
Lecture 18: Packet Filtering Firewalls (Linux)

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 30, 2011

2:10pm

c©2011 Avinash Kak, Purdue University

Goals:

• Packet-filtering vs. proxy-server firewalls

• The four iptables supported by the Linux kernel: filter, nat, mangle,

and raw

• Creating and installing new firewall rules

• Structure of the filter table

• Connection tracking and extension modules

• Designing your own filtering firewall

1

18.1: Firewalls in General

• Two primary types of firewalls are

– packet filtering firewalls

– proxy-server firewalls

Sometimes both are employed to protect a network. A single

computer may serve both roles.

• A proxy-server firewall handles various network services itself

rather then passing them straight through. What exactly that

means will be explained in the lecture on proxy server firewalls.

• In Linux, a packet filtering firewall is configured with the iptables

modules.

• To use iptables for a packet filtering firewall, you need a Linux

kernel which has the netfilter infrastructure in it: netfil-

ter is a general framework inside the Linux kernel which other

things (such as the iptables module) can plug into. This

means you need kernel 2.3.15 or above, and answer ‘Y’ to CON-

2

FIG NETFILTER in the kernel configuration. (The tool ipt-

ables talks to the kernel and tells it what packets to filter.)

• The iptables tool inserts and deletes rules from the kernel’s

packet filtering table. Ordinarily, these rules created by the ipt-

ables command would be lost on reboot. However, you can

make the rules permanent with the commands iptables-save

and iptables-restore. The other way is to put the commands

required to set up your rules in an initialization script.

• Note that iptables replaces the older ipfwadm and ipchains,

and that the iptables based firewalls are very similar to the

previous ipchains based firewalls.

• Rusty Russell wrote iptables. He is also the author of ipchains

that was incorporated in version 2.2 of the kernel and that was

replaced by iptables in version 2.4.

3

18.2: A “Demo” to Motivate You to Use Iptables

• The iptables command with all its options can appear at first

sight to be daunting to use. The “demo” presented in this section

illustrates how easy it is to use this command. Basically, I will

show how you can create a single-rule firewall to achieve some

pretty amazing protection for your computer.

• If you do not need this sort of a motivation, proceed directly to

Section 18.3.

• The “demo” will consist of showing the following:

– Demo Goal 1: How you can prevent anyone from “pinging”

your machine.

– Demo Goal 2: How you can allow others to ssh into your

machine, but block it for every other access.

– Demo Goal 3: How you can prevent others from sending

connection-initiation packets to your machine.

4

• ASSUMPTIONS: For this “demo” I will assume that you are

sitting in front of two machines, of which at least one is running

the Ubuntu distribution of Linux. Obviously, I am also assuming

that both machines are connected to the network. The machine

that needs to be protected with a firewall will be referred to as

the Ubuntu laptop.

• When you installed Ubuntu on your laptop, that au-

tomatically activated the iptables firewall — although

with rules that do not carry out any packet filtering. To see

this, when you execute the following command as root on your

Ubuntu laptop:

iptables -L

you will see the following sort of output in the terminal window:

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output tells that iptables is on and running, but there

are no rules in the firewall at this time. As to what is meant

by target, prot, opt, etc., in the output shown above will be

explained in Section 18.6.

5

• More precisely speaking, the above output tells us that

there are currently no rules in the filter table of the firewall.

So, as far as the firewall is concerned, every packet will be sub-

ject to the policy ACCEPT. That is, every packet will get to its

destination, coming in or going out, unhindered.

• Later in this lecture, I will talk about the fact the iptables

supports four tables: filter, mangle, nat, and raw. I will

also mention later that the command ‘iptables -L’ is really a

short form for the more table-specific command ‘iptables -L -t

filter’ for examining the contents of the filter table. [So the

output shown previously tells us that there is currently nothing in only the filter table.

But note that the packets may still be subject to filtering by the rules in the other

tables. Later in this demo I will show an example in which the packets of a certain kind

will be denied entry into the Ubuntu laptop even when the filter table has nothing in

it.]

• If the output you see for the ‘iptables -L’ command is different

from what I have shown on the previous slide, please flush the

filter table (meaning get rid of the rules in the filter table) by

iptables -F

For this demo to work as I will present it, ideally you should be flushing (after you have saved the rules
by iptables-save using the syntax I will show later) all of the rules in all of the tables by

iptables -t filter -F

iptables -t filter -X

iptables -t mangle -F

6

iptables -t mangle -X

iptables -t nat -F

iptables -t nat -X

iptables -t raw -F

iptables -t raw -X

The ’-X’ option is for deleting user-defined chains. I will explain later what that means.

• Achieving Demo Goal 1:

• Now let’s go to the first goal of this demo: You don’t want

others to be able to ping your Ubuntu laptop.

• As root, execute the following in the command line

iptables -A INPUT -p icmp --icmp-type echo-request -j DROP

where the ‘-A INPUT’ option says to append a new rule to the

INPUT chain of the filter table. The ‘-p icmp’ option spec-

ifies that the rule is to be applied to ICMP packets only. The

next option mentions what specific subtype of the ICMP packets

this rule applies to. Finally, ‘-j DROP’ specifies the action to be

taken for such packets. [As I will explain later, the above command enters a

rule in the INPUT chain of the filter table. This rule says to drop all incoming icmp

packets that are of the type echo-request. As stated in Section 18.10 of this lecture,

that is the type of ping ICMP packets.]

7

• Now use the other machine to ping the Ubuntu laptop by using ei-

ther the ‘ping hostname’ syntax or the ‘ping xxx.xxx.xxx.xxx’

syntax where the argument to ping is the IP address. You will

notice that you will not get back any echos from the Ubuntu ma-

chine. If you had pinged the Ubuntu machine prior to the entry

of the above firewall rule, you would have received a normal echo

from that machine.

• To get ready for our second demo goal, now delete the rule you

entered above by

iptables -F

Subsequently, if you execute ‘iptables -L’ again, you will see

again the empty chains of the filter table.

• Achieving Demo Goal 2:

• Recall that the objective now is to allow others to ssh into our

Ubuntu laptop, but we we do not want the Ubuntu laptop to

respond to any other service request coming from other comput-

ers. I am assuming that the SSH server sshd is running on the

Ubuntu laptop.

• As root, execute the following two lines in your Ubuntu laptop:

8

iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT

iptables -A INPUT -j REJECT

where the ‘-A INPUT’ option says to append the rules to the

INPUT chain of the filter table. The ‘-p tcp’ option says

the rule is to be applied to TCP packets. The next option men-

tions the destination port on the local machine for these incoming

packets. Finally, the option ‘-j ACCEPT’ says to accept all such

packets. Recall that 22 is the port registered for the SSH service.

• To see that you have entered two new rules in the INPUT chain

of the filter table, execute the ‘iptables -L’ command as root.

You should see the following:

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

REJECT 0 -- anywhere anywhere reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

• Now when you use the other laptop to ssh into the Ubuntu lap-

top with its firewall set as above, you should experience no prob-

9

lems. However, if the other laptop makes any other type of access

(such as by ping) to the Ubuntu laptop, you will receive “Port

Unreachable” error message. If we had used DROP instead of

REJECT in the second rule we entered with the iptables

command, when the other laptop makes any access other than

ssh to the Ubuntu laptop, the other laptop would not receive

back any error messages. [When we entered the second iptables command

line, we did not specify the -reject-with option, yet it shows up in the second rule

in the filter table. Note that, as opposed to DROP, the job of REJECT is to

send back an error message. If you don’t specify what this error message should be,

iptables will by default use the icmp-port-unreachable option that sends back the

Dest Unreachable message.]

• To see the effect of the second rule — the REJECT rule — try

pinging the Ubuntu laptop and see what happens. The machine

that is doing the pinging will receive and display a ‘Destination

Port Unreachable’ message.

• To get ready for our third demo goal, now delete the two rules

you entered above by

iptables -F

Subsequently, if you execute ’iptables -L’ again, you will see

again the empty chains of the filter table.

10

• Achieving Demo Goal 3:

• Recall that the goal of this part of the demo is to reject all requests

for new connections coming from other hosts in the network.

As mentioned in Lecture 16, when a host wants to make a new

connection with your machine, it sends your machine a SYN

packet. To block all such packets, we could use a rule very similar

to what we have shown so far. But, just to add an interesting

twist to the demo, we will use the mangle table for the purpose.

So go ahead and execute the following command line as root:

iptables -t mangle -A PREROUTING -p tcp -m tcp --tcp-flags SYN NONE -j DROP

The ‘-t’ option says that the new rule is meant for the mangle

table. We want the rule to be appended to the PREROUT-

ING chain (assuming that this chain was empty previously).

You can check that the rule is in the mangle table by executing

the command

iptables -t mangle -L

• With the above rule in place in the mangle table, use the other

laptop to try to make any sort of connection with the Ubuntu

laptop. You could, for example, try to SSH into the Ubuntu

laptop. You will not be able to do. (You will still be able the

ping the Ubuntu laptop since ping packets do not have the SYN

flag set.)

11

• Finally, restore the Ubuntu laptop’s firewall to its original all-

accepting condition by deleting the rule you just entered in the

mangle table:

iptables -t mangle -F

12

18.3: The Four Tables Maintained by the

Linux Kernel for Packet Processing

• Linux kernel uses the following four tables, each consisting of

rule chains, for processing the incoming and outgoing packets:

– the filter table

– the nat table

– the mangle table

– the raw table

• Each table consists of chains of rules.

• Each packet is subject to each of the rules in a table and the fate

of the packet is decided by the first matching rule.

• The filter table contains at least three rule chains: INPUT for

processing all incoming packets, OUTPUT for processing all

13

outgoing packets, and FORWARD for processing all packets

being routed through the machine. The INPUT, OUTPUT,

and FORWARD chains of the filter table are also referred to

as the built-in chains since they cannot be deleted (unlike the

user-defined chains we will talk about later).

• The nat table is consulted when a packet that creates a new con-

nection is encountered. nat stands for Network Address Trans-

lation. When your machine acts as a router, it would need to

alter either the source IP address in the packet passing through,

or the destination IP address, or both. That is where the nat ta-

ble is useful. The nat table also consists of three built-in chains:

PREROUTING for altering packets as soon as they come in,

OUTPUT for altering locally-generated packets before routing,

and POSTROUTING for altering packets as they are about

to go out.

• Themangle table is used for specialized packet alteration. (Demo

3 in Section 18.2 inserted a new rule in the mangle table.) The

mangle table has five rule chains: PREROUTING for alter-

ing incoming packets before a routing decision is made concerning

the packet, OUTPUT for altering locally generated outgoing

packets, INPUT for altering packets coming into the machine

itself, FORWARD for altering packets being routed through

the machine, and POSTROUTING for altering packets im-

14

mediately after the routing decision.

• The raw table is used for configuring exemptions to connection

tracking. As to what is meant by connection tracking will become

clear later. When a raw table is present, it takes priority

over all other tables.

• We will focus most of our attention on the filter table since

that is usually the most important table for firewall security —

particularly if your focus is on protecting your laptop with a

firewall of your own design.

15

18.4: How Packets are Processed by

the filter Table

• As mentioned already, the filter table contains the following

built-in rule chains: INPUT, OUTPUT, and FORWARD.

• The figure below shows how a packet is subject to these rule

chains:

FORWARD
Chain
Rules

Decision
Routing

OUTPUT
Chain
Rules

Network Processes Running in Your Computer

INPUT
Chain
Rules

In
co

m
in

g
P

ac
ke

ts O
utgoing P

ackets

16

• When a packet comes in (say, through the Ethernet interface)

the kernel first looks at the destination of the packet. This step

is labeled ‘routing’ in the figure.

• If the routing decision is that the packet is intended for the ma-

chine in which the packet is being processed, the packet passes

downwards in the diagram to the INPUT chain.

• If the incoming packet is destined for another network interface

on the machine, then the packet goes rightward in our diagram

to the FORWARD chain. If accepted by the FORWARD

chain, the packet is sent to the other interface. (But note that if the

kernel does not have forwarding enabled or if the kernel does not know how to forward

the packet, the packet would be dropped.)

• If a program running on the computer wants to send a packet out

of the machine, the packet must traverse through theOUTPUT

chain of rules. If it is accepted by any of the rules, it is sent to

whatever interface the packet is intended for.

• Each rule in a chain will, in general, examine the packet header.

If the condition part of the rule matches the packet header, the

action specified by the rule is taken. Otherwise, the packet moves

17

on to the next rule.

• If a packet reaches the end of a chain, then the Linux kernel looks

at what is known as the chain policy to determine the fate of

the packet. In a security-conscious system, this policy

usually tells the kernel to DROP the packet.

18

18.5: To See if iptables is

Installed and Running

• Execute as root

lsmod | grep ip

where lsmod shows you what kernel modules are currently loaded

in. On my laptop running Ubuntu Linux, this returns

iptable_raw 3328 0

ipt_REJECT 5760 0

iptable_mangle 3840 0

iptable_nat 8708 0

nf_nat 20140 1 iptable_nat

nf_conntrack_ipv4 19724 2 iptable_nat

nf_conntrack 65288 4 xt_state,iptable_nat,nf_nat,nf_conntrack_ipv4

nfnetlink 6936 3 nf_nat,nf_conntrack_ipv4,nf_conntrack

iptable_filter 3968 1

ip_tables 13924 4 iptable_raw,iptable_mangle,iptable_nat,iptable_filter

x_tables 16260 5 ipt_REJECT,xt_state,xt_tcpudp,iptable_nat,ip_tables

ipv6 273892 21

If you do not see all these modules, that does not mean that
iptables is not installed and running on your machine. Many of
the kernel modules are loaded in dynamically as they are needed
by the application programs. [For Red Hat users, If you see the ipchains

module running, as you might with older installations of Linux, unload that module.
You can do that by first stopping ipchains:

/etc/init.d/ipchains stop

followed by

modprobe -r ipchains

19

]

• Another way to see if iptables is installed and running, execute

as root

iptables -L

On my Ubuntu laptop, this command line returns (assuming this

is your very first invocation of the iptables command):

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output means that iptables is up and running, although at

this time it has no rules in it for packet filtering. When iptables

is loaded with firewall rules, they would show up under one or

more of the chains listed above.

• The invocation iptables -L shows only the filter table. In

general, if you want to see the rules in a particular table, you

would call

20

iptables -t filter -L (to see the filter table)

iptables -t nat -L (to see the nat table)

iptables -t mangle -L (to see the mangle table)

iptables -t raw -L (to see the raw table)

Note that these are the only four tables recognized by the ker-

nel. (Unlike user-defined chains in the tables, there are no user-

defined tables.)

• For the filter table shown on the previous slide, note the policy

shown for each built-in chain right next to the name of the chain.

As mentioned earlier, only built-in chains have policies. Policy is

what is applied to a packet if it is not trapped by any of the rules

in a chain.

21

18.6: Structure of the filter Table

• To explain the structure of the filter table, let’s first create a

new filter table for your firewall. I am assuming that this is the

first time you are playing with the iptables command on your

Ubuntu laptop.

• Go ahead and create the following shell script anywhere in your

personal directory. The name of the script file ismyfirewall.sh.

At this point, do not worry about the exact syntax I have used

for the iptables commands — the syntax will become clear

later in the lecture.

#!/bin/sh

myfirewall.sh

A minimalist sort of a firewall for your laptop:

Create a new user-defined chain for the filter table:

Make sure you first flush the previous rules by

’iptables -t filter F’ and delete the previous chains

by ’iptables -t filter -X’

iptables -t filter -N myfirewall.rules

Accept all packets generated locally:

iptables -A myfirewall.rules -p all -i lo -j ACCEPT

Accept all ICMP packets regardless of source:

iptables -A myfirewall.rules -p icmp --icmp-type any -j ACCEPT

You must not block packets that correspond to TCP/IP protocol

numbers 50 (ESP) and 51 (AH) for VPN to work. (See Lecture 20

22

for ESP and AH.). VPN also needs the UDP ports 500 (for IKE),

UDP port 10000 (for IPSec encapsulated in UDP) and TCP

port 443 (for IPSec encapsulated in TCP). [Note that if you

are behind a NAT device, make sure it does not change the source

port on the IKE (Internet Key Exchange) packets. If the

NAT device is a Linksys router, just enable "IPSec Passthrough":

iptables -A myfirewall.rules -p 50 -j ACCEPT

iptables -A myfirewall.rules -p 51 -j ACCEPT

iptables -A myfirewall.rules -p udp --dport 500 -j ACCEPT

iptables -A myfirewall.rules -p udp --dport 10000 -j ACCEPT

The destination port 443 is needed both by VPN and by HTTPS:

iptables -A myfirewall.rules -p tcp --dport 443 -j ACCEPT

For multicast DNS (mDNS) --- allows a network device to choose a

domain name in the .local namespace and announce it using multicast.

Used by many Apple products. mDNS works differently from the

unicast DNS we discussed in Lecture 17. In mDNS, each host stores

its own information (for example its own IP address). If your

machine wants to get the IP address of such a host, it sends out

a multicast query to the multicast address 224.0.0.251.

iptables -A myfirewall.rules -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT

for the Internet Printing Protocol (IPP):

iptables -A myfirewall.rules -p udp -m udp --dport 631 -j ACCEPT

Accept all packets that are in the states ESTABLISHED and

RELATED (See Section 18.11 for packet states):

iptables -A myfirewall.rules -p all -m state --state ESTABLISHED,RELATED -j ACCEPT

I will run SSH server on my laptop. Accept incoming connection requets:

iptables -A myfirewall.rules -p tcp --destination-port 22 -j ACCEPT

Drop all other incoming packets. Do not send back any ICMP messages

for the dropped packets:

iptables -A myfirewall.rules -p all -j REJECT --reject-with icmp-host-prohibited

iptables -I INPUT -j myfirewall.rules

iptables -I FORWARD -j myfirewall.rules

• Now, make the shell script executable by

chmod +x myfirewall.sh

23

and execute the file as root.

• To see the rule structure created by the above shell script, execute

the following command

iptables -L -n -v --line-numbers

where the option ‘-n’ will display all IP address in the decimal-dot

notation and the option ‘–line-numbers’ displays a line number

at the beginning of each line in a rule chain. The option ‘-v’ is

for the verbose mode. This command will generate the following

display for the filter table in your terminal window:

Chain INPUT (policy ACCEPT 53204 packets, 9375K bytes)

num pkts bytes target prot opt in out source destination

1 568 74832 myfirewall.rules 0 -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination

1 0 0 myfirewall.rules 0 -- * * 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 76567 packets, 9440K bytes)

num pkts bytes target prot opt in out source destination

Chain myfirewall.rules (2 references)

num pkts bytes target prot opt in out source destination

1 327 34807 ACCEPT 0 -- lo * 0.0.0.0/0 0.0.0.0/0

2 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 255

3 0 0 ACCEPT esp -- * * 0.0.0.0/0 0.0.0.0/0

4 0 0 ACCEPT ah -- * * 0.0.0.0/0 0.0.0.0/0

5 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:500

6 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:10000

7 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443

8 6 426 ACCEPT udp -- * * 0.0.0.0/0 224.0.0.251 udp dpt:5353

9 0 0 ACCEPT udp -- * * 0.0.0.0/0 0.0.0.0/0 udp dpt:631

10 228 38248 ACCEPT 0 -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

24

11 1 48 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

12 6 1303 REJECT 0 -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibit

• In the output shown above, note that the last column, with no

heading, contains ancillary information related to a rule. It may

mention a port (as in tcp dpt:443, where dpt stands for “des-

tination port”), the state of a packet, etc.

• Here are the meanings to be associated with the various column

headers shown in the display produced by executing the command

‘iptables -L -n -v --line-numbers’:

num : The rule number in a chain.

pkts : The packet count processed by a rule so far.

bytes : The byte count processed by a rule so far.

target :

The action part of a rule. The target can be one of the following: ACCEPT,
DROP, REJECT, REDIRECT, RETURN, or the name of the chain to
jump to. DROP means to drop the packet without sending an error message to
the originator of that packet. REJECT has the same effect as DROP, except
that the sender is sent an error message that depends on the argument supplied
to this target. REDIRECT means to send the packet to a new destination
(used with NAT). Return means to return from this chain to the calling chain
and to continue examining rules in the calling chain where you left off. When
RETURN is encountered in a user-defined chain, the policy associated with the
chain is executed.

proto :

25

The protocol associated with the packet to be trapped by this rule. The protocol
may be either named symbolically or specified by a number. Each standard protocol
has a number associated with it. The protocol numbers are assigned by Internet
Assigned Numbers Authority (IANA).

opt : optional

in : The input interface to which the rule applies.

out : The output interface to which the rule applies.

source : The source address(es) to which the rule applies.

destination : The destination address(es) to which the rule applies.

Note that when the fifth column mentions a user-defined service,

then the last column (without a title) must mention the port

specifically. On the other hand, for packets corresponding to

standard services, the system can figure out the ports from the

entries in the file /etc/services.

• In the display produced by executing the command ‘iptables -L

-n -v --line-numbers’, note the three rule chains in the filter

table: INPUT, FORWARD, and OUTPUT. Most impor-

tantly, note how the INPUT chain jumps to the user-defined

myfirewall.rules chain. The built-in FORWARD chain also

jumps to the same user-defined chain.

• Note the policy declaration associated with each chain. It is

26

ACCEPT. As mentioned previously, the policy sets the fate of

a packet it it is not trapped by any of the rules in a chain.

• Since both the built-in INPUT and the built-in FORWARD

chains jump to the user-defined myfirewall.rules chain, let’s

look at the first rule in this user-defined chain in some detail.

This rule is:

num pkts bytes target prot opt in out source destination

1 327 34807 ACCEPT 0 -- lo * 0.0.0.0/0 0.0.0.0/0

The IP/port address 0.0.0.0/0 means all addresses. [The for-

ward slash in the source and the destination IP addresses is explained

on Section 18.10.] Since the input interface mentioned is lo and

since no ports are mentioned (that is, there is no entry in the

unlabeled column at the very end), this means that this rule ap-

plies only to the packets generated by the applications running

on the local system. (That is, this rule allows the loopback driver

to work.) Therefore, with this rule, you can request any service

from your local system without the packets being denied.

• Let’s now examine the rule in line 2 for the user-defined chain

myfirewall.rules shown in the display produced by the com-

mand ‘iptables -L -n -v --line-numbers’ command:

num pkts bytes target prot opt in out source destination

2 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0 icmp type 255

27

As mentioned in Lecture16, ICMP messages are used for error

reporting between host to host, or host to gateway in the inter-

net. (Between gateway to gateway, a protocol called Gateway to

Gateway protocol (GGP) should normally be used for error re-

porting.) [The three types of commonly used ICMP headers are type 0, type 8,

and type 11. ICMP echo requests coming to your machine when it is pinged by some

other host elsewhere in a network are of type 8. If your machine responds to such a

request, it echos back with an ICMP packet of type 0. Therefore, when a host receives

a type 8 ICMP message, it replies with a type 0 ICMP message. Type 11 service relates

to packets whose ’time to live’ (TTL) was exceeded in transit and for which you as

sender is accepting a ’Time Exceeded’ message that is being returned to you. You need

to accept type 11 ICMP protocol messages if you want to use the ’traceroute’ com-

mand to find broken routes to hosts you want to reach. ICMP type 255 is unassigned

by IANA (Internet Assigned Numbers Authority); it is used internally by iptables to

mean all ICMP types. See Section 18.10 for additional ICMP

types.]

• With regard to the other rules in the myfilter.rules chain,

their purpose should be clear from the comments in the myfil-

ter.sh shell script.

• Let’s now examine the OUTPUT chain in the filter table.

[(See the output shown earlier in this section that was produced by the command

‘iptables -L -n -v --line-numbers’ command.) There are no rules

in this chain. Therefore, for all outbound packets, the policy asso-

28

ciated with the OUTPUT chain will be used. This policy says

ACCEPT, implying that all outbound packets will be sent directly,

without further examination, to their intended destinations.

• About the FORWARD chain, note that packet forwarding only

occurs when the machine is configured as a router. (For IP

packet forwarding to work, you also have to change the value of

net.ipv4.ip_forward to 1 in the /etc/sysctl.conf file.)

29

18.7: Structure of the nat Table

• Let’s now examine the output produced by the command line

iptables -t nat -n -L

we get

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

• The nat table is used only for translating either the packet’s

source address field or its destination address field.

• NAT (which stands for Network Address Translation) allows a

host or several hosts to share the same IP address. For exam-

ple, let’s say we have a local network consisting of 5-10 clients.

We set their default gateways to point through the NAT server.

30

The NAT server receives the packet, rewrites the source and/or

destination address and then recalculates the checksum of the

packet.

• Only the first packet in a stream of packets hits this table. After

that, the rest of the packets in the stream will have this network

address translation carried out on them automatically.

• The ’targets’ for the nat table (meaning, the actions that are

permitted for the rules) are

DNAT

SNAT

MASQUERADE

REDIRECT

• The DNAT target is mainly used in cases where you have a

single public IP for a local network in which different machines

are being used for different servers. When a remote client wants to

make a connection with a local server using the publicly available

IP address, you’d want your firewall to rewrite the destination

IP address on those packets to the local address of the machine

where the server actually resides.

31

• SNAT is mainly used for changing the source address of packets.

Using the same example as above, when a server residing on one

of the local machines responds back to the client, initially the

packets emanating from the server will bear the source address

of the local machine that houses the server. But as these packets

pass through the firewall, you’d want to change the source IP

address in these packets to the single public IP address for the

local network.

• The MASQUERADE target is used in exactly the same way

as SNAT, but the MASQUERADE target takes a little bit

more overhead to compute. Whereas SNAT will substitute a

single previously specified IP address for the source address in the

outgoing packets, MASQUERADE can substitute a DHCP

IP address (that may vary from connection to connection).

• Note that in the output of iptables -t nat -n -L shown at

the beginning of this section, we did not have any targets in the

nat table. That is because my laptop is not configured to serve

as a router.

32

18.8: Structure of the mangle Table

• The mangle table is used for specialized packet alteration, such

as for changing the TOS (Type of Service) field, the TTL (Time

to Live) field, etc., in a packet header.

On my Linux laptop, the command

iptables -t mangle -n -L

returns

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

• Earlier, toward the end of Section 18.2, I showed an example of a

rule for the PREROUTING chain of the mangle table that

33

used the DROP target. The rules in the PREROUTING

chain are applied before the operating system applies a routing

decision to a packet.

• The following targets can only be used in the mangle table.

1. TOS — Used to change the TOS (Type of Service) field

in a packet. (This is the second byte in the IP header) Not

understood by all the routers.

2. TTL — The TTL target is used to change the TTL (Time

To Live) field of the packet.

3. MARK — This target is used to give a special mark value

to the packet. Such marks are recognized by the iproute2

program for routing decisions.

4. SECMARK — This target sets up a security-related

mark in the packet. Such marks can be used by SELinux

fine-grained security processing of the packets.

5. CONNSECMARK — This target places a connection-

level mark on a packet for security processing.

34

18.9: Structure of the raw Table

• If you execute the following command

iptables -t raw -L

you will see the following output:

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

This output shows that the raw table supports only two chains:

PREROUTING and OUTPUT.

• As mentioned earlier, the raw table is used for specifying the ex-

emptions from connection tracking that we will talk about later.

When rules are specified for the raw table, the table

takes priority over the other tables.

35

18.10: How the Tables are Actually Created

• The iptables are created by the iptables command that is run

as root with different options. To see all the option, say

iptables -h

• Here are some other optional flags for the iptables command and

a brief statement of what is achieved by each flag:

iptables -N chainName Create a new user-defined chain

iptables -X chainName Delete a user-defined chain; must have

been previoiusly emptied of rules by

either the ’-D’ flag or the ’-F’ flag.

iptables -P chainName Change the policy for a built-in chain

iptables -L chainName List the rules in a chain. If no

chain specified, it lists rules in all

the chains in the filter table. Without

the ’-t’ flag, the filter table is the

default.

iptables -F chainName Flush the rules out of a chain

When no chain-name is supplied as the

argument to ’-F’, all chains are flushed.

iptables -Z chainName Zero the packet and byte counters

on all rules in the chain

iptables -A chainName Append a new rule to the chain

36

iptables -I chainName pos Insert a new rule at position ’pos’

in the specified chain)

See an example of rule insertion in

my ’experiment’ file

iptables -R chainName Replace a rule at some position in

the specified chain

iptables -D chainName Delete a rule at some position in

the specified chain, or the first that

matches

See my ’experiment’ file for the

two different ways in which the ’-D’

flag can be used

iptables -P chainName target Specify a target policy for the chain.

This can only be done for built-in

chains.

• After the first level flags shown above that name a chain, if this

flag calls for a new rule to be specified (such as for ’-A’ flag)

you can have additional flags that specify the state of the packet

that must be true for the rule to apply and specify the action

part of the rule. We say that these additional flags describe the

filtering specifications for each rule.

• Here are the rule specification flags:

-p args

for specifying the protocol (tcp, udp,

icmp, etc) You can also specify a protocol

by number if you know the numeric protocol

values for IP.

37

-s args

for specifying source address(es)

--sport args

for specifying source port(s)

-d args

for specifying destination address(es)

--dport args

for specifying destination port(s)

(For the port specifications, you can supply

a port argument by name, as by ’www’, as

listed in /etc/services.)

--icmp-type typemane

(for spcifying the type of ICMP packet. The

icmp type names can be found by the comamnd

iptables -p icmp --help

it returns the following for the icmp types

Valid ICMP Types:

any

echo-reply (pong) (type 0)

destination-unreachable (type 3)

network-unreachable (code 0)

host-unreachable (code 1)

protocol-unreachable (code 2)

port-unreachable (code 3)

fragmentation-needed (code 4)

source-route-failed (code 5)

network-unknown (code 6)

host-unknown (code 7)

network-prohibited (code 8)

host-prohibited (code 9)

TOS-network-unreachable (code 10)

TOS-host-unreachable (code 11)

communication-prohibited (code 12)

host-precedence-violation

precedence-cutoff

source-quench (type 4)

38

redirect (type 5)

network-redirect

host-redirect

TOS-network-redirect

TOS-host-redirect

echo-request (ping) (type 8)

router-advertisement (type 9)

router-solicitation (type 10)

time-exceeded (ttl-exceeded)(type 11)

ttl-zero-during-transit (code 0)

ttl-zero-during-reassembly (code 1)

parameter-problem (type 12)

ip-header-bad

required-option-missing

timestamp-request (type 13)

timestamp-reply (type 14)

address-mask-request (type 17)

address-mask-reply (type 18))

-j args

the name of the target to execute when

the rule matches; ’j’ stands for ’jump to’

-i args

for naming the input interface (when an

interface is not named, that means all

interfaces)

-o args

for specifying an output interface

(Note that an interface is the physical

device a packet came in on or is going

out on. You can use the ifconfig command

to see which interfaces are up.)

(Also note that only the packets traversing the

FORWARD chain have both input and output

interfaces.)

(It is legal to specify an interface that

currently does not exist. Obvously, the

rule would not match until the interface

comes up.)

39

(When the argument for interface is followed

by ’+’, as in ’eth+’, that means all

interfaces whose names begin with the

string ’eth’.)

(So an interface specified as

-i ! eth+

means none of the ethernet interfaces.)

-f (For specifying that a packet is

a second or a further fragment. As mentioned

in Lecture 16 notes, sometimes, in order

to meet the en-route or destination

hardware constraints, a packet may have

to be fragmented and sent as multiple

packets. This can create a problem for

packet-level filtering since only the first

fragment packet may carry all of the headers,

meaning the IP header and the enveloped

higher-level protocol header such as the TCP,

or UDP, etc., header. The subsequent fragments

may only carry the IP header and not mention

the higher level protocol headers. Obviously,

such packets cannot be processed by rules that

mention higher level protocols. Thus a rule

that carries the specification

’-p TCP --sport www’

will never match a fragment (other than the

first fragment). Neither will the opposite

rule

’-p TCP --sport ! www’

However, you can specify a rule specifically

for the second and further fragments, using

the ‘-f’ flag. It is also legal to specify

that a rule does not apply to second and

further fragments, by preceding the ‘-f’ with

‘ ! ’.

Usually it is regarded as safe to let second

and further fragments through, since filtering

will effect the first fragment, and thus

prevent reassembly on the target host;

40

however, bugs have been known to allow

crashing of machines simply by sending

fragments.)

(Note that the ’-f’ flag does not take any

arguments.)

--syn (To indicate that this rule is meant for

a SYN packet. It is sometimes useful to allow

TCP connections in one direction, but not

in the other. As explained in Lecture 16,

SYN packets are for requesting new connetions.

These are packets with the SYN flag set, and

the RST and ACK flags cleared. By

disallowing only the SYN packets, we can

stop attempted connections in their

tracks. The ‘-syn’ flag is only valid for

rules which specify TCP as their protocol.

For example, to specify TCP connection

attempts from 192.168.1.1:

-p TCP -s 192.168.1.1 --syn

This flag can be inverted by preceding it

with a ‘!’, which means every packet other

than the connection initiation.)

-m match (This is referred to as a rule seeking an

‘extended match’. This may load extensions

to iptables.)

-n (This forces the output produced by the

‘-L’ flag to show numeric values for

the IP addresses and ports.)

• Many rule specification flags (such as ‘-p’, ‘-s’, ‘-d’, ‘-f’ ‘–syn’, etc.)

can have their arguments preceded by ’ !’ (that is pronounced

’not’) to match values not equal to the ones given. This is referred

41

to as specification by inversion. For example, to indicate

all sources addresses but a specific address, you would have

-s ! ip_address

• For the ‘-f’ option flags, the inversion is done by placing ‘!’ before

the flag, as in

! -f

The rule containing the above can only be matched with the first

fragment of a fragmented packet.

• Also note that the ‘–syn’ second-level option is a shorthand for

--tcp-flags SYN,RST,ACK SYN

where --tcp-flags is an example of a TCP extension flag. Note

that ‘-d’, and ‘-s’ are also TCP extension flags. These flags work

only when the argument for the protocol flag ‘-p’ is ‘tcp’.

42

• The source (‘-s’, ‘–source’ or ‘–src’) and destination (‘-d’, ‘–destination’

or ‘–dst’) IP addresses can be specified in four ways:

1. The most common way is to use the full name, such as localhost

or www.linuxhq.com.

2. The second way is to specify the IP address such as 127.0.0.1.

3. The third way allows specification of a group of IP addresses

with the notation 199.95.207.0/24 where the number after the

forward slash indicates the number of leftmost bits in the 32

bit address that must remain fixed. Therefore, 199.95.207.0/24

means all IP addresses between 199.95.207.0 and 199.95.207.255.

4. The fourth way uses the net mask directly to specify a group

of IP addresses. What was accomplished by 199.95.207.0/24

above is now accomplished by 199.95.207.0/255.255.255.0.

• If nothing comes after the forward slash in the prefix notation

for an IP address range, the default of /32 (which is the same

as writing down the net mask as /255.255.255.255) is assumed.

Both of these imply that all 32 bits must match, implying that

only one IP address can be matched. Obviously, the opposite

of the default /32 is /0. This means all 32 address bits can be

43

anything. Therefore, /0 means every IP address. The same is

meant by the specifying the IP address range as 0/0 as in

iptables -A INPUT -s 0/0 -j DROP

which will cause all incoming packets to be dropped. But note

that -s 0/0 is redundant here because not specifying the ‘-s’

flag is the same as specifying ‘-s 0/0’ since the former means all

possible IP addresses.

44

18.11: Connection Tracking by iptables

and the Extension Modules

• A modern iptables-based firewall understands the notion of a

stream. This is done by what is referred to as connection tracking.

• Connection tracking is based on the notion of ‘the state of a

packet’.

• If a packet is the first that the firewall sees or knows about, it

is considered to be in state NEW [as would be the case for, say, a

SYN packet in a TCP connection (see Lecture 16)], or if it is part

of an already established connection or stream that the firewall

knows about, it is considered to be in state ESTABLISHED.

• States are known through the connection tracking system,which

keeps track of all the sessions.

• It is because of the connection-tracking made possible by the

rule in line 10 of the myfirewall.rules chain in the display

produced by executing ‘iptables -L -n -v --line-numbers’ in

45

Section 18.6 that when I make a connection with a remote

host such as www.nyt.com that I am able to receive all the

incoming packets. That rule tells the kernel that the incom-

ing packets are of state ESTABLISHED, meaning that they

belong to a connection that was established and accepted pre-

viously.

• Connection tracking is also used by the nat table and by its

MASQUERADE target in the tables.

• Let’s now talk about extension modules since it is one of those

extensions to iptables that makes it possible to carry out con-

nection tracking.

• When invoking iptables, an extension module can be loaded

into the kernel for additional match options for the rules. An

extension module is specified by the ‘-m’ option as in

the following rule we used in the shell executable file Section 18.6

of this lecture:

iptables -A myfirewall.rules -p all -m state --state ESTABLISHED,RELATED -j ACCEPT

46

• As the above rule should indicate, a most useful extension module

is state. This extension tries to interpret the connection-tracking

analysis produced by the ip_conntrack module.

• As to how exactly the interpretation of the results on a packet

produced by the ip_conntrack module should be carried out

is specified by the additional ‘--state’ option supplied to the

‘state’ extension module. See the rule example shown above

that uses both the ‘-m state’ option and the ‘--state’ subop-

tion.

• The ‘--state’ suboption supplies a comma-separated list of states

of the packet that must be found to be true for the rule to apply,

and as before, the ‘!’ flag indicates not to match those states.

These states that can be supplied as arguments to the ‘--state’

option are:

NEW A packet which creates a new connection.

ESTABLISHED A packet which belongs to an existing

connection (i.e., a reply packet, or

outgoing packet on a connection which

has seen replies).

RELATED A packet which is related to, but not

part of, an existing connection, such as

an ICMP error, or (with the FTP module

inserted), a packet establishing an ftp

47

data connection.

INVALID A packet which could not be identified

for some reason: this includes running

out of memory and ICMP errors which

don’t correspond to any known connection.

Generally these packets should be dropped.

• Another example of a rule that uses the ‘state’ extension for

stating the rule matching conditions:

iptables -A FORWARD -i ppp0 -m state ! --state NEW -j DROP

This says to append to the FORWARD chain a rule that applies

to all packets being forwarded through the ppp0 interface. If

such a packet is NOT requesting a new connection, it should be

dropped.

• Another extension module is the ‘mac’ module that can be used

for matching an incoming packet’s source Ethernet (MAC) ad-

dress. This only works for for packets traversing the PREROUT-

ING and INPUT chains. It provides only one option ‘--mac-source’

as in

iptables -A INPUT -m mac --mac-source 00:60:08:91:CC:B7 ACCEPT

or as in

iptables -A INPUT -m mac --mac-source ! 00:60:08:91:CC:B7 DROP

48

The second rule will drop all incoming packets unless they are

from the specific machine with the MAC address shown.

• Yet another useful extension module is the ‘limit’ module that is

useful in warding off Denial of Service (DoS) attacks. This module

is loaded into the kernel with the ‘-m limit’ option. What the

module does can be controlled by the subsequent option flags

‘--limit’ and ‘--limit-burst’. The following rule will limit a

request for a new connection to one a second. Therefore, if DoS

attack consists of bombarding your machine with SYN packets,

this will get rid of most of them. This is referred to as “SYN-

flood protection”.

iptables -A FORWARD -p tcp --syn -m limit --limit 1/s -j ACCEPT

• The next rule is a protection against indiscriminate and nonstop

scanning of the ports on your machine. This is referred to as

protection against a “furtive port scanner”:

iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST \

-m limit --limit 1/s -j ACCEPT

• The next rule is a protection against what is called as the “ping

of death” where someone tries to ping your machine in a non-

stop fashion:

49

iptables -A FORWARD -p icmp --icmp-type echo-request \

-m limit --limit 1/s -j ACCEPT

50

18.12: Using iptables to do Port Forwarding

• Let’s say that you have a firewall computer protecting a LAN.

Let’s also say that you are providing a web server on one of

the LAN computers that is physically different from the firewall

computer. Further, let’s assume that there is a single IP ad-

dress available for the whole LAN, this address being assigned

to the firewall computer. Let’s assume that this IP address is

123.45.67.89.

• So when a HTTP request comes in from the internet, it will

typically be received on port 80 that is assigned to HTTP in

/etc/services. The firewall would need to forward this request

to the LAN machine that is actually hosting the web server.

• This is done by adding a rule to the PREROUTING chain of the

NAT table:

iptables -t nat -A PREROUTING -p tcp -d 123.45.67.89 \

-dport 80 -j DNAT --to-destination 10.0.0.25

where the jump target DNAT stands for Dynamic Network

Address Translation. We are also assuming that the LAN

address of the machine hosting the HTTP server is 10.0.0.25 in

a Class A private network 10.0.0.0/8.

51

• If multiple LAN machines are simultaneously hosting the same

HTTP server for reasons of high traffic to the server, you can

spread the load of the service by providing a range of addresses

for the ’–to-destination’ option, as by

--to-destination 10.0.0.1-10.0.0.25

• This will now spread the load of the service over 25 machines,

including the gateway machine if its LAN address is 10.0.0.1.

• So the basic idea in port forwarding is that you forward all the

traffic received at a given port on our firewall computer to the

designated machines in the LAN that is protected by the firewall.

52

18.13: Using Logging with iptables

• So far we have only talked about the following targets: AC-

CEPT, DENY, DROP, REJECT, REDIRECT, RETURN, and

chain name to jump to for the filter table, and SNAT and

DNAT for the nat table.

• One can also use LOG as a target. So if you did not want to

drop a packet for some reason, you could go ahead and accept it

but at the same time log it to decide later if your current rule for

such packets is a good rule. Here is an example of a LOG target

in a rule for the FORWARD chain:

iptables -A FORWARD -p tcp -j LOG --log-level info

• Here are all the possibilities for the ’–log-level’ argument:

emerg

alert

crit

err

warning

notice

info

53

debug

• You can also supply a ’–log-prefix’ option to add further informa-

tion to the front of all messages produced by the logging action:

iptables -A FORWARD -p tcp -j LOG --log-level info \

--log-prefix "Forward INFO "

54

18.14: Saving and Restoring Your Firewall

• As I showed in Section 18.6, you can write a shell script with the

iptables commands in it for creating the different rules for your

firewall. You can load in the firewall rules simply by executing

the shell script. If this is the approach you use, make sure

you invoke ‘iptables -F’ and ‘iptables -X’ for each of the

tables before executing the script.

• A better way to save your firewall rules is by invoking the iptables-save

command:

iptables-save > MyFirewall.bk

Subsequently, when you reboot the machine, you can restore the

firewall by using the command iptables-restore as root:

iptables-restore < MyFirewall.bk

• When you save a firewall with the iptables-save command, the

text file that is generated is visually different from the output

produced by the ‘iptables -L’ command. If I use iptables-save

to save the firewall I created with the shell script in Section 18.6,

here is what is placed in the MyFirewall.bk file:

55

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*raw

:PREROUTING ACCEPT [96159:19721033]

:OUTPUT ACCEPT [91367:10876335]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*mangle

:PREROUTING ACCEPT [173308:40992127]

:INPUT ACCEPT [173282:40986202]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [160626:19665486]

:POSTROUTING ACCEPT [160845:19695621]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*nat

:PREROUTING ACCEPT [6231:908393]

:POSTROUTING ACCEPT [10970:640894]

:OUTPUT ACCEPT [10970:640894]

COMMIT

Completed on Fri Apr 4 18:23:31 2008

Generated by iptables-save v1.3.6 on Fri Apr 4 18:23:31 2008

*filter

:INPUT ACCEPT [53204:9375108]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [112422:12698834]

:myfirewall.rules - [0:0]

-A INPUT -j myfirewall.rules

-A FORWARD -j myfirewall.rules

-A myfirewall.rules -i lo -j ACCEPT

-A myfirewall.rules -p icmp -m icmp --icmp-type any -j ACCEPT

-A myfirewall.rules -p esp -j ACCEPT

-A myfirewall.rules -p ah -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 500 -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 10000 -j ACCEPT

-A myfirewall.rules -p tcp -m tcp --dport 443 -j ACCEPT

-A myfirewall.rules -d 224.0.0.251 -p udp -m udp --dport 5353 -j ACCEPT

-A myfirewall.rules -p udp -m udp --dport 631 -j ACCEPT

-A myfirewall.rules -m state --state RELATED,ESTABLISHED -j ACCEPT

-A myfirewall.rules -p tcp -m tcp --dport 22 -j ACCEPT

-A myfirewall.rules -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Fri Apr 4 18:23:31 2008

This format is obviously still readable and still directly editable.

On Red Hat machines, what is produced by iptables-save is

56

directly accessible from the file /etc/sysconfig/iptables. So

to restore a previously created firewall on a Red Hat machine, all

you have to do is to invoke iptables-restore and direct into

it the contents of /etc/sysconfig/iptables.

• Note that when a system is rebooted, the firewall rules are au-

tomatically flushed and reset — in most cases to empty tables

(implying really no firewall protection).

• For Ubuntu Linux, if you want the system to automatically save

the latest firewall on shutdown and then also automatically re-

store the firewall at startup, you would need to edit your

/etc/network/interfaces

network configuration file and enter in it the appropriate pre-

up and post-down commands for each of the interfaces that

are meant to be protected by the firewall.

• If, say, eth0, is the ethernet interface on your Ubuntu laptop,

you’d need to enter the following pre-up and post-down lines in

the /etc/network/interfaces file so that its eth0 entry

looks like:

57

auto eth0

iface eth0 inet dhcp

pre-up iptables-restore < /etc/iptables.rules

post-down iptables-save > /etc/iptables.rules

The iptables.rules file, initially created manually with the

iptables-save command, must already exist in the /etc/ folder

before the automatic save and reload procedure can work. [The file

/etc/network/interfaces contains the network interface configuration information for

the Ubuntu distribution of Linux. Do ’man interfaces’ to see how to configure this

file for static and DHCP-provided IP addresses. In this file, lines beginning with auto

are used to identify the physical interfaces to be brought up at system startup. With

respect to each interface, a line beginning with pre-up specifies the command that must

be executed before the interface is brought up. By the same token, a line beginning with

post-down specifies the command that must be executed after the interface is taken

down.]

• Note that on Red Hat Linux and its variants, you can start and

stop iptables by

/etc/init.d/iptables start

/etc/init.d/iptables stop

/etc/init.d/iptables restart

Also on Red Hat Linux, if you are doing NAT, make sure you

turn on IP packet forwarding by setting

net.ipv4.ip_forward = 1

58

in the /etc/sysctl.conf file.

• Some other points to remember:

– Note that the names of built-in chains, INPUT, OUTPUT, and FOR-

WARD, must always be in uppercase.

– The ‘-p tcp’ and ‘-p udp’ options load into the kernel the TCP and

UDP extension modules.

– Chain names for user-defined chains can only be up to 31 characters.

– User-defined chain names are by convention in lower-case.

– When a packet matches a rule whose target is a user-defined chain,
the packet begins traversing the rules in that user-defined chain. If

that chain doesn’t decide the fate of the packet, then once traversal
on that chain has finished, traversal resumes on the next rule in the
current chain.

– Even if the condition part of a rule is matched, if the rule does not

specify a target, the next rule will be considered.

– User-defined chains can jump to other user-defined chains (but don’t

make loops: your packets will be dropped if they’re found to be in a
loop).

59

18.15: Case Study: Designing Iptables for a New

LAN

Let’s say that you want to create a firewall to protect a Class C

192.168.1.0/24 private LAN that is connected to the rest of the in-

ternet by a router and a gateway machine as shown.

local_machine_1 local_machine_2 local_machine_N

| | | LAN addresses:

\ | / 192.168.1.0/24

\ | /

\ | /

| ROUTER |

|

|

|

| interface eth1, IP adress: 192.168.1.1

| |

| Gateway | loopback: localhost

| Machine | addess: 127.0.0.1

| (firewall computer) | interface: lo

| |

| interface eth0, IP address: 123.45.67.89

|

|

internet

We will also assume that the gateway machine has its IP address

60

assigned dynamically (DHCP) by some ISP. We will assume that the

gateway machine is using Linux as its OS and that iptables based

packet filtering software is installed. We want the firewall installed

in the gateway machine to allow for the following:

• It should allow for unrestricted internet access from all the ma-

chines in the LAN.

• Allow for SSH access (port 22) to the firewall machine from out-

side the LAN for external maintenance of this machine.

• Permit Auth/Ident (port 113) that is used by some services like

SMTP and IRC. (Note that port 113 is for Auth (authentication). Some old

servers try to identify a client by connecting back to the client machine on this port and

waiting for the IDENTD server on the client machine to report back. But this port is

now considered to be a security hole. See http://www.grc.com/port 113.htm. So, for

this port, ’ACCEPT’ should probably be changed to DROP.)

• Let’s say that the LAN is hosting a web server (on behalf of

the whole LAN) and that this HTTPD server is running on the

machine 192.168.1.100 of the LAN. So the firewall must use NAT

to redirect the incoming TCP port 80 requests to 192.168.1.100.

61

• We also want the firewall to accept the ICMP Echo requests (as

used by ping) coming from the outside.

• The firewall must log the filter statistics on the external interface

of the firewall machine.

• We want the firewall to respond back with TCP RST or ICMP

Unreachable for incoming requests for blocked ports.

• Shown below is Rusty Russell’s recommended firewall that has
the above mentioned features:

#! /bin/sh

macro for external interface:

ext_if = "eth0"

macro for internal interface:

int_if = "ath0"

tcp_services = "22,113"

icmp_types = "ping"

comp_httpd = "192.168.1.100"

NAT/Redirect

modprobe ip_nat_ftp

iptables -t nat -A POSTROUTING -o $ext_if -j MASQUERADE

iptables -t nat -i -A PREROUTING $ext_if -p tcp --dport 80 -j DNAT --to-destination $comp_httpd

filter table rules

Forward only from external to webserver:

iptables -A FORWARD -m state --state=ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -i $ext_if -p tcp -d $comp_httpd --dport 80 --syn -j ACCEPT

62

From internal is fine, rest rejected

iptables -A FORWARD -i $int_if -j ACCEPT

iptables -A FORWARD -j REJECT

External can only come in to $tcp_services and $icmp_types

iptables -A INPUT -m state --state=ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i $ext_if -p tcp --dport $tcp_services --syn -j ACCEPT

for icmp in $icmp_types; do

iptables -A INPUT -p icmp --icmp-type $icmp -j ACCEPT

done

Internal and loopback are allowed to send anything:

iptables -A INPUT -i $int_if -j ACCEPT

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -j REJECT

logging

echo "1" > /proc/sys/net/ipv4/ip_forward

63

HOMEWORK PROBLEMS

1. What is the difference between a packet-filtering firewall and a

proxy-server firewall? Can the two be used together?

2. How can you figure out if iptables is installed and running in

your machine?

3. What are the four tables maintained by the Linux kernel for

processing incoming and outgoing packets?

4. How does an iptables based firewall decide as to which packets

to subject to the INPUT chain of rules, which to the FORWARD

chain of rules, and which to the OUTPUT chain of rules? Addi-

tionally, which part of a packet is examined in order to figure out

whether or not the condition part of a rule is satisfied?

5. As a packet is being processed by a chain of rules, what happens

to the packet if it does not satisfy the conditions in any of the

rules? What is meant by a chain policy?

6. Show how you would use the iptables command to reject all

incoming SYN packets that seek to open a new connection with

64

your machine?

7. What is the option given to the iptables command to flush all

the user-defined chains in a table? How do you flush all the rules

in a table?

8. If you see the string ‘icmp type 255’ at the end of a line of the

output produced by the ‘iptables -L’ command, what does

that mean?

9. What are the icmp-types associated with the echo-request (ping)

and with the echo-reply (pong) packets?

10. The raw table is used for specifying exemptions to connection

tracking. What does that mean?

11. What is the iptables command if you want your machine to

accept only the incoming connection requests for the SSHD server

you are running on your machine? (You want your machine to

drop all other connection request packets from remote clients.)

12. What is connection tracking? How does an iptables-based fire-

wall know that the incoming packets all belong to the same on-

going connection?

65

13. What are the different packet states recognized by the connection

tracking iptables extension module state?

14. Programming Assignment:

Design a firewall for your Linux machine using the iptables

packet filtering modules. Your homework consists of writing ipt-

ables rules to do the following:

• Place no restriction on outbound packets.

• Allow for SSH access (port22) to your machine from only the

purdue.edu domain.

• Assuming you are running an HTTPD server on your machine

that can make available your entire home directory to the

outside world, write a rule that allows only a single IP address

in the internet to access your machine for the HTTP service.

• Permit Auth/Ident (port 113) that is used by some services

like SMTP and IRC.

• Accept the ICMP Echo requests (as used by ping) coming

from the outside.

• Respond back with TCP RST or ICMP unreachable for in-

coming requests for blocked ports.

66

