical Layer. 131
B.2 Data Link Layer. 132
B.3 Network Layer. 132

B.3.1 IP . 132
B.4 Transport Layer. 132

B.4.1 TCP. 132
B.4.2 UDP . 133

B.5 Session Layer . 133
B.6 Presentation Layer . 133
B.7 Application Layer . 133

Appendix C. Synchronization Code Samples . 135
C.1 No Synchronization. 135

C.1.1 R - The Shared Resource. 135
C.1.2 Tc - The Consumer . 135
C.1.3 Tp - The Producer. 136

C.2 Synchronized . 137
C.2.1 R - The Resource . 137
C.2.2 Tc - The Consumer . 138
C.2.3 Tp - The Producer. 139

C.3 Solution Limitations. 140

Appendix D. Special Notices . 141

Appendix E. Related Publications . 143
E.1 International Technical Support Organization Publications 143
E.2 Redbooks on CD-ROMs . 143
E.3 Other Publications. 143

How to Get ITSO Redbooks . 145
How IBM Employees Can Get ITSO Redbooks . 145
How Customers Can Get ITSO Redbooks. 146
IBM Redbook Order Form . 147

List of Abbreviations. 149

Index . 151

ITSO Redbook Evaluation . 157
vi Designing Java Applications for Network Computers

Figures

1. Java Compile Time Environment . 9
2. Java Run-Time Environment . 10
3. Java Storage Management . 12
4. Java in the NC Environment . 16
5. Network Computing Framework . 22
6. Logical Three-Tier Environment - NC to a Web Server to a Database . . . 27
7. WorldWide Trucking Company’s NC-Based Computing Environment . . . 44
8. WWTC Customer NC Connectivity . 45
9. WWTC’s General Business Software Application Architecture 46
10. Customer Pickup Request . 47
11. WWTC Dispatcher Response to Pickup Request 48
12. WWTC’s Suppliers Use TruckDispatcher Bean for their Server 49
13. Initial Creation of Truck Cargo Pickup Request Applet 76
14. TruckScheduling Package’s Beans and Classes. 77
15. Result of Automatic Bean Creation . 78
16. TruckSchedulingRequest Applet’s Internal Visual Components 80
17. Sample Applet Code . 81
18. Non-Visual TruckDispatcher Bean Method Definition 83
19. Simple TruckDispatcher Code . 84
20. HTML for Starting Cargo Pickup Request Applet: Part 1. 85
21. HTML for Starting Cargo Pickup Request Applet: Part 2. 86
22. Sample Application’s HTML Viewed by Netscape Composer 87
23. TruckDispatcher Class and Related Classes. 89
24. VA Java RMI Code Generation . 97
25. TruckDispatcher Constructor’s RMI Extensions 100
26. RMI in Action: Running a Remote Method on the Server from an Applet 101
27. RMI Remote Interface Definition . 102
28. Creation of TruckDispatcherInterface . 103
29. Specifying Interface Extension for an RMI-based Application 104
30. TruckDispatcherServer Inherits from Unicast Remote Object 105
31. TruckDispatcherServer - Important Characteristics 106
32. Interface Implementation . 107
33. Main Method Creation for the Remote Server Application. 108
34. Remote Server’s Main - Part 1. 109
35. Remote Server’s Main - Part 2. 109
36. RMI Registry Startup . 110
37. Basic CORBA Architecture . 113
38. M/U Diagram for Distributed Environment . 121
39. Protocol Reference Chart . 131
© Copyright IBM Corp. 1998 vii

viii Designing Java Applications for Network Computers

Tables

1. IBM Network Station Hardware Specifications . 3
2. Application Design Issues for Network Computers 51
© Copyright IBM Corp. 1998 ix

x Designing Java Applications for Network Computers

Preface

Although the term thin client is relatively new, Network Computers in various
forms have been in the marketplace for years now, along side traditional
Intel-based PCs. However, the Java application designer and developer will
quickly discover that writing Java applications for Network Computers
introduces certain challenges and issues that must be addressed in order to
maintain a functional, robust and user-friendly application environment.

This redbook is intended for the reader who is comfortable with concepts and
implementation of client/server applications using Intel-based clients. With
this base, this redbook describes many of the issues related to the design
and implementation of Java applications on Network Computers. In addition,
we describe the Network Computing Framework (NCF) and its relationship
with Network Computers, as well as basic software maintenance issues in the
context of thin clients.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin Center.

Oscar Cepeda is an Advisory Software Engineer at the International
Technical Support Organization, Austin Center. He writes extensively and
teaches IBM classes worldwide in areas including OS/2, Warp Server and
WorkSpace On-Demand. Before joining the ITSO in 1995, Oscar worked in
IBM US Availability Services as an I/T Specialist.

Jens Andexer graduated with a degree in Business Administration in 1985
and since that time has been working in Canada, England, Scotland,
Germany, Australia and the US in capacities ranging from Programmer to
Project Leader. He joined IBM in January 1998. Jens is concerned about
issues surrounding the maintainability of software and is completing his
Master’s in Computer Science, specializing in design for software
maintainability in the procedural and OO paradigms.

Craig Grossi is a Senior Consultant in the NC Java Services Practice of IBM
Global Services. He has 8 years of experience in the Object Technology field.
He has worked for IBM for the past 4 years as an OO Mentor and Team Lead
for Smalltalk and Java projects. He holds a B. S. degree in Electrical
Engineering from Tufts University. His areas of expertise include OT
Methodology, Architecture and System Design.
© Copyright IBM Corp. 1998 xi

Timothy Luke is a Senior Consultant in the NC Java Services Practice of
IBM Global Services. Tim has 17 years of experience in manufacturing
automation and process control. He has worked at IBM for 3 years. His areas
of expertise include object-oriented analysis, design and development. Tim
has a Master’s degree in Computer Science and a Master’s degree in Music.

Thanks to the following people for their invaluable contributions to this
project:

Peter Bahrs
IBM Network Computing Software Division (NCSD), Austin

Barry Feigenbaum
IBM NCSD, Austin

Steve Heracleous
IBM Network Computing Division (NCD), Austin

Gary Huber
IBM NCD, Austin

David Kaminsky
IBM Pervasive Computing Division, Raleigh

Kris Lichter
IBM NCSD, Cupertino, CA

Tim Thatcher
IBM NCSD, Austin

Scott Vetter
IBM International Technical Support Organization, Austin Center

Laura Werner
IBM Center for Java Technology, Cupertino, CA

Jason Woodard
IBM NCSD, Armonk, NY

Comments Welcome

Your comments are important to us!
xii Designing Java Applications for Network Computers

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 157
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xiii

xiv Designing Java Applications for Network Computers

Chapter 1. Network Computing and Java Environment

If you enter a room filled with IS professionals and ask how many are familiar
with the term Network Computing, nearly everyone would raise their hand.
However, if you ask each person to define Network Computing, no two
definitions would be the same. In today’s environment, the adoption of
Network Computing is increasing significantly. Because of the variety of
hardware and software implementations, it means something different to
everyone.

If you ask this same group about their interest in Java, again, you would see
many hands raised. While not all of those interested are actually
implementing production Java applications, interest (and implementation) in
Java has skyrocketed over the past few years.

Network Computing and Java are increasingly being used to solve the
problem of providing the latest information to end users and clients in a
manner that minimizes the administrative costs associated with supporting
this infrastructure. As software vendors and I/S departments begin to adopt
network computing and Java applications, they invariably make comparisons
between programming for their existing Intel-based client/server platforms,
and the network computing paradigm.

This chapter gives the reader an understanding of how Network Computers
work by using the IBM Network Station as an example. We also describe the
major components of the Java programming language. These topics are the
basis for further discussion in the chapters that follow.

If you are not comfortable or familiar with some of the fundamental concepts
of networking, please read Appendix A, “Network Basics” on page 127,
before continuing with this chapter. This Appendix describes some of the
networking components and terms used throughout this redbook.

1.1 Network Computing

The client/server paradigm provided many benefits over the host-based,
centralized paradigm, including increased computing power at the desktop, a
graphical user interface, and local data storage. However, these benefits
came at a cost. That is, the overall cost of ownership of computers increased
significantly compared to a centralized, mainframe/terminal environment. One
solution to this increasing cost is the Network Computer. After a basic
definition of the network computer, the operation of a network computer, the
IBM Network Station, is used as an example.
© Copyright IBM Corp. 1998 1

1.1.1 Network Computer
The Network Computer (NC) is a general end-user device designed at a
lower cost point than the average Personal Computer (PC). Its main
characteristic is that it gets nearly all its resources from other systems on the
network, including its operating system, applications and application data,
because there is no local permanent storage, such as a hard disk. In contrast,
a PC has a hard disk with an operating system installed on it, such as OS/2,
Windows 95, WIndows NT or DOS. A PC may also have applications and
user data stored on the local hard disk. Since the hard disk can also be used
as a paging device for the operating system, the PC can allow for a virtual
memory-based operating system. Because a PC can have all these traits, it is
sometimes called a fat client.

Although NCs are much newer than PCs, there are many hardware vendor
implementations of NCs. They are often called thin clients and usually have
the following characteristics:

 • Display device

 • Text input device, such as a keyboard

 • System unit with processor (RISC, or Intel)

 • Connection to a TCP/IP-based network

 • No permanent local storage, such as a hard disk

The key motivation in network computing is to provide cost effective user
platforms by accessing resources across the network. The trend is to place
less resources on the user platform, centralizing them instead on servers for
all NCs to use. This makes more effective use of the common resources and
can reduce the overall cost of ownership of end user platforms. As an
example of how a network computer works, we describe the IBM Network
Station in some detail in the following sections.

1.2 A Network Computer—The IBM Network Station

This section gives a simple overview of the IBM Network Station and its
software and hardware architecture.

1.3 IBM Network Station Hardware

The IBM Network Station is a thin client end-user hardware platform that
consists of a keyboard, a mouse, a CPU, RAM, and a network adapter. The
2 Designing Java Applications for Network Computers

network adapter on each Network Station has a unique hard-coded media
access control (MAC), or burnt-in, address.

General Network Station specifications are listed in Table 1 on page 3, while a
more detailed description can be found in the redbook titled RS/6000 - IBM
Network Station Companion Guide, SG24-2016.

Table 1. IBM Network Station Hardware Specifications

1.3.1 IBM Network Station Server Software
The server that provides boot and configuration support for the IBM Network
Station runs an application called Network Station Manager (NSM). NSM can
run on several operating system platforms, including AIX, Windows NT,
OS/400, and OS/390. Client access to other resources on the server requires
additional server software. This takes the form of communications programs,
such as Trivial File Transfer Protocol (TFTP) and Network File System (NFS)
that allow clients to make requests for resources on the server.

1.3.2 How the IBM Network Station Works
When an IBM Network Station is switched on, it has no software. All it has
available are its local hardware resources. So how does the Network Station
go from a hardware device with no operating system to a useful end user
system?

Model CPU RAM Network Connection

Series 100
Model 100

PowerPC 8 MB Ethernet

Series 100
Model 200

PowerPC 8 MB token ring

Series 300
Model 110

PowerPC 16 MB Ethernet

Series 300
Model 210

PowerPC 16 MB token ring

Series 1000
Model A52/53

Power PC 603 at
200 MHz

32/64 MB Ethernet

Series 1000
Model A22/23

Power PC 603 at
200 MHz

32/64 MB token ring
Network Computing and Java Environment 3

The answer is all in the software, or more precisely, the firmware. When the
IBM Network Station is switched on, it actually does have some software.
Burned into one of its chips is a startup program called the boot monitor, that
allows the Network Station to start itself up. The following sections describe
how the Network Station starts up.

1.3.2.1 Network Station Power-On
Powering up the IBM Network Station causes the following basic operations
to be carried out.

1. POST: The power-on initiates a hardware self-test, the power-on system
test (POST), that ensures the hardware components in the Network
Station are functioning properly.

2. Obtain Operating System: After the POST sequence, the Network Station
must get a copy of the operating system. To obtain this, the Network
Station accomplishes the following:

1. Find Boot Server: Before the Network Station can request a copy of its
kernel, it must know where to find a copy of one. To find its kernel, the
boot monitor sends a message out on the network to which boot
servers reply. The first boot server to reply to the boot request
becomes the boot server for the Network Station.

2. Request Kernel: Once the Network Station has established
communications with a boot server, the Network Station sends a
request for its kernel.

3. Download Kernel: When the kernel request is received, the boot server
initiates the download of the Network Station’s operating system
kernel. The Network Station receives the kernel and once the
transaction is complete, the boot monitor passes control to the kernel.

1.3.2.2 Network Station Operation
Once the kernel is in control of the Network Station, it configures the Network
Station’s background color, mouse speed and other basic characteristics.
This is done by reading the configuration files that are on the boot server and
following their instructions.

Next, after the environment for the Network Station is configured, the initial
applications are loaded. The actual applications loaded are determined by
another configuration file, which is set up by the administrator. After this is
accomplished, the Network Station is ready for end user operations.
4 Designing Java Applications for Network Computers

1.4 Servers

Servers are systems that allow access to resources in their control. To be a
resource provider, a server requires an operating system and application
software that enables resource sharing, such as OS/2, AIX, or Windows NT.
Servers can be placed into three broad categories, where a single server
could belong to more than one category:

Boot Server Provides the kernel and remainder of the operating
system

Internet Server Provides access to Internet-based resources

Application Server Provides access to shared applications for users

1.4.1 Boot Server
A boot server has all the software needed to load and start a network
computer. It also has the facilities to make it possible for this software to be
downloaded to the network computer on demand. The rules that allow the
boot server and the client to communicate and get the client stared up are in
protocols, but the protocols are also embodied in programs. Therefore, the
following are protocols implemented within programs:

DHCP The Dynamic Host Configuration Protocol (DHCP) is a boot
protocol that supports the dynamic allocation of IP addresses by
the server. In this protocol, the client broadcasts that it needs a
boot server and establishes communications with the first boot
server to respond. The kernel is downloaded and its execution is
initiated. DHCP is a superset, that is, it is based on, BOOTP. More
details of this process can be found in the redbook titled Beyond
DHCP: Work your TCP/IP Internetwork with Dynamic IP,
SG24-5280.

BOOTP The bootstrap protocol (BOOTP) is a boot protocol used to
download and initiate the execution of an operating system on the
BOOTP client, in this case, the IBM Network Station. The client
requests its kernel from a specific server and that server assigns
an IP address based on the client’s MAC, or hard-coded, address.

These two boot protocols can set up communications, but they also need to
move files from the server to the client. For the purpose of moving files,
therefore, they rely on the following two file transfer protocols:

TFTP The Trivial File Transfer Protocol (TFTP) is a simple protocol that
allows files to be transferred between two systems. There is no
Network Computing and Java Environment 5

security authentication in TFTP, but its simplicity allows for
support on a variety of systems.

NFS The Network File System is a more robust implementation of a file
sharing mechanism compared to TFTP, with user authentication
and performance improvements. From a client view, the files that
actually reside on the NFS server appear to be local to the client.

1.4.2 Internet Server
Internet servers are a group of servers that provide resources to clients using
the TCP/IP protocols. Examples of Internet servers are these two
subcategories:

HTTP server A Hyper Text Transfer Protocol (HTTP) server, or a Web
Server, responds to client requests for files with rich text
formatting tags using the HTTP protocol. If an application is
run using a Web browser, HTTP provides for the download of
the software and the data from the server to the client.
Examples of HTTP servers are the Lotus Domino Go
Webserver and the shareware Apache Server.

FTP server A File Transfer Protocol (FTP) server satisfies request for files
from FTP clients. It provides a basic file transfer mechanism,
independent of the content of the file.

1.4.3 Application Server
Application servers provide application programs to requesting clients. In
addition to the application software, they need nothing other than the
programs described above to provide these services. How the applications
programs are identified and how they are transferred from the application
server to the client are topics dealt with in later sections.

1.5 Networks

A computer network consists of two or more computers connected in a way
that allows them to communicate. The computers that communicate across a
network have been described as clients and as servers. But, facilitating
communications also requires an agreement on how the interchange will take
place. This agreement is called a protocol.

1.5.1 Network Function
To allow two computers to communicate requires a set of rules called
protocols. A communications protocol is a set of rules that describe how
6 Designing Java Applications for Network Computers

communications will take place across a network. But, because the task of
interacting with another computer is complex, a single protocol cannot do the
whole job.

In order to control the complexity associated with communications, the
problem must be broken down. Just breaking the problem down is not
enough, though. The pieces must be organized in a way that distances the
program that needs communication from the implementation of the
communications medium.

Hiding the implementation of something is called abstraction. An abstraction
hides the details of how a problem is solved and provides a set of externally
visible services to the user of the abstraction. The problem of
communications is solved this way. Communications protocols are layered,
and each layer corresponds to a part of the overall communications problem.
How protocols are layered is describe in more detail in Appendix B, “Protocol
Layers” on page 131.

1.6 Java—A Good Language for Network Computing

Now that we have a better understanding of the Network Computer, and of
basic function of the IBM Network Station in particular, we change our focus
to discuss the Java programming language.

Java is a programming language designed to run in both a stand-alone and a
network environment. Since a network is an interconnection of many different
hardware and software platforms, Java must be able to run on all these
platforms.

Allowing Java applications to run on different hardware and software
platforms requires two key features. They are described below.

First, the Java application is insulated from the specific hardware and
software platform upon which it is running by a standard interface, a
component of the Java Virtual Machine (JVM). A JVM is a virtual environment
inside which Java applications run. A JVM can be written for each unique
operating system platform. Because each JVM presents the same, standard
interface to a Java application, the same Java code itself can run unchanged
regardless of the hardware platform. All it needs is a compatible JVM
implemented on that platform.

Second, the translation of source code into a running application has been
split into a two-step process. First, the Java source code is translated into a
device independent language called Java bytecode. In the second step, the
Network Computing and Java Environment 7

bytecode are interpreted on the target platform by the JVM to perform the
specified behavior. Since the bytecodes are standard, they should behave the
same on every platform that has a compatible JVM (which is part of the Java
Development Kit, see below).

What makes Java so versatile is its platform independence. But what makes
Java platform independent is the encapsulation of its interfaces and the
standardization of the bytecodes it interprets.

1.6.1 Java Development Kit
The Java Development Kit (JDK)provides resources in the form of files and
tools for both the development and the Java Run-Time Environments. When
a Java program is compiled, the compiler generates bytecodes for the source
code files specified during compilation. If the source code relies on classes
that are part of the JDK, these are assumed to be on the target platform.
Therefore, it is important that the JDK on the platform where the program was
compiled be compatible with the JDK on the platform where the program is to
be run.

For the purposes of this chapter, knowing that the JDK provides resources to
both the development and the run-time environments is sufficient. Below is a
short description of the parts of the JDK that are relevant to this chapter.
Section 5.2.1 on page 72 describes the contents of the JDK in slightly more
detail.

 • Files:

 • Java core classes: These are the compiled (bytecode) classes that
constitute the code classes the JDK provides.

 • Java source files: These are files that supply the source code for the
classes in the Java core class files.

 • Java Tools:

 • javac: Java compiler - Translates Java source into bytecodes.

 • java: Invokes the JVM and runs the application code

The term virtual machine (VM) was coined in 1959 by IBM to describe the
VM operating system that provided a software environment that was inde-
pendent of the underlying hardware.

The Virtual Machine
8 Designing Java Applications for Network Computers

1.6.2 Java Development Environment
The Java development environment consists of the Java Development Kit
and a collection of programs that allow Java programs to be written more
effectively.

Part of the development environment is specialized software that allows
programers to develop programs more effectively, such as IBM Visual Age for
Java. There are many fine books and descriptions of these tools, so they will
not be discussed here.

1.6.2.1 Java Compiler
The translation of source code text (.java files) into files containing device
independent language, called bytecodes (.class files) is done by the Java
compiler that is part of the Java Development Kit (JDK). Although the
bytecode is independent of the hardware and software platforms on which it
runs, it is dependent of the release of the JDK. See Figure 1 on page 9 for a
representation of the relationship between the files.

Figure 1. Java Compile Time Environment

1.6.3 Java Run-Time Environment
The Java Run-Time Environment (JRE) provides a run-time environment
inside which the Java Virtual Machine can function and make requests for
resources to the operating system. The JRE consists of the Java Virtual
Machine, the system memory available to the JVM, the files in the JDK that
support the JVM and the applet and application class files.

Source Code
(.java)

Standard Built-in
Java Classes

Native Methods
(.dl or .sq)

Compiler bytecode
(.class)

Part of JDK

(javac)
Network Computing and Java Environment 9

1.6.3.1 Java Virtual Machine
The JVM provides an encapsulated environment inside which the bytecodes
can be interpreted. The JVM consists of an execution engine and services
that support the execution engine. The components of the JVM can be seen
in Figure 2 on page 10 and are described as follows.

Figure 2. Java Run-Time Environment

Execution Engine The Execution Engine is a piece of software,
called an interpreter, that carries out the bytecode
instructions contained in Java class files.

Memory Manager When objects or arrays are created in Java they
are allocated from free memory in the Java heap.
The heap is allocated at start-up time and can be
allowed to default or can be specified in
parameters to the java command.When the
allocated entities are no longer needed, the
garbage collection component returns the storage
to the unused portion of the heap. The total size of
the Java heap for an application must be large

Applet &
Application
Class Files

(.class)

Standard
Java Classes

(.class)

Native
Methods

(.dl or .sq)

Java Heap

System Memory

Dynamic
Class

Loader &
Verifier

Native
Method
Linker

Native
Method
Area

Class &
Method
Area

Execution
Engine

Handler
Exception
Thread
Security

:
:

and

Operating System

Ja
va

 M
an

ag
ed

 S
to

ra
ge

(objects)

(GUI, images, and so on)

JVM

JDK

so on...
10 Designing Java Applications for Network Computers

enough to provide space for the working set of
objects needed by the application. When the limit
of available space is approached, the JVM
initiates processing that will free any unused
space. This is intended to have a minimal effect on
the performance of the host, since garbage
collection usually runs as a low-priority
background thread.

Native Method Support In Native Methods, the body of the method is not
supplied as Java bytecodes in a class file.
Instead, the method is written in some other
language and compiled into native machine code
and stored in a separate Dynamic Link Library
(DLL) in Windows, or shared library, in UNIX.
These methods cannot be included in the
execution in the same way as bytecodes can and
must be linked during execution time. The native
methods are the platform-dependent part of Java.
Java uses these to interface with the operating
system or with other platform-dependent
resources.

Class Loader Since Java programs are broken into classes, an
important aspect of the JRE is to load, link and
initialize classes. The class loader must,
therefore, locate a class locally or across a
network and make it available to the Execution
Engine.

Error and Exception Manager

Exceptions are the mechanisms Java uses to
signal that something out of the ordinary has
happened. Each method defines an exception
handler table that specifies which exception the
method is able to catch. The JRE includes an
exception manager that is responsible for
processing the exceptions each method catches.

Thread Interface Since Java is a multi-threaded language, it must
support multiple threads running at the same time.
Each thread must execute as if in its own
execution engine with its own call stack and local
data state.
Network Computing and Java Environment 11

Security Manager The Java Security Manager makes it more difficult
for hostile programs to do mischief. The Security
Manager is an outer shell program that protects
the JVM by limiting the bounds that a Java
program must reside within and limits the
program’s access to resources that might be
misused.

Figure 3. Java Storage Management

1.7 Java Program Types

An executable entity is a program that is in a form that can be invoked in the
run-time environment. A context is the run-time environment in which the
executable entity runs. In Java, when the executable entity is in control of its
own context, it is referred to as an application. When a program requires a
context to be provided within which it can execute, then this program is
referred to as an applet.

JVM

O/S

Total Memory
Available on NC

JVM for run-time needs
System Memory used by

Java Heap

Note: The actual run-time memory layout and size of data areas are
decided by the JVM implementation.

includes GUI
components, images,
bitmaps, class files,
stacks...

Java objects
12 Designing Java Applications for Network Computers

1.7.1 Java Applications
Java applications are stand-alone programs that run independently within a
Java Virtual Machine (the JVM is described in Section 1.6.3.1 on page 10).
When starting a stand-alone Java application, the operating system passes
control directly to the JVM, which loads the program and starts its execution.
Although requests are made to the operating system, control is not
relinquished by the application to the operating system until the application
terminates, which also stops the JVM.

Since control is passed directly from the JVM to the application, control
remains there until termination. Only one application can run in one JVM at
any one time. There can, however, be multiple JVMs running on a single
computer if the platform Java implementation allows it. The Network Station
Java implementation, however, does not allow for multiple JVMs.

The mechanism that identifies a Java program as a stand alone application is
the inclusion of a routine called main(). This statement identifies the entry
point for the application and tells the Java compiler to create a program start
point which tells the JVM that the program can be invoked directly.

Java applications are always referred to as trusted code. This means that
they have all facilities the JVM can provide available to them.

1.7.2 Java Applets
An applet is not a stand-alone Java program and does not take control of the
context. An applet can only be run from “within” another piece of software like
a browser or applet viewer.

The JVM receives control from the browser when it interprets the applet’s
entry point in the HTML file. It then invokes the JVM, which passes control to
the applet. The applet then simply responds and control is passed back to the
JVM and back to the browser, which then retains control. As a result, any
number of applets can run within the same JVM, or, indeed, within the same
application at the same time.

Java applets are not trusted code. When an applet is loaded over the network
it is considered untrusted, and its access to resources the JVM can provide is
restricted. These restrictions are:

 •Untrusted code cannot access the local file system.

 •Untrusted code cannot perform networking operations.

 •Untrusted code cannot use System.exit() or RunTime.exit() to exit
the JVM.
Network Computing and Java Environment 13

 •Untrusted code cannot spawn new processes.

 •Untrusted code has restricted access to system properties.

 •Untrusted code cannot create or access a thread outside the thread
group in which it is running.

 •Untrusted code has restriction in the use of classes it can load and
define.

 •Untrusted code has restrictions on the use of the security package.

1.7.3 Servlets
In the same way that an applet is associated with a client system, a servlet is
associated with a Java-enabled Web Application server. A servlet is a
server-based Java module that helps the server receive requests from
clients, process the request, and return information back to the client, usually
a browser. End users usually don’t see servlets, but their applets often
interact with servlets, depending on how the application they are executing
was written.

Servlets can often handle multiple client requests simultaneously. In
processing information, servlets can communicate with other servlets on the
same system, or with servlets on other servers as well.

1.7.4 Basic Program Constructs
This section briefly describes Java classes, Java objects and
communications between objects.

1.7.4.1 Java Classes
A class is the specification for an object. A class specifies an object’s domain,
all possible data states, and the behavior needed to change from one state to
another. The domain is specified in the data definition and the behavior is
specified in the methods.

1.7.4.2 Java Objects
An object is the instantiation of a class. When an object is created in Java,
the class specification is referenced for the instructions on how to create the
object.

When creating an object, the JVM first creates objects for any classes the
new object inherits from. To create the new object, the JVM allocates
sufficient space in the heap for the object’s data and the control
characteristics. The control portion of the allocated space is populated with
the entry points of the object’s methods. Finally, control is passed to the
14 Designing Java Applications for Network Computers

appropriate constructor method. When the constructor method completes,
control is passed back to where the creation of the object was initiated.

1.7.4.3 Communications between Objects
Objects need to communicate. In Java, this is easiest when both objects are
on the same computer. In this case, a method in one class can simply call a
method in another class. But what if the objects are on different computers?

An object can have both a state and behavior. To change the state, control
must be passed to one of the objects methods. Invoking an object’s methods
is also called messaging.

As with all messages, there must be information and an address to where the
information is to be sent. When objects communicate, the information is the
data passed as parameters to the method. The message’s address is the fully
qualified name of the method to be invoked.

The fully qualified name, however, introduces the issue of scope. Scope is
the part of a program within which a name can be seen. In inter-object
communication, this name must be unique. But more than one method can
have the same name. Therefore, the fully qualified name must identify the
name of the method that is to be invoked uniquely within the method’s scope.

Beyond identifying the object with which communications are to take place,
the physical location of the object within a network environment is an
important issue that will be dealt with later in this book.

1.7.5 Java in the Network Environment
This section introduces some details that must be considered when
implementing Java in a Network environment.

1.7.5.1 Class Creation
In order to create an object, the JVM needs the class to specify how the
object is to be created and to supply the bytecode for each methods
implementation. Making this available in a thin client environment means
importing the class from the server, since there is no persistent local storage.
(See Figure 4 on page 16).
Network Computing and Java Environment 15

Figure 4. Java in the NC Environment

1.7.5.2 Storage Management
The network computer has a hard limit to the amount of RAM storage that is
available since there is no caching. Therefore, if the available space is always
near its limit, there will be a persistent overhead associated with freeing heap
storage due to garbage collection.

1.7.5.3 Communication
In a network environment, objects that are part of the same Java program can
be spread across different physical devices. Therefore inter-object message
passing in a network environment means the object to which a message is
being directed, in fact, the object whose method is being invoked, may be on
a different computer. This means the message must be passed over the
network in order to invoke the remote method.

Applet &
Application
Class Files

(.class)

Standard
Java Classes

(.class)

Native
Methods

(.dl or .sq)

N
et

w
or

k

Java Heap

System Memory

Dynamic
Class

Loader &
Verifier

Native
Method
Linker

Native
Method
Area

Class &
Method
Area

Execution
Engine

Handler
Exception
Thread
Security

:
:

and

Operating System

Ja
va

 M
an

ag
ed

 S
to

ra
ge

(objects)

(GUI, images, and so forth)

so on...
16 Designing Java Applications for Network Computers

Network Station Operating Environment
On the Network Station, the RAM in which the kernel is already executing is
the only resource available locally. It is not possible for more than one Java
Virtual Machine (JVM) to be executing locally in the Network Station at a time;
however, this is dependent on the operating system and JVM implementation.
It is also possible to run an applet (which is dependent on a browser)
concurrently with a Java application (which runs independently of a browser).
For example, the Navio browser can share the JVM with other applets.

Programs that are executing locally on the Network Station have only the
local RAM available as a resource. Therefore, any data or programs must be
brought across the network before execution can begin.

1.7.5.4 The Future of the IBM Network Station
The IBM Network Station provides a low cost of ownership and excellent
flexibility as a client platform. IBM intends to extend the domain of the
Network Station into the Intel space specifically for Network Computing. The
IBM announcement below is from
http://www.pc.ibm.com/networkstation/news/intelproc.html

IBM Network Computers based on Intel Processors

AUSTIN, April 23, 1998... “IBM* today announced that it is tuning the
JavaOS(TM) for Business(TM) product for network computers (NCs) based
on Intel processors with assistance from Intel*. IBM and Intel are also working
together so that the JavaOS for Business product supports Intel's Lean Client
Guidelines. By bringing together the Intel Architecture with the JavaOS for
Business software, IBM and Intel are cooperating to expand the choices
available to customers seeking network computing solutions.

The JavaOS for Business software will support both the Network Computer
Reference Platform and the Intel Architecture Lean Client Guideline. The
initial release will support Intel processors and will be available to OEMs mid
year.

In addition, IBM will develop a version of the IBM Network Station network
computer utilizing an Intel microprocessor, for the high end of the Network
Station family. The Intel-based NC from IBM is expected to be available in the
first half of 1999, and will take advantage of the JavaOS for Business product.
IBM's Network Station will be compliant with both the Intel Architecture Lean
Client Guideline and the Network Computer Reference Platform.”
Network Computing and Java Environment 17

1.8 Network Computing using WorkSpace On-Demand

The IBM Network Station is not the only platform to boast the benefits of
Network Computing. Companies with a large investment in OS/2 Warp Server
and Intel-based clients were given a a new Network Computing solution in
October 1997, when IBM announced WorkSpace On-Demand, an program
product that uses OS/2 Warp Server as its foundation.

It is important to note that, as of the writing of this redbook, WorkSpace
On-Demand does not directly support the Network Station as a client. This is
a complementary solution for companies with Intel-based client systems.

Intel-based desktop and server systems have become pervasive in today’s
world. Some estimates indicate that there are more than 150 million systems
based on Intel processors in the marketplace. In most large corporations, an
Intel-based system tends to be a fat client. That is, they are computers with
local, persistent storage, such as a hard disk drive. The operating system,
such as OS/2, Windows 95, or Windows NT, is often stored locally. User
applications might also be stored locally as well. Although this allows some
degree of flexibility and independence from problems with the network, this
fat client configuration can result in increased administrative and support
costs, especially for a large corporation with thousands of PCs in their
departments.

Companies are looking for ways to control the costs associated with the
management of operating systems, data and application software stored on
local hard disks of end-user systems. One solution is an IBM software
solution, released in 1997, called WorkSpace On-Demand.

WorkSpace On-Demand is a network-centric operating system which allows
the client to be an Intel-based PC, yet have characteristics like RISC-based
network computers (such as the IBM Network Station). For example, a
WorkSpace client gets its operating system, applications and data from
servers on the network. This can result in great cost savings because many
clients can use the same operating system and application image that resides
on a particular server. Saving data and updating operating systems and
applications become much easier because there only one image to update,
instead of updating each system individually, as in a fat client environment,
which can take weeks if you have thousands of clients to update. Another
benefit is that customers can run their existing applications on this enhanced
platform.

In addition to a centralized source for operating systems and applications,
WorkSpace On-Demand allows the administrator to restrict end-user
18 Designing Java Applications for Network Computers

functions such as desktop bitmaps, colors, and color selection. The tendency
for users to engage in unneeded tailoring and configuration is decreased, and
the consistency of the user interface is increased.

WorkSpace On-Demand allows companies to continue using their DOS,
Windows 3.x, OS/2 and Java applications in a structured environment, which
can save money through reduced support costs. For additional information
about WorkSpace On-Demand, refer to the redbook titled WorkSpace
On-Demand Handbook, SG24-2028.
Network Computing and Java Environment 19

20 Designing Java Applications for Network Computers

Chapter 2. Network Computing Framework

So now that you have a better understanding of the NC, what solution are you
trying to build with it? The application of the Network Computer and the Java
language to your solution can be much better understood by stepping back
and taking a look at the big picture of Internet and Intranet business
applications: e-business. This powerful combination is the integration of the
easy access and reach of the Web with the strength, reliability and security of
your existing IT. To address the complex issues of developing e-business
applications, in April of 1997, IBM and Lotus announced IBM’s Network
Computer Framework (NCF). This chapter highlights many of the powerful
ideas, detailed in numerous NCF white papers, that you should understand
before developing an e-business solution. These white papers can be found
from the following URL:

http://www.software.ibm.com/ebusiness/

2.1 Overview

The Network Computing Framework is a dynamic, proven model built from
experience with customers that provides a strategy and technology vision for
e-business. It describes many of the tools, methods and standards you can
implement in order to deploy Web-based business application solutions
quickly, effectively and with a lower cost of ownership than the traditional
client/server paradigm. Many companies are including new platforms, such
as thin clients and mobile clients, and they are connecting more of their
extended enterprise, such as customers and suppliers. This requires
cross-platform technology that handles a variety of requirements and that is
manageable.

The NCF is based on open, industry Internet standards that allow you to
leverage the best technology available today, but also remain open to quickly
using new emerging technology.

Most companies have a large number of legacy systems where most of the
data are stored, such as mainframe databases. NCF also allows you to
connect to these existing databases, such as DB2 and IMS. Methods of
including transaction processing are also described.

NCF helps you define your environment as you transform from client/server to
network computing. See Figure 5 on page 22 for a graphical representation of
NCF Architecture.
© Copyright IBM Corp. 1998 21

Figure 5. Network Computing Framework

The NCF helps developers because it addresses many of the issues
confronting you in developing e-business applications:

 • Which technology should I choose?

 • How exactly do I build multi-platform applications?

 • How do I plan for a growing system?

 • How do I deal with security?

The NCF helps companies because it addresses these IT questions
confronting your systems management group:

 • How are new and existing applications connected?

 • How can I extend my intranet to include my supplier?

 • How can we maintain consistent application availability to our end users?

e-business Application Servicese-business Application Services

Web Application Programming Web Application Programming
EnvironmentEnvironment

Foundation ServicesFoundation Services Connectors

Network InfrastructureNetwork Infrastructure

Systems Management

Thin Clients

Web Application
Servers

Content

Business
Logic

Mainframe Servers

CICS
IMS
DB/2
22 Designing Java Applications for Network Computers

IBM created the NCF to help developers tackle the same issues you will
address when developing Java-based applications for the NC.

2.2 Basic NCF Principles

NCF was designed to handle a very complex network computing
environment. Fundamentally, it provides a way to generate new applications
that compliment and extend existing applications using industry adopted
standards such as HTTP, IIOP, TCP/IP, CORBA, and SSL with Java and
technology.

NCF is based on these principles:

 • Connect people to processes and information efficiently.

This means that the business processes involving a human being are
taken into account when designing a system. Applications like on-line
catalogs need to connect to processes like order entry.

 • Distribute work between clients and servers, lowering cost of ownership.

Instead of a single monolithic application, the bulk of the business logic
is designed to be processed by a powerful server. This allows the use
of much thinner clients such as the NC, or even hand-held devices,
which can lower the overall cost of deployment. These clients do not
need local software installation or data backup.

 • Link network computing solutions to existing applications and data.

Even though you are about to tackle a Java project for the NC, you
probably work in a company that already has an existing IT application
suite with one or more databases. Most likely it will be necessary to
connect to these systems. The NCF relies on Java servlets to connect
to these back end systems. In addition, NCF relies on Java
EnterpriseBeans to be the workhorse for these connections and to
integrate into Java visual development tools.

 • Provide a consistent programming model that empowers development
teams while reducing costs.

Developing applications for multiple platforms can be a complex task.
The NCF relies on Java, which is platform independent. As a
developer, you can work in your favorite editor on your favorite tool
without the concern for the run-time environment. In addition, since
Java is object-oriented, and therefore based on the principles of
re-use, it is easier to build a single enterprise-wide business object
model which can address the needs of many IT projects, thus reducing
costs.
Network Computing Framework 23

 • Measure e-business solutions with the traditional IT benchmarks: security,
reliability, scalability, manageability.

The difference between simple sandbox examples and full scale
production lies in the system’s robustness. NCF addresses the fact that
the nature of e-business applications dictates that the applications will
deployed and managed on a large scale and will be supporting the
company’s business process.

 • Flexibility is important.

As you already know, the pace of Java technology is screaming fast.
This means that new technology is being announced everyday. We
know that you must put a stake in the ground and start your
development process, otherwise you will keep waiting and waiting for
stability that never comes. You can expect that as you begin your
development, you should pick the current technology which best fits
your solution, but that you will need to make changes to support
unplanned growth. The NCF addresses the fact that the flexibility is
important.

 • Open standards and interoperability for communication, data access,
content, services and applications.

Even though IBM has a complete suite of products that supports the
NCF, the products use common internet standards that allow for the
use of other open implementations. It is important that you have a
choice from variety of providers for these products.

 • Model for future development.

We expect that as the Internet technologies emerge, the NCF will be
able to incorporate them into this e-business model.

2.3 Building NCF Solutions

The ultimate goal of the NCF is to enable you to develop business solutions
that take advantage of the Internet technologies. The following discussion is
intended to put your particular solution into a broader context as you probably
have a specific problem to solve using Java and the NC. To help, we can sort
the different types of solutions into three categories to highlight common
requirements:

 • Content Management Solutions

 • Collaboration Solutions

 • Commerce Solutions
24 Designing Java Applications for Network Computers

2.3.1 Content Management Solutions
These solutions are generally focused on better ways to leverage your
company’s information:

 • Applications that deliver general information that may change often but
may have been distributed previously on paper medium through the
company’s internal mail. Corporate Intranets that provide useful
information to employees, such as personal benefits programs, are a good
example.

 • Applications that advertise a presence on the Web. Random web-surfers
will come into contact with these web pages by using powerful search
engines that are widely available. The content on these pages can be
static or it can be dynamically created for a specific user.

 • Applications that provide access to a product line. These applications can
often be used as a way for Internet users to order a specific product.
Therefore, the application must be integrated with the company’s order
processing model.

 • Applications that provide a means of managing a company’s business
operations such as defining product specifications, inventory planning, or
shop floor production.

 • Applications that manipulate multimedia files such as medical image
records or CAD engineering plans.

 • Applications that deliver encrypted, secure digital content

2.3.2 Collaboration Solutions
These solutions are generally focused on better ways for teams to work
together:

 • Any type of communication system that uses a messaging metaphor such
as e-mail.

 • Human resource solutions that require authorization like expense
accounting.

 • Project coordination solutions like task scheduling or document sharing.

 • Intranets and Extranets that link development teams to external vendors in
order to make the complete business process more efficient.

2.3.3 Commerce Solutions
These solutions generally focus on better ways of working with customers,
suppliers and partners:
Network Computing Framework 25

 • Web sites that offer very personalized content based on extensive
knowledge of a customer’s preferences.

 • Web sites that provide self-service buying or selling of products 24 hours
per day.

 • Web sites that provide online support to handle customer problem
resolutions or a group discussion forum.

 • Web sites that improve the coordination among businesses in a supply
chain.

2.4 NCF Architecture

It should be clear that any solution for e-business (including yours) requires a
flexible and extensible architecture that can scale to provide many users with
simultaneous access to application services. The NCF addresses these
issues by using an n-tier distributed application environment. In this model,
the application is de-constructed into separate components that communicate
with each other across the network. Each software component specializes in
a particular role and is deployed on the appropriate hardware. A typical model
defines three tiers as follows:

 • A client is responsible for the presentation of data and for sending service
requests to the application server. The Network Computer running Java
applets would be positioned at this tier.

 • An application server is responsible for the processing of business logic
and for retrieving or saving data from the enterprise server. One
application server should be able to handle many client requests
simultaneously. Web Servers running Java servlets with EnterpriseBeans
would be positioned at this tier.

 • An enterprise server is responsible for the management of data and
transactional applications. One server should be able to handle many
application server requests simultaneously. Large data stores such as
DB2 would be positioned at this tier.

The flexibility of the architecture lies in the fact that the components are
interconnected through industry-standard Internet protocols. The extensibility
of the architecture lies in the use of an object-oriented language such as
Java. The scalability of the architecture lies in the distribution of the
application onto several machines. To the end-user, the application and
enterprise servers are being accessed through a single user interface on the
client.
26 Designing Java Applications for Network Computers

Figure 6. Logical Three-Tier Environment - NC to a Web Server to a Database

2.4.1 Key Elements
The industry-standard Internet protocols allow for a plug-and-play approach
by using components from different vendors. The following are the key
elements that compose the NCF:

 • Clients

 • Network Infrastructure

 • Foundation Services

 • Connectors

 • Web Application Programming Environment

 • Development Tools

 • Systems Management

 • e-business Application Services

2.4.2 Clients
The client element provides the end-user with universal access to application
services using a thin client model, such as one that follows the Mobile
Network Computer Reference Specification. These clients should rely on a
just-in-time mechanism for delivery of software components. This can be
accomplished using HTML, dynamic HTML, XML, Java applets, and through
the use of protocols like HTTP, IIOP and RMI.

Web Browsers are fundamental in implementing the NCF client element
because they are the ultimate thin client, and can be used to deliver content
and services by downloading web pages with embedded applets from the

Network Computer
Web Server

 Database

Data Presentation

Business Logic

Transaction and
Data Storage

JDBC ODBC

TCP/IP

Servlets

TCP/IP

HTTP
Network Computing Framework 27

network when needed. This can be key to managing deployment from a
central server. This approach also provides a lot of variety in user access and
as such can provide a painless way to migrate from a simple web page using
static HTML toward a complex web page using a Java applet with distributed
objects. End users are generally unaware of these continuous deployment
activities, other than the changes to the user interface as they see it.

A consistent programming model using Java does make your life easier.
Since a distributed object application using Java employs the use of the same
business object model on both the client and the server, you can save on both
development and maintenance efforts.

Information exchange between application functions is encouraged through
the use of JavaBeans and the Lotus Infobus technology. JavaBeans can
participate on the bus by providing or receiving data. In this way, a
spreadsheet application can collaborate with a charting application.

2.4.3 Network Infrastructure
The Network infrastructure plays an important role in the NCF, since networks
today are increasingly global, and can span two or more companies, crossing
insecure networks. It is built on TCP/IP, and provides services, such as:

 • Network

 • Security and Directory

 • Host Integration

 • Mobile Enablement

 • Client Enablement

These services create the foundation of the NCF and are based on open
Industry standards.

Network services include intranet and Internet access. To ensure security
across the Internet, Virtual Private Networks (VPNs) can be established. This
is very important in communicating securely with customers and suppliers.
DHCP and DDNS services help minimize IP address and hostname
administration, and implementation of the IPsec protocol assists in
establishing VPNs. Web browsers can also provide high-level encryption of
data across a network using SSL. To enable high-capacity Web site requests,
routing mechanisms defined in the Network Infrastructure enable multiple
systems to handle the incoming workload.
28 Designing Java Applications for Network Computers

Security services are necessary for identification and authorization, enabling
and controlling employee access to important company data. Security
becomes even more important as people access information over insecure
networks. Security Services support a Public Key infrastructure (PKI), which
utilizes certificate-based authentication and encryption. Elements of security
services include logon, secure communications, access control and auditing,
data protection, non-repudiation, certificate services, and cryptography. The
NCF Security services include interfaces for JCE 1.2, access controls based
JDK 1.2, and JNDI.

Directory services are critical in the NCF, especially with the increase in
distributed and Internet-based computing. It is important to minimize and
eliminate multiple locations for the same information, such as employee data.
Directory Services elements include APIs and protocols such as LDAP and
Java Naming and Directory access (JNDI). Common schema, defined as a
part of this service, enables multiple applications to share the same objects,
allowing a single source for data. Meta-directory functions allow
synchronization across LDAP and non-LDAP repositories to ensure data
integrity and interoperability. LDAP repositories provide the actual storage
and retrieval mechanisms for information on the network.

Host Integration services are important because much of the world’s most
critical data still reside on mainframe systems, such as the S/390. To enable
access by Web-based users, such as employees and suppliers, Web
Applications Servers need multiprotocol support (including SNA access),
security interaction, universal client access, and a model for Web-to-Host
applications. These are provided or defined by Host Integration Services.

Mobile Enablement services allow access by the increasing number of
employees who work at multiple locations due to the dynamics of today’s
business requirements. Since relatively low-speed dial-up lines or wireless
connections are implemented, bandwidth management, wireless services and
network optimization are important. Agent services allow clients to work
disconnected, improving user productivity. Management services enabling
software distribution and remote command execution are important.
Mechanisms for data replication using selective criteria are critical for mobile
users.

Client Enablement services define a network-centric application model,
allowing universal client access for platform-independent applications that
are downloaded on demand as required by the client or the server. With this
in mind, services such as application preference, configuration management,
machine configuration management, user authentication, and systems
Network Computing Framework 29

management, all enable full client access and administrative control,
including the use of management architectures like Tivoli’s TME.

2.4.4 Foundation Services
In the multiple tier architecture, the server is responsible for performing the
work required for application service processing in handling the many client
requests. Like clients, the server can be flexible in its growth over time. The
NCF model provides the opportunity to integrate the server with additional
enterprise servers as required.

The NCF services are defined as the Web (HTTP) server, mail and
community, groupware, database, transaction and messaging services. All of
these services are accessible through Java classes or JavaBeans.

The Web server plays the key role in this architecture. It serves as the
integration point. Its main role is to accept requests and then invoke the
appropriate business logic to satisfy the request. When you add ORB support
to the Web server, objects on the client can send messages to remote objects
on the server. This is critical in supporting distributed object applications.
Through connectors, the Web server can link to existing enterprise
applications, data and systems.

Mail and Community services provide the electronic communications that
enable employees to share ideas quickly and to act as one unit. This includes
e-mail, calendaring, group scheduling, chat and newsgroup discussions.
Through the use of these technologies, businesses can establish closer
relationships within their departments, as well as with customers and
suppliers. The NCF supports these services through standard, open
protocols, such as SMTP, X.400, POP3, IMAP4, IRC, NNTP, LDAP, X.509
and iCalendar object models.

Groupware services include any service that allows a group to cooperate in a
virtual workspace by executing workflow processes. These services
specialize in integrating content from many sources and result in increased
team efficiency. Collaboration services like Lotus Notes integrate into the
NCF by providing the Lotus Notes API.

Database services are crucial in that they provide mechanisms to access a
database from the Web server environment. This allows you to use the
existing relational or object database to provide new service through
Web-based applications. These databases can contain traditional
record-based data, or they may also contain complex data structures such as
multimedia information. Access to these databases is provided by an API
30 Designing Java Applications for Network Computers

using Java and JavaBeans, and also includes access using SQL, SQLJ and
JDBC interfaces.

Transaction Services provide the robust, secure transaction environment
needed by production systems. Scaling the system to handle a growing client
base is done through replicating the server and load balancing. Keeping the
application service accessible to authorized users is done through security.

2.4.5 Connectors
Much of a company’s key data and large transaction-based applications
typically reside on an enterprise system. Access from the Web server to
these enterprise systems are provided by connectors. Since databases can
run on a middle tier as well, the connection may be needed locally, or to a
remote machine. The connector software, implemented as Java libraries,
provides the integration needed to make the NCF a complete end-to-end
model by linking the application services to the enterprise services.

Specifically, connectors can provide access to:

 • Relational and hierarchical data stored in databases, like DB2 and IMS

 • Application programs accessible through transaction systems such as
CICS, IMS and TXSeries by Encina

 • Object-oriented applications accessible through IIOP that support the
OMG object services

 • Industry applications from vendors such as SAP and Lotus

 • External services outside the enterprise

Since the Web applications that users run often require fast access to data
that may be on a host database, NCF includes support for open connections,
connection pools and connection management. More information about
connectors is available in Chapter 2.6.2, “Connectors” on page 39.

2.4.6 Web Application Programming Environment
The NCF describes a programming environment based on Java servlets and
JavaBeans. These are some of the components from which the developer
builds dynamic, transactional, secure Web-based business applications.
Services are provided that help promote the separation of the business and
presentation logic, which helps application developers dynamically adapt
their solutions based on user input and client device types. Some of the more
important aspects of the Web programming environment are described in
more detail in Chapter 2.5, “NCF Development” on page 34.
Network Computing Framework 31

2.4.7 Development Tools
Since the NCF is an open architecture, many tools can be used in the
development and implementation of e-business applications. Some of the key
tools offered by IBM are also described.

The IBM WebSphere Application Server Workbench provides a structured
visualization of all components of a Web application. There is a Windows
Explorer-like interface, with the application components shown on the left of
the window. This workbench has the capability of launching other tools for
viewing individual components, launching wizards to generate fragments or
elements of a Web application, check-in and check-out support for library
elements, and support for publishing elements of a Web application to a local
or remote Web server so that end users can utilize the new applications.

VisualAge for Java is a comprehensive development environment for Java
applications with support for both client-side and server-side development. It
has visual programming and debugging facilities, and tools for constructing
connector beans, which reduce the complexity in connecting Web
applications to relational data and external services.

VisualAge Java Version 2.0, announced in July 1998, adds a High
Performance Compiler (HPC), which is faster than other Just-In-Time (JIT)
compilers. It creates a static executable after a Java application is ready for
production, therefore bypassing the slower run-time conversion of bytecodes
to the native platform code. Another feature, the Insight Profiler, allows you to
see where your application is spending its time, allowing you to optimize the
most critical components of your application.

Since NCF is based on standard Java libraries and interfaces, you can use
VA Java or other development tools that use these standards.

NetObjects Fusion is currently the market leading visual development
environment for Web pages. It facilitates the creation of dynamic web pages
with HTML fragments and ScriptBuilder, a text editor with support for
Dynamic Server Pages (DSP).

2.4.8 Systems Management
Management of the many components in a distributed application
architecture that spans both an Intranet and Internet can be complicated. In
addition to traditional IT administration, tools are needed to provide feedback
and control of the run-time environment for servers, clients and applications.
The NCF model can provide a foundation to define and integrate these tools
into the system management process. The NCF Systems Management
32 Designing Java Applications for Network Computers

services define management agents, frameworks, applications and consoles
for the monitoring and execution of management activities.

In gathering information and resolving system issues, the aglet may provide
an interesting venue for automated systems management. Written in Java
and deployed onto the network, aglets are software agents that can move
from machine to machine, performing needed authorized services or
gathering data.

Servlets loaded by Web servers need to be managed and monitored. Secure
web administration tools in the form of Applets can be delivered to an
authorized client to provide universal access to systems management (IBM
WebSphere, formerly known as Servlet Express, has an administration tool
applet that manages and monitors servlets).

Named services provided by objects need to be managed in a distributed
object application architecture. Tools that control the deployment and
management of ORB-based objects are needed.

Tivoli is pioneering a collaborative management approach to distributed
systems management, where management across multiple enterprises
introduces new issues and levels of complexity.

2.4.9 e-business Application Services
As more businesses develop robust, secure application services, high-level
object-based commerce APIs built on these industry standard Internet
protocols will be needed. e-business application services will be defined over
time as companies develop even closer relationships with business partners,
vendors and suppliers.

One example of this type of service is the Lotus InfoBus. The InfoBus is a
certified 100% Pure Java implementation of a data exchange mechanism for
JavaBeans. It is a small Java API which allows applets, servlets or other
components to connect to a bus and exchange information with any other
entity on the bus. It is a mechanism for components within the same JVM to
communicate with each other. The users consist of data producers and data
consumers. The data can be spreadsheet information, the result of a
database query, or nearly any data type. For more information on the Lotus
InfoBus, refer to the following URL: http://esuite.lotus.com

IBM’s Net.Commerce software allows businesses to transform static product
information into dynamic, easy-to-use, searchable electronic catalogs. All the
tools needed to start selling products on the Web are included, such as a
store manager, where the catalog is created and maintained, a site manager,
Network Computing Framework 33

where you can create and manage entire online malls, a merchant server,
where customers can shop online and make queries about orders, and a
template designer, a Java-based Web page design tool with customizable
templates.

Another offering, Domino.Merchant, enables small and medium-sized
company to take advantage of electronic commerce. Domino.Merchant
includes all the tools necessary to develop an e-commerce application with a
minimal amount of Internet programming experience. This product includes
the base; the Domino Webserver.

2.5 NCF Development

Until now, we have described the NCF from an architectural perspective.
Let’s move this discussion from the abstract to the concrete. The NCF
architecture defines the specifications of key element types, but any one
element does not require a specific vendor’s implementation or technology.
Therefore, as a developer, you have a variety of options to choose from for
each component. Multiply this out to include integration with exiting IT
systems, and you can see that there is a large list of possible combinations of
web-based technologies to create a single e-business solution. The goal of
this section is to define the strengths of particular NCF-based Java
technologies. Any of these technologies can help you implement your Java
and network computing-based solution.

2.5.1 Dynamic Web Applications
You are probably familiar with static HTML web pages, where every user sees
the same information. Perhaps it gets updated periodically by the owner, but
essentially your Web browser is loading a file stored on a remote Web server.
If you have ever used a web page containing an HTML form, the results of
your ’submit’ action are displayed as an HTML-based web page that was
generated immediately by a process on the Web server, and then loaded by
your browser as if you had followed a link there yourself. This is dynamic
HTML. The web page that is produced will vary per request because the
information on the form will likely vary from user to user.

The design pattern is that of a factory that produces an HTML product to
order. In the past, the mechanism for assembling the HTML pieces has been
to write CGI-BIN programs, but the preferred NCF method is to use
server-side include (SSI). In this method, HTML servlet tags are used to
indicate that the section of the web page between the tags will be produced
by a specified servlet identified by an URL. In the case of a form, the servlet
34 Designing Java Applications for Network Computers

is specified as the recipient of the form’s action event. The servlet URL is
invoked via HTTP by the browser with the form parameters the user had
entered using either a GET or POST method.

The real advantage is that the servlet is written in Java and therefore has
access to all of the NCF services available as Java APIs and JavaBeans that
we have discussed. As Java objects, servlets are also capable of using RMI
or ORB-based object services. It is clear that combining these elements
together can satisfy the requirements for developing an e-business
application that is integrated with the enterprise system.

2.5.2 JavaBeans
Within the Network Computing Framework for e-business (NCF), there is an
NCF architecture that includes the concept of using a consistent
programming model based on Java and associated technologies. JavaBeans
is one of those major technologies used to implement the Java programming
model.

Put simply, JavaBeans are reusable software components for use in the Java
programming environment, introduced with the availability of the JDK 1.1.
Because Java is platform-independent, JavaBeans are thus platform neutral.
Beans are "drag and drop" components that can be deposited into an
application during the development process. This places a requirement on
JavaBeans to be structured in such a way that they cooperate with the
development tools that will manipulate them.

JavaBeans must be developed according to the requirements specified in the
JavaBeans 1.01 specification. This specification was developed with
contributions from an industry-wide group that included IBM, Lotus, Sun,
Netscape, Oracle, Corel, and many others. (Note that, at the time of this
writing, a later release of the JavaBeans component model specification,
code-named "Glasgow", was nearing completion. Search the Sun
Microsystems Web site, http://www.java.sun.com for more information about
Glasgow.)

JavaBeans have three important foundation pieces:

1. Properties (discrete named attributes)

2. Normal Java methods

3. Events generated to inform other beans of a change to this bean’s
internal state
Network Computing Framework 35

By following the design and programming conventions outlined in the
JavaBeans specification, JavaBeans developers create beans that can
interact with each other (via event notifications) according to an
application-specific predefined protocol. Strict adherence to the conventions
(outlined in the JavaBeans specification) is what provides the ability for
developers to combine beans that come from multiple sources into a single
application.

This book will not teach the reader in detail about how to do JavaBean
programming. Many fine books exist on that subject already, and the reader
should consider reading one or more of those as a required prerequisite for
reading this book (for example, the IBM redbook, Cooking with Beans in the
Enterprise, SG24-7006). We will briefly discuss some of the important IBM
VisualAge Java programming procedures used to develop our examples that
use JavaBeans.

2.5.2.1 How Do JavaBeans Relate to NCs?
JavaBeans are created using Java classes. The JavaBean classes are just
designed following the JavaBean guidelines. "Normal" classes can
communicate using RMI or CORBA, and so can JavaBean-based classes.
Just like "normal" Java classes that can be downloaded to an NC for
execution as part of an applet running on the NC, JavaBean classes can also
run on the NC. An applet can be designed to use its JavaBeans to
communicate with other JavaBeans across the network using RMI or
CORBA.

2.5.2.2 NCF Programming Using JavaBeans
The NCF programming model focuses on object re-use and as such relies
heavily on the use of JavaBeans. The JavaBean programming model is so
useful that IBM designed all NCF connectors and services to be exposed as
Java classes and/or JavaBeans. Any NCF development tool should
accommodate the creation of JavaBeans and access to exposed NCF
services through NCF-supplied JavaBeans.

2.5.3 Enterprise JavaBeans

2.5.3.1 What Are Enterprise JavaBeans?
The Enterprise JavaBean (EJB) architecture is a cross-platform architecture
that specifies conventions for building distributed, multi-tier Java applications.
EJBs are not a product. Instead, EJB support must be built into software
development tools to help in the creation of individual EJBs. EJB is new,
having been announced in March 1998, and the V1.0 specification is
available. At the time of this writing, VisualAge for Java Version 2.0 does not
36 Designing Java Applications for Network Computers

support EJBs, but a future version is expected to add support for this
important new architecture. Being able to support new functions and
architectures is very important for the NCF.

2.5.3.2 Enterprise JavaBeans and CORBA
JavaSoft has adopted the CORBA distributed object model, per its June 1997
announcement. The Enterprise JavaBean architecture is compatible with
CORBA. The EJB architecture specifies mappings to the CORBA APIs, so
the EJB developer uses Java APIs, not CORBA APIs.

JDK 1.2 is expected to include a CORBA/IIOP ORB as a standard extension.
JDK 1.2’s development environment will provide the capability of generating
Java-based CORBA stubs and skeletons from IDL. This is also mentioned in
Chapter 5.3.3, “RMI over IIOP” on page 117.

2.5.3.3 Do Enterprise JavaBeans Relate to NCs?
Enterprise JavaBeans (EJBs) don’t directly relate to NCs. EJBs provide a
model for the development of server-side applications. A frequently used
analogy is that JavaBeans are used in the development of client-side
applications, while EJBs will be used in the development of server-side
applications.

The EJB architecture provides a standard mapping of the EJB protocols onto
CORBA, thus allowing for the use of CORBA-based servers. So, applets that
run in a CORBA environment on the NC will eventually be able to
communicate with servlets that do contain EJBs.

2.5.4 Developing e-business Applications
Developing an e-business solution requires a variety of roles and tools. A
complete web-based application will involve authoring web pages, developing
JavaBeans, applets and servlets and managing the assembly of these
components into a working system.

As your solution development scales in resources, managing the repository of
e-business elements will require traditional IT administration that handles
version control and change management.

2.5.4.1 Content Authoring Tools
Content authoring tools create and manage multi-media content like
graphics, image, audio, animation and video. The NCF supports tools that are
based on the industry-standard formats like HTML, GIF, JPEG, and MPEG.
Network Computing Framework 37

2.5.4.2 Integrated Application Development Environment
Integrated development environments (IDEs) allow a developer to build and
test complete distributed, Java-based, networked computing applications.
Team IDE environments allow many people to collaborate on the same
project in a more efficient way. Enterprise IDEs provide additional services for
developing and testing access to data stores and transactional applications.

2.5.4.3 Content Assembly and Management
Content assembly tools bind the NCF elements together. Web pages can be
constructed from a palette of Applets and Servlets that implement the
JavaBean interface. Using a visual construction method, the NCF elements
can be dropped onto an abstract space and connected using exposed
services.

2.6 Software

IBM and other vendors offer a portfolio of products that support the complete
NCF model. These products include the key elements that the NCF is built
upon such as servers, connectors, network infrastructure, systems
management, tools and clients. The following sections describe some of
IBM’s NCF software products for e-business.

2.6.1 Servers
This section describes some of the software servers related to the NCF
model.

2.6.1.1 Domino Go Webserver
This product provides Web services that integrate well with network computer
applications. It includes a Java Virtual Machine to run sServlets and an ORB
to provide IIOP access to CORBA objects. Its infrastructure is based on
HTTP, LDAP and SSL protocols.

2.6.1.2 Apache HTTP Server
The Apache HTTP server is one result of a collaborative software
development effort aimed at creating a powerful, enterprise-ready
implementation of an HTTP (Web) server. One unique item is that the source
code is freely available, which contributes to the fact that it is widely used. In
fact, a June 1998 survey by Netcraft found that Apache is the most widely
implemented Web server in production.
38 Designing Java Applications for Network Computers

2.6.1.3 IBM WebSphere
Formerly known as ServletExpress, this product is a plug-in to Domino Go
Web Server and provides a Servlet engine that supports HTTP session
tracking and some extensions to the Java IDL ORB. According to a June,
1998 announcement, IBM is including the Apache HTTP Server in
WebSphere, in addition to the Domino Go Web Server.

2.6.1.4 Lotus Domino Mail
This product provides e-mail, newsgroups, chat, calendars and scheduling
services. Its infrastructure is based on LDAP, X.509 and SSL protocols.

2.6.1.5 Lotus Domino
This product integrates with Lotus Domino mail and provides workflow and
collaboration services. Lotus Domino also provides an application framework
that supports Web content management, commerce and push technologies.

2.6.1.6 IBM DB2 Universal Database
This product supports enterprise services for storing data and multimedia
objects and services for querying and online transaction processing. The
database supports Net.Data, Java and JDBC.

2.6.1.7 IBM Transaction Series
This product add CICS and Encina enterprise services for transaction
monitoring. This also includes Component Broker Connector, which provides
a full set of OMG object services.

2.6.2 Connectors
This section describes some of the software connection mechanisms
pertinent to the NCF model.

2.6.2.1 IMS
These connectors provide a link to transactions in IMS from the Web server.

 • WWW Templates
 • IMS Web
 • IMS TCP/IP OTMA Connection
 • IMS Client for Java

2.6.2.2 e-Network Host on Demand
This product is an Internet-to SNA connectivity solution that provides
standard Telnet 3270 application access through a Java Applet.
Network Computing Framework 39

2.6.2.3 CICS Internet Gateway
This product translates the output from CICS into HTML through the use of
CGI scripts from a Web server.

2.6.2.4 CICS Internet Gateway for Java and CICS Clients
This product provides access to CICS from any Java-enabled Web client.

2.6.2.5 DCE Encina Lightweight Client
This product extends a company’s DCE and Encina-based installations to
include the Web.

2.6.2.6 MQSeries Internet Gateway
This product links Internet-connected Web browsers with MQSeries
applications.

2.6.2.7 MQSeries Client for Java
This product provides a Java API to access MQSeries applications.

2.6.2.8 Net.Data
This product allows Web developers to build dynamic Internet applications
using Web macros. It also provides database connectivity to information
stored in flat and relational files.

2.6.2.9 Lotus Domino.Connect
This product provides access from Lotus Notes applications to existing data,
transactions and applications such as IBM DB2, CICS, IMS, MQSeries and
SAP R/3.

2.6.3 Clients
There is an extremely wide variety of clients available that support the NCF
client model. IBM offers the following:

2.6.3.1 Network Station
As described in Chapter 1.2, “A Network Computer—The IBM Network
Station” on page 2, the IBM Network Station meets the requirements of the
NCF client model.

2.6.3.2 Workspace On-Demand
This product includes Java Virtual Machine Version 1.1, which can run Java
applets and applications and can utilize the standard application
communications in a distributed network. For a brief discussion of
40 Designing Java Applications for Network Computers

WorkSpace On-Demand, see Chapter 1.8, “Network Computing using
WorkSpace On-Demand” on page 18.
Network Computing Framework 41

42 Designing Java Applications for Network Computers

Chapter 3. Application Example - WorldWide Trucking Company

This chapter provides background information about an imaginary business
environment that is used to help illustrate the concepts outlined in this
redbook.

3.1 Programming Introduction

This chapter describes a small collection of simple Java-based applications
to demonstrate some of the key concepts of this redbook. The examples are
purposely kept very simple so that the code excerpts can focus on these key
concepts. Of course, real applications would be much more complex in terms
of their business logic, design and error handling capabilities. The code
relating to this book’s core concepts (use of JavaBeans, CORBA, and so on)
is coded just like it would be for production applications. Your code will
definitely need to contain these lines to function in a Java-based distributed
object environment.

3.2 WorldWide Trucking Company

WorldWide Trucking Company (WWTC) is a multi-national transportation
company that owns a fleet of trucks that deliver cargo across state and
national boundaries.

WWTC is a modern company that needs to keep their operation costs low in
order to remain number one in their field. In the past, they relied heavily on
doing business over the telephone to accomplish their daily business
operations. This approach required personnel to cover the phones and
perform the required duties. To cut costs, WWTC has been asking their
Information Technology (I/T) department to develop computerized solutions to
automate portions of their daily business operations.

In the past, WWTC had been using PCs in their company running
applications on the IBM OS/2 and Microsoft Windows NT platforms. WWTC’s
programmers in the I/T department were knowledgeable object-oriented
programmers who could create distributed client -server applications. The
servers were often IBM RS/6000 systems running AIX (IBM’s UNIX
implementation). WWTC had been big users of IBM’s CORBA-compliant
Distributed System Object Model (DSOM) and IBM’s VisualAge C++.
Application Example - WorldWide Trucking Company 43

WWTC’s I/T department made a business decision two years ago to move
their application design and development efforts into an approach that
emphasized:

 • Using Network Computers (NCs) for base hardware platforms

 • Using Java as the development environment

 • Emphasizing the use of open industry standards (CORBA, Enterprise
JavaBeans, and so on)

The I/T department decided that the environment outlined above (illustrated
in Figure 7 on page 44) was both robust (use of open standards guaranteed
many choices for software vendors) and cost-effective (NCs were expected to
lower WWTC’s total cost of ownership). They chose to use components from
IBM’s Network Computing Framework (NCF) for e-business because many of
its components were based on the open industry standards (CORBA, Java,
and so on) developed by IBM and other industry leaders.

Figure 7. WorldWide Trucking Company’s NC-Based Computing Environment

Internet

Information Technology
Department

Java
Development
Environment

WWTC Customers

WWTC
NC

Contract Trucking Companies

Dispatching Department

WorldWide Trucking Company

Contract Company
NC
44 Designing Java Applications for Network Computers

WWTC uses NCs internally in their business operations, and they often give
one or two free NCs to important customers as an incentive for those
customers to do business with WWTC. The customers use the NCs as
gateways into WWTC’s business software environment. WWTC feels that it
makes good business sense to focus the customer on WWTC as the supplier,
so WWTC adds physical advertising labels to the NC box identifying WWTC
as the source for all their transportation needs. See Figure 8 on page 45 for a
representation of this environment.

Figure 8. WWTC Customer NC Connectivity

NCs can be configured to download an aApplet as part of the download of the
NC’s boot software when the NC is turned on. This helps simplify the use of
the NC at the customer site, because the desired Applet is started without
user intervention. Furthermore, WWTC often embeds their corporate logo into
the main splash screen for many of their Applets.

WWTC CustomerWorldWide Trucking Company

WWTC Truck Scheduling/Pickup
Application

Scheduling Server

Scheduling Application at Customer Site Communicates with
Scheduling Server at WWTC

Network

Network
Application Example - WorldWide Trucking Company 45

WWTC also felt that there was good technical justification for giving away
some free NCs. By supplying these seed units, WWTC helped set technical
standards for the customers regarding the technical requirements (processor
speed, RAM amount, and so on) needed for NC power. This practice also
helped WWTC software designers and developers with a technical profile for
the client machines that their software might run on.

This chapter describes some of the applications that were created as a result
of the I/T department’s strategic decisions. An overview of these results is
shown in Figure 9 on page 46.

Figure 9. WWTC’s General Business Software Application Architecture

3.3 Transport Request Application

WWTC wanted to give customers an opportunity to use a software application
to request pickup and delivery of cargo. The transport requests are routed to
WWTC’s Scheduling department for execution.

WWTC created an Applet that could be run on the customer’s NC. The Applet
communicates with a server application on a computer in WWTC’s
Dispatching department. Using this application (see Figure 10 on page 47),
the customer requests a number of trucks to come to a specified location at a
specified time.

Servlet
VisualAge Java
Professional 1.0
Lotus Domino Go 4.6
Windows NT 4.0

Network Computer
Intel Server

JVM 1.1.4

Navio Browser

Applet

RMI

Future Implementation: ORB-to-ORB Communication

OS/2

Netscape
Communicator
4.0x
46 Designing Java Applications for Network Computers

Figure 10. Customer Pickup Request

WWTC’s dispatchers use viewing software (not described in this book) to look
at the request. For simplicity, we assume that WWTC always has enough
trucks available (either trucks they already own or trucks they can quickly
rent) to always approve the customer’s request for the specific number of
trucks. The real issue is time. When can WWTC get the trucks to the
customer? Can they get them there by the time requested by the customer?

The dispatchers look at the truck fleet’s current state (truck locations, driver
availability, and so on) to determine the time that they will commit to
delivering trucks to the address requested by the customer. The dispatchers
send that projected arrival time back (see Figure 11 on page 48) and wait to
see if the customer finds it acceptable and gives it final approval or if the
customer rejects the proposed time.
Application Example - WorldWide Trucking Company 47

Figure 11. WWTC Dispatcher Response to Pickup Request

Because WWTC gives great service, they usually agree to meet the
customer’s requested time or propose something very close to it. In the
unusual circumstance that the time is totally unacceptable, the customer can
just use the Reject button.

3.3.1 Application Re-Use
WWTC’s Dispatching department had previously indicated that they needed a
similar transport request capability when they rented additional trucks from
other trucking companies (see Chapter 3.4, “Truck Tracking Application” on
page 50 for an explanation of why WWTC sometimes needs to rent additional
trucks).

The I/T department deliberately designed the Transport Request Application
so that it could also be used by WWTC’s Dispatching department. WWTC’s
computer that runs the application communicates with a server on the truck
supplier’s computer. For example, WWTC dispatchers can run the application
to request trucks from the RedRyder U-Rent Truck Company. They simply
use the same pickup request information (customer address, requested
48 Designing Java Applications for Network Computers

pickup time, and so forth) that WWTC’s customer supplied in the original
pickup request.

Figure 12. WWTC’s Suppliers Use TruckDispatcher Bean for their Server

WWTC chose to share their bean design for the TruckDispatcher with some
of their preferred truck suppliers. This allowed WWTC to re-use the pickup
request Applet without changes. The preferred truck supplier used the
TruckDispatcher bean as the foundation for their server. They were free to
implement their own business logic regarding scheduling.

In the future, WWTC is considering automating the dispatching function by
capturing the business rules that control the scheduling of trucks. Then, when
requests come in from customers that require renting outside trucks, the
request will be evaluated and automatically routed electronically to
companies like RedRyder. Of course, the role of the physical dispatching staff
will not completely go away, since it is likely that some WWTC customers and
some truck rental companies may not choose to use WWTC software. Doing
business with those business partners will still require using the telephone.
Application Example - WorldWide Trucking Company 49

3.4 Truck Tracking Application

No trucking company can afford to own enough trucks to handle peak
shipping days, so WWTC only owns enough trucks for their usual shipping
requirements. When WWTC has more business than usual, WWTC will rent
or lease trucks from some other trucking company and contract with that
company for the delivery of the excess load.

These outside trucking companies have a contractual obligation to report the
location and status of their trucks to WWTC at least once per hour. WWTC
would prefer to receive updates more frequently.

In the past, the outside trucking company personnel simply called WWTC’s
Dispatching department and verbally told them where the trucks were. Now,
WWTC has developed a software application that is made available to the
outside trucking companies to let them update truck status via computer.

WWTC’s Dispatching department also uses the application to update the
status and location of WWTC’s own trucks. In the future, The I/T department
plans to extend this application to automatically accept radio telemetry
transmissions from WWTC trucks in order to remove the human data entry
activities.

Also, WWTC Customer Service personnel frequently use this application to
view truck status and location in order to advise WWTC customers regarding
truck arrival times. WWTC makes this viewing software available to its
customers, so that the customers can check the projected arrival times
themselves. WWTC customers appreciate the extra help that this viewing
capability provides as they plan their shipping dock activities.
50 Designing Java Applications for Network Computers

Chapter 4. Application Design Issues

As the WorldWide Trucking Company (described in Chapter 3, “Application
Example - WorldWide Trucking Company” on page 43) develops its
network-computing based application set and infrastructure, they must
inevitably resolve some of the issues described in this chapter.

The sections in this chapter describe potential problems that the application
designer faces when writing an NC-based application. In most (if not all)
cases, the designer of a PC-based application could conceivably face the
same challenges (limited RAM, limited or non-existent persistent storage,
network interruptions, power fluctuations, and so so). The key point is that the
NC application designer must face these issues every day for each and every
single application, and must plan for handling all of them.

The table below lists some of the issues when writing Java applications for
NC clients, and some of the possible resolutions to these issues. They are
discussed in more detail throughout this chapter.

Table 2. Application Design Issues for Network Computers

4.1 Thin Client

A thin client hardware architecture is one that has a minimum of local
resources. Notable by its absence in the NC configuration is a persistent local
storage medium, such as a hard disk.

The absence of local storage requires the NC to go to the network for its
resource needs. In the absence of persistent local storage, the NC must go to
the network to obtain, for example, its application software.

Issue Possible Resolution

Network-based Execution Keep software/data local to NC

Limited Local Resources Minimize Footprint

Limited RAM Download & present only needed
data

Multiple JDK Versions
Platform-specific behavior

Test, test, test

Transaction rollbacks Store state data on server

Maintaining session context User validation
Application Design Issues 51

Java application software is made up of class files that contain the software
and supporting files that contain the screen images, the beans and other
control information that contribute to the screen’s behavior. The cumulative
size of all these pieces when running in the client’s memory is referred to as
the Applet’s footprint. However, the amount of data (class files) that flows
across the network can differ from the applet’s footprint, depending on the
behavior of the application.

4.1.1 Issue: Limited Local Resources
When an Applet executes, all the files that provide its screens and
functionality are downloaded as required, one at a time, to the NC where they
will be used. Clearly, downloading these files one at a time can be a time
consuming operation.

There are other options available to the application designer that we will
discuss in the following sections.

4.1.2 Principle: Minimize Footprint Size
One easy way to reduce an Applet’s footprint, that is, the size of what needs
to be downloaded, is to compress the files into a more space efficient format
and then transfer the smaller files across the network when the applet begins
execution. A Java Archive (JAR), introduced in Java 1.1, is a compressed
archive of java class files used by an Applet. The mechanism used is similar
to PKZIP, and some versions of PKUNZIP may be able to view and
decompress JAR files, but we don’t recommend this method. A JAR file can
be decompressed by using the jar xf <jarfile> command.

The JAR file also includes checksum and manifest information, that is, the list
of files contained within it. During Applet execution on the NC, these
compressed file members of a JAR file are found quickly and are downloaded
in their compressed format to the NC, where the JAR file is then dynamically
decompressed, and requires no special interaction by the user. The time
savings of sending a compressed file across the network just once, instead of
for each class file, can be significant, especially as the class files get larger.

A JAR file can be created using the jar tool and must be prepared before the
run time of the application. At run time, the JAR file is downloaded through
the specification of the ARCHIVE= tag in the HTML.

4.1.3 Principle: Keep Software Local
The executable code for a Java application is found in the .class files. This
means that the JVM has frequent need for these files during execution. For
52 Designing Java Applications for Network Computers

example, each time a new object is created by the JVM, it needs the class
specification found in the .class file to create the object.

Since all the software that runs on the NC must be brought over from the
application server, it is sensible to keep locally at least those parts of the
software that are used repeatedly.

Here, again, the JAR file is a good solution to the problem of continuously
downloading fragments of the application at run time. If the JAR contains all
parts of an application that a user is likely to need, then the JAR needs to be
downloaded only once. When a new subsection of the application is entered,
it already exists locally. If the subsection of functionality needed by a user is
clearly defined, the JAR can be downloaded when the application is started
up and remain on the NC for the duration of the user’s session. This
minimizes the need for the NC to go to the network during execution of the
application for software resources.

4.2 Thin Data

Not all files used by an Applet are software. The software captures data from
the user, manipulates data, provides for data to be stored in a persistent form
and presents data to the user. But much of the data used by the NC software
must be brought across the network at run time in the form of files. In the thin
data concept, only the data needed by the NC are downloaded to reside in
memory on the NC.

4.2.1 Issue: Limited Local Space
Depending on the application, some data files can get large. The issue of
limited space on the NC can become an issue. With no persistent storage, it
is important to have sufficient RAM in the NC. Fat client solutions for data
manipulation are not optimal, and in some cases, will not work here.

4.2.1.1 Principle: Download Only What is Needed
To minimize network traffic and to avoid unneeded download of data to the
NCs, available storage requires a scheme where only the data needed by the
NC to perform its current task are downloaded. This requires identifying
exactly what data are needed for each task the Applet must perform. This
definition of the data usage will serve as a blueprint to determine what data
must be downloaded for each of the applet’s tasks.

For example, an Applet might be responsible for providing the functionality for
a user to capture data from the image of a scanned document. From the
Application Design Issues 53

scanned document, three pieces of information must be keyed: Customer
Name, Customer Address, and Customer Number.

In this example, the scanned image is the source data that support the entire
operation. This data must be downloaded to the NC at the beginning, to make
the image available to the user. The Customer Name and Address can be
retrieved directly from the image and this data should be uploaded to the
server and put into persistent storage as soon as possible.

Let’s assume the customer name must be verified before writing it to a
persistent medium, such as a data base. If the name fails the validation, the
operator might get a list of close matches to choose from. This list must then
be downloaded to the NC. For example, If only five names can be displayed
at one time, then one option is to download only five or six names at one time.
To be consistent with the thin data scheme, only the data to be displayed
should be downloaded.

4.2.1.2 Principle: Persist Reusable Data
While an Applet is executing on the client system, not all data are useful at all
times. Here again, a clear definition of what data are needed at what time
during the fulfillment of an Applet’s tasks is vital. If data are needed
intermittently during the execution of an Applet, there is no reason to keep
downloading it repeatedly. Reusable data should persist on the NC as long as
its persistence does not interfere with other operations, and it does not utilize
an excessive amount of memory.

In the data entry example described above, the scanned image is a case of
data that should persist on the NC. Because images represent a large piece
of data that are used intermittently by the applet, the image should be
retained on the NC until it is no longer needed. Even if the applet passes
control to another applet, the image file should persist until all the application
software is finished with it. When the data entry operator has completely
finished with the image, it can be discarded. But even when the image is
discarded, the class it was instantiated in can still persist and the next image
can be loaded into it. This saves the overhead of creating a new object for the
next image. Object persistence is covered in detail later in this chapter (in
Section 4.7, “Remote Object Persistence and Serialization” on page 62).

4.3 Portability

One of the Java programming language’s most salient features is its platform
independence. Although this is mostly true, Java is not independent of
54 Designing Java Applications for Network Computers

changes to its language releases or differences in the behavior of the
operating system the JVM runs on.

4.3.1 Issue: Different Versions of the JDK
Each new version of the JDK brings with it new functionality. The changes
included in each new version of a JDK are documented in a file called
“Changes” that is associated with each new JDK release.

The functionality provided by JDKs resides in classes. These classes can
then be used in application programs. A problem, however, arises when a
program that relies on new functionality is executed on a platform where the
JDK does not include the new classes. Clearly, if the classes do not exist in
the JDK, the application program cannot use them, and a "Class not found"
exception may occur. In such a case, the developer should handle the error
and gracefully inform the user. Downward compatibility in Java should always
be tested, not assumed.

4.3.1.1 Principle: JDK Version Control
When Java programs rely on functionality provided by specific versions of the
JDK, then this functionality must be provided on all the platforms on which the
programs are to run. This is a clear version control problem. When Java
programs begin to rely on parts of a JDK that do not exist in previous
versions, then the new JDK must be provided on the target platforms. These
means providing the new JDK on the application servers from which the
programs will be accessed by client NCs. Those personnel responsible for
development and maintenance of the Java environment for end users must
ensure that the JDK levels match between the development and the target
platform.

4.3.2 Issue: Different Behavior of Platforms
A Java program will run on any platform that has a JDK that is consistent with
the JDK under which the program was developed. Java provides this platform
independence by using a set of standard modules through which the JVM
performs all its interactions with the operating system. There is a standard set
of interface routines for each operating system platform on which a JVM can
run. The standard routines are referred to as standard because regardless of
the OS platform, they provide the same interface to the JVM. This standard
interface encapsulates the operating system and hides its implementation
from the JVM. The standard interface allows the JVM to be OS platform
independent.
Application Design Issues 55

Although the interface to the JVM is the same across OS platforms, the
implementation of the standard routines is platform dependent and, therefore,
varies slightly from platform to platform. In addition, the behavior of the
underlying OS itself also differs for a given operation.

The variations in behavior due to the implementation of the standard routines
and due to variations in the behavior of the OS can account for a significant
difference in the behavior of Java applets on different OS platforms.

4.3.2.1 Principle: Code Once, Test Everywhere
Testing is the only means of identifying variations in behavior and determining
if these variations are sufficient to constitute a deviation from the behavior
defined in the program’s specification. The discussion in Section 5.2.4.3,
“Considerations for Applet Programming” on page 79, is a prime example of
the need for this principle.

The Java standard routines for interfacing with the OS are part of the JDK.
This is significant because this allows the Java-based code files to be
platform independent. But, as described above, this platform independence is
somewhat debilitated by the differences in the behavior of standard routines
and the differences in the underlying operating system.

The Java code must be thoroughly tested for each operating system platform
on which it is to run. Because the implementations of the standard routines
vary between OS platforms, a Java program must be tested for possible
unacceptable behavior that results from these implementation differences.

4.4 Soft Failure

A soft failure is a software problem that occurs at run time, and where the
application is able to recover from the problem and eventually resume normal
operation, without significant user intervention. A common example of a soft
failure is when a Web browser is unable to access a desired Web page at a
particular time due to an inability to access the corresponding Web server,
but then later successfully makes connection to the server and displays this
page when the user requests it again.

In each of the following sections, the reader is advised to look at the potential
solutions as representing soft failures. There are no easy answers to adverse
operating conditions. The design goal should be to reset the application to a
known state or (when reset is not possible) to gracefully terminate the
application in a manner that encourages the user to restart the application.
56 Designing Java Applications for Network Computers

However, failures and bottlenecks will still occur. Soft failures will be affected
by certain immutable NC characteristics (by today’s standards):

1. No persistent local storage

2. Dependence on network availability (a dead network means no place to
load applications from)

It is the responsibility of the application designer and programmer to
determine a suitable course of action when these inevitable events occur.

4.5 Transaction Processing

WorldWide Trucking Company (see description in Chapter 3, “Application
Example - WorldWide Trucking Company” on page 43) is a
transaction-oriented business. Virtually everything that happens during their
daily business operations is structured as a transaction. Examples include:

 • Updating truck status and location

 • Scheduling cargo pickup

 • Transmitting customs documents

As WWTC became a heavily object-oriented design and development shop,
they found themselves operating on object states. They needed a way to
reliably control the state of an object. Direct manipulation of relational
database records became less important as the records became "wrappered"
by objects.

4.5.1 Issue: Transaction Rollback in a Diskless Environment
As WWTC started developing applications to run on NCs, they noticed some
differences between developing transactions for PC-based applications
versus NC-based applications.

The chief difference involved the lack of persistent storage on the NC. NCs
simply have no hard disks. Although many NCs do include a PCMCIA card
slot, and there are PCMCIA cards available that are essentially small 100 MB
hard disks, developers can not count on these slots being on a particular NC.

As long-time database programmers, the WWTC staff was accustomed to
issuing begin_transaction, commit_transaction and rollback_transaction
commands inside their programs. Of course, these transactions were taking
place on a remote database server machine. If the client application stopped
functioning, then eventually the database management software on the
server would time-out the transaction and automatically roll-back the
Application Design Issues 57

in-progress transaction. No problems here with migrating to NCs, because all
the rollback work is done on the database server. The use of an NC didn’t
change that situation.

The real issue was how to do rollbacks on object states when those objects
resided directly on the NC. In the last few years, WWTC programmers made
frequent use of CORBA Object Services, particularly the Common Object
Specification’s Transaction and Concurrency Services. These services
provided standard methods for starting and completing transactions on an
actual object. CORBA doesn’t require that the object represent something in
a physical database. It can just as easily be a RAM-based object on the local
client computer. That is the beauty and strength of the CORBA transaction
model. You can execute transactions on any object that provides transaction
commit and rollback support. It is up to the object’s designer to determine
what a transaction commit or rollback means for that particular class of
objects.

The problem is that most developers use the hard disk to store object state
while a transaction is in progress. Then, if the transaction hangs (for
example, somebody turns off the computer), the object’s previous state can
be restored from the disk when the application is restarted. On an NC, there
is no disk, so this approach doesn’t work here. So, how do we address this
problem?

4.5.1.1 Principle: Don’t Depend on Rollbacks for NCs
The rollback problem, where it depends on a hard disk on the local client
computer, can’t be directly solved. However, there are other options:

1. Store object state on a remote node that does offer persistence.

Request storage of object state data in a persistent environment. The
client application that wants to receive the restored state must explicitly
ask the storage node for the stored data. In most cases, this will be a
Java application server, possibly the same server conducting the
transaction.

Disadvantages:

 • Increased network traffic

 • Dependence on remote node availability

2. Respond to externally initiated rollbacks

The client application on the NC receives a rollback notice that includes
needed state data to restore object state. This is a variation on the first
alternative. Here, you send (publish) object state data to any interested
58 Designing Java Applications for Network Computers

party that has registered (subscribed) to receive object state data
updates. Any of these registered parties (subscribers) can then ask the
NC client application to rollback the object to the state specified in the
rollback request.

Disadvantages:

 • Increased network traffic

 • Increased overhead in managing subscribers

 • Increased application complexity (can be mitigated somewhat by
using event notification software, such as IBM’s MQSeries)

 • Need to coordinate application’s rollback activities with ongoing
application user’s interaction with application. Must notify user when
an external rollback has occurred.

3. Prompt user for correct state verification

As you can see, implementing rollback capability in an NC environment is not
a trivial matter, and avoiding rollbacks, if possible, is preferred.

4.6 Session Context

As users interact with a software application (Web-based or otherwise), they
expect the application to progress in a logical fashion that maximizes user
efficiency and minimizes wasted time. At any given time, the sum of the
users’ actions in running the applications up to that time have put the
application into a certain state. This combination of user actions and current
application state is session context.

Applications should empower the user. In this regard, the user expectations
are the same when running on an NC or a PC. Are there any problems
meeting these expectations on an NC?

4.6.1 Issue: Providing Session Context for NC-Based Applications
Web-based applications and data are frequently accessed by browser
software (for example, Netscape Navigator or Internet Explorer). If a browser
user is willing to type in URL locations, then that user can choose to directly
jump from one site to another without any thread of logic connecting the
jumps between sites.

Usually, for an application to help the user along, and to present data to the
user in an organized fashion, the designers of the application will choose to
Application Design Issues 59

track the user’s actions and to anticipate logical user responses to certain
situations.

When something interrupts a user session (loss of network, local node failure,
and so on) a typical user may expect to resume work where it was left off
before the interruption. However, NCs generally do not resume an application
after a power failure, since everything must be loaded from the server,
including the boot files. They can be configured to automatically load and
start a particular application whenever they are turned on (which would start
an automatic application download as part of the NC bootup).

Usually, session context is maintained by saving it to the local hard disk
during a user session. NCs can’t do this because they have no hard disk. In
many ways, this session context issue is just a more complicated variation of
the transaction issue described in Chapter 4.5.1, “Issue: Transaction
Rollback in a Diskless Environment” on page 57. Again, if a session context is
required, this must be saved at a server, which means that the developer
must take this into consideration when developing the Java application.

4.6.1.1 Cookies: A Common, but Unacceptable Solution
As Web-based applications became more interactive, using HTTP with CGI
allowed developers to create a more interactive environment. CGI let Web
servers connect your client applet with back-end server-based applications
that could perform some needed task and return information regarding the
results.

But still, HTTP and CGI are stateless environments. The server essentially
sends the response and then "forgets" about the client as it gets ready to
respond to any request from any client out on the Web. How can we maintain
some semblance of session context? One solution was to have the clients
maintain some knowledge of their current state and to pass that state
information to the server on each communication via cookies.

A cookie is an invisible piece of data maintained by the client and passed to
the server to help the server identify pertinent information about the particular
client that sent the cookie. The cookie contents influence the actions that the
server software will take. The user may never see the cookie. There are other
"hidden field" variations on this approach that hand data back and forth (for a
discussion of this, refer to Orfali, Robert and Harkey, Dan, Client/Server
Programming with Java and CORBA, 2nd Edition, John Wiley and Sons, Inc.,
New York, NY, 1997, pp. 36-37).

This type of approach bothers some users because they have security
concerns about their personal data being sent around the Web. Further, some
60 Designing Java Applications for Network Computers

cookies are stored on the client’s hard disk to be used the next time that
particular client application is started. Some users may have concerns about
such data being stored on their machine. Also, the NC doesn’t have a fixed
disk to store the cookie locally.

Cookies could also be server-based. Upon initial contact, the server could
attempt to identify a client and see if the server already holds a cookie for the
client from some previous session. The task of correctly identifying the client
is up to the implementation of the developer. Cookies are not a preferable
solution for providing session context.

4.6.1.2 Principle: Verify and Validate Current Session Context
In addition to adapting some of the transaction-related alternative ideas
outlined in Chapter 4.5.1.1, “Principle: Don’t Depend on Rollbacks for NCs”
on page 58, NC-based applications can help maintain session context by
implementing the following recommendations:

1. Have more user verification.

This approach puts some responsibility back onto the user to detect a
problem (or at least observe a warning message and respond to it).
The application needs to "train" the user to frequently respond to
prompts and verify each step as correct before the application
executes it. This attempt to focus the user makes it easier for him/her
to remember and re-enter data if a failure occurs. The results of this
approach, of course, will vary by user.

2. Use more data validation tests.

If data are validated more often, it can be possible to create a larger
number of small transactions instead of one large one. More frequent
transaction commitments means less loss of data and user effort if a
failure occurs.

3. Inform user of session context interruption.

Maintain a simple binary session state (good or bad) in the external
server that launched the application. Have the client application
automatically send an "I’m OK" message periodically to the server. If
the server doesn’t receive the next message before the time-out period
expires, then the server will reload and restart the application, including
displaying a prominent message to the user that there has been a
restart.

Note that this approach will require having the client run a separate
timer-based "I’m OK" thread to keep updating the server. This thread is
separate from any thread(s) interacting with the user (no waiting on
Application Design Issues 61

user input). See Chapter 4.9.1, “Threads in Java” on page 67, for
further discussion regarding potential thread issues for NC-based Java
applications. The timing of the thread is implemented by the developer.
Although this thread probably would not have much impact at the client,
implementing "I’m OK" threads on hundreds of clients to the same
server could result in some performance degradation, so this timing
mechanism should be tunable by the network administrator.

4.6.1.3 Principle: Practice User Anticipation
Data and application byte code is loaded across the network to the NC. On
slow networks and busy servers, users easily become impatient. These
applications represent the face of your company on the Internet. For such
important situations, it is worthwhile to conduct usability testing to profile your
user software and verify that it is user-friendly and intuitive to use.

Once software user interface patterns are determined, anticipate user actions
by preloading the most frequently used program parts. This may require a
separate thread to keep the download going while the user is looking at some
other part of the application. See Chapter 4.9.1, “Threads in Java” on page 67
for additional design considerations when using threads.

Recall that NCs have no concept of memory page files. Obviously, RAM
limitations affect how much can be downloaded. One can imagine a program
and data set so large that the entire image could never be loaded. If a
program is designed never to have all parts of it visited by a user in a single
session, then the application should include monitoring logic to guard against
memory overload.

Note: All of the principles outlined in this section also apply to Java-based
applications running on PCs with limited RAM and disk, although to a lesser
degree. The JVM implementation may be running on an operating system
that supports paging to local disk, which mitigates many of the issues
described.

4.7 Remote Object Persistence and Serialization

Object persistence lets you save away the state of a bean and then restore it
at a future point in time, either during the current run of the application or at a
future run.

Some people use the terms "object persistence" and "object serialization"
interchangeably. Persistence can be defined as the saving and recovery of an
object’s state. This is an abstract concept, which could be implemented in a
62 Designing Java Applications for Network Computers

number of ways. We define serialization as the process of converting the
state of an object into a data stream.

In Java, serialization is one mechanism used to achieve persistence. The
Java Remote Method Invocation (RMI) API uses serialization to pass state
information across Java programs or over a network. A client application
running on one node of a network invokes a method on an object that is
resident on a different network node. So, how do these concepts work on
NCs?

4.7.1 Issue: JavaBean Serialization vs. Externalization
If your JavaBean is going to be persistent, it must implement either the
serialization or externalization interface. However, serialization typically uses
persistent storage, which is usually a local disk. Since NCs, as we have
defined them, don’t have hard disks, we can’t use the default serialization
mechanism.

VisualAge for Java, for example, does all the code generation work for the
programmer who uses the Serialization interface. Of course, you could
always have your JavaBean override Serialization’s default readObject and
writeObject methods by creating private versions of them, but then you would
have to do something meaningful with the bean state information (for
example, write it out to a remote disk drive somewhere else on the network,
so that it can be read back at a later time).

We can also use the Externalization interface. As Java developers, we must
explicitly implement Externalization’s readExternal and writeExternal
methods. For the Java NC programmer, the differences between overriding
Serialization’s readObject and writeObject and implementing Externalization’s
readExternal and writeExternal are fairly negligible (except for security, see
Chapter 4.7.1.1, “Principle: Know Your Security Model” on page 63).

4.7.1.1 Principle: Know Your Security Model
The Serializable interface’s writeObject is private. Security-related data (for
example, my annual salary, WWTC’s contract data, and so forth) is more
easily protected.

The Externalizable interface’s writeExternal is a public method, so bean state
information can be extracted by anybody’s program that successfully invokes
writeExternal on my sensitive bean. In general, sensitive classes should not
be serialized at all.
Application Design Issues 63

4.7.1.2 Event State Persistence Limitation
The following discussion is based on the JDK structure used in JDK 1.1.

JavaBeans can be programmed to notify registered listeners when the bean
fires an event. To fire an event, the event must be defined. You can use any of
the AWT-specific event object types or create your own event type by
extending Java.util.EventObject.

In either case, because EventObject implements the Java Serializable
interface, Java events can be stored persistently. But, not on an NC, which
has no local persistent storage.

4.7.2 Can NC Applications Use JavaBeans and Generate Events?
Designing and developing for the NC may be a new experience for the
reader. Often, when working in a new (and often poorly documented)
environment, the designer needs to know if previously learned techniques are
still valid.

4.7.2.1 JavaBean Use in Applets Running on the NC
According to Laurence Vanhelsuwe, author of Mastering JavaBeans (see
reference in Appendix E.3, “Other Publications” on page 143), "A bean lives
in a multiple threaded environment and can therefore be addressed by
multiple threads at the same time."

When designing JavaBeans for use in applets that run on an NC, the issues
associated with running multiple threads on an NC should be examined. See
Chapter 4.9.1, “Threads in Java” on page 67 for further details.

Basic testing done during the development of this document proved that
JavaBeans can successfully be used in applets and applications that run on
an NC. JavaBeans generate events, and this functionality works fine on the
NC.

4.7.2.2 Principle: Distinguish between Applets and Applications
The designer for NC-based software must clearly distinguish between
NC-based applets and NC client applications. An NC can run multiple applets
simultaneously, but may run only one stand-alone application at any
particular point in time.

Ordinarily, applets running on an NC can only talk to the server that
downloaded them. Applets, unlike applications, cannot listen for incoming
TCP/IP connections coming from remote objects across the network. IBM
WebSphere includes CORBA ORB support that allows the remote server
64 Designing Java Applications for Network Computers

application to invoke callbacks on the client applet. For the NC programmer,
this creates a more robust environment.

4.8 Concurrency

Concurrency addresses issues that arise when multiple simultaneously
running agents, producers and consumers, try to access the same resource.

4.8.1 Issue: Race Conditions
When there is more than one thread or agent trying to access the same
shared resource, what is referred to as a race condition can occur. Race
conditions are situations where two or more threads access a resource, and
each thread thinks it is the only entity trying to inspect or change this
resource. Since both threads update the resource, the actual outcome, that
is, the new state of the resource, is unpredictable because the timing of the
changes was not controlled by the programmer.

The following discussion assumes that the addition operation in a computer is
not an atomic operation, but can be interrupted. Furthermore, it is assumed
that there is no built-in regulation of a resource we will call R. In other words,
any thread can access R regardless of the state of other threads.

The following discussion focuses exclusively on threads, but is equally
applicable in theory to processes. In fact, more solutions have been
developed over the years for process concurrency control than for thread
concurrency control.

An example of a non-operating system-specific process concurrency control
mechanism is the CORBA Concurrency Services that can be used to
organize and regulate access to defined resources.

4.8.1.1 Scenario: Concurrent Access of a Common Resource
Consider the situation of two threads: Tp is a producer and Tc is a consumer.
Tp simply counts upwards sequentially and puts the result of the counting into
resource R. Tc gets the count and displays it. Therefore, both concurrently
share a common resource R, where Tp puts the results of its processing into
R and Tc gets the input for its processing from R.

If Tp is faster than Tc and produces numbers very quickly, then the input that
the slower Tc gets from R will not appear continuous. If Tp executes twice, say
Application Design Issues 65

counting 2+1=3 and 3+1=4, in the time Tc executes only once, then Tc will get
2 and 4 but will miss 3. This is illustrated in the following example.

Output from Tc = 1,2,4

The converse problem occurs when Tc is faster than Tp, which might look like
the next example.

Output from Tc = 1,2,2,3

In Java, a race condition can occur when Tp and Tc are independent threads,
but Java provides some specific help (see Chapter 4.9.1, “Threads in Java”
on page 67). But in the NC environment, these threads might be independent
agents running in separate processes on different platforms.

In order to solve the situation of a race condition, we need a mechanism to
ensure that updates to shared information are coordinated, or synchronized.

4.8.1.2 Principle: Concurrency Control
The key to solving the problem of multiple processes, or threads, competing
for the same set of limited resource requires an understanding of two key
concepts:

Locking
Locking allows only one process access to a particular resource at one time.
If Tp places a lock on R, then Tc cannot read the contents of R. Conversely if
Tc is reading the contents of R when it is locked, then Tp cannot update R.

Locking is sufficient to stop corruption of the shared resource that results
from both processes accessing the resource at the same time, but it may also
result in one process waiting a long time, called a busy wait, check the value
of the lock continually until the value changes. In this case, the CPU is being
used unnecessarily and can result in performance degradation of that
particular task what is waiting.

Time: t= initial 1 2 3 4 5 6 7

process: Tp Tc Tp Tc Tp Tp Tc

R count: 0 1 1 2 2 3 4 4

Time: t= initial 1 2 3 4 5 6 7

process: Tp Tc Tp Tc Tc Tp Tc

R count: 0 1 1 2 2 2 3 3
66 Designing Java Applications for Network Computers

Wait and Notify
Wait makes processes that want access to the locked common resource R
wait until the resource is free. Typically, these waiting processes are
organized into some type of FIFO or prioritized queue. Notify tells the first
eligible waiting resource that the lock has been removed and access to the
common resource is permitted for that first process.

Locking, when used along with Wait and Notify, is sufficient to bring an
element of control to the race condition problem. The first process in, say Tp,
locks R while updating it. If Tc wants to read the resource during the time the
lock is in place on R, it is forced to wait. When Tp is finished updating R, it
removes the lock from R and this results in a notification to proceed for the
still waiting Tc. Once the resource is released by Tp, Tc then places its lock on
R while it reads the contents secure from interference by Tp or any other
waiting processes in the queue.

Together, the wait and notify mechanisms have the effect of synchronizing
access to R by Tp and Tc so that output from Tc will be a continuous series of
integers.

4.9 Distributed Object Synchronization

This section describes mechanisms that can be implemented to address
synchronization issues that may arise during the course of Java application
design and development.

4.9.1 Threads in Java
Too often in the past, thread control was relegated to the programmer, who
had to code thread cooperation using operating system calls (start thread, kill
thread, suspend thread, and so on) and system resources (such as mutex
semaphores). Java’s built-in thread support makes for the happier prospect of
a more standard set of approaches to thread handling. Programmers will use
the thread-handling paradigms suggested by the Java language capabilities,
so their recognition factor will be higher when encountering the same problem
again in the future.

4.9.1.1 Synchronization: A Java Solution to Concurrency Problems
A possible Java-based approach to solving the producer consumer problem
(outlined in Chapter 4.8.1.1, “Scenario: Concurrent Access of a Common
Resource” on page 65) is described in the following paragraphs.
Application Design Issues 67

Locking
Locking is implemented in Java by specifying that methods which access a
common resource can be strictly controlled by using the synchronized
keyword. When a method is defined with the synchronized keyword, then the
JVM first places an exclusive “lock” on the method before allowing one and
only one thread to enter and execute the synchronized code at any single
instance of time.

When methods in a non-static class are defined with the synchronized
keyword, the JVM will obtain a lock on the object itself. However, if methods
in a static class are synchronized, then the JVM will obtain a lock on the class
itself. Any thread attempting to gain access to a locked method will be
blocked until the currently running thread completes execution of the method
and the lock is released.

By using the synchronized keyword, only one thread executing a synchronized
method has access to the object’s instance variables at one time. Therefore,
in our example code (see Appendix C.2, “Synchronized” on page 137), when
get() and put() are synchronized in R, only one method can access R’s
instance variables at any one time.

Wait and Notify
The wait() method waits to be notified by another thread that a change in a
monitored object has taken place. This notification is made using the notify()
or notifyAll() methods. The notify() method notifies an arbitrary waiting
thread that the lock has been removed and the awakened thread gets the
lock. The notifyall() method notifies all waiting threads and they compete
for the lock. One thread get it, and the other threads go on waiting.

In our simple example, because there are only the producer and consumer
threads, the instance variable available, specified in the synchronization
code in Appendix C.2.1, “R - The Resource” on page 137, has the effect of
serializing the execution of Tp and Tc. Tc can only get access to the R object
after Tp has finished updating it exactly once.

4.9.1.2 Solution in Distributed Object Environments
The ability to synchronize threads is a necessity in situations where data are
accessed and updated by several different threads. But, in a distributed
object environment, the threads may be physically separated and running on
different platforms. Therefore, the synchronization mechanism must work in
this distributed environment.

Synchronization in a distributed environment is provided by ensuring that the
methods that provide access to the resource are synchronized. Since these
68 Designing Java Applications for Network Computers

methods provide the only means of accessing the data, doing a local
synchronization ensures that the clients, whether local threads or external
agents, will only have synchronous access to the data.

In the example, the get() and the put() methods are both synchronized, so
regardless on what platform Tp and Tc reside on, their access to the R object
will be controlled because synchronization is local to R.

4.9.1.3 JavaBeans and Threads
The thread synchronization issues described in this section also apply to
JavaBeans. Since the developer of a JavaBean may not know the
environment in which the Bean is being used, one should assume that the
Bean will be utilized in a multiple thread environment. In such a case, the
JavaBean developer must take special care when coding methods by
synchronizing data manipulation, reads and writes. It is also important for
these synchronization mechanisms to be as short as possible so that any wait
time by other threads is minimized.

For more information on threads and Java, refer to Java Threads, referenced
in Appendix E.3, “Other Publications” on page 143.

4.9.2 JavaBean Synchronization
JavaBeans come from different vendors. CORBA’s Transaction Service
support can be used to coordinate (synchronize) the actions of multiple beans
executing simultaneously.
Application Design Issues 69

70 Designing Java Applications for Network Computers

Chapter 5. Designing, Developing, and Distributing Java Objects

This chapter describes methods and approaches for the design,
development, and distribution of e-business applications that use Java-based
objects in a distributed object architecture. This chapter also describes how
certain types of Java objects behave in a distributed environment.

5.1 Distributed Application Environment

The NCF model for an e-business solution is to use an n-tier approach (the
NCF model was described in detail in Chapter 2, “Network Computing
Framework” on page 21). In typical three-tier approach, the first tier is the
client, the middle tier is the server and the final tier is an enterprise system.
Since these tiers are usually running in separate processes on different
machines, this creates a distributed application environment.

5.1.1 Roles and Responsibilities
Unlike monolithic applications, which reside entirely on one system,
distributed applications have responsibilities for the system divided among
the parts. The client is responsible for the presentation of data, the server is
responsible for the execution of business logic and the enterprise system is
responsible for the storage of data.

5.2 Implementing the NCF Model Using the Java Language

The following subsections provide an overview of the JDK contents and a
high-level description of Java API categories. We also describe some issues
encountered when coding the application example described in Chapter 3,
“Application Example - WorldWide Trucking Company” on page 43.

An NCF client implementation in Java can be implemented using applets. An
NCF server implementation in Java can be implemented using servlets. In
addition, leveraging the wealth of Java APIs and JavaBeans will be a key to
rapid development. In developing solutions, you will need to consider the
supported features that are core to a Java release and be aware of the
features that are external to the core but are available as standalone APIs.
Portability does equal compatibility. Many of the development and run-time
products available at the time of this writing have varying degrees of Java
run-time Version 1.1.x support. However, with each new major release, more
and more APIs are finding their way into the Core Java platform.
Designing, Developing, and Distributing Java Objects 71

5.2.1 Java Development Kit
This section describes currency and function related to the Java
Development Kit.

5.2.1.1 JDK 1.1.6
As of this writing, JDK Version 1.1.6 is the current major release. It is a
superset of JDK 1.0.2 and includes support for Internationalization, Security,
JavaBeans, JAR, RMI, Object Serialization, JDBC, Inner Classes, JNI and
enhancements to core AWT, IO, Net and Math.

5.2.1.2 JDK 1.2
As of this writing, JDK Version 1.2 is still in the third beta release. It adds
some major functionality in the areas such as Java 2D, Drag and Drop,
Application Services, Extension Framework, Weak References, Java IDL, a
new JVM Debugger Interface (JVMDI), the Java Servlet standard extension
and Javadoc Doclets.

5.2.1.3 Java Foundation Classes (JFC)
As of this writing, JFC Version 1.1, which includes Swing Version 1.0.3, is the
current major release, although Swing Version 1.1 beta 2 is available with the
JDK 1.2 Beta. The JFC extends the original Abstract Windowing Toolkit
(AWT) by adding a 100% Java implementation of the GUI components. Some
features of this API are included in JDK 1.2.

5.2.1.4 Java Native Interface (JNI)
Although Java is a very functional and flexible language, there are some
situations where other languages, such as C, C++ or Assembly, may be more
appropriate, such as in time-critical routines or platform-dependent functions.
The JNI allows these native methods to interact with Java classes and
methods, extending the reach of existing programming into the Java world.
Although there were native interfaces available in earlier releases of the JDK,
JNI will be the focus as other implementations are phased out over time.

5.2.1.5 Java Accessibility
The Accessibility API provides assistive technologies to interact and
communicate with JFC and AWT components. Assistive technologies are
used by people with and without disabilities and include screen readers,
screen magnifiers, and speech recognition. This API will assist development
efforts for solutions that are required to meet federal regulations on
accessibility.
72 Designing Java Applications for Network Computers

5.2.1.6 JavaBeans
Included in the JDK 1.1, the JavaBeans specification defines a set of
standard component APIs that enable developers to write reusable
components. A key aspect of JavaBeans is that it allows developers to create
software components that can be assembled together using visual application
builder tools.

5.2.1.7 Java Security
This API includes a framework for developers to include security functionality
in applets and applications. This includes features for cryptography with
digital signatures, encryption and authentication. Some features are included
in JDK 1.1, while others, such as the Java Cryptography Extension (JCE), are
usable with JDK 1.2 but are only exportable to the US and Canada due to
United States Government cryptography export restrictions.

5.2.2 Java Enterprise APIs
These APIs are geared toward the robust e-business solutions that the NCF
model supports.

5.2.2.1 Enterprise JavaBeans
At the time of this writing, the Enterprise JavaBeans Version 1.0 component
architecture is available. This technology should make it easy for developers
to create reusable JavaBeans that integrate with their existing system
services and applications. This is a key technology in developing e-business
solutions.

5.2.2.2 Java Naming and Directory Interface (JNDI)
The JNDI provides uniform, industry-standard connectivity from the Java
platform to business information assets, allowing developers to incorporate
access to naming and directory services.

5.2.2.3 Java Interface Definition Language (IDL)
This package implements Java classes and tools based on the
industry-standard CORBA specification for object-to-object communication
over the network. This includes an IDL-to-Java compiler and a lightweight
ORB that supports IIOP. This is a key technology for bootstrapping an ORB
onto an NCF client, such as the IBM Network Station. This will be included as
a standard extension to the JDK 1.2 release.

5.2.2.4 JDBC Database Access
This Java DataBase Connectivity API is included in JDK 1.1 and provides
access to object or relational databases from the Java environment using a
Designing, Developing, and Distributing Java Objects 73

standard interface. IBM and other vendors are providing higher level tools
built on this API which generate database access classes and JavaBeans
based on the physical schema of your database.

5.2.2.5 Java Remote Method Invocation (RMI)
This API is included in JDK 1.1 and provides a method for creating Java
objects whose methods can be invoked remotely by other Java objects. This
API also includes Object Serialization, which allows an object to be stringified
into a stream of bytes and later reconstituted as an object somewhere else.

5.2.2.6 Java Messaging Service (JMS)
This API addresses the need for asynchronous enterprise services such as
message queues, publish and subscribe services, and push/pull
technologies. Developers will be able to write middle-tier Java code that
connects to a messaging agent that provides facilities to create, send or
receive enterprise system messages.

5.2.2.7 Java Transaction Service (JTS)
This API is a standard extension that defines an open standard for
transaction management for the Java platform. Due to the many vendors that
provide transactional applications, resource managers and transaction
monitors, this API provides a mapping to the OMG Object Transaction
Services (OTS) and the X/Open XA interface.

5.2.3 JavaBean Communication
JavaBeans can communicate with each other using a variety of methods:

 • On the same node using Lotus InfoBus technology (described briefly in
Chapter 2.4.9, “e-business Application Services” on page 33)

 • Direct use of sockets

 • Remote Method Invocation (RMI)

 • Across the network using CORBA’s IIOP

5.2.4 Applets
From a Java application developer’s viewpoint, Applets are fun. They were
previously defined in Chapter 1.7.2, “Java Applets” on page 13). Like
mini-applications, the applet can draw graphics, load and display images,
manage GUI components and handle user events, and do most of the things
their older brother applications can do. Applets are untrusted code and are
distinguished from Java applications by a long list of security restrictions
(described in Chapter 1.7.2, “Java Applets” on page 13). However, they are
74 Designing Java Applications for Network Computers

extremely important because they do have access to most of the rich services
implemented as Java APIs, and can therefore support a serious e-business
solution on a thin client tier.

5.2.4.1 Development
Applets are implemented as Java classes that have to be written in Java and
then compiled. For starters, the JDK defines a base Applet class in the
java.applet package. To write an applet, a developer needs to create a
subclass of the base Applet class and override several methods. Applets do
not define a main() method but instead must rely on a set of methods to be
invoked by the applet context, such as init(), start(), stop() and destroy().
The main() method, specified for standalone applications, tells the interpreter
where to begin execution. (However, applets that are created as visual beans
by IBM VisualAge for Java do have a main() method.)

Visual composition tools are very useful for developing the GUI and scripting
aspect of the applet using a drag-and-drop approach where parts or
JavaBeans are dropped onto a work space and connected to each other with
configurable links. There are numerous books and tutorials on this subject,
and so the details of how to write a Java applet will not be discussed here,
although we will cover some specific details for the WWTC applications.

5.2.4.2 Applets as JavaBeans
In the following discussion, we will refer to the WWTC sample application in
Chapter 3.3, “Transport Request Application” on page 46. You should review
Figure 10 on page 47 for applet appearance details.

IBM’s VisualAge for Java (VA Java) was used to create the applet bean(see
Figure 13 on page 76), which was called RequestCargoPickup. Because we
elected to create the applet bean visually, and defined bean properties, we
ended up creating a runnable bean with a main.

The running man icon (shown in Figure 14 on page 77) shows that
RequestCargoPickup is also an applet. So, an entire applet was implemented
as a JavaBean.
Designing, Developing, and Distributing Java Objects 75

Figure 13. Initial Creation of Truck Cargo Pickup Request Applet

The fact that the RequestCargoPickup bean is an applet is easily determined by
noting its jigsaw puzzle piece icon (see the Classes and Interfaces column in
Figure 14 on page 77). The jigsaw icon also means that RequestCargoPickup is
a visual bean in VisualAge for Java.
76 Designing Java Applications for Network Computers

Figure 14. TruckScheduling Package’s Beans and Classes

Note the RequestCargoPickupBeanInfo class in Figure 14. VA Java generated
that class for us automatically the first time we created a bean property
feature (NumberOfTrucksRequested) using the BeanInfo tab while working in the
Visual Composition Editor on the RequestCargoPickup bean (see Figure 15 on
page 78). VisualAge automatically creates a BeanInfo class for your bean
when you add the first new feature.

Note the B for Bound indicator on the NumberOfTrucksRequested property.
Bound properties send value changes on connections. In our example (see
Figure 16 on page 80), the property is used as input to a method executed
when the user presses the OK pushbutton. In the Visual Composition Editor,
the bound property connection appears a a purple wavy line.
Designing, Developing, and Distributing Java Objects 77

Figure 15. Result of Automatic Bean Creation

Now, examine the appearance of the applet itself when open in VA Java’s
Visual Composition Editor. Note that there is a non-visual bean (class name is
TruckDispatcher) called TruckScheduler1 that appears on the far right-hand of
the screen. (The bean identifier may not be clear because of image clipping.)
The various data fields (Requested Pickup Date and Time, Pickup Address,
and so on) are visual beans supplied by VA Java. When working with VA Java
in the Visual Composition Editor, everything you drag and drop is a bean.

The TruckDispatcher class exists to function as the interface to WWTC’s
remote truck dispatching server application known as
WorldWideTruckingDispatcher. The relationship between our applet and the
78 Designing Java Applications for Network Computers

remote server will be discussed in more detail in Chapter 5.2.5.2, “Servlets as
JavaBeans” on page 88.

Note also that we used VA Java’s capabilities to add our own category (a filed
folder) of beans in the left column of the bean palette. You may notice in
Figure 16 on page 80 that choosing our custom bean folder caused the folder
name (Tim’s Beans) to appear in the VA Java message area in the lower left
corner of the Composition Editor window. In retrospect, it would have been
more appropriate to name the folder as WWTC’s Beans.

5.2.4.3 Considerations for Applet Programming
The main problem found when running this applet on the IBM Browser and
the Navio Browser on the Network Station 1000 was that the canvas and
bean appearances differed from that displayed when the applet was run on
an IBM PC 350 desktop system. (Figure 10 on page 47 and Figure 11 on
page 48 are screen shots of the applet executing on a PC.) On our NC, visual
problems encountered included:

 • Overlap of data fields onto label fields

 • Different font size and type from what was developed in the VA Java
environment

 • Clipping at the right hand edge of the right-most beans

For the bean clipping problem, the right edge of all the push buttons was not
visible. Although the browser used to display the applet on the NC allowed
the user to widen the window of the applet, that did not restore the clipped
portion of the image, and it did not relieve the overlapped field problem.

The only solution that yielded any improvement was to space out the fields
much wider when building the original screen in VA Java. However, this
action did not completely alleviate the problem.

Note: This clipping problem is not specific to NC’s; visual programming
problems like this can appear on any platform, including Windows and UNIX.

This situation illustrates the design principle to always test your applet fully
on your target Java environment, NC or otherwise. Since the target JVM is
responsible for controlling the screen display, an applet should be tested on
each type of hardware and JVM implementation likely to be found in the
user’s environment.
Designing, Developing, and Distributing Java Objects 79

Figure 16. TruckSchedulingRequest Applet’s Internal Visual Components

When the OK button is pressed by the user, the parameters that have been
filled in are sent to the TruckDispatcher bean, which is then executed. In our
particular case, the number of requested trucks is sent as a parameter to the
TruckDispatcher.RequestingCargoPickup method, which is then executed.

To summarize, the steps required to create an applet and associated beans
are:

1. Create a project and package to hold the applet and bean(s).

2. Create the applet, defining it as a visual, runnable JavaBean.

3. Layout the visual appearance of the applet, including dropping visual
and non-visual beans on the canvas.

4. Link the beans together to perform the desired actions.
80 Designing Java Applications for Network Computers

Note that nothing about the initial applet and initial bean creation process was
altered because of the use of an NC as the applet’s eventual run-time target.
As mentioned earlier, some visual layout changes were made later to deal
with runtime display problems.

5.2.4.4 Sample Applet Code

 • RequestCargoPickup Class

This is the main applet and visual bean that was created using VA
Java’s SmartGuide (also known as the Quick Start window). The main
applet declaration is shown in Figure 17 on page 81. (Many repetitive
declarations involving multiple labels, buttons, and text fields were
deleted from the excerpt for clarity.)

Note the declaration of an instance of the TruckDispatcher non-visual
bean as a private attribute of the class.

VA Java generated all of the code for this class. No programmer
changes were necessary.

Figure 17. Sample Applet Code

The JAR file for the customer client-side applet is available for external
download. Go to the external IBM Redbooks site,
http://www.redbooks.ibm.com and click on Additional Materials in the
left-hand frame, underneath the Products category. When the list of
publications appears, scroll down and select SG245111. You will see the
WWTCJAR file in a ZIP format.

JAR File Available

/**
 * This applet was generated by a SmartGuide.
 *
 */
public class RequestCargoPickup extends Applet implements
java.awt.event.ActionListener {
private Button ivjButton1 = null;
private Label ivjLabel1 = null;
private TextField ivjTextField1 = null;
private TruckDispatcher ivjTruckDispatcher1 = null;
}

Designing, Developing, and Distributing Java Objects 81

 • TruckDispatcher Class

This class is the main interface to the remote Truck Dispatcher server.
It was created as a non-visual bean.

VA Java generated a code stub for this class when we initially created it
using SmartGuide. We made it into a non-visual bean when we defined
the requestingCargoPickup method for the bean (see Figure 18 on
page 83).

For simplicity, we didn’t define any button and data field activity back
on our applet that were related to pickup dates and so forth. For
illustration purposes, we wanted to keep Figure 16 on page 80 simple
and uncluttered. So, we defined those values ourselves with some
simple code lines (see the try block in Figure 19 on page 84).

Note that Figure 19 doesn’t show the method’s code related to the
remote implementation of the dispatcher. That is covered in Chapter
5.3.1.5, “JavaBeans and RMI” on page 98.
82 Designing Java Applications for Network Computers

Figure 18. Non-Visual TruckDispatcher Bean Method Definition
Designing, Developing, and Distributing Java Objects 83

Figure 19. Simple TruckDispatcher Code

That’s it, just two important classes. RequestCargoPickup is the main applet and
bean, and it uses TruckDispatcher non-visual bean. From some viewpoints,
TruckDispatcher provides a server function, because it calculates the
approval status for the customer pickup request. We’ll develop and extend
this bean into a true server later in this document.

5.2.4.5 Run Time
Applets are run within an applet context, such as a Web browser or applet
viewer. Therefore, applets can execute on any platform that supports a Java
applet context. Many of the applet screen shots shown in this book (for
example, Figure 10 on page 47, and Figure 11 on page 48) show our trucking
applet running in VA Java’s applet viewer (the Run function of the
Workbench).

Applets satisfy the Just-In-Time (JIT) delivery method. A Web browser loads
and runs an applet when it encounters the HTML <APPLET> tag embedded in a
Web page that specifies the .class file to retrieve from the Web server.
Physically, the applet is running within the JVM process of the NC, not in the
JVM process of the Web server from which it came. This aspect differs from
X-terminal applications which are displayed on in X-terminal on the IBM
Network station but are actually running within a process on a server.

If we wanted to start this applet manually on an NC, we could use the
appletviewer program to start it from a command line, or we could go to the
browser to open a URL and type:

http://oc0263f.itsc.austin.ibm.com:8080/redbook/TruckCargoPickupRequest.ht
ml

public boolean requestingCargoPickup(String customerName, int
truckQuantity, String pickupAddress, java.util.Date pickupDateTime) {
 boolean approvalStatus = false;
try {
 customerName = "Austin ITSO";
 pickupAddress = "11400 Burnet Rd., Austin, TX 78759-3493";
 // Get the current time.
 pickupDateTime = new Date();

return approvalStatus;
}

84 Designing Java Applications for Network Computers

For the above command to work, the applet has to be stored on a network
node that has Web server software (like Lotus Domino Go Webserver). In our
sample command, oc0263f is the TCP/IP name for a particular node in the
itsc.austin.ibm.com domain. The number 8080 represents the particular
Internet port number over which the server and applet will communicate.
Redbook is just a directory in which to store the TruckCargoPickupRequest.html
file. (For completeness, the html file is actually stored in the
D:\WWW\HTML\redbook directory. WWW/HTML is a directory related to the Lotus
Webserver software.)

Upon receipt of the open URL request, the Web server software downloads
the applet’s classes to the requestor (the NC, in our case). Remember, an NC
can be configured to automatically download and start an applet whenever it
is turned on. So, we can actually avoid all of the typing above.

For our samples, we developed a simple Web Page that included the tag to
load and start the RequestCargoPickup applet. To view the Web page, the
NC user would type:

http://oc0263f.itsc.austin.ibm.com:8080/redbook/index.html

index.html is just the name of the file containing the Web page’s HTML. There
is nothing significant about the choice of the name "index" for the filename.
Try building your own Web page and testing our samples at your
convenience.

Although our goal is not to teach HTML programming, we thought you might
like to see the contents of TruckCargoPickupRequest.html (refer to Figure 20 on
page 85 and Figure 21 on page 86).

Figure 20. HTML for Starting Cargo Pickup Request Applet: Part 1

<HTML>
<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=iso-8859-1">
 <META NAME="Author" CONTENT="craig e grossi">
 <META NAME="GENERATOR" CONTENT="Mozilla/4.05 [en] (WinNT; I)
[Netscape]">
 <TITLE>TruckCargoPickupRequest</TITLE>
</HEAD>
Designing, Developing, and Distributing Java Objects 85

Figure 21. HTML for Starting Cargo Pickup Request Applet: Part 2

The Applet’s HTML specification looks a little different when viewed through a
Web page composing tool like Netscape Composer (see Figure 22 on page
87). The composing tool is used to visually imbed a reference to the Applet’s
class file(s) name and location into the Web page itself.

Note the references in both Figure 21 and Figure 22 to the "codebase"
location. This will become significant later as we develop our server.

<BODY>
<CENTER>
<H1>
TIM’s CARGO PICKUP REQUEST</H1></CENTER>

<CENTER><APPLET CODE="TruckScheduling.RequestCargoPickup"
codebase=http://OC0263f.itsc.austin.ibm.com:8080/ServletExpress/class
es WIDTH="400" HEIGHT="600"></APPLET></CENTER>

</BODY>
</HTML>
86 Designing Java Applications for Network Computers

Figure 22. Sample Application’s HTML Viewed by Netscape Composer

5.2.4.6 Parameters and Environment Variables
When loaded, an applet embedded within an HTML web page has access to
the parameter name/value pairs specified by <PARAM> tags by using the
getParameter() method. This is a useful way of avoiding hardcoding the
system information into the compiled Java code.

5.2.4.7 Applet Execution Life Cycle
When an applet is loaded, the applet context creates an instance of the
applet and invokes the init() method. Any initialization that should be done
only once should be performed here.

Each time an applet becomes visible, the start() method is invoked. Applets
usually then begin doing whatever they are supposed to do, often using
threads. The start() method has to be written assuming that it will be invoked
multiple times simultaneously.
Designing, Developing, and Distributing Java Objects 87

When an applet is hidden, the stop() method is invoked. If threads are being
used, they should be stopped. This method also has to be written assuming it
will be invoked multiple times simultaneously.

When an applet is about to be unloaded, the destroy() method is invoked.
Applets should free resources at this time.

5.2.5 Servlets
Like the servlet’s counterpart, the applet, servlets are mini-application
servers. Unlike applets, they often do not have a GUI aspect and are typically
run as trusted code without security restrictions applied to them. Like applets,
they are extremely important because they have access to all of the rich
services implemented as Java APIs and can therefore support a serious
e-business solution at the middle tier.

5.2.5.1 Development
Servlets are implemented as Java classes which have to be written in Java
and then compiled. For starters, an extension to the JDK defines a base class
named GenericServlet in the javax.servlet package. To write a servlet, a
developer needs to create a subclass of the base servlet class and override
several methods. Servlets that need to handle HTTP requests need to
subclass the HttpServlet class in the javax.servlet.http package. Servlets do
not define a main() method but instead must rely on a set of methods to be
invoked by the servlet context such as init(), service() and destroy().

Visual composition tools may be used for developing the scripting aspect of
the servlet using a drag-and-drop approach where JavaBeans are dropped
onto a work space and connected to each other with links.

5.2.5.2 Servlets as JavaBeans
We have already created our non-visual TruckDispatcher bean. Now we will
start to build on it, eventually creating the related class structure show in
Figure 23 on page 89.
88 Designing Java Applications for Network Computers

Figure 23. TruckDispatcher Class and Related Classes

5.2.5.3 Run Time
Like applets, servlets are run within a servlet context, such as a Web server
JVM or tool like ServletRunner. Therefore, servlets can execute on any
platform that supports a Java servlet context.

Servlets satisfy the JIT delivery method as well and can be downloaded from
a remote machine. A servlet can be invoked several ways:

 • Using a Web browser to open the servlet by way of a URL

 • Specifying the servlet on the ACTION attribute of the <FORM> tag in an
HTML file

 • Specifying the servlet within the <SERVLET> tag on an S-HTML file
Designing, Developing, and Distributing Java Objects 89

 • Embedding the Java code for the servlet within a <JAVA> tag on an HTML
file

 • Specifying a servlet filter

 • Specifying a servlet chain

 • Specifying the servlet to be loaded when the Web server starts

Physically, the servlet is running within the JVM processor of the Web server,
not the server from which it was originally downloaded.

5.2.5.4 Parameters and Environment Variables
The servlet can obtain information about itself by invoking getServletConfig()
or getServletContext(). In addition, it has access to initialization parameters
by using getInitParameterNames().

5.2.5.5 Servlet Execution LifeCycle
When a servlet is loaded or reloaded, the servlet context creates an instance
of the servlet and invokes the init() method. Any initialization that should be
done only once should be performed here.

Once a servlet is loaded, it can expect to receive many client requests by the
service() method. In general, servlets will receive an argument containing
client request parameters and an argument intended to contain the response
information. Servlets responding to the HTTP protocol should override the
doGet() and the doPost() methods and simply rely on the service() method in
the HttpServlet superclass to first parse the client request, and second, to
delegate to the proper method in your subclass. An HttpServlet will create a
response by writing HTML-formatted text onto the output stream contained by
the HttpServletResponse argument.

When a servlet is about to be unloaded, the destroy() method is invoked.
Servlets should free resources at this time

5.2.6 Basic Communication
Applets and servlets can exchange information using standard Java library
classes that provide communication services, security restrictions not
withstanding. Java I/O and Net packages contain support for reading and
writing information to other processes by way of sockets and streams. Built
on top of these components, there is an advanced feature called Object
Serialization that supports sending a whole object or even an entire object
web from the applet to the servlet through a special object stream.
90 Designing Java Applications for Network Computers

5.2.6.1 Sockets
The classic socket scenario between a client and a server works as follows. A
server creates a socket upon which it waits for a new connection. A client
opens a connection to the server socket. The server accepts the request,
creates a new socket, forks a new process to handle the client request and
then resumes waiting for a new connection on the original socket. The
advantage to this design is that it scales nicely.

Applying this to Java, the servlet creates an instance of the ServerSocket
class and waits for a new connection by invoking the accept() method. An
applet opens the socket by creating an instance of the Socket class. The
servlet receives an instance of the Socket class upon accepting the
connection, spins a Thread on an instance of MySocketThread and then
resumes waiting for a new connection by invoking the accept() method on the
ServerSocket. When started, the Thread instance invokes the run() method
on the MySocketThread instance which you have coded to encapsulate the
handling of the client request. The run() method begins reading and writing to
the socket at will.

The only problem with this design is that the servlet will never exit out of its
init() method accepting new connections. To avoid this, code another
Runnable class named MySocketListener whose run() method implements the
service for accepting socket connections described above. In the init()
method of the servlet, spin a Thread on an instance of MySocketListener.

5.2.6.2 Streams
Information is read from and written to the socket by wrapping it within
various kinds of streams. Reading information is accomplished by
constructing an InputStream which provides the read() method, and writing is
accomplished by constructing an OutputStream which provides the write()
method. Generally, once a socket connection has been established, each
side creates an InputStream using getInputStream() and an OutputStream
using getOutputStream() from the local Socket instance. The InputStream and
OutputStream are then wrapped in a FilterStream, the exact kind of which will
depend on the format of the data that the client and server expect to send and
receive, and the level of abstraction of the services for reading and writing.

InputStreams and OutputStreams allow you to read and write single or
multiple bytes.

FilterInputStreams and FilterOutputStreams provide a caching aspect and a
flushing service to improve performance. These streams are designed using
the Wrapper pattern and are constructed using an instance of non-buffered
InputStreams and OutputStreams.
Designing, Developing, and Distributing Java Objects 91

DataInputStreams and DataOutputStreams are FilterStreams that provide
higher level services to read and write primitive data types.

These type of streams are not very object-friendly. A client and server would
each need to follow a strict protocol for trying to send the information
contained in a typical address. If the order or format of the address changed
each side would be forced to adjust accordingly. A more disciplined and
object-friendly approach may be found with Object Streams.

5.2.6.3 Object Streams
ObjectInputStream and ObjectOutputStream provide services for reading and
writing objects in the form of readObject() and writeObject() and specialized
services for the Object form of primitive data types. Only objects which
implements the Serializable or Externalization interface may be used with
these Streams. Objects that wish to assist in their own serialization and
de-serialization need to implement defaultReadObject() and
defaultWriteObject().

Using this approach, it is possible to encapsulate address information and
behavior into an Address object and send the entire instance at once. This
seems to solve the issues about management of information format, since the
Java class defines the data and type of the Address attributes and both the
client and the server will be imported the same file, Address.class.

However, this also raises some issues with basic object services such as
object identity: Which instance represents the real Address? In effect, the
object is being copied remotely because when the read/write service is
complete, you will have both the new instance of Address on the client and
the original instance of Address on the server.

5.2.7 Applet/Applet Communication
There are several options for communications within and between applets. A
few of them are described here for your reference.

5.2.7.1 AppletContext
There is an interface called java.applet.AppletContext which allows an applet
to get information about the environment it is running in, which is usually
supplied by the browser or the applet viewer. The interface allows access to
information such as the applet name, images, status, and it also allows usage
of audio clips.
92 Designing Java Applications for Network Computers

5.2.7.2 InfoBus
The InfoBus, mentioned briefly in Chapter 2.4.9, “e-business Application
Services” on page 33, is a mechanism that allows communications between
Java applets or JavaBeans within the same JVM. These components get
"plugged into" the bus. The Version 1.1 specification released in March 1998
is compatible with the JDK 1.1.

A potential member can join the InfoBus and exchange, for example, simple
values, cells of a spreadsheet, or even rows of a relational database, with
other InfoBus members. The InfoBus is used as a conduit for dynamic data
transfer between InfoBus participants, and multiple conversations can be
occurring simultaneously.

Although the InfoBus is intended to support communications within the same
JVM, it is possible to have a component implement RMI or IIOP to access
information across the network, and publish this information onto the InfoBus,
making it available for use by the other participants of the InfoBus.

5.2.8 Servlet/Servlet Communication
Two servlets that execute in the same JVM can call each other’s public
methods directly. A servlet can communicate with a servlet on a different
system in the form of an HTTP request by opening a connection using the
URL of the server where there target servlet resides.

When calling another servlet’s public methods, the calling servlet developer
should be aware of any re-entry issues associated with the target servlet, for
example, if the target servlet implements the SingleThreadModel interface. In
this case, the call should be made using HTTP.

In theory, a servlet can use the RMI or CORBA architectures (discussed later
in this chapter) to extend its reach for data exchange or other
communications across the network, to any similarly-based implementation.

5.3 Distributed Object Architecture

Earlier, we discussed how application services can be provided through basic
communications in which the applet invokes requests directly on the servlet.
The servlet component exposes its services to the applet in the form of some
application-level protocol. However, in a properly designed server, the logic
required to support these application services is delegated to a business
object model. Thus, if we considered exposing these services as interfaces of
individual object components, objects in an applet would be able to invoke
requests directly on the business objects that provide the service, not the
Designing, Developing, and Distributing Java Objects 93

servlet. The problem here, though, is that the business objects in the servlet
do not live in the same object space as the objects in the applet, and the Java
Run-Time Environment does not handle sending messages into another
object space, for example, between two JVMs. This raises an issue of object
location: how do I send a message to an object across the network?

In a perfect world, all known object space collapses to a single point and
every object would appear as if it is local. An object should be able to invoke
services on another object without knowing where or how the message will be
delivered. A message sender should not need to know what machine the
message receiver is physically located on, nor should it need to know how to
transport the message securely and reliably. These inter-object protocol
issues are addressed by distributed object architectures which define the
mechanisms and services needed for object-to-object communication across
the network. There are several options already implemented as Java APIs for
the Java developer.

5.3.1 Remote Method Invocation (RMI)
As stated previously, the RMI API is included in JDK 1.1 and provides a
method for creating Java objects on a remote machine whose methods can
be invoked locally by other Java objects.

RMI is limited to Java-to-Java communication. This may be a problem for
some situations (for example, heterogeneous run-time environments) and is a
great thing for others (for example, pure Java Run-Time Environments). In
our discussions so far, both applets and servlets are written in Java and
would therefore be able to benefit from this API.

5.3.1.1 RMI Architecture
Let’s suppose a client object needs to invoke services of some remote
business object. In the RMI design, the client interacts with a remote object
through a published interface. The client-side object sends a message to a
local RMI object that implements the required services of the remote object.
The local RMI object implements each method in the remote object’s public
interface, but delegates the behavior back to the remote object using the RMI
infrastructure. To the client object, the local RMI object appears as if it is the
remote object and the actual mechanism of communication is hidden as well.
The client object never directly interacts with the remote business object.

In this model, you are allowed to pass a reference to a remote object in an
argument or return it as a result. RMI is based on ObjectStreams, and
therefore, object references get passed by value and implement the Object
Serialization interface as discussed earlier.
94 Designing Java Applications for Network Computers

This model assumes that the remote object already exists when the client
sends a message. RMI does not provide a means of creating the remote
objects in response to a client request for service, but there is a factory-
design pattern that can be used to overcome this.

The mechanism for RMI communication is divided into several layers on the
client, each with a counterpart layer on the server. The first layer is the
Stub/Skeleton layer, the second is the Object Reference layer and the bottom
is the Transport layer.

Stub/Skeleton Layer
This layer is designed using the Adaptor pattern in translating the business
object interface to and from the operations defined in the Remote Reference
API. It results in shielding the client side objects and server side business
objects from being aware that they are participating in a conversation across
the network, and that the conversation is using the RMI framework. The Stub
participates on the client side pretending to be the remote object by
implementing the business object’s interface. The Skeleton participates on
the server side pretending to be the client object that is invoking the service.

Remote Reference Layer
This layer is designed using the Bridge pattern to connect the business object
model to the network communication model. It is responsible for issuing the
object to object protocols using the native transport calls.

This layer can raise exceptions on both the client and server side when
problems occur when establishing connections or delivering messages.

Transport Layer
This layer is responsible for establishing and maintaining connections. These
connections are built on the services provided by sockets using the TCP/IP
protocols as discussed earlier.

5.3.1.2 Development
Unfortunately, business objects that act as remote objects must subclass
from java.rmi.UnicastRemoteObject and implement an interface that extends
the java.rmi.Remote Interface. This may be a problem if you already have an
established enterprise hierarchy in Java. A general solution to this is to
subclass all of your business classes from a common superclass which itself
is a subclass of UnicastRemoteObject. Therefore, if you need to move away
from the RMI architecture, the impact would be minimized to changing the
hierarchy of just one class.
Designing, Developing, and Distributing Java Objects 95

RMI requires that you, the developer, write the Stub and Skeleton classes, as
they are based directly on the interface exposed by your business object
model. We illustrate this code in Chapter 5.3.1.5, “JavaBeans and RMI” on
page 98.

The good news is that you can generate all these stub and skeleton classes
needed at this layer from your existing Java-based business classes using
the RMI compiler, RMIC, which is included with the RMI components of the
JDK.

An alternative approach to generating RMI code is to use the VA Java RMI
Generation tools (see Figure 24 on page 97, which indirectly invokes RMIC).
RMI-based applets and servers can be developed with the inexpensive VA
Java Professional Edition. The RMI-based applications illustrated in this
section were developed with VA Java (Professional) Version 1.0. A more
powerful VA Java Enterprise Edition is available for doing enterprise-level
computing, including JDBC and CICS Access beans (see
http://www.ibm.com/java for more information).

We have already shown that JavaBeans run just fine in an applet on an NC,
so there is no reason why an NC applet can’t include an Enterprise Access
Bean (either JDBC or CICS). However, such discussions are beyond the
scope of this book.
96 Designing Java Applications for Network Computers

Figure 24. VA Java RMI Code Generation

Security
Clients and Servers should set the security manager to be the
RMISecurityManager before using RMI-based remote objects.

Naming Service
Servers need to bind new objects that provide RMI-based services into the
Naming service by using the java.rmi.Naming.bind() or rebind(). This method
takes as arguments the remote object and a String that is the unique name
with which the remote object is bound.

Clients need to obtain a reference to remote objects by using the
java.rmi.Naming.lookup() class method.This method takes as an argument
the name with which the remote object has been bound. This method
Designing, Developing, and Distributing Java Objects 97

answers an instance of Remote upon which you will need to narrow the object
by casting it down to the correct Interface before invoking one of its methods.

Exceptions
There are a few RemoteException classes that need to be caught such as:

 • RMISecurityException can be thrown when setting the security
manager.

 • NoSuchObjectException can be thrown when attempting to lookup an
object.

 • AlreadyBoundException can be thrown when trying to bind an object.

5.3.1.3 Remote Factories
A client cannot assume that the remote object already exists on the server, as
the NoSuchObjectException and RMI do not provide a service for automatically
creating objects that extend UnicastRemoteObject. So, instead of asking for the
remote object, a client can ask for a well-known remote factory object. The
client then invokes a lookup() method on the remote factory which will answer
the remote object if it exists, or create and bind the remote object if it doesn’t
exist. When using this approach, create one remote factory for each group of
similar business classes.

5.3.1.4 Callbacks
So far, we have only discussed RMI as a one-way street, that is, where
objects on the client send messages to objects on the server. RMI addresses
server-to-client messages as callbacks. In this model, an additional interface
is created which defines the available callback methods the client must
implement. The original interface for the remote object is augmented to
include an additional method named addCallback() which takes as an
argument an object that will receive the callback. The remote object will also
have to add a means for remembering the list of callback clients.

So, it is possible that the client object wishing to receive callbacks and
supporting the callback Interface invokes the addCallback() method with itself
as the argument on a remote object. In response, the remote object adds the
client object to its list of callback recipients. Some time later, when an event
occurs that requires notifying clients, the remote object will enumerate
through its list and invoke an appropriate callback method on each member.

5.3.1.5 JavaBeans and RMI
Designers and developers of NC-based Java applications that use RMI need
to understand and review the design and development process for
implementing the server’s RMI support. The greatest applet in the world
running on an NC isn’t any good without a server to talk to. So, every
98 Designing Java Applications for Network Computers

programmer for the NC will probably need to do some work on the server side
at some point. For that reason, we will spend considerable time in this section
on the mechanics of the development process.

Now, referring to our WorldWide Trucking Company example code, we will
take our non-visual TruckDispatcher bean and extend it into a full-fledged
RMI-based server application that will run on a remote node. The
RequestCargoPickup applet previously developed will be used to access the
server.

Note that the full code contents for the entire WorldWide Trucking Company
project (including the files from the TruckScheduling package discussed here)
are available in a JAR file on removable media that accompanies this
document. Import the JAR into your VA Java and look around.

Our goal is to produce the necessary classes and interface previously
illustrated in Figure 23 on page 89. Important classes include:

 • TruckDispatcher Class

Referring to Figure 23 on page 89, we see that there is a declaration of
the TruckDispatcherInterface in the basic class definition. We extended
our TruckDispatcher class’ constructor (Figure 25 on page 100) and
requestingCargoPickupMethod (Figure 26 on page 101) to include the
needed code to use RMI.

 • TruckDispatcher Interface

We used the VA Java SmartGuide to generate an interface for us (see
the result in Figure 27 on page 102). Note that you must specify that
you are creating an interface (see Figure 28 on page 103) and must
explicitly choose to extend java.rmi.Remote (see Figure 29 on page
104).

 •TruckDispatcherServer

We used the SmartGuide to create this server class. As mentioned
above in Chapter 5.3.1.2, “Development” on page 95, we had to define
the server as inheriting from java.rmi.UnicastRemoteObject (see Figure
30 on page 105) and implementing an Interface which extends the
java.rmi.Remote Interface (see Figure 32 on page 107).

 •TruckDispatcherServer_Skel

 •TruckDispatcherServer_Stub

The server skeleton and server stubs were automatically generated
using the VA Java proxy generation capability, using the commands
from the menu structure shown in Figure 24 on page 97.
Designing, Developing, and Distributing Java Objects 99

There are some basic steps to follow to enable RMI support in your server,
which will implement the classes outlined above. No applet conversion was
necessary. The steps are:

1. Write code to get a reference for the remote server object (Figure 25 on
page 100).

2. Link our local JavaBean to the remote server (Figure 28 on page 103).

3. Define the interface that will be used by our local bean and the remote
server (Figure 29 on page 104).

4. Define the remote server class (Figure 30 on page 105).

5. Generate the RMI communication stubs that are based on the remote
server class (Figure 24 on page 97).

6. Define the actual remote server application, paying particular attention
to the generation of the server’s main method (Figure 33 on page 108).

7. Write the actual code for the remote server application (Figure 34 and
Figure 35 on page 109).

8. Export the server to the remote node, start the RMI registry on the
server (Figure 36), then run the server application.

The following screens and paragraphs explain these steps in more detail.

Figure 25. TruckDispatcher Constructor’s RMI Extensions

try {
// Use the RMI name server to look up our remote Dispatcher. Note that we
// are specifying access to a specific node at a specific port number. This
// assumes that the Remote Truck Dispatcher has previously been
// manually started on that remote node. This name lookup returns an
// object that has implemented the remote interface on the remote node.
Remote remote = Naming.lookup

("//oc0263f.itsc.austin.ibm.com:1099/TruckDispatcherServer");
// Now convert the generic remote object we just received into
// a reference to a specific remote Truck Dispatcher object.
if (remote instanceof TruckDispatcherInterface)
remoteTruckDispatcher = (TruckDispatcherInterface) remote;
}

100 Designing Java Applications for Network Computers

The java.rmi package was included in an import statement in the
TruckDispatcher class definition. If it is not there automatically, be sure to add
it.

In the constructor, we had to add try-catch code to handle java.rmi
exceptions. (For simplicity, the handler just reports the problem, see the full
code implementation on the removable media that accompanies this
document.)

Here in the constructor, we specify that the remote server is called
TruckDispatcherServer and is located on the specified remote node of

//oc0263f.itsc.austin.ibm.com:1099

and that TCP/IP communication will occur through port number 1099. If you
want to recreate this example, just substitute your specific node and the port
number you want to use.

Note that our communication with the remoteTruckDispatcher occurs through
the TruckDispatcherInterface.

Figure 26. RMI in Action: Running a Remote Method on the Server from an Applet

Note how invoking TruckDispatcher.requestingCargoPickup on a local version
of the TruckDispatcher non-visual bean in our applet causes
remoteTruckDispatcher.requestingCargoPickup to be invoked on the server
application. This is the very core of the RMI mechanism in action. We have
just run the method remotely on our remote server. WWTC’s business logic is
executed on the remote server to determine if trucks are available and the
approval status is returned to us for use in displaying the result on our local
applet’s display screen on the NC.

try {
......
/* Use our local proxy to perform the requestingCargoPickup method
 * on the remote instance of the truck dispatcher’s interface. */
 approvalStatus =
remoteTruckDispatcher.requestingCargoPickup(customerName,
truckQuantity, pickupAddress, pickupDateTime);
} catch (java.rmi.RemoteException e)
{
System.err.println ("Error talking to remote truck dispatcher" +
e.getMessage());
}

Designing, Developing, and Distributing Java Objects 101

Figure 27. RMI Remote Interface Definition

Note how the interface extends java.rmi.Remote. We had to specify that
extension while using the SmartGuide.
102 Designing Java Applications for Network Computers

Figure 28. Creation of TruckDispatcherInterface

Note how the SmartGuide forced you to choose to write source code for the
interface. There is no visual element to programming interfaces.

However, our interface was so simple that we didn’t have to add any code to
the interface definition or to the requestiongCargoPickup definition. We got all
these for free from the SmartGuide and from the method definition of the
TruckDispatcher bean itself.
Designing, Developing, and Distributing Java Objects 103

Figure 29. Specifying Interface Extension for an RMI-based Application

Next, we had to use the SmartGuide to implement the TruckDispatcherServer
class, shown in Figure 30 on page 105.
104 Designing Java Applications for Network Computers

Figure 30. TruckDispatcherServer Inherits from Unicast Remote Object

We enter the class name, TruckDispatcherServer, and use the defaults for the
class design, which is to write source code for the class (as shown in Figure
30).
Designing, Developing, and Distributing Java Objects 105

Figure 31. TruckDispatcherServer - Important Characteristics

Note the necessity of importing java.rmi, which is no surprise, since we are
using RMI. More important is the acceptance of the tool’s recommendations
for constructor and method implementations. For the type of application
illustrated in this section, always accept these defaults, as shown in Figure 30
on page 105 and in Figure 31.
106 Designing Java Applications for Network Computers

Figure 32. Interface Implementation

The TruckDispatcherServer class must explicitly implement the desired
interface, so that you can use the VA Java’s automatic RMI proxy generation
tool. Define the communicating methods (in our example,
requestingCargoPickup) identically for the original class, the interface class,
and the server class.

Next, we used the SmartGuide to define an actual applet that will become the
main server application that runs on WWTC’s remote server node. This
applet is the WorldWideTruckingDispatcher. We need a main method, since
we will run this as a standalone server application on the server node. Define
this during the class creation via SmartGuide, as shown in Figure 33 on page
108.
Designing, Developing, and Distributing Java Objects 107

Figure 33. Main Method Creation for the Remote Server Application

Modify the characteristics illustrated in Figure 33 above to match your actual
server application needs. The defaults shown were sufficient for our example
application.

The main method code for the remote server is shown in two parts (Figure 34
and Figure 35). Note that the appearance of the main method code has been
modified slightly for text formatting purposes, and non-essential code
boilerplate has been removed for clarity.
108 Designing Java Applications for Network Computers

Figure 34. Remote Server’s Main - Part 1

In Figure 34, notice the use of rebind. This means if the server is restarted,
the name definition will automatically be redefined for this new instance of the
remote server. If rebind was not used, an exception would be raised for the
redefinition attempt.

Figure 35. Remote Server’s Main - Part 2

/**main entrypoint - starts the application */
public static void main(java.lang.String[] args) {
 // Finally, create the real truck dispatcher that runs on the main
 // server box at WorldWide Trucking’s headquarters.
try {
TruckDispatcherServer theRealTruckDispatcher = new
TruckDispatcherServer();
// Remember that on the client side we did a naming lookup.
// On this side we have to bind the dispatcher server to the well-
// known name that the client was looking for. Code is machine-specific.
Naming.rebind
("//oc0263f.itsc.austin.ibm.com:1099/TruckDispatcherServer",
theRealTruckDispatcher);

System.out.println("Bound Truck dispatcher Server\n");

// Keep the dispatcher alive forever, giving time for the
// client to attach.
Thread.currentThread().join();
} catch (Exception e) {System.out.println(e); }
return;
}

Designing, Developing, and Distributing Java Objects 109

Figure 36. RMI Registry Startup

The menu choice to access RMI registry start panel is Workspace->Options,
then select the RMI tab to display the startup panel (see Figure 36).

5.3.1.6 Run Time
Before the server and client components are started, you should start the RMI
Registry on the server. This is done differently on each platform. (VA Java for
Windows NT version is shown in Figure 36.)

The registry listens to a specific port and can serve the Naming requests of
both the client and the server. This is important for the NC, which doesn’t run
its own version of RMI Registry.
110 Designing Java Applications for Network Computers

Of course, since our example in this RMI programming section (Chapter
5.3.1.5, “JavaBeans and RMI” on page 98) is a server and not a servlet, you
must manually start the server application on the server node.

Dynamic Stub Loading
Since references to remote objects can be passed as parameters, stub
classes need to be downloaded when a class is not found locally. When using
applets, the AppletClassLoader and AppletSecurityManager will control
theses services at run time.

Garbage Collection
RMI uses a reference-counting garbage collecting scheme that attempts to
track all outstanding references to a remote object. Each time a client obtains
a reference to the object, the object’s reference count is increased, and each
time a client loses the reference, the object’s reference count is decreased.
Eventually, the count should reach zero, and RMI places the object on the
weak reference list on the server which allows it to be garbage-collected.

Client remote references are considered leased and may expire, causing the
client to be taken off the remote reference list.

Object Services
Persistent object references will be available in JDK 1.2, which will allow
clients to re-establish a reference to a remote object after a server failure,
which may have resulted in a crash.

Remote object activation will also be available in JDK 1.2, which will allow
clients to assume that remote objects already exist on a server.

5.3.2 Common Object Request Broker Architecture (CORBA)
Like RMI, CORBA is based on a proxy design where the client object invokes
methods on a stub, which in turn uses an ORB infrastructure to transport the
message to the remote object. Although it appears to the client that the proxy
is the remote object, the client object never interacts with the remote object
directly. Because a client side ORB and a server side ORB can be
implemented in any language, they communicate using an open, standard
Internet Inter-Orb Protocol (IIOP).

Unlike RMI, the CORBA object bus is a specification that takes a
language-neutral approach to inter-object communication across a network.
One of its major goals is to allow objects implemented in different languages
to communicate using an Interface Definition Language (IDL) that defines the
exposed services of each. Objects, services and frameworks that make up
Designing, Developing, and Distributing Java Objects 111

the CORBA model are each defined using IDL, which provides a benefits of
having a system meta-model available in development and run time.

It also attempts to address many of the issues we have already raised about
distributed objects by defining a long list of universal object services for
managing objects in the real world, such as those services needed by a
robust e-business solution. For more information about CORBA, refer to
Understanding CORBA, by Otte, Patrick and Roy, Prentice Hall, 1996, ISBN
0-13-459884-9.

5.3.2.1 Interface Definition Language
When the client and server communicate, they need to agree on what kind of
information will be shared and exchanged. The Interface Definition Language
helps accomplish this. The IDL defines the interfaces, data types and objects
to be used between client and server. The IDL enables some level of
programming language independence, including support for C, C++,
Smalltalk., COBOL, Ada, and Java.

Module
The module keyword is used to avoid confusion between interface names
specified in your IDL and names in other programming languages or systems
on the network. It helps provide a scope or context for the interfaces defined
in the IDL.

IDL-to-Java Compiler
The IDL-to-Java tool was not part the JDK installation utilized in this redbook.
However, it is available from the following URL at JavaSoft:
http://developer.java.sun.com/developer/earlyAccess/jdk12/idltojava.html

5.3.2.2 Architecture
As of this writing, the current version is CORBA 2.2. The OMG Guide defines
four areas that make up the object architecture. See Figure 37 on page 113
for a graphical representation of this architecture.
112 Designing Java Applications for Network Computers

Figure 37. Basic CORBA Architecture

ORB
The Object Request Broker (ORB) is the main mechanism for inter-object
communication. The ORB handles the issues of knowing where an object is
and exactly how to send it a message. It distinguishes itself from other
middleware by providing for dynamic method invocations at run time. As part
of the language-neutral, platform independence, Windows 95 objects written
in Java can send messages to AIX objects written in Smalltalk. ORBs allow
for self-describing systems, as they must implement an Interface Repository
describing the services provided.

The components of an ORB:

 • Client-side IDL Stub

 • Dynamic Invocation interface

 • Interface Repository

 • Server-side IDL Skeleton

 • Dynamic Skeleton Interface

 • Object Adaptor

 • Implementation Repository

CORBA Services
So far, the OMG has published 15 IDL-defined services for managing objects.
These system-level services can be applied to your application to provide
varying levels of robustness. Since they are defined as services and are

Business
Objects

CORBA
Facilities

Object
Request
Broker

CORBA
Services
Designing, Developing, and Distributing Java Objects 113

available dynamically, component providers do not need to design for these
issues. However, whether these services are supported is up to the ORB
implementation.

 • LifeCycle Service - Object are born, live a happy life, then die. This service
helps manage creating, copying, moving and deleting objects

 • Persistent Service - Objects are around as long as the process that
created them is up and running. If you want objects to exist beyond this
point, you will need to manage persistence by placing them in some form
of data store like a database.

 • Naming Service - Trying to find an object on the network means being able
to identify the object by name. This is managed by a naming service.

 • Event Service - Objects want to be notified of a change in an another
remote object’s state. This is managed by the event service, which defines
an event channel for broadcasts.

 • Concurrency Control - Typical business solutions need to address many
client requests simultaneously. Managing locks on sensitive resources,
such as threads and transactions, is handled by the concurrency control
service.

 • Transaction Service - This service provides a robust two-phase commit for
transactions at the object level.

 • Relationship Service - Components that need to be related dynamically
will rely on this service for managing referential integrity.

 • Externalization Service - At the edge of the CORBA universe, information
enters and exits as data streams by way of the Externalization service.

 • Query Service - Perhaps you don’t have a particular object in mind, but
rather a set of objects that match a certain criteria. These requests are
provided by the query service in the form of an Object Query Language
(OQL).

 • Licensing Service - Usage-based systems need to track the activity of
objects at different levels of granularity. This service supports tracking hits
from objects to web sites.

 • Properties Service - This services allow you to dynamically associate
name/value pairs with an object.

 • Time Service - If objects wore watches, they would need to use this
service to manage a common knowledge of time. Also, this service
provides a trigger for time-based actions.

 • Security Service - This service provides the framework for keeping your
business objects secure.
114 Designing Java Applications for Network Computers

 • Trader Service - As we enter into a global, commercial object space, there
may be a choice of which object to use. This service provides a framework
for advertising services and competing for work at the object level.

 • Collection Service - This service deals with handle common forms of
object collections.

CORBA Facilities
The CORBA group is also attempting to define a set of IDL-defined
application services that provide both vertical and horizontal frameworks for
direct use by business objects. These target the areas of data interchange,
workflow, firewalls and internationalization.

Business Objects
At the top of the CORBA architecture is the layer of IDL-defined business
objects that you create to model your business. They represent the core
entities of your business and industry. To encourage re-use, these should be
designed without knowledge of the application context in which they will
participate.

5.3.2.3 Development
There are many Java implementations of the CORBA specification which
claim CORBA 2.0 compliance. However, each provides varying degrees of
support for the object services level.

Each of these packages relies on some form of Java emitting tool which
generates the stub and skeletons from the .idl files. Some tools will also
generate Java files from existing business classes.

In general, servers initialize an ORB, create business objects, connect the
business objects to the ORB, and then bind the business objects to a name
using the name server.

The client will also initialize an ORB, obtain the root naming context and then
request objects by name using the naming service.

Using the Java IDL API
The Java IDL API provides the base Java classes and tools for implementing
CORBA objects in Java. The API provides a Java-based ORB which can be
imported into both the servlet and the applet and an object naming service.
Other vendors provide extensions to this API that implement their own ORB
and provide support for the rich set of object services defined by CORBA.

In developing the IDL-defined business objects, follow these steps:
Designing, Developing, and Distributing Java Objects 115

 • Define each business object as an IDL-defined Interface.

 • Run the idltojava tool to generate Java implementations of the business
interface, the stubs and skeletons, and the helper and holder classes.

 • For each skeleton, create a subclass that represents the CORBA business
object by implementing all methods in the IDL specification.

In writing the servlet, follow these steps:

 • Initialize the ORB in the servlet’s init() method by invoking the static
class method omg.org.CORBA.ORB.init().

 • Create instances of the business object classes and register them with the
ORB by invoking the connect() method on the ORB.

 • Obtain the root NamingContext by invoking resolve_initial_references()
method on the ORB and passing ’NameService’ as an argument.

 • Bind the business objects into a name space hierarchy by invoking the
rebind() method on the root NamingContext and passing the business
object and its name as arguments.

In writing the applet, follow these steps:

 • Initialize the ORB in the applet’s init() method by invoking the static class
method omg.org.CORBA.ORB.init().

 • Obtain the root NamingContext by invoking resolve_initial_references()
method on the ORB and passing NameService as an argument.

 • Obtain the object reference to a named business object by invoking the
resolve() method on the root NamingContext.

 • Invoke any of the IDL-defined methods on the business object by sending
a message to the object reference.

5.3.2.4 Remote Factories
Like RMI, clients cannot create remote objects. To solve this, the Factory
pattern is recommended to create objects remotely. For each object type,
bind a CORBA-based object to a well-known name that provides a create()
method. When invoked by the client, this method should instantiate a new
business object on the server, connect it to the ORB, bind it into the naming
context and then return an object reference to the client.

5.3.2.5 Run Time
When the applet is loaded, the CORBA Java packages are downloaded from
the server and loaded. In effect, the ORB is bootstrapped just-in-time onto the
Network Computer.
116 Designing Java Applications for Network Computers

Javasoft also provide a transient naming service that is a stand-alone
application that can serve the requests of both the applet and the servlet at
run time.

5.3.3 RMI over IIOP
In July 1998, IBM and Sun announced the intent to co-develop and deliver
support for Java RMI over CORBA’s IIOP protocol. This function will be
delivered as extensions to the existing JDK 1.1.6 and the future JDK 1.2, and
will be a part of the core JDK in a future release.

This allows Java developers to access the world of CORBA distributed
objects using native Java interfaces. Sun will define a subset of RMI functions
that will be transportable over IIOP, and Java applications will be able to use
RMI over IIOP to communicate applications in other programming languages
as supported by the CORBA specifications.
Designing, Developing, and Distributing Java Objects 117

118 Designing Java Applications for Network Computers

Chapter 6. Maintenance

This chapter describes some of the issues a developer or programmer faces
when maintaining existing code, regardless of the language. Java-specific
considerations are also discussed. As the WorldWide Trucking Company
(described in Chapter 3, “Application Example - WorldWide Trucking
Company” on page 43) enters the code maintenance phase of their
applications, many of the software maintenance issues described in this
chapter will need to be addressed.

Software maintenance is the process of modifying the software product after
it has been implemented. The types of software maintenance can be broken
into the following groups:

1. Corrective
2. Adaptive
3. Perfective
4. Preventative

Of these, the first three categories represent about 95% of the software
maintenance effort, and will be dealt with in this section. We also describe the
impact of using distributed objects in the software maintenance effort.

6.1 What Makes Maintenance Difficult

Each category of software maintenance has key factors that make that group
of tasks difficult. In this section, each of the types of software maintenance
will be discussed to see how they are impacted in an NC environment.

6.2 What Makes Maintenance Expensive

All software can be rewritten. It is simply a matter of how much effort it takes
to change it and make the affected modules ready for production. The
primary cost of changing software is effort. Software maintenance costs are
almost all associated with the effort needed to understand programs, find
what code needs to be changed, make the change, and test the changed
program in a variety of end user environments. If careful software design can
reduce this effort, then this design effort will also reduce costs.

6.2.1 Corrective Maintenance
Corrective maintenance involves the diagnosis and correction of undesired
events (UE) that occur in software. The following two groups provide a rough
© Copyright IBM Corp. 1998 119

classification for UEs, (described by Parnas in "Response to Undesired
Events in Software Systems", Proceedings of International Conference on
Software Engineering, IEEE Computer Society Press, 1976), that will be used
in this chapter.

1. Incidents - these are UEs that, although undesired, are expected and for
which recovery is successful.

2. Crashes - all other UEs.

The correction of UEs begins with the gathering information from the
following questions:

1. How did the error manifest itself?
What happened that made it apparent that unacceptable program
behavior had taken place (for example, a console error message, "the
screen went black")?

2. Where did the error manifest itself?
In the case of a crash, where in the program did the crash take place? In
the case of an incident, where in the code was the incident detected (that
is, where was the error signalled to an error handler)?

3. What were the values of variables at the time of failure?
Once we determine the value of program variables, this can tell us the
data state at the time of the UE.

4. How did the program get to this point?
In determining the cause of a UE, we can discover the sequence of events
that took place to arrive at the final program state where the UE occurred.
This path of logic followed by the program is followed, and the reason for
this logic flow is also determined. This, in fact, traces the changes in data
state from the start of the program to the point where the UE took place.

6.2.1.1 Implications for Distributed Objects
In a monolithic system of programs, this information can be difficult to find
when it exists. A distributed application multiplies the difficulty of finding this
information by the number of affected platforms in the network. Consider the
relationship in Figure 38 below.
120 Designing Java Applications for Network Computers

Figure 38. M/U Diagram for Distributed Environment

In the diagram shown in Figure 38, The M object appears to be local from the
perspective of the U object on the server platform. But, in fact, the M object
has a proxy. The U object actually communicates through the M proxy and
the M skeleton (on the client platform), to the M object on the client platform.
The M proxy and skeleton are responsible for communications across the
network, keeping this isolated from the M object on the server platform.

In a distributed application, the information needed to help debug a problem
might be spread across several platforms. The difficulty of finding this
information is multiplied by the number of affected platforms in the network.
Let’s assume that an incident occurred (as defined in 6.2.1, “Corrective
Maintenance” on page 119) in Figure 38 on page 121. The incident occurs on
the client in the M object that is part of the A applet by signalling an error to
the error handler. The error, however, actually originates on the server in the
U object. Now consider the information the programmer needs to gather.

1. How did the error manifest itself?
The error manifests itself by triggering an incident.

2. Where did the error manifest itself?
The error manifests itself in an applet on the client computer.

3. What did the variables hold at the time of failure?
The relevant variables were to have the data sent from the U object, which
caused the failure. Both the platform where M was executing, as well as

Server Platform

U
object

M
object

M proxy
object

Client Platform

M
object

M skeleton
object
Maintenance 121

the platform where U was executing, must be analyzed for their data
states at the time of failure.

4. How did the program get to this point?
The program got to this point by trying to interpret a message sent by the
U object. Establishing the sequence of events that took place to get the M
object into the failure state requires recreating the data states from the
start state to the failure state. But this involves recreating a complex set of
at least two series of data states, one for the M object and one for the U
object, and understanding the interactions between the two objects.

So where is the problem in this example? This, in fact, is a difficult question to
answer. For the M object, the U object looks local. But a programmer must
trace the error from the U object to the M proxy, then to the M skeleton and
finally to the client M object. Tracing errors across platforms like this can be
very difficult.

What if the error is a crash? A crash might disable the JVM, causing the
software on the client to terminate abnormally. In this case, the operating
system might release the systems storage that Java no longer needs. With
the absence of persistent local storage on an NC, the local context of the
error might not be available for debugging.

One solution here is to log state changes and inter-object messages in a
persistent form of storage.Since persistent storage does not exist on thin
clients, the logging must take place on the server, adding more network traffic
and more complexity to the application.

Clearly, debugging UEs can be more complex in an NC network environment.
This places even greater emphasis on solid documentation and good design.

6.2.2 Perfective Maintenance
Perfective maintenance is the process of altering and enhancing the
functionality of software to meet new needs. The key issue in perfective
maintenance is mapping functionality to where the functionality is embodied
in the code.

6.2.2.1 Implications for Java
In a distributed object environment, program source code text is broken into
classes. Each class usually specifies a set of data and almost always
specifies a set of behaviors. The behavior, when associated to data, specifies
the behavior for the data. To control the complexity of the behavior associated
with a class, classes and their behaviors are kept small, and they build on the
behaviors of other classes to provide more complicated functionality. This
122 Designing Java Applications for Network Computers

keeps methods small and classes relatively simple. Keeping classes small
and methods simple, however, has the effect of fragmenting functionality
amongst the smaller classes. Since the business processes tend to be made
up of complicated functionality, this functionality is spread throughout a
relatively large number of classes.

This fragmentation of functionality among the classes makes it difficult to
understand how business processes map into the code text. This also applies
to new functionality as well, making it difficult to find existing functionality in
the code. As a result, it is difficult for the developer to understand where new
functionality should actually be implemented.

The consolidation of behavior and data into a class lends itself to creating
classes that can be reused by various parts of the software. This reduces the
code volume, and in some cases, helps maintenance by localizing key
functionality, thereby allowing one change where otherwise several might be
needed.

However, this reuse brings with it a cost. Practicing reuse increases the
interconnections of the resulting software. The effect is that when the reused
class is changed, all software relying on the class must be retested.
Therefore, when building components for reuse, the following points must be
considered:

 • Interface Use: Use interfaces only when there is an express need for
multiple inheritance, because once an interface is made generally
available, it is difficult to change. This is particularly acute when the
creator of the interface is not in control of where it is used. When a class
extends an interface, it must implement all the interface’s methods, even if
they are implemented as abstract methods. Therefore, when a method is
added to an interface, the classes that extend the interface must be
changed to include the new method. This is fine if the creators of the
interface have control and they can find all the classes that extend the
interface, but if they do not, there is a danger that classes will be made
invalid.

 • Streaming Operators: Default streaming operators come with a cost.
When a class implements java.io.serializable, the default serialization
code will write the internal data members of the serialized class and read
these in again when the class is streamed in. The problem is that once the
internal objects have been written to stream, they must be supported. This
means supporting the implementation that can stream these objects in. If a
new implementation is to be used, then both the new and the old
streaming implementations must be supported. It is better to be careful
about what needs to be streamed and only serialize that.
Maintenance 123

 • Reusable Code: When reusable code is written for a wide audience, the
behavior offered in it must be carefully considered, since functionality can
never be removed without risk to the users of the reusable code.

6.2.3 Adaptive Maintenance
During adaptive maintenance, the software is modified to accommodate
changes in the hardware and software environment. Since Java is mostly
independent of the hardware and software platform, this type of maintenance
will be limited primarily to changes that take place inside Java itself.

Releases of Java with new functionality are becoming available on the market
at an unprecedented rate. Since new releases of the JDK introduce new
functionality to the Java language by adding classes, these classes must be
part of the Java Run-Time Environment (JRE). Therefore, the JDK used when
a program is compiled must be compatible with the JDK associated with the
JRE. If it is not, undesired events may result.

JDK version control is one area where the NC environment can ease
maintenance. Because NCs download all software resources from the server,
the version control problem that exists for fat client end user platforms is
lessened. The NC downloads a new copy of the version of the JDK given to it
by the server when the client boots up. Therefore, the correct version of the
JDK must only be ensured on the client image on the server.

6.2.3.1 To Compile or Not to Compile: the Maintainer’s Dilemma
A debate that has simmered in the maintenance community for many years is
whether a changed program should be compiled when it reaches production
or not.

This argument revolves around what exactly is being executed in the
production system. When programs are compiled, the output is a module in
an intermediate form. In procedural languages like COBOL or PL/1, this
module, produced by the compiler, is in a language called object code, which
is executable. However, it lacks control information the operating system
requires, such as a beginning and an end that can be recognized by the
operating system. This beginning and end is added during the link stage
where the object code is linked together with other object code modules to
form a load module. The load module has everything it needs to be executed,
including a beginning and an end. So, the source code is not being executed,
the object code is. This precipitates the following arguments for and against
recompiling a program in production.
124 Designing Java Applications for Network Computers

Do Not Compile
Because the source code is not executed, it is not the code being tested.
Therefore, the source code is unsafe and any object code generated by the
source code is also unsafe. The only code that has really been tested is the
object code that was linked into the test load module, and this is what should
be relinked into production load libraries.

Do Compile
Since the production environment is inevitably different from test
environment, the source code must be recompiled in production to generate a
production object code module. This is safe because the translation process,
the compiler, is the same in both production and in test. Therefore, the output
will be consistent, but it will contain all production characteristics. The newly
compiled object module will then be linked into the production load libraries.

How this applies to Java
Java has the same characteristics as other compiled languages in that it has
an intermediate form. Therefore, the same issues as described above apply
to Java. Java takes the new features it provides from the class libraries that
are distributed with the JDK. If the JDK versions under which the program is
compiled differ from that version under which the program is executed, the
results can be unpredictable.

The important difference, however, takes place during linking. In traditional
technologies, linking consolidates the application object modules and the
standard modules that allow the program to interface with the operating
system. Notice that this produces a platform-dependent load module,
because the standard modules will be part of the test environment, and
therefore, these are safe as they have been tested in conjunction with the
application modules under test.

This is not the case with Java. The link step is performed on the target
platform before execution. However, the target standard modules for
operating systems interfaces may not have been tested in conjunction with
the application program. Therefore, the load modules are not tested code,
and the results can be unexpected.

The keys are the standard interface modules and how they behave. Since the
underlying operating system varies, even if the interface modules are
standard, their behavior will vary slightly, and this variation may be sufficient
to cause unpredictable behavior. The only solution to this problem is testing
on all target platforms.
Maintenance 125

6.3 Conclusion

Although one of the benefits of the object-oriented paradigm is supposedly
easier maintenance, a closer analysis of Java in the NC environment shows
that software bugs can be more difficult to find and fix. Functionality may be
more difficult to isolate and therefore modify, and all end user platforms
should be retested as a result. However, this is not an indictment of Java in
an NC environment, but more a characteristic of object-oriented
environments in general.

Sloppiness in the design, documentation and implementation of
object-oriented programs in general, and Java on the NC platform in specific,
can worsen long term maintenance, since programs usually spend upwards
of 70% of their useful time in maintenance mode. This time spent in
maintenance translates directly into cost. Some I/S organizations already
spend almost 75% of their budget on software maintenance. Without careful
thought to the factors that make software maintainable in the long term, this
percentage could rise rather than fall with object-oriented technologies.
126 Designing Java Applications for Network Computers

Appendix A. Network Basics

This appendix defines some terms and concepts used in this redbook.
Although many readers will be familiar with these descriptions they are
provided here for your reference.

A.1 Local Area Network

A Local Area Network is a shared access technology in which all devices
connected to the Local Area Network (LAN) share a single communications
medium. The physical connection to the LAN is made by putting a Network
Interface Card (NIC) into a computer and connecting it to the network cable
which allows packets, or bundles of data, to be sent across the LAN. Another
aspect of LANs is that they are usually confined to a room, building or
campus, and have technical limitations on the distance covered.

A.1.1 Network Infrastructure

The network infrastructure consists of all the components that go into
allowing computers to communicate with one another, including cables,
adapter cards and network protocols. Since these are usually transparent to
the application software, the descriptions in this section will be brief and are
intended only to help establish a context for the discussion in this redbook.

Two widely used standards for network infrastructure are Ethernet and
token-ring. They are described in the following sections.

A.1.2 Ethernet

Ethernet is a network cabling and signalling specification first developed in
the late 1970s. The physical layer provides the hardware specifications for
cabling and for the Ethernet NIC.

The specification also provides a protocol for how a packet of data is put on
the network, called Carrier Sense Multiple Access with Collision Detection
(CSMA/CD). In this protocol, the ethernet device listens to the network to see
if someone else is transmitting. If the network is busy, the device waits a
period of time and tries again until the network is free.

A.1.3 Token Ring

Token ring is an equivalent network cabling and signalling specification often
compared to Ethernet. Again the specification provides for the physical layers
characteristics including the NIC - a physical layer different from the Ethernet.
© Copyright IBM Corp. 1998 127

The specification also provides a protocol for sending a packet through the
physical network called token passing. Token passing is a deterministic
access method where collisions are avoided by assuring only one station can
transmit at one time. This is done by passing a special packet, a token,
around the network. When a station gets a free token it sends a packet in one
direction around the network, to the receiving station, which copies the
packet. The packet is then sent on and eventually returns to the sender who
removes the packet from the ring and then sends a free token back out into
the ring for the next station.

A.2 Wide Area Networks

The technology in both hardware and software is so varied that a description
is beyond the scope of this document other than to say Wide Area Networks
(WANs) allow communications over long distances and provide a way of
connecting LANs that are widely separated. Often, WANs are used to connect
LANs in different geographies, within a city, region, country or across multiple
countries.

A.3 Bridges / Routers / Switches

Bridges, routers and switches allow networks to be connected together to
make bigger networks. A bridge allows two smaller networks of similar or
differing topology to be connected, allowing communications among systems
on either side of the bridge. A bridge can connect LANs or WANs together.

A router allows communications for systems that use protocols that include
routing information, primarily TCP/IP. Many companies today are replacing
bridge-based networks with routed networks.

A switch is a device used to connect computers together to form a network,
allowing each device to use dedicated bandwidth to communicate to another
system.

A.4 Network Resources

Since the purpose of a network is to allow computers to share resources the
computers on the network can be divided into resource providers and
resource users.
128 Designing Java Applications for Network Computers

A.4.1 Resource Providers

Computers that provide a resource to other computers in the network are
called servers. Any computer can be a server, its only requirement is that it
has a resource that another computer needs and can make that resource
available over the network.

In practice, servers specialize in providing resources to other computers.
Therefore, a typical server will have large amounts of disk space and other
devices associated with it so that these can be made available to resource
users. Servers also have specialized software that allows the resources to be
made available to resource users over the network.

A.4.2 Resource Users

Computers that use a resource belonging to other device providers are called
clients. Again any computer can be a client, its only requirement is that it
needs a resource that is available over the network. In this framework, a
server can also be a client when it needs resources.

In practice, clients tend to have fewer resources available for other
computers to use than servers. Clients that still retain a relatively large
number of resources are called fat clients. But a network allows clients to
shed locally held resources and become thin. A thin client typically has
minimal hardware and relies on the network to provide its resources.
Network Basics 129

130 Designing Java Applications for Network Computers

Appendix B. Protocol Layers

The layers into which protocols have been aggregated are defined by a
reference model. Although other reference models exist this paper will use
the International Standards Organization (ISO) Reference model, which has
seven layers as shown in Figure 39 on page 131. Notice that a single layer
may have several alternative protocols. This simply means that there are
several implementations to the same part of the overall model.

Figure 39. Protocol Reference Chart

B.1 Physical Layer

Protocols in this layer define the electrical signaling and transmission
channel, or how bits are given a physical form like electrical current or light
pulses. These protocols address issues surrounding the physical network like
modems, baud rate and transport medium specifications like cabling
requirements.

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

SMTP

XWindows Telnet

FTP

IIOP

NFS Mount

BootP DHCP

TFTP

HTTP

TCP UDP

IP

LAN Ethernet Token Ring WAN

N
et

w
or

k
O

pe
ra

tin
g

S
ys

te
m

RPC
© Copyright IBM Corp. 1998 131

B.2 Data Link Layer

This layer specifies how “Packets” are transmitted as groups of bits variously
referred to as “Tokens” or “Frames” or “Packets”.

B.3 Network Layer

Protocols in this layer specify how data from the transport layer is sent
through the network and how hosts are addressed.

B.3.1 IP

The Internet Protocol (IP) has the simple job of finding a route for a Titograd
and getting it to the destination defined in the IP address.

B.4 Transport Layer

This layers protocols isolate higher layers from changes in the networks
connections. This layer assures data integrity for higher layers.

B.4.1 TCP

The Transmission Control Protocol (TCP) breaks a stream of data to be
transmitted up into pieces called gladiators. The protocol then ensures the
transmission of datagrams to their destination. If a data stream is too large to
be sent all at the same time, TCP will split it into multiple datagrams and
ensure all the pieces arrive. At the receiving end, TCP collects the datagrams
together to sequence and recreate what was originally sent.

Because more than one program might want to send data through the same
physical connection at the same time TCP provides each communication
session with a port number. This allows TCP to keep track of each of the
communication sessions separately

The terms "datagram" and "packet" are often used as if interchangeable.
Typically datagram is the correct term when describing TCP/IP. The
datagram is a unit of data, which is what the protocols deal with as
opposed to a packet, which is a physical entity that appears on an Ethernet
or some other wire. Therefore, a packet is what is used to send a datagram
across a wire

Terminology
132 Designing Java Applications for Network Computers

B.4.2 UDP

User Datagram Protocol (UDP) provides multiple users access to the same
port by allocating port numbers but provides none of the other services TCP
provides including guaranteed delivery.

B.5 Session Layer

Protocols in this layer establish and terminate connections and arrange
sessions for parties in the communication.

B.6 Presentation Layer

These protocols transform data across architectures (like ASCII vs. EBCDIC)
and perform compression and encryption.

B.7 Application Layer

This layer defines protocols to be used in order to interact across the
network. These protocols provide the basic functionality needed for network
computing, such as initiating a network computer and providing file transfer
capabilities.
Protocol Layers 133

134 Designing Java Applications for Network Computers

Appendix C. Synchronization Code Samples

This appendix contains sample code that was referenced in Chapter 4.8.1,
“Issue: Race Conditions” on page 65.

C.1 No Synchronization

This section contains the producer/consumer code with no synchronization.

C.1.1 R - The Shared Resource

/**
*
 */
public class R {

int number;

/**
 * This method was created by a SmartGuide.
 */
public R (int n) {

number = n;
}
/**
 * This method was created by a SmartGuide.
 * @return int
 */
public int get() {

return number;
}
/**
 * This method was created by a SmartGuide.
 */
public void put(int c) {

number = c;
return;

}

}

C.1.2 Tc - The Consumer

/**
*
 */
public class Tc extends Thread {
Synchronization Code Samples 135

R resource;
int iDNumber;

/**
 * Tc constructor comment.
 * @param r synch.R
 * @param id int
 */
public Tc(R r, int id) {

resource = r;
iDNumber = id;

}
/**
 * This method was created by a SmartGuide.
 */
public void run() {

for (int i=0; i < 10 ;i++) {
 System.out.println("Tc thread " + this.iDNumber + " R.get =

" + resource.get());
}
return;

}
}

C.1.3 Tp - The Producer
/**
*
 */
public class Tp extends Thread {

R resource;
int iDNumber;

/**
 * Tp constructor comment.
 */
public Tp(R r, int id) {

resource = r;
this.iDNumber = id;

}
/**
 * This method was created by a SmartGuide.
 */

public void run() {
for (int i=0; i < 10 ;i++) {
136 Designing Java Applications for Network Computers

 resource.put(i);
 System.out.println("Tp thread " + this.iDNumber + " R.put =

" + i);
 // supply situation to allow Tc to race ahead
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
}

}
}

C.2 Synchronized

This section contains the producer/consumer code with the wait and notify
synchronization functions added.

C.2.1 R - The Resource

package synch;

/**
 * This class was generated by a SmartGuide.
 *
 */
public class Rwait {

int number;
boolean available;

/**
 * This method was created by a SmartGuide.
 */
public Rwait (int n) {

System.out.println(" *** Rwait *** ");
number = n;
available = true;
}

/**
 * This method was created by a SmartGuide.
 * @return int
 */
public synchronized int get() {

 while (available == false) {
// wait for Producer to put the new value
try { wait(); }
catch (InterruptedException e) { }
Synchronization Code Samples 137

}
available = false;

// notify Producer that value has been retrieved
notifyAll();
return number;

}
/**
 * This method was created by a SmartGuide.
 */
public synchronized void put(int c) {

while (available == true) {
// wait for Consumer to get value
try {wait(); }
catch (InterruptedException e) { }

}
number = c;
available = true;
// notify Consumer that value has been set
notifyAll();

}

}

C.2.2 Tc - The Consumer

/**
*
 */
public class TcWait extends Thread {
Rwait resource;
int iDNumber;

/**
 * Tc constructor comment.
 * @param r synch.R
 * @param id int
 */
public TcWait(Rwait r, int id) {
resource = r;
iDNumber = id;
}
/**
 * This method was created by a SmartGuide.
138 Designing Java Applications for Network Computers

 */
public void run() {

for (int i=0; i < 10 ;i++) {
 System.out.println("TcWait thread " + this.iDNumber + " R.get =
" + resource.get());
}
return;
}
}

C.2.3 Tp - The Producer

package synch;

/**
 * This class was generated by a SmartGuide.
 *
 */
public class TpWait extends Thread {
Rwait resource;
int iDNumber;

/**
 * TpWait constructor comment.
 */
public TpWait(Rwait r, int id) {
resource = r;
iDNumber = id;
}
/**
 * This method was created by a SmartGuide.
 */

public void run() {
for (int i=0; i < 10 ;i++) {
 resource.put(i);
 System.out.println("Tpwait thread " + this.iDNumber + " R.put =
" + i);
 // supply situation to allow Tc to race ahead
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
}
}
}

Synchronization Code Samples 139

C.3 Solution Limitations

In the two threaded examples above, the local synchronization of get() and
put() will provide exactly the desired behavior. This is due to there being only
two threads and the instance variable called available having the effect of
serializing access to the R object.

The assumption that there will be only one producer and one consumer
makes this solution weak in a single platform environment and makes it
unworkable in a distributed object environment. On a single platform, some
control can be exercised on how many producers and consumers there are,
but in a distributed object environment, this is no longer possible. By adding
another consumer, that is, another instance of Tc, the available instance
variable no longer serializes the access to R since either of the consumers
can set available to false using get().

It is important to note that the solution tendered in the example is for
illustrating how synchronization works, and is not a general solution.

Implementation of a queue of waiting prioritized threads (or thread proxies for
distributed processes) would improve this situation by making this approach
more robust.
140 Designing Java Applications for Network Computers

Appendix D. Special Notices

This publication is intended to help Java application designers and
developers understand the issues related to the development of Java objects
for Network Computers. The information in this publication is not intended as
the specification of any programming interfaces that are provided by products
mentioned in this document. See the PUBLICATIONS section of the IBM
Programming Announcement for any products mentioned in this document for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
© Copyright IBM Corp. 1998 141

them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java, HotJava and JavaOS for Business are trademarks of Sun
Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX ® CICS ®
DB2 ® DB2 Universal Database ®
Distributed Application Environment IBM ®
IMS MQ Series®
OS/2 ® OS/390
OS/400® RS/6000
System Object Model VisualAge
142 Designing Java Applications for Network Computers

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 145.

 • RS/6000 - IBM Network Station Companion Guide, SG24-2016

 • WorkSpace On-Demand Handbook, SG24-2028

 • JavaBeans by Example, SG24-2035

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

E.3 Other Publications

These publications are also relevant as further information sources:

 • Orfali, Robert and Harkey, Dan, Client/Server Programming with Java and
CORBA, 2nd Edition, John Wiley and Sons, Inc., New York, NY, 1997

 • Vanhelsuwe, Laurence, Mastering JavaBeans, Sybex Inc., Alameda, CA,
1997, (p. 46)

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1998 143

 • Scott Oaks, Henry Wong, and Mike Loukides, Java Threads, O'Reilly &
Associates, 1997, ISBN 1565922166

 • Lea, Doug, Concurrent Programming in Java, Addison Wesley, 1996,
ISBN 0-201-69581-2
144 Designing Java Applications for Network Computers

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

 • PUBORDER – to order hardcopies in the United States

 • Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLCAT REDPRINT
 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BokkManager BOOKs of redbooks, type the following command:

 TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

 • REDBOOKS Category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
© Copyright IBM Corp. 1998 145

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

 • Online Orders – send orders to:

 • Telephone Orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • On the World Wide Web

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces
146 Designing Java Applications for Network Computers

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 147

148 Designing Java Applications for Network Computers

List of Abbreviations

AWT Abstract Windowing
Toolkit

BOOTP Bootstrap Protocol

CORBA Common Object
Request Broker
Architecture

CSMA/CD Carrier Sense Multiple
Access with Collision
Detect

DHCP Dynamic Host
Configuration Protocol

DDNS Dynamic Domain Name
Server

DNS Domain Name Server

DSOM Distributed System
Object Model

DSP Dynamic Server Page

EJB Enterprise Java Beans

FTP File Transfer Protocol

GIF Graphics Interchange
Format

HTML HyperText Markup
Language

HTTP HyperText Transfer
Protocol

IBM International Business
Machines Corporation

IDE Integrated
Development
Environment

IDL Interface Definition
Language

IIOP Internet Inter-Orb
Protocol

IRC Internet Relay Chat

ISO International Standards
Organization
© Copyright IBM Corp. 1998
ITSO International Technical
Support Organization

JAR Java Archive

JCE Java Cryptography
Extension

JDBC Java DataBase
Connectivity

JDK Java Development Kit

JFC Java Foundation
Classes

JIT Just-In-Time

JMS Java Message Service

JNDI Java Naming and
Directory Service

JNI Java Native Interface

JPEG Joint Photographic
Experts Group

JRE Java Run-Time
Environment

JTS Java Transaction
Service

JVM Java Virtual Machine

LDAP Lightweight Directory
Access Protocol

MAC Media Access Control

MAN Metropolitan Area
Network

MPEG Moving Pictures Expert
Group

NC Network Computing;
Network Computer

NCF Network Computing
Framework

NFS Network FIle System

NIC Network Interface Card
 149

NIS Network Information
System

OEM Original Equipment
Manufacturer

OMG Object Management
Group

ORB Object Request Broker

POP Post Office Protocol

POST Power-On-System-Test

NC Network Computer

RISC Reduced Instruction
Set Computing

RMI Remote Method
Invocation

SMTP Simple Mail Transfer
Protocol

SSI Server Side Include

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol / Internet
Protocol

TFTP Trivial File Transfer
Protocol

UDP User Datagram
Protocol

UE Undesired Event

URL Uniform Resource
Locator

VA VisualAge

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

XML Extensible Markup
Language
150 Designing Java Applications for Network Computers

Index

Symbols
.java extension

See Java

Numerics
3270 access via browser 39

A
abstraction 7
Accessibility API 72
aglet 33
anticipating user behavior 62
Apache HTTP Server 6, 38
applet 12, 13

appletviewer 84
compared to application 64
compared to X-terminal applications 84
discussion 74
positioning 26
programming issues 79
start() 87

applet bean 75
applet viewer 13
application

server 26
vs. applet 13
Web-based solutions 25

application server 6
ARCHIVE tag 52

B
boot monitor 4
boot protocols 5

Network File System 6
Trivial File Transfer Protocol 5

boot server 5
BOOTP

definition 5
bytecode 7, 8

C
callbacks 98
Case Study

SeeWWTC
© Copyright IBM Corp. 1998
CGI-BIN 34
CICS access via browser 40
class 14
class files 53
class loader 11
client/server 1
clipping problem 79
communications

between objects 15
using RMI 94
via sockets 91
with IIOP 74

compiler 8
input and output 9

Component Broker 39
computer network 6
concurrency 65
connectors 39

definition 31
content assembly 38
context 12
cookie 60

for session context 61
CORBA

and Enterprise JavaBeans 37
and JDK 1.2 37
definition 111

cost of ownership 1
CSMA/CD 127

D
DB2 26

access to 31
DCE access 40
destroy() method 88
development

issues 51
NCF 34

DHCP
definition 5
redbook 5

Distributed System Object Model 43
Domino Go Webserver 6, 38
Domino.Connect 40
Domino.Merchant 34
dynamic HTML 34
Dynamic Server Pages 32
151

E
Encina 31
Enterprise JavaBeans 26

and CORBA 37
client vs. server application 37
definition 36
version 73

events 64
exceptions 98
execution engine 10
externalization 63

F
fat client 2, 18
firmware 4
footprint 52
FORM tag 89
FTP 6
fully qualified name 15

G
garbage collection 10, 16, 111
GIF 37

H
heap

See Java
High Performance Compiler 32
Host on Demand 39
HTML 34
HTTP Server 6

I
IDL 73, 112
IDL-to-Java 112
idltojava tool 116
IIOP 23, 27, 31, 38, 73

definition 111
IMAP4 30
IMS access 31, 39
InfoBus 33
integrated development environment 38
Intel Architecture Lean Client 17
IPsec 28
IRC 30

J
JAR files 52
Java

.class files 9, 52

.java files 9
Accessibility API 72
applet 12

programming issues 79
application 13
archive file (JAR) 52
associated files 8
bytecode 7
class 14
compiler 8
database access 30
definition 7
exception management 11
Foundation Classes 72
garbage collection 111
heap 10
main() 13
native interface 72
native method 11
object 14
platform independence 8
portability 54
runtime 8
Security Manager 12
soft failure 56
source code 7, 9
threads 11

discussion 67
trusted code 13

Java Development Kit
See JDK

java.applet.AppletContext 92
java.rmi.Naming.bind() 97
java.util.EventObject 64
JavaBeans

and RMI 98
components 35
definition 35
Enterprise JavaBeans 36

running on NCs 37
in applets 64
multiple threads 64
communications 74
redbook reference 36
relation to NCF 36
152 Designing Java Applications for Network Computers

running on NCs 36
servlets 88

JavaOS for Business 17
javax.servlet package 88
JCE 29, 73
JDBC 31, 39, 73
JDK 8, 55

components 72
version 1.1.6 72
version issues 55

JDK 1.2 37, 72
JFC 72
JIT 32
JMS 74
JNDI 29, 73
JNI 72
JPEG 37
JRE 9

diagram 10
JTS 74
JVM 10

creating objects 14
definition 7
on IBM Network Station 13

L
LAN

definition 127
Ethernet 127
token ring 127

LDAP 29
locking 66
Lotus InfoBus 28

definition 33
See also InfoBus

M
MAC address 3, 5
mail services 30
main() 13

for servlets 88
manifest 52
memory layout 12
memory manager 10
messages 15
methods

accept() 91
getServletConfig() 90

java.rmi.Naming.bind() 97
start() 87
stop() 88

module keyword 112
MQSeries access 40

N
Naming and Directory access 29

in RMI 97
native method 11

diagram 10
Navio browser 17
NCF

basic goal 23
client 71
Client Enablement services 29
connectors 31
Database services 30
definition 21
diagram 22
Directory services 29
elements 27
Groupware services 30
Host Integration services 29
infrastructure 28
Mail and Community services 30
Mobile Enablement services 29
Network services 28
questions it answers 22
Security services 29
services 30
solution categories 24
three tier model 26
Transaction services 31
URL for more info 21

Net.Commerce 33
Net.Data 40
NetObjects Fusion 32
Netscape Composer 86
Network Computer

and EJBs 37
boot server 5
definition 2

Network Computer Reference Platform 17
Network Computing

example of 2
goal 2

Network Computing Framework
 153

 See NCF
Network Interface Card 127
Network Station 2

announcement 17
future 17
Intel-based 17
power on sequence 4
redbook 3
resources 17
specifications 3
using JavaBeans on 36

NFS 3
definition 6

NNTP 30
NSM 3

O
object

communications 15
messaging 15
persistence 62
serialization 62
streams 91

ORB 113

P
PARAM tag 87
PC

definition 2
persistence 54

definition 62
PKZIP 52
POP3 30
port number 85
POST 4
PowerPC CPU 3
producer-consumer problem 65
protocol

definition 6
Public Key 29

R
race condition 65
readExternal 63
readObject() 92
reuse of applications 48
RMI 27, 72, 74, 93

and JavaBeans 98
architecture 94
bean communication 36
compiler (RMIC) 96
definition 74
explained 94
over IIOP 117
persistence 63

RunTime.exit() 13

S
sample code 81, 84
SAP 31
schema 29
scope 15
security 73
Security Manager 12
serialization 63

in RMI 94
See also externalization

server
application 26
definition 5
enterprise 26
Web Server 6, 30

Server Side Include 34
SERVLET tag 89
ServletExpress 33, 39
ServletRunner 89
servlets 33

definition 14
init() method 88
invoking 89
sockets 91
using SSI 34

session context 60
skeleton layer 95
sockets 91
source code 7
static HTML 34
streams 91
stub layer 95
Swing APIs 72
synchronization 67
System.exit() 13

T
TCP/IP 2, 28
154 Designing Java Applications for Network Computers

TFTP 3, 5
thin client 51, 129

definition 2
programming issues

JDK variations 55
local resources 52
session context 59
transaction rollback 57

thin data 53
threads 11

concurrency 65
discussion 67
locking 68
reference information 69
synchronization 68
with JavaBeans 69

Tivoli 33
trusted code 13

U
untrusted code 13
URLs

for "Glasgow" JavaBeans 35
for IDL-to-Java compiler 112
for Intel-based Network Station 17
for Java information 96
for Lotus InfoBus info 33
for NCF white papers 21
for obtaining WWTC JAR file 81

V
Virtual Machine

definition 8
JVM 7

visual beans 76
VisualAge for Java 32

Enterprise JavaBeans 36
Visual Composition Editor 77

VPN 28

W
WebSphere 32, 33, 64
WorkSpace On-Demand 18, 40

redbook 19
WorldWide Trucking Company

See WWTC
writeExternal 63

writeObject 63
writeObject() 92
WWTC 43

application re-use 48
approach 44
business flow 50
IT platforms 46
obtaining JAR File 81
sample code 81
transactions 57
trucking applet 47

X
X.400 30
X.509 30
XML 27
 155

156 Designing Java Applications for Network Computers

© Copyright IBM Corp. 1998 157

ITSO Redbook Evaluation

Designing Java Applications for Network Computers
SG24-5111-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
SG

24
-5

11
1-

00

Designing Java Applications for Network Computers SG24-5111-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Network Computing and Java Environment
	1.1 Network Computing
	1.1.1 Network Computer

	1.2 A Network Computer—The IBM Network Station
	1.3 IBM Network Station Hardware
	1.3.1 IBM Network Station Server Software
	1.3.2 How the IBM Network Station Works
	1.3.2.1 Network Station Power-On
	1.3.2.2 Network Station Operation

	1.4 Servers
	1.4.1 Boot Server
	1.4.2 Internet Server
	1.4.3 Application Server

	1.5 Networks
	1.5.1 Network Function

	1.6 Java—A Good Language for Network Computing
	1.6.1 Java Development Kit
	1.6.2 Java Development Environment
	1.6.2.1 Java Compiler

	1.6.3 Java Run-Time Environment
	1.6.3.1 Java Virtual Machine

	1.7 Java Program Types
	1.7.1 Java Applications
	1.7.2 Java Applets
	1.7.3 Servlets
	1.7.4 Basic Program Constructs
	1.7.4.1 Java Classes
	1.7.4.2 Java Objects
	1.7.4.3 Communications between Objects

	1.7.5 Java in the Network Environment
	1.7.5.1 Class Creation
	1.7.5.2 Storage Management
	1.7.5.3 Communication
	1.7.5.4 The Future of the IBM Network Station

	1.8 Network Computing using WorkSpace On-Demand

	Chapter 2. Network Computing Framework
	2.1 Overview
	2.2 Basic NCF Principles
	2.3 Building NCF Solutions
	2.3.1 Content Management Solutions
	2.3.2 Collaboration Solutions
	2.3.3 Commerce Solutions

	2.4 NCF Architecture
	2.4.1 Key Elements
	2.4.2 Clients
	2.4.3 Network Infrastructure
	2.4.4 Foundation Services
	2.4.5 Connectors
	2.4.6 Web Application Programming Environment
	2.4.7 Development Tools
	2.4.8 Systems Management
	2.4.9 e-business Application Services

	2.5 NCF Development
	2.5.1 Dynamic Web Applications
	2.5.2 JavaBeans
	2.5.2.1 How Do JavaBeans Relate to NCs?
	2.5.2.2 NCF Programming Using JavaBeans

	2.5.3 Enterprise JavaBeans
	2.5.3.1 What Are Enterprise JavaBeans?
	2.5.3.2 Enterprise JavaBeans and CORBA
	2.5.3.3 Do Enterprise JavaBeans Relate to NCs?

	2.5.4 Developing e-business Applications
	2.5.4.1 Content Authoring Tools
	2.5.4.2 Integrated Application Development Environment
	2.5.4.3 Content Assembly and Management

	2.6 Software
	2.6.1 Servers
	2.6.1.1 Domino Go Webserver
	2.6.1.2 Apache HTTP Server
	2.6.1.3 IBM WebSphere
	2.6.1.4 Lotus Domino Mail
	2.6.1.5 Lotus Domino
	2.6.1.6 IBM DB2 Universal Database
	2.6.1.7 IBM Transaction Series

	2.6.2 Connectors
	2.6.2.1 IMS
	2.6.2.2 e-Network Host on Demand
	2.6.2.3 CICS Internet Gateway
	2.6.2.4 CICS Internet Gateway for Java and CICS Clients
	2.6.2.5 DCE Encina Lightweight Client
	2.6.2.6 MQSeries Internet Gateway
	2.6.2.7 MQSeries Client for Java
	2.6.2.8 Net.Data
	2.6.2.9 Lotus Domino.Connect

	2.6.3 Clients
	2.6.3.1 Network Station
	2.6.3.2 Workspace On-Demand

	Chapter 3. Application Example - WorldWide Trucking Company
	3.1 Programming Introduction
	3.2 WorldWide Trucking Company
	3.3 Transport Request Application
	3.3.1 Application Re-Use

	3.4 Truck Tracking Application

	Chapter 4. Application Design Issues
	4.1 Thin Client
	4.1.1 Issue: Limited Local Resources
	4.1.2 Principle: Minimize Footprint Size
	4.1.3 Principle: Keep Software Local

	4.2 Thin Data
	4.2.1 Issue: Limited Local Space
	4.2.1.1 Principle: Download Only What is Needed
	4.2.1.2 Principle: Persist Reusable Data

	4.3 Portability
	4.3.1 Issue: Different Versions of the JDK
	4.3.1.1 Principle: JDK Version Control

	4.3.2 Issue: Different Behavior of Platforms
	4.3.2.1 Principle: Code Once, Test Everywhere

	4.4 Soft Failure
	4.5 Transaction Processing
	4.5.1 Issue: Transaction Rollback in a Diskless Environment
	4.5.1.1 Principle: Don’t Depend on Rollbacks for NCs

	4.6 Session Context
	4.6.1 Issue: Providing Session Context for NC-Based Applications
	4.6.1.1 Cookies: A Common, but Unacceptable Solution
	4.6.1.2 Principle: Verify and Validate Current Session Context
	4.6.1.3 Principle: Practice User Anticipation

	4.7 Remote Object Persistence and Serialization
	4.7.1 Issue: JavaBean Serialization vs. Externalization
	4.7.1.1 Principle: Know Your Security Model
	4.7.1.2 Event State Persistence Limitation

	4.7.2 Can NC Applications Use JavaBeans and Generate Events?
	4.7.2.1 JavaBean Use in Applets Running on the NC
	4.7.2.2 Principle: Distinguish between Applets and Applications

	4.8 Concurrency
	4.8.1 Issue: Race Conditions
	4.8.1.1 Scenario: Concurrent Access of a Common Resource
	4.8.1.2 Principle: Concurrency Control

	4.9 Distributed Object Synchronization
	4.9.1 Threads in Java
	4.9.1.1 Synchronization: A Java Solution to Concurrency Problems
	4.9.1.2 Solution in Distributed Object Environments
	4.9.1.3 JavaBeans and Threads

	4.9.2 JavaBean Synchronization

	Chapter 5. Designing, Developing, and Distributing Java Objects
	5.1 Distributed Application Environment
	5.1.1 Roles and Responsibilities

	5.2 Implementing the NCF Model Using the Java Language
	5.2.1 Java Development Kit
	5.2.1.1 JDK 1.1.6
	5.2.1.2 JDK 1.2
	5.2.1.3 Java Foundation Classes (JFC)
	5.2.1.4 Java Native Interface (JNI)
	5.2.1.5 Java Accessibility
	5.2.1.6 JavaBeans
	5.2.1.7 Java Security

	5.2.2 Java Enterprise APIs
	5.2.2.1 Enterprise JavaBeans
	5.2.2.2 Java Naming and Directory Interface (JNDI)
	5.2.2.3 Java Interface Definition Language (IDL)
	5.2.2.4 JDBC Database Access
	5.2.2.5 Java Remote Method Invocation (RMI)
	5.2.2.6 Java Messaging Service (JMS)
	5.2.2.7 Java Transaction Service (JTS)

	5.2.3 JavaBean Communication
	5.2.4 Applets
	5.2.4.1 Development
	5.2.4.2 Applets as JavaBeans
	5.2.4.3 Considerations for Applet Programming
	5.2.4.4 Sample Applet Code
	5.2.4.5 Run Time
	5.2.4.6 Parameters and Environment Variables
	5.2.4.7 Applet Execution Life Cycle

	5.2.5 Servlets
	5.2.5.1 Development
	5.2.5.2 Servlets as JavaBeans
	5.2.5.3 Run Time
	5.2.5.4 Parameters and Environment Variables
	5.2.5.5 Servlet Execution LifeCycle

	5.2.6 Basic Communication
	5.2.6.1 Sockets
	5.2.6.2 Streams
	5.2.6.3 Object Streams

	5.2.7 Applet/Applet Communication
	5.2.7.1 AppletContext
	5.2.7.2 InfoBus

	5.2.8 Servlet/Servlet Communication

	5.3 Distributed Object Architecture
	5.3.1 Remote Method Invocation (RMI)
	5.3.1.1 RMI Architecture
	5.3.1.2 Development
	5.3.1.3 Remote Factories
	5.3.1.4 Callbacks
	5.3.1.5 JavaBeans and RMI
	5.3.1.6 Run Time

	5.3.2 Common Object Request Broker Architecture (CORBA)
	5.3.2.1 Interface Definition Language
	5.3.2.2 Architecture
	5.3.2.3 Development
	5.3.2.4 Remote Factories
	5.3.2.5 Run Time

	5.3.3 RMI over IIOP

	Chapter 6. Maintenance
	6.1 What Makes Maintenance Difficult
	6.2 What Makes Maintenance Expensive
	6.2.1 Corrective Maintenance
	6.2.1.1 Implications for Distributed Objects

	6.2.2 Perfective Maintenance
	6.2.2.1 Implications for Java

	6.2.3 Adaptive Maintenance
	6.2.3.1 To Compile or Not to Compile: the Maintainer’s Dilemma

	6.3 Conclusion

	Appendix A. Network Basics
	A.1 Local Area Network
	A.1.1 Network Infrastructure
	A.1.2 Ethernet
	A.1.3 Token Ring

	A.2 Wide Area Networks
	A.3 Bridges / Routers / Switches
	A.4 Network Resources
	A.4.1 Resource Providers
	A.4.2 Resource Users

	Appendix B. Protocol Layers
	B.1 Physical Layer
	B.2 Data Link Layer
	B.3 Network Layer
	B.3.1 IP

	B.4 Transport Layer
	B.4.1 TCP
	B.4.2 UDP

	B.5 Session Layer
	B.6 Presentation Layer
	B.7 Application Layer

	Appendix C. Synchronization Code Samples
	C.1 No Synchronization
	C.1.1 R - The Shared Resource
	C.1.2 Tc - The Consumer
	C.1.3 Tp - The Producer

	C.2 Synchronized
	C.2.1 R - The Resource
	C.2.2 Tc - The Consumer
	C.2.3 Tp - The Producer

	C.3 Solution Limitations

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

