Mastering Enterprise
JavaBeans™

Second Edition

Thanks for downloading this file! This is a non-printable Adobe Acrobat PDF file and represents the complete
Mastering EJB 2nd edition book.

So why did we make the PDF non-printable? For a few reasons:

1) The intention of this PDF file is to give you free access to preview the book before buying it.

2) Any book that you printed wouldn't look nice. It would be ugly, unbound, and would lack a cover.

3) It costs more money in paper and toner to print the book than to buy it!

Some people have told me that it's a bad idea to distribute this PDF, and that | will lose book sales as a result. |
think they're wrong! | think that offering the book online will show people how great the book really is, and then
they'll want to own it for themselves. So if you like this book, you can buy it right now on Amazon.com. Click here:

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405

Also, if you're just starting to learn about EJB, you may want to check out http://www.TheServerSide.com, which is
a great web site to learn about the latest J2EE news.

You also may want to check out The Middleware Company (http://www.middleware-company.com), which offers
EJB training courses to take your knowledge to the next level. Click on the link above to find out more.

Thanks again, and enjoy.
-Ed Roman

Ed Roman

Ed Roman

Ed Roman
Thanks for downloading this file! This is a non-printable Adobe Acrobat PDF file and represents the complete Mastering EJB 2nd edition book.

So why did we make the PDF non-printable? For a few reasons:

1) The intention of this PDF file is to give you free access to preview the book before buying it.
2) Any book that you printed wouldn't look nice. It would be ugly, unbound, and would lack a cover.
3) It costs more money in paper and toner to print the book than to buy it!

Some people have told me that it's a bad idea to distribute this PDF, and that I will lose book sales as a result. I think they're wrong! I think that offering the book online will show people how great the book really is, and then they'll want to own it for themselves. So if you like this book, you can buy it right now on Amazon.com. Click here:

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405

Also, if you're just starting to learn about EJB, you may want to check out http://www.TheServerSide.com, which is a great web site to learn about the latest J2EE news.

You also may want to check out The Middleware Company (http://www.middleware-company.com), which offers EJB training courses to take your knowledge to the next level. Click on the link above to find out more.

Thanks again, and enjoy.
-Ed Roman

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/00
http://www.middleware-company.com
http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405
http://www.TheServerSide.com
http://www.middleware-company.com

John W Atkins

John W Atkins

steri nterprise

avabeans™

Se dition

Ed Roman
Scott Ambler
Tyler Jewell

Wiley Computer Publishing

W

John Wiley & Sons, Inc.
NEW YORK « CHICHESTER + WEINHEIM « BRISBANE + SINGAPORE + TORONTO

Publisher: Robert Ipsen

Editor: Robert M. Elliott

Developmental Editor: Emilie Herman

Managing Editor: John Atkins

Associate New Media Editor: Brian Snapp

Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should con-
tact the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by The Middleware Company. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: permreq@wiley.com.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-41711-4
Printed in the United States of America.

10987654321

To my wonderful wife, Younhi.

—Ed Roman

Acknowledgments

Preface
Introduction
About the Author

Part One Overview

Chapter 1 Overview
The Motivation for EJB
Divide and Conquer to the Extreme
Component Architectures
Introducing Enterprise JavaBeans
Why Java?
EJB as a Business Solution
The EJB Ecosystem
The Bean Provider
The Application Assembler
The EJB Deployer
The System Administrator
The Container and Server Provider
The Tool Vendors
Summary of Roles

The Java 2 Platform, Enterprise Edition (J2EE)

The J2EE Technologies
Summary

Chapter 2 EJB Fundamentals

Enterprise Beans
Types of Beans

Distributed Objects: The Foundation for EJB
Distributed Objects and Middleware

Explicit Middleware
Implicit Middleware

What Constitutes an Enterprise Bean?

The Enterprise Bean Class

Xix
xxi

XxXi

12

13
14
14

16
17
17
18
19
19
20
20

22
23

26

29

29
30

32

34
34
35
37
37

vii

viii

Chapter 3

Part Two

Chapter 4

The EJB Object

The Home Object

The Local Interfaces
Deployment Descriptors
Vendor-Specific Files
Ejb-Jar File

Summary of Terms

Summary

Writing Your First Bean

How to Develop an EJB Component
The Remote Interface

The Local Interface

The Home Interface

The Local Home Interface

The Bean Class

The Deployment Descriptor

The Vendor-Specific Files

The Ejb-jar File

Deploying the Bean

The Optional EJB Client JAR file

Understanding How to Call Beans
Looking up a Home Object

Running the System
The Server-Side Output
The Client-Side Output

Implementing Component Interfaces
A Solution

Summary
The Triad of Beans

Introduction to Session Beans
Session Bean Lifetime

Session Bean Subtypes
Stateful Session Beans
Stateless Session Beans

Special Characteristics of Stateful Session Beans
Achieving the Effect of Pooling with Stateful Beans
The Rules Governing Conversational State

Activation and Passivation Callbacks

38
44
46
50
51
51
52

54

55
55
57
58
58
59
62
66
67
67
68
68

69
70

74
75
75

75
76

77

79

81
81

82
82
83

84
85
86
87

. contents NIV

Method Implementation Summary 89
A Simple Stateful Session Bean 89
Life Cycle Diagrams for Session Beans 100
Summary 103
Chapter 5 Introduction to Entity Beans 105
Persistence Concepts 105
Java Object Serialization 106
Object-Relational Mapping 106
Object Databases 109
What Is an Entity Bean? 109
About the Files that Make up an Entity Bean 112
Features of Entity Beans 112
Entity Beans Survive Failures 112
Entity Bean Instances Are a View into a Database 113
Several Entity Bean Instances May Represent the Same
Underlying Data 114
Entity Bean Instances Can Be Pooled 116
There Are Two Ways to Persist Entity Beans 118
Creation and Removal of Entity Beans 119
Entity Beans Can Be Found 121
You Can Modify Entity Bean Data without Using EJB 123
Entity Contexts 124
getEJBLocalObject() / getEJBObject() 124
getPrimaryKey() 125
Summary 126
Chapter 6 Writing Bean-Managed Persistent Entity Beans 127
Entity Bean Coding Basics 127
Finding Existing Entity Beans: ejbFind() 129
Bean-Managed Persistence Example: A Bank Account 136
Account.java 137
AccountLocal.java 138
AccountHome,java 138
AccountLocalHome java 138
AccountPK java 139
AccountBean.java 143
AccountException.java 156
Client.java 156
The Deployment Descriptor 156
The Container-Specific Deployment Descriptor 161
Setting up the Database 161
Running the Client Program 161
Server-Side Output 162

Client-Side Output 163

Chapter 7

Chapter 8

Putting It All Together: Walking through a BMP Entity
Bean’s Life Cycle

Summary

Writing Container-Managed Persistent Entity Beans

Features of CMP Entity Beans
CMP Entity Beans Are Subclassed
CMP Entity Beans Have No Declared Fields
CMP Get/Set Methods Are Defined in the Subclass
CMP Entity Beans Have an Abstract Persistence Schema
CMP Entity Beans Have a Query Language
CMP Entity Beans Can Have ejbSelect() Methods

Implementation Guidelines for Container-Managed
Persistence

Container-Managed Persistence Example: A Product Line
Product.java
ProductLocal.java
ProductHome.java
ProductLocalHome.java
ProductPK.java
ProductBean.java
The Deployment Descriptor
The Container-Specific Deployment Descriptor
Client.java

Running the Client Program
The Life Cycle of a CMP Entity Bean

Summary

Introduction to Message-Driven Beans
Motivation to Use Message-Driven Beans

The Java Message Service (JMS)
Messaging Domains
The JMS API

Integrating JMS with EJB
What Is a Message-Driven Bean?

Developing Message-Driven Beans
The Semantics
A Simple Example

Advanced Concepts

Message-Driven Bean Gotchas
Message Ordering
Missed ejbRemove() Calls
Poison Messages

163
166

167

167
167
168
170
172
173
175

176

180
181
182
182
184
184
187
191
195
196

196
200
200

201
201

203
204
206

211
212

214
214
215

223

225
225
226
228

Chapter 9

How to Return Results Back to Message Producers
The Future: Asynchronous Method Invocations

Summary

Adding Functionality to Your Beans

Calling Beans from Other Beans
Default JNDI Lookups
Understanding EJB References

Resource Factories
Environment Properties

Understanding EJB Security
Security Step 1: Authentication
Security Step 2: Authorization
Security Propagation

Understanding Handles
Home Handles

Summary

Part Three Advanced Enterprise JavaBeans Concepts

Chapter 10 Transactions

Motivation for Transactions
Atomic Operations
Network or Machine Failure
Multiple Users Sharing Data

Benefits of Transactions
The ACID Properties

Transactional Models
Flat Transactions
Nested Transactions
Other Transactional Models

Enlisting in Transactions with Enterprise JavaBeans
Underlying Transaction System Abstraction
Declarative, Programmatic, and Client-Initiated Transactions
Choosing a Transaction Style

Container-Managed Transactions
EJB Transaction Attribute Values

Programmatic Transactions in EJB
CORBA’s Object Transaction Service (OTS)
The Java Transaction Service (JTS)
The Java Transaction API (JTA)
Declarative versus Programmatic Transactions Example

xi

230
235

236

237

237
238
239

241
244

245
246
257
266

268
269

270

271

275

276
276
277
278

279
280

282
282
284
286

286
287
287
290

292
294

300
300
301
301
304

xii

Chapter 11

Chapter 12

Transactions from Client Code

Transactional Isolation
The Need for Concurrency Control
Isolation and EJB
The Dirty Read Problem
The Unrepeatable Read Problem
The Phantom Problem
Transaction Isolation Summary
Isolation and EJB
Pessimistic and Optimistic Concurrency Control

Distributed Transactions
Durability and the Two-Phase Commit Protocol

The Transactional Communications Protocol and Transaction

Contexts
Designing Transactional Conversations in EJB

Summary

BMP and CMP Relationships
The CMP and BMP Difference
Cardinality

1:1 Relationships

1:N Relationships
M:N Relationships

Directionality
Implementing Directionality with BMP
Implementing Directionality with CMP
Directionality May Not Map to Database Schemas
Bidirectional or Unidirectional?

Lazy Loading

Aggregation vs. Composition and Cascading Deletes

Relationships and EJB-QL

Recursive Relationships

Circular Relationships

Referential Integrity
Relationships, Referential Integrity, and Client Code

Summary

Persistence Best Practices

When to Use Entity Beans
Control
Parameter Passing Analogy
Procedural Versus Object-Oriented
Caching

306

307
308
309
311
312
313
314
315
316

316
317

318
320
323

325
326

326
328
332
336

344
344
345
347
349

349
350
352
363
354

365
357

360

361

362
362
362
363
363

Chapter 13

Enforcement of Schema Independence
Ease of Use

Migration

Rapid Application Development

Choosing between CMP and BMP
Code Reduction and Rapid Application Development
Performance
Bugs
Control
Application Server and Database Independence
Relationships
Learning Curve and Cost
Choosing the Right Granularity for Entity Beans
Persistence Tips and Tricks
Beware the Object-Relational Impedance Mismatch
Hard-Coded Versus Soft-Coded SQL
When to Use Stored Procedures
Normalizing and Denormalizing
Use Your EJB Object Model to Drive Your Data Model
Follow a Good Data Design Process
Use Surrogate Keys
Understand the Impacts of Database Updates
Versioning EJB Components
Living with a Legacy Database Design
Handling Large Result Sets

Summary

EJB Best Practices and Performance Optimizations

When to Use Stateful versus Stateless

When to Use Messaging versus RMI-IIOP

How to Guarantee a Response Time with Capacity Planning
How to Achieve Singletons with EJB

Wrap Entity Beans with Session Beans
Performance-Tuning Entity Beans

Choosing between Local Interfaces and Remote Interfaces
How to Debug EJB Issues

Partitioning Your Resources

Assembling Components

Developing Components to Be Reusable

When to Use XML in an EJB System

Legacy Integration with EJB

Summary

xiii

364
364
364
365

365
365
366
366
367
367
368
368

368

370
370
370
371
373
375
375
376
377
377
379
387

390

391
391
393
397
398
398
400
401
402
404
405
406
407
408
410

xiv

Chapter 14

Chapter 15

Chapter 16

Clustering

Overview of Large-Scale Systems
What Is a Large-Scale System?
Basic Terminology
Partitioning Your Clusters

Instrumenting Clustered EJBs
How EJBs Can Be Clustered
The Concept of Idempotence
Stateless Session Bean Clustering
Stateful Session Bean Clustering
Entity Bean Clustering
Message-Driven Bean Clustering

Other EJB Clustering Issues
First Contact
Initial Access Logic

Summary

Starting Your EJB Project on the Right Foot
Get the Business Requirements Down
Decide Whether J2EE is Appropriate
Decide Whether EJB Is Appropriate
Staff Your Project

Design Your Complete Object Model
Implement a Single Vertical Slice
Choose an Application Server

Divide Your Team

Invest in Tools

Invest in a Standard Build Process
Next Steps

Summary

Choosing an EJB Server

J2EE 1.3 Brand

Pluggable JRE

Conversion Tools

Complex Mappings

Third-Party JDBC Driver Support
Lazy-Loading

Deferred Database Writes

411

411
412
413
415

416
419
420
421
423
425
429

430
430
430

431

433
433
434
434
438
439
439
442
443
445
446
446
447

449
450
450
450
451
451
451
451

- contents BBV

Pluggable Persistence Providers 451
In-Memory Data Cache 452
Integrated Tier Support 452
Scalability 452
High Availability 453
Security 453
IDE Integration 454
UML Editor Integration 454
Intelligent Load Balancing 455
Stateless Transparent Fail-over 455
Clustering 455
Java Management Extension (JMX) 456
Administrative Support 456
Hot Deployment 456
Instance Pooling 456
Automatic EJB Generation 457
Clean Shutdown 457
Real-Time Deployment 457
Distributed Transactions 458
Superior Messaging Architecture 458
Provided EJB Components 458
J2EE Connector Architecture (JCA) 459
Web Services 459
Workflow 459
Open Source 460
Specialized Services 460
Nontechnical Criteria 461
Summary 462
Chapter 17 EJB-J2EE Integration: Building a Complete Application 463
The Business Problem 463
A Preview of the Final Web Site 464
Scoping the Technical Requirements 468
Object Model for the Business Logic Tier 469
Object Model for the Presentation Tier 475
Example Code 482

Summary 488

ECONTENTS S

Part Four Appendixes 489
Appendix A RMI-IIOP and JNDI Tutorial 491
Java RMI-IIOP 492
Remote Method Invocations 492
The Remote Interface 493
The Remote Object Implementation 496
Stubs and Skeletons 497
Object Serialization and Parameter Passing 499
Passing By-Value 500
Object Serialization 500
What Should You Make Transient? 502
Object Serialization and RMI-IIOP 503
The Java Naming and Directory Interface (JNDI) 505
Naming and Directory Services 506
Problems with Naming and Directories 507
Enter JNDI 508
Benefits of JNDI 509
JNDI Architecture 509
JNDI Concepts 511
Programming with JNDI 515
Integrating RMI-IIOP and JNDI 517
Binding an RMI-IIOP Server to JNDI 518
Looking up an RMI-IIOP Server with JNDI 519
Summary 520
Appendix B CORBA Interoperability 523
What Is CORBA? 523
CORBA as the Basis for EJB 524
Why Should I Care about CORBA? 524
Drawbacks of CORBA 525
Understanding How CORBA Works 525
Object Request Brokers 525
OMG's Interface Definition Language 526
OMG IDL Maps to Concrete Languages 528
CORBA Static Invocations 529
CORBA’s Many Services 531
The Need for RMI-IIOP 531
The Need for RMI-CORBA Interoperability 532
Combining RMI with CORBA 533
Steps to Take for RMI and CORBA to Work Together:
An Overview 538

RMI-IIOP Client with a CORBA Object Implementation 538

L CONTENTS IRt

CORBA Client with an RMI-IIOP Object Implementation 539
Bootstrapping with RMI-IIOP and CORBA 540
The Big Picture: CORBA and EJB Together 540
Sample Code 541
Summary 543
Appendix C Deployment Descriptor Reference 545
How to Read a DTD 545
The Header and Root Element 546
Defining Session Beans 547
<session> 547
Defining Entity Beans 549
<entity> 549
<cmp-field> 5561
<query> 552
<query-method> 552
<method-params> 553
Defining Message-Driven Beans 553
<message-driven> 553
<message-driven-destination> 555
Defining Environment Properties 555
<env-entry> 556
Defining EJB References 556
<ejb-ref> 557
<ejb-local-ref> 558
Defining Security 558
<security-role-ref> 558
<security-identity> 559
<run-as> 559
Defining Resource Factories 560
<resource-ref> 560
<resource-env-ref> 561
Defining Relationships 561
<relationships> 562
<ejb-relation> 562
<ejb-relationship-role> 563
<relationship-role-source> 563
<cmr-field> 564
Defining the Assembly Descriptor 564
<assembly-descriptor> 565
<security-role> 566
<method-permission> 566

<container-transaction> 567

xviii

<exclude-list>
<method>
<method-params>

Appendix D The EJB Query Language (EJB-QL)

Overview
A Simple Example

The Power of Relationships

EJB-QL Syntax
The FROM Clause
The WHERE Clause
The SELECT Clause
Truth Tables

Final Note

Summary

Appendix E EJB Quick Reference Guide

Session Bean Diagrams
Stateless Session Bean Diagrams
Stateful Session Bean Diagrams

Entity Bean Diagrams

Message-Driven Bean Diagrams

EJB API Reference
EJBContext
EJBHome
EJBLocalHome
EJBLocalObject
EJBMetaData
EJBObject
EnterpriseBean
EntityBean
EntityContext
Handle
HomeHandle
MessageDrivenBean

MessageDrivenContext

SessionBean
SessionContext

SessionSynchronization

Exception Reference

Transaction Reference

567
568
568

569

569
570
571

572
572
574
578
581

583
583

585

586
587
589

592
597

598
599
600
601
601
602
602
603
604
610
610
611
611
611
612
614
614

616
617

621

T

his book has been a project spanning several years. Many have commented
that the first edition was one of the best technical books they ever read. What's
made this book a reality are the many people that aided in its development.

We took a big risk in developing the second edition of this book and decided
to build the book on the Web. We received feedback from around the world
when writing this book, and thus we have an evolving list of contributors and
reviewers. The list is too large to mention here but is available at www.The
ServerSide.com.

As a special thanks, we’d like to acknowledge the great folks over at John
Wiley & Sons. They have been absolutely outstanding throughout this book’s
evolution. In particular, we’d like to thank Bob Elliott, Emilie Herman, and
Bob Ipsen for their incredible efforts.

xix

occurred in my life almost three years ago. I remember sitting in my cubicle
at Trilogy Software, an e-commerce company in Austin, Texas, lost in deep
middleware thoughts. My challenge was to devise an interesting load-bal-
ancing strategy for our in-house application server, which we called the back-
bone.

ﬁ s I write these words, I can’t help but think back to an inflection point that

The backbone was a superb software system. It was cleanly written, easy to
use, and boasted some very high-end features—features such as distributed
object support, object-relational mapping, and extensible domain object mod-
eling. It had almost anything you needed for Internet development. It was a
worthy investment for Trilogy.

I was part of a task force to add enterprise features to this backbone, such as
transaction control, security, and load-balancing. Our goal was to improve the
backbone into a product worthy of large-scale deployment.

So that day, after hours of racking my brain, I finally finished crafting what I
believed to be a highly creative and optimal load-balancing strategy. Looking
for feedback, I walked to my friend Court Demas’ office. Court is one of those
developers who can really pick apart almost any design and expose its flaws—
a unique quality that only a few developers I know have.

Walking into Court’s office, I was expecting a typical developer-level conver-
sation, and that’s what I received. We turned the design inside and out, mark-
ing up my freshly printed hard copy with scribbles and other unintelligible
comments that only we could understand. Finally, satisfied that we had
reached a conclusion, I thanked Court and walked toward the door, prepared
to implement the changes we had agreed upon.

But I didn’t make it that far. Court said something to me that would change my
way of thinking. His comment baffled and confused me at first, but would
eventually result in a complete paradigm shift and career move for me. What
did Court say? Nothing profound, but simply, “You know Ed, this stuff is
really what Enterprise JavaBeans is for.”

xxii

At first, I had no idea what he was talking about. Enterprise JavaBeans?
What's that? Something like regular JavaBeans? Eventually, Court managed to
explain to me what EJB was. And once he explained it, I knew that Trilogy had
to do a 180-degree turn or lose its competitive advantage.

You see, EJB is a specification for a server-side component marketplace. EJB
enables you to purchase off-the-shelf components from one vendor, combine
them with components from another vendor, and run those components in an
application server written by yet a third vendor. This means companies can
collaborate on the server side. EJB enables you to buy, rather than build, ele-
ments of server-side applications.

The EJB value proposition had strong ramifications for Trilogy. EJB repre-
sented a way for Trilogy to get out of the middleware business and concentrate
on its e-commerce strategic efforts. This meant discarding the backbone com-
pletely in favor of a third-party vendor’s architecture. Not only would this
reduce Trilogy’s maintenance costs, but it would also solidify its software
suite, since their middleware would now be written by professionals who had
been in the business for 20 years. This proposition would eventually lead to
Trilogy forming an entirely new business unit.

I decided to start researching EJB and pushing for Trilogy to adopt it. I went to
the Sun Microsystems Web page, downloaded the EJB 1.0 specification in PDF
form, and printed it out. Back then, the specification was about a third of the
size it is today.

Understanding the specification turned out to be much more challenging than
downloading it. The specification was written for system-level vendors and
was not meant to be a tutorial for end developers. The section on entity beans,
for example, took me a good two months to really grasp, as the notion of per-
sistent components was new to me.

This arduous struggle with understanding the E]B specification is what even-
tually led me to write this book for you. This book represents everything I
wish I had when I first started using EJB in 1998. So what is this book about?
Well, it may be more accurate to tell you what this book is not. This is not EJB
propaganda. It is not a book on how to write EJB code on any single applica-
tion server. This is not a nice book that paints a perfect picture of the EJB
world. Nor is it an advertisement for any particular EJB product or a campaign
to rid the world of Microsoft.

The goal of this book is to help you. I want you to be able to craft solid, secure,
and scalable server-side deployments. As you read this book, you'll learn how
to design, implement, and deploy EJB solutions. This book covers both the
vision and the reality of EJB from an independent developer’s perspective. I
hope it will prepare you for the challenges you will face.

L PREFACE R

I wish the grass was greener and that I could write a book on how clean and
portable EJB is; but the truth is that this technology is not perfect, and you
should know exactly what the imperfections are. I will expose you to the grue-
some and incompatible parts of EJB and also explain how the industry is solv-
ing these problems.

Indeed, the newer specifications (especially EJB 2.0) improve portability and
reduce incompatibilities tremendously. I hope that by the time you're done
reading this book, you are convinced that the vision of EJB is solid, and the
future is very bright.

My hope is that I can save you time and energy, and aid you in designing well-
crafted server-side deployments. But this is merely the beginning. The E]JB
marketplace is just getting started, and there’s a whole lot more work ahead. I
encourage you to take an active role in the middleware industry and to work
with me taking EJB to the next level. Feel free to write your experiences, tips,
and design strategies, and post them on TheServerSide.com to share with
others. Our goal is to increase our knowledge of EJB as a community, and
together, we can do it.

Ed Roman

T

his book is a tutorial on Enterprise JavaBeans (E]JB). It's about EJB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-driven software, and more. Combining them
is a magnificent stride forward for the Java community, but with that comes a
myriad of concepts to learn and understand. This book will teach you the con-
cepts and techniques for authoring reusable components in Java, and it will
do so from the ground up. You need only to understand Java to understand
this book.

While you're reading this book, you may want to download the E]B specifica-
tion, available on http:/ /java.sun.com.

Goals for This Edition

The first edition of this book came out in 1999. We had to make some tough
calls when writing the second edition, and we are confident you'll like them.
Here are our goals:

m To update the book for EJB 2.0. EJB 2.0 has many new useful features that
we will detail throughout the book.

m To be broad and also deep. We do not regurgitate the complete EJB speci-
fication in this book, nor do we cover every last detail of EJB in this book.
Rather, we cover the most important parts of EJB, leaving room to discuss
advanced issues. For a complete reference while you are coding, search
through the EJB specification using Adobe Acrobat. Readers who are look-
ing for a well-written book that is interactive, fun to read, and covers the
basics through advanced subjects have come to the right place.

xxvi INTRODUCTION

m To be concise. Your time as a reader is extremely valuable, and you're
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually wanted
to reduce the size of this book as much as possible. So we’ve tightened
things up and eliminated redundant examples. This way, you can get to
actually program with EJB, rather than reading a book for months on end.
The irony of this story is that it was harder for us to write a shorter book
than a long book!

m To be a book for developers. This book is not intended for high-level
businessmen. This is a technical book for a technical audience.

m To write a book the right way. This book’s primary author, Ed Roman,
has taken his skills in training and knowledge transfer and applied them
to this book. Thus, we’ve infused this book with the following attributes:

m A conversational style. When you read this book, sometimes you'll
feel like you're almost having a discussion with us. We think this is far
superior to spending eons trying to re-read a formal writing style over
and over again.

m Use of diagrams and bulleted lists. The adage a picture is worth a
thousand words applies here. These tactics are great for breaking up
blocks of text. They keep things varied and make the book a much
faster read.

m A consistent voice. Even though several coauthors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed knowl-
edge from several expert coauthors, while maintaining a uniform look
and feel throughout the book.

m To be an introductory book, but also to get quickly into advanced top-
ics. We figured that the average developer has had enough of books that
merely skim the surface. We wanted to write a book that pushed beyond
the basics. Our approach when writing this book was to always err on the
side of being advanced. To achieve this, we did an immense amount of
research. We participated in the mailing lists, performed many real-world
projects, attended conferences and seminars, and networked with the top
experts throughout the world.

m To be vendor-neutral. All vendor-specific deployment steps are external-
ized to the book’s accompanying source code. This makes this book useful
for any E]B server.

m To add useful EJB information garnered from our instructor-led training
classes. Having taught EJB/J2EE for years, we have learned significantly

INTRODUCTION xxvii

from our students. We have interlaced this book with many of our own
students’ questions and answers in relevant sections.

m To take all the source code and make it available online. By making the
code available on the Web, you know it’s the latest version. This will
ensure the code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

Part 1 is a whirlwind introduction to EJB programming. Part 1 serves as a
great overview for people in a hurry. While Part 1 is essential information
to EJB newcomers, veterans will also find nuggets of useful knowledge as
well. The following chapters are covered:

Chapter 1 is a tour of enterprise computing. We’ll talk about components,
distributed frameworks, and containers. We'll also introduce EJB and J2EE.

Chapter 2 moves onto the fundamentals of building an EJB system, including
the tricky concept of request interception. We'll also look at the files that
makeup an enterprise bean.

Chapter 3 shows you how to put together a simple enterprise bean. We'll also
learn how JNDI is used in EJB, and see how to call that bean from a client.

Part 2 devotes exclusive attention to programming with EJB. We’ll see how to
use the triad of beans: entity beans, session beans, and message-driven
beans. We'll cover the basics of writing each type of bean, including an
example as well as detailed life cycle diagrams.

Chapter 4 covers session beans. We'll look at the difference between stateful
and stateless session beans, how to code a session bean, and what’s going
on behind-the-scenes with session beans.

Chapter 5 is a conceptual introduction to entity beans. We'll look at persis-
tence concepts, what makes entity beans unique, and the files involved
when building entity beans.

Chapter 6 covers bean-managed persistent (BMP) entity beans. We'll see how
to program a BMP entity bean, and also look at what’s happening behind
the scenes with BMP.

Chapter 7 covers container-managed persistent (CMP) entity beans. We'll
focus in on the exciting new advances that EJB 2.0 has introduced, we’ll
learn how to program a CMP entity bean, and also look at what’s happen-
ing behind the scenes with CMP.

xxviii

INTRODUCTION

Chapter 8 covers message-driven beans. We'll first review the Java Message
Service (JMS), which is a pre-requisite for learning message-driven beans.
We'll then dive in and understand how to program with message-driven
beans.

Chapter 9 discusses the E]B environment, along with services provided by
the container. This includes security, environment properties, resource fac-
tories, references between beans, and handles.

Part 3 is the most exciting part of the book, and covers advanced EJB con-
cepts. The following chapters are included:

Chapter 10 tackles transactions. Transactions are a crucial topic for anyone
building an EJB deployment that involves state. We’ll discuss transactions
at a conceptual level, and how to apply them to EJB. We'll also learn about
the Java Transaction API (JTA).

Chapter 11 covers relationships between entity beans. This is a critical con-
cept for anyone performing complex persistence. We'll understand the
concepts of cardinality, directionality, referential integrity, and cascading
deletes. We'll also see how to code relationships for both CMP and BMP
entity beans.

Chapter 12 covers persistence best practices. You'll learn exciting concepts
such as how to choose between session beans and entity beans, how to
choose between BMP and CMP, and survey a collection of persistence best
practices that we’ve assembled from our knowledge and experience.

Chapter 13 covers EJB design strategies to help your projects succeed. You'll
learn about interesting topics such as how to choose between local inter-
faces and remote interfaces, how to choose between stateful and stateless
systems, and how to choose between a 3-tier and 4-tier deployment.

Chapter 14 discusses clustering in large-scale EJB systems. You'll learn about
how clustering works behind-the-scenes, and learn a few strategies for
how containers might achieve clustering. This is a critical topic for anyone
building a system that involves several machines working together.

Chapter 15 covers E]B project management. We'll talk about how to get your
project started on the right foot. This includes how to choose whether EJB
is right for you, how to build a first-pass of your system, and how to
divide up your development team.

Chapter 16 covers how to choose an EJB server. We'll describe our methodol-
ogy for how an organization can compare and contrast different vendors’
offerings. We’ll also list our set of criteria for what we would want in an
EJB server.

Chapter 17 shows how to build a real-world J2EE system using EJB compo-
nents. We’ll see how the EJB components should be used together in an

INTRODUCTION XXix

enterprise, as well as how to connect them with clients such as Java
Servlets and JavaServer Pages (JSPs). We'll also demonstrate how to design
an EJB object model using UML.

The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not need to do so.

Appendix A teaches you Java Remote Method Invocation over the Internet
Inter-ORB Protocol (RMI-IIOP) and the Java Naming and Directory Inter-
face (JNDI). These technologies are pre-requisites for using EJB. If you're
just starting down the EJB road, you must read this appendix first.

Appendix B discusses how to integrate E]B and CORBA systems together.
We’ll learn about how EJB and CORBA are interoperable through RMI-
IIOP, and see sample code for calling an EJB component from a CORBA
client.

Appendix C is a deployment descriptor reference guide. This will be useful
for you later, when you're writing a deployment descriptor and need a
guide.

Appendix D covers the new EJB query language (EJB-QL) in detail.

Appendix E is an API and diagram reference guide. This is useful when you
need to look up the purpose of a method or class in EJB.

Throughout the book, this icon will signal a tip, note, or other helpful advice n EJB
ﬂ programming.

tive. We have taken our knowledge of adult learning, and scattered boxes like this
throughout the book. Each box asks you a question to get you thinking. The answers
to the questions are posted on the book’s accompanying Web site. What do you
think the benefits are of this paradigm?

In a similar paradigm to our training courses, the content of this book is very interac-

Hlustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know
UML, pick up a copy of The Unified Modeling Language User Guide (Addison-
Wesley, ISBN 0201571684), which illustrates how to effectively use UML
in your everyday software. UML is a highly important achievement in
object-oriented methodology. It's a common mechanism for engineers to

XXX INTRODUCTION

communicate and design, and it forces you to abstract your object model prior
to implementation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you'll find

m All of the source code you see in this book. The code comes complete with
build scripts, ready to build and run. It should be portable to a variety of
application servers that are EJB 2.0- and J2EE 1.3-compliant.

m Updates to the source code examples.
m Links to EJB resources.

m FError corrections from the text.

The Web site is at www.wiley.com/compbooks/roman.

Feedback

When you begin your EJB programming, we’re sure you'll have many experi-
ences to share with other readers as well. Feel free to email examples, case
studies, horror stories, or tips that you've found helpful in your experiences,
and we’ll post them on the Web site.

Send bug reports to bookbugs@middleware-company.com.

Send general communications to Ed Roman at:
edro@middleware-company.com.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans with Part 1, an introduction to EJB concepts and pro-
gramming.

Ed Roman is one of the world’s leading authorities on high-end middleware
technologies. He has been heavily involved with Sun Microsystems” enter-
prise Java solutions from their inception, and has designed, built, and de-
ployed a variety of enterprise applications, including architecting and
developing complete application server products. He devotes a significant
amount of time towards influencing and refining Sun’s enterprise specifica-
tions, contributes regularly to middleware interest mailing lists, and regularly
speaks at middleware-related conferences.

Ed is CEO of The Middleware Company (www.middleware-company.com), a
firm specializing in EJB, J2EE, and XML-based Web Services training and con-
sulting. The mission of The Middleware Company is to educate and aid in the
design, development, and deployment of middleware solutions. Are you or
your company making a purchase decision, performing EJB design work, inte-
grating a legacy system to EJB, performing e-commerce-related deployments,
or working on any other middleware endeavors? If you need some assistance,
The Middleware Company can be a valuable resource.

Ed also is CEO of TheServerSide.com, which is the de facto J2EE community
Web site. Every day, thousands of developers get together on TheServerSide.
com to share E]JB design patterns, hear about the latest E]B news, ask and
answer EJB development questions, and read articles. After you've read this
book, visit TheServerSide.com to catch up on the latest EJB information.
TheServerSide.com is a completely free service and is intended to help the
community.

And last but not least, if you want to get involved in the middleware field, Ed
is always looking for great people who want to work on exciting projects using
the latest technologies. You can reach him at edro@middleware-company.com.

About the Coauthors

Tyler Jewell oversees BEA’s technology evangelism efforts, which are char-
tered to use print and speaking media to deepen developers’ respect for enter-
prise technologies and BEA products. Tyler is an experienced developer,

xxxi

Xxxii

ABOUT THE AUTHOR

lecturer, and author. He has worked on more than 40 e-business development
projects, has delivered over 200 speeches, and has published nearly 6,000
pages of content worldwide.

Tyler is a co-author of Professional Java Server Programming—]J2EE 1.3 (Wrox,
2001). He is a member of O’Reilly’s editorial advisory panel and maintains a
monthly J2EE column at www.onjava.com. He also is a technology adviser to
TheServerSide.com.

In his spare time, Tyler is an avid volleyball and poker enthusiast and a con-
noisseur of fine red wines. He can be reached at tyler@bea.com.

Scott W. Ambler is president and a senior consultant of Ronin International,
www.ronin-intl.com, a software services consulting firm that specializes in soft-
ware process mentoring, Agile Modeling (AM), and object/component-based
software architecture and development. He is also founder and thought leader
of the Agile Modeling (AM) methodology, www.agilemodeling.com.

Scott is the author of the books The Object Primer, 2nd Edition (2001), Building
Object Applications That Work (1997), Process Patterns (1998), and More Process
Patterns (1999), and co-author of The Elements of Java Style (2000), all published
by Cambridge University Press. He is author of the forthcoming Agile Model-
ing (Autumn 2001) from John Wiley & Sons. He is also co-editor with Larry
Constantine of the Unified Process series from R&D books (2000-2001). Scott is
a contributing editor with Software Development magazine (www.sdmagazine.
com), a contributor to IBM DeveloperWorks (www.ibm.com/developer), and a
columnist with Computing Canada.

Scott’s personal Web site, www.ambysoft.com, has a wide variety of white
papers, including the AmbySoft Inc. “Coding Standards for Java,” which are
available for free download. In his spare time, Scott studies T’ai Chi and the
Goju Ryu and Kobudo styles of karate. Scott has spoken at a wide variety of
international conferences including software development, UML world, object
expo, Java expo, and application development.

Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB) com-
ponent architecture is a vital piece. J2EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With J2EE, you can rapidly construct distributed, scalable, reliable,
and portable secure server-side deployments.

In Part 1, we introduce the server-side development platform that is the Java 2

Chapter 1 begins by exploring the need for a server-side component architec-
ture such as EJB. You'll see the rich needs of server-side computing, such as
scalability, high availability, resource management, and security. We'll look
at each of the different parties that are involved in an EJB deployment.
We'll also survey the J2EE server-side development platform.

Chapter 2 moves on to the Enterprise JavaBeans fundamentals. We’ll look at
the concept of request interception, which is crucial for understanding how
EJB works. We'll also look at the different files that go into a bean and how
they work together.

Chapter 3 gets down and dirty with EJB programming. Here, we’ll write our
first simple bean. We’ll show how to code each of the files that compose
the bean, and we’ll also look at how to call that bean from clients.

Overview

ties the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

E nterprise JavaBeans (E]B) is a server-side component architecture that simpli-

If you are new to enterprise computing, these concepts will be clarified
shortly. E]B is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

m What plumbing do you need to build a robust distributed object
deployment?

m What is EJB, and what value does it add?
m Who are the players in the E]B ecosystem?

Let’s kick things off with a brainstorming session.

The

Motivation for EJB

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

m A stock trading system
m A banking application
m A customer call center
m A procurement system

m An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page and
compare your list to ours. Don’t cheat!

Client Client Client

Server Server

Database

Figure 1.1 Standard multitier deployment.

. overview §il]

In the past, most companies built their own middleware. For example, a finan-
cial services firm might build some of the middleware services above to help
them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide you with common mid-
dleware services, such as resource pooling, networking, and more. Applica-
tion servers allow you to focus on your application and not worry about the
middleware you need for a robust server-side deployment. You write the code
specific to your vertical industry and deploy that code into the runtime envi-
ronment of an application server. You've just solved your business problem by
dividing and conquering.

Divide and Conquer to the Extreme

We've just discussed how you can gain your middleware from an application
server, empowering you to focus on your business problem. But there’s even bet-
ter news: You may be able to buy a partial solution to the business problem itself.

To achieve this, you need to build your application out of components. A com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some
larger problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we're order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules that may include:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 mem-
ory modules

Things to Consider When Building Large Business Systems

By now you should have a decent list of things you'd have to worry about when
building large business systems. Here's a short list of the big things we came up
with. Don’t worry if you don’t understand all of them yet—you will.

Il Remote method invocations. We need logic that connects a client and server via
a network connection. This includes dispatching method requests, brokering of
parameters, and more.

Il Load balancing. Clients must be directed to the server with the lightest load. If a
server is overloaded, a different server should be chosen.

Il Transparent fail-over. If a server crashes, or if the network crashes, can clients
be rerouted to other servers without interruption of service? If so, how fast
does fail-over happen? Seconds? Minutes? What is acceptable for your business
problem?

Il Back-end integration. Code needs to be written to persist business data into
databases as well as integrate with legacy systems that may already exist.

Il Transactions. What if two clients access the same row of the database simulta-
neously? Or what if the database crashes? Transactions protect you from these
issues.

Il Clustering. What if the server contains state when it crashes? Is that state repli-
cated across all servers, so that clients can use a different server?

Il Dynamic redeployment. How do you perform software upgrades while the site
is running? Do you need to take a machine down, or can you keep it running?

Il clean shutdown. If you need to shut down a server, can you do it in a smooth,
clean manner so that you don't interrupt service to clients who are currently
using the server?

Il Logging and auditing. If something goes wrong, is there a log that we can con-
sult to determine the cause of the problem? A log would help us debug the
problem so it doesn’t happen again.

Il Systems Management. In the event of a catastrophic failure, who is monitoring
our system? We would like monitoring software that paged a system administra-
tor if a catastrophe occurred.

Il Threading. Now that we have many clients connecting to a server, that server is
going to need the capability of processing multiple client requests simultane-
ously. This means the server must be coded to be multi-threaded.

Il Message-oriented middleware. Certain types of requests should be message-
based where the clients and servers are very loosely coupled. We need infra-
structure to accommodate messaging.

Il Object life cycle. The objects that live within the server need to be created or
destroyed when client traffic increases or decreases, respectively.

Il Resource pooling. If a client is not currently using a server, that server’s precious
resources can be returned to a pool to be reused when other clients connect.
This includes sockets (such as database connections) as well as objects that live
within the server.

Il Security. The servers and databases need to be shielded from saboteurs. Known
users must be allowed to perform only operations that they have rights to
perform.

Il Caching. Let’s assume there is some database data that all clients share and
make use of, such as a common product catalog. Why should your servers
retrieve that same catalog data from the database over and over again? You
could keep that data around in the servers’ memory and avoid costly network
roundtrips and database hits.

Bl And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. These services are needed in any business problem
and in any vertical industry. And each of these services requires a lot of thought
and a lot of plumbing to resolve. Together, these services are called middleware.

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers
Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other
industries, such as health care, appliances, airline tickets, and others need the
same pricing functionality. Obviously, it would be a huge waste of resources if
each company that needed complex pricing had to write its own sophisticated
pricing engine. Thus, it makes sense that a vendor provides a generic pricing
component that can be reused for different customers. For example:

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.2.

2. An automobile manufacturer can use the pricing component to determine
prices for cars. This manufacturer may set up a Web site that allows cus-
tomers to get price quotes for cars over the Internet. Figure 1.3 illustrates
this scenario.

3. An online grocery store can use the pricing component as one discrete
part of a complete workflow solution. When a customer purchases gro-
ceries over the Web, the pricing component first computes the price of the
groceries. Next, a different vendor’s component bills the customer with
the generated price. Finally, a third component fulfills the order, setting
things in motion for the groceries to be delivered to the end user. We
depict this in Figure 1.4.

Post Office worker

Workstation / Dumb Terminal

Pricing
Component

Call into legacy system

| —

0
Legacy System

Figure 1.2 Reusing a pricing component for the U.S. Postal Service.

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application
from prewritten components rather than writing the entire application from
scratch. This means:

Client Browser

/ Client Browser
\/ —

Client Browser

C———— -

\.I_I_I_|

Web Server
Pricing
Component

Figure 1.3 Reusing a pricing component for quoting car prices over the Internet.

=
=y
—y
—y
—
=
[—

I — -
N~
Web Server

Workflow Logic

— 1: Price Order — L—3: Fulfill Order —

2: Bill Order to Customer

v A v
Pricing Billing Fufillment
Component Component Component

Figure 1.4 Reusing a pricing component as part of an e-commerce workflow solution.

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving
development time.

11

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the compo-
nent vendor is an expert in its field, the component generally has fewer
bugs and higher performance than an IT shop’s home-grown solution. This
reduces the IT shop’s maintenance costs.

Once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
reusable components to companies. The components are deployed within
application servers, which provide the needed middleware.

Component Marketplace a Myth?

There is a very small component marketplace today. For years we’ve been hoping
that the marketplace will explode, but it is behind schedule. There are several
reasons for Independent Software Vendors (ISVs) not shipping components:

Maturity. Because components live inside application servers, the application
servers must be mature before we see components written to those servers.

Politics. Many ISVs have written their own application servers. Some (falsely) view
this as a competitive advantage.

Questionable value. Most ISVs are customer-driven (meaning they prioritize what
their customers are asking for). Since components are new to many customers,
many of them are not asking for their ISVs to support components.

It is our opinion that the marketplace will eventually explode, and it’s just a
matter of time. If you represent an ISV, this could be a fantastic opportunity
for you.

The good news is that the marketplace already beginning to emerge. Most
packaged e-commerce ISVs (Ariba, Broadvision, Vignette, and so on) are shipping
or have announced support for server-side Java technologies.

In the meantime, you’ll have to build your own components from scratch
within your organizations. Some of our customers at The Middleware Company
are attempting this by having departments provide components to other depart-
ments. In effect, that department is acting as an internal ISV.

Bl OvERVIEW

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, well over 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be. The result? Once you bet on an appli-
cation server, your code was locked into that vendor’s solution. This greatly
reduced portability and was an especially tough pill to swallow in the Java
world, which promotes openness and portability. It also hampered the com-
merce of components, because a customer could not combine a component
written to one application server with another component written to a differ-
ent application server.

What we need is an agreement, or set of interfaces, between application servers
and components. This agreement will enable any component to run within
any application server. This will allow components to be switched in and out
of various application servers without having to change code or potentially
even recompile the components themselves. Such an agreement is called com-
ponent architecture and is shown in Figure 1.5.

If you're trying to explain components to a nontechie, try these analogies:
ﬂ = Any CD player can play any compact disc because of the CD standard. Think of an
application server as a CD player and components as compact discs.
m In the United States, any TV set can tune into any broadcast because of the NTSC
standard. Think of an application server as a TV set and components as television
broadcasts.

Application Server

agreed-upon
interfaces
Components - specified by ~—=
component
architecture

Figure 1.5 A component architecture.

. overview I}

Introducing Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard is a component architecture for
deployable server-side components in Java. It is an agreement between com-
ponents and application servers that enable any component to run in any
application server. EJB components (called enterprise beans) are deployable,
and can be imported and loaded into an application server, which hosts those
components.

The top three values of EJB are as follows:

1. Itis agreed upon by the industry. Those who use E]JB will benefit from its
widespread use. Because everyone will be on the same page, in the future
it will be easier to hire employees who understand your systems (since
they may have prior EJB experience), learn best practices to improve your
system (by reading books like this one), partner with businesses (since
technology will be compatible), and sell software (since customers will
accept your solution). The concept of “train once, code anywhere” applies.

2. Portability is easier. The E]B specification is published and available freely
to all. Since E]JB is a standard, you do not need to gamble on a single, pro-
prietary vendor’s architecture. And although portability will never be
free, it is cheaper than without a standard.

3. Rapid application development. Your application can be constructed
faster because you get middleware from the application server. There’s
also less of a mess to maintain.

Note that while E]JB does have these virtues, there are also scenarios where EJB
is inappropriate. See Chapter 15 for a complete discussion of when to (and
when not to) use EJB.

Physically, EJB is actually two things in one:

A specification. This is a 500-plus-page Adobe Acrobat PDF file, freely downloadable
from http://java.sun.com. This specification lays out the rules of engagement
between components and application servers. It constricts how you program so
that you can interoperate.

A set of Java interfaces. Components and application servers must conform to these
interfaces. Since all components are written to the same interfaces, they all look
the same to the application server. The application server therefore can manage
anyone’s components. You can freely download these interfaces from
http://java.sun.com.

14

Why Java?

v
v

EJB components must be written in Java only and require dedication to Java.
This is indeed a serious restriction. The good news, however, is that Java is an
ideal language to build components, for many reasons.

Interface/implementation separation. We need a clean interface/implemen-
tation separation to ship components. After all, customers who purchase com-
ponents shouldn’t be messing with implementation. Upgrades and support
will become horrendous. Java supports this at a syntactic level via the interface
keyword and class keyword.

Safe and secure. The Java architecture is much safer than traditional program-
ming languages. In Java, if a thread dies, the application stays up. Pointers are
no longer an issue. Memory leaks occur much less often. Java also has a rich
library set, so that Java is not just the syntax of a language but a whole set of
prewritten, debugged libraries that enable developers to avoid reinventing the
wheel in a buggy way. This safety is extremely important for mission-critical
applications. Sure, the overhead required to achieve this level of safety might
make your application slower, but 90 percent of all business programs are glo-
rified Graphical User Interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

Cross-platform. Java runs on any platform. Since EJB is an application of Java,
this means E]B should also easily run on any platform. This is valuable for cus-
tomers who have invested in a variety of powerful hardware, such as Win32,
UNIX, and mainframes. They do not want to throw away these investments.

If you don’t want to go the EJB route, you have two other choices as well:
m Microsoft’s .NET managed components, part of the Microsoft.NET platform

m The Object Management Group (OMG’s) Common Object Request Broker Archi-
tecture (CORBA)

Note that many EJB servers are based upon and can interoperate with CORBA (see
Appendix B for strategies for achieving this).

EJB as a Business Solution

EJB is specifically used to help solve business problems. EJB components (enter-
prise beans) might perform any of the following tasks.

Perform business logic. Examples include computing the taxes on the shop-
ping cart, ensuring that the manager has authority to approve the purchase
order, or sending an order confirmation email using the JavaMail API.

I e | 15

Access a database. Examples include submitting an order for books, transfer-
ring money between two bank accounts, or calling a stored procedure to
retrieve a trouble ticket in a customer support system. Enterprise beans
achieve database access using the Java Database Connectivity (JDBC) APL

Access another system. Examples include calling a high-performing CICS
legacy system written in COBOL that computes the risk factor for a new
insurance account, calling a legacy VSAM data store, or calling SAP R/3.
Enterprise beans achieve existing application integration via the Java Con-
nector Architecture (JCA).

EJB components are not GUI components; rather, enterprise beans sit behind
the GUIs and do all the hard work. Examples of GUIs that can connect to enter-
prise beans include the following:

Thick clients. Thick clients execute on a user’s desktop. They could connect
via the network with EJB components that live on a server. These EJB com-
ponents may perform any of the tasks listed above (business logic, data-
base logic, or accessing other systems). Thick clients in Java include applets
and applications.

Dynamically generated web pages. Web sites that are complex need their
Web pages generated specifically for each request. For example, the home-
page for Amazon.com is completely different for each user, depending on
the user’s profile. Java servlets and JavaServer Pages (JSPs) are used to
generate such specific pages. Both servlets and JSPs live within a Web
server and can connect to EJB components, generating pages differently
based upon the values returned from the EJB layer.

XML-based Web Service wrappers. Some business applications require no
user interface at all. They exist to interconnect with other business part-
ners’ applications that may provide their own user interface. For example,
Dell Computer Corporation needs to purchase Intel chips to manufacture
desktop computers. Intel could expose a Web Service that enables Dell’s
software to connect and order chips. In this case, Intel’s system does not
have a user interface of its own, but rather acts as a Web Service. Possible
technologies used here include SOAP, UDDI, ebXML, and WSDL. This is
shown in Figure 1.6.

The real difference between GUI components (thick clients, dynamically gener-
ated Web pages, and Web Service wrappers) and enterprise beans is the domain
that each component type is intended to be part of. GUI components are well
suited to handle client-side operations, such as rendering GUIs (although they
don’t necessarily need to have one), performing other presentation-related
logic, and lightweight business logic operations. They deal directly with the
end-user or business partner.

16

Intel
SOAP XML-Based
Dell |_UDDI Web Service EJBs
Web Site ebXML Wrappers
WSDL (Servlets, JSPs)

Figure 1.6 EJBs as the back-end to Web services.

End-User Web Browser

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perforrn server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24 X 7),
fault-tolerant, transactional, and multiuser secure environment. The applica-
tion server provides this high-end server-side environment for the enterprise
beans, and it provides the runtime containment necessary to manage enter-
prise beans.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than just
an application server and components. In fact, E]B encourages collaboration of
more than six different parties. Each of these parties is an expert in its own field
and is responsible for a key part of a successful EJB deployment. Because each
party is a specialist, the total time required to build an enterprise-class deploy-
ment is significantly reduced. Together, these players form the EJB Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on, think
about your company’s business model to determine which role you fill. If
you're not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

of businesses choosing EJB because everyone else is using it, or because it is new
and exciting. Those are the wrong reasons to use EJB and can result in disappointing
results. For a complete discussion of when and when not to use EJB, see Chapter 15.

? The EJB Ecosystem is not for everyone. At my company, we've heard ghastly stories

17

JavaBeans. Enterprise JavaBeans

You may have heard of another standard called JavaBeans. JavaBeans are com-
pletely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods (similar
to Microsoft’s ActiveX controls) that can be easily wired together to create (often
visual) Java applications.

JavaBeans are much smaller than Enterprise JavaBeans. You can use JavaBeans
to assemble larger components or to build entire applications. JavaBeans, how-
ever, are development components and are not deployable components. You typ-
ically do not deploy a JavaBean; rather, JavaBeans help you construct larger
software that is deployable. And because they cannot be deployed, JavaBeans do
not need to live in a runtime environment. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them, and
to provide other services to them. The application itself is made up of JavaBeans.

The Bean Provider

The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an ISV selling components or an internal department providing compo-
nents to other departments.

Many vendors ship reusable components today. You can get the complete list
from www.componentsource.com or www.flashline.com. In the future,
traditional enterprise software vendors (such as sales force automation ven-
dors, enterprise resource planning vendors, financial services vendors, and
e-commerce vendors) will offer their software as enterprise beans or provide
connectors to their current technology.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the applications that combine components. An application assembler
may even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of

settings. The application assembler is the consumer of the beans supplied by
the bean provider.

The application assembler could perform any or all of the following tasks:

m From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide an
effective solution; in essence, plan the application assembly.

m Supply a user interface (perhaps Swing, servlet/]JSP, application/applet,
or Web Service wrapper).

m Write new enterprise beans to solve some problems specific to your busi-
ness problem.

m Write the code that calls on components supplied by bean providers.

m Write integration code that maps data between components supplied by
different bean providers. After all, components won’t magically work
together to solve a business problem, especially if different vendors write
the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

m Securing the deployment with a firewall and other protective measures

m Integrating with an LDAP server for security lists, such as Lotus Notes or
Microsoft Active Directory

m Choosing hardware that provides the required level of performance

m Providing redundant hardware and other resources for reliability and
fault tolerance

m Performance-tuning the system

Frequently the application assembler (who is usually a developer or systems
analyst) is not familiar with these issues. This is where the EJB deployer comes
into play. EJB deployers are aware of specific operational requirements and
perform the tasks above. They understand how to deploy beans within servers
and how to customize the beans for a specific environment. The EJB deployer

19

has the freedom to adapt the beans, as well as the server, to the environment in
which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.
Examples of EJB deployers include Loudcloud and Host]2EE.com, which both
offer hosting solutions for EJB deployments.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

For example, a sophisticated EJB server might page a system administrator if
a serious error occurs that requires immediate attention. Some E]B servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others are providing their own systems
management by supporting the Java Management Extension (JMX).

The Container and Server Provider

The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. Examples of E]B containers

Qualities of Service in EJB

Monitoring of EJB deployments is not specified in the EJB specification. It is an
optional service that advanced EJB servers can provide. This means that each EJB
server could provide the service differently.

At first blush you might think this hampers application portability. However, in
reality this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies beneath
the application level and exists at the systems level. Changing application servers
should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and connection
pooling algorithms.

LBl OVERVIEW

are BEA’s WebLogic, iPlanet’s iPlanet Application Server, IBM’s WebSphere,
Oracle’s Oracle 9i, Macromedia’s JRun, Persistence’s PowerTier, Brokat’s
Gemstone/], HP’s Bluestone, IONA’s iPortal, Borland’s AppServer, and the
JBoss open source code application server.

The server provider is the same as the container provider. Sun has not yet dif-
ferentiated these (and they may never do so). We will use the terms EJB con-
tainer and EJB server interchangeably in this book.

The Tool Vendors

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several Integrated Development Environments (IDEs) assist you in
rapidly building and debugging components. Examples are Webgain’s Visual
Cafe, IBM’s VisualAge for Java, or Borland’s JBuilder.

Other tools enable you to model components in the Unified Modeling Lan-
guage (UML), which is the diagram style used in this book. You can then auto-
generate EJB code from that UML. Examples of products in this space are
Togethersoft’s Together /] and Rational’s Rational Rose.

There are other tools as well, such as tools to organize components (Flashline,
ComponentSource), testing tools (JUnit, RSW Software), and build tools (Ant).

Summary of Roles

Figure 1.7 summarizes the interaction of the different parties in E]JB.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to
best-of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties E]B merely suggests possible duties, such as the system
administrator overseeing the well-being of a deployed system. For other par-
ties, such as the bean provider and container provider, EJB defines a set of

21

1 1 Do) f

Application Deployer System Administrator
Assembler (Maintains Deployment)

Bean Provider i

EJB Container/Server
Provider

Figure 1.7 The parties of EJB.

strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors” products can interoperate.

A future EJB specification will define a new role, called the persistence manager,
which plugs into an application server. Your components harness the persistence
manager to map your business data into storage, such as mapping objects into rela-
tional databases.

The persistence manager may be written to understand how to persist business data
to any storage type. Examples include legacy systems, flat file systems, relational
databases, object databases, or a proprietary system.

The persistence manager provider may be the same as the container/server vendor,
such as the case with IBM’s WebSphere, which includes built-in persistence capabili-
ties. Examples of ISV persistence manager providers include WebGain’s TOPLink and
Thought Inc’s Cocobase.

Unfortunately, the persistence manager provider role is not explicitly defined in the
EJB 2.0 specification. Due to time constraints, a standard for plugging persistence
managers into application servers won't exist until a future version of EJB. The good
news is this won't affect the portability of your code, because your application
doesn’t care whether it’s being persisted by the container or by some persistence
manager that happens to plug into the container. The bad news is that you'll need to
rely on proprietary agreements between persistence manager providers and applica-
tion server vendors, which means that not every persistence manager may work in
every application server — for now.

2Bl OVERVIEW

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from Sun Microsystems called the Java
2 Platform, Enterprise Edition (J2EE). The mission of J2EE is to provide a
platform-independent, portable, multiuser, secure, and standard enterprise-
class platform for server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so on. This
is a restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphi-
cal user interface facilities, and more. This platform contains what most
people use in standard Java Development Kit (JDK) programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise APlIs
and bundles them together in a complete development platform for
enterprise-class server-side deployments in Java.

The arrival of J2EE is significant because it creates a unified platform for
server-side Java development. J2EE consists of the following deliverables
from Sun Microsystems.

Specifications. Each enterprise API within J2EE has its own specification,
which is a PDF file downloadable from http:/ /java.sun.com. Each time
there is a new version of J2EE, Sun locks-down the versions of each Enter-
prise API specification and bundles them together as the de facto versions
to use when developing with J2EE. This increases code portability across
vendors’ products because each vendor supports exactly the same API
revision. This is analogous to a company such as Microsoft releasing a new

- overview JIF}

version of Windows every few years: Every time a new version of Win-
dows comes out, Microsoft locks-down the versions of the technologies
bundled with Windows and releases them together.

Test suite. Sun provides a test suite for J2EE server vendors to test their
implementations against. If a server passes the tests, Sun issues a compli-
ance brand, alerting customers that the vendor’s product is indeed J2EE-
compliant. There are numerous J2EE-certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against J2EE
as they have with the JDK, Sun provides its own free reference implemen-
tation of J2EE. Sun is positioning it as a low-end reference platform, as it is
not intended for commercial use.

BluePrints Document. Each of the Enterprise APIs has a clear role in J2EE, as
defined by Sun’s J2EE BluePrints document. This document is a download-
able PDF file that describes how to use the J2EE technologies together.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware ser-
vices that make life very easy for server-side application developers. J2EE
builds on the existing technologies in the J2SE. J2SE includes the base Java sup-
port and the various libraries (.awt, .net, .io) with support for both applets and
applications. Because J2EE builds on J2SE, a J2EE-compliant product must not
only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry has resulted in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

We will discuss version 1.3 of]2EE, which supports EJB 2.0. Some of the major
J2EE technologies are shown working together in Figure 1.8.

To understand more about the real value of J2EE, here is each API that a J2EE
1.3-compliant implementation must provide for you.

Enterprise JavaBeans (E]JB). EJB defines how server-side components are
written and provides a standard contract between components and the
application servers that manage them. E]B is the cornerstone for J2EE and
uses several other J2EE technologies.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java lan-
guage’s native way to communicate between distributed objects, such as
two different objects running on different machines. RMI-IIOP is an exten-
sion of RMI that can be used for CORBA integration. RMI-IIOP is the offi-
cial API that we use in J2EE (not RMI). We cover RMI-IIOP in Appendix A.

24

Client Tier

J2EE Server

Back-End
Systems

Web Browser

Figure 1.8 A Java 2 Platform, Enterprise Edition deployment.

Java Naming and Directory Interface (JNDI). JNDI is used to access naming
and directory systems. You use JNDI from your application code for a vari-
ety of purposes, such as connecting to EJB components or other resources
across the network, or accessing user data stored in a naming service such

B o Applets,
usiness Partner Applications, e
or Other System C(;,FF:B A Clients ’
! |
Web services technologies
(SOAP, UDDI, WSDL, ebXML) ioP HTTP HTTP
Firewall
Servlets JSPs
EJBs
Connectors
JMS saL . Web Services Technologies
Proprietary Protocol (SOAP, UDDI, WSDL, ebXML)
Existing System Business
Legacy System Partner
ERP System or Other System
Databases

as Microsoft Exchange or Lotus Notes. JNDI is covered in Appendix A.

Java Database Connectivity (JDBC). JDBC is an API for accessing relational
databases. The value of JDBC is that you can access any relational database

using the same API. JDBC is used in Chapter 6.

Wireless Device

I | 25

Java Transaction API (JTA) Java Transaction Service (JTS). The JTA and JTS
specifications allow for components to be bolstered with reliable transac-
tion support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for your J2EE deployment to
communicate using messaging. You can use messaging to communicate
within your J2EE system as well as outside your J2EE system. For example,
you can connect to existing message-oriented middleware (MOM) systems
such as IBM MQSeries or Microsoft Message Queue (MSMQ). Messaging is
an alternative paradigm to RMI-IIOP, and has its advantages and disad-
vantages. We explain JMS in Chapter 8.

Java Servlets. Servlets are networked components that you can use to extend
the functionality of a Web server. Servlets are request/response oriented in
that they take requests from some client host (such as a Web browser) and
issue a response back to that host. This makes servlets ideal for performing
Web tasks, such as rendering an HTML interface. Servlets differ from EJB
components in that the breadth of server-side component features that EJB
offers is not readily available to servlets. Servlets are much better suited to
handling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using Servlets
with EJB in Chapter 17.

Java Pages (JSPs). JSPs are very similar to servlets. In fact, JSP scripts are
compiled into servlets. The largest difference between JSP scripts and
servlets is that JSP scripts are not pure Java code; they are much more cen-
tered around look-and-feel issues. You would use JSP when you want the
look and feel of your deployment to be physically separate and easily
maintainable from the rest of your deployment. JSPs are perfect for this,
and they can be easily written and maintained by non-Java savvy staff
members (JSPs do not require a Java compiler). We illustrate using JSPs
with EJB in Chapter 17.

Java IDL. Java IDL is Sun Microsystems’ Java-based implementation of
CORBA. Java IDL allows for integration with other languages. Java IDL
also allows for distributed objects to leverage CORBA's full range of
services. J2EE is thus fully compatible with CORBA, completing the
Java 2 Platform, Enterprise Edition. We discuss CORBA integration in
Appendix B.

JavaMail. The JavaMail service allows you to send email messages in a
platform-independent, protocol-independent manner from your Java pro-
grams. For example, in a server-side J2EE deployment, you can use Java-
Mail to confirm a purchase made on your Internet e-commerce site by
sending an email to the customer. Note that JavaMail depends on the

LBl OVERVIEW

JavaBeans Activation Framework (JAF), which makes JAF part of J2EE as
well. We do not cover JavaMail in this book.

J2EE Connector Architecture (JCA). Connectors allow you to access existing
enterprise information systems from a J2EE deployment. This could
include any existing system, such as a mainframe systems running high-
end transactions (such as those deployed with IBM’s CICS or BEA’s
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own pro-
prietary systems. Connectors are useful because they automatically man-
age the details of middleware navigation to existing systems, such as
handling transaction and security concerns. Another value of the JCA is
that you can write a driver to access an existing system once, and then
deploy that driver into any J2EE-compliant server. This is important
because you only need to learn how to access any given existing system
once. Furthermore, the driver needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) who want their software to be accessible from within
application servers. Rather than write a custom driver for each server, the
ISV can write a single driver. We discuss legacy integration more in Chap-
ters 12 and 13.

The Java API for XML Parsing (JAXP). There are many applications of XML
in a J2EE deployment. For example, you might need to parse XML if you
are performing B2B interactions (such as through Web services), if you are
accessing legacy systems and mapping data to and from XML, or if you are
persisting XML documents to a database. JAXP is the de facto API for pars-
ing XML documents in a J2EE deployment and is an implementation-
neutral interface to XML parsers. You typically use the JAXP API from
within servlets, JSPs, or EJB components. There is a free whitepaper avail-
able on TheServerSide.com that describes how to build Web services
with J2EE.

The Java Authentication and Authorization Service (JAAS). JAAS is a stan-
dard API for performing security-related operations in J2EE. Conceptually,
JAAS also enables you to plug in a security system to a J2EE deployment.
See Chapter 9 for more details on security and E]B.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that a
server-side component architecture allows us to write complex business appli-
cations without understanding tricky middleware services. We then dove into

. overview NI

the EJB standard and fleshed out its value proposition. We investigated the
different players involved in an E]JB deployment and wrapped up by explor-
ing J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves into the concept of
request interception, which is the mental leap you need to make to understand
EJB. Let’s go!

EJB Fundamentals

C

hapter 1 introduced the motivation behind EJB. In this chapter, we’ll dive into
EJB in detail. After reading this chapter, you will understand the different
types of enterprise beans. You'll also understand what an enterprise bean
component is comprised of, including the enterprise bean class, the remote
interface, the local interface, the E]JB object, the local object, the home interface,
the home object, the deployment descriptor, and the Ejb-jar file.

EJB technology is based on two other technologies: Java RMI-IIOP and JNDI. Under-
standing these technologies is mandatory before continuing.

We have provided tutorials on each of these technologies in the appendices of this
book. If you don’t yet know RMI-1IOP or JNDI, go ahead and read Appendix A now.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed in
a distributed multitier environment. An enterprise bean can compose one or
more Java objects because a component may be more than just a simple object.
Regardless of an enterprise bean’s composition, the clients of the bean deal
with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the EJB specification. The specification
requires that your beans expose a few required methods; these required

29

L/ OVERVIEW

methods allow the EJB container to manage beans uniformly, regardless of
which container your bean is running in.

Note that the client of an enterprise bean could be anything—a servlet, an
applet, or even another enterprise bean. In the latter case, a client request to a
bean can result in a whole chain of beans being called. This is a very powerful
idea because you can subdivide a complex bean task, allowing one bean to call
on a variety of prewritten beans to handle the subtasks. This hierarchical con-
cept is quite extensible.

As a real-world example, imagine you go to a music store to purchase a com-
pact disc. The cashier takes your credit card and runs it through a scanner. The
scanner has a small Java Virtual Machine running within it, which acts as a
client of enterprise beans running on a central server. The central server enter-
prise beans perform the following tasks:

1. Contact American Express, a Web service that itself has an EJB-compliant
application server containing a number of beans. The beans are responsi-
ble for conducting the credit card transaction on behalf of that client.

2. Call a product catalog bean, which updates inventory and subtracts the
quantity the customer purchased.

3. Call an order entry bean, which enters the record for the customer and
returns that record locator to the scanner to give to the customer on a
receipt.

As you can see, this is a powerful, flexible model, which can be extended as
needed.

Types of Beans

EJB 2.0 defines three different kinds of enterprise beans:

Session beans. Session beans model business processes. They are like verbs
because they are actions. The action could be anything, such as adding num-
bers, accessing a database, calling a legacy system, or calling other enterprise
beans. Examples include a pricing engine, a workflow engine, a catalog
engine, a credit card authorizer, or a stock-trading engine.

Entity beans. Entity beans model business data. They are like nouns because
they are data objects—that is, Java objects that cache database information.
Examples include a product, an order, an employee, a credit card, or a stock.
Session beans typically harness entity beans to achieve business goals, such as
a stock-trading engine (session bean) that deals with stocks (entity beans). For
more examples of this, see Table 2.1.

EJB Fundamentals 31

Table 2.1 Session Beans Calling Entity Beans

SESSION BEAN ENTITY BEAN

Bank teller Bank account
Credit card authorizer Credit card
DNA sequencer DNA strand
Order entry system Order, Line item
Catalog engine Product
Auction broker Bid, Item
Purchase order Approval router Purchase order

Message-driven beans. Message-driven beans are similar to session beans in
that they are actions. The difference is that you can call message-driven beans
only by sending messages to those beans (fully described in Chapter 8). Exam-
ples of message-driven beans include beans that receive stock trade messages,
credit card authorization messages, or workflow messages. These message-
driven beans might call other enterprise beans as well.

You may be wondering why the E]JB paradigm is so robust in offering the var-
ious kinds of beans. Why couldn’t Sun come up with a simpler model?
Microsoft’s n-tier vision, for example, does not include the equivalent of entity
beans—components that represent data in permanent storage.

The answer is that Sun is not the only company involved in constructing the
EJB standard. Many companies have been involved, each with customers that
have different kinds of distributed systems. To accommodate the needs of dif-
ferent enterprise applications, Sun allowed users the flexibility of each kind of
bean.

Admittedly this increases the ramp-up time to learn EJB. It also adds an ele-
ment of danger because some developers may misuse the intentions of each
bean type. But it pays off in the long run with increased functionality. By
including session beans, Sun provides a mechanism to model business
processes in a distributed multitier environment. By including entity beans in
the EJB specification, Sun has taken the first steps toward persistent, distrib-
uted objects usable by those business processes. And with message-driven
beans, you can use messaging to access your EJB system.

See Figure 2.1 for a diagram showing some of the many possibilities of clients
interacting with an EJB component system.

2Bl OVERVIEW

. Business
Presentation HTML Client Partner System
Tier |
SOAP, | UDDI,
H-I;TP WSDL, | ebXML
Firewall
<& Web Server
A 4
Messaging C++ Java Application
Client Client Java Applet Servlet JSP
Messaging CORBA/IIOP RMI-IIOP RI\/’II-IIOP RMI-1IOP
/— f Application Server
7 v v ¥
Eﬁlgvl\élrt‘esBs:ag:- EJB Session Bean EJB Session Bean
Business
/ / Tier
Y A 4
EJB Session Bean EJB Entity Bean EJBBzgision

Figure 2.1 Clients interacting with an EJB component system.

Distributed Objects: The Foundation for EJB

Now that you've seen the different types of beans, let’s dive into the technol-
ogy behind them. EJB components are based on distributed objects. A distrib-
uted object is an object that is callable from a remote system. It can be called
from an in-process client, an out-of-process client, or a client located elsewhere
on the network.

Figure 2.2 shows how a client can call a distributed object. The following is an
explanation of the diagram:

1. The client calls a stub, which is a client-side proxy object. This stub is respon-
sible for masking network communications from the client. The stub

33

knows how to call over the network using sockets, massaging parameters
as necessary into their network representation.

2. The stub calls over the network to a skeleton, which is a server-side proxy
object. The skeleton masks network communication from the distributed
object. The skeleton understands how to receive calls on a socket. It also
knows how to massage parameters from their network representations to

their Java representations.

3. The skeleton delegates the call to the distributed object. The distributed

object does its work, and then returns control to the skeleton, which

returns to the stub, which then returns control to the client.

Akey point here is that both the stub and the distributed object implement the
same interface (called the remote interface). This means the stub clones the dis-
tributed object’s method signatures. A client who calls a method on the stub
thinks he is calling the distributed object directly; in reality, the client is calling
an empty stub that knows how to go over the network. This is called

local/remote transparency.

You can achieve distributed objects using many technologies, including the
OMG’s CORBA, Microsoft’s DCOM, and Sun’s Java RMI-IIOP.

Client

Remote Interface

T

Stub

Figure 2.2 Distributed objects.

Distributed
Object

Remote Interface (L

Skeleton

L OVERVIEW

Distributed Objects and Middleware

Distributed objects are great because they allow you to break up an application
across a network. However, as a distributed object application gets larger,
you’ll need help from middleware services, such as transactions and security.
There are two ways to get middleware: explicitly and implicitly. Let’s investi-
gate both approaches.

Explicit Middleware

In traditional distributed object programming (such as traditional CORBA),
you can harness middleware by purchasing that middleware off the shelf and
writing code that calls that middleware API. For example, you could gain
transactions by writing to a transaction API. We call this explicit middleware
because you need to write to an API to gain that middleware. This is shown in

Figure 2.3
Transaction API Transaction
=7 O Service
. Security API
. Distributed : .
Client Object [T > 0—— Security Service

Remote Interfacel

Ao— Database Driver
Database API

i Remote Interface
'..>T

Stub Skeleton

Figure 2.3 Explicit middleware (gained through APIs).

EJB Fundamentals 35

Here’s a bank account distributed object that knows how to transfer funds
from one account to another. It is filled with pseudo-code that illustrates
explicit middleware.

transfer (Account accountl, Account account2, long amount) ({
// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other
// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

As you can see, we are gaining middleware, but our business logic is inter-
twined with the logic to call these middleware APIs. The downsides to this
approach are

Difficult to write. The code is bloated. We simply want to perform a transfer,
but it requires a large amount of code.

Difficult to maintain. If you want to change how you do middleware, you
need to rewrite your code.

Difficult to support. If you are an Independent Software Vendor (ISV) selling
an application, or an internal department providing code to another
department, you are unlikely to provide source code to your customers.
This is because the source code is your intellectual property, and also
because upgrading your customers to the next version of your software is
difficult if those customers modify source code. Thus, your customers can-
not change their middleware (such as changing how security works).

Implicit Middleware

The crucial difference between systems of the past (transaction processing
monitors such as TUXEDO or CICS, or traditional distributed object technolo-
gies such as CORBA, DCOM, or RMI) and the newer, component-based tech-
nologies (EJB, CORBA Component Model, and Microsoft.NET) is that in this
new world, you can harness complex middleware in your enterprise applica-
tions without writing to middleware APIs. This is shown in Figure 2.4, and
works as follows:

1. Write your distributed object to contain only business logic. Do not write to
complex middleware APIs. For example, this is the code that would run
inside the distributed object:

transfer (Account accountl, Account account2, long amount) {
// 1: Subtract the balance from one account, add to the other

}

36

Client

Remote Interface

T

Stub

Distributed
Object

Remote Interface l

Transaction API Transaction
=7 0 Service

Request
Interceptor

Security API
------------------ > 0— Security Service

Remote Interface J)

Ao— Database Driver
Database API

Skeleton

The request

interceptor knows

what to do because
you describe your
needs in a special
descriptor file.

Figure 2.4 Implicit middleware (gained through declarations).

2. Declare the middleware services that your distributed object needs in a
separate descriptor file, such as a plain text file. For example, you might
declare that you need transactions, persistence, and a security check.

3. Run a command-line tool provided for you by the middleware vendor.
This tool takes your descriptor file as input and generates an object that
we’ll call the request interceptor.

4. The request interceptor intercepts requests from the client, performs the
middleware that your distributed object needs (such as transactions, secu-
rity, and persistence), and then delegates the call to the distributed object.

The values of implicit middleware (also called declarative middleware) are:

Easy to write. You don’t actually write any code to middleware APIs; rather,
you declare what you need in a simple text file. The request interceptor

EJB Fundamentals 37

provides the middleware logic for you transparently. You focus away from
the middleware and concentrate on your application’s business code. This
is truly divide and conquer!

Easy to maintain. The separation of business logic and middleware logic is
clean and maintainable. It is less code, which makes things simpler.
Furthermore, changing middleware does not require changing
application code.

Easy to support. Customers can change the middleware they need by tweak-
ing the descriptor file. For example, they can change how a security check
is done without modifying source code. This avoids upgrade headaches
and intellectual property issues.

What Constitutes an Enterprise Bean?

Now that we understand request interception, we can dive in and see exactly
what constitutes an enterprise bean. As we will see, an enterprise bean com-
ponent is not a single monolithic file—a number of files work together to make
up an enterprise bean.

The Enterprise Bean Class

The first part of your bean is the implementation itself, which contains the guts
of your logic, called the enterprise bean class. This is simply a Java class that con-
forms to a well-defined interface and obeys certain rules. The rules are neces-
sary for your beans to run in any EJB container.

An enterprise bean class contains implementation details of your component.
Although there are no hard-and-fast rules in EJB, session bean, entity bean,
and message-driven bean implementations are all very different from each
other.

For session beans, an enterprise bean class typically contains business-
process-related logic, such as logic to compute prices, transfer funds between
bank accounts, or perform order entry.

For entity beans, an enterprise bean class typically contains data-related logic,
such as logic to change the name of a customer, reduce the balance of a bank
account, or modify a purchase order.

For message-driven beans, an enterprise bean class typically contains
message-oriented logic, such as logic to receive a stock trade message and call
a session bean that knows how to perform stock trading.

LI OVERVIEW

The E]B specification defines a few standard interfaces that your bean class can
implement. These interfaces force your bean class to expose certain methods
that all beans must provide, as defined by the EJB component model. The EJB
container calls these required methods to manage your bean and alert your
bean to significant events.

The most basic interface that all bean classes (session, entity, and message-
driven) must implement is the javax.ejb.EnterpriseBean interface, shown in
Source 2.1.

This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. The interesting aspect
of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that
all enterprise beans can be converted to a bit-blob and share all the properties
of serializable objects (described in Appendix A). This will become important
later.

Session beans, entity beans, and message-driven beans each have more spe-
cific interfaces that extend the javax.ejb.EnterpriseBean interface. All session
beans must implement javax.ejb.SessionBean; all entity beans must implement
javax.ejb.EntityBean; and all message-driven beans must implement javax.ejb.
MessageDrivenBean. We'll see the details of these interfaces a bit later. For now,
know that your enterprise bean class never needs to implement the javax.ejb.
EnterpriseBean interface directly; rather, your bean class implements the inter-
face corresponding to its bean type.

The EJB Object

Enterprise beans are not full-fledged remote objects. When a client wants to
use an instance of an enterprise bean class, the client never invokes the method
directly on an actual bean instance. Rather, the invocation is intercepted by the
EJB container and then delegated to the bean instance. This is the concept of
request interception that we touched on earlier. By intercepting requests, the
EJB container can automatically perform implicit middleware. As a compo-
nent developer, this means your life is simplified greatly because you can
rapidly develop components without writing, debugging, or maintaining

public interface javax.ejb.EnterpriseBean extends java.io.Serializable
{
}

Source 2.1 The javax.ejb.EnterpriseBean interface.

EJB Fundamentals 39

code that calls middleware APIs. Some of the services that you get at the point
of interception include

Implicit distributed transaction management. Transactions allow for you to
perform robust, deterministic operations in a distributed environment by
setting attributes on your enterprise beans. We’ll get into the details of
transactions and how you can use them effectively in Chapter 10. For now,
know that the EJB container provides a transaction service—a low-level
implementation of transaction management and coordination. The transac-
tion service must be exposed through the Java Transaction API (JTA). The
JTA is a high-level interface that you can use to control transactions, which
we also cover in Chapter 10.

Implicit security. Security is a major consideration for multitier deployments.
The Java 2 Platform, Standard Edition yields a robust security service that
can authorize and authenticate users, securing deployments from
unwanted visitors. EJB adds to this the notion of transparent security,
allowing components to reap the benefits of a secure deployment without
necessarily coding to a security APL

Implicit resource management and component life cycle. The E]B container
implicitly manages resources for your enterprise beans, such as threads,
sockets, and database connections. The life cycle of the enterprise beans
themselves is also managed, allowing the EJB container to reuse the enter-
prise bean instances as necessary.

Implicit persistence. Persistence is a natural requirement of any deployment
that requires permanent storage. EJB offers assistance here by automati-
cally saving persistent object data to an underlying storage and retrieving
that data at a later time.

Implicit remote accessibility. Your enterprise bean class cannot be called
across the network directly because an enterprise bean class is not network
enabled. Your EJB container handles networking for you by wrapping your
bean in a network-enabled object. The network-enabled object receives
calls from clients and delegates these calls to instances of your bean class.
This saves you from having to worry about networking issues (the con-
tainer provides networking as a service to you). Thus EJB products auto-
matically convert your stand-alone, networkless components into
distributed, network-aware beings.

Implicit support. EJB containers automatically handle concurrent requests
from clients. EJB containers provide built-in thread support, instantiating
multiple copies of your component as necessary by instantiating lots of
instances of your enterprise bean and pushing one thread through each
instance. If multiple clients simultaneously invoke methods on a bean, the
invocations are serialized, or performed lock step. The container will only

40

allow one client to call a bean at once. The other clients are routed to other
bean instances of the same class, or are forced to wait. (Behind the scenes,
the container might use Java thread synchronization to aid with this. The
actual algorithm used is container-specific.) The value of threading is
obvious—who enjoys writing multithreaded code?

Implicit component location transparency. Clients of components are decou-
pled from the specific whereabouts of the component being used.

Implicit monitoring. The EJB container can track which methods are
invoked, display a real-time usage graph on a system administrator’s user
interface, gather data for intelligent load balancing, and more. An EJB con-
tainer is not required to perform these tasks; however, high-end EJB con-
tainers perform these tasks at the point of interception.

Thus, the EJB container acts as a layer of indirection between the client code
and the bean. This layer of indirection manifests itself as a single network-
aware object called the EJB object. The EJB object is the request interceptor we
alluded to earlier. As the old saying goes, a layer of indirection solves every
problem in computer science.

The EJB object is a surrogate object that knows about networking, transactions,
security, and more. It is an intelligent object that knows how to perform inter-
mediate logic that the EJB container requires before a method call is serviced
by a bean class instance. An EJB object is the request interceptor, or the glue,
between the client and the bean. EJB objects replicate and expose every busi-
ness method that the bean itself exposes. EJB objects delegate all client requests
to beans. We depict E]B objects in Figure 2.5.

EJB Container/Server

Client Code, such as
Servlets or Applets

Transaction Service,
Security Service,
Persistence Sevice, etc

5: Return Result

2: Call Middleware APIs

1: Call a Method

\o— EJB Object

Remote
Interface

4: Method Returns

\
3: Call a Bean

Enterprise
Bean

Figure 2.5 EJB objects.

The

1

You should think of EJB objects as physical parts of the container; all EJB
objects have container-specific code inside of them. (Each container handles
middleware differently and provides different qualities of service.) Because
each bean’s EJB object is different, your container vendor generates the class file
for your E]JB objects automatically.

Each EJB container ships with a suite of glue-code tools. These tools are meant to
integrate beans into the EJB container’s environment. The tools generate
helper Java code—stubs, skeletons, data access classes, and other classes that
this specific container requires. Bean providers do not have to think about the
specifics of how each EJB container works because the container’s tools gener-
ate its own proprietary Java code automatically.

The container’s glue-code tools are responsible for transforming an enter-
prise bean into a fully managed, distributed server-side component. This
involves logic to handle resource management, life cycle, state manage-
ment, transactions, security, persistence, remote accessibility, and many

EJB Container: Your Silent Partner

EJB containers are responsible for managing your beans. Containers can interact
with your beans by calling your beans’ required management methods as neces-
sary. These management methods are your beans’ callback methods that the con-
tainer, and only the container, invokes. The management methods allow the
container to alert your beans when middleware events take place, such as when
an entity bean is about to be persisted to storage.

The most important responsibility of an EJB container is to provide an environ-
ment in which enterprise beans can run. EJB containers house the enterprise
beans and make them available for clients to invoke remotely. In essence, EJB
containers act as invisible middlemen between the client and the beans. They are
responsible for connecting clients to beans, performing transaction coordination,
providing persistence, managing a bean’s life cycle, and other tasks.

The key to understanding EJB containers is to realize that they are abstract
entities. Neither the beans nor the clients that call beans ever explicitly code to
the API of an EJB container. Rather, the container implicitly manages the over-
head of a distributed component architecture. The container is analogous to a
behind-the-scenes stage manager in a theater, providing the lighting and back-
drop necessary for a successful stage performance by the actors on stage. Neither
the actors nor the audience interact directly with the stage manager. The same is
true for EJB containers. Clients that call the beans never code directly to an EJB
container API.

42

other services. The generated code handles these services in the container’s
proprietary way.

The Remote Interface

As mentioned previously, bean clients invoke methods on EJB objects, rather
than the beans themselves. Therefore, EJB objects must clone every business
method that your bean classes expose. But how do the tools that autogenerate
EJB objects know which methods to clone? The answer is in a special interface
that a bean provider writes. This interface duplicates all the business logic
methods that the corresponding bean class exposes. This interface is called the
remote interface.

Remote interfaces must comply with special rules that the EJB specification
defines. For example, all remote interfaces must derive from a common inter-
face supplied by Sun Microsystems. This interface is called javax.ejb. E[BObject,
and it is shown in Source 2.2.

javax.ejb.EJBObject lists a number of interesting methods. For now, don’t worry
about fully understanding the meanings—just know that these are required
methods that all EJB objects must implement. And remember that you don’t
implement the methods—the EJB container does when it autogenerates the
EJB objects for you.

public interface javax.ejb.EJBObject
extends java.rmi.Remote
{
public javax.ejb.EJBHome getEJBHome ()
throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey ()
throws java.rmi.RemoteException;

public void remove ()
throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle ()
throws java.rmi.RemoteException;

public boolean isIdentical (javax.ejb.EJBObject)
throws java.rmi.RemoteException;

Source 2.2 A preview of the javax.ejb.EJBObject interface.

43

The client code that wants to work with your beans calls the methods in
javax.ejb.E[BObject. This client code could be stand-alone applications, applets,
servlets, or anything at all—even other enterprise beans.

In addition to the methods listed in Source 2.2, your remote interface dupli-
cates your beans’ business methods. When a bean’s client invokes any of these
business methods, the EJB object delegates the method to its corresponding
implementation, which resides in the bean itself.

The Instance-Pooling Concept

A multitier architecture’s overall scalability is enhanced when an application
server intelligently manages needed resources across a variety of deployed com-
ponents. The resources could be threads, socket connections, database connec-
tions, and more. For example, database connections could be pooled by
application servers and reused across heterogeneous components. In the EJB
realm, the container is responsible for providing all resource management ser-
vices behind the scenes.

In addition to resource management, the EJB container is responsible for con-
trolling the life cycle of the deployed enterprise bean components. As bean client
requests arrive, the EJB container dynamically instantiates, destroys, and reuses
beans as appropriate. For example, if a client requests a certain type of bean that
does not yet exist in memory, the EJB container may instantiate a new in-memory
instance on behalf of the client. On the other hand, if a bean already exists in
memory, it may not be appropriate to instantiate a new bean, especially if the
system is low on memory. It might make more sense to reassign a bean from one
client to another instead. It might also make sense to destroy some beans that
are not being used anymore. This is called instance pooling.

The benefit of bean instance pooling is that the pool of beans can be much
smaller than the actual number of clients connecting. This is due to client think
time, such as network lag or human decision time on the client side. The classic
example of this is an HTML (Web) client interacting with a human being. Web
users often click a button that executes some business logic in a component, but
then read text before initiating another action. While the user is waiting and
reading, the application server could reuse that component to service other
clients. While the client is thinking, the container can use the bean instances to
service other clients, saving previous system resources.

The take-away point here is that the EJB container is responsible for coordinat-
ing the entire effort of resource management as well as managing the deployed
beans’ life cycle. Note that the exact scheme used is EJB container-specific.

LBl OVERVIEW

Java RMI-IIOP and EJB Objects

You may have noticed that javax.ejb.E[BObject extends java.rmi.Remote. The
java.rmi.Remote interface is part of Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP). Any object that implements
java.rmi.Remote is a remote object and is callable from a different Java Virtual
Machine. This is how remote method invocations are performed in Java. (We
fully describe this in Appendix A).

Because the EJB object provided by the container implements your remote
interface, it also indirectly implements java.rmi.Remote. Your EJB objects are
fully networked RMI-IIOP objects, able to be called from other Java Virtual
Machines or physical machines located elsewhere on the network. Thus, EJB
remote interfaces are really just RMI-IIOP remote interfaces—except that EJB
remote interfaces must also be built to conform to the EJB specification.

EJB remote interfaces must conform to RMI-IIOP’s remote interface rules. For
example, any method that is part of a remote object callable across virtual
machines must throw a special remote exception. A remote exception is a
java.rmi.RemoteException, or (technically) a subclass of it. A remote exception
indicates that something unexpected happened on the network while you
were invoking across virtual machines, such as a network, process, or machine
failure. Every method shown in Source 2.2 for javax.ejb.EJ[BObject throws a
java.rmi.RemoteException.

Remote interfaces must conform to RMI-IIOP’s parameter-passing conven-
tions as well. Not everything can be passed over the network in a cross-VM
method call. The parameters you pass in methods must be valid types for
RMI-IIOP. This includes primitives, serializable objects, and RMI-IIOP remote
objects. The full details of what you can pass are in Appendix A.

The Home Object

As we’ve seen, client code deals with EJB objects and never with beans directly.
The next logical question is, how do clients acquire references to EJB objects?

The client cannot instantiate an EJB object directly because the EJB object can
exist on a different machine than the one the client is on. Similarly, EJB pro-
motes location transparency, so clients should never be aware of exactly where
an EJB object resides.

To acquire a reference to an EJB object, your client code asks for an EJB object
from an E]B object factory. This factory is responsible for instantiating (and
destroying) E]JB objects. The E]B specification calls such a factory a home object.
The chief responsibilities of home objects are the following;:

45

Location Transparency

EJB inherits a significant benefit from RMI-1IOP. In RMI-1IOP, the physical loca-
tion of the remote object you're invoking on is masked from you. This feature
spills over to EJB. Your client code is unaware of whether the EJB object it is
using is located on a machine next door or a machine across the Internet. It also
means the EJB object could be located on the same Java VM as the client. This is
called location transparency.

Why is location transparency beneficial? For one thing, you aren’t writing your
bean’s client code to take advantage of a particular deployment configuration
because you're not hard-coding machine locations. This is an essential part of
reusable components that can be deployed in a wide variety of multitier
situations.

Location transparency also enables container vendors to provide additional
value-adds, such as the ability to take down a machine on the network temporar-
ily to perform system maintenance, install new software, or upgrade components
on that machine. During maintenance, location transparency allows another
machine on the network to serve up components for a component’s client
because that client is not dependent on the hard locations of any components. If
a machine that has components on it crashes due to hardware or software error,
you may be able to reroute client invocations to other machines without the
client even knowing about the crash, allowing for an enhanced level of fault
tolerance.

m Create EJB objects

m Find existing EJB objects (for entity beans, which we’ll learn about in
Chapter 5)

m Remove E]JB objects

Just like E]JB objects, home objects are proprietary and specific to each EJB con-
tainer. They contain interesting container-specific logic, such as load-balancing
logic, logic to track information on a graphical administrative console, and
more. And just like EJB objects, home objects are physically part of the con-
tainer and are autogenerated by the container vendor’s tools.

The Home Interface

We’ve seen that home objects are factories for EJB objects. But how does a home
object know how you’d like your EJB object to be initialized? For example, one

46

Client Code, Such
as Servlets or
Applets

EJB Container/Server

3: Return EJB Object Reference
1: Create a New EJB Object

o—{ Home Object

Home
Interface

2: Create EJB Object Enterprise
Beans

i

o— EJB Object

Remote
Interface

Figure 2.6 Home interfaces and objects.

EJB object might expose an initialization method that takes an integer as a
parameter, and another E]JB object might take a string instead. The container
needs to know this information to generate home objects. You provide this
information to the container by specifying a home interface. Home interfaces sim-
ply define methods for creating, destroying, and finding EJB objects. The con-
tainer’s home object implements your home interface. We show this in Figure 2.6.

As usual, EJB defines some required methods that all home interfaces must
support. These required methods are defined in the javax.ejb.E[BHome
interface—an interface that your home interfaces must extend. We show
javax.ejb.EJBHome in Source 2.3. We will learn about these methods later.

Notice that the parent javax.ejb.E][BHome derives from java.rmi.Remote. This
means your home interfaces do as well, implying that home objects are also
fully networked Java RMI remote objects, which can be called across VMs. The
types of parameters passed in the home interface’s methods must be valid
types for Java RMI-IIOP.

The Local Interfaces

One problem with the home interface is that creating beans through that inter-
face is very slow. The same is true for calling beans through the remote inter-
face. Just to give you an idea of what happens when you call an EJB object, the
following steps may occur:

EJB Fundamentals 47

The client calls a local stub.

The stub marshals parameters into a form suitable for the network.
The stub goes over a network connection to the skeleton.

The skeleton demarshals parameters into a form suitable for Java.
The skeleton calls the EJB object.

The EJB object performs needed middleware, such as connection pooling,
transactions, security, and lifecycle services.

A N A

7. Once the E]B object calls the enterprise bean instance, and the bean does
its work, each of the preceding steps must be repeated for the return
trip home.

Ouch! That’s a lot of overhead. Figure 2.4 shows this process.

New to EJB 2.0, you can now call enterprise beans in a fast, efficient way by
calling them through their local objects rather than EJB objects. Local objects
implement a local interface rather than a remote interface. The local objects are
speed demons that allow you to make high-performance enterprise beans. The
process works as follows:

1. The client calls a local object.

2. The local object performs needed middleware, such as connection pool-
ing, transactions, security, and lifecycle services.

3. Once the enterprise bean instance does its work, it returns control to the
local object, which then returns control to the client.

As you can see, we avoid the steps of the stub, skeleton, network, and
marshaling/demarshaling of parameters. This empowers us to write smaller
beans that perform more fine-grained tasks, without fear of a performance hit
at each and every cross-bean method call.

You can create beans in a fast way as well. Rather than using the home inter-
face and home object, you can call a special local home interface, which is imple-
mented by the container as the local home object.

These local interfaces are entirely optional; you can use them as a replacement
or as a complement to the remote interfaces. For simplicity, in the remainder of
this book, we will use the word E]JB object to mean the request interceptor, the
remote interface to mean the interface to the request interceptor, the home
object to mean the factory, and the home interface to mean the factory inter-
face. Unless it’s pointed out explicitly, all information that applies to these
remote interfaces and remote objects also apply to their local counterparts.
Also note that the EJB specification has defined the term component interface to

48

public interface javax.ejb.EJBHome extends java.rmi.Remote
{
public EJBMetaData getEJBMetaData ()
throws java.rmi.RemoteException;

public javax.ejb.HomeHandle getHomeHandle ()
throws java.rmi.RemoteException;

public void remove (javax.ejb.Handle handle)
throws java.rmi.RemoteException,
javax.ejb.RemoveException;

public void remove (Object primaryKey)

throws java.rmi.RemoteException,
javax.ejb.RemoveException;

Source 2.3 A preview of the javax.ejb.EJBHome interface.

Relationship between Home Objects,
EJB Objects, and Bean Instances

One question we frequently are asked in our EJB training courses is “How
many home objects are there for each bean?” The answer to this question is
vendor-specific. Most containers will have a 1:N relationship between home
objects and bean instances. This means that all clients use the same home object
instance to create EJB objects. The home object will probably be written to be
thread-safe so that it can service many client requests concurrently. It is perfectly
fine for the container to do this because the container itself is multithreaded
(only your beans are single-threaded).

Another question we typically get is “How many EJB object instances are there
for each bean instance?” Some containers can have a 1:N relationship, where
each EJB object is multithreaded (just like home objects). Other containers might
have an M:N relationship, where M represents the number of EJB objects instan-
tiated (and corresponds exactly to the number of clients currently connected),
and N represents the number of bean instances in the pool. In this case, each EJB
object is single-threaded.

None of this really matters to you as a bean provider because you should think
of the container as a black box. However, it's sometimes fun to know what's
going on behind the scenes in case low-level debugging is required.

EJB Fundamentals 49

mean either the remote interface or local interface. We will occasionally use
this term in this book.

When you write a local interface, you extend javax.ejb.EJBLocalObject, and
when you write a local home interface, you extend javax.ejb.EJBLocalHome.
Those interfaces are previewed in the following code, and are fully explained
in Appendix E.

public interface javax.ejb.EJBLocalObject {
public javax.ejb.EJBLocalHome getEJBLocalHome ()
throws javax.ejb.EJBException;

public Object getPrimaryKey ()
throws javax.ejb.EJBException;

public boolean isIdentical (javax.ejb.EJBLocalObject)
throws javax.ejb.EJBException;

public void remove ()
throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

public interface javax.ejb.EJBLocalHome ({
public void remove(java.lang.Object)
throws javax.ejb.RemoveException, javax.ejb.EJBException;

1. They only work when you're calling beans in the same process—for example, if
you have a bank teller session bean that calls a bank account entity bean in the
same application server. But there lies the rub. You cannot call a bean remotely if
your code relies on the local interface. If you decide to switch between a local or
remote call, you must change your code from using the local interface to using the
remote interface. This is an inherent drawback to local interfaces.

? Local interfaces have two important side effects:

2. They marshal parameters by reference rather than by value. While this may speed
up your application because parameters are not copied, it also changes the
semantics of your application. Be sure that you're aware of this when coding your
clients and beans.

For a while, the primary author of this book (Ed Roman) has been pushing for Sun to
adopt some kind of flag that enables you to switch between local and remote access
to beans without changing code. The idea is that this flag would determine whether
the container-generated interceptor object would behave as a local object or remote
object. We think this is the best approach because (in reality) many developers will
misjudge whether to use remote or local interfaces when designing their object
models, and will have to rewrite parts of their code later in their projects.

UMEOVERVIEWS

The response so far from Sun is that this approach would not work because the se-

mantics of the application change when switching between local interfaces and re-

mote interfaces, due to the differences in pass-by-value versus pass-by-reference. It
would be error-prone to allow developers to “flip a switch” in this respect.

Personally, we don’t agree with Sun. We think developers are smart enough to avoid
these mistakes, and the potential benefits outweigh the drawbacks. Many EJB server
vendors disagree as well. They actually support this local/remote flag idea through
proprietary container tools or vendor-specific files that are separate from your bean.
Thus, if you want to, you may be able to still take advantage of these flags without
sacrificing portability.

Deployment Descriptors

To inform the container about your middleware needs, you as a bean provider
must declare your components” middleware service requirements in a deploy-
ment descriptor file. For example, you can use a deployment descriptor to
declare how the container should perform lifecycle management, persistence,
transaction control, and security services. The container inspects the deploy-
ment descriptor to fulfill the requirements that you lay out. The deployment
descriptor is the key to implicit middleware.

For example, you can use a deployment descriptor to specify the following
requirements of your bean.

Bean management and lifecycle requirements. These deployment descriptor
settings indicate how the container should manage your beans. For exam-
ple, you specify the name of the bean’s class, whether the bean is a session,
entity, or message-driven bean, and the home interface that generates the
beans.

Persistence requirements (entity beans only). Authors of entity beans use
the deployment descriptors to inform the container about whether the
bean handles its persistence on its own or delegates the persistence to the
EJB container in which it’s deployed.

Transaction requirements. You can also specify transaction settings for beans
in deployment descriptors. These settings specify the bean requirements
for running in a transaction, such as a transaction must start whenever
anyone calls this bean, and the transaction must end after my bean com-
pletes the method call.

Security requirements. Deployment descriptors contain access control entries,
which the beans and container use to enforce access to certain operations.
For example, you can specify who is allowed to use which beans, and even
who is allowed to use each method on a particular bean. You can also spec-

EJB Fundamentals 51

ify what security roles the beans themselves should run in, which is useful
if the beans need to perform secure operations. For example only bank
executives can call the method to create new bank accounts.

In EJB 2.0, a deployment descriptor is an XML file. You can write these XML
files by hand, or (if you're lucky) your Integrated Development Environment
(IDE) or EJB container will supply tools to generate the XML deployment
descriptor. In the latter case, you simply might need to step through a wizard
in a Java IDE to generate a deployment descriptor.

As a bean provider, you are responsible for creating a deployment descriptor.
Once your bean is used, other parties can modify its deployment descriptor
settings. For example, an application assembler who is piecing together an
application from beans can tune your deployment descriptor. Similarly, a
deployer who is installing your beans in a container in preparation for a
deployment to go live can tune your deployment descriptor settings as well.
This is all possible because deployment descriptors declare how your beans
should use middleware, rather than you writing code that uses middleware.
Declaring rather than programming enables people without Java knowledge
and without source code access to tweak your components at a later time. This
paradigm becomes an absolute necessity when purchasing EJB components
from a third party because third-party source code is typically not available.
By having a separate, customizable deployment descriptor, you can easily
fine-tune components to a specific deployment environment without chang-
ing source code.

Vendor-Specific Files

Since all EJB server vendors are different, they each have some proprietary
value-added features. The EJB specification does not touch these features, such
as how to configure load-balancing, clustering, monitoring, and so on. There-
fore, each EJB server vendor may require that you include additional files spe-
cific to that vendor, such as XML files, text files, or binary files.

Ejb-Jar File

Once you've generated your bean classes, your home interfaces, your remote
interfaces, and your deployment descriptor, it’s time to package them into an
Ejb-jar file. An Ejb-jar file is a compressed file that contains everything we have
described, and it follows the .ZIP compression format. Jar files are convenient,
compact modules for shipping your Java software. The Ejb-jar file creation
process is shown in Figure 2.7.

52

Home Interfaces Local Interfaces

EJB Jar File

Jar File Creator

Enterprise Bean Remote Interfaces

Classes
Deployment Vendor-specific
Descriptor files

Figure 2.7 Creating an Ejb-jar file.

There are already a number of tools available to autogenerate Ejb-jar files, such
as Java IDEs. You can also generate these files yourself—we’ll show you how
in Chapter 3.

Once you’'ve made your Ejb-jar file, your enterprise bean is complete, and it is
a deployable unit within an application server. When they are deployed (per-
haps after being purchased), the tools that EJB container vendors supply are
responsible for decompressing, reading, and extracting the information con-
tained within the Ejb-jar file. From there, the deployer has to perform vendor-
specific tasks, such as generating EJB objects, generating home objects,
importing your bean into the container, and tuning the bean. Support for Ejb-
jar files is a standard, required feature for all EJB tools.

Note that you can have more than one bean in an Ejb-jar file, allowing you to
ship an entire product set of beans in a single jar file.

Summary of Terms

For your convenience, we now list the definitions of each term we’ve
described so far. As you read future chapters, refer to these definitions when-
ever you need clarification. You may want to bookmark this page.

EJB Fundamentals 53

The enterprise bean instance is a Java object instance of an enterprise bean
class. It contains business method implementations of the methods defined
in the remote and/or local interface. The enterprise bean instance is net-
workless in that it contains no networked logic.

The remote interface is a Java interface that enumerates the business meth-
ods exposed by the enterprise bean class. In EJB, client code always goes
through the remote interface and never interacts with the enterprise bean
instance. The remote interface is network-aware in that the interface obeys
the rules for Java RMI-IIOP.

The local interface is the high-performing version of the remote interface.
Use the local interface when you are calling enterprise beans that live in
the same process. Your calls will not undergo stubs, skeletons, network
calls, or marshaling /demarshaling of parameters.

The EJB object is the container-generated implementation of the remote
interface. The EJB object is a network-aware intermediary between the
client and the bean instance, handling necessary middleware issues. All
client invocations go through the EJB object. The E]JB object delegates calls
to enterprise bean instances and implements the remote interface.

The local object is the high-performing version of the E]JB object. The local
object implements the local interface.

The home interface is a Java interface that serves as a factory for EJB objects.
Client code that wants to work with EJB objects must use the home inter-
face to generate them. The home interface is network-aware because clients
use it across the network.

The local home interface is the high-performing version of the home
interface.

The home object is the container-generated implementation of the home
interface. The home object is also network-aware, and it obeys RMI-IIOP’s
rules.

The local home object is the high-performing version of the home object.
The local home object implements the local home interface.

The deployment descriptor is an XML file that specifies the middleware
requirements of your bean. You use the deployment descriptor to inform
the container about the implicit middleware you want, such as how to
manage your bean, your bean’s lifecycle needs, your transactional needs,
your persistence needs, and your security needs.

The vendor-specific files allow you to take advantage of vendor-specific
features. These files are not portable between application servers.

MY oveRviEW

The Ejb-jar file is the finished, complete .ZIP file that contains the above
files. It is the unit of deployment and is given to the application server. The
application server unpacks the Ejb-jar file and loads the bean.

Summary

In this chapter, we’ve taken a whirlwind tour of EJB. We started by looking at
what a bean is, and then discussed the different kinds of beans, including ses-
sion, entity, and message-driven beans.

We then took a bean apart into its constituent pieces, and examined each part:
the enterprise bean class, remote interface, local interface, EJB object, local
object, home interface, home object, deployment descriptor, and Ejb-jar file.

Congratulations are in order—you’ve made it to the end of Part I! In these
chapters, you've taken the first steps necessary to understanding and master-
ing EJB. Now that you understand the high-level concepts, let’s learn how to
write and use each type of EJB component, starting with a simple Hello World
example.

Writing Your First Bean

nent. Our stateless session bean will be responsible for the mighty task of
returning the string “Hello, World!” to the client. We’ll see how to write each
of the files that make up this bean and how to access it from clients.

In this chapter, we’ll get down-and-dirty and write a real working EJB compo-

This chapter is great for you if you want to discover how to get up and running
with EJB quickly. While this may not be the most functional demonstration of
the power of EJB, it illustrates the basics of EJB programming and is a useful
template for building more complex beans. This will give you the necessary
foundation to understand later chapters on entity beans, session beans, and
message-driven beans.

How to Develop an EJB Component

When building an EJB component, the following is a typical order of
operations:

1. Write the .java files that compose your bean: the component interfaces,
home interfaces, enterprise bean class file, and any helper classes you
might need.

2. Write the deployment descriptor.

3. Compile the .java files from step 1 into .class files.

55

MEOVERVIEWS

4. Using the jar utility, create an Ejb-jar file containing the deployment
descriptor and .class files.

5. Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by running a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

6. Configure your EJB server so that it is properly configured to host your
Ejb-jar file. You might tune things such as database connections, thread
pools, and so on. This step is vendor-specific and might be done through a
Web-based console or by editing a configuration file.

Start your EJB container and confirm that it has loaded your Ejb-jar file.

Optionally, write a standalone test client .java file. Compile that test client
into a .class file. Run the test client from the command line and have it
exercise your bean’s APIs.

We will apply the above process to our Hello World example. The complete
build scripts are available with the book’s accompanying source code.

The object model for our Hello World example is shown in Figure 3.1.

<<interface>> <<interface>>
java.rmi.Remote java.io.Serializable
ﬂ u Comes with Java 2 platform A
<<interface>>
N N . . javax.ejb.EnterpriseBean
<<interface>> <<interface>> <<interface>> <<interface>>
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.SessionBean
Comes with EJB distribution A
<<interface>> <<interface>> <<interface>> <<interface>> Hello World Bean
Hello World Hello World Hello World Hello World Implementation
Local Interface Remote Interface Home Interface Local Home Interface Class
Supglied by Bean provider (we wijl write)

Hello World Hello World Hello World Hello World
EJB Local Object EJB Object Home Object Local Home Object

Generated for us by container vendor's tools

Figure 3.1 Our Hello World object model.

Writing Your First Bean 57

The Remote Interface

First, let’s code up the remote interface. The remote interface duplicates every
business method that our beans expose. The code is shown in Source 3.1.

Things to notice about our remote interface include the following;:

m We extend javax.ejb.EJBObject. This means the container-generated EJB
object, which implements the remote interface, will contain every method
that the javax.ejb.E[BObject interface defines. This includes a method to
compare two EJB objects, a method to remove an E]B object, and so on.

m We have one business method—hello()—which returns the String “Hello,
World!” back to the client. We need to implement this method in our
enterprise bean class. Because the remote interface is an RMI-IIOP remote
interface (it extends java.rmi.Remote), it must throw a remote exception.
This is the only difference between the remote interface’s hello() signature
and our bean’s hello() signature. The exception indicates a networking or
other critical problem.

package examples;

/**
* This is the HelloBean remote interface.
*
* This interface is what clients operate on when
* they interact with EJB objects. The container
* vendor will implement this interface; the
* implemented object is the EJB object, which
* delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

Source 3.1 Hellojava.

58

The

Local Interface

The

Local clients will use our local interface, rather than remote interface, to call
our beans” methods. It is shown in Source 3.2.

As you can see, there are trivial differences between the local interface and the
remote interface. We extend a different interface, and we don’t throw remote
exceptions.

Home Interface

Next, let’s put together the home interface. The home interface has methods to
create and destroy E]JB objects. The implementation of the home interface is the
home object, which is generated by the container tools.

The code for our home interface is shown in Source 3.3.
Notice the following about our home interface:

m The single create() is a factory method that clients use to get a reference to
an EJB object. The create() method is also used to initialize a bean.

package examples;

/**

* This is the HelloBean local interface.

* This interface is what local clients operate

* on when they interact with EJB local objects.

* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/
public interface HelloLocal extends javax.ejb.EJBLocalObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello();

Source 3.2 HelloLocal.java.

Writing Your First Bean 59

The

package examples;

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server's tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*
* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Source 3.3 HelloHome java.

m The create() method throws a java.rmi.RemoteException and javax.ejb.Create-
Exception. Remote exceptions are necessary side effects of RMI-IIOP
because the home object is a networked RMI-IIOP remote object. The Cre-
ateException is also required in all create() methods. We explain this further
in the following sidebar.

m Our home interface extends javax.ejb.E[BHome. This is required for all
home interfaces. EJBHome defines a way to destroy an EJB object, so we
don’t need to write that method signature.

Local Home Interface

Our local home interface, the higher-performing home interface used by local
clients, is in Source 3.4

The differences between the remote interface and local interface are as follows:

m The local home interface extends E/BLocalHome rather than E[BHome. The
EJBLocalHome interface does not extend java.rmi.Remote. This means that
the generated implementation will not be a remote object.

m The local home interface does not throw RemoteExceptions.

UMBOVERVIEWS

package examples;

* This is the local home interface for HelloBean.
* This interface is implemented by the EJB Server's
* tools - the implemented object is called the
* local home object, and serves as a factory for
* EJB local objects.
*/
public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*
* This method creates the EJB Object.
*

* @return The newly created EJB Object.
*/
HelloLocal create() throws javax.ejb.CreateException;

Source 3.4 HelloLocalHome.java.

Exceptions and EJB

Every networked object in EJB conforms to the RMI-1IOP standard and must
throw a remote exception. Thus, every method in an EJB object and home object
(such as our hello() method) must throw a remote exception. When such an
exception is thrown, it indicates a special error condition—a network failure,
machine failure, or other catastrophic failure.

But how can your beans throw exceptions that indicate regular, run-of-the-mill
problems, such as bad parameters passed to a business method? EJB comes with
some built-in exceptions to handle this, and it also allows you to define your own
exception types.

More formally, EJB defines the following exception types:

1. A system-level exception is a serious error that involves some critical fail-

ure, such as a database malfunction.

2. An application-level exception is a more routine exception, such as an indi-
cation of bad parameters to a method or a warning of an insufficient bank
account balance to make a withdrawal. For example, in our “Hello, World!”
home interface, we throw a standard javax.ejb.CreateException from home

61

interface’s create() method. This is an example of a required application-
level exception, indicating that some ordinary problem occurred during
bean initialization.

Why must we separate the concepts of system-level and application-level
exceptions? The chief reason is that system-level exceptions are handled quite
differently from application-level exceptions.

For example, system-level exceptions are not necessarily thrown back to the
client. Remember that EJB objects—the container-generated wrappers for beans—
are middlemen between a bean’s client and the bean itself. EJB objects have the
ability to intercept any exceptions that beans may throw. This allows EJB objects
to pick and choose which exceptions the client should see. In some cases, if a
bean fails, it may be possible to salvage the client’s invocation and redirect it to
another bean. This is known as transparent fail-over, a quality of service that
some EJB container/server vendors provide. This is an easy service to provide for
stateless beans because there is no lost state when a bean crashes. Some high-
end EJB products even provide transparent fail-over for stateful beans by rou-
tinely checkpointing the stateful bean’s conversational state (see Chapter 14 for
more). In case of a critical, unrecoverable problem, your EJB container may sup-
port professional monitoring systems, alerting a system administrator if a cata-
strophic error occurs.

By way of comparison, application-level exceptions should always be thrown
back to the client. Application-level exceptions indicate a routine problem, and
the exception itself is valuable data that the client needs. For example, we could
notify a client of insufficient funds in a bank account by throwing an application-
level exception. The client would always want to know about this because it is an
application-level problem, not a system-level problem.

Besides correctly routing system-level and application-level exceptions, the EIB
object is responsible for catching all unchecked exceptions (flavors of
java.lang.RuntimeException) that your bean may throw, such as a NullPointer
exception. These are typically not caught by code. Exceptions that are unchecked
in the bean could leave the bean in an abnormal state because the bean is not
expecting to handle such an exception. In this scenario, the EJB container inter-
cepts the exception and performs some action, such as throwing the exception
back to the client as a remote exception. It also probably stops using that bean
because the bean is in an undefined state.

The following two rules of thumb should help you with exceptions.

1. Application-level exceptions are always thrown back to the client. This
includes any exception the bean defines. It also includes the javax.ejb.
CreateException for creating beans (and the javax.ejb.FindException for
entity beans, which we’ll see in Chapters 5 through 7).

62

2. When system-level exceptions occur, the EJB container can do anything it
wants to: page a system administrator with an alert, send an email to a
third party, or throw the exception back to the client. Your bean can throw a
system-level exception as either an RMI-IIOP remote exception or an
unchecked RuntimeException. If the exception is thrown to the client, it is
always thrown as a remote exception or a subclass of it.

Exceptions also have an impact on transactions. We’ll learn more about this

effect in Chapter 10.

What Happens During create() and remove()

The

As we've learned, the container, rather than a client, creates and destroys your
beans. But if the container is responsible for bean life cycle, then why does the
home interface and local home interface specify create() and remove() methods?
What you must remember is that these methods are for creating and destroying
EJB objects. This may not correspond to the actual creation and destruction of
beans. The client shouldn’t care whether the actual bean is created or destroyed—
all the client code cares about is that the client has an EJB object to invoke. The
fact that beans are pooled and reused behind the EJB object is irrelevant.

So when debugging your EJB applications, don‘t be alarmed if your bean isn’t
being created or destroyed when you call create() or remove() on the home
object or local home object. Depending on your container’s policy, your beans
may be pooled and reused, with the container creating and destroying at will.

Bean Class

Now let’s look at the bean class itself. The code is shown in Source 3.5.
This is just about the most basic bean class possible. Notice the following:

m Our bean implements the javax.ejb.SessionBean interface, which makes it a
session bean. This interface defines a few required methods that you must
fill in. The container uses these management methods to interact with the
bean, calling them periodically to alert the bean to important events. For
example, the container will alert the bean when it is being initialized and
when it is being destroyed. These callbacks are not intended for client use, so
you will never call them directly—only your EJB container will. We’ll learn
about the specifics of these management methods in the pages to come.

Writing Your First Bean 63

package examples;

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean ({

private SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {
System.out.println("ejbCreate()") ;

public void ejbRemove () {
System.out.println("ejbRemove()") ;

public void ejbActivate() {
System.out.println("ejbActivate()");

}

public void ejbPassivate() {
System.out.println("ejbPassivate()");

}

public void setSessionContext (javax.ejb.SessionContext ctx) {
this.ctx = ctx;

//

// Business methods

//

public String hello() {
System.out.println("hello()");
return "Hello, World!";

Source 3.5 HelloBean.java.

64

m The bean has an ejbCreate() method which matches the home object’s cre-
ate() method, and takes no parameters.

m We have one business method, kello(). It returns Hello, World! to the
client.
m The ejbActivate() and ejbPassivate() methods do not apply to stateless ses-

sion beans, and so we leave these methods empty. We'll see what these
methods mean and what to use them for later in this chapter.

m When we destroy the bean, there’s nothing to clean up, so we have a very
simple ejbRemove() method.

We also have a method called setSessionContext(). This method is explained in
the following sidebar.

EJBContexts: Your Gateway to the Container

Since your enterprise beans live in a managed container, the container is free to
call your EJB components’ methods at its leisure. But what if your bean needs to
query the container for information about its current status? For example, inside
your bean, you may want to access the security credentials of the user currently
calling your bean’s method.

The container houses all of this information in one object, called an EJB con-
text object. An EJB context object is your gateway to the container. EJB contexts
are physical parts containers and can be accessed from within your beans. Thus,
a context represents a way for beans to perform callbacks to the container. These
callbacks help beans both ascertain their current status and modify their current
status. This is shown in Figure 3.2.

The motivation behind a context is to encapsulate the bean’s domain in one
compact object. Note that a bean’s status may change over the bean’s life cycle,
and thus this context object can dynamically change over time as well. At run-
time, the container is responsible for changing the context to reflect any status
changes, such as the bean becoming involved in a new transaction.

Here is what the javax.ejb.EJBContext interface looks like (thrown exceptions
omitted):

public interface javax.ejb.EJBContext

{

/%
Call these from within your bean to access
your own home object or local home object.

You can use them to create, destroy, or
find EJB objects and EJB local objects

* * * * *

Writing Your First Bean 65

* of your own bean class type.
*/
public javax.ejb.EJBHome getEJBHome () ;
public javax.ejb.EJBLocalHome getEJBLocalHome () ;
/*
* These are transaction methods - see Chapter 10
*/
public boolean getRollbackOnly () ;
public void setRollbackOnly () ;
public javax.transaction.UserTransaction getUserTransaction();
/*
* These are security methods - see Chapter 9
*/
public boolean isCallerInRole(java.lang.String) ;
public java.security.Principal getCallerPrincipal () ;

}

An EJB context contains callbacks useful for session beans, entity beans, and
message-driven beans. In comparison, a session context, entity context, and
message-driven context are specific EJB contexts used only for session beans,
entity beans, and message-driven beans.

The container associates your bean with a context by calling
setSessionContext, setEntityContext, or setMessageDrivenContext, depending on
your bean type. When you define each of these methods, you should store the
context away in a member variable so the context can be queried later, as shown
in Source 3.5.

EJB Container/Server

2: Store Context
in Private Variable

——1: Give Context to Bean

EJB Object EntBe;‘g::se
—— 3: Business Method

EJB Context 4: Query the Container for
Object Environment Information

Figure 3.2 EJB Contexts.

66

The

Deployment Descriptor

Next, we need to generate a deployment descriptor, which describes our bean’s
middleware requirements to the container. Deployment descriptors are one of
the key features of EJB because they allow you to declaratively specify attributes
on your beans, rather than programming this functionality into the bean itself.

Physically, a deployment descriptor is an XML document. Your E]B container,
IDE environment, or other tool (such as a UML editor that can generate EJB
code) should supply tools to help you generate such a deployment descriptor.

Our deployment descriptor is shown in Source 3.6.

Many different settings make up a deployment descriptor. For a full deploy-
ment descriptor reference, see Appendix C. For now, here is an explanation of
our session bean descriptor:

<ejb-name> The nickname for this particular bean. Can be used later in the
deployment descriptor to refer back to this bean to set additional settings.

<home> The fully qualified name of the home interface.
<remote> The fully qualified name of the remote interface.

<local-home> The fully qualified name of the local home interface.

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" " http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>Hello</ejb-name>
<home>examples.HelloHome</home>
<remote>examples.Hello</remote>
<local-home>examples.HelloLocalHome</local-home>
<local>examples.HelloLocal</local>
<ejb-class>examples.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

Source 3.6 ejb-jar.xml.

Writing Your First Bean 67

<local> The fully qualified name of the local interface.
<ejb-class> The fully qualified name of the enterprise bean class.

<session-type> Whether the session bean is a stateful or stateless session
bean.

<transaction-type> Ignore for now—see Chapter 10 for more details on
transactions.

The Vendor-Specific Files

Next in our stateless session bean are vendor-specific files. These files exist
because the E]JB specification can’t cover everything; vendors differentiate
their products in areas such as instance pooling algorithms, clustering algo-
rithms, and so on. The vendor-specific files are not portable and can use any
tile format, including XML, flat file, or binary. In fact, it may not even exist as
files—the settings could be stored in some database with a GUI on top of it.

The source code that accompanies this book shows an example of a vendor-
specific file.

The Ejb-jar File

Now that we’ve written all the necessary files for our component, we need to
package all the files together in an Ejb-jar file. If you're using a development
environment supporting EJB, the development environment may contain an
automated way to generate the Ejb-jar file for you. We can generate it manu-
ally as follows:

jar cf HelloWorld.jar *

The asterisk indicates the files to include in the jar—the bean class, home inter-
face, local home interface, remote interface, local interface, deployment
descriptor, and possibly vendor-specific files (depending on your container’s

policy).
The following is the folder structure within the Ejb-jar file:

META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
examples/HelloBean.class
examples/HelloLocalHome.class
examples/HelloLocal.class
examples/Hello.class

UMBOVERVIEWE

The files must be in properly named subdirectories of the current directory.
For example, our Hello.class file is located in examples\Hello.class, below the
current directory. You must store your classes in a directory corresponding to
the package that the class belongs to, or the JVM will be unable to locate your
classes when it searches your jar. The ejb-jar.xml file must be placed in the
META-INF subfolder. The container consults that file first when opening the
Ejb-jar file to figure out what beans are inside the jar.

The MANIFEST.MF file is a listing of the files within the Ejb-jar file. It is auto-
generated by the jar utility. You don’t need to worry about this file.

Deploying the Bean

Finally, we're ready to deploy our bean in an E]JB container. This step varies
from container to container. When you reach this point, consult your con-
tainer’s documentation on how to deploy a bean. This could be anything from
running a command-line tool on your Ejb-jar file to copying your Ejb-jar file
into a well-known folder where your application server detects its presence.

For an example of deploying a bean, see the source code accompanying this
book.

When deploying an Ejb-jar file into a container, the following steps are usually
performed:

m The Ejb-jar file is verified. The container checks that the enterprise bean
class, the remote interface, and other items are valid. Any commercial tool
should report intelligent errors back to you, such as, “You need to define
an ejbCreate() method in your bean.”

m The container tool generates an E]JB object and home object for you.

m The container tool generates any necessary RMI-IIOP stubs and skeletons.
(See Appendix A for more information about stubs and skeletons.)

Once you've performed these steps, start up your EJB container (if it isn't
already running). Most products output a server log or have a GUI to view the
beans that are deployed. Make sure that your container is indeed making your
bean available. It should tell you it did so.

The Optional EJB Client JAR file

One common question deployers ask is, “Which classes do I need to deploy
with my client applications that call enterprise beans?” EJB allows you to spec-

Writing Your First Bean 69

ify the exact classes you need with an Ejb-client JAR file. An Ejb-client JAR file
is an archive of classes that must be deployed for any clients of a particular Ejb-
jar file. You specify the name of the Ejb-client jar file in your XML deployment
descriptor, as shown in Source 3.7.

When you build an Ejb-client jar file, you should bundle only the files needed
by the client. This typically includes interfaces, helper classes, and stubs.

You might find Ejb-client jar files useful for saving hard disk space, so you can
avoid copying the entire Ejb-jar file onto the client machine. This might be use-
ful if you're in an applet environment.

However, Ejb-client jar files are completely optional and most deployments
will not make use of them. This is because hard disk space is usually not a
problem, especially if the client of your application server is a Web server.
Laziness will usually prevail.

Understanding How to Call Beans

We now take a look at the other half of the world—the client side. We are now
customers of the beans’ business logic, and we are trying to solve some real-
world problem by using one or more beans together. There are two different
kinds of clients.

<ejb-jar>
<enterprise-beans>
</enterprise-beans>

Lll==

This is an optional instruction to the deployer that
he must make the this jar file accessible to

clients of these beans. If this instruction does not
exist, the deployer must make the entire Ejb-jar file
accessible to clients.

-—>

<ejb-client-jar>HelloClient.jar</ejb-client-jar>

</ejb-jar>

Source 3.7 Declaring an Ejb-client jar file within a deployment descriptor.

L[l OVERVIEW

Java RMI-IIOP based clients. These clients use the Java Naming and Directory
Interface (JINDI) to look up objects over a network, and they use the Java
Transaction API (JTA) to control transactions.

CORBA clients. Clients can also be written to the CORBA standard. This
would primarily be useful if you want to call your EJB components using
another language, such as C++. CORBA clients use the CORBA Naming
Service (COS Naming) to look up objects over the network, and they use
the CORBA’s Object Transaction Service (OTS) to control transactions.

Whether you're using CORBA or RMI-IIOP, your client code typically looks
like this:

1. Look up a home object.

2. Use the home object to create an EJB object.
3. Call business methods on the E]B object.

4. Remove the EJB object.

You're about to see how to call EJB components from RMI-IIOP clients. This is
the paradigm we’ll use throughout this book. If you're interested in CORBA
clients, see Appendix B.

Looking up a Home Object

One of the goals of EJB is that your application code should be “write once, run
anywhere.” If you deploy a bean onto one machine and then switch it for a dif-
ferent machine, your code should not change because it is location transparent.

EJB achieves location transparency by leveraging naming and directory services.
Naming and directory services are products that store and look up resources
across a network. Some examples of directory service products are the iPlanet
Directory Server, Microsoft’s Active Directory, and IBM’s Lotus Notes Domino
Server.

Corporations traditionally have used naming and directory services to store
usernames, passwords, machine locations, printer locations, and so on. EJB
servers exploit naming services to store location information for resources that
your application code uses in an enterprise deployment. These resources
could be EJB home objects, enterprise bean environment properties, database
drivers, message service drivers, and other resources. By using naming ser-
vices, you can write application code that does not depend on specific machine
names or locations. This is all part of EJB’s location transparency, and it keeps
your code portable. If you decide later that resources should be located else-
where, your code does not need to be rebuilt because the naming service can

Writing Your First Bean 71

simply be updated to reflect the new resource locations. This greatly enhances
maintenance of a multitier deployment that may evolve over time. This
becomes absolutely necessary when purchasing prewritten software (such as
enterprise beans), because your purchased components” source code will
likely not be made available to you to change.

While naming and directory servers have typically run standalone, they can also run
in the same process as the application server. Many containers are written in Java,
and so their naming and directory services are just bunches of Java classes that run
inside of the container.

Unless you're using CORBA, the de facto API used to access naming and
directory services is the Java Naming and Directory Interface (JNDI), which
we explain in Appendix A. JNDI adds value to your enterprise deployments
by providing a standard interface for locating users, machines, networks,
objects, and services. For example, you can use the JNDI to locate a printer on
your corporate intranet. You can also use it to locate a Java object or to connect
with a database. In EJB, JNDI is used to lookup home objects. JNDI is also use-
ful for locating resources across an enterprise deployment, including environ-
ment properties, database resources, and more; we’ll show you how to
leverage JNDI for these purposes in Chapter 9.

How to Use JNDI to Locate Home Objects

To achieve location transparency, EJB containers mask the specific locations of
home objects from your enterprise beans’ client code. Clients do not hard-code
the machine names that home objects reside on; rather, they use JNDI to lookup
home objects. Home objects are physically located somewhere on the network
—perhaps in the address space of an EJB container residing on machine #1, or
perhaps on a container residing on machine #2. As a developer who writes
client code to use beans, you don’t care.

For clients to locate a home object, you must provide a nickname for your
bean’s home object. Clients will use this nickname to identify the home object
it wants. For example, our Hello World example might have a nickname Hel-
loHome. You specify this nickname using the proprietary vendor-specific files
that are bundled with your bean.

When you deploy your bean into the container, the container automatically
binds the nickname HelloHome to the home object. Then any client on any
machine across a multitier deployment can use that nickname to find home
objects, without regard to physical machine locations. Clients use the JNDI
API to do this. JNDI goes over the network to some naming service, or JNDI

72

tree, to look for the home object, perhaps contacting one or more naming ser-
vices in the process. Eventually the home object is found, and a reference to it
is returned to the client. This is shown in Figure 3.3.

The complete client source code is shown in Source 3.8.

EJB Container/Server

3: Create a New :—|?rrl1’fe
EJB Object nteriace)
o— Home Object
5: Return
EJB Object
Client Reference 4: Create EJB Object
Remote
Interface
o— EJB Object Enterprise Bean

A 6: Invoke Business Method

. 7: Delegate Request to Bean
1: Retrieve

Home Object
Reference

2: Return
Home Object
Reference

< JNDI

Naming Service
Such as LDAP

Figure 3.3 Acquiring a reference to a home object.

Writing Your First Bean 73

package examples;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Setup properties for JNDI initialization.
*
* These properties will be read-in from
* the command-line.
*/
Properties props = System.getProperties();

/*
* Obtain the JNDI initial context.

* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/
Context ctx = new InitialContext (props) ;

/*

* Get a reference to the home object - the
* factory for Hello EJB Objects

*/

Object obj = ctx.lookup ("HelloHome") ;

/*
* Home objects are RMI-IIOP objects, and so
* they must be cast into RMI-IIOP objects
* using a special RMI-IIOP cast.
*

* See Appendix A for more details on this.
*/

HelloHome home = (HelloHome)

javax.rmi.PortableRemoteObject .narrow (
obj, HelloHome.class) ;

Source 3.8 HelloClient.java.

(Ol OVERVIEW

/*
* Use the factory to create the Hello EJB Object
*/

Hello hello = home.create();

* Call the hello() method on the EJB object. The
* EJB object will delegate the call to the bean,
* receive the result, and return it to us.

* We then print the result to the screen.
*/
System.out.println(hello.hello());
/*
* Done with EJB Object, so remove it.
* The container will destroy the EJB object.
*/
hello.remove() ;

Source 3.8 HelloClient.java. (continued)

The client code is self-explanatory.

Running the System

To try the deployment, you first must bring up the application server. This
step varies depending on your vendor. Again, since we want to keep this
book vendor-neutral, please see the book’s accompanying source code for an
example.

Next, run the client application. When running the client, you need to supply
the client with JNDI environment information. As we explain in Appendix A,
JNDI requires a minimum of two properties to retrieve an initial context:

m The name of the initial context factory. An example is
com.sun.jndi.ldap.LdapCtxFactory.

m The provider URL, indicating the location of the JNDI tree to use. An
example is [dap://louvre:389/0=Airius.com.

Writing Your First Bean 75

The actual parameters you need should be part of your EJB container’s docu-
mentation. See the book’s accompanying source code for examples of this.

files on the right machines. If remote client code uses home interfaces and remote
interfaces, then you must deploy those class files in your client environment. And
because clients never directly access your bean implementation, you should not de-
ploy your bean classes in your client environment.

? For your EJB client code to work, you must take care to distribute the correct class

The Server-Side Output

When we run the client, our container shows the following debug log. (Debug
logs are great for seeing what your enterprise beans are doing.)

setSessionContext ()
ejbCreate ()

hello()

ejbRemove ()

As you can see, the container associated our bean with a session context, called
create(), delegated a business method to the bean, and then called remove().
Note that some containers may give slightly different output than others—it’s
all implementation-specific and part of E]B product differentiation. Keep this
in mind when debugging your beans.

The Client-Side Output

After running the client, you should see the following output:

Hello, World!

Implementing Component Interfaces

We wrap up this chapter with a quick design strategy. As you probably
noticed, our enterprise bean class does not implement its own component
interface (either remote interface or local interface). But why not? Doesn’t the
component interface seem like a natural fit for the interface to your bean? After
all, the component interface defines every business method of the bean. Imple-
menting your component interface would be a nifty way to perform compile-
time checking to make sure your bean’s method signature matches your
component interface’s signature.

(MY overviEW

There are two good reasons not to implement your bean’s component interface:

Reason 1. Component interfaces extend interfaces defined by Sun, such as
javax.ejb.E[BObject or javax.ejb.E[BLocalObject. These superinterfaces define
additional methods intended for client use, and you’d therefore have
provide no-op implementations of those methods in your bean. Those
methods have no place in your bean class.

Reason 2. Let’s assume your enterprise bean wants to call a method on a dif-
ferent enterprise bean, and you want to pass a reference to your bean as a
parameter to the other bean’s method (similar to passing the this parameter
in Java). How can you do this in EJB?

Remember that all clients call methods on EJB objects, not beans. Thus, if your
bean calls another bean, you must pass a reference to your bean’s EJB object,
rather than a reference to your bean. The other bean should operate on your
EJB object, and not your bean, because the other bean is a client, just like any
other client, and all clients must go through EJB objects.

The danger here is if your enterprise bean class implements your EJB object’s
remote interface. You could accidentally pass a reference to the bean itself,
rather than pass a reference to the bean’s EJB object. Because your bean imple-
ments the same interface as the EJB object, the compiler would let you pass the
bean itself as a this parameter, which is an error.

A Solution

There is an alternative way to preserve compile-time checks of your method
signatures. The approach is to contain your bean’s business method signatures
within a common superinterface that your remote interface extends and your
bean implements. You can think of this superinterface as a business interface
that defines your business methods and is independent of E]B. The following
example illustrates this concept:

// Business interface
public interface HelloBusinessMethods {
public String hello() throws java.rmi.RemoteException;
}
// EJB remote interface
public interface HelloRemote extends javax.ejb.EJBObject,
HelloBusinessMethods {
}
// EJB local interface
public interface HelloLocal extends javax.ejb.EJBLocalObject,
HelloBusinessMethods {
}

// Bean implementation

Writing Your First Bean 77

public class HelloBean implements SessionBean, HelloBusinessMethods {
public String hello() {
return "Hello, World!";
}

< . . . define other required callbacks . . . >

}

The only problem with this approach is that the local interface throws remote
exceptions. If you can live with that, then this design strategy works.

Summary

In this chapter, we learned how to write the component interfaces, home inter-
face, enterprise bean class, deployment descriptor, and Ejb-jar file. You also
saw how to call beans using JNDI and RMI-IIOP. Congratulations are in order:
It took awhile, but you've successfully completed your first Enterprise Jav-
aBeans deployment!

80 THE TRIAD OF BEANS

application. We’ll learn about the three types of enterprise beans: session beans
(Chapter 4), entity beans (Chapter 5), and message-driven beans (Chapter 8).
We'll also explore their subtypes: stateless session beans, stateful session
beans, bean-managed persistent entity beans (Chapter 6), and container-
managed persistent entity beans (Chapter 7). Not only will we see each of
these conceptually, but we’ll also write an example for each bean type. We’ll
end Part 2 with a discussion of container-provided services (Chapter 9), such
as security, the environment, and calling beans from other beans.

In Part 2, we’ll focus on the development details for implementing an EJB

Part 2 is essential for those of you who are ready to delve into EJB program-
ming fundamentals. It is essential groundwork to prepare yourself for the
more advanced topics, such as transactions and EJB design strategies, which
are coming in Part 3.

Introduction to Session Beans

Session beans are business process objects. They implement business logic,
business rules, algorithms, and workflow. For example, a session bean can
perform price quoting, order entry, video compression, banking transactions,
stock trades, database operations, complex calculations, and more. They are
reusable components that contain logic for business processes.

ﬁ session bean represents work being performed for client code that is calling it.

Let’s examine the characteristics of session beans in detail and then code up a
stateful session bean.

Session Bean Lifetime

A chief difference between session beans and entity beans is the scope of their
lives. A session bean is a relatively short-lived component. It has roughly the
lifetime equivalent of a session or lifetime of the client code that is calling the
session bean.

For example, if the client code contacted a session bean to perform order entry
logic, the EJB container is responsible for creating an instance of that session
bean component. When the client later disconnects, the application server may
destroy the session bean instance.

A client’s session duration could be as long as a browser window is open, per-
haps connecting to an e-commerce site with deployed session beans. It could

82 THE TRIAD OF BEANS

also be as long as your Java applet is running, as long as a standalone applica-
tion is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer is empowered to destroy session beans if clients time out. If your client
code is using your beans for 10 minutes, your session beans might live for
minutes or hours, but probably not weeks, months, or years. Typically ses-
sion beans do not survive application server crashes, nor do they survive
machine crashes. They are in-memory objects that live and die with their sur-
rounding environments.

In contrast, entity beans can live for months or even years because entity beans
are persistent objects. Entity beans are part of a durable, permanent storage,
such as a database. Entity beans can be constructed in memory from database
data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved to
permanent storage, whereas entity beans are. Note that session beans can per-
form database operations, but the session bean itself is not a persistent object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a
number of method calls between the client and the bean. A conversation
spans a business process for the client, such as configuring a frame-relay
switch, purchasing goods over the Internet, or entering information about a
new customer.

The two subtypes of session beans are stateful session beans and stateless session
beans. Each is used to model different types of these conversations.

Stateful Session Beans

Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular

Introduction to Session Beans 83

client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation.

Stateless Session Beans

Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold multimethod conver-
sations with their clients. After each method call, the container may choose to
destroy a stateless session bean, or recreate it, clearing itself out of all informa-
tion pertaining to past invocations. It also may choose to keep your instance
around, perhaps reusing it for all clients who want to use the same session
bean class. The exact algorithm is container specific. The takeaway point is
this: Expect your bean to forget everything after each method call, and thus
retain no conversational state from method to method. If your bean happens to
hang around longer, then great—but that’s your container’s decision, and you
shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

Stateless really means no conversational state. Stateless session beans can contain
state that is not specific to any one client, such as a database connection factory that
all clients would use. You can keep this around in a private variable. So long as
you're willing to lose the data in your private variable at any time, you’ll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compres-
sion of audio or video data. The client could pass in a buffer of uncompressed
data, as well as a compression factor. The bean returns a compressed buffer
and is then available to service a different client. The business process spanned

84 THE TRIAD OF BEANS

one method request. The bean does not retain any state from previous
requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answet, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call' We
show this in Figure 4.1.

Special Characteristics of Stateful
Session Beans

So far, we've seen session beans in general. We also coded up a simple stateless
session bean in Chapter 3. Now let’s look at the trickier flavor, stateful session
beans.

Stateless Bean Pool

Client /

N
Invoke()

"N\, | EJBObject

Remote
Interface Invoke()

Figure 4.1 Stateless session bean pooling.

Introduction to Session Beans

Achieving the Effect of Pooling
with Stateful Beans

85

With stateful session beans, pooling is not as simple with stateful session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of resources available, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the E]B server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus. When-
ever you run an application on a computer, you have only a fixed amount of
physical memory in which to run. The operating system still must provide a
way for many applications to run, even if the applications take up more aggre-
gate memory than is available physically. To provide for this, operating sys-
tems use your hard disk as an extension of physical memory. This effectively
extends your system’s amount of virtual memory. When an application goes
idle, its memory can be swapped out from physical memory and onto the hard
disk. When the application becomes active again, any needed data is swapped
in from the hard disk and into physical memory. This type of swapping hap-
pens often when switching between applications (called context switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But
that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, E]B does indeed support the effect of pooling stateful session beans. Only
a few instances can be in memory when there are actually many clients. But
this pooling effect does not come for free—the passivation/activation steps

86 THE TRIAD OF BEANS

could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
Least Recently Used (LRU) passivation strategy, which simply means to passi-
vate the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a method
call. It’s up to the container to decide when passivation makes sense. There is
one exception to this rule: Any bean involved in a transaction (see Chapter 10)
cannot be passivated until the transaction completes.

To activate beans, most containers usually use a just-in-time algorithm. Just in
time means that beans should be activated on demand, as client requests come
in. If a client request comes in, but that client’s conversation has been passi-
vated, the container activates the bean on demand, reading the passivated
state back into memory.

In general, passivation and activation are not useful for stateless session beans.
Stateless beans do not have any state to passivate/activate, so the container
can simply destroy stateless beans arbitrarily.

The Rules Governing
Conversational State

More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to stor-
age is read back into memory and converted to in-memory bean data. What
makes this whole process work is the javax.ejb.EnterpriseBean interface extends
java.io.Serializable, and every enterprise bean class indirectly implements this
interface.

For every Java object that is part of a bean’s conversational state, the previous
algorithm is reapplied recursively on those objects. Thus, object serialization
constructs an entire graph of data referred to by the main bean. Note that while
your beans must follow the rules for object serialization, the EJB container

Introduction to Session Beans 87

itself does not necessarily need to use the default serialization protocol; it
could use a custom protocol to allow for flexibility and differentiation between
container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if the following apply:

m The member variable is a nontransient primitive type, or

m The member variable is a nontransient Java object (extends
java.lang.Object)

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

m EJB object references

m Home object references

m EJB context references (see Chapter 9)
|

JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

public class MySessionBean implements javax.ejb.SessionBean
{
// State variables
private Long myLong;
private MySessionBeanRemoteInterface ejbObject;
private MySessionBeanHomeInterface homeObject;
private javax.ejb.SessionContext mySessionContext;
private javax.naming.Context envContext;
// EJB-required methods (fill in as necessary)
public void setSessionContext (SessionContext ctx) {}
public void ejbCreate() {1}
public void ejbPassivate() {}
public void ejbActivate() {}
public void ejbRemove () {}
// Business methods

}

The container must retain the values of the preceding member variables across
passivation and activation operations.

Activation and Passivation Callbacks

Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The

THE TRIAD OF BEANS

container informs the bean that it’s about to perform passivation by calling the
bean’s required ejbPassivate() callback method. ejbPassivate() is a warning to the
bean that its held conversational state is about to be swapped out.

It's important that the container inform the bean using ejbPassivate() so that the
bean can relinquish held resources. These held resources include database con-
nections, open sockets, open files, or other resources that do not make sense to
be saved to disk or cannot be transparently saved using object serialization.
The EJB container calls the ejbPassivate() method to give the bean a chance to
release these resources or deal with the resources as the bean sees fit. Once the
container’s ejbPassivate() callback method into your bean is complete, your
bean must be in a state suitable for passivation. For example:

import javax.ejb.*;
public class MyBean implements SessionBean {
public void ejbPassivate() {
<close socket connections, etc . . . >

}

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on an EJB object that
does not have a bean tied to it in memory. The container’s pool size of beans
has been reached. Thus, the container needs to passivate a bean before han-
dling this client’s request.

Exactly the opposite process occurs during the activation process. The serial-
ized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s required ejbActivate() method. ejbActivate() gives
the bean a chance to restore the open resources it released during ejbPassivate().
For example:

import javax.ejb.*;
public class MyBean implements SessionBean {
public void ejbActivate() {
<open socket connections, etc . . . >

}

}

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

You probably don’t need to worry about implementing ejbPassivate() and
ejbActivate() unless you are using open resources, such as socket connections or

Introduction to Session Beans 89

Client

1: Invoke Business Method

2: Pick the Least
Recently Used Bean —=

o—| EJB Object | 3:Call ejpbPassivate() ——=> Enterprise Bean
Remote . il
Interface —4: Serialize the Bean State =

Other Enterprise
Beans

5: Store

Passivated

Bean State A typical stateful bean passivation B
scenario. The client has invoked a
method on an EJB object that does
not have a bean tied to it in memory.
The container's pool size of beans has
been reached. Thus the container
needs to passivate a bean before
handling this client's request.

Storage

Figure 4.2 Passivation of a stateful bean.

database connections, that must be reestablished after activation. In most
cases, you can simply leave these methods empty.

Method Implementation Summary

Table 4.1 summarizes how to develop session bean classes.

A Simple Stateful Session Bean

Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

90

"pajedo|je
aney Aew noA sadinosal [je 3314
‘uoPNI)Sap 10} ueaq InoA atedsid

‘Aidwa anes| ‘a1e3s |PUONLSISAUOD
ou SI dI3Y} 3snedxaq pasnun

‘fidwia anea| ‘a3e)s [RUOILSIBAUOD
ou sI 319} 9snedraq pasnun

jssa[a1e3Ss SI | ddUIS
‘s||e> yuanbasqns uodn o3 jjasy pazijeniul
} JeYM JSqWISWI JI9ASU P|NOM Uedq

9y} ‘si9)oweled asoy) 03 J|9sy pazijeniul
ueaq ay} pue ‘sia)oweled pey i J|
‘si9)dweled ou yum poyaw ()a3palsdqglo
Adws 3j3uis e Ajuo sulsp ued nox

1910 "ul passed sanjen Juswndie ayj 0}
s9|qeneA Jaquiaw 3uiss se yans ‘spasu
ueaq InoA uonezijeniul Aue wioysd

191e)
pauenb aq ued 1xa1u0d ayj os d|qenea
Jaquiaw e ul Aeme 1xa)u0d 3y} 3101S

(SNv3d NOISS3S 1n431VLS)

"pajedojje
aney Aew NoA sa2Inosal [|e 9314
“uolPNIISap 10} ueaq InoA asedaid

"()21DNISSDAqlo
3uunp paseajal 9soy) se Yyons ‘spasu
ueaq InoA sadinosal Aue asnboy

uipjoy aq
Aew ueaq InoA sa21nosal Aue aseajy

‘ueaq UOISSas
INoA ur poysw (- °) - -apaidqle
9UO 3sed| 1e apinoid 3snw NOA

"S)uawnSie JUSISYIP SYe} Ued Yoea pue

‘spoyiawl () " - 2paI)glo [RIGNSS
SUIjp URD NOA :3)0N "ul passed
sanjen juswngie 3y} 0} S9|qeUBA
Jlaquiaw Sumas se yons ‘spasu
ueaq JnoA uonezijeniur Aue wioydd

19)e|
pauanb aq ued 1xaju0d 3y} OS d|qeueA
Jaquiaw e ul Aeme 3x23U0d dU} 2103S

(SNv3d NOISS3S SSITILVILS)

‘Alowsw woly
panowal si ueaq JnoA
2l0j9q Aj@1eIpawiwl
Jauiejuod sy Aq pajjed

‘(ueaq InoA spasu juaip
B 9SNE9q YSIp Wouy

ul paddems) pajeaipoe
S1 ueaq InoA a10jeq
Ajpreipaww pajjed

*(sueaq pajenueisul
Auew 00} ai1e 219y}
asnedaq ysip 03 IN0
paddems) pajenissed
s1 ueaq InoA al0jeq
Ajprerpawii pajjed

"ueaq
uoIssas INoA sazijeniy

"2I0W pue ‘a)e)s
Aundas Juand sy ‘ayels
|euoneSURI} JUSLIND

SH IN0Qe X330 dY}
Asanb ued ueaq inoj
"JX9)U0D UOISSaS B YU
ueaq InNoA sa3enossy

NOlLdI¥dSs3a

(enowayqled

(O=1endyqfe

()=1enissedqlad

A...v...wwmw._Un_.—v

(X390 IXaUOHUOISSIS)
IX9)UODUOISSISIDS

dOH1IN

NOILLVINIWITdINI TVIIdAL

NOILLVINIWITdINI TVIIdAL

S9SSe|) URAY UOISSAS 10§ SPOYIS|N palinbay

't d]qelL

Introduction to Session Beans 91

Client

1: Invoke Business Method

—— 3: Reconstruct Bean —=|

o— EJBObject | 4:Call ejpActivate() ——=> Enterprise Bean
Remote .
Interface - 5: Invoke Business Method —

Other Enterprise
Beans

i

2: Retrieve

Passivated

Bean State A typical just-in-time stateful
bean activation scenario. The
client has invoked a method on
an EJB object whose stateful
bean had been passivated.

Storage

Figure 4.3 Activation of a stateful bean.

The Count Bean’s Remote Interface

First let’s define our bean’s remote interface. The code is shown in Source 4.1.

Our remote interface defines a single business method, count(), which we will
implement in the enterprise bean class.

The Count Bean

Our bean implementation has one business method, count(), which is respon-
sible for incrementing an integer member variable, called val. The conversa-
tional state is the val member variable. We show the code for our counter bean
in Source 4.2.

92 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/*
*
*
*
*
*
*
*

*

*

These are CountBean’s business logic methods.

This interface is what clients operate on when they
interact with EJB objects. The container vendor will
implement this interface; the implemented object is
the EJB object, which delegates invocations to the
actual bean.
/

public interface Count extends EJBObject {

/**
* Increments the int stored as conversational state
*/

public int count() throws RemoteException;

Source 4.1 Count.java.

package examples;

import javax.ejb.*;

VA

*

*

*

Demonstration Stateful Session Bean. This Bean is initialized
to some integer value, and has a business method which
increments the value.

This example shows the basics of how to write a stateful
session bean, and how passivation/activation works.

*/
public class CountBean implements SessionBean {

// The current counter is our conversational state.
public int val;

//
// Business methods
//

Source 4.2 CountBean.java.

Introduction to Session Beans 93

/**
* Counts up
*/
public int count () {
System.out.println("count()");
return ++val;

//
// EJB-required methods
//

public void ejbCreate(int val) throws CreateException {
this.val = val;
System.out.println("ejbCreate()");

public void ejbRemove () {
System.out.println("ejbRemove()") ;

public void ejbActivate() {
System.out.println ("ejbActivate()") ;

public void ejbPassivate() {
System.out.println("ejbPassivate()");

public void setSessionContext (SessionContext ctx) {

}

Source 4.2 CountBean.java (continued).

Note the following about our bean:

m The bean implements javax.ejb.SessionBean (described fully in Appendix
E). This means the bean must define all methods in the SessionBean inter-
face. By looking at the bean, you can see we’ve defined them but kept
them fairly trivial.

m QOur ¢jbCreate() initialization method takes a parameter, val. This method
customizes our bean to the client’s needs. Our ejbCreate() method is

94

THE TRIAD OF BEANS

responsible for beginning a conversation with the client. It uses val as the
starting state of the counter.

m The val member variable obeys the rules for conversational state because
it is serializable. Thus, it lasts across method calls and is automatically
preserved during passivation/activation.

Notice, too, that our code has a setSessionContext() method. This associates our
bean with a session context, which is a specific EJB context used only for session
beans. Our bean can callback to the container through this object. The session
context interface looks like this:

public interface javax.ejb.SessionContext
extends javax.ejb.EJBContext
{
public javax.ejb.EJBLocalObject getEJBLocalObject () ;
public javax.ejb.EJBObject getEJBObject () ;
}

Notice that the SessionContext interface extends the E[BContext interface, giv-
ing session beans access to all the methods defined in EJBContext (see Chapter
3 or Appendix E).

Specific to session beans, the getE[BObject() and getEJBLocalObject() methods
are useful if your bean needs to call another bean and if you want to pass a ref-
erence to your own bean. In Java, an object can obtain a reference to itself with
the this keyword. In EJB, however, a bean cannot use the this keyword and pass
it to other beans because all clients invoke methods on beans indirectly
through a bean’s E]B object. Thus, a bean can refer to itself by using a reference
to its EJB object, rather than the this keyword.

The Count Bean’s Home Interface

To complete our stateful bean code, we must define a home interface. The
home interface details how to create and destroy our Count EJB object. The
code for our home interface is in Source 4.3.

Because we implement javax.ejb.EJBHome, our home interface gets the remove()
destroy method for free.

The Count Bean’s Deployment Descriptor

Now that we’ve got all our Java files for our bean, we need to define the
deployment descriptor to identify the bean’s settings to the container. The
deployment descriptor settings we use are listed in Source 4.4.

Introduction to Session Beans

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/**

* This is the home interface for CountBean. This interface
* is implemented by the EJB Server'’s glue-code tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in the CountBean file.
*/

public interface CountHome extends EJBHome {

/*
* This method creates the EJB Object.

* @param val Value to initialize counter to
*
* @return The newly created EJB Object.
*/
Count create(int val) throws RemoteException, CreateException;

Source 4.3 CountHome.java.

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>Count</ejb-name>
<home>examples.CountHome</home>
<remote>examples.Count</remote>
<ejb-class>examples.CountBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

Source 4.4 ejb-jarxml.

95

96

THE TRIAD OF BEANS

Notice that our bean’s stateful nature is defined declaratively in the deploy-
ment descriptor. We never introduce the notion of a bean being stateful in the
bean code itself. This allows us to easily switch from the stateful to stateless
paradigm and back.

The Count Bean's Proprietary Descriptor
and Ejb-jar File

To complete our component, we need to write any proprietary files that our
application server may require and package those files and our bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will make (which is vendor specific) will force the con-
tainer to have a maximum pool of two beans. We will then create three beans
and observe how the container must passivate instances to service requests.

To save space, in future examples we’ll consider that the proprietary descrip-
tors, the Ejb-jar file, and the deployment itself are implied steps. If you're
really curious about how this is achieved, take a look at the source code accom-
panying the book.

The Count Bean'’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.

2. We locate the home object using JNDI.

3. We use the home object to create three different Count EJB objects. Thus,
we are creating three different conversations and are simulating three dif-
ferent clients.

4. We limited the bean pool size to two beans, so during the previous step
some of the three beans must have been passivated. We print out a mes-
sage during the ejbPassivate() callback to illustrate this.

5. Next, we call count() on each EJB object. This forces the container to acti-
vate the instances, restoring the conversations to memory once again. We
print out a message during the ejbActivate() callback to illustrate this.

6. Finally, all the E]B objects are removed.

The code appears in Source 4.5.

Introduction to Session Beans

package examples;

import javax.ejb.*;
import javax.naming.*;
import java.util.Properties;

/**
* This class is a simple example of client code.
*
* We create 3 EJB Objects in this example, but we only allow
* the container to have 2 in memory. This illustrates how
* beans are passivated to storage.
*/
public class CountClient {

public static void main(String[] args) {

try {
/*
* Get System properties for JNDI initialization
*/
Properties props = System.getProperties();

/*
* Get a reference to the Home Object - the
* factory for EJB Objects
*/
Context ctx = new InitialContext (props);
CountHome home = (CountHome)
javax.rmi.PortableRemoteObject .narrow (

ctx.lookup ("CountHome"), CountHome.class) ;
/*
* An array to hold 3 Count EJB Objects
*/
Count count[] = new Count[3];
int countVal = 0;
/*
* Create and count () on each member of array
*/

System.out.println("Instantiating beans . . . ");
for (int i=0; 1 < 3; i++) {

/*

* Create an EJB Object and initialize

* it to the current count value.

Source 4.5 CountClient.java.

97

98 THE TRIAD OF BEANS

*/
count[i] = home.create(countVal) ;
/*

* Add 1 and print

*/
countVal = count[i].count () ;

System.out.println(countVal) ;

/*
* Sleep for 1/2 second
*/
Thread.sleep (500) ;
}
/*

* Let’s call count() on each EJB Object to

* make sure the beans were passivated and

* activated properly.

*/
System.out.println("Calling count() on beans . . . ");
for (int i=0; i < 3; i++) {

/*
* Add 1 and print
*/
countVal = count[i].count() ;

System.out.println (countVal) ;

/*
* Sleep for 1/2 second
*/
Thread.sleep (500) ;
}
/*
* Done with EJB Objects, so remove them
*/

for (int i=0; i < 3; i++) {
count [i] .remove() ;
}
} catch (Exception e) {
e.printStackTrace() ;

Source 4.5 CountClient.java (continued).

Introduction to Session Beans 99

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the
book’s accompanying source code for scripts.

Client-Side Output
After running the client, we see the following output:
Instantiating beans .

1
2
3
Calling count () on beans .
2
3
4

We first created three beans and then called count() on each. As expected, the
beans incremented their values by one each during the second pass, so output
is as expected. But were our beans really passivated and activated? Let’s check
the server log.

Server-Side Output
The container log yields the following results:

ejbCreate ()
count ()
ejbCreate ()
count ()
ejbCreate ()
ejbPassivate()
count ()
ejbPassivate ()
ejbActivate()
count ()
ejbPassivate()
ejbActivate()
count ()
ejbPassivate ()
ejbActivate()
count ()
ejbPassivate()
ejbActivate()
ejbRemove ()
ejbActivate()
ejbRemove ()
ejbRemove ()

100 THE TRIAD OF BEANS

As you can see from the passivation/activation messages in the log, the con-
tainer is indeed passivating and activating beans to conserve system resources.
Because the client-side output is correct, each of our beans’ conversational
state was retained properly.

Life Cycle Diagrams for
Session Beans

Now that we’ve written a complete stateless session bean (in Chapter 3) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container (that is, the home object and EJB
objects) is calling methods on our bean.

Bean Instance Does Not
Container decided it Exist
needs more instances
in the pool to service

clients. A

%
1: Class.newlnstance(1: gjpRemove() Contailner decided it
2: setSessionContext() Omemmmee doesn't need so
3: ejbCreate() many instances

anymore.

Pool of Equivalent

Business Method Method-Ready Instances

Any client calls a
business method on
any EJB object.

Figure 4.4 The life cycle of a stateless session bean.

Introduction to Session Beans 101

Let’s walk through this diagram.

First, the bean instance does not exist. Perhaps the application server has
just started up.

Next, the container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on the
container’s policy for pooling beans. The container may decide to instanti-
ate 10 beans all at once when the application server first starts because you
told the container to do so using the vendor-specific files that you ship
with your bean. Each of those beans are equivalent (because they are state-
less) and they can be reused for many different clients.

Then the container instantiates your bean. The container calls Class.newlIn-
stance(“HelloBean.class”) on your session bean class, which is the dynamic
equivalent of calling new HelloBean(). The container does this so that the
container is not hard-coded to any specific bean name; the container is
generic and works with any bean. This action calls your bean’s default con-
structor, which can do any necessary initialization.

Next, the container calls setSessionContext(). This associates you with a
context object, which enables you to make callbacks to the container (see
Chapter 9 for some examples of these callbacks).

Then the container calls ejbCreate(). This initializes your bean. Note that
because stateless session beans’ ejbCreate() methods take no parameters,
clients never supply any critical information that bean instances need to
start up. EJB containers can exploit this and precreate instances of your
stateless session beans. In general when a client creates or destroys a bean
using the home object, that action might not necessarily correspond with
literally creating or destroying in-memory bean objects, because the E]B
container controls their life cycles to allow for pooling between heteroge-
neous clients.

Next, the container can call business methods on your bean. The container
can call as many business methods as it wants to call. Each business
method could originate from a completely different client because all bean
instances are treated exactly the same. All stateless session beans think
they are in the same state after a method call; they are effectively unaware
that previous method calls happened. Therefore the container can dynami-
cally reassign beans to client requests at the per-method level. A different
stateless session bean can service each method call from a client. Of course,
the actual implementation of reassigning beans to clients is container-
specific.

Finally, the container calls ejpRemove(). When the container is about to
remove your session bean instance, it calls your bean’s ejbRemove() callback
method. ejbRemove() is a clean-up method, alerting your bean that it is

102

THE TRIAD OF BEANS

about to be destroyed and allowing it to end its life gracefully. ejbRemove()
is a required method of all beans, and it takes no parameters. Therefore
there is only one ejbRemove() method per bean. This is in stark contrast to
ejbCreate(), which has many forms. This makes perfect sense: Why should a
destructive method be personalized for each client? (This is an analogous
concept to destructors in C+ +.) Your implementation of ejbRemove()
should prepare your bean for destruction. This means you need to free all

resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in the
diagram, the container (not the client) is calling methods on our bean instance.

The life cycle for stateful session beans is very similar to stateless session

beans. The big differences are as follows:

m There is no pool of equivalent instances because each instance contains

state.

m There are transitions for passivating and activating state.

Client called
create(...) on the

) Bean Instance Does
home interface.

Not Exist

o o
1: Class.newinstance() gjbRemove()
2: setSessionContext()
3: ejbCreate(...)

)

Client called remove() on
the EJB object or client
times out.

ejbPassivate()

Container's limit of
instantiated beans is
reached, so it must

swap your bean out.

Client Times Out

Business Method Ready

Passive

Q

Client called a
business method
on the EJB object.

Figure 4.5 Life cycle of a stateful session bean.

ejbActivate()
Q

Client called a method

on a passivated bean,
so container must
swap your bean back
in.

Introduction to Session Beans 103

Don't rely on ejbRemove()

Your container can call ejpRemove() at any time, even if the container decides
that the bean'’s life has expired (perhaps due to a very long timeout). Note that
the container may never call your bean’s ejpRemove() method, such as if the con-
tainer crashes or if a critical exception occurs. You must be prepared for this con-
tingency. For example, if your bean performs shopping cart operations, it might
store temporary shopping cart data in a database. Your application should pro-
vide a utility that runs periodically to remove any abandoned shopping carts from
the database.

Summary

In this chapter, we learned the theoretical concepts behind session beans. We
learned about achieving instance pooling with session beans, activation, and
passivation. We wrote a stateful session bean that counted up and touched on
session beans’ life cycle.

This completes our introduction to session beans. In the next chapters, you'll
learn about the more complex (and also quite interesting) entity bean. Turn the
page and read on!

Introduction to Entity Beans

are persistent objects that can be stored in permanent storage. This means you

O ne of the key benefits of EJB is the power to create entity beans. Entity beans
can model your business’s fundamental, underlying data as entity beans.

In this chapter, we'll cover these topics:

m The basic concepts of persistence

m A definition of entity beans, from a programmer’s perspective
m The features that entity beans have to offer
-

Entity bean programming concepts

This chapter is relatively theoretical, and it is meant to give you a deep founda-
tion in entity bean programming concepts. For those of you with a traditional
procedural programming background, entity beans can be a tough topic to
grasp. You may need to reread this chapter a few times to really understand
how things work. Make sure you've read and understood the previous chapters
in this book; our discussion of entity beans will build on the knowledge you've
acquired so far. We’ll use these concepts with hands-on code in later chapters.

Persistence Concepts

Because entity beans are persistent objects, our discussion begins with a quick
look at popular ways to persist objects.

106 THE TRIAD OF BEANS

Java Object Serialization

When you work with Java objects, in many cases you would like to capture the
state of the object you're currently working with and save it to a permanent
storage. One way to do this, as covered in Appendix A, is to use object serial-
ization. Object serialization is an easy way to marshal an object graph into a
compact representation. When you serialize an object graph, you convert the
graph into a byte stream. You can then do anything you want to with that
stream, such as push the data over the network (which is how Java RMI passes
parameters over the network), or you can save the stream to storage, such as a
file system, database, or JNDI tree. For sophisticated persistence, however,
object serialization falls short in many areas.

For example, let’s say we store a million serializable bank account objects onto
a file system. We do this by converting the objects to their bit-blob representa-
tion and then storing the bytes on disk. Let’s say we then want to retrieve all
bank accounts that have balances over $1,000. To do this with serialization,
we’d have to load each and every bank account serialized bit-blob from the
disk, construct the corresponding object, and then execute a method query on
the object to determine if the balance is over $1,000. We might want to perform
more advanced queries as well, such as retrieving all checking accounts that
have been inactive for six months. There is no efficient way to do this with
object serialization.

In general querying objects stored using object serialization is expensive and
cumbersome. Submitting queries against business data is an absolute neces-
sity for large-scale applications, which makes simple object serialization
unsuitable for persistent storage. Object serialization is best used in restricted
domains—for network communications and simple persistence. For EJB we
need a more robust persistence mechanism to address more complex querying
operations.

Object-Relational Mapping

Another popular way to store Java objects is to use a traditional relational data-
base, such as Oracle or Microsoft SQL Server. Rather than serialize each object,
we could decompose each object into its constituent parts and store each part
separately. For example, for a bank account object, the bank account number
could be stored in one relational database field and the bank account balance
in another field. When you save your Java objects, you would use JDBC or
SQL/]J to map the object data into a relational database. When you want to load
your objects from the database, you would instantiate an object from that class,
read the data in from the database, and then populate that object instance’s
fields with the relational data read in. This is shown in Figure 5.1

Introduction to Entity Beans 107

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (O/R) mapper may map your
objects to any kind of relational database schema. For example, a simple object-
relational mapping engine might map a Java class to a SQL table definition. An
instance of that class would map to a row in that table, while fields in that
instance would map to individual cells in that row. This is shown in Figure 5.2.
You'll see more advanced cases of mapping data with relationships to other data
in Chapter 11.

Bank Account

String accountID
String ownerName
double balance

/" Database API
i SuchasJDBCor !
saLJ

Bank Account
Table

Relational Database

Figure 5.1 Object-relational mapping.

THE TRIAD OF BEANS

Account Class

String accountID
String ownerName
double balance

Account Instance

- = _
accountlD | ownerName balance accountD =1
’ % ownerName = Ray Combs

= / balance = 1000
1 < Ray Combs <€ 1000 <]

2 Bob Barker 1500

3 Monty Haul 2750

Account Table

Relational Database

Figure 5.2 An example of object-relational mapping.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than simple object serialization. By decomposing your Java
objects as relational data, you can issue arbitrary queries for information. For
example, you can search through all the database records that have an account
balance entry greater than $1,000 and load only the objects that fulfill this
query. More advanced queries are also possible. You can also visually inspect
the database data since it is not stored as bit-blobs, which is great for debug-
ging or auditing.

Mapping of objects to relational data can be done in two ways. You can either
hand-craft this mapping in your code or use an object-relational mapping
product like WebGain’s TOPLink or Sun’s JavaBlend to automate or facilitate
this mapping. Today, most users hand-craft the mapping using a database
access API such as JDBC or SQL/J. Because the cost of developing and main-
taining an object-relational mapping layer is significant, the object-relational
mapping products are likely to be adopted as they mature.

Introduction to Entity Beans

Object Databases

109

An object database management system (ODBMS) is a persistent store that holds
entire objects. In an object database, your objects are first-class citizens in the
database. This means there is no O/R mapping layer—your Java objects them-
selves are stored as whole objects. Because of this, you don’t need to program
to a relational database API; rather, you program to the object database’s API.
This means you can sidestep object/relational mapping, resulting in simpli-

fied data access code.

Most object databases (and O/R mapping products) provide facilities to query
persisted objects by using an object query language (OQL). OQL is a nice high-
level interface that allows you to query object properties for arbitrary charac-
teristics. It also adds a layer of abstraction from relational database queries.

In addition to OQL-based queries, object databases support relationships
between objects. You can define a relationship between a Bank Account object
and a Customer object and transparently navigate between them. The trans-
parent navigation makes it easy to navigate the object model and provides
excellent performance compared to SQL-based joins that are needed to per-

form equivalent operations in relational databases.

Object databases also have predictable performance and scalability. They offer
strong integrity and security, and provide an excellent store for complex per-
sistent objects. Certain applications go really well with object databases
(geospatial or CAD/CAM, for example) are complete misfits for relational
databases. Other applications map easily to relational databases, such as most
business applications. For simple high-volume business transactions, rela-

tional databases typically scale better than object databases.

ObjectStore, Versant, and POET are a few of the current vendors who provide
object database technology. Unfortunately, the industry has not yet fully
embraced object database products. Although they are very useful for certain
applications, object databases are currently limited because they do not have
very many associated tools, such as reporting, tuning, and management tools.

Now that we’ve whetted your appetite with persistence mechanisms, let’s take
a look at how entity bean persistent objects are used in an EJB multitier

environment.

What Is an Entity Bean?

In any sophisticated, object-oriented multitier deployment, we can draw a

clear distinction between two different kinds of components deployed.

110 THE TRIAD OF BEANS

Application logic components. These components are method providers that
perform common tasks. Their tasks might include the following;:

m Computing the price of an order
m Billing a customer’s credit card
m Computing the inverse of a matrix

Notice that these components represent actions (they’re verbs). They are
well suited to handle business processes.

Session beans model these application logic components very well. They
often contain interesting algorithms and logic to perform application tasks.
Session beans represent work being performed for a user. They represent
the user session, which includes any workflow logic.

Persistent data components. These are objects (perhaps written in Java) that
know how to render themselves into persistent storage. They use some
persistence mechanism, such as serialization, O/R mapping to a relational
database, or an object database. These kinds of objects represent data—sim-
ple or complex information that you’d like saved. Examples here include:

m Bank account information, such as account number and balance

m Human resources data, such as names, departments, and salaries of
employees

m [ead tracking information, such as names, addresses, and phone num-
bers of prospective customers that you want to keep track of over time

Notice that these components represent people, places, and things (they're
nouns). They are well suited to handle business data.

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than dealing with raw
database data, such as relational rows? It is handy to treat data as objects
because they can be easily handled and managed and because they are repre-
sented in a compact manner. We can group related data in a unified object. We
associate some simple methods with that data, such as compression or other
data-related activities. We can also gain implicit middleware services from an
application server, such as relationships, transactions, network accessibility,
and security. We can also cache that data for performance.

Entity beans are these persistent data components. Entity beans are enterprise
beans that know how to persist themselves permanently to a durable storage
like a database or legacy system. They are physical, storable parts of an enter-
prise. Entity beans store data as fields, such as bank account numbers and
bank account balances. They also have methods associated with them, such as
getBankAccountNumber() and getAccountBalance(). For a full discussion of when
to (and when not to) use entity beans, see Chapter 12.

Introduction to Entity Beans 111

In some ways, entity beans are analogous to serializable Java objects. Serializ-
able objects can be rendered into a bit-blob and then saved into a persistent
store; entity beans can persist themselves in many ways, including serializa-
tion, O/R mapping, or object database persistence. Nothing in the E]JB specifi-
cation dictates any particular persistence mechanism.

Entity beans are very different from session beans. Session beans model a
process or workflow (actions that are started by the user and that go away
when the user goes away). Entity beans, on the other hand, contain core busi-
ness data—product information, bank accounts, orders, lead tracking infor-
mation, customer information, and more. An entity bean does not perform
complex tasks or workflow logic, such as billing a customer. Rather, an entity
bean is the customer itself. Entity beans represent persistent state objects
(things that don’t go away when the user goes away).

For example, you might want to read a bank account data into an entity bean
instance, thus loading the stored database information into the in-memory
entity bean instance’s fields. You can then play with the Java object and mod-
ify its representation in memory because you're working with convenient Java
objects, rather than bunches of database records. You can increase the bank
account balance in-memory, thus updating the entity bean’s in-memory bank
account balance field. Then you can save the Java object, pushing the data back
into the underlying store. This would effectively deposit money into the bank
account.

The term entity bean is grossly overused. Sometimes it refers to an in-memory Java
object instance of an entity bean class, and sometimes it refers to database data
that an in-memory Java object instance represents. To make the distinction clear, we
introduce two new terms:

The entity bean instance is the in-memory view into the database. It is an instance
of your entity bean class.

The entity bean data (or data instance) is the physical set of data, such as a bank
account record, stored in the database.

In summary, you should think of an entity bean instance as the following:

m An in-memory Java representation of persistent data

m Smart enough to know how to read itself from a storage and populate its
fields with the stored data

m An object that can then be modified in-memory to change the values of
data

m Persistable, so that it can be saved back into storage again, thus updating
the database data

112 THE TRIAD OF BEANS

About the Files that Make up
an Entity Bean

An entity bean contains the standard set of files that all E]B components have,
including the remote and/or local interface, the home and/or local home
interface, the enterprise bean class, and the deployment descriptor.

There are several noteworthy differences between entity bean files and other
types of EJB components.

The entity bean class maps to an entity definition in a database schema. For
example, an entity bean class could map to a relational table definition. In
this case, an entity bean instance of that class would map to a row in that
table. Your entity bean class can expose simple methods to manipulate or
access that data, such as a method to decrease a bank account balance. Like
a session bean class, E]B also requires that an entity bean class must fill in
some standard callback methods. The EJB container will call these methods
appropriately to manage the entity bean.

The primary key class makes every entity bean different. For example, if you
have 1 million different bank account entity beans, each bank account
needs to have a unique ID (such as a bank account ID string) that can
never be repeated in any other bank account. A primary key is an object
that may contain any number of attributes. This could be whatever data
necessary to uniquely identify an entity bean data instance. In some
advanced cases, when the entity bean represents a complex relationship,
the primary key might be an entire object. EJB gives you the flexibility to
define what your unique identifier is by including a primary key class with
your entity bean. The one rule is that your primary key class must be seri-
alizable and follow the rules for Java object serialization. The rules for
object serialization are in Appendix A.

Features of Entity Beans

Let’s take a look at the features of entity beans.

Entity Beans Survive Failures

Entity beans are long lasting. They survive critical failures, such as application
servers crashing, or even databases crashing. This is because entity beans are
just representations of data in a permanent, fault-tolerant underlying storage.
If a machine crashes, the entity bean can be reconstructed in memory. All we
need to do is read the data back in from the permanent database and instanti-

Introduction to Entity Beans 113

ate an entity bean Java object instance whose fields contain the data read in
from the database.

This is a huge difference between session and entity beans. Entity beans have
a life cycle much longer than a client’s session, perhaps years long, depending
on how long the data sits in the database. In fact, the database records repre-
senting an object could have existed before the company even decided to go
with a Java-based solution, because a database structure can be language-inde-
pendent. This makes sense—you definitely would want your bank account to
last for a few years, regardless of technology changes in your bank.

Entity Bean Instances Are a View
into a Database

When you load entity bean data into an in-memory entity bean instance, you
read in the data stored in a database so that you can manipulate the data
within a Java Virtual Machine. However, you should think of the in-memory object
and the database itself as one and the same. This means if you update the in-mem-
ory entity bean instance, the database should automatically be updated as
well. You should not think of the in-memory entity bean as a separate version
of the data in the database. The in-memory entity bean is simply a view or lens
into the database.

Of course, in reality there are multiple physical copies of the same data: the in-
memory entity bean instance and the entity bean data itself stored in the data-
base. Therefore, there must be a mechanism to transfer information back and
forth between the Java object and the database. This data transfer is accom-
plished with two special methods that your entity bean class must implement,
called ejbLoad() and ejbStore().

ejbLoad() reads the data in from the persistent storage into the entity bean’s
in-memory fields.

ejbStore() saves your bean instance’s current fields to the underlying data
storage. It is the complement of ejbLoad().

So who decides when to transfer data back and forth between the in-memory
bean and the database? That is, who calls ejbLoad() and ejbStore()? The answer
is your EJB container. ejbLoad() and ejbStore() are callback methods that the con-
tainer invokes. They are management methods required by EJB. The container
worries about the proper time to call ejbLoad() and ejbStore()—this is one of the
value-adds of the container. This is shown visually in Figure 5.3.

Your beans should be prepared to accept an ejbLoad() or ejbStore() call at almost
any time (but not during a business method). The container automatically

114 THE TRIAD OF BEANS

This ejbLoad()-business method-ejbStore()
cycle may be repeated many times.

EJB Container/Server

1: ejbLoad()

3: Business
Methods

N

4: ejbStore() Entity Bean Instance

2: Read from 5: Write to
Database Database

| V

Entity Bean Data

Database

Figure 5.3 Loading and storing an entity bean.

figures out when each of your instances needs to be refreshed depending on
the current transactional state (see Chapter 10). This means that you never
explicitly call your own ejbLoad() or ejbStore() methods. This is one of the
advantages of EJB: You don’t have to worry about synchronizing your objects
with the underlying database. The EJB black box handles it for you. That is
why you can think of the entity bean and the database as the same; there
should never be a time when the two are transactionally out of sync.

Several Entity Bean Instances May
Represent the Same Underlying Data

Let’s consider the scenario in which many threads of execution want to access
the same database data simultaneously. In banking, interest might be applied
to a bank account, while at the same time a company directly deposits a check
into that same account. In e-commerce, many different client browsers may be
simultaneously interacting with a catalog of products.

Introduction to Entity Beans 115

To facilitate many clients accessing the same data, we need to design a high-
performance access system to our entity beans. One possibility is to allow
many clients to share the same entity bean instance; that way, an entity bean
could service many client requests simultaneously. While this is an interesting
idea, it is not very appropriate for EJB, for two reasons. First, if we’d like an
entity bean instance to service many concurrent clients, we’d need to make
that instance thread-safe. Writing thread-safe code is difficult and error-prone.
Remember that the EJB value proposition is rapid application development.
Mandating that component vendors produce stable thread-safe code does not
encourage this. Second, having multiple threads of execution makes transac-
tions almost impossible to control by the underlying transaction system. For
these reasons, E]B dictates that only a single thread can ever be running within
a bean instance. With session beans and message-driven beans, as well as
entity beans, all bean instances are single-threaded.

Mandating that each bean can service only one client at a time could result in
performance bottlenecks. Because each instance is single-threaded, clients
need to effectively run in lockstep, each waiting their turn to use a bean. This
could easily grind performance to a halt in any large enterprise deployment.

To boost performance, we could allow containers to instantiate multiple
instances of the same entity bean class. This would allow many clients to con-
currently interact with separate instances, each representing the same under-
lying entity data. Indeed, this is exactly what EJB allows containers to do.
Thus, client requests do not necessarily need to be processed sequentially, but
rather concurrently.

Having multiple bean instances represent the same data now raises a new
problem: data corruption. If many bean instances are representing the same
underlying data via caching (see Chapter 14), we're dealing with multiple in-
memory cached replicas. Some of these replicas could become stale, represent-
ing data that is not current.

To achieve entity bean instance cache consistency, each entity bean instance
needs to be routinely synchronized with the underlying storage. The container
synchronizes the bean with the underlying storage by calling the bean’s
ejbLoad() and ejbStore() callbacks, as described in the previous section.

The frequency with which beans are synchronized with an underlying storage
is dictated by transactions, a topic we cover in Chapter 10. Transactions allow
each client request to be isolated from every other request. They enable clients
to believe they are dealing with a single in-memory bean instance, when in fact
many instances are behind the scenes. Transactions give clients the illusion
that they have exclusive access to data when in fact many clients are touching
the same data.

116 THE TRIAD OF BEANS

Entity Bean Instances Can Be Pooled

Let’s say you've decided to author your own EJB container/server. Your prod-
uct is responsible for instantiating entity beans as necessary, with each bean
representing data in an underlying storage. As clients connect and disconnect,
you could create and destroy beans as necessary to service those clients.

Unfortunately this is not a scalable way to build an application server. Cre-
ation and destruction of objects is expensive, especially if client requests come
frequently. How can we save on this overhead?

One thing to remember is that an entity bean class describes the fields and
rules for your entity bean, but it does not dictate any specific data. For exam-
ple, an entity bean class may specify that all bank accounts have the following
fields:

m The name of the bank account owner
m An account ID

m An available balance

That bean class can then represent any distinct instance of database data, such
as a particular bank account record. The class itself, though, is not specific to
any particular bank account.

To save precious time instantiating objects, entity bean instances are therefore
recyclable objects and may be pooled depending on your container’s policy.
The container may pool and reuse entity bean instances to represent different
instances of the same type of data in an underlying storage. For example, a
container could use a bank account entity bean instance to represent different
bank account records. When you're done using an entity bean instance, that
instance may be assigned to handle a different client’s request and may repre-
sent different data. The container performs this by dynamically assigning the
entity bean instance to different client-specific EJB objects. Not only does this
save the container from unnecessarily instantiating bean instances, but this
scheme also saves on the total amount of resources held by the system. We
show this in Figure 5.4

Instance pooling is an interesting optimization that containers may provide,
and it is not at all unique to entity beans. However, complications arise when
reassigning entity bean instances to different EJB objects. When your entity
bean is assigned to a particular EJB object, it may be holding resources such as
socket connections. But when it’s in the pool, it may not need that socket. Thus,
to allow the bean to release and acquire resources, your entity bean class must
implement two callback methods.

Introduction to Entity Beans 117

EJB Container/Server

Figure 5.4 EJB container pooling of entity beans.

Remote
Client 1 Interface | EJB Object 1
John Smith ——=>0— (John Smith's Bank
Account)
Remote
Client 2 Interface | EJB Object 2
Mary Jane =>0— (Mary Jane's Bank
Account)
Remote
Client 3 Interface EJB Object 3
Bob Hall =>0—{ (Bob Hall's Bank
Account)

Bean Pool

Entity Bean
Instances

The EJB container can
dynamically assign entity
bean instances to
represent different data.

ejbActivate() is the callback that your container will invoke on your bean
instance when transitioning your bean out of a generic instance pool.
This process is called activation, and it indicates that the container is associ-
ating your bean with a specific EJB object and a specific primary key. Your
bean’s ejbActivate() method should acquire resources, such as sockets, that
your bean needs when assigned to a particular E]JB object.

ejbPassivate() is the callback that your container will invoke when transi-
tioning your bean into a generic instance pool. This process is called
passivation, and it indicates that the container is disassociating your bean
from a specific EJB object and a specific primary key. Your bean’s ejbPassi-
vate() method should release resources, such as sockets, that your bean
acquired during ejbActivate().

When an entity bean instance is passivated, it must not only release held
resources but also save its state to the underlying storage; that way, the storage
is updated to the latest entity bean instance state. To save the instance’s fields

118 THE TRIAD OF BEANS

to the database, the container invokes the entity bean’s ejbStore() method prior
to passivation. Similarly, when the entity bean instance is activated, it must not
only acquire any resources it needs but also load the most recent data from the
database. To load data into the bean instance, the container invokes the entity
bean’s ejbLoad() method after activation. This is shown in Figure 5.5.

There Are Two Ways to Persist
Entity Beans

Since entity beans map to a storage, someone needs to actually write the data-
base access code.

A bean-managed persistent entity bean is an entity bean that must be persisted by
hand. In other words, you as the component developer must write code to
translate your in-memory fields into an underlying data store, such as a rela-

Container Bean Instance

1: ejoStore() —— =
Passivation entails
a state save.

2: ejbPassivate() -

1: ejbActivate() —
. Activation entails a
state load.

2: ejbLoad() ——»

Figure 5.5 Passivation of entity beans entails a state save, and activation entails a state
load.

Introduction to Entity Beans

119

tional database or an object database. You handle the persistent operations
yourself—including saving, loading, and finding data—within the entity
bean. Therefore, you must write to a persistence API, such as JDBC or SQL/]J.
For example, with a relational database, your entity bean could perform an
SQL INSERT statement via JDBC to stick some data into a relational database.
You could also perform an SQL DELETE statement via JDBC to remove data

from the underlying store.

EJB offers an alternative to bean-managed persistence: You can have your EJB
container perform your persistence for you. This is called container-managed
persistence. In this case, you would usually strip your bean of any persistence
logic. Then, you inform the container about how you’d like to be persisted by
using the container’s tools. The container then generates the data access code
for you. For example, if you're using a relational database, the container may
automatically perform SQL INSERT statements to create database data. Simi-
larly, it will automatically perform SQL DELETE statements to remove data-
base data, and it will handle any other necessary persistent operations. Even
if you are not working with a relational database, you can have your con-
tainer persist for you. If your container supports a nonrelational persistent
store, such as an object database or a VSAM file, the container will generate
the appropriate logic as necessary. In fact, you can wait until deployment time
before you setup the O/R mapping, which is great because you can write
storage-independent data objects, and reuse them in a variety of enterprise

environments.

Container-managed persistence reduces the size of your beans tremendously
because you don’t need to write JDBC code—the container handles all the persis-
tence for you. This is a huge value-add feature of EJB. Of course, it is still evolv-
ing technology. Once we’ve written a few entity beans, we’ll review the trade-offs

of bean-managed versus container-managed persistence (see Chapter 12).

Creation and Removal of Entity Beans

As we mentioned earlier, entity beans are a view into a database, and you
should think of an entity bean instance and the underlying database as one
and the same (they are routinely synchronized). Because they are one and the
same, the initialization of an entity bean instance should entail initialization of
database data. Thus, when an entity bean is initialized in memory during
ejbCreate(), it makes sense to create some data in an underlying database that
correlates with the in-memory instance. That is exactly what happens with
entity beans. When a bean-managed persistent entity bean’s ejbCreate()
method is called, the ejbCreate() method is responsible for creating database
data. Similarly, when a bean-managed persistent entity bean’s ejbRemove()
method is called, the ejbRemove() method is responsible for removing database

120

THE TRIAD OF BEANS

data. If container-managed persistence is used, the container will modify the
database for you, and you can leave these methods empty of data access logic.

Let’s look at this in more detail.

Understanding How Entity Beans Are
Created and Destroyed

In EJB, remember that clients do not directly invoke on beans—they invoke an
EJB object proxy. The EJB object is generated through the home object. There-
fore, for each ejbCreate() method signature you define in your bean, you must
define a corresponding create() in the home interface. The client calls the home
object’s create(), which delegates to your bean’s ejbCreate().

For example, let’s say you have a bank account entity bean class called
AccountBean, with a remote interface Account, home interface AccountHome,
and primary key class AccountPK. Given the following ejbCreate() method in
AccountBean:

public AccountPK ejbCreate(String accountID, String owner) throws . . .

you must have this create() in your home interface (notice there is no “ejb”
prefix):

public Account create(String accountID, String owner) throws

Notice that there are two different return values here. The bean instance
returns a primary key (AccountPK), while the home object returns an EJB object
(Account). This makes sense—the bean returns a primary key to the container
(that is, to the home object) so that the container can identify the bean. Once
the home object has this primary key, it can generate an EJB object and return
that to the client. We show this process more rigorously with the sequence dia-
gram in Figure 5.6.

To destroy an entity bean’s data in a database, the client must call remove() on
the EJB object or home object. This method causes the container to issue an
ejbRemove() call on the bean. Figure 5.7 shows the relationship between remove()
and ejbRemove(). Note that remove() can be called on either the home object or
the EJB object. The figure happens to assume bean-managed persistence.

Note that ejbRemove() does not mean the in-memory entity bean instance is
going to be destroyed; ejbRemove() destroys only database data. The bean
instance can be recycled to handle a different database data instance, such as a
bank account bean representing different bank accounts.

ejbRemove() is a required method of all entity beans, and it takes no parameters.
There is only one form of ejbRemove(). With entity beans, ejbRemove() is not

Introduction to Entity Beans 121

Relationship between create()
and ejbCreate().

(Diagram leaves out a few minor
steps and happens to assume
bean-managed persistence.)

EJB Container/Server

1: create() |
Client Code Home Object | —2: ejbCreate()

5: Create EJB Object

6: Return EJB Object . Entity Bean
4: Return Prima

Instance

EJB Object

3: Create Database Data

—

T

)

/R

Entity Bean Data

v

Datal

Figure 5.6 Creating an entity bean and EJB object.

base

called if the client times out because the lifetime of an entity bean is longer

than the client’s session.

Entity Beans Can Be Found

Because entity bean data is uniquely identified in an underlying storage, entity
beans can also be found rather than created. Finding an entity bean is analo-
gous to performing a SELECT statement in SQL. With a SELECT statement,
you're searching for data from a relational database store. When you find an

122

THE TRIAD OF BEANS

Relationship between remove()
and ejbRemove().

Note that remove() can be
called on either the home
object or the EJB object.

(Diagram happens to assume
bean-managed persistence.)

EJB Container/Server

1 remove()j Home Object

2: ejpRemove()

Client Code Entity Bean
Instance

1: remove()

2: ejpRemove()
EJB Object

3: Remove Database Data

T
A

Entity Bean Data
v

Database

Figure 5.7 Destroying an entity bean’s data representation.

entity bean, you're searching a persistent store for some entity bean data. This
differs from session beans because session beans cannot be found: They are not
permanent objects, and they live and die with the client’s session.

You can define many ways to find an entity bean. You list these ways as meth-
ods in your entity bean home interface. These are called finder methods. Your
home interface exposes finder methods in addition to methods for creating
and destroying entity beans. This is the one big difference between an entity
bean’s home interface and other types of beans; the other bean types do not
have finder methods.

Introduction to Entity Beans 123

You Can Modify Entity Bean Data
without Using EJB

Usually you will create, destroy, and find entity bean data by using the entity
bean’s home object. But you can interact with entity beans another way, too: by
directly modifying the underlying database where the bean data is stored. For
example, if your entity bean instances are being mapped to a relational data-
base, you can simply delete the rows of the database corresponding to an
entity bean instance (see Figure 5.8). You can also create new entity bean data
and modify existing data by directly touching the database. This may be nec-
essary if you have an investment in an existing system that touches a database
directly.

These external database updates could raise cache consistency issues if you're
choosing to cache your entity beans. See Chapter 14 for more on this.

EJB Container/Server

Entity Beans ; Existing App

O/R Mapping Direct Database Modifications

Entity Bean
Data

_/

Relational Database

Figure 5.8 Modifying an entity bean’s database representation manually.

124 THE TRIAD OF BEANS

Entity Contexts

Asyou learned in Chapter 3, all enterprise beans have a context object that iden-
tifies the environment of the bean. These context objects contain environment
information that the EJB container sets. Your beans can access the context to
retrieve all sorts of information, such as transaction and security information.
For entity beans, the interface is javax.ejb.EntityContext.

We provide a refresher of the javax.ejb.E[BContext methods in Source 5.1.
Appendix E explains the meaning of each method.

Entity contexts add the following methods on top of the generic EJB context,
shown in Source 5.2.

Let’s look at each of these methods in more detail.

getEJBLocalObject() / getEJBObject()

Call this to retrieve the current, client-specific EJB object that is associated with
the entity bean. Remember that clients invoke on EJB objects, not on entity
beans directly. Therefore, you can use the returned EJB object as a way to pass
a reference to yourself, simulating the this argument in Java. getEJBLocalOb-
ject() is the same, except it gets the more optimized E]JB local object.

public interface javax.ejb.EJBContext {
public javax.ejb.EJBHome getEJBHome () ;
public javax.ejb.EJBLocalHome getEJBLocalHome () ;
public java.security.Principal getCallerPrincipal () ;
public boolean isCallerInRole(java.lang.String) ;
public void setRollbackOnly () ;
public boolean getRollbackOnly () ;

Source 5.1 The javax.ejb.EJBContext interface.

public interface javax.ejb.EntityContext
extends javax.ejb.EJBContext {
public javax.ejb.EJBLocalObject getEJBLocalObject() ;
public javax.ejb.EJBObject getEJBObject () ;
public java.lang.Object getPrimaryKey () ;

Source 5.2 The javax.ejb.EntityContext interface.

Introduction to Entity Beans 125

getPrimaryKey()

getPrimaryKey() is new to entity beans. It retrieves the primary key that is cur-
rently associated with this entity bean instance. Primary keys uniquely iden-
tify an entity bean. When an entity bean is persisted in storage, the primary
key can be used to uniquely retrieve the entity bean because no two entity
bean database data instances can ever have the same primary key.

Why would you want to call getPrimaryKey()? You call it whenever you want
to figure out with which database data your instance is associated. Remember
that entity bean instances can be reused and pooled, as we saw in Figure 5.4.
When the container wants to switch an entity bean instance from one data
instance to another, the container needs to passivate and activate that entity
bean instance. When this happens, your bean instance may switch to a differ-
ent data instance and thus a different primary key. But your entity bean
instance is never told this explicitly when it is activated. Rather, your entity
bean must perform a getPrimaryKey() callback to the entity context to figure
out what data it should be dealing with.

Thus, when you have an entity bean that’s performing any persistent work
(with bean-managed persistence), you should be calling getPrimaryKey()
whenever you need to figure out what data you're bean is associated with.
This is very useful, for example, in the following methods:

ejbLoad(). Recall that ejbStore() and ejbLoad() are bean callbacks to synchro-
nize a bean instance with an underlying storage. ejbStore() saves data to
storage, and ejbLoad() reads data from storage. When the container calls ejb-
Store(), your bean knows exactly what data to save because the bean
instance has the data in memory. But when the container calls ejbLoad(),
how does your bean know what data to load? After all, bean instances are
pooled and can be dynamically assigned to different data. The answer is to
use getPrimaryKey(); it will tell you what primary key you should be look-
ing for in the underlying storage when loading database data.

ejbRemove(). Recall that ejbCreate() and ejbRemove() are callbacks for creating
and removing data from an underlying storage, respectively. When the
container calls ejbCreate(), your bean knows exactly what data to create in
the database because your bean has received information in the parameters
of ejbCreate(). But when the container calls ejbRemove(), how does your bean
know what data to remove? Because bean instances are pooled and
dynamically assigned to handle different data instances, you might be
deleting the wrong data. Thus, you must call getPrimaryKey() to figure out
what data, keyed on the primary key, your bean should remove from the
database.

126 THE TRIAD OF BEANS

It is important to consider bean pooling when writing your enterprise beans,
and getPrimaryKey() is the key to knowing what data your bean is representing.

Summary

In this chapter, we’ve taken the first steps toward developing with entity
beans. We started by learning about various persistence mechanisms, includ-
ing object serialization, object/relational mapping, and persistence to pure
object databases. We then looked at exactly what an entity bean is, and we saw
the files included with an entity bean component. After surveying their fea-
tures, we took a look at entity contexts.

But the best is yet to come. In the coming chapters, we'll learn hands-on about
entity bean programming. Chapter 6 explains bean-managed persistent entity
beans and guides you through the steps in developing them using JDBC.
Chapter 7 continues with container-managed persistent entity beans. In Chap-
ter 11 we’ll learn how to program entity beans that require relationships. By
the time you're through, you'll be armed to create your own entity beans in
enterprise deployments.

Writing Bean-Managed Persistent
Entity Beans

beans, the first of two flavors of entity beans. When you code these types of
entity beans, you must provide your own data access logic. You are responsi-
ble for providing the implementation to map your entity bean instances to and
from storage. To do this, you typically use a database API such as JDBC or
SQL/J. This is in stark contrast to container-managed persistent entity beans,
which have their data access handled for them by the EJB container. This chap-
ter will teach you the basics of bean-managed persistence and show you how
to build a simple bean-managed entity bean using JDBC.

In this chapter, we'll demonstrate how to program bean-managed persistent entity

Entity Bean Coding Basics

To write an entity bean class, you write a Java class that implements the
javax.ejb.EntityBean interface. This interface defines a number of required
methods that your entity bean class must implement. Most of these methods
are management methods called by your EJB container. The following code
(Source 6.1 and 6.2) details javax.ejb.EntityBean, as well as its parent,
javax.ejb.EnterpriseBean (exceptions are omitted).

The javax.ejb.EnterpriseBean interface defines no methods—it is simply a
marker interface. The javax.ejb.EntityBean interface defines callback methods
that your bean must implement. The container will call these methods when-
ever it wishes.

127

128 THE TRIAD OF BEANS

public interface javax.ejb.EnterpriseBean implements java.io.
Serializable {

}

Source 6.1 The javax.ejb.EnterpriseBean interface.

public interface javax.ejb.EntityBean
extends javax.ejb.EnterpriseBean {

public void setEntityContext (javax.ejb.EntityContext) ;
public void unsetEntityContext () ;
public void ejbRemove () ;
public void ejbActivate() ;
public void ejbPassivate() ;
public void ejbLoad() ;
public void ejbStore() ;

Source 6.2 The javax.ejb.EntityBean interface.

Java Database Connectivity (JDBC)

This chapter uses Java Database Connectivity (JDBC). JDBC is a standard Java
extension that allows Java programmers to access relational databases. By using
JDBC, Java programmers can represent database connections, issue SQL state-
ments, process database results, and more in a relatively portable way. Clients
program to the unified JDBC API, which is implemented by a JDBC Driver, an
adapter that knows how to talk to a particular database in a proprietary way (see
Figure 6.1). JDBC is similar to the Open Database Connectivity (ODBC) standard,
and the two are quite interoperable through JDBC-ODBC bridges. JDBC contains
built-in support for database connection pooling, further enhancing the database
independence of your application code.

All entity bean classes, both bean-managed persistent and container-managed
persistent, must implement the javax.ejb.EntityBean interface. This interface
defines callback methods that the container invokes on your beans. There are
additional methods you also may define, such as methods to create and find
your entity beans.

Writing Bean-Managed Persistent Entity Beans 129

Client

JDBC API
_________________ >,

JDBC Driver

Relational Database(s)

Figure 6.1 Java Database Connectivity.

Table 6.1 is a preview of what you should implement in each method in your
entity bean, assuming your entity bean’s persistence is bean-managed. For
now, take a quick glance at the chart; you should refer back to it when reading
through the code in this chapter or when programming your own entity bean
classes.

Finding Existing Entity Beans:
ejbFind()

Notice from Table 6.1 that we have methods labeled ejbFind(). Finder methods
are used to find an existing entity bean in storage. Finder methods do not cre-
ate new database data—they simply load old entity bean data.

container-managed persistence, these method implementations are generated for

?> You only define ejbFind() methods when you use bean-managed persistence. With
you.

130

‘spalqo gr3 ipjnonipd 03 punoq aip Asyj pub ‘way)
JO apisul b}pp 8spqpipp d1dads aADY mou Asyi—jood
oy} u1 1sbuoj ou a4p saduD)sUI UDSG AJjud SSOY |

's13[qo g3 3oy} yum saduejsul

ueaq Aus swos deosse Ajqissod pue uo ayoAul
0} JU3I]> Y} Jo} S)I3[q0 g[g 23eaId UBY} |[IM JaUIRIUOD
ay] 'saoueisul a(qo eaer Ay Arewnd siow Jo suo
Sunean Aq Jauieuod sy} 01 peq eiep ey} o) sASY
Atewnd sy uinjas ‘ejep awos punoy aA,NoA usaypp

40 < dduejeq JYIFHM Sunode

INO¥4 P! 1D313S, Sse yons Aianb jeuonejas e
wuoyad 31w noA ‘sjdwexa 104 'f/10S 10 DGdr se

yons |4y a3elols e uisn 2101 ejep e y3noly} Yoieas

‘palqo gr3 ipjnoniod
Aup 03 punoq jou s| pup ‘I o apisul D}pp dSDGDIDP
ayads Aub aAby jou saop ‘jood b ul mou S| Ubaq aYy |

"sjuasaidal ueaq sy} eiep 1eym Jo ssa|piedal pasu [[Im
9oue)sul INoA sa21nosal Aue jsanbai osje pjnoys noj

JaUIRIUOD SU} WO} ‘uonewlojul AIndas se
Yons ‘uonewlIojul JUSWUOIIAUS aiinboe 0} Js3e)
IX2]U0D Y} SSIIJB URD NOA "S|qRUBA JaquIdW B
Ul Se UoNs ‘219YMIWIOS 1X23U0D AJIUS dY3 YIS

NOILVINIWITdINI TVIIdAL

" Aoy AipwiigAgpul{glo—poyiaw 1apuly SUo 3sed)

1B SUNBP ISNW NOA "2103s Jud)sisiad SulApapun
9y} ul sadue)sul eyep ueaq Aypus Sunsixa

9I0W IO SUO 3)Bd0| SPOYISW Japuld "poyiawl
Japuyy e DIAISS 0} UL INOA SN ULd JauleIUod
3y} ‘lood ayj ul [|is sI dueisul ueaq INOA SJIYAN

"JUSWUOJIAUD S} INOGR UoeWIoUl

SS920B URD UBS(3y} ‘paJ|ed SI poylaW Sy}

9d2UQ "JUSWUOIIAUD S,uedq dU} INOGe Uonew.ojul
—UONDUWLIOUI 3X3)U0D YU UBS(B S9]RID0SSe
poylawi siy] *()1x3uo)Au3ies s,9oueisul Ay}
S|[ed Jauiejuod 3y} ‘siy3 Suimoljo4 "ddue)sul uesq
Anus mau e sjeiuelsul [[IM Y ‘SSdUR)SUI URS]

Jo 9z1s [00d SH 9SB3IDUI 0} SJUBM JSUIRIUOD By} J|

NOILLYNVY1dX3

(spoylow
Japuly paj|ed os[e)
(<7 >)< >purdqfe

Ow@uodAmudies
dOHI1IN

sanug Jualsisiad padeue|y-ueag Joj ssuljdpiny uonejuaws|dwi pue suondudsag

19 3jqelL

131

sanunuod

‘spalqo

gr3 4pjn21upd D 03 82uUD}Sul INOA puiq [[IM JoUIDIUOD
oY/ 3 JO SpiIsul DIDP 8SDGDIDP JH1d3ds SDY MoU
—Jood sy ur 1abuoj ou si ad2upjsuI ubaq Aypus Inoy "Junodoe SSuIAeS B pue Junodde
Suppayd e s3ea1d 0} spoyldW se Yons ‘sueaq
Amus 1noA s1ea1 03 Aem JuaiayIp e sjudIP sanI3
auyap noA poylaw ()apasdgle yoe3 ‘uesq InoA
Suizijeniui 1oy pue ejep aseqelep mau 3uiieaid 10§
9|qisuodsai a1e spoyiaw ()a1pa.)qfd “due)sul
ueaq pajood e uo ()arpaiHglo s|ed J1auIrIU0d By}
‘13[qo swoy e uo ()a3pasd S||ed JudiP e UIYAN

"sjuasaidal aduejsul INOA ejep

a1y AJiauspl ued Jaueuod sy Jey} os ‘JIauleuod sy}
03 Aoy Alewnid e uinjas usyy IYASNI 1OS e y3nouauyy
AjjeaidAy ‘r/70s 10 Ddar a1 1dy 28e103s e eIA elep Y}
jo uonejuasaidal aseqeiep sy 23eald Ajdiidx3 pijea
ale si19pweled uonezijeniul S U 3y} NS e

"90B}IS)UI dWOY [BI0]
10 22BJISIUI SWOY Sy} W) SPOYISW Wy [|ed
Sjual[) "eiep d1ads Aue yum pajeosse si ueaq
2y} a1042q ‘jood 2y} ul ueaq e wolj pajjed ale Asyy
asnedaq spoyjaw ssauisnq [eads aie spoyew
awoy ay] 'suonesado asayy wiopad 0} spoyow
SWOy S)IM UBD NOA "9|qe} B Ul SUNOJJE JO
Jaqunu |e30} 8y} Sununod ‘sjdwexs 104 *(moi o)
2ouejsul eyep uanid Aue 03 oiy1dads jou ale ey}
ueaq Ayjua ue UO SpoyBW pasu NOA SaWINBWOS

NOILLVNY1dX3

JuaIP 3} 0}
}NSaJ Y1 UIN}aJ pue ‘DGAr BIA 9SEQRIEp B Ul SMOJ U}
dn 8ununod se yans ‘suonesado [eqo|3 INoA wiopad

NOILVINIWITdINI TVIIdAL

'sajly Y23pq ybnouy

10 S1I95Ul 9SDGDIDP
193.1p DIA SD Yans
‘supaw 1230 ybno.iyp
paipa.d S| DIpp

JID 1DY} 93DpUDW
pIno3 noA ‘ppajsuj
‘D}DP 9SDGDIDP

MU 8}D3Jd 0} 3|gD

9q 0 suald> g3 Jubm
1,uop noA 1 spoyzow
()a1painqle Aup ajm o}
paau Jou op noyj :910N
(< >)s1ea10qle

(< >)
<" >dWOoHqle

AOHI1IN

132

31vadn 10S e y3nosy

YSIP 01 INO SP|3l} d|qeLIeA JoqWIBW JNOA Jo Jaquinu e
apum |1,noA ‘AjjeardAL -Dgar sy 1dv @8e103s e eia ejep
3y} jo uonejuasaidal aseqeiep ayj arepdn Apidijdxg

'[/10S 10 DAdr Se Yons |dy 23e103s e BIA uRaq

InoA ojui eyep aseqejep peas ‘xaN ‘Sulpeo| aq pjnoys
} e1Ep JRYM URSQ INOA |[3] [[IM JRY) X33U0D Ajus
3y} uo poyw ()AeyAipwilidiab ayy ||ed "peo| pjnoys
1 e1ep 1eym Ino aIn31y s ddue)sul uesq JnoA ‘sl

‘()a1pipYqla 19y

1y3u pajied st yoym ‘()ppoiqgle ‘poyiaw ajeiedss e
Aq pajpuey s 1ey] "poyiaw Sy} ul aseqeiep sy} Wolj
elep ueaq Aus sy} peas jou pjnoys NoA ey} 3joN

"9)e)S Apeal sy} ojul panouw s 31 usaym
jua1pd Jejndiued e 921AI9S 0} Spasu ueaq InoA ey
'SUOIPAUUOD 19)0S Se NS ‘sadinosal Aue ainboy

‘ejep Auip aney jysiw

Ssp|a1} 958y} ‘210§9q pasn usaq aney Aew aduelsul
ueaq ayj asnedag "padueyd uaaq sey p|ay e JIayRym
9)edIpul 0} ueaq ayy ui 8ej snieys ejep e deay| pjnod
noA ‘sjdwexa o4 "si9}oweied pajejai-uoipesuen)
UIR}ID 19531 0} POYISW SIY} SN Os|e JySiw NOA

‘sueaq 19y10

0} 2duaIayal Palqo grg s,ueaq inoA uissed se yons
‘p3lqo gr3 1eys sasnbai ey} o3 paau noA Suiyjhue
3uiop Aq uonezijeniui 1noA 9)9|dwod mou ued NoA
"109[qo g[3 ue yyum sduejsul ueaq INoA pajenosse
sey } Jaye ()a1Da1D3504qle S|[ed J1auiejuod ay|

NOILLVINIWITdINI TVIIdAL

*()a1pAISSD4 G5 210399 Apdalip ‘uonenissed Suunp
pajje> os|e sI poyiawi siyj "pajjed si poyiew

SIU} USYM S9)BIp 21L]S [RUOIDBSURI} JUSLIND
ay] -aseqejep sy} SuiziuoydpuAs snyj ‘spjaly
Alowsw-u INOA Jo sanjeA Mau dU} 0} aseqelep
3y} a1epdn 03 siyj s||ed JsulRUO0d g3 Syl

"3}e)S [RUOIPBSURI) JUSLIND BY)} Uo paseq “(1D3713S

70s e AjjeaidAy) souejsur ueaq 1noA ojul ejep
aseqejep peoj 0} SIYj S||ed Jaulejuod g3 ayl

JauIR)U0d
gar3 ay1 Aq pajjea st poyaw ()apoamdqle sy
‘uoeAie uodn "UOHRDAROID p3|[ed SI SIY] “d)e)S
Apeai e ojul 31 uonisuer) pue [ood sy} woiy ueaq
e 9)e) 0} SPasu Jauleluod 3y} ‘Palqo gr3 ay3 0}
punoq si aduejsul ueaq Ayjus ou Inq ‘Palqo grg
ue UO poylaW SSauIsNg B S||ed JuI e USYM\

-Qa1a:1/>
19ye W81 ()23pa.1D1504qld S|jed Jauleyuod
ay] 'siopweied swes sy} 3dadoe jsnw Jied
yoeq *()a1painqgle yoes 10y ()a1pa4D1s0dqle
9UO 3UIBP ISNW SSB[D URS] INOA

NOLLYNVY1dX3

()=1015qgfe

Opeo1qfe

(Oe@1enpyqfle

(<" ">)e1ea1D150dqle
AOHLIN

(panunuod) saniug Judlsisiad padeuepy-ueaq Joy sauldpinn uonejuswsjdwi pue suondudsaq

1'9 3jqelL

133

"pa1a||0d
a8eqie3d aq 0} Apeai 198 pue ‘()1xa)u0DAMUFISS
Suunp pajedojje noA sa2inosal Aue ases|ay

"313134 10S

e y3nouays AjjeardAy “ogar ayij 1dy 23elols e el ejep
3y} Jo uonejuasaidal aseqeiep sy a19j9p Apidxs
uay] ‘xauodhmug ayy uo ()Asyhiewndiad

ein Aonysap pjnoys noA ejep jeym no ainsiy “sii4

*()a1DAISSDAql5 210)9q

W3u pajjea st yoiym ‘()asopsqle ‘poyraw ajeiedas
e Aq pajpuey si 1ey] ‘poyiawi siy} ur aseqeiep
ay) ojul elep ueaq Ajjua sy} SABS J0U P|NOYS NOA

Jualp Jejnonsed

e 10} a3e3s Apeal ay3 Suunp Suipjoy sem ueaq

InoA jeyy pue ()appaipy/qgle ul pajedoje noA ey
'SUOIPAUUOD 19)0S SB NS ‘Sa21nosal Aue ases|oy

NOILVINIWITdWI TVIIdAL

*(3z1s Jood a8y} 9dnpal 03 SJUBM I USYM)
pakonsap si aduejsul ueaq Aus INoA a1ojaq
1Yy3u Sy} S[|ed J2UIRIU0D BY] JUSWUOIIAUD

SH WOl ueaq e SIIRIDOSSEeSIP poyiaw siy|

‘B]Ep JUBIBYIP 10} pasnal pue pajood
9q ued 13[qo sy} ‘13[qo eaer ayy Aossap
0} pasn jou si J| ‘e}ep aseqelep shoiisaq

“IauIeluU0d g3 3y Aq pajjed si poyaw
()21pAISSD4qla 3y} ‘uonenissed uQ “uoneaoe
jo ausoddo ayj si pue vonpAIsspd pajjed si Siyl
‘lood 8y} 03 ueaq Aus INOA uIN}aI 0} SUBM

} USYM poyiau SIy} S|jed Jauleuod gr3 ayl

NOILYNV1dX3

Owa@uonAugiesun

(enowayqled

()@1enissedqle
AOHI1IN

134

THE TRIAD OF BEANS

You can have many different finder methods, all of which perform different
operations. Here are some examples:
/ * *

* Finds the unique bank account indexed by primary key

*/

public AccountPK ejbFindByPrimaryKey (AccountPK key)
throws FinderException { . . . }

/**

* Finds all the product entity beans. Returns a Collection
* of primary keys.

*/
public Collection ejbFindAllProducts ()
throws FinderException { . . . }
/**

* Finds all Bank Accounts that have at least a minimum balance.
* Returns a Collection of primary keys.
*/
public Collection ejbFindBigAccounts (int minimum)
throws FinderException { . . . }

/**

* Finds the most recently placed order

*/
public OrderPK ejbFindMostRecentOrder ()
throws FinderException { . . . }

Here are some of the rules about finder methods.

All finder methods must begin with ejbFind. This is simply a syntactic rule.

You must have at least one finder method, called ejbFindByPrimaryKey.
This method finds one unique entity bean instance in the database based
on its unique primary key. Because every entity bean has an associated pri-
mary key, it makes sense that every entity bean class supports this method.

You can have many different finder methods, each with different names
and different parameters. This allows you to find using different seman-
tics, as illustrated by the examples above.

A finder method must return either the primary key for the entity bean it
finds or a collection of primary keys if it finds more than one. Because
you could find more than one data instance in the database, finder meth-
ods can return collections of primary keys.

As with ejbCreate(), clients do not invoke your finder methods on the bean
instance itself. A finder method is just like any other method on your
entity bean class—clients never directly call any of your bean’s methods.
Rather, clients invoke finder methods on home objects, implemented by

Writing Bean-Managed Persistent Entity Beans 135

the EJB container, that delegate to your bean. Therefore, for each finder
method you define in your bean class, you should define a corresponding
finder in the local home interface. Clients call your local home object’s
finder methods, which delegate to your bean’s finders.

For example, given the following finder method in the local home interface:

public Accountlocal findBigAccounts (int minimum) throws FinderException;

here is the finder implementation in your bean class (notice the ejb prefix):

public AccountPK ejbFindBigAccounts (int minimum)
throws FinderException { . . . }

As with ejbCreate(), the home signature and the bean class signature have a
couple of differences:

m The entity bean instance returns a primary key to the container, whereas
the home object returns an EJB object to the client.

m The bean class signature is the same as the home signature, except for an
extra, mandatory ejb prefix and that the first letter in the word Find is
capitalized.

These signature differences between the home and bean are valid because the
bean does not implement the local home interface. Rather, the local home
object delegates to the bean, so strict signature matching is not needed.

Another interesting aspect of finders is that they can return collections. Your
database search may turn up more than one result and therefore more than one
entity bean. Here is the local home interface signature:

public Collection findAllProducts () throws FinderException;

And here is the bean implementation signature:

public Collection ejbFindAllProducts ()
throws FinderException { . . . }

The finder process works as follows:

m When the client invokes the home object’s finder, the home object asks a
bean to find all primary keys matching the client’s criteria. The bean then
returns a collection of those primary keys to the container.

m When the container receives the collection of keys from the entity bean
instance, it creates a collection of EJB objects, one for each primary key, and
returns those EJB objects in its own collection to the client. The client can
then invoke methods on the EJB objects: Each EJB object represents its
own instance of data within the entity bean’s database storage.

THE TRIAD OF BEANS

Bean-Managed Persistence Example:
A Bank Account

Our first example is a simple bank account entity bean. This bank account
bean can be used to represent and manipulate real bank account data in an
underlying relational database. The object model for our bank account is
detailed in Figure 6.2.

Notice that we're developing both local and remote interfaces. When this bean
is used in production, the local interfaces will be used, because this entity bean
will be accessed by other beans that run in-process. However, for testing pur-
poses, and to help you understand entity beans easily, we don’t want to intro-
duce other beans. Rather, we will connect to this bean from a standalone
application. Since a standalone application is remote, we thus need to use its
remote interface. This is a common issue with EJB programming—to test
beans on an individual basis in this manner, you need to code its remote inter-
face even though you only plan to use the local interface in production. The
good news is that the code is almost identical for the local interface—see the
book’s accompanying source code (the e-commerce example) for examples of

<<interface>>
java.io.serializable

<<interface>>
java.rmi.Remote

ﬂ b Comes with Java 2 Platform A
<<interface>>
<<interface>> <<interface>> <<interface>> <<interface>> Javax.ejb.EnterpriseBean
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.EntityBean
Comes with EJB Distributign A

<<interface>>
Bank Account
Local Interface

<<interface>> <<interface>> <<interface>> Bank Account Bean
Bank Account Bank Account Bank Account Implementation
Remote Interface Home Interface Local Home Interface Class

Bank Account
Primary Key Class

N N N N

Supplied by Bean Provider (W¢ Will Write)

Bank Account
EJB Local Object

Bank Account
EJB Object

Bank Account
Home Object

Bank Account
Local Home Object

Generated for Us by Container Vendor's Tools

Figure 6.2 The bank account object model.

Writing Bean-Managed Persistent Entity Beans 137

calling entity beans through their local interfaces. Now let’s take a look at each
of the files that we must create for our entity bean component.

Account.java

Account.java is our entity bean’s remote interface—what remote clients use to
call our bean’s methods. It is shown in Source 6.3.

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/xx

* This is the remote interface for AccountBean.

* This interface is what clients operate on when they interact with
* beans. The container will implement this interface; the
* implemented object is called the EJB object, which delegates
* invocations to the actual bean.
*/
public interface Account extends EJBObject {

/**
* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException,
RemoteException;

/**
* Withdraws amt from bank account.
* @throw AccountException thrown in amt < available balance
*/
public void withdraw(double amt) throws AccountException,
RemoteException;

// Getter/setter methods on Entity Bean fields
public double getBalance() throws RemoteException;

public String getOwnerName () throws RemoteException;
public void setOwnerName (String name) throws RemoteException;

public String getAccountID() throws RemoteException;
public void setAccountID(String id) throws RemoteException;

}

Source 6.3 Account.java.

138 THE TRIAD OF BEANS

Notice that the account remote interface extends javax.ejb.E[BObject, which all
remote interfaces must do. Our interface exposes a number of methods for
manipulating entity beans, such as for making deposits and withdrawals. All
of our methods throw remote exceptions to facilitate system-level catastrophic
failures. Notice that in our withdrawal method, we also throw our own cus-
tom application-level exception, AccountException. We’ll define that exception
later.

Accountlocal.java

AccountLocal.java is our entity bean’s local interface—what local clients use to
call our bean’s methods. It is shown in Source 6.4.

AccountHome.java
Our home interface is specified by AccountHome.java, shown in Source 6.5.

We provide one create method to create a new account. This will create new
database data representing a bank account. It returns an EJB object to the client
so the client can manipulate that newly created account. Notice that we throw
the application-level javax.ejb.CreateException, which all create() methods must
throw.

We also have two finder methods. findByPrimaryKey() searches the database
for a bank account that already exists; it searches by the account ID, which we
will define in AccountPK.java. We also have a custom finder method, findBy-
OwnerName(), which searches the database for all bank accounts that have the
same owner’s name. Because we're using bean-managed persistence, we need
to implement both of these finder methods in our entity bean implementation.
(If we were using container-managed persistence, the container would search
the database for us). As with our create method, both finders return EJB objects
so the client can manipulate the newly found bank accounts. We throw the
application-level javax.ejb.FinderException, which all finders must throw.

Finally, we have a business method, getTotalBankValue(). This business method
is an operation applied to the entire table rather than to an individual row.
Thus it is a global method that is independent of any particular entity bean
instance. This business method will be implemented in the bean class as an ejb-
Home() method, as previously described in Table 6.1.

AccountLocalHome.java

Our local home interface, the higher performing home interface used by local
clients, is specified by AccountLocalHome.java, shown in Source 6.6.

Writing Bean-Managed Persistent Entity Beans 139

package examples;

import javax.ejb.*;

/xx

*

*

*

*

*

*

*/

This is the local interface for AccountBean.

This interface is what clients operate on when they interact with

beans. The container will implement this interface; the

implemented object is called the local object, which delegates

invocations to the actual bean.

public interface AccountLocal extends EJBLocalObject ({

/**

* Deposits amt into account.

*/
public

/**

void deposit (double amt) throws AccountException;

* Withdraws amt from bank account.

* @throw AccountException thrown in amt < available balance

*/
public

void withdraw(double amt) throws AccountException;

// Getter/setter methods on Entity Bean fields

public

public
public

public
public

double getBalance() ;

String getOwnerName () ;
void setOwnerName (String name) ;

String getAccountID() ;
void setAccountID(String id);

Source 6.4 AccountlLocal.java.

The only differences between the local home interface and the home interface
are that the local home interface does not throw remote exceptions, and the
local home interface extends a different parent interface.

AccountPK.java

Our entity bean’s primary key class is defined by AccountPK.java, detailed in
Source 6.7.

140 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;
import java.util.Collection;
import java.rmi.RemoteException;

/**
* This is the home interface for Account. This
* interface is implemented by the EJB container's tools - the
* implemented object is called the home object, which
* is a factory for EJB objects.
*/
public interface AccountHome extends EJBHome {

/**
* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.
* This method creates the local EJB object.

Notice that the local home interface returns a local interface,
* whereas the bean returns a PK.

* @param accountID The number of the account (unique)
* @param ownerName The name of the person who owns the account
* @return The newly created local object.
*/
Account create(String accountID, String ownerName) throws
CreateException, RemoteException;

/**
* Finds a Account by its primary Key (Account ID)
*/
public Account findByPrimaryKey (AccountPK key) throws
FinderException, RemoteException;

/**
* Finds all Accounts under an owner name
*/
public Collection findByOwnerName (String name) throws
FinderException, RemoteException;

/**
* This home business method is independent of any particular
* account. It returns the total of all accounts in the bank.
*/
public double getTotalBankValue() throws AccountException,
RemoteException;

Source 6.5 AccountHome.java.

Writing Bean-Managed Persistent Entity Beans

package examples;

import javax.ejb.*;
import java.util.Collection;

/**
* This is the local home interface for Account. This
* interface is implemented by the EJB container's tools - the
* implemented object is called the local home object, which
* is a factory for local EJB objects.
*/
public interface AccountLocalHome extends EJBLocalHome {

/**
* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.
* This method creates the local EJB object.

* Notice that the local home interface returns a
* local interface, whereas the bean returns a PK.

Notice we don't throw RemoteExceptions because we are
* local not remote.

* @param accountID The number of the account (unique)
* @param ownerName The name of the person who owns the account
* @return The newly created local object.
*/
public AccountLocal create(String accountID, String ownerName)
throws CreateException;

/**
* Finds an Account by its primary Key (Account ID)
*/
public AccountLocal findByPrimaryKey (AccountPK key) throws
FinderException;

/**
* Finds all Accounts under an owner's name
*/
public Collection findByOwnerName (String name) throws
FinderException;

/xx

* This home business method is independent of any particular

* account instance. It returns the total of all the bank
* accounts in the bank.
*/

public double getTotalBankValue() throws AccountException;

Source 6.6 AccountLocalHome java.

141

142 THE TRIAD OF BEANS

package examples;
import java.io.Serializable;

/‘k‘k
* Primary Key class for Account.
Y
public class AccountPK implements java.io.Serializable {

public String accountID;

public AccountPK (String id) {
this.accountID = id;

public AccountPK() ({
}

public String toString() {
return accountID;

public int hashCode () {
return accountID.hashCode() ;

public boolean equals (Object account) {
return ((AccountPK)account) .accountID.equals (accountID) ;

Source 6.7 AccountPK java.

Notice the following about Source 6.7:

m QOur primary key contains a simple String—the account ID string. For
example, an account ID string could be “ABC-123-0000.” This string must
be unique to its bank account; we rely on the client code that constructs
our account ID to make sure it is unique. The primary key is used to iden-
tify each bank account uniquely. More advanced entity beans that map to
more than one table may have primary key classes that have several fields
inside of them, each representing the primary key of a table in the
database.

m There is a required toString() method. This container calls this method to
retrieve a String value of this primary key. For simple primary keys, we

Writing Bean-Managed Persistent Entity Beans 143

just return the stored field. For more advanced primary keys, we need to
somehow combine the various fields in the primary key class to form a
String.

m There is a required hashCode() method. By supplying this method, our pri-
mary key class can be stored in a Hashtable. The container needs this
because inside of the container it may use a Hashtable or similar structure
to store a list of all entity beans it has in memory, keyed on their primary
keys.

m There is a required equals() method. The container calls this to compare
this primary key to others when determining internally if two cached
entity beans (which each have a primary key) are representing the same
database data.

AccountBean.java

Next we have our entity bean implementation class, AccountBean.java. Our
bean implementation code is quite lengthy and is divided into several
sections.

Bean-managed state fields. These are the persistable fields of our entity bean
class. Our bean instance will load and store the database data into these
fields.

Business logic methods. These methods perform services for clients, such as
withdrawing or depositing into an account. They are exposed by the
remote interface, Account.

EJB-required methods. These are EJB-required methods that the container
calls to manage our bean. They also include our creator and finder meth-
ods defined in the home interface.

The code is presented in Source 6.8 through Source 6.10. We divide the code
into three parts because the code is extremely cumbersome, even for a simple
bank account. This is an unfortunate drawback of bean-managed persistence
because you must provide all data access code.

The first part of our bean is straightforward. We have our bean’s fields (one of
which is the primary key field), and a default constructor. We keep an Entity-
Context around so that we can query the container from our bean as necessary
(However, the EntityContext is not a persistent field).

The next part of our bean is the business logic methods, shown in Source 6.9.

Our withdraw and deposit methods simply modify the in-memory fields of
the entity bean instance. If the client tries to withdraw from a negative account,
we throw our custom application-level exception, AccountException.

144 THE TRIAD OF BEANS

package examples;

import java.sqgl.*;
import javax.naming.*;
import javax.ejb.*;
import java.util.*;

/**
* Demonstration Bean-Managed Persistent Entity Bean.
* This Entity Bean represents a Bank Account.
*/

public class AccountBean implements EntityBean {

protected EntityContext ctx;

//

// Bean-managed state fields

//

private String accountID; // PK

private String ownerName;
private double balance;

public AccountBean() {
System.out.println("New Bank Account Entity Bean Java Object
created by EJB Container.");
}

methods continue

Source 6.8 AccountBean.java (Part 1 of 3).

continued
//
// Business Logic Methods
//
/**

* Deposits amt into account.
*/
public void deposit (double amt) throws AccountException {
System.out.println("deposit (" + amt + ") called.");

Source 6.9 AccountBean.java (Part 2 of 3).

Writing Bean-Managed Persistent Entity Beans 145

balance += amt;

/**
* Withdraws amt from bank account.
* @throw AccountException thrown in amt < available balance
&l
public void withdraw(double amt) throws AccountException {
System.out.println("withdraw(" + amt + ") called.");

if (amt > balance) {
throw new AccountException ("Your balance is " +

balance + "! You cannot withdraw "
#oame 4 T4T)p

}

balance -= amt;

// Getter/setter methods on Entity Bean fields

public double getBalance() {
System.out.println("getBalance() called.");
return balance;

public void setOwnerName (String name) {
System.out.println("setOwnerName () called.");

ownerName = name;

public String getOwnerName () {
System.out.println("getOwnerName () called.");
return ownerName;

public String getAccountID() {
System.out.println("getAccountID() called.");
return accountID;

public void setAccountID(String id) {
System.out.println("setAccountID() called.");
this.accountID = id;

/xx

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

146 THE TRIAD OF BEANS

* This home business method is independent of any

* particular account instance. It returns the total
* of all the bank accounts in the bank.
*/

public double ejbHomeGetTotalBankValue() throws AccountException

PreparedStatement pstmt = null;
Connection conn = null;

try {
System.out.println ("ejbHomeGetTotalBankValue()") ;

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Get the total of all accounts
*/
pstmt = conn.prepareStatement (
"select sum(balance) as total from accounts");
ResultSet rs = pstmt.executeQuery () ;

/*
* Return the sum
*/
if (rs.next()) {
return rs.getDouble("total") ;
}

}

catch (Exception e) {
e.printStackTrace() ;
throw new AccountException(e);

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) ({}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}
}

throw new AccountException("Error!");

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 147

}

/**

* Gets JDBC connection from the connection pool.
*

* @return The JDBC connection
*/
public Connection getConnection() throws Exception {
try {
Context ctx = new InitialContext () ;
javax.sgl.DataSource ds = (javax.sgl.DataSource)
ctx.lookup ("java:comp/env/jdbc/ejbPool") ;
return ds.getConnection() ;
}
catch (Exception e) {
System.err.println("Couldn't get datasource!");
e.printStackTrace() ;
throw e;

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

The ejbHome() business method implementation adds the total of all bank account
balances in the database. It retrieves a JDBC connection via the getConnection()
helper method. In that getConnection() method we lookup the database connec-
tion via JNDI (see Chapter 9 for a full description of this process).

Notice, too, that we close each connection after every method call. This allows
our E]B container to pool JDBC connections. When the connection is not in use,
another bean can use our connection. This is the standard, portable way for
connection pooling. The connection pooling is built-into the JDBC 2.0 specifica-
tion and happens automatically behind the scenes.

The final part of our bean is the various E]JB callback methods, shown in
Source 6.10.

Source 6.10 is quite long because of the enormous amount of J]DBC coding
required to write even a simple bean-managed persistent entity bean. The bulk
of the code occurs in the methods that perform CRUD operations (Create,
Read, Update, Delete). These are namely ejbCreate(), ejbFind() and ejbLoad(),
ejbStore(), and ejbRemove(). The code is self-documenting and you should be
able to understand it if you cross-reference Table 6.1. If you're still stuck, we
will further explain these methods later in this chapter when we discuss the
lifecycle of a bean-managed persistent entity bean.

148 THE TRIAD OF BEANS

continued
//
// EJB-required methods
//
/**

* Called by Container. Implementation can acquire
* needed resources.
*/
public void ejbActivate() {
System.out.println("ejbActivate() called.");

/**
* Removes entity bean data from the database.
* Corresponds to when client calls home.remove() .
*/
public void ejbRemove () throws RemoveException {
System.out.println("ejbRemove () called.");

/*

* Remember that an entity bean class can be used to
* represent different data instances. So how does
* this method know which instance in the database

* to delete?

* The answer is to query the container by calling

* the entity context object. By retrieving the

* primary key from the entity context, we know

* which data instance, keyed by the PK, that we

* should delete from the DB.

*/
AccountPK pk = (AccountPK) ctx.getPrimaryKey () ;
String id = pk.accountID;

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new JDBC Connection
*/
conn = getConnection() ;

/*

* 2) Remove account from the DB
*/

Source 6.10 AccountBean.java (Part 3 of 3).

Writing Bean-Managed Persistent Entity Beans 149

pstmt = conn.prepareStatement (
"delete from accounts where id = ?");
pstmt.setString (1, id);

/*
* 3) Throw a system-level exception if something
* bad happened.

*/
if (pstmt.executeUpdate() == 0) {
throw new RemoveException (
"Account " + pk +
" failed to be removed from the database");
}

}
catch (Exception ex) {
throw new EJBException (ex.toString()) ;

}
finally {
/*
* 4) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}
}
}
/**

* Called by Container. Releases held resources for
* passivation.

*/
public void ejbPassivate() {
System.out.println("ejbPassivate () called.");
}
/**

* Called by the container. Updates the in-memory entity
bean object to reflect the current value stored in
* the database.
*/
public void ejbLoad() {
System.out.println("ejbLoad() called.");

/*

* Again, query the Entity Context to get the current
* Primary Key, so we know which instance to load.

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

150 THE TRIAD OF BEANS

*/
AccountPK pk = (AccountPK) ctx.getPrimaryKey () ;
String id = pk.accountID;

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new DB Connection
*/
conn = getConnection() ;

/*

* 2) Get account from the DB, querying
& by account ID

*/

pstmt = conn.prepareStatement (
"select ownerName, balance from accounts "
+ "where id = ?");
pstmt.setString (1, id);
ResultSet rs = pstmt.executeQuery () ;
rs.next () ;
ownerName = rs.getString("ownerName") ;
balance = rs.getDouble("balance") ;
}
catch (Exception ex) {
throw new EJBException (
"Account " + pk
+ " failed to load from database", ex);

}

finally {
/*
* 3) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }

catch (Exception e) ({}
try { if (conn != null) conn.close(); 1}
catch (Exception e) {}

/**

* Called from the Container. Updates the database
* to reflect the current values of this in-memory
* entity bean instance.

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 151

public void ejbStore() {
System.out.println("ejbStore() called.");

PreparedStatement pstmt = null;
Connection conn = null;
try {
/*
* 1) Acquire a new DB Connection
*/
conn = getConnection() ;

/*
* 2) Store account in DB
*/
pstmt = conn.prepareStatement (
"update accounts set ownerName = ?, balance = ?"
+ " where id = ?");
pstmt.setString (1, ownerName) ;
pstmt.setDouble (2, balance) ;
pstmt.setString (3, accountID) ;
pstmt . executeUpdate () ;

}
catch (Exception ex) {
throw new EJBException (

"Account " + accountID
+ " failed to save to database", ex);
}
finally {
/*
* 3) Release the DB Connection
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Called by the container. Associates this bean
instance with a particular context. We can query
the bean properties that customize the bean here.
*/
public void setEntityContext (EntityContext ctx) {
System.out.println("setEntityContext called");
this.ctx = ctx;

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

152 THE TRIAD OF BEANS

/**
* Called by Container. Disassociates this bean
* instance with a particular context environment.
*/
public void unsetEntityContext () {
System.out.println("unsetEntityContext called");
this.ctx = null;

/**
* Called after ejbCreate(). Now, the Bean can retrieve
* its EJBObject from its context, and pass it as
* a 'this' argument.
*/
public void ejbPostCreate(String accountID, String ownerName) {

}

/**
* This is the initialization method that corresponds to the
* create() method in the Home Interface.
*
* When the client calls the Home Object's create() method,
* the Home Object then calls this ejbCreate() method.
*
* @return The primary key for this account
*/

public AccountPK ejbCreate(String accountID, String ownerName)
throws CreateException {

PreparedStatement pstmt = null;
Connection conn = null;
try {
System.out.println("ejbCreate() called.");
this.accountID = accountID;
this.ownerName = ownerName;
this.balance = 0;

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Insert the account into the database

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 153

pstmt = conn.prepareStatement (

"insert into accounts (id, ownerName, balance)"
+ " values (?, ?, ?2)");

pstmt.setString(l, accountID) ;
pstmt.setString (2, ownerName) ;
pstmt.setDouble (3, balance) ;
pstmt.executeUpdate () ;

/*
* Generate the Primary Key and return it
*/
return new AccountPK (accountID) ;
}
catch (Exception e) {
throw new CreateException(e.toString());

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Finds a Account by its primary Key
*/
public AccountPK ejbFindByPrimaryKey (AccountPK key)
throws FinderException {
PreparedStatement pstmt = null;
Connection conn = null;
try {
System.out.println ("ejbFindByPrimaryKey ("

+ key + ") called");
/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Find the Entity in the DB
*/

pstmt = conn.prepareStatement (

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

154 THE TRIAD OF BEANS

"select id from accounts where id = ?");
pstmt.setString(1l, key.toString());
ResultSet rs = pstmt.executeQuery () ;
rs.next () ;

/*
* No errors occurred, so return the Primary Key
*/
return key;
}
catch (Exception e) {
throw new FinderException(e.toString());

}
finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }
catch (Exception e) {1}
try { if (conn != null) conn.close(); }
catch (Exception e) {}
}
}
/**

* Finds Accounts by name
*/
public Collection ejbFindByOwnerName (String name)
throws FinderException {
PreparedStatement pstmt = null;
Connection conn = null;
Vector v = new Vector();

try {
System.out.println(
"ejbFindByOwnerName (" + name + ") called");

/*
* Acquire DB connection
*/

conn = getConnection() ;

/*
* Find the primary keys in the DB
*/
pstmt = conn.prepareStatement (
"select id from accounts where ownerName = ?");

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

155

pstmt.setString (1, name) ;
ResultSet rs = pstmt.executeQuery() ;

/*
* Insert every primary key found into a vector
*/
while (rs.next()) {
String id = rs.getString("id");
v.addElement (new AccountPK(id)) ;
}
/*
* Return the vector of primary keys
*/

return v;
}
catch (Exception e) {
throw new FinderException(e.toString()) ;

}

finally {
/*
* Release DB Connection for other beans
*/
try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}
try { if (conn != null) conn.close(); }
catch (Exception e) {}

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

When a statement is sent to a database, the container’s installer JDBC driver parses
it, determines the best way to execute the statement based on statistics that it main-
tains, and then executes the statement. Parsing and determining an execution strat-
egy can be computationally expensive. The good news is that JDBC is smart—when
an instance of PreparedStatement is executed on a connection, it first checks its
cache to see if this statement has been executed previously; if so, it reuses the previ-
ously prepared version, thus improving performance. For more information, refer to
Billy Newport's article, “How Prepared Statements Greatly Improve Performance,”
posted at www.ejbinfo.com.

156 THE TRIAD OF BEANS

AccountException.java

Our custom exception class is AccountException.java, displayed in Source 6.11.
It simply delegates to the parent java.lang.Exception class. It is still useful to
define our own custom exception class, however, so that we can distinguish
between a problem with our bank account component and a problem with
another part of a deployed system.

Client.java

Our last Java file is a simple test client to exercise our bean’s methods. It is
shown in Source 6.12.

The client code is fairly self-explanatory. We perform some bank account oper-
ations in the try block. We have a finally clause to make sure our bank account
is properly deleted afterward, regardless of any exceptions that may have been
thrown.

The Deployment Descriptor

Now, let’s take a look at our deployment descriptor, shown in Source 6.13.

package examples;

/**
* Exceptions thrown by Accounts
*/
public class AccountException extends Exception {

public AccountException() {
super () ;

}

public AccountException (Exception e) {
super (e.toString()) ;

}

public AccountException (String s) {
super (s) ;

}

Source 6.11 AccountException.java.

Writing Bean-Managed Persistent Entity Beans 157

package examples;

import javax.ejb.*;
import javax.naming.*;
import java.rmi.*;
import javax.rmi.*;
import java.util.*;

/**
* Sample client code that manipulates a Bank Account Entity Bean.
*/

public class AccountClient {

public static void main(String[] args) throws Exception {

Account account = null;

try {
/*
* Get a reference to the Account Home Object - the
* factory for Account EJB Objects
*/

Context ctx =
new InitialContext (System.getProperties());

Object obj = ctx.lookup ("AccountHome") ;
AccountHome home = (AccountHome)
PortableRemoteObject.narrow (
obj, AccountHome.class) ;

System.err.println(
"Total of all accounts in bank initially = "
+ home.getTotalBankValue()) ;

/*
* Use the factory to create the Account EJB Object
*/

home.create("123-456-7890", "John Smith");

/*

* Find an account

*/
Iterator i = home.findByOwnerName (

"John Smith").iterator();
if (i.hasNext()) {
account = (Account)
javax.rmi.PortableRemoteObject .narrow (

Source 6.12 Clientjava.

158 THE TRIAD OF BEANS

i.next (), Account.class);

}

else {
throw new Exception("Could not find account");

}

/*

* Call the balance() method, and print it

*/
System.out.println(

"Initial Balance = " + account.getBalance()) ;

/*

* Deposit $100 into the account

*/

account .deposit (100) ;

/*
* Retrieve the resulting balance.
*/
System.out.println(
"After depositing 100, account balance = "
+ account.getBalance()) ;

System.out.println(
"Total of all accounts in bank now = "
+ home.getTotalBankValue()) ;

/*

* Retrieve the Primary Key from the EJB Object

*/
AccountPK pk = (AccountPK) account.getPrimaryKey () ;
/*

* Release our old EJB Object reference. Now call
* find() again, this time querying on Account ID
* (i.e. the Primary Key) .
*/

account = null;

account = home.findByPrimaryKey (pk) ;

/*
* Print out current balance
*/
System.out.println(
"Found account with ID " + pk + ". Balance = "
+ account.getBalance()) ;

Source 6.12 Client,java (continued).

Writing Bean-Managed Persistent Entity Beans 159

/*

* Try to withdraw $150

*/
System.out.println(

"Now trying to withdraw $150, which is more "

+ "than is currently available. This should "
+ "generate an exception..");
account .withdraw (150) ;

}

catch (Exception e) {
System.out.println("Caught exception!");
e.printStackTrace() ;

}
finally {
/*
* Destroy the Entity permanently
*/
try {
System.out.println("Destroying account..");
if (account != null) {
account.remove () ;
}
}
catch (Exception e) {
e.printStackTrace() ;
}
}

Source 6.12 Client.java (continued).

<?xml version="1.0"7?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>Account</ejb-name>
<home>examples.AccountHome</home>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor.

160 THE TRIAD OF BEANS

<remote>examples.Account</remote>
<local-home>examples.AccountLocalHome</local-home>
<local>examples.AccountLocal</local>
<ejb-class>examples.AccountBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>examples.AccountPK</prim-key-class>
<reentrant>False</reentrant>

<resource-ref>
<res-ref-name>jdbc/ejbPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</entity>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>Account</ejb-name>
<method-intf>Local</method-intf>
<method-name>*</method-name>
</method>
<method>
<ejb-name>Account</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor (continued).

Notice the following features of our deployment descriptor that are different
from session beans:

m The persistence-type element indicates whether we are bean-managed
persistent (set it to “Bean”) or container-managed persistent (set it to
“Container”).

m The prim-key-class element specifies our primary key class.

m The reentrant element dictates whether our bean can call itself through
another bean. A given bean A is reentrant if bean A calls bean B, which
calls back on bean A. This is a special case of multithreading because it is
really only one path of execution that happens to loop back on itself. If we

Writing Bean-Managed Persistent Entity Beans 161

would like to support this reentrant behavior, we should set this setting to
True so that the container will allow two threads to run inside of bean A at
once. Since our bean doesn’t call itself through another bean, we set it to
False, which is usually what you'll want to do to avoid unintended multi-
threading issues.

m The resource-ref element sets up our JDBC driver and makes it available at
the proper JNDI location (see Chapter 9 for a full description of this
process).

m The assembly-descriptor associates transactions with our bean. We will
describe transactions fully in Chapter 10.

The Container-Specific Deployment
Descriptor

Finally, we have our container-specific deployment descriptor, which config-
ures our bean in ways specific to a particular E]JB server. We will not show this
tile because we wish the code in this book to remain vendor-neutral. Typically
you would use this proprietary descriptor to associate the home interface,
local home interface, and JDBC driver with JNDI locations. For an example
descriptor, see the book’s accompanying source code.

Setting up the Database

Lastly, you need to create the appropriate database table and columns for our
bank accounts. You can do this through your database’s GUI or command-line
interface. The book’s included source code comes with a preconfigured sample
database that you can use right away. If you're using a different database, you
should enter the following SQL Data Definition Language (DDL) statements in
your database’s SQL interface:

drop table accounts;
create table accounts (id varchar(64), ownername varchar(64), balance
numeric(18)) ;

This creates an empty table of bank accounts. The first column is the bank
account ID (the primary key), the second column is the bank account owner’s
name, and the third column is the bank account balance.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on what your EJB container’s Java Naming and Directory Interface (JNDI)
connection parameters are—see your container’s documentation):

162 THE TRIAD OF BEANS

java -Djava.naming.factory.initial=
weblogic.jndi.WLInitialContextFactory
-Djava.naming.provider.url=
t3://localhost:7001
examples.AccountClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

Server-Side Output

When you run the client, you should see something similar to the following on
the server side. Note that your particular output may vary, due to variances in
EJB container behavior.

New Bank Account Entity Bean Java Object created by EJB Container.
setEntityContext called.
ejbHomeGetTotalBankValue () called.
ejbCreate() called.

ejbStore() called.

New Bank Account Entity Bean Java Object created by EJB Container.
setEntityContext called.
ejbFindByOwnerName (John Smith) called.
ejbLoad () called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

deposit (100.0) called.

ejbStore() called.

ejbLoad () called.

getBalance() called.

ejbStore() called.
ejbHomeGetTotalBankValue () called.
ejbFindByPrimaryKey (123-456-7890) called.
ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad () called.

withdraw(150.0) called.

ejbStore() called.

ejbLoad() called.

ejbRemove () called.

Notice what’s happening here:

m When our client code called create() on the home object, the container cre-
ated an entity bean instance. The container first called newlnstance() and
setEntityContext() to get the entity bean into the available pool of entity
beans. The container then serviced our client’s home business method and
used the bean in the pool. Then the client called create(), which caused the

Writing Bean-Managed Persistent Entity Beans 163

container to take the bean out of the pool and call the bean’s ejbCreate()
method, which created some new database data, and returned control
back to the container. Finally, the container associated the bean instance
with a new EJB object and returned that EJB object to the client.

m To service our finder method, the container instantiated another entity
bean. The container called newlnstance() and then setEntityContext() to get
that new bean instance into the available pool of entity beans. It then used
the bean in the pool to service our finder method. Note that the bean
instance is still in the pool and could service any number of finder
methods.

m In addition to the methods that the client calls, our EJB container inter-
leaved a few ejbStore() and ejbLoad() calls to keep the database in synch.

Client-Side Output

Running the client program yields the following client-side output:

Total of all accounts in bank initially = 1200000.0

Initial Balance = 0.0

After depositing 100, account balance = 100.0

Total of all accounts in bank now = 1200100.0

Found account with ID 123-456-7890. Balance = 100.0

Now trying to withdraw $150, which is more than is currently available.
This should generate an exception..

Caught exception!

examples.AccountException: Your balance is 100.0! You cannot withdraw
150.0!

Destroying account. .

Our table already had $1,200,000 from previous records in the database. We
then created an entity bean, deposited into it, and tried to withdraw more than
we had. The entity bean correctly threw an application-level exception back to
us indicating that our balance had insufficient funds.

Putting It All Together: Walking through
a BMP Entity Bean'’s Life Cycle

Let’s wrap up this chapter by examining the big picture and understanding
exactly how a container interacts with a BMP entity bean. The state machine
diagram in Figure 6.3 illustrates the life cycle of a BMP entity bean.

Here is what’s going on in this diagram.

1. The does not exist state represents entity bean instances that have not been
instantiated yet.

164

THE TRIAD OF BEANS

The lifecycle of a bean-
managed persistent entity Does Not Exist
bean. Each method call
shown is an invocation from
the container to the bean

instance. ?

1: newlnstance() 1: unsetEntityContext()
2: setEntityContext() 2: JVM Will Garbage Collect
and Call finalize()

y

ejbHome() Pooled ejbFind()

A

Activate Your Bean: Passivate Your Bean:
1: ejbActivate() 1: ejbStore() ejbRemove()
2: ejbLoad() 2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

y

ejbLoad() Ready ejbStore()

Business Method

Figure 6.3 The BMP entity bean life cycle.

2. To create a new instance, the container calls the newlnstance() method on
the entity bean class. This calls your entity bean’s default constructor,
bringing a new instance into memory. Next, the container associates your
entity bean with an entity context object via a callback that you imple-
ment, called setEntityContext(EntityContext ctx). Note that this step occurs
only when the container wants to increase the available pool of entity
bean instances, not necessarily when a client connects.

Writing Bean-Managed Persistent Entity Beans 165

3. Next, your entity bean is in a pool of other entity beans. At this point your
entity bean does not have any entity bean database data loaded into it,
and it does not hold any bean-specific resources, such as socket connec-
tions. Your bean instance can be used in this mode to find entity data in
the database, by servicing a finder method on behalf of a client. Your bean
instance can also perform operations not dependent on a particular data
instance by servicing an ejbHome() method on behalf of a client. If the con-
tainer wants to reduce its pool size, it can destroy your bean. The con-
tainer signals your bean instance that it is about to be destroyed by calling
the unsetEntityContext() method on your bean. Once this is done, the con-
tainer releases any references to your bean, and eventually, the Java
garbage collector cleans up the memory your instance had been using.
Therefore your unsetEntityContext() method should prepare your bean to
be cleaned up, perhaps by releasing any resources your bean had claimed
during setEntityContext().

4. When the client wants to create some new database data (say, a new order
for goods placed over the Internet), it calls a create() method on your
entity bean’s home object. The container then grabs an entity bean
instance from the pool, and the instance’s ejbCreate() method is called.
ejbCreate() initializes the entity bean to a specific data set. For example, if a
client calls a create() method to create a bank account, it might pass the
bank account holder’s name and the initial balance as parameters. Your
entity bean’s ejbCreate() method would populate its member variables
with these parameters. It would also create the corresponding database
representation (if you're using bean-managed persistence). Now your
bean is in the “ready” state.

5. While your bean is in the ready state, it is tied to specific data and hence a
specific EJB object. If there are other entity bean instances that are views
into the same database data, the container may occasionally need to syn-
chronize your bean instance with the underlying database, so that you
will always be working with the most recent data. The ejbLoad() and ejb-
Store() methods do this; the container calls them as appropriate, based on
how you define your transactions (see Chapter 10).

6. Your entity beans can be kicked back into the pool in two ways. If a client
calls remove() on the home object, the container will call your instance’s
ejbRemove(). The underlying database data is destroyed and so, of course,
your entity bean instance will become disassociated with the client’s EJB
object to which it was bound.

7. The second way your bean can return to the pool is if the EJB container
decides that your client has timed out, if the container needs to use your
bean to service a different client, or if the container is simply running out

166 THE TRIAD OF BEANS

of resources. At this point, your bean is passivated, and the container calls
your ejbStore() method to ensure the database has the most recent version
of your in-memory data. Next the container calls your ejbPassivate()
method, allowing your bean instance to release held resources. Your bean
instance then enters the pool.

8. When the container wants to assign you to an EJB object again, your bean
instance must be activated. The container calls your bean’s ejbActivate()
method, allowing your bean to acquire resources. The container then calls
your instance’s ejbLoad() method to load the database data into your bean.

Note that there are a few other minor steps in this process, such as transac-
tional synchronization. Overall, these stages are the essence of a BMP entity
bean instance’s life cycle. The next step is for you to look at this diagram again
and make sure you fully grasp it. Do you understand how a single Java object
instance can be pooled and reused, going back and forth through various tran-
sitions between the pooled and ready state, perhaps representing different
database data each time? If so, congratulations. This is a crucial step towards
fully understanding EJB.

Summary

In this chapter, you've seen how to write bean-managed persistent entity
beans. Bean-managed persistent entity beans are useful if you need to control
the underlying database operations yourself. But the real advantage of EJB
comes from container-managed persistent entity beans. Container-managed per-
sistent entity beans can be developed much more rapidly because the con-
tainer handles all data access logic for you. The next chapter covers the new
EJB 2.0 container-managed persistence model, an exciting and interesting new
addition to E]B.

Writing Container-Managed
Persistent Entity Beans

bean-managed persistent entity bean representing a bank account. In this
chapter, we’ll see how things change when we move to a container-managed
persistent (CMP) model. With container-managed persistence, you don’t
implement any persistence logic (such as JDBC or SQL/J) in the entity bean
itself; rather, the EJB container performs storage operations for you. As you
will see, this greatly simplifies bean development.

In the previous chapters, we learned the basics of entity beans and wrote a

Features of CMP Entity Beans

We'll kick things off by looking at the major differences between CMP and
bean-managed persistence (BMP). Before reading this, you should be familiar
with the entity bean concepts we covered in the last two chapters.

CMP Entity Beans Are Subclassed

Imagine that you are a bean provider who writes beans that others will con-
sume, such as an independent software vendor (ISV) or a department that
writes components that other departments reuse. You need to write your
beans to be database-independent because you don’t know what storage the
consumers of your bean will use. You certainly don’t want to allow the
consumers of your beans to access your source code, because it violates your

167

168 THE TRIAD OF BEANS

intellectual property rights. Furthermore, if they modify the code, it makes
future upgrades to new versions of your components difficult.

To answer this need, the authors of the EJB specification have tried to make
CMP have a clean separation between an entity bean and its persistent repre-
sentation—that is, a separation between the data logic methods (such as logic
in your entity bean to add two fields together) and the JDBC. This separation
is valuable because you can modify the persistent representation of an entity
bean (such as changing from a relational database to an object database) with-
out affecting the entity bean logic. This is a crucial feature for bean providers.

To achieve this clean separation, you write your CMP entity bean class to be
devoid of any JDBC or other persistence logic. The container then generates the
JDBC by subclassing your entity bean class. The generated subclass inherits
from your entity bean class. Thus, all CMP entity beans are each broken up
into two classes: the superclass, which you write and which contains the entity
bean data logic; and the subclass, which the container generates and which
contains the persistence logic. These two classes achieve a clean separation of
entity bean logic and persistent representation. The actual entity bean is a com-
bination of the superclass and the subclass. This is shown in Figure 7.1.

not require the use of subclassing. EJB 2.0 containers must support both the old EIB

? Entity beans are very different between EJB 1.1 and EJB 2.0. EJB 1.1 entity beans do
1.1 style and the new EJB 2.0 style of entity beans.

CMP Entity Beans Have No
Declared Fields

Another issue with CMP is that the container might have additional fields or
logic that are part of your persistent representation but are container-specific.
As a bean developer, you should be oblivious to this information. Here are two
examples:

m A container might keep around a bit vector that tracks which of your
entity bean fields have been modified (that is, are dirty) and need to be
written to storage. Then when your bean is stored, the container persists
only the part of your bean that has changed.

m Your bean might hold references to other beans. The container must
preserve referential integrity of those relationships, as described in
Chapter 11.

Since every container has its own proprietary way of dealing with your per-
sistent representation, your persistent fields are kept in the subclass, not the
superclass. This is another paradigm shift with container-managed persistent

Writing Container-Managed Persistent Entity Beans 169

<<interface>>
java.io.Serializable

Comes with Java 2 Platform

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

Comes with EJB Distribution A

CMP Entity Bean Class
(Contains Data Logic)

A

Supplied by Bean Provider (We Will Write)

CMP Entity Bean Subclass
(Contains Persistence Logic)

Generated for Us by Container Vendor's Tools

Figure 7.1 The subclassing concept.

entity beans: You don’t declare any persistent fields in your bean. For example,
take a look at the following is a snippet of code from a BMP bank account
entity bean class that we wrote in Chapter 6:

// BMP

public class AccountBean implements EntityBean {
public String accountID; // PK
public String ownerName;

170 THE TRIAD OF BEANS

public double balance;

. .methods. ..
}

With CMP, the fields are not present. Rather, the container generates your per-
sistent fields in the subclass. For example, the following subclass might be gen-
erated from the container tools:

// CMP Subclass

public class AccountBeanSubClass extends AccountBean {
public String accountID; // PK
public String ownerName;
public double balance;

..methods. ..

CMP Get/Set Methods Are Defined
in the Subclass

One corollary of the subclass paradigm is that the subclass, not the superclass,
implements the get/set methods. For example, here is that BMP bank account
again:
// BMP
public class AccountBean implements EntityBean {
public String accountID; // PK

public String ownerName;
public double balance;

public String getOwnerName () {
return ownerName;

public void setOwnerName (String ownerName) {
this.ownerName = ownerName;

...other methods...
}

With CMP, the get/set methods would appear in the subclass, since that is
where the fields exist and thus the only place they can be accessed. Here is
what the container-generated subclass looks like.

// CMP subclass

public class AccountBeanSubClass extends AccountBean {
public String accountID; // PK
public String ownerName;

Writing Container-Managed Persistent Entity Beans 171

public double balance;

public String getOwnerName () {
return ownerName;

}

public void setOwnerName (String ownerName) {
this.ownerName = ownerName;

}

...other methods...

}

So what does the superclass look like? First, realize that the superclass cannot
possibly implement the get/set methods because it doesn’t have access to the
fields. However, the superclass does need to call those get/set methods. For
example, let’s say you have a shopping cart entity bean that contains a subtotal
field and a taxes field on the contents in the shopping cart. One useful method
you might want to write is a getTotal() method, which returns the subtotal +
taxes. That is more than just a simple get/set method and thus cannot be gen-
erated automatically by the container in the subclass. Therefore you need to
write that method in the superclass yourself. But what would that getTotal()
method look like? With BMP, it could look like this:

// BMP
public class CartBean implements EntityBean {

public float getTotal() {
return this.getSubtotal() + this.getTaxes();
}

}

This code works well with BMP because we can define the getSubtotal() and
getTaxes() methods. But with CMP, the simple get/set methods getSubtotal()
and getTaxes() are defined in the subclass, so how can we access those get/set
methods? The answer is to declare your get/set methods as abstract methods
in the superclass. An abstract method is a method whose implementation is
deferred to a subclass; yet by defining a method as abstract you can call it from
the superclass. For example, a CMP shopping cart bean would look like this:

// CMP superclass
public abstract class CartBean implements EntityBean {
// no fields

// abstract get/set methods
public abstract float getSubTotal();

172 THE TRIAD OF BEANS

public abstract float getTaxes();

// other business methods
public float getTotal() {
return this.getSubtotal() + this.getTaxes();

// EJB required methods follow
}

The subclass for this bean is the subclass we showed earlier. As another exam-
ple, a CMP account bean would look like this:

// CMP superclass
public abstract class AccountBean implements EntityBean {
// no fields

// abstract get/set methods
public abstract String getOwnerName () ;
public abstract void setOwnerName (String ownerName) ;

// EJB required methods follow

CMP Entity Beans Have an Abstract
Persistence Schema

So far, we've discussed how the container generates JDBC code, persistent
fields, and get/set method implementations. One lurking question is how
does the container knows what to generate? The answer is that you declare it in
your bean’s deployment descriptors. The EJB container inspects the deploy-
ment descriptors to figure out what to generate. This definition of how you’d
like to be persisted is called your abstract persistence schema. For example, here
is a snippet from an Account deployment descriptor:

<cmp-version>2.x</cmp-version>
<abstract-schema-name>AccountBean</abstract-schema-name>
<cmp-field>

<field-name>accountID</field-name>
</cmp-field>
<cmp-field>

<field-name>ownerName</field-name>

</cmp-field>

<cmp-field>
<field-name>balance</field-name>

Writing Container-Managed Persistent Entity Beans 173

</cmp-field>

<primkey-field>accountID</primkey-field>

Here is a brief explanation of this deployment descriptor snippet.

m The cmp-version must be 2.x if you want to take advantage of EJB 2.0 CMP.
If you are on the older EJB 1.1 specification, you should define this to be
1.x. For an example of an EJB 1.1 CMP bean, see the book’s accompanying
source code.

m The abstract-schema-name is the nickname you want to give this abstract
persistence schema. It can have any value you want. We recommend nam-
ing it after your bean. Later we will reference this nickname when doing
queries.

m The cmp-field elements are your container-managed persistent fields. Each
field is a persistent field that the container will generate in the subclass.
The names of these fields must match the names of your abstract get/set
methods, except the first letter is not capitalized. For example, if your
abstract get/set methods are getOwnerName() and setOwnerName() then
your cmp-field should be called ownerName. The container derives the
types of these fields from the get/set methods as well.

We will see a complete example of an abstract persistence schema later in this
chapter.

CMP Entity Beans Have
a Query Language

Another piece of our CMP entity bean puzzle is addressing how to query
entity beans. To enable clients of your bean to find you, you must define finder
methods. For example, in BMP you’d define this method in your home
interface:

public Collection findBigAccounts (int minimum) ;

The home object would delegate this call to your bean, whose implementation
would be:

public Collection ejbFindBigAccounts (int minimum) {
// Perform JDBC, and return primary keys for
// all accounts whose balance is greater
// than the minimum passed in

}

With CMP, the container generates this JDBC for us. However, we need a way
to tell the container how to generate that JDBC, because the container can’t

174

THE TRIAD OF BEANS

magically know what find big accounts means. We want to specify how to gen-
erate the persistence code in a portable way so that we don’t have to com-
pletely rewrite the definitions of these finder methods every time we port our
bean to a new container.

The solution to this challenge is the E]B Query Language (EJB-QL). EJB-QL is an
object-oriented SQL-like syntax for querying entity beans. It contains a
SELECT clause, a FROM clause, and an optional WHERE clause. You write the
EJB-QL code in the deployment descriptor, and the container should be able to
generate the corresponding database logic (such as SQL), perhaps with some
help from the container tools. This is a similar concept to the Object Query
Language (OQL) described in Chapter 5.

Here is an example of EJB-QL that finds all accounts:

SELECT OBJECT (a)
FROM Account AS a
WHERE a.accountID IS NOT NULL

If you are using a relational database, at deployment time and with the help of
the container’s tools that you use, the container will inspect this code and gen-
erate the appropriate JDBC code.

Here is another example that satisfies the findBigAccounts() home method:

SELECT OBJECT (a)
FROM Account AS a
WHERE a.balance > ?1

In the above code, ?1 means the first parameter passed in, which in this case is
the variable minimum.

We will see more EJB-QL in the example later in this chapter. There is also a
complete reference in Appendix D.

Not all fields within the bean have to be managed by the container. You might be
pulling data manually from a secondary source, or you might have calculated fields.
The EJB container automatically notifies your bean class during persistent opera-
tions, allowing you to manage these fields.

In general, containers are not responsible for persisting any data in the superclass,
such as entity context references or environment naming contexts used for JNDI
lookups. You never store these persistently as container-managed fields because
they contain runtime EJB-specific information, and they do not represent persistent
business data.

The complete process of developing and deploying a CMP entity bean is
shown in Figure 7.2.

Writing Container-Managed Persistent Entity Beans 175

Build CMP Entity Bean Design Database Mapping
Design Abstract Code with Container Tools
Persistence Schema Generate Subclass and
Write EJB-QL Other Helper Code

Bean Provider
~ and/or Deployer System Administrator
Application Assembler (Maintains Deployment)

EJB Container/Server
Provider

Figure 7.2 The process of developing and deploying a CMP entity bean.

CMP Entity Beans Can Have
ejbSelect() Methods

The final major difference between BMP and CMP entity beans is that CMP
entity beans can have special ejbSelect() methods. An ejbSelect() method is a
query method (like a finder method) but is not directly exposed to the client in
the home interface or component interface. Rather, ejbSelect() is used internally
within an entity bean as a helper method to access a storage. ejbSelect() is use-
ful when you have entity beans in relationships with external data, such as
other entity beans.

For example, in our bank account example from the previous chapter, we
defined a method called ejbHomeGetTotalBankValue(), which added up the total
of all bank accounts in the bank table by performing a SQL SELECT statement
using JDBC. With CMP, you shouldn’t be writing this JDBC code—rather, the
container should generate it for you in an ejbSelect() method, and you should
call that ejbSelect() method from the ejbHomeGetTotalBankValue() method. You
then tell the container how to write the ejbSelect() method just like you do a
finder method—by using the E]B Query Language (EJB QL) described earlier.

For example, you might define the following method in your entity bean:

public abstract double ejbSelectAllAccountBalances ()
throws FinderException;

public double ejbHomeGetTotalBankValue() throws Exception {

176

v

THE TRIAD OF BEANS

// Get a collection of bank account balances
Collection ¢ = this.ejbSelectAllAccountBalances() ;

// Loop through collection and return sum

}

ejbSelect() methods are not exposed to end clients via the remote interface or
local interface. They must be called from within your bean, either from a busi-
ness method or a home business method.

The value of ejbSelect() methods are threefold:

m Select methods can perform fine-grained database operations that your
bean needs, but that you do not want to expose to end clients.

m Select methods can retrieve data from other entity beans that you have
relationships with (see Chapter 11 to learn more about relationships).

m Like finder methods, select methods can return entity beans. But select
methods are more powerful because they can also return container-man-
aged fields, such as our example above—it returns a collection of double
values.

You tell the container about how to implement your select method by defining
an E]JB-QL query string. For more details on how EJB-QL affects ejbSelect()
methods, see Appendix D.

As you may have noticed by now, the major differences between CMP and BMP lie in
the entity bean class and the deployment descriptors. The remote interface, local in-

terface, home interface, local home interface, and primary key class remain basically
the same. This means it is possible to switch between CMP and BMP without chang-

ing the clients who call your beans, which is a nice side effect.

Implementation Guidelines for
Container-Managed Persistence

Now that we’ve explored CMP entity beans in theory, let’s see how to build
CMP entity beans. The method implementations of your BMP entity beans
should be different for CMP. No longer are you controlling the routine persis-
tent operations of your beans, and so many of the methods can be left empty—
the container will do it for you. Table 7.1 summarizes what you should imple-
ment in each method, assuming your entity bean’s persistence is container
managed. Take a quick glance at the table for now. As you can see, many of the
database-intensive operations have been reduced in scope significantly. You

177

sanunuod

‘spoyiaw

ueaq Amus 1syjo sdeysad pue ()psjasqle (B2

01 s1 Aem (Jnyau1ed J0u a1,n0A Ji Suiwiopad-1amo|
1nqQ) Jaues)d Yy "DFdr asn 0} sI Siy} ans1yoe

0} Aem Asea-pue-jse} ay| JuaI[d dY} 0} SYNS3!

3y Suluin}al pue aseqejep e ul smol a3 dn
Sununod se yons ‘suoneisado jeqoj3 1NoA wiopad

‘Aianb ayy
dn 395 03 J03dudsap JuswAholdap ayy ul 1O-4r
S)M UY] PeiISge Se poysw Siy} sulag

‘sueaq Amua diND
1o} spoyiaw asay} uawa|dwi Jou pjnoys NoA

‘palqo gr3 ipjnonipd Aup o} punoq jou si

puD ‘41 Jo apisul b}pp 8spgpIDPp diidads Aub aAby
jou saop ‘jood b ul mou S| Upaq ay] "syuasaidal
ueaq ay} ejep 1eYM JO Ssa|pie8al pasu |[Im
doue)sul INoA sad1nosal Aue 3sanbai osje pjnoys
NOA “JAUIRJUOD SU} WO} ‘Uonewioul AjIndas

91| ‘uonewIOul JUSWUOIIAUS diinboe 03 193e
1XJU0D JY} SSIIE UBD NOA 9|qRUBA J3qUIaW

B Ul SB UONS ‘219YyMawWos 3xa3u0d Aua ayi ypns

NOILLVINIWITdINI TVIIdAL

Sa13Ug JUISISIDd pasdeue|y-Iauleiuo) Joy saulepinn uonejuswajdwi pue suondiudsaq

"90BJI9)UI SWOY [EI0] IO 3JBJISJUI SWIOY S} WOy
SpoylaW 3say} [[ed Sjual|) “elep didads Aue yum
pajenosse sI ueaq ayj 210joq [ood ayj Ul ueaq e
wouy pajjed ale Asy} asnedaq spoyiew ssauisng
[enads a1e spoylsw swopqls ayj ‘suonelrsdo
953y} wioyad 0} Spoylaw SWoHGle S)IM

ued NOA "9[ge} B Ul SJUNOJJE JO Jaquinu |e}0}

ay3 dn Sununoo ‘sjdwexa 10j— (Mol 10) due)Sul
ejep uani8 Aue 0} oipads jou ale jey) uesq
Anus ue uo spoyjew pasu NOA saWwRWOS

"ueaq INoA Jo Sjudi 0} J|qISSe Jou
ale Inqg ueaq InoA Aq Ajjeusajur sauanb wiopad
ey} spoyiaw Jadjay ale spoylaw ()13jasqle

"129[qo awoy sy} uo poyiaw Japuyy e swioyad
JUSI[D SY} USYM 93NI3XD 0} 2180] JeyM JaUIRIUOD
3y} ||} 0} S|00} JaUIRIUOD 3} pue TO-4(3 asn
noA asodind siyj 10} sjoo} yum sdiys Jaureuod
dr3 InoA jeys si Jamsue ay] "aseqeiep e ui

elep pulj 0} Isixa sAem jo AjaLiea spulyul ue ‘e
Iayy¢ueaq InoA ulr Juem noA spoyaw Japuly Jo
SpUD JeyM AMOUY| JSUIRIUOD g[g SY} SS0p Moy
ng 'noA 1oy eyep Suipuly o3 Suneas sanssi J/p
d|puey [|IM Jauleuod grg ay| ‘subaq pabbupw
-I3UID}UOD 10f SPOYIBW JBPULY S}IM JOU OP NOA

“JUSWUOIIAUD

S}l JNOQE UOINBLIOJUI SSIOB URD Uedq

3y} ‘paj|ed sI poyiaw Siy} SdUQ JUSWUOIIAUD
s,ueaq ayj} IN0ge UOIRWIOJUI—UO/DULIOU]
JX23U00 YU uedq e S9JRIDOSSe poyiawl

SIyl "()3xa1u0DA1uF}SS S,90URISUl BY]} S[|ed
Jauleuod ayj ‘siyy Suimnoj|o4 "adue)sul ueaq
Anus mau e sajenue)sul) ‘sadue)sul ueaq Jo
9z1S [00d S} 9sealdul 0] SJURM JUIRIUOD BY} J|

NOILLYNY1dX3

(dD 10§ Mau)
(< >)< " >awoH(qle

(dD 10§ mau)
(< >)< " >psjpEsqle

(dD 10§ mau)
(< >)< " >puiqle

(dwg se swes)
(Ow@uonAmudies

dOH1IN

1L 3jqeL

178

"9]e)S
Apea1 ays ojur panows si 31 usym juaip Jejnonied

B 921/JSS 0] SPasaU Ueaq JNOoA 1ey) 'suoipPsuu0d
19)20s Y| ‘s924n0osai dyads-ueaq Aue asinboy

7 asn
pup aAa1439.1 upd NoA os ‘alqo Aay Aipwirid inoA
pa3Daid 9ADY [[IM J3UIDJUOD g7 3y} mou Ag :910N
‘sueaq I13y1o

03 9douaIaal PaIqo grg s,ueaq 1noA Suissed se yons
‘palqo gr3 1eys sasinbai ey} o3 paau noA Suiyjhue
3ulop Aq uonezijeniul 1noA 9)9jdwod mou ued NoA
‘alqo gr3 ue yum aduejsul ueaq INoA pajedosse
sey } Jaye ()a10a1D3504qle s||ed 1auleuod ay|

'spalqo gr3 JejnonJed

e 0} ddUejsul JNOA puiq [[IM JaUIRIUOD Y]

"}l 9pIsul kyep aseqeiep dyads sey mou y—jood
3y} ul J93uo| ou uay} si dduejsul ueaq Anus

INOA "NOA 10} e1Ep 3SegRIRp 3Y) 91B3ID 0} SSe[PANS
SU} Ul S9N[eA 3SBY} SN USY} |[IM Jaulejuod ayj “ul
passed sia)aweled ay} 0} ssejpgns ueaq pajelauasd
9yj azi[eiIul 0} spoylaw ()39s essqe oA |[ed
‘s19joweled uonezifeiHUL S,JUSIP Y} depljeA Iayiey
‘poyawi Sy} ul DIpp 8SDGDIDP 83D3JD JoU 0(

NOILLVINIWITdINI TVIIdAL

"IaUIR}UOD

dr3 ay3 Aq pajjed st poyrsw ()apaipyqla

3y} ‘UoNeAIR UQ “UORDAIDD Pa|[ed S SIY] "d)e)s
Apeas e ojur 31 uonisuesy pue [ood sy} woiy ueaq
B 9B} 0} SPasU Jaulejuod 3y} ‘Palqo gr3 ayy

0} punoq sl aduejsul ueaq Apua ou Inq ‘Palqo
43 Ue UO PO} SSaUISN(B S|[BD JUI|D B USYAA

(""")apaigle

Suimojjoy poyiaw (" - *)apaId3sodqle s,2oueisul
ueaq InoA sjjea Jaurejuod ay] ‘sisweled

awes ayj sey Jied yoeg *(- -)apalngle

yoea 10} (")a1Da4D1S04qle |uo si sy

‘ueaq InoA Suizijeiyul pue

elep aseqeiep mau Suneald oy s|qisuodsal

ale spoyaw ()a3pa.idqla -dueisul ueaq

pajood e uo ()appangle s|jed usy} Jauieuod Sy}
‘alqo swoy e uo ()a1pald S||ed Ui B USYAN

(dng se swes)
(O=1endyqfle

(dg se swes)
(< " >)eeaidisodqle

‘SuDaW Iayjo
10 s3j1j y230q ybnouyy
SMasUl 8SDGDIDP 19311p DIA
4n220 0} DIDP JO UO/IDA.ID
Moj|p Abw swajsAs swos

‘D)DP 9SDGDIDP MAU d}DB.UD

0} 8/gD 8q 03 SpuUdIP grd
JUDM 3,uop noA J1 spoyPW
()a1painqle Aup ayim o}
paau jou op noyj :910N
(dD 104

mau) (< - >)aeasnqle

(panunuod) sannug Jualsisiad padeue|y-1auieiuo) Joy saulepinn uonejuswsa|dwi pue suondisaq

NOILLYNY1dX3

dOH1IN

1L 3jqeL

179

‘uo133||0d adeqied
lo} Apeai 338 pue ‘()ixapuodApugies
3unnp pajedoje NoA sa21nosal Aue ases|ay

‘pa||ed s ()anowayqlo 1aye

Y31 noA 1o} e1ep 3y} Aonsap ||Im Jauleuod gr3 syl
‘paAolisap Si aseqeiep sy} ul ejep sy} 210j9q suop
9q 1snwi jeyy suonesado Aue wiopad Aidwis ‘1ayiey
‘poyawi siyp ui b}pp asbgpipp Ao.3sap Jou og

uaid JejnonJed

e 1o} 91e3s Apeas ays Suunp 3uipjoy sem ueaq

1noA 1eyy pue ()aipA1pyqle ul pajedojje noA ey
’SUOI}I3UUOD }3H20S SB UdNS ‘s921n0sal Aue ases|ay

‘spoyiaw

()19s pessqe umo 1noA uljed Aq Aiessadau ji

sp[a1} 1noA Jo 1xa} ay3 ssaidwod ued noA ‘sjdwexa
104 "9seqejep sy} 0} UM 9q 0} Sp|lj padeuew
-1auiejuod 1noA asedaid pjnoys noA ‘poyraw

SIU} u| "9seqejep ay} 0} sp|alj padeurw-1auIRILOD
InoA Sunum Aq ssejpgns ayj ul siyj SS0p 3| "poyiaw
()21035gf5 1noA 3uijjed soyp 1y3u Ajjeonnewoine

noA 10} aseqelep ay} a1epdn |jim Jsuleluod g3 sy}
‘Iayiey ‘poyaw Siy} ur aspgoipp ay} appdn jou og

‘p|a1 1x3) e 8uissaidwodap se yons

‘e}ep UI-pEaI Y} YU 340M 0] pasu noA sanijin Aue
wuopad pjnoys noA ‘poyiawi siy} uj ‘aseqelep ayi
WwoJj Speai i elep ay) 0} sp|al paseurw-JaulRlu0d
1noA 3umas Aq siys ssop 11 "poyraw ()ppoigle inok
3uijes asojaq 1y3u Ajjedonnewoine noA 1oy aseqeiep
3y} WoJj BIEP UI PR3 [|IA JSUIRIUOD g(F By} ‘Iauiey
‘poyzaw SIy} Ul 8SDGDIDP By W01} DIDP pDaJ JOU 0F

NOILVINIWITdWI TVIIdAL

*(3z1s |0od 8y} adnpal 0} spURM

} usymn) paAoasap si aduelsul ueaq Ajus JnoA
910494 3y8u Sy S||ED JSUIRIUOD BY] “JUSIUOIIAUD
S} WOJ} UBdq B SIJRIDOSSESIP poyaw Siy|

"BJRP JUSIIP 10} pasnal pue pajood aq
ued 193[qo sy} asnedaq Pa[qO eaef ayy Aosisap
J0U S0P SIY} 1Y) 310N *()anowayqgle 1noA sjjed

uay} ‘()anowa. eyep aseqeiep Aossap 0} poyiaw
()anowsai s129[qo swoy ay} s|jed Jualp 3yl

“IauIRjuU0d grg Y3 Aq paj|ed sI poyiaw
()a1pAIsspdqle sy ‘'uonenissed uQ "uoneanoe jo
ausoddo ayy si pue uvonpaisspd pajjed st siylL
‘lood 8y} 03 ueaq Ajus INOA UIN}DI 0} SUBM

} USYM poyla SIy} S|jed Jauleuod gr3 syl

*()21p7IssDdqle a1039q Apdaiip ‘uonenissed Suunp
pa][e> OS|e SI poyiawi siy] "paj|ed SI poyaw

SIUY} USYM SSIRPIP 9)e)S [RUOIDRSURI) JUSLIND
3y| aseqeiep ay3 SuiziuoiyduAs snyy ‘sp[al
Alowsw-ul INOA Jo sanjeA Mau sU} 0} aseqelep
ay3 a1epdn 01 s1y} S||ed JauIeIU0d grg dYyL

"9)e)S |EUOIPESURL)
JUSLIND 3Y} UO paskeq ‘aduelsul Ueaq INOA ol
e}Ep 9Seqelep peoj 0} SIy} S||ed Jauleuod gfg syl

NOILYNVY1dX3

(dg se swes)
(OmxsuodApuziesun

(dD 10§ mau)
(enowayqle

(dng se swes)
()@1enissedqle

(dnD 10y mau)
()=1015¢gfe

(dWD 10§ mau)
(Opeo1qfe

dOH1IN

THE TRIAD OF BEANS

should refer to the table when reading through the code in this chapter or

when programming your own entity bean classes.

Looking to see how BMP and CMP method implementations compare? Appendix E

has a table comparing them.

Container-Managed Persistence Example:
A Product Line

Let’s see a quick demonstration of CMP in action, applied to the concept of a
product line.

If you work for a product-based company, your company’s product line is the
suite of products that your company offers. For example, if you're an appli-
ance company, you might offer a dishwasher, a stove, and a dryer. If you're a
computer hardware company, you might offer memory, hard disks, and
processors. We're going to model a generic product as an entity bean that
uses CMP.

The object model for our product line is detailed in Figure 7.3.

<<interface>>
java.rmi.Remote

Comes with Java 2 Platform

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean
<<interface>> <<interface>> <<interface>> <<interface>>
javax.ejb.EJBLocalObject javax.ejb.EJBObject javax.ejb.EJBHome javax.ejb.EJBLocalHome Z%
<<interface>>
javax.ejb.EntityBean
Comes with EJB Distribution A
<<interface>> <<interface>> <<interface>> <<interface>>
Product Product
Product Product Product Product ;
Local Interface Remote Interface Home Interface Local Home Interface Bean Abstract Class Primary Key Class
Supplied by Bean Provider (We:Will Write)
Product Product Product Product Product
EJB Local Object EJB Object Home Object Local Home Object Bean Subclass

Generated for Us by Container Vendor's Tools

Figure 7.3 The object model for our product line.

Writing Container-Managed Persistent Entity Beans 181

Let’s take a look at each of the files that we must create for our entity bean
component.

Product.java

Remote clients will call our remote interface. The only case in which a remote
client should call an entity bean is when you are writing small test applications
to exercise your entity bean’s API, as we will do in this example. Otherwise
you should use the local interface for performance reasons, and wrapper your
entity beans with session beans (see Chapter 13). The remote interface is
shown in Source 7.1.

Our remote interface is quite simple. It has methods to modify the entity bean
instance’s fields and throws remote exceptions to indicate system-level errors.

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;

/**
* These are the public business methods of ProductBean.
*
* This remote interface is what remote clients operate
* on when they interact with beans. The EJB container
* will implement this interface; the implemented object
* is called the EJB Object, which delegates invocations
* to instances of the entity bean class.
*/

public interface Product extends EJBObject {

public String getName () throws RemoteException;
public void setName (String name) throws RemoteException;

public String getDescription() throws RemoteException;
public void setDescription(String description) throws

RemoteException;

public double getBasePrice() throws RemoteException;
public void setBasePrice(double price) throws RemoteException;

public String getProductID() throws RemoteException;

Source 7.1 Product.java.

182 THE TRIAD OF BEANS

ProductLocal.java

Our local interface is our business interface called by local clients, such as ses-
sion beans or other entity beans. It is shown in Source 7.2.

The local interface is trivially different than the remote interface. The only dif-
ferences are the lack of thrown RemoteExceptions and the fact that we extend
EJBLocalObject rather than EJBObject.

ProductHome.java

Next, we have the product’s home interface, which is shown in Source 7.3. As
with the remote interface, this home interface should be used only by remote
clients, such as a standalone application.

Our home interface defines a single create() method to create a new product in
the database. It returns a Product EJB object so the client can manipulate the

package examples;
import javax.ejb.*;

/**
* These are the public business methods of ProductBean.
*
* This local interface is what local clients operate
* on when they interact with our bean. The container
* will implement this interface; the implemented object
* is called the EJB local object, which delegates
* invocations to instances of the entity bean class.
*/
public interface ProductLocal extends EJBLocalObject {

public String getName () ;
public void setName (String name) ;

public String getDescription() ;
public void setDescription(String description) ;

public double getBasePrice() ;
public void setBasePrice(double price);

public String getProductID() ;

Source 7.2 ProductlLocal.java.

Writing Container-Managed Persistent Entity Beans 183

package examples;

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Collection;

/**

* This is the home interface for Product. This interface
* is implemented by the EJB container. The implemented

* object is called the Home Object, and serves as a

* factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in the bean class.
*/

public interface ProductHome extends EJBHome {

/*
* Creates a product

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB Object.

*/

Product create(String productID, String name, String description,

double basePrice) throws CreateException, RemoteException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of
// these methods in the deployment descriptor through
// EJB-QL and container tools.

public Product findByPrimaryKey (ProductPK key) throws
FinderException, RemoteException;

public Collection findByName (String name) throws FinderException,
RemoteException;

public Collection findByDescription (String description) throws
FinderException, RemoteException;

public Collection findByBasePrice (double basePrice) throws
FinderException, RemoteException;

Source 7.3 ProductHome.java.

184 THE TRIAD OF BEANS

public Collection findExpensiveProducts (double minPrice) throws
FinderException, RemoteException;

public Collection findCheapProducts (double maxPrice) throws
FinderException, RemoteException;

public Collection findAllProducts () throws FinderException,
RemoteException;

}

Source 7.3 ProductHome.java (continued).

entity bean data and throws a javax.ejb.CreateException to indicate an
application-level problem.

We also expose all sorts of finder methods to find existing products. One of the
finders returns a single EJB object, while others return a java.util.Collection of
multiple EJB objects. This is needed if the finder methods find more than one
matching object. Note that findByPrimaryKey() should never return a collec-
tion, because primary keys must be unique.

ProductLocalHome.java

Our entity bean’s local home interface is the more optimized (see Chapter 2)
home interface that session beans or other entity beans should use. The code is
in Source 7.4.

ProductPK. java

Our primary key class is defined by ProductPK java, shown in Source 7.5. This
unique identifier uses a productID that could represent the product’s SKU
number.

As with BMP, CMP dictates that your primary key class must be serializable.
Because the EJB container is persisting for you, it may need to query the pri-
mary key class and manipulate or compare its fields with the fields in your
bean. Thus, an important restriction with CMP is that the fields you have in
your primary key class must come from the container-managed fields defined
in your deployment descriptor.

In our example, the ProductPK class is valid because it is serializable and
because its public fields come from our container-managed fields, which we
will define shortly in the deployment descriptor.

Writing Container-Managed Persistent Entity Beans

package examples;

import javax.ejb.*;

import java.util.Collection;

/**

*

*

*

*/

This is the local home interface for Product.

This interface is implemented by the EJB container.

The implemented object is called the local home object,
and serves as a factory for EJB local objects.

One create() method is in this Home Interface, which
corresponds to the ejbCreate() method in the bean class.

public interface ProductlLocalHome extends EJBLocalHome {

/*
* Creates a product

* @param productID The number of the product (unique)
* @param name The name of the product
* @param description Product description
* @param basePrice Base Price of product
*
* @return The newly created EJB local Object.
*/
ProductLocal create(String productID, String name, String

description, double basePrice) throws CreateException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of
// these methods in the deployment descriptor through
// EJB-QL and container tools.

public ProductLocal findByPrimaryKey (ProductPK key) throws

FinderException;

public Collection findByName (String name) throws FinderException;

public Collection findByDescription(String description) throws

FinderException;

public Collection findByBasePrice(double basePrice) throws

FinderException;

public Collection findExpensiveProducts (double minPrice) throws

FinderException;

Source 7.4 ProductLocalHome.java.

186

THE TRIAD OF BEANS

public Collection findCheapProducts (double maxPrice) throws
FinderException;

public Collection findAllProducts () throws FinderException;

Source 7.4 ProductLocalHome.java (continued).

package examples;

import java.io.Serializable;

/**
* Primary Key class for our 'Product' Container-Managed
* Entity Bean
*/

public class ProductPK implements java.ilo.Serializable {

/*
* Note that the primary key fields must be a
* gsubset of the the container-managed fields.
* The fields we are marking as container-managed in
* our Bean are productID, name, desc, and basePrice.
* Therefore our PK fields need to be from that set.
*/
public String productlID;

public ProductPK (String productID) {
this.productID = productID;

public ProductPK() {}

public String toString() {

return productID.toString() ;

public int hashCode() {
return productID.hashCode () ;

public boolean equals (Object prod) {
return ((ProductPK)prod) .productID.equals (productlID) ;

Source 7.5 ProductPK.java.

Writing Container-Managed Persistent Entity Beans 187

ProductBean.java

Next, we have our container-managed entity bean implementation, Product-
Bean.java, shown in Source 7.6.

package examples;
import javax.ejb.*;

/**
* Entity Bean that demonstrates Container-Managed persistence.
*
* This is a product that’s persistent. It has an ID #, a name,
* a description, and a base price.
*/

public abstract class ProductBean implements EntityBean ({

protected EntityContext ctx;

public ProductBean() {

public abstract String getName () ;

public abstract void setName (String name) ;

public abstract String getDescription() ;

public abstract void setDescription(String description) ;
public abstract double getBasePrice() ;

public abstract void setBasePrice(double price);

public abstract String getProductID() ;

public abstract void setProductID(String productID) ;

// Begin EJB-required methods. The methods below
// are called by the Container, and never called
// by client code.

Source 7.6 ProductBean.java.

188 THE TRIAD OF BEANS

* Called by Container.
* Implementation can acquire needed resources.
*/
public void ejbActivate() {
System.out.println("ejbActivate() called.");

/**

* EJB Container calls this method right before it
* removes the Entity Bean from the database.

* Corresponds to when client calls home.remove() .

*/
public void ejbRemove () {
System.out.println("ejbRemove () called.");
}
/‘k‘k

* Called by Container.
* Releases held resources for passivation.

*/
public void ejbPassivate() {
System.out.println("ejbPassivate () called.");
}
/**

* Called from the Container. Updates the entity bean
* instance to reflect the current value stored in
* the database.

* Since we’'re using Container-Managed Persistence, we
* can leave this method blank. The EJB Container will
* automatically load us in the subclass.
*/
public void ejbLoad() {
System.out.println("ejbLoad() called.");

* Called from the Container. Updates the database to
* reflect the current values of this in-memory Entity Bean
* instance representation.

* Since we’re using Container-Managed Persistence, we can
* leave this method blank. The EJB Container will
* automatically save us in the subclass.
*/
public void ejbStore() {

Source 7.6 ProductBean.java (continued).

Writing Container-Managed Persistent Entity Beans 189

System.out.println("ejbStore() called.");

* Called by Container. Associates this Bean instance with
* a particular context. Once done, we can query the
* Context for environment info
*/
public void setEntityContext (EntityContext ctx) {
System.out.println("setEntityContext called") ;
this.ctx = ctx;

/**
* Called by Container. Disassociates this Bean instance
* with a particular context environment.
*/
public void unsetEntityContext () {
System.out.println ("unsetEntityContext called") ;
this.ctx = null;

/**
* Called after ejbCreate(). Now, the Bean can retrieve
* its EJBObject from its context, and pass it as a 'this’
* argument.
*/
public void ejbPostCreate(String productID, String name, String
description, double basePrice) {
System.out.println("ejbPostCreate() called") ;

* This is the initialization method that corresponds to the
* create() method in the Home Interface.

* When the client calls the Home Object’s create() method,
* the Home Object then calls this ejbCreate() method.

* We need to initialize our Bean'’s fields with the
* parameters passed from the client, so that the Container
* can create the corresponding database entries in the
* gubclass after this method completes.
*/
public String ejbCreate (ProductPK productID, String name,
String description, double basePrice)
throws CreateException ({

Source 7.6 ProductBean.java (continued).

190

THE TRIAD OF BEANS

System.out.println("ejbCreate() called");

setProductID (productID) ;
setName (name) ;
setDescription(description) ;
setBasePrice (basePrice) ;

return new ProductPXK (productID) ;

// No finder methods
// (they are implemented by Container)

Source 7.6 ProductBean.java (continued).

This bean is more complex than our bank account example. We’ve defined
many finder methods, and we have more persistent fields. Yet even though
we’ve added this complexity, our bean is less than 40 percent of the size of our
Bank Account bean. This is an amazing reduction in code complexity. And
because our bean has no database code in it, we have reduced the chance for
bugs in our bean due to user error working with JDBC code. This is a huge sav-
ings in development and testing time.

We do not have any fields, since the container declares them in the subclass.
We have a few abstract get/set methods, which the container also implements
in the subclass. The only really interesting method is ejbCreate(), which takes
the parameters passed in from the client and calls the bean’s own abstract set()
methods to populate the bean with the initialization data. The container then
performs a SQL INSERT in the subclass once ejbCreate() concludes.

The rest of our bean is just empty EJB-required methods and comments. In
fact, if we took the comments, whitespace, and println’s out, the bean would
just be this:

package examples;
import javax.ejb.*;

public abstract class ProductBean implements EntityBean {
protected EntityContext ctx;

public abstract String getName () ;

Writing Container-Managed Persistent Entity Beans 191

public abstract void setName (String name) ;

public abstract String getDescription() ;

public abstract void setDescription(String description) ;
public abstract double getBasePrice() ;

public abstract void setBasePrice (double price);

public abstract String getProductID() ;

public abstract void setProductID(String productID) ;

public void ejbActivate() {}

public void ejbRemove () {}

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void setEntityContext (EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext () { this.ctx = null; }

public void ejbPostCreate(String productID, String name,
String description, double basePrice) {}

public String ejbCreate(String productID, String name,
String description, double basePrice) {
setProductID (productID) ;
setName (name) ;
setDescription(description) ;
setBasePrice (basePrice) ;
return productID;

The Deployment Descriptor

We now need to inform our container about our entity bean, including our
container-managed fields and our EJB-QL. The deployment descriptor is
shown in Source 7.7.

Our deployment descriptor begins by identifying the name of the bean, then
the bean class, and so on, which is the same as BMP. We then define the con-
tainer-managed fields, which must match the abstract get/set methods in the
enterprise bean class.

The bulk of the descriptor following this is the code for our queries. For exam-
ple, the findExpensiveProducts() finder method locates all products that are
more expensive than the double parameter passed in. To instruct the container
on how to implement this finder functionality, we define our EJB-QL as
follows:

<! [CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice > ?1]]>

192 THE TRIAD OF BEANS

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>Product</ejb-name>
<home>examples.ProductHome</home>
<remote>examples.Product</remote>
<local-home>examples.ProductLocalHome</local-home>
<local>examples.ProductLocal</local>
<ejb-class>examples.ProductBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>examples.ProductPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>
<abstract-schema-name>ProductBean</abstract-schema-name>

<cmp-field>
<field-name>productID</field-name>

</cmp-field>

<cmp-field>
<field-name>name</field-name>

</cmp-field>

<cmp-field>
<field-name>description</field-name>

</cmp-field>

<cmp-field>
<field-name>basePrice</field-name>

</cmp-field>

<query>
<query-method>

<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-qgl>

<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE name =
?21]]1>

</ejb-gl>

Source 7.7 ejb-jarxml.

Writing Container-Managed Persistent Entity Beans 193

</query>

<query>
<query-method>
<method-name>findByDescription</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE description
= ?1]1>
</ejb-qgl>
</query>

<query>
<query-method>
<method-name>findByBasePrice</method-name>
<method-params>
<method-param>double</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice =
?21]11>
</ejb-gl>
</query>

<query>
<query-method>
<method-name>findExpensiveProducts</method-name>
<method-params>
<method-param>double</method-param>
</method-params>
</query-method>
<ejb-gl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice >
?111>
</ejb-gl>
</query>

<query>
<query-method>
<method-name>findCheapProducts</method-name>
<method-params>
<method-param>double</method-param>
</method-params>

Source 7.7 ejb-jar.xml (continued).

194

THE TRIAD OF BEANS

</query-method>
<ejb-qgl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE basePrice <
?21]]1>
</ejb-gl>
</query>

<query>
<guery-method>
<method-name>findAllProducts</method-name>
<method-params>
</method-params>
</query-method>
<ejb-qgl>
<! [CDATA[SELECT OBJECT (a) FROM ProductBean AS a WHERE productID
IS NOT NULL]]>
</ejb-gl>
</query>

</entity>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>Product</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</ejb-jar>

Source 7.7 ejb-jar.xml (continued).

When the container interprets this EJB-QL, it generates database access code
(such as JDBC) to find all of the expensive products whose basePrice column is
greater in value than the double passed in, represented by the ?1. Whenever a
client wants to execute a finder method on the home object, the container auto-
matically runs the database access code.

Notice also the word CDATA. This instructs the container’s XML parser to
ignore the text SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice
> ?1. This is important because the container’s XML parser may think that the

Writing Container-Managed Persistent Entity Beans 195

text inside the CDATA section does not comply with the XML standard; it may
think the > character is actually the closing of an XML tag, rather than a less-
than sign. Thus, all EJB-QL must be enclosed in CDATA sections.

The end of our descriptor associates transactions with our entity bean, which
we’ll learn about in Chapter 10.

The Container-Specific
Deployment Descriptor

In addition to the deployment descriptor, we need to tell the container exactly
how to perform persistent operations. This is one trade-off of CMP—you still
need to declare persistent rules, rather than code them into your bean using
JDBC or SQL/]J.

If you're using a relational data store, you need to define exactly how your
entity bean’s public fields map to that database. Thus, we must define a series
of object-relational mapping entries. These entries map entity bean fields to
relational database column names. The EJB container uses this mapping when
storing or retrieving our container-managed fields from the database. Note

When to Use Custom Primary Key Classes

In our bean we've declared a custom primary key class, ProductPK. We then have
this element in our deployment descriptor:

<prim-key-class>examples.ProductPK</prim-key-class>

This is not strictly necessary, however. You can choose not to invent a custom
primary key class and just use one of your container-managed fields as the pri-
mary key. For example, we could use the productID String field as the primary
key, rather than wrapping it in another primary key wrapper class. Then we would
declare the primary key class to be a java.lang.String, and we would have this
element after we declare the container-managed fields:

<primkey-field>productID</primkey-field>

When should you use a custom primary key class, and when should you use
one of your fields? In our opinion, you should avoid using your own fields as pri-
mary key classes. The reason is because having a primary key class wrapper iso-
lates you from changes to how you'd like to be uniquely represented in an
underlying storage. Having a primary key class wrapper makes it much easier to
change how you’d like to be uniquely identified without breaking code.

that this is very EJB container-specific! Some EJB containers support object
databases and thus do not have a mapping into a two-dimensional relational
database. Consult your E]JB container’s documentation for more information.
Our product line’s persistent entries for a relational database are shown in
Table 7.2. See the book’s accompanying source code for the actual descriptor.

Client.java

Our client code is a simple suite of test cases to try out our bean, as shown
Source 7.8.

Because this standalone application runs in a separate process from the appli-
cation server, for testing purposes this client calls through the bean’s remote
interface rather than a local interface. However, in a real-world scenario, we
would wrap this entity bean with a session bean and calling through its local
interface.

The client performs a JNDI lookup to acquire the home object and create some
entity bean data. We then try out a couple of finder methods. We can loop
through the finders’ returned collection and call business methods on each EJB
object. We then destroy all the EJB objects we created in a finally{} clause.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on your EJB container’s JNDI initialization parameters):

java -D java.naming.factory.initial=weblogic.jndi.
WLInitialContextFactory -Djava.naming.provider.url=t3://localhost:7001
examples.ProductClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

Table 7.2 Sample Persistent Settings for ProductBean
OBJECT/RELATIONAL SETTING

(ENTITY BEAN FIELD = RELATIONAL COLUMN NAME)
productiD=id

name=name
description=description

basePrice=basePrice

Writing Container-Managed Persistent Entity Beans 197

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.PortableRemoteObject;
import java.util.*;

/**
* Client test application on a CMP Entity Bean, Product.
*/

public class ProductClient {

public static void main(String[] args) throws Exception {

ProductHome home = null;

try {

/*

* Get a reference to the Product Home Object - the

* factory for Product EJB Objects

*/
Context ctx = new InitialContext (System.getProperties());
home = (ProductHome) PortableRemoteObject.narrow (

ctx.lookup ("ProductHome"), ProductHome.class) ;
/*

* Use the factory to create the Product EJB Object

*/
home.create("123-456-7890", "P5-350", "350 Mhz Pentium", 200);
home.create("123-456-7891", "P5-400", "400 Mhz Pentium", 300);
home.create("123-456-7892", "P5-450", "450 Mhz Pentium", 400);
home.create("123-456-7893", "SD-64", "64 MB SDRAM", 50);
home.create("123-456-7894", "SD-128", "128 MB SDRAM", 100);
home.create("123-456-7895", "SD-256", "256 MB SDRAM", 200);
/*

* Find a Product, and print out its description

*/

Iterator i1 = home.findByName ("SD-64") .iterator () ;
System.out.println("These products match the name SD-64:");
while (i.hasNext()) {
Product prod = (Product) PortableRemoteObject.narrow (
i.next (), Product.class);
System.out.println(prod.getDescription()) ;

Source 7.8 Client.java.

198 THE TRIAD OF BEANS

/*

* Find all products that cost $200

*/
System.out.println("Finding all products that cost $200");
i = home.findByBasePrice(200) .iterator () ;

while (i.hasNext()) {
Product prod = (Product) PortableRemoteObject.narrow (
i.next (), Product.class);
System.out.println(prod.getDescription()) ;

}
catch (Exception e) {
e.printStackTrace() ;
}
finally {
if (home != null) {
System.out.println ("Destroying products..");

/*

* Find all the products

*/
Iterator i1 = home.findAllProducts () .iterator () ;
while (i.hasNext()) {

try {
Product prod = (Product) PortableRemoteObject.narrow (

i.next (), Product.class);
if (prod.getProductID() .startsWith("123")) {
prod.remove () ;

}

catch (Exception e) {
e.printStackTrace() ;

Source 7.8 Client.java (continued).

Writing Container-Managed Persistent Entity Beans

199

The life cycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean

does not exist

instance.

1: newlnstance()
2:setEntityContext()

y

i

1: unsetEntityContext()
2: JVM will garbage collect
and call finalize()

ejbHome()

pooled

ejbFind()
or
ejbSelect()

1: ejbCreate()

2: ejbPostCreate() 1: ejbActivate(

2: ejbLoad()

f]

y

Activate your bean: Passivate your bean:

A

1: ejbStore()
2: ejbPassivate()

ejbRemove()

ejbLoad()

ready

ejbStore()

(

)

business method

ejbSelect()

Figure 7.4 The CMP entity bean life cycle.

200 THE TRIAD OF BEANS

When we run the client, we first create a few products and then perform a find
for all products that cost $200. Indeed, multiple entity beans were returned in
our collection, as shown below:

These products match the name SD-64:
64 MB SDRAM

Finding all products that cost $200
350 Mhz Pentium

256 MB SDRAM

Destroying products..

The Life Cycle of a CMP Entity Bean

Now that we’ve seen a complete CMP entity bean example, let’s fully under-
stand how the container interacts with CMP entity beans. Figure 7.4 shows
this.

The life cycle of a CMP entity bean is exactly the same as that of a BMP entity
bean, which we fully described at the end of the previous chapter (refer back if
you need to refresh your memory). The only differences are that ejbSelect()
methods can be called from the pooled state or ready state.

Summary

In this chapter, you learned how to write CMP entity beans. We saw how the
bean instance callback methods differ between BMP and CMP. We then went
through an example that modeled a product line. Finally, we wrapped up with
a look at the life cycle of a CMP entity bean.

In the next chapter, we’ll look at the new EJB 2.0 bean type, message-driven
beans.

Introduction to
Message-Driven Beans

communications. Messaging is more appropriate than RMI-IIOP in numerous
scenarios. We'll also learn about message-driven beans, special beans that can be
accessed via messaging and a new addition to the EJB 2.0 specification.

In this chapter, we will learn about messaging, which is a lightweight vehicle for

Specifically, you'll learn about the following:
m An introduction to messaging, including an overview of asynchronous
behavior and message-oriented middleware

m A brief tutorial of the Java Message Service (JMS), which message-driven
beans depend on

Features of message-driven beans
How message-driven beans compare with entity and session beans

How to develop message-driven beans

Advanced message-driven bean topics, gotchas, and possible solutions

Motivation to Use Message-Driven Beans

In previous chapters, you learned how to code session and entity beans—dis-
tributed components that are accessed using RMI-IIOP. RMI-IIOP is a tradi-
tional, heavyweight way to call components. While RMI-IIOP may be useful in
many scenarios, several other areas are challenging for RMI-IIOP. Here are just
three examples.

201

202

THE TRIAD OF BEANS

Performance. An RMI-IIOP client must wait (or block) while the server per-
forms its processing. Only when the server completes its work does the
client receive a return result, which allows it to continue processing.

Reliability. When an RMI-IIOP client calls the server, it has to be running. If
the server crashes or the network crashes, the client cannot perform its
intended operation.

Support for multiple senders and receivers. RMI-IIOP limits you to a single
client talking to a single server at any given time. There is no built-in func-
tionality for multiple clients to broadcast events to multiple servers.

Messaging is an alternative to remote method invocations and is shown in Fig-
ure 8.1. The idea behind messaging is that a middleman sits between the client
and the server. (A layer of indirection solves every problem in computer sci-
ence). This middleman receives messages from one or more message producers
and broadcasts those messages to one or more message consumers. Because of
this middleman, the producer can send a message and then continue process-
ing. He can optionally be notified of the response later when the consumer fin-
ishes. This is called asynchronous programming.

Messaging addresses the three previous concerns with RMI-IIOP as follows.

Performance. A messaging client does not need to block when performing a
request. As an example, when you purchase a book using Amazon.com’s
one-click order functionality, you can continue browsing the site without
waiting to see if your credit card authorizes. Unless something goes
wrong, Amazon.com sends you a confirmation email afterwards. This type
of fire-and-forget system could easily be coded using messaging. When the
user clicks to buy the book, a message is sent that results in credit card pro-
cessing later. The user can continue to browse.

Remote Method Invocations:

Application Application
Messaging:
Application M“:I;;IZ?,?; e Application

Figure 8.1 Remote method invocations vs. messaging.

Introduction to Message-Driven Beans 203

Reliability. If your message-oriented middleware supports guaranteed deliv-
ery, you can send a message and know for sure that it will reach its destina-
tion, even if the consumer is not available. You send the message to the
MOM middleman, and that middleman routes the message to the con-
sumer when he comes back alive again. With RMI-IIOP, this is not possible
because there is no middleman: If the server is down, an exception is
thrown.

Support for multiple senders and receivers. Most message-oriented middle-
ware products can accept messages from many senders and broadcast
them to many receivers. This allows you to have n-ary communications.

Note that messaging also has many disadvantages. Performance, for one, can
be slower in many circumstances due to the overhead of having the messaging
middleman. For a complete comparison of when to (and when not to) use mes-
saging, see Chapter 13.

Message-oriented middleware (MOM) is a term used to refer to any infrastructure
that supports messaging. A variety of products are considered to have a MOM-
based architecture. Examples include Tibco Rendezvous, IBM MQSeries, BEA
Tuxedo/Q, Microsoft MSMQ), Talarian SmartSockets, Progress SonicMQ, and
Fiorano FioranoMQ. These products can give you a whole host of value-added
services, such as guaranteed message delivery, fault tolerance, load balancing
of destinations, subscriber throttling of message consumption, inactive sub-
scribers, and much, much more. By allowing the MOM server to address these
infrastructure issues, you can focus on the business task at hand.

The Java Message Service (JMS)

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary APL

The Java Message Service (JMS) is a messaging standard, designed to eliminate
many of the disadvantages that MOM-based products faced over past years.
JMS has two parts: an API, which you write code to send and receive mes-
sages, and a Service Provider Interface (SPI) where you plug in JMS drivers. A
JMS driver knows how to talk to a specific MOM implementation. The JMS
promise is that you can learn the JMS API once and reuse your messaging code
with different plug-and-play MOM implementations (an idea similar to the
other J2EE APIs, such as JNDI or JDBC).

204 THE TRIAD OF BEANS

How Does Guaranteed Message Delivery Work?

With guaranteed message delivery, the MOM system persists your messages to a
file, database, or other store. Your message resides in the persistent store until
it's sent to a message consumer, and the message consumer acknowledges the
consumption of the message. If the acknowledgement of a message is not
received in a reasonable amount of time, the message remains on the persistent
store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is espe-
cially true in industries such as financial services, where messages represent
securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer, but also generates a consumption receipt that is
delivered to the message originator, indicating a successful consumption of the
message. Certified message delivery is used by producers to better manage com-
munication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward allows a message producer to successfully send a message to
an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers. Guar-
anteed message delivery without the store-and-forward option requires produc-
ers to send messages to active MOM systems, but consumers do not have to be
active. Store and forward with guaranteed message delivery allows messages to
be sent whether MOM systems or consumers are active or inactive.

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

Messaging Domains

When you perform messaging, you need to choose a domain. A domain is a
fancy word for style of messaging. The types of domains are:

Publish/subscribe (pub/sub). Publish/subscribe is analogous to watching
television. Many TV stations broadcast their signals, and many people lis-
ten to those broadcasts. Thus, with publish/subscribe, you can have many

Introduction to Message-Driven Beans 205

message producers talking to many message consumers. In this sense, the
pub/sub domain is an implementation of a distributed event-driven pro-
cessing model. Subscribers (listeners) register their interest in a particular
event fopic. Publishers (event sources) create messages (events) that are dis-
tributed to all of the subscribers (listeners). Producers aren’t hard-coded to
use specific consumers; rather, the MOM system maintains the subscriber
list.

Point-to-point (PTP). Point-to-point is analogous to calling a toll-free number
and leaving a voice mail. Some person will listen to your voice mail and
then delete it. Thus, with point-to-point, you can have only a single con-
sumer for each message. Multiple consumers can grab messages off the
queue, but any given message is consumed exactly once. In this sense,
point-to-point is a degenerate case of publish/subscribe. Multiple produc-
ers can send messages to the queue, but each message is delivered only to
a single consumer. The way this works is that publishers send messages
directly to the consumer or to a centralized queue. Messages are typically
distributed off the queue in a first-in, first-out (FIFO) order, but this isn’t
assured.

The difference between publish/subscribe and point-to-point is shown in Fig-
ure 8.2.

Publish/Subscribe:

Producer 1 Consumer 1

Topic

Producer 2 Consumer 2

Point-to-Point:

Producer 1

Queue Consumer 1

Producer 2

Figure 8.2 Publish/subscribe vs. point-to-point.

206 THE TRIAD OF BEANS

quest/reply domain is analogous to RMI-11OP. It requires any producer that gener-

? Another domain called request/reply is less broadly used than the others. The re-

ates a message to receive a reply message from the consumer at some later point in
time. Typically, most MOM architectures implement a request/reply paradigm using
the technologies supplied in the point-to-point and publish/subscribe domains.

The JMS API

The JMS API is more involved than RMI-IIOP. You need to become familiar
with many different interfaces to get going. Despite the complexities involved
with working with each of these interfaces, low-level topology issues such as
networking protocol, message format and structure, and server location are
mostly abstracted from the developer.

The JMS programming model is shown in Figure 8.3. It is explained as follows:

1.

Locate the JMS driver. You first need to get access to the driver to the partic-
ular JMS product you're using. You do this by looking up the driver using
JNDI, just like with JDBC. The driver is called a ConnectionFactory.

Create a [MS connection. A JMS Connection is an active connection to the
JMS provider, managing the low-level network communications (similar
to a JDBC connection). You use the ConnectionFactory to get a Connection. If
you're in a large deployment, this connection might be load-balanced
across a group of machines.

Create a [MS session. A JMS Session is a helper object that you use when
sending and receiving messages. It serves as a factory for message con-
sumers and producers, and also allows you to encapsulate your messages
in transactions. You use the Connection to get a Session.

. Locate the JMS destination. A JMS Destination is the channel to which you're

sending or from which you're receiving messages. Locating the right des-
tination is analogous to tuning into the right channel when watching tele-
vision or answering the correct phone, so that you get the messages you
desire. Yourdeployer typically sets up the destination in advance by using
your JMS provider’s tools, so that the destination is permanently setup.
Your code looks up that destination using JNDI. This enables your pro-
grams to use the destination over and over again at runtime.

Create a JMS producer or a [MS consumer. If you want to send messages, you
need to call a JMS object to pass it your messages. This object is called the
producer. To receive messages, you call a JMS object and ask it for a mes-
sage. This object is called the Consumer. You use the Session and Destina-
tion to make a Producer or a Consumer.

Introduction to Message-Driven Beans 207

. . . JMS Server
JMS Driver Client Runtime
Queuet
2: Create JMS Connection Dnnn
[Connection Factory
Serialized Queue2

Message
Communication DDDD
& JMS Connection —‘L_<:> Topic1
3: Create
CICIEO
yd

5: Create
Client —Producer —= JMS Session
or Consumer

. . 6: Send or
] MFéetIDrlt?ve Receive JMS Producer
river Message R\ or
(Connection JMS Consumer
Factory)
4: Lookup

JMS Destination

<>

Naming Service
Such as LDAP

Figure 8.3 Client view of a JMS system.

6. Send or receive your message. If you're producing, you first need to put your
message together. There are many different types of messages, such as
text, bytes, streams, objects, and maps. After you instantiate your mes-
sage, you send it using the Producer. If, on the other hand, you're receiving
messages, you first receive a message using the Consumer, and then crack
it open (depending on the message type) and see what it is.

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in itfalics above represent actual JMS interface
names. There are two different flavors of those interfaces, and the flavor you

use depends on if you're using publish/subscribe or point-to-point. See
Table 8.1 for a list.

As you can see from Table 8.1, point-to-point has two types of message consumers:
a receiver and a browser. What do you think these are for? And why does
publish/subscribe have only one type of consumer?

As an example, the code for a client application that publishes a TextMessage to
a topic using publish/subscribe is provided in Source 8.1.

Most of Source 8.1 is self-explanatory. Here are the answers to a few questions
you might have.

m The parameters to InitialContext should be your JNDI driver information.
If your JMS provider is integrated into your EJB server, the JNDI parame-
ters should be the same as those when you lookup an EJB home. You spec-
ify this via the command-line using the -D switch to the java runtime. See
the book’s accompanying source code for example scripts.

m QOur]NDI name for the TopicConnectionFactory is javax.jms.TopicConnec-
tionFactory but it could be anything—it depends on your container’s pol-
icy and also where you choose to place it using your container’s tools.

m When we create a Session, we pass two parameters: false, which indicates
that we don’t want to use transactions (see Chapter 10 for more on trans-
actions), and Session. AUTO_ACKNOWLEDGE, which indicates how we
should acknowledge messages that we receive. Since our code is sending
(not receiving) messages, this parameter doesn’t matter. If you're curious
about how message acknowledgement works, see Table 8.3 later in this
chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in

Table 8.1 The Two Flavors of JMS Interfaces

PARENT INTERFACE POINT-TO-POINT PUB/SUB
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Destination Queue Topic

Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

Introduction to Message-Driven Beans 209

import javax.naming.*;

import javax.jms.*;
import java.util.*;

public class Client {
public static void main (String[] args) throws Exception {

// Initialize JNDI
Context ctx = new InitialContext (System.getProperties()) ;

// 1: Lookup ConnectionFactory via JNDI
TopicConnectionFactory factory =
(TopicConnectionFactory)
ctx.lookup ("javax.jms.TopicConnectionFactory") ;

// 2: Use ConnectionFactory to create JMS connection
TopicConnection connection =
factory.createTopicConnection() ;

// 3: Use Connection to create session
TopicSession session = connection.createTopicSession (
false, Session.AUTO_ACKNOWLEDGE) ;

// 4: Lookup Desintation (topic) via JNDI
Topic topic = (Topic) ctx.lookup("testtopic");

// 5: Create a Message Producer
TopicPublisher publisher = session.createPublisher (topic);

// 6: Create a text message, and publish it
TextMessage msg = session.createTextMessagel() ;
msg.setText ("This is a test message.");
publisher.publish (msg) ;

Source 8.1 TopicClient.java.

Table 8.1. We'll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

210

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free tutorial is available
on http://java.sun.com. Rather than repeating this free information, let’s
cover some more interesting topics—JMS-E]B integration, advanced message-

driven bean topics, and gotchas.

Single-Threaded versus Multithreaded Beans

One great benefit of EJB is you don't need to write thread-safe code. You design
your enterprise beans as single-threaded components and never need to worry
about thread synchronization when concurrent clients access your component.
Your EJB container automatically instantiates multiple instances of your compo-
nent to service concurrent client requests.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in your
application code. The restriction is that some problems lend themselves well to
multithreaded programming, and that class of problems cannot be easily solved
in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve component developers’ worry about threads or thread syn-
chronization. The EJB container handles those issues for you by load-balancing
client requests to multiple instances of a single-threaded component. An EJB
server provides a highly scalable environment for single-threaded components.

If the EJB specification allowed for beans to control threads, then a Pandora’s
box of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans are randomly starting and stopping
threads, especially because transaction information is often associated with a
thread.

One alternative to threading is to use a transactional messaging API, such as
JMS, that allows for asynchronous actions to occur in a distributed object envi-
ronment. JMS enables you to safely and reliably achieve multitasking without the
beans themselves messing around with threads.

The bottom line is that EJB was not meant be a Swiss army knife, solving every
problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

Introduction to Message-Driven Beans 211

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It would allow EJB components to
benefit from the value proposition of messaging, such as nonblocking clients
and n-ary communications.

To help us figure out why Sun needed to make message-driven beans, let’s
imagine for a moment that we worked at Sun Microsystems. We’d have sev-
eral different approaches to integrating JMS with EJB. They include:

Using a Java object that receives JMS messages to call EJB components.
Rather than coming up with a whole new type of bean, Sun could have
promoted the idea of a Java object that knew how to receive messages as a
wrapper for your other types of EJB components, such as session beans
and entity beans. The problems with this approach are:

m You'd need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we saw previously).

m Your Java object would need some way of starting up, since it
wrapped your other EJB components. If the class ran in-process to the
container, you would need to use an E]B server-specific startup class to
activate your Java object when the E]B server came up. This is not
portable. If the class ran out-of-process, your application would not be
as elegant and you’d need to deal with multiple processes context-
switching.

m Your Java object wouldn’t receive any services from an EJB container,
such as automatic life cycle management, clustering, pooling, and
transactions. You would need to hard-code this yourself, which is diffi-
cult and error-prone.

= You would need to hard-code the JMS destination name in your Java
object. This hurts reusability, because you couldn’t reuse that Java
object with other destinations. If you read the destination from a disk
(such as with property files), this is a bit clunky:.

Reuse an existing type of EJB component somehow to receive JMS mes-
sages. Sun could have tried to shoehorn session beans or entity beans into
receiving JMS messages. Problems with this approach include:

m Threading. If a message arrives for a bean while its processing other
requests, how can it take that message, given that EJB does not allow
components to be multithreaded?

m Life cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

212 THE TRIAD OF BEANS

m Transactions. If a bean error occurs, what happens? Does the message
get put back on the queue?

What Is a Message-Driven Bean?

A message-driven bean is a special EJB component that can receive JMS mes-
sages. A message-driven bean consumes messages from queues or topics that
are sent by any valid JMS client. Message-driven beans are new to EJB 2.0.

A message-driven bean is decoupled from any clients that send messages to it.
A client cannot access a message-driven bean through a component interface. [MS is
the API you use to send messages to message-driven beans. This is shown in Fig-
ure 8.4.

The following are some major characteristics of message-driven beans.

EJB Server

Message-Driven
Bean Pool

Sends /

. Publishes
Client JMS Destination

Message-Driven
Bean Instances

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Figure 8.4 A client calling message-driven beans.

Introduction to Message-Driven Beans 213

A message-driven bean does not have a home interface, local home inter-
face, remote interface, or a local interface. You do not call message-driven
beans using an object-oriented remote method invocation interface. The
reason is that message-driven beans process messages, and those messages
can come from any messaging client, such as an MQSeries client, an
MSMQ client, or (most likely) a J2EE client using the JMS APIL. Message-
driven beans can consume any valid JMS message from either a topic or a
queue.

Message-driven beans have a single, weakly typed business method.
Message-driven beans are merely receiving messages from a JMS destina-
tion, and that JMS destination doesn’t know anything about what’s inside
the messages. Therefore a message-driven bean has only one business
method, called onMessage(). This method accepts a JMS Message, which
could represent anything—a BytesMessage, ObjectMessage, TextMessage,
StreamMessage, or MapMessage. You cannot provide lots of different business
methods on your message-driven beans; rather, you need to crack open the
message at runtime and figure out what to do with it, perhaps with a bunch
of if statements. In formal terms, you don’t get compile-time type-checking
of messages that are consumed; rather, you need to use the instanceof opera-
tor to determine the exact type of a consumed message at runtime. This also
means that you need to be careful to make sure the message you receive is
intended for you. In comparison, session or entity beans can support lots of
strongly typed business methods. Type checking can be performed at com-
pile time to ensure that clients are properly using a given interface.

Message-driven beans do not have any return values. This is because
message-driven beans are decoupled from message producers. The mes-
sage producers don’t wait for your message-driven bean to respond
because they continue processing once the message is sent. The good news
is that it is possible to send a response to a message producer using any
number of design patterns. We discuss this later in this chapter.

Message-driven beans cannot send exceptions back to clients. Again, this is
because message producers don’t wait for your message-driven bean to
receive a message so therefore can’t receive any exceptions. In fact, the EJB
specification prohibits application exceptions from being thrown by a
message-driven bean. A message-driven bean, however, is allowed to gen-
erate system exceptions. The container (rather than the client) handles sys-
tem exceptions.

Message-driven beans are stateless. Message-driven beans hold no conver-
sational state. It would be impossible to spread messages across a cluster of
message-driven beans if a message-driven bean held state. In this sense,
they are similar to stateless session beans because the container can simi-
larly treat each message-driven bean instance as equivalent to all other

214 THE TRIAD OF BEANS

instances. All instances are anonymous and do not have an identity that is
visible to a client. Thus, multiple instances of the bean can process multiple
messages from a JMS destination concurrently.

Message-driven beans can be durable or nondurable subscribers. A durable
subscription to a topic means that a JMS subscriber receives all messages,
even if the subscriber is inactive. If a message is sent to a topic that has an
inactive durable subscriber, the message is persisted and delivered when
the durable subscriber is once again active. A nondurable subscription to a
topic means the subscriber receives only messages that are published while
the subscriber is active. Any messages delivered while the subscriber is
inactive are lost. Since message-driven bean containers are JMS consumers,
the container can register itself as a durable or nondurable subscriber to
messages published to a topic. Durability allows persistent messages to be
sent to a topic even though the application server hosting the message-
driven bean consumers has crashed. The messages will persist until the
crashed application server restarts and the durable subscriber message-
driven bean container positively acknowledges consumption all of the
stored messages.

Developing Message-Driven Beans

Let’s now take a look at what’s involved with developing message-driven
beans.

The Semantics

Message-driven beans are classes that implement two interfaces: javax.jms.
MessageListener and javax.ejb.MessageDrivenBean. Additionally, every message-
driven bean implementation class must provide an ejbCreate() method that
returns void and accepts no arguments. Here is what the javax.jms.MessageLis-
tener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage (Message message) ;

}

Here is what the javax.ejb.MessageDrivenBean interface looks like:

public interface javax.ejb.MessageDrivenBean
extends javax.ejb.EnterpriseBean {

public void ejbRemove ()

Introduction to Message-Driven Beans 215

throws EJBException;

public void setMessageDrivenContext (MessageDrivenContext ctx)
throws EJBException;
}

We summarize the methods that must be provided in every message-driven
bean implementation class in Table 8.2.

Given this simple description, you can see that developing message-driven
beans is significantly less complicated than developing session or entity beans.
The number of methods that have to be implemented is less than with session
or entity beans.

The life cycle of a message-driven bean is also very straightforward. See Fig-
ure 8.5 for a diagram of the life cycle of a message-driven bean. A message-
driven bean is either in the does not exist state or in the pooled state. When a
container decides to add another instance to its pool, it creates a new instance,
passes the instance its MessageDrivenContext object describing the domain, and
then calls ejbCreate() allowing the bean to initialize itself. That application
server will likely create an initial pool of beans at boot time and then increase
the size of the pool as the quantity of messages increases. A container will
remove an instance from the pool and destroy it at system shutdown or when
the container decides it needs to decrease the size of the pool to conserve cache
space. If the container decides to take an instance out of the bean pool, it calls
the bean’s ejbRemove() method.

A Simple Example

Now that we’ve learned the theory behind message-driven beans, let’s apply
our knowledge to construct a simple bean that logs text messages to the screen.
In the future, you could generalize this bean and make it into a generic logging
facility, where you have different log levels depending on the urgency of the
log.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see Chapter 17, along with the book’s accompanying source code.

As we will see when writing this bean, the rules for writing message-driven
beans are trivial. Part of the reason is that message-driven beans are brand new
to the EJB 2.0 specification. As the technology matures, we're sure that Sun will
come up with a bunch of special rules and restrictions for message-driven
beans. For now, we get to bask in the simplicity.

216

Table 8.2 Methods to Be Implemented in Message-Driven Beans

METHOD DESCRIPTION

onMessage(Message) This method is invoked for each message that is consumed by
the bean. The input parameter of the method is the incoming
message that is being consumed. The container is responsible
for serializing messages to a single message-driven bean. A
single message-driven bean can process only one message at
a time. It is the container’s responsibility to provide concurrent
message consumption by pooling multiple message-driven
bean instances. A single instance cannot concurrently process
messages, but a container can. This method does not have to
be coded for reentrancy and should not have any thread syn-
chronization code contained within.

ejbCreate() This method is invoked when a message-driven bean is first
created and added to a pool. Application server vendors can
implement an arbitrary algorithm that decides when to add
message-driven bean instances from the pool. Beans are typi-
cally added to the pool when the component is first deployed
or when message throughput increases. Bean developers
should initialize variables and references to resources needed
by the bean, such as other EJBs or database connections. Bean
developers should initialize only references to resources that
are needed for every message that is consumed by the bean,
as opposed to gaining access and releasing the resource every
time a message is consumed.

ejbRemove() This method is invoked when a message-driven bean is being
removed from a pool. Application server vendors can imple-
ment an arbitrary algorithm that decides when to remove
message-driven bean instances from the pool. Beans are typi-
cally removed from the pool when the component is being
undeployed or when message throughput decreases and idle
instances are wasting system resources. Bean developers
should use this method to clean up any dangling resources
that are used by the bean.

setMessageDriven This method is called as part of the event transition that a
Context(Message message-driven bean goes through when it is being added to
DrivenContext) a pool. This method is called before the ejbCreate() method is

invoked. The input parameter for this method is an instance of
the MessageDrivenContext interface. The input parameter
gives the bean access to information about the environment
that it executes within. The only methods on the Mes-
sageDrivenContext that are accessible by the message-driven
bean are transacted-related methods. Other methods, such as
getCallerPrincipal(), cannot be invoked in this method
because message-driven beans do not have home, local
home, remote, or local interface and have no client-visible
security context.

Introduction to Message-Driven Beans 217

Does Not Exist

1: newlnstance()
2: setMessageDrivenContext() ejbRemove()

3: ejbCreate()

The life cycle of a
message-driven bean.
Each method call shown is
an invocation from the
container to the bean
instance.

Pooled

onMessage()

Figure 8.5 Life cycle of a message-driven bean.

The Bean Implementation Class

Since message-driven beans do not have home, component, local home, or
local interfaces associated with them, we can completely skip designing the
public interface to our bean. We can get right to the heart of development of
this bean and write the implementation class. The code for the implementation
class is shown in Source 8.2.

This is the most basic message-driven bean. Notice the following:
m Our bean implements the javax.ejb.MessageDrivenBean interface that makes
it a message-driven bean.

m Our bean implements the javax.jms.MessageListener interface that provides
the methods necessary for message consumption.

m The setMessageDrivenContext(. ..) method associates a bean with an envi-
ronment. We store the context as a member of the implementation class so
that other methods of the bean can make use of it.

218 THE TRIAD OF BEANS

package examples;

import javax.ejb.*;
import javax.jms.*;

/**
* Sample Message-Driven Bean
*/
public class LogBean implements MessageDrivenBean, MessagelListener {

protected MessageDrivenContext ctx;

/**
* Associates this Bean instance with a particular context.
*/

public void setMessageDrivenContext (MessageDrivenContext ctx) {
this.ctx = ctx;

}

/**
* Initializes the bean
*/

public void ejbCreate() {
System.err.println("ejbCreate()");

}

/**
* Our one business method
*/
public void onMessage (Message msg) {

if (msg instanceOf TextMessage) {

TextMessage tm = (TextMessage) msg;
try {
String text = tm.getText () ;
System.err.println("Received new message : " + text);
}

catch (JMSException e) {
e.printStackTrace() ;
}

}

}

/**
* Destroys the bean

Source 8.2 LogBean.java.

Introduction to Message-Driven Beans 219

Y
public void ejbRemove () {
System.err.println("ejbRemove()") ;
}
}

Source 8.2 LogBean.java (continued).

m The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical ini-
tialization method—a simple ejbCreate() that takes no arguments.

m The onMessage(. . .) method receives a message, checks to make sure that
the passed-in message is of type TextMessage by using the instanceof opera-
tor, and then downcasts appropriately. If the passed in message is not a
TextMessage, the method just returns. TextMessage is a particular type of
JMS message that has methods for getting and setting the text as the body
of the message. After downcasting the input parameter, the method prints
out the content of the message, if any exists.

m When the bean is being destroyed, there is nothing to clean up so we have
a very simple ejbRemove() method.

Notice that you don’t hard-code message-driven beans for a specific queue or
topic. Your message-driven bean code is independent of destination. The
deployment descriptor determines whether a topic or a queue is consumed, as
we will see.

The Deployment Descriptor

Message-driven beans have only a couple of deployment descriptor tags
applicable to them. The portion of the deployment descriptor relevant to our
simple message-driven bean is shown in Source 8.3.

Table 8.3 contains definitions for additional deployment descriptor tags that
are unique to message-driven beans. All of these tags are optional. Just glance
over it now—it’s not important to fully understand them if you're just starting
to learn message-driven beans. See Appendix C for a complete deployment
descriptor reference.

220 THE TRIAD OF BEANS

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>

<l==

For each message-driven bean that is located in an
ejb-jar file, you have to define a <message-driven> entry
in the deployment descriptor.

-——

<message-driven>

<!-- The nickname for the bean could be used later in DD -->
<ejb-name>Log</ejb-name>

<1-- The fully qualified package name of the bean class -->
<ejb-class>examples.LogBean</ejb-class>

<!-- The type of transaction supported (see Chapter 10) -->
<transaction-type>Container</transaction-type>

<!-- Whether I'm listening to a topic or a queue -->
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
</message-driven-destination>
</message-driven>
</enterprise-beans>
</ejb-jar>

Source 8.3 ejb-jar.xml for the simple bean.

As you can see, developing the deployment descriptor for message-driven
beans is simple. In addition to the characteristics that are definable for all
message-driven beans, application server vendors can provide value-add
extensions in an application server-specific deployment descriptor. For exam-
ple, an application server vendor may provide a deployment descriptor
parameter that defines the maximum size of the message-driven bean pool
and/or another parameter that defines its initial size.

A question that you may be wondering now is, “Exactly how does the appli-
cation server bind a message-driven bean container to a specific topic or
queue?” If you look carefully at the deployment descriptor provided in Source
8.3, the <message-driven-destination> tag specifies whether the bean should
consume queue or topic messages; however, it never indicates which topic or

221

sonunuod

<opow-a3pajmouoe/>
98pasjmouspe-oiny
<apouw-a3pajmoupe=>

‘piepue)S 26 10S 2y}

J0 19sqgns e SI YdIYM ‘xejuhs 10113|as
98essaw 10} sa|n1 939|dwod By} 10y
‘wodrunseel//:dpy woiy s|qepeoj
-umop ‘uonediynads S syl 39S
' 191dey) ul paquosap am se ‘uols
-nyuod 3uisied X ploAe 03 ‘uon
-29s y1yad e ul siy} deim 03 pasu
noA uayy sudis (>) ueyy ss9|

10 (<) ueyj 193ea13 3sn NoA Jj
"aiow pue ‘(JON/4O/ANY)
siojesado [ed130] Dnawyiue se
yons ‘[jam se a1y Ayjeuonduny
MI-10S paiedidwod

SI0W 3SN UED NOA 910/

<lopajas-a8essaw/>

,21anss, = [9na780]
anv 80|, = adAISINr
A._Ouum_wmuwwmﬁmwrcv

I1dINVX3

0} J2UIRUOD BY} |[9} O} paau NOA ‘suoipesuel) paSeuew-ueaq

8uisn a1,noA §I ‘a10j213Y] “UoIESURI) U} SPISINO SINJD0 3ZesSal

ay3 jo uondwinsuod ayj sny} ‘ueaq INoA 03 paIaAIBp uaaq
sey a3essawl sy} JoyD SpUd pue suidaq pue ‘ueaq JNoA ulyym
SINJ20 uolpesuel} sy} ‘(suondpsup.t) pabbpubw-ubaq paj[ed)
suoinpesuel} umo JnoA wei8oid noA §| -ananb ayj uo yoeq

ind Ajjeonnewoine si a8essaw sy} “ydeq S||0J UoideSURI} dY} JI

asnedaq ‘uay} JusWaZpajmoudde 8essa 10 pasu ou Si 1Y |
‘uoiesuel} e ul NoA 03 a8esSaLL L) SI9AI[SP JaUIRIUOD BY) pue

‘(oL 191dey) ul paquosap suondDsuD.} pabpubwi-1auipiuod
Pa]|e2) NOA 10} suonpesuel} d|puey JaUIRIUOD 3y} 19| NOA §|

"P2ISAI[Sp BIe 10)I3|9S
93U} Yolew ey} siapeay yum sadessaw AjuQ 101duossp
juawAhojdap sy ul pauyap e} 10123]9s d3essawl Y}
sa1jdde Jauiejuod sy} ‘98essaw 9y} S9AI9RI UONBUISSP SINT
oy} uay/\ -a8essaw ay} Suipuas a10jeq (,84913s, .jar97b0],)
Apadoigburnsiasabpssaw |2 WySiw jualp ST oy} ‘ajdwexa
104 "IdV SINT Y3 Suisn sadessaw S|\[uo sp[aly Japeay dn s}as
JUBI SINIF ANOA 1511} 's10103|9s a8essawl asn 0] "a8essaw ay} ul
1S9191Ul OU dARY JRY} SIUI|D 0} pPaJaAISp S93eSSaW Jo Jaquinu
oy} Supnpai Aq souewioyiad |[eiano aseanul Asyi—|npamod
A1an a1e s10109]9s a8essa|\ ‘ueaq INoA 0} Juas die sadessaw
UYo1ym ‘spui| 1o ‘s1s)1f Jo3oa]es adessawl i

NOlLdI¥dS3a

8e] <uanup-a8essaw> ay} Joj sjuswa[3-gqns |euondo £°8 Ijqel

<opouw-a3pajmouspe=>

<Jopa|as-a3essow>

JOH1IN

222

I1dINVX3

"9/gpinpuou pue a/gp.inp die <Ajjiqeinp

-uondudsqns> 10} san|eA pijeA 8y ‘sedessawl Jo J9quISqNs
o1doy 9|qeinp e g p|noys ueaq UaALp-a8essaW SIY} JDYRYM
91ed1pUI 0} papn)pul 8q Aew juswsaje <Ajjiqeinp-uondudsqns>
a3 ordoy 'swifxpapf si 3e} <adhy-uoneunssp> ayj §i

"21doj ‘swilxpApf pue anan swl-xpApf a1e <adAy-uoneunssp>
10} sanjeA pijeA ay] “<Anjiqeinp-uondudsqns> pue <adA
-UoIjRUIISOP > :SJUBWSIS-qNS OM] SBY JUSLWI|S SIYL "Wy} SPLISAO
Aew 1aAojdap ueaq ay3 y3noys uans s3ey asay} 03 sanjeA [eniul
3uipinoid 10} a|qisuodsai si 1adojansp ueaq ay] ido} e 1o
ananb e Aq uondwnsuod 1o} papusjui si ueaq UaALIp-a3eSSaW
e Jayiaym o} se 1akojdap ay3 o3 adiape sapinoid Sey siyj

‘sodessaw 93ed1jdnp 93e19]0} Ued NOA JI Ajuo SIy} asn pjnoys
noj 98essaw ajed1jdnp e NoA Suipuas uoneunsap SIf 3y

3 Jo ysu Y3 uni noA ‘y3nous jsey a8essaw ay} aSpajmouspe
jou Aew 31 9dulS "awny uissadoid pue s92IN0SAI SABS 0} 0S
Suiop 91| s|934 ¥ usym a8essaw 3y} 93pajMmoudde 0} JaUIRIUOD
3y} smojje abpajmouydp-yo-sdng o3 3ey siyi Suies ‘pauinial
Ajjnyssaoons sey poyisw ()abpssapyuo s,ueaq usanup-a3essaw
3y} uaym adessaw e a3pajmouyde 0} JI9UIRIUOD Y} SIDI0}
abpajmouypp-0jny 0} 3ey siyy Sumss ‘sadessaw abpajmouydp

NOlLdI¥dS3a

(panunuoo) 8e] <uanlp-a8essaw>> ay} 10} sjuswd[3-gns jeuondo €8 djqel

<Ayjiqeinp-uondudsqns>
<adA-uoneunssp>
<uoneunssp
-uanLp-adessaw>

dOH1IN

Introduction to Message-Driven Beans 223

queue the message-driven bean container should bind to. This is done pur-
posely to make message-driven beans portable across application servers.
Since the names of actual topics and queues deployed into a JMS server are
application server-specific, the mapping of a bean’s container to a specific JMS
server destination has to be done in an application server-specific deployment
descriptor. Most EJB vendors are expected to have a custom deployment
descriptor that binds the bean to a specific destination.

The Client Program

The client application for our simple message-driven bean example is the JMS
client we developed earlier in this chapter in Source 8.1. This shows you the
power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a message-driven bean is consuming the
messages.

If you'd like to try this example yourself, see the book’s accompanying source
code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of with developing message-driven
beans. Now let’s take a deeper look at the support containers can give for
message-driven beans. We'll see how they might integrate with transactions,
provide advanced JMS features, and behave in a clustered environment.

Transactions

Message-driven beans do not run in the same transaction as the producer who
sends the message, because there are typically two transactions associated
with every durable JMS message (one transaction for the producer to put the
message on the queue, and another transaction for the message-driven bean to
get the message off the queue). It is theoretically impossible for the message-
driven bean to participate in the same transaction (and hence the same unit of
work) as the producer, because until the producer commits the transaction, the
message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to message-
driven beans, see Chapter 10.

224

THE TRIAD OF BEANS

Security

Message-driven beans do not receive the security identity of the producer who
sends the message, because there is no standard way to stick security informa-
tion into a JMS message. Therefore you cannot perform EJB security opera-
tions (described in Chapter 9) with message-driven beans.

Load-balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 14). With session and entity beans, your requests are
load-balanced across a group of containers. The load-balancing algorithm
guesses which server is the least-burdened server and pushes requests out to
that server. It's guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about what requests it receives.

With message-driven beans, producers put messages onto a destination. The
messages reside in the destination until a consumer takes the messages off of
the destination, or (if the messages are nondurable) the server hosting the des-
tination crashes. This is a pull model, since the message resides on the destina-
tion until a consumer asks for it. The containers contend (fight) to get the next
available message on the destination.

Thus, message-driven beans feature an ideal load-balancing paradigm and dis-
tribute load more smoothly than session or entity beans. The server that is the
least burdened and asks for a message gets the message. The tradeoff for this
optimal load-balancing is that messaging has extra overhead because a desti-
nation “middleman” sits between the client and the server.

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven beans instances to concur-
rently process multiple messages, so some concern can arise around
message-driven bean containers that subscribe to JMS topics.

In particular, if a message-driven bean container has pooled five instances of
its message-driven bean type and is subscribed to the DogTopic, how many
consumers will consume a message sent to the DogTopic topic? Will the mes-
sage be consumed by each message-driven bean instance in the container or
just once by a single message-driven bean? The answer is simple: A container

Introduction to Message-Driven Beans 225

that subscribes to a topic consumes any given message only once. This means
that for the five instances that the container created to concurrently process
messages, only one of the instances will receive any particular message freeing
up the other instances to process other messages that have been sent to the
DogTopic.

Be careful, though. Each container that binds to a particular topic will consume
a message sent to that topic. The JMS subsystem will treat each message-
driven bean container as a separate subscriber to the message. This means that
if the same message-driven bean is deployed to many containers in a cluster,
then each deployment of the message-driven bean will consume a message
from the topic it subscribes to. If this is not the behavior you want, and you
need to consume messages exactly once, you should consider deploying a
queue instead of a topic.

For message-driven beans that bind to a queue, the JMS server will deliver any
message on the queue to only one consumer. Each container registers as a con-
sumer to the queue, and the JMS server load-balances messages to consumers
based upon availability. Message-driven beans that bind to queues that are
deployed in a cluster are ideal for scalable processing of messages. For exam-
ple, if you have two servers in your cluster and 50 messages on a queue, each
server will consume on average 25 messages—as opposed to a single server
responsible for consuming 50 messages.

Message-driven beans in a cluster are shown in Figure 8.6. Notice that many
message-driven beans process the same message from Topic #1. Also notice
that only a single bean processes any given message from Queue #1.

Message-Driven Bean Gotchas

Although developing message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this sec-
tion we uncover some of these message-driven demons and suggest solutions
to help speed you on your way to successful implementation.

Message Ordering

A JMS server is not guaranteed to deliver messages to a pool of message-
driven beans in any particular order. The container likely attempts to deliver
messages in an order that doesn’t impact the concurrency of message process-
ing, but there is no guarantee as to the order that the beans actually process the
message. Therefore message-driven beans should be prepared to process mes-
sages that are not in sequence. For example, a message adding a second ham-
burger to a fast food order might be processed before the message indicating

226 THE TRIAD OF BEANS

Serveri

Message-Driven
Bean Pool

= 0

Queuel-M1

Since messages from a queue

are delivered only to one =0 Message Driven
consumer, the queue can have Topic1-M1 Bean Instances
multiple messages processed
concurrently by different servers
in a cluster!
Server2
JMS Server
Message-Driven
Queuet — g Bean Pool
Queuel-M2
NNNN . <
Message Driven
. s Bean Instances
Topici Topic1-M1
NNNN . <
Server3

Message-Driven

Since messages from a topic can
9 P Bean Pool

be consumed by more than one = O
client, each message-driven bean Queue1-M3
container that binds to a given
topic will receive each message.

Message Driven
Bean Instances

= O

Topic1-M1

Figure 8.6 Message-driven beans in a cluster.

that a new fast food order with a hamburger should be created. Bean develop-
ers must take these scenarios into account and handle them appropriately.

Missed ejpbRemove() Calls

As with session and entity beans, you are not guaranteed that the container
will call your ejbRemove() method when your bean is destroyed. In particular,

227

Using Queues to Partition Business Processing in a Cluster

Suppose you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a pro-
duction environment. You need to make sure that traffic coming from test clients
are sent to the development cluster, while traffic coming from real clients is sent
to the production cluster.

As one solution, you could setup your JMS server with two queues: Develop-
mentQueue and ProductionQueue. You could deploy a series of JSPs or front-end
stateless session beans that analyze each incoming request, format it into a JMS
message, and then place requests onto one of the queues. Requests that come
from an internal development machine could be placed onto the Developmen-
tQueue, and all other requests could be placed on the ProductionQueue.

On the back end, you could configure two clusters: One cluster has message-
driven beans bound to the DevelopmentQueue, and the other cluster has
message-driven beans bound to the ProductionQueue. The logic for each of these
beans can vary based upon the needs of the system. For example, the behavior of
the message-driven beans bound to the DevelopmentQueue can mimic those
bound to the ProductionQueue but add on debugging statements. You can also
tune each cluster independently based upon load to the system. Since the Pro-
ductionQueue will likely have more throughput than the DevelopmentQueue, you
could independently grow the size of the cluster servicing the ProductionQueue
without impacting the cluster servicing the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business logic
processing. Rather than the servers pulling messages off a single queue, you pre-
choose which machines get the messages by splitting the queue into two queues.
This is an artificial way to achieve control load-balancing in a JMS system.

if there is a system crash or a crash from within the EJB container, any active
message-driven bean instances are destroyed without going through the
proper life cycle shutdown. Additionally, for any method that throws a system
exception, such as E[BException, the ejbRemove() method is not invoked. Devel-
opers should be alert to this fact and perform any relevant cleanup before
throwing a system exception.

Developers should also be aware that the ejbRemove() method is invoked by
the container only when the container no longer needs that instance. Many
containers pool the necessary number of message-driven bean instances
needed to concurrently handle multiple messages. The boundaries on the
minimum and maximum size of the message-driven bean pool is typically

228 THE TRIAD OF BEANS

set in an application-server specific deployment descriptor. A container adds
and removes message-driven bean instances to and from the pool as appro-
priate. However, since message-driven beans are extremely lightweight
objects, a container generally destroys a message-driven bean instance only
when the EJB itself is being undeployed (the whole EJB component is being
undeployed). For most systems, the only time container undeployment
occurs is at system shutdown or when an administrator decides to undeploy
the component. The important point here is that message-driven bean con-
tainers are rarely undeployed and therefore message-driven instances are
rarely destroyed. As a general rule of thumb, the ejbRemove() method is
rarely invoked.

Poison Messages

When using container-managed transactions (see Chapter 10) with a message-
driven bean, it is easy to code yourself into a situation that causes the genera-
tion of poison messages. A poison message is a message that is continually
retransmitted by a JMS destination to consumer because the consumer contin-
uously fails to acknowledge the consumption of the message. Any time your
message-driven bean does not acknowledge messages to the JMS destination,
you have a situation with potential to create poison messages. See Figure 8.7 to
see a diagram indicating how poison messages can inadvertently be generated.

For example, suppose you have a stock-quoting message-driven bean that
accepts a text message, which represents the stock ticker symbol to be quoted.
Your bean cracks open that message. If the string contained within the mes-
sage matches a stock symbol, the bean retrieves the value of that symbol and

JMS Server JMS Consumer

Queuet

IIII. e,

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point

]

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back

Figure 8.7 How message-driven beans can cause poison messages.

Introduction to Message-Driven Beans 229

sends a response message. Otherwise, the bean throws a system exception or
calls MessageDrivenContext.setRollbackOnly(). This causes the transaction to be
rolled back, which means the message acknowledgement never to be sent to
the JMS destination. The JMS destination eventually resends the same mes-
sage to the container, causing this same process to occur.

See Source 8.4 for an example of a message-driven bean implementation class
that will cause a poison message scenario. Note that our abuse of theading is
for illustrative purposes only!

package examples;

import javax.ejb.*;
import javax.jms.*;

public class PoisonBean
implements MessageDrivenBean, MessagelListener ({

private MessageDrivenContext ctx;

public void setMessageDrivenContext (MessageDrivenContext ctx) {
this.ctx = ctx;

}
public void ejbCreate() {1}
public void ejbRemove () {}

public void onMessage (Message msg) {
try {
System.out.println("Received msg " + msg.getJMSMessageID()) ;

// Let’s sleep a little bit so that we don’'t
// see rapid fire re-sends of the message.
Thread.sleep (3000) ;

// We could either throw a system exception here or
// manually force a rollback of the transaction.
ctx.setRollbackOnly () ;
}
catch (Exception e) {
e.printStackTrace() ;
}
}
}

Source 8.4 PoisonBean.java.

230 THE TRIAD OF BEANS

Several strategies can resolve pOiSOI”l messages:

m Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJ[BException are intended
to indicate system and/or container failure. If this were a session or entity
bean, the ideal solution would be to generate an application exception
and throw it (especially since application exceptions do not force transac-
tions to be rolled back). However, the EJB specification prohibits applica-
tion exceptions from being thrown from the onMessage() method of a
message-driven bean. The ideal solution to this problem would likely
involve logging the business error message and then quietly returning.

m Consider using bean-managed transactions instead of container-managed
transactions. Message consumption and acknowledgement is not part of
the transaction if bean-managed transactions are used. A bean-managed
transaction can be rolled back and the message is acknowledged anyway.

m Some application servers allow you to configure a poison message queue.
Messages that are redelivered a certain number of times is flagged as poi-
son messages, removed from their primary queue, and placed into a poi-
son message queue. Typically, any message that is redelivered from three
to five times can be considered a poison message. You can then bind spe-
cial consumers or message-driven beans to the poison message queue to
handle any unexpected error conditions.

m Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your message-driven bean could check the value
of a retry count (if it exists) to see if it has repeatedly consumed the same
message.

m Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destination
delays the redelivery of a message after it receives a negative acknowl-
edgement. This way, your system doesn’t grind to a halt in case of rapid-
fire poison messages.

How to Return Results Back to
Message Producers

The EJB specification does not outline any mechanism that allows a message-
driven bean to propagate a response back to the client that originally gener-
ated the message. So we need to build those facilities ourselves. Figure 8.8
shows how this could be accomplished.

Here is an explanation of Figure 8.8:

Introduction to Message-Driven Beans 231

JMS Server

Incoming Queue 5. MDB consumes

= 0 T request message.
I— In-Message] .

3. Client creates request message with 0
temporary queue as value of JMSReplyTo field. In-Message
4. Client sends request message. Message-Driven—\

Bean Pool —

JMS Client

1. Client creates temporary queue.
2. Client binds consumer to temporary queue. Outgoing Temporary Queue

8. Client receives response message. I
| \ @

Figure 8.8

Message-Driven
Bean Instances

—

= O

Out-Message

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request
message.

A simple request/response paradigm solution.

The client that generates a JMS message for consumption creates a tempo-
rary destination associated with its Connection. The JMS server temporarily
creates a Topic or Queue and that object exists for the lifetime of the Con-
nection.

The request message that the client sends contains extra information, so
the receiving message-driven bean knows how to reply correctly. Specifi-
cally, the client sticks the name of the temporary queue in the [MSReplyTo
header field of the request message. The message-driven bean can harness
this field to reply on the correct queue. The client also has a unique identi-
fier of the original message in the JMSCorrelationID header field of the
original message. When the message-driven bean replies, it embeds this
original identifier, so the client knows to which original message he’s
receiving a reply.

The client creates a new Session and registers a MessageListener to consume
messages sent to the temporary destination that was just created.

The client sends the message.

232

THE TRIAD OF BEANS

m After consuming the message, the message-driven bean formats a
response and sends it using the JMSReplyTo and [MSCorrelationID
attribute of the received message.

m The client’s MessageListener class asynchronously consumes the message
that is sent to the temporary destination, recognizes that it is a response to
the original message, and processes it.

Even though this scenario seems like a straightforward solution for respond-
ing to clients from within a message-driven bean, it could potentially lead to
some unexpected results. The problem arises if the client itself is an EJB com-
ponent, such as a stateful session bean. When your stateful session bean cre-
ates the temporary destination, that temporary destination has a lifespan
equal to the lifespan of the JMS connection that your bean currently holds. If
your bean is passivated (meaning swapped out of memory), then you need to
release that connection. The temporary destination then goes away, and
you've lost all messages delivered to that temporary destination while you
were passivated, even if you recreate the destination after you are swapped
into memory again.

We propose two possible solutions to this problem:

1. Don’t use a stateful session bean. Instead the end client, such as a servlet,
application, or JSP tag library (rather than the stateful session bean), cre-
ates a temporary queue that all response messages are sent to. The stateful
session bean is therefore not holding onto a connection, eliminating any
danger of the destination going away because of passivation. See the
book’s accompanying source code for an implementation of this solution.

The advantages of using this architecture include:

Ease of implementation. Creating temporary queues doesn’t require any
extra configuration from an administrator, whereas setting up a dedicated
response topic requires management on the part of the administrator and
your application.

Security. Since temporary queues are bound to a particular connection,
malicious clients cannot bind to a temporary queue and intercept response
messages.

Immediate client notification. Since the remote client creates and manages
the receiving logic for the temporary queue, the client is notified immedi-
ately when a response message is generated, rather than having to wait for
a middleman session bean to respond.

The disadvantages of this architecture include:

Introduction to Message-Driven Beans 233

No persistent messages. Temporary queues cannot have persistent stores
associated with them and therefore cannot support guaranteed message
delivery. If the system fails while a response message is located on the tem-
porary queue, the message will be lost.

Poor abstraction. Since temporary queues are associated with a Connection
object, a stateful session EJB cannot perform middle-tier management of
the request/response process. It might be more natural to abstract away the
JMS request/response logic from the client.

2. A permanent response topic is configured and deployed in the JMS server.
All response messages are delivered to the same response topic for all
clients. Clients filter out the messages that belong to them by registering a
message selector with the JMS server. Any request message that is sent
has a custom application property called ClientName=MyID where MyID
varies for each client. The message-driven bean that consumes the request
message takes the application property from the request message and
inserts the same property in the response message. All response messages
are sent to the same response topic irrespective of the client. Figure 8.9
illustrates this scenario, and the book’s accompanying source code has its
implementation.

The advantages of using this architecture include:

Better fault tolerance. Because this architecture proposes that a permanent
topic be set up for all outgoing messages, the response topic could be asso-
ciated with a persistent store. All outgoing messages could then be sent
persistently with guaranteed message delivery. Temporary topics and
queues cannot have persistent messages delivered to them. This could be
ideal for a data retrieval system. For example, suppose you had a remote
client that randomly connected to the central server requesting a download
of the latest market data as it pertains to that client. The data could be any-
where from 1K to 1IMB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to break up
the data chunks into 100K messages. If the client needed to retrieve 1MB of
data, you would need to send 10 response messages. All of the response
messages could be sent with guaranteed message delivery. If the remote
client application were to fail during the download process, it could easily
resume from the last response message that it received instead of having to
restart the entire download process.

Better filtering. You can add on additional filtering of response messages
through the message selector that the client registers with the JMS server.
In the example provided with this book, the client registers to receive
messages that have an application property ClientName=MyID. You could

234 THE TRIAD OF BEANS

conceivably add on application properties about the response message that
the client filters on. These properties could be message size, message
importance, and so on.

The main disadvantage of this architecture is lack of security. Since the JMS
specification does not have any security restrictions on which clients can
bind which message selectors, any client can register any message selector.
This presents the opportunity for a malicious client to register for con-
sumption of response messages that are destined for another client. This
malicious behavior is not possible with temporary destinations. Of course,
if you're secured by a firewall, security probably isn't an issue. Also, it
would take a pretty snazzy developer to actually figure out that you're
sending messages and register a message listener.

As a final note, it is important to mention that this approach allows a ses-
sion EJB to act as a mediator between the client and the back-end system, as
mentioned in the actual description of the problem. By using an intermedi-
ary session EJB, security can be improved, because the topic that response
messages are delivered to can be made available only internally by simply
not exposing it to a client or blocking the message server using a firewall or

2. Client creates request message with

application property:ClientName=MyiD. JMS Server
MyID changes for each client. 4. MDB consumes
3. Client sends request message. Incoming Queue request message.

/

=] l
In-Message NN NN

Message-Driven
JMS Client Bean Pool T\

/I

= 0

In-Message

Message-Driven
Bean Instances

—

1. Client binds consumer to permanent OutgoingResponseTopic
response topic. The registration on the 5 Dunu
topic has a message selector that will

filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client. 5. MDB creates response message. The MDB
7. Client receives response message. sets the response message ClientName

property to be the value of the request message.
6. MDB sends response to response topic.

Out-Message|

/

Figure 8.9 Another request/response paradigm solution.

Introduction to Message-Driven Beans

235

other security measure. The session EJB can be coded to filter out messages

based upon the logged-in user name.

An alternative request/response paradigm.

If you don't feel like writing your own request/response code as we’ve just
described, you can tap into JMS’s facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor, that implement
a simple request/response paradigm. You call a method called request() that
takes as input the request message and returns the response message. This is

implemented in the book’s accompanying source code.

The downsides to this approach are:

You need to block when waiting for a response. You can’t continue process-
ing and do other things, which is one of the major advantages of messag-

ing in the first place.

You can’t use transactions. If you did, the outgoing message would be

buffered until the transaction committed. Since the QueueRequestor class
doesn’t commit right away, but instead blocks until it receives a response
message, it will block indefinitely. The outgoing request message will wait

forever to be flushed from the buffer. See Chapter 10 for more on
transactions.

The Future: Asynchronous Method
Invocations

One of the downsides to message-driven beans is that you need to learn a
whole new AP, JMS, to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your mes-
sage-driven bean; rather, you are sending messages using the J]MS API, and the
server has a single method to crack the message open and then call the

intended method using a giant if statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the server,
such as logMessage() or quoteStock(). You can choose whether you want to
block and wait for an asynchronous response or to immediately return and to
not wait for a response. Furthermore, the server can take on the context infor-

mation of the client.

Asynchronous RMI and Microsoft’s Queued Components are asynchronous
method invocation infrastructures. CORBA also has some support for this,

236

THE TRIAD OF BEANS

with a slightly different definition of deferred synchronous invocations: “A
request where the client does not wait for completion of the request, but does
intend to accept results later.”

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you'll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing message-driven beans and the
pitfalls associated with doing asynchronous development with EJBs. We
started by learning about the various benefits of developing asynchronous
components and how message-driven beans compare to their session and
entity bean counterparts. We looked at how to build a message-driven bean
and deploy it. Next we looked at how a message-driven bean behaves in its
environment, including how it interacts with transactions. Finally, we took a
look at the common pitfalls of using message-driven beans and proposed
some solutions.

Adding Functionality to
Your Beans

n previous chapters, you learned the fundamentals of EJB programming. In
this chapter, we’ll build on that knowledge and cover a slew of essential top-
ics, including:

m How to call beans from other beans

= How to use environment properties to customize your beans and access
those environment properties at runtime

m How to access resource factories (such as JDBC or JMS drivers) from your
bean

m How to use the E]JB security model
m How to use EJB object handles and EJB home handles

This knowledge is key for building nontrivial EJB deployments. So let’s get to
it!

Calling Beans from Other Beans

Any nontrivial EJB object model has layers of beans calling other beans. For
example, a bank teller bean might call a bank account bean, or a customer bean
might call a credit card bean. In this chapter, we'll use the example of:

m A pricing engine that computes prices of products, using all sorts of inter-
esting rules, such as discounts, taxes, and shipping costs.

237

238 THE TRIAD OF BEANS

m A catalog engine that is a catalog for products, retrieving products from
the database as necessary.

The pricing engine calls the catalog engine. For simplicity, we'll assume that

both of these beans are stateless session beans, since that’s what you've
learned so far.

Default JNDI Lookups

For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean might:

—_

. Look up the other bean’s home object via JNDI
2. Call create() on the home object

3. Call business methods on the E]JB object

4. Call remove() on the E]JB object

As we learned about earlier, to lookup a home via JNDI, you first need to sup-
ply INDI initialization parameters, such as the JNDI driver you're using, which
differs from container to container. But if you're writing a bean that calls
another bean, how do you know what JNDI service provider to use? After all,
your beans should be container-independent. Hard-coding that JNDI informa-
tion into your bean would destroy portability.

The good news is that if you're looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the
// no-argument constructor
Context ctx = new InitialContext();

// Look up the home interface
Object result = ctx.lookup("java:comp/env/ejb/CatalogHome") ;

// Convert the result to the proper type, RMI-IIOP style
CatalogHome home = (CatalogHome)
javax.rmi.PortableRemoteObject.narrow (
result, CatalogHome.class) ;

// Create a bean
Catalog ¢ = home.create(...);

Adding Functionality to Your Beans 239

The preceding code is portable because nobody ever needs to supply
container-specific JNDI initialization parameters.

Understanding EJB References

Notice from the previous section that we looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends (but does not
require) you put beans that are referenced from other beans.

Unfortunately, you cannot guarantee that the JNDI location you've specified
will be available. This could happen if your bean has a conflict with another
bean or if the deployer has a funky JNDI tree that is spread out across multiple
domain boundaries.

Thus, your code will break if the JNDI location changes at deployment time.
And often, the deployer is unable to modify your code, because it comes to
him as .class files only. This could happen for example, if you are an indepen-
dent software vendor that ships beans, and you want to protect your intellec-
tual property and make future upgrades easier by preventing customers from
seeing source code.

EJB resolves this situation with EJB references. An E]B reference is a nickname for
the JNDI location that you want to lookup a bean. This nickname may not cor-
respond to the actual JNDI location the deployer sticks your bean into. Your
code looks up a home via its nickname, and the deployer then binds that nick-
name to the JNDI location of his choice, perhaps using symbolic links (an
advanced JNDI feature not covered in this book—see the JNDI specification
for more). Once again, a layer of indirection solves every problem in computer
science.

EJB references are declared in the deployment descriptor. Source 9.1 illustrates
references.

Programming with EJB references is straightforward. Our pricer bean is using
a catalog bean, so inside the pricer bean we simply list all the necessary infor-
mation about the catalog bean in an EJB reference. The deployer then knows
that our pricer bean uses exactly one other enterprise bean—catalog—and no
other. This is useful, because the deployer now knows which class files pricer
depends on and what JNDI location needs to be bound. Similarly, the con-
tainer’s tools can easily inspect the deployment descriptor and verify that the
deployer has done his job.

Note that while this example declares the catalog bean within our deployment
descriptor, we didn’t have to do this. The catalog bean could have been in its
own Ejb-jar file with its own deployment descriptor.

240 THE TRIAD OF BEANS

<enterprise-beans>

<l==
Here, we define our Catalog bean. Notice we use the
"Catalog" ejb-name. We will use this below.
==z
<session>
<ejb-name>Catalog</ejb-name>
<home>examples.CatalogHome</home>

</session>
<session>

<ejb-name>Pricer</ejb-name>
<home>examples.PricerHome</home>

<ejb-ref>
<description>
This EJB reference says that the Pricing Engine
session bean (Pricer) uses the Catalog Engine
session bean (Catalog)
</description>

<l==
The nickname that Pricer uses to look
up Catalog. We declare it so the deployer
knows to bind the Catalog home in
java:comp/env/ejb/CatalogHome. This may not
correspond to the actual location to which the
deployer binds the object via the container
tools. The deployer may set up some kind of
symbolic link to have the nickname point to the
real JNDI location.

-—>

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<l-- Catalog is a Session bean -->
<ejb-ref-type>Session</ejb-ref-type>

<!-- The Catalog home interface class -->
<home>examples.CatalogHome</home>

<1-- The Catalog remote interface class -->

Source 9.1 Declaring an EJB reference.

Adding Functionality to Your Beans 241

<remote>examples.Catalog</remote>

<!-- (Optional) the Catalog ejb-name -->
<ejb-link>Catalog</ejb-1link>
</ejb-ref>
</session>

</enterprise-beans>

Source 9.1 Declaring an EJB reference (continued).

You can also access EJB components from other EJB components through their
local interfaces rather than their remote interfaces. To do this, our deployment
descriptor would be almost exactly the same—except instead of calling the ele-
ment <ejb-ref> we would call it <ejb-local-ref>, instead of <home> we
would use <local-home>, and instead of <remote> we would use <local>.
The JNDI code to lookup the bean would change as well; it would lookup the
local home interface rather than the home interface, and call the local interface
rather than the remote interface:

// Obtain the DEFAULT JNDI initial context by calling the
// no-argument constructor
Context ctx = new InitialContext();

// Look up the home interface
Object result = ctx.lookup("java:comp/env/ejb/CatalogLocalHome") ;

// Convert the result to the proper type. No RMI-IIOP cast
// required since local interfaces are being used.
CatalogLocalHome home = (CatalogLocalHome) result;

// Create a bean
CatalogLocal c¢ = home.create(...);

Resource Factories

Our next topic is how to perform callouts to external resources from an EJB
component. A resource factory is a provider of resources. Examples include a
Java Database Connectivity (JDBC) driver, a Java Message Service (JMS) dri-
ver, or a J2EE Connector Architecture (JCA) resource adapter. A resource fac-
tory is the driver that gives you connections, such as a JDBC driver giving you
a database connection.

242

THE TRIAD OF BEANS

Connection Pooling

Connection pooling is the reuse of sockets. If a client isn’t using a socket, a dif-
ferent client can harness the socket. This increases the scalability of a system.
Connection pooling is built into most containers. JDBC specifies standard inter-
faces for connection pooling, further enhancing your code portability. The con-
nection pooling typically happens completely behind the scenes, and your bean
code is oblivious to it.

To begin using a resource factory, you need to locate it. EJB mandates that you
use JNDI to look up a resource factory. This is very nice, because you merely
need to learn a single API—JNDI—and you can lookup JDBC drivers, JMS
drivers, JCA drivers, and so on. In fact, you already know how to perform this
lookup. It’s the same JNDI code as looking up an EJB home object:

// Obtain the initial JNDI context
Context initCtx = new InitialContext();

// Perform JNDI lookup to obtain resource factory
javax.sqgl.DataSource ds = (javax.sqgl.DataSource)
initCtx.lookup ("java:comp/env/jdbc/ejbPool") ;

Notice that we're using java:comp/env/jdbc. While this is the EJB-suggested
location for your JDBC resources, you must specify your resource factory’s
JNDI location in the deployment descriptor. When your bean is deployed, the
deployer binds a real resource factory to that JNDI location. The correspond-
ing deployment descriptor is shown in Source 9.2.

Source 9.2 is fairly self-explanatory, except for the res-auth entry. To understand
it, realize that when you acquire a connection to a database or other resource,
that resource may require authorization. For example, you may need to spec-
ify a username and password when obtaining a JDBC connection. EJB gives
you two choices for authenticating yourself to a resource:

Perform the authentication yourself in the bean code. Call the resource fac-
tory with the appropriate sign-on information, such as a login name and
password. In this case, set the deployment descriptor’s res-auth element to
Application.

Let the deployer handle authentication for you. The deployer specifies all
sign-on information in the deployment descriptor. In this case, set the
deployment descriptor’s res-auth element to Container.

Adding Functionality to Your Beans

<enterprise-

beans>

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

<1--
This
-—>

element indicates a resource factory reference

<resource-ref>

<description>

This is a reference to a JDBC driver used within
the Catalog bean.

</description>

<l=--

The JNDI location that Catalog uses to look up
the JDBC driver.

We declare it so the deployer knows to bind the
JDBC driver in java:comp/env/jdbc/ejbPool.

-—>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<!--

The resource factory class

-=>
<res-type>javax.sql.DataSource</res-type>

<t--

Security for accessing the resource factory.
Can either be "Container" or "Application".
-=>

<res-auth>Container</res-auth>

<1--

Whether connections should be shared with other
clients in the different transactions

-=>
<res-sharing-scope>Sharable</res-sharing-scope>

</resource-ref>

</session>

</enterprise-beans>

Source 9.2 Declaring a resource factory reference within a deployment descriptor.

243

244

THE TRIAD OF BEANS

The second choice is the most useful, especially when you are writing beans
for resale or reuse by other companies, because only the deployer will know
what sign-on credentials are needed to access a particular resource.

Environment Properties

Our next tidbit of essential EJB knowledge is how to customize our beans at
runtime. What does customization mean? Well, our pricing bean might have
several different pricing algorithms it could apply. We’d like the consumers of
our bean to be able to select their preferred algorithm.

Your bean’s environment properties are application-specific properties that your
beans read in at runtime. These properties can be used to customize your bean
and make your beans data-driven. It's a quick-and-dirty alternative to storing
information in a database.

The first step to using environment properties is to declare them in the deploy-
ment descriptor. The container reads in this deployment descriptor and makes
the environment properties available for your bean to access at runtime. An
example is shown in Source 9.3.

The environment property declared in Source 9.3 tells our pricing engine to
use an algorithm that gives all customers no taxes, due to the Internet tax
moratorium that we all love.

You use JNDI to access the environment from your bean. The following code
illustrates this.

// 1: Acquire the initial context
Context initCtx = new InitialContext();

// 2: Use the initial context to look up

// the environment properties

String taxAlgorithm = (String)
initCtx.lookup("java:comp/env/Pricer/algorithm">) ;

// 3: Do what you want with the properties
if (!taxAlgorithm.equals ("NoTaxes")) {

// add tax
}

Notice that we lookup environment properties under the JNDI name
java:comp/env. All E]B environment properties must be somewhere beneath this
naming context.

Adding Functionality to Your Beans 245

<enterprise-beans>
<session>

<ejb-name>Pricer</ejb-name>
<home>examples.PricerHome</home>

<i--

This element contains a single environment property.
The property is only accessible from the Pricer.

-->

<env-entry>

<description>
The algorithm for this pricing engine.
</description>

<l=--

The JNDI location that Pricer uses to look up
the environment property. We declare it so the
container knows to bind the property in
java:comp/env/PricerProperties/algorithm.

-—>
<env-entry-name>Pricer/algorithm</env-entry-name>

<!-- The type for this environment property -->
<env-entry-type>java.lang.String</env-entry-type>

<!-- The environment property value -->
<env-entry-value>NoTaxes</env-entry-value>
</env-entry>
</session>
</enterprise-beans>

Source 9.3 Declaring environment properties within an EJB deployment descriptor.

Understanding EJB Security

The next topic is adding security to your enterprise beans. So let’s get right
down to the meat: There are two security measures that clients must pass
when you add security to an EJB system.

246 THE TRIAD OF BEANS

First, the client must be authenticated. Authentication verifies that the client
is who he claims to be. For instance, the client may enter a username/pass-
word in an application or Web browser, and those credentials are checked
against a permanent client profile stored in a database or LDAP server.
Once the client is authenticated, he is associated with a security identity for
the remainder of his session.

Then the client must be authorized. Once the client has been authenticated,
he must have permission to perform desired operations. For example, in a
procurement application, you want to ensure that while anyone can submit
purchase orders, only supervisors can approve purchase orders.

There is an important difference here—authentication verifies that the client is
who he claims to be, whereas authorization checks to see if an already authenti-
cated client is allowed to perform a task. Authentication must be performed
sometime before an EJB method is called. If the client has an identity, then it
has been authenticated. Authorization, on the other hand, occurs during an
EJB method call.

Security Step 1: Authentication

In earlier versions of EJB (1.0 and 1.1), there was no portable way to achieve
authentication. The specific way your client code became associated with a
security identity was left to the discretion of your application and your EJB con-
tainer. This meant each EJB container may handle authentication differently.

The good news is that in EJB 2.0, authentication is now portable and robust.
You perform authentication through the Java Authentication and Authorization
Service (JAAS), a separate J2EE APIL. Let’s now take a minitutorial of JAAS and
see how it can be used in an EJB environment.

JAAS Overview

JAAS is a portable interface that enables you to authenticate and authorize
users in Java. In a nutshell, it allows you to log into a system without knowing
about the underlying security system being used. Behind the scenes in JAAS,
the implementation (such as an application server) then determines if your
credentials are authentic.

The power of JAAS lies in its ability to use almost any underlying security sys-
tem. Some application servers allow you to set up usernames and passwords
in the application server’s properties, which the application server reads in at
runtime. More advanced servers support complex integration with existing
security systems, such as a list of usernames and passwords stored in an LDAP

Adding Functionality to Your Beans 247

server, database, or custom security system. Other systems support certificate-
based authentication. Regardless, the integration should be performed behind
the scenes by your container and should not affect your application code.

There are two likely candidate scenarios when you may want to use JAAS
from your code, shown in Figure 9.1.

Web Browser (if Web-based application) User (if standalone app)

/

1: provide credentials 1: provide credentials
Client Machine

N\ y

Servlet/JSP (if web-based)
Java class (if standalone app)

2:login

Portable JAAS
API

5: call business logic
with authenticated
security identity

Vendor-specific
logic

3: call J2EE server
using proprietary protocol
J2EE Server

Proprietary
J2EE Server
Security
Provider

EJB Component

4: authenticate

LDAP, RDBMS, home
grown, or other
existing security
system

Figure 9.1 JAAS overview.

248 THE TRIAD OF BEANS

1. When you have a standalone application connecting to a remote E]B sys-
tem, the user would supply credentials to the application (or perhaps the
application would retrieve the credentials from a file or other system). The
standalone application would then use the JAAS API to authenticate the
user prior to calling the EJB components residing within the application
server. The application server would verify the user’s credentials. Once
the user has been authenticated via JAAS, the client can call E]B methods
securely, and the user’s security identity will be propagated to the server
upon method invocations.

2. When you have a Web browser client connecting to a servlet/JSP layer,
the web browser user supplies credentials to a servlet/JSP layer, and the
servlet/JSP layer could use JAAS to authenticate the user. The Web
browser could supply the credentials in one of four ways:

Basic authentication. The Web client supplies a username and password
to the Web server. The server checks these credentials against a perma-
nent storage of usernames and passwords. Note that while this is a sim-
ple approach, this is not a secure form of authentication because the
password is sent in clear-text to the server. Some J2EE servers allow you
to use secure socket layer (SSL) to encrypt this data.

Form-based authentication. This is just like basic authentication, except
the application uses a customizable form, such as a special login screen.

Digest authentication. The Web client supplies a special message digest
to the Web server. This message digest is a mathematical transformation
on both the user’s password and the HTTP message itself. The pass-
word itself is not sent to the Web server. The Web server then tries to
reproduce the message digest by performing the same mathematical
transformation, except this time the Web server uses a secure copy of
the user’s password kept in permanent storage. If the digests match, the
user is authenticated.

Certificate authentication. The client can establish an identity with X.509
certificates. The client can also (optionally) ensure that a third party is
not impersonating the server by receiving X.509 certificates that authen-
ticate the server.

As with standalone applications, once the user has been authenticated via
JAAS, the client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

(servlets and JSPs) as well as standalone clients. However, if you're developing a

? The JAAS ideas and JAAS code we're about to present are useful for both Web clients
Web-based system, it behooves you to learn more about the four methods of Web

Adding Functionality to Your Beans 249

authentication. We recommend that you take a look at the J2EE BluePrints docu-
ment, as well as the J2EE Platform Specification, both freely downloadable from
http://java.sun.com. Note that, unfortunately, J2EE does not require that all servers
support security interoperability between the Web layer and the EJB layer. Check
your J2EE server's documentation before embarking down this path.

The JAAS Architecture

Sun has built JAAS to be a very robust. It has a powerful design, and is sur-
prisingly complicated for what you think would be a simple subject. We have
distilled JAAS down into a simple procedure to make it easier for you to
understand.

Figure 9.2 shows the basics of a JAAS authentication procedure.

The JAAS authentication procedure breaks down as follows. Follow along
with the picture as we review each step:

1. The client instantiates a new login context. This is a container-provided
class (you don’t write it). It’s responsible for coordinating the authentica-
tion process.

Client - e.g. servlet, ‘JSP, lor applicaiton 13: doAs(subject, action) Sub'ect
(you write this) 7 (provided for you)
A 14: run()
1:new() . . \V
7: login() 9: getSubject()
Acti
11: return 12: new() w hi
subject (you write this)
2:new()
3: getAppConfigurationEntry()
LoginContext Configuration
(provided for you) (you write this) Network
4: return list of LoginModules
6.?;”?;\";;%0 15: perform secure operation
s: login() (such as calling an EJB)
10: commit() or abort()

One or more /\/\\
LoginModules Network J2EE Server
(you write them) I \/\/J

9: authenticate using proprietary API

Figure 9.2 JAAS authentication in detail.

250

THE TRIAD OF BEANS

The login context instantiates a new configuration object, which you must
have written beforehand. This configuration object knows about the type
of authentication you want to achieve. For example, your configuration
object might know that you want to perform both password-based
authentication and certificate-based authentication.

The login context asks the configuration object for the list of authentica-
tion mechanisms that we’re going to use (such as password-based and
certificate-based).

. The configuration object returns a list of authentication mechanisms. Each

one is called a login module. A login module knows how to contact a spe-
cific security provider and authenticate in some proprietary way.

The login context instantiates your login modules. You can have many
login modules if you want to authenticate across several different security
providers. In the example we’re about to show, we will use only one login
module, and it will know how to authenticate using a username/pass-
word to a J2EE server.

6. The login context initializes the login modules.

7. The client code tries to log in by calling the login() method on the login

10.

11.

12.

13.

14.

context.

The login context delegates the login() call to the login modules, since only
the login modules know how to perform the actual authentication.

The login modules (written by you) authenticate you using a proprietary
means. In the example we’re about to show, our username/password
login module will try to contact a J2EE server and tell the J2EE server our
username and password. That J2EE server will verify the credentials
against a permanent record of usernames and passwords, such as ones
stored in a flat file, database, or LDAP server.

If the logins succeed, then the login modules are told to commit(). They
can also abort() if the login process fails. This is not a very critical step to
understand—read the JAAS docs if you're curious to understand more.

A new subject is returned to the client code. This subject represents some-
one (or something) that has been authenticated. You can use this subject to
perform secure operations.

Your client code instantiates a new action. An action is an object that you
write. It knows how to perform an operation you want to perform
securely, such as calling an EJB component, using a database, and so on.

You tell the subject to do the action as the subject—hence the doAs()
method name.

The subject calls the action’s run() method.

v

Adding Functionality to Your Beans 251

15. The action performs its operation (such as calling an EJB component) and
the logged-in security context is automatically propagated along with the
method call. This completes authentication. Since the security context is
sent to the server, the server can now perform authorization.

That’s it—a mere 15 steps. You've got to hand it to Sun for being elegant.

What's neat about JAAS is that the login modules are separate from the configura-
tion, which means you can chain together different login modules in interesting
combinations by using different configuration objects. You can choose the config-
uration class that you want typically via system properties, although this may vary
from container to container. You can also theoretically make an entry called
login.configuration.provider=<class name of your configuration object> in the
java.security file located within your J2SE SDK install folder, but this did not work in
testing at the time of this writing.

JAAS Sample Code

Let’s show a simple JAAS example. The code will authenticate and then call a
“Hello, World” method on a bean. If the password is right, then the invocation
succeeds. If not, then an exception is thrown while trying to log in.

The code is in Source 9.4 through 9.7, and is fairly self-documenting. By
reviewing Figure 9.2, this sample code, and the process we laid our earlier, you
should be able to get a feeling for what this code is doing.

package examples;

import javax.naming.*;

import javax.security.auth.*;

import javax.security.auth.callback.*;
import javax.security.auth.login.?*;
import javax.rmi.PortableRemoteObject;

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Authenticate via JAAS

*/

Source 9.4 HelloClientjava.

252

THE TRIAD OF BEANS

LoginContext loginContext = new LoginContext ("Hello Client") ;
loginContext.login() ;

/*
* Retrieve the logged-in subject
*/
Subject subject = loginContext.getSubject() ;

/*
* Perform business logic while impersonating the
* authenticated subject

*/
CallHelloWorld action = new CallHelloWorld() ;
String result = (String) Subject.doAs (subject, action);
/*
* Print the return result from the business logic
*/
System.out.println (result) ;

}
}

Source 9.4 HelloClient.java (continued).

package examples;

import java.util.Hashtable;
import javax.security.auth.login.*;

/**

* Sample configuration class for JAAS user authentication.
* This class is useful because it can be rewritten to use
* different login modules without affecting client code.

* For example, we could have a login module that did
* username/password authentication, and another that did
* public/private key certificate authentication.
*/
public class PasswordConfig extends Configuration {

/x*

* A configuration class must have a no-argument constructor
*/

Source 9.5 PasswordConfig.java.

Adding Functionality to Your Beans 253

public PasswordConfig() {}

/**
* This method chooses the proper login module.
*/

public AppConfigurationEntryl[]
getAppConfigurationEntry (String applicationName)

{
/*
* Return the one login module we’ve written, which uses
* username/password authentication.

*

* - The "REQUIRED" flag says that we require that this

* login module succeed for authentication.
* - The new hashtable is a hashtable of options that
& our login module will receive. For example, we might

* define an option that turns debugging on. Our login
* module would inspect this hashtable and start logging
£ output.
*/
AppConfigurationEntry[] loginModules
= new AppConfigurationEntry[1];
loginModules[0] = new AppConfigurationEntry (
"examples.PasswordLoginModule",
AppConfigurationEntry.LoginModuleControlFlag.REQUIRED,
new Hashtable());
return loginModules;

}

/**
* Refresh and reload the Configuration object by reading
* all of the login configurations again.
*/

public void refresh() {}

}

Source 9.5 PasswordConfig.java (continued).

package examples;

import java.util.*;

import javax.naming.Context;

import javax.security.auth.*;

import javax.security.auth.callback.*;

Source 9.6 PasswordLoginModule.java.

254 THE TRIAD OF BEANS

import javax.security.auth.login.*;
import javax.security.auth.spi.*;

/**
* Sample login module that performs password authentication.
*
* The purpose of this class is to actually go out and perform
* the authentication.
*/
public class PasswordLoginModule implements LoginModule {
private Subject subject = null;

/**
* Initializes us. We set ourselves to the particular
* subject which we will later authenticate.
*/
public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState,
Map options)
{
this.subject = subject;

}

/**
* This method authenticates the user. It is called when
* the client tries to login in.

* Our method implementation contains the vendor-specific way
* to access our permanent storage of usernames and passwords.

* Note that while this code is not portable, it is 100%

* hidden from your application code behind the LoginModule.
* The intention is that you develop a different LoginModule
* for each J2EE server.

* In this case, BEA has provided us with a helper class that
* talks JNDI to the Weblogic server, and the server then goes
* to whatever the currently configured security realm is,
* such as a file, RDBMS, or LDAP server.
*/
public boolean login() throws LoginException
{
try {
/*
* Authenticate the user’s credentials, populating Subject
*

Source 9.6 PasswordLoginModule.java (continued).

Adding Functionality to Your Beans 255

* Note: In a real application, we would not hardcode the
* username and password. Rather, we would write a reusable
* LoginModule that would work with any username and password.
* We would then write a special callback handler that knows
* how to interact with the user, such as prompting the user
* for a password. We would then call that callback handler
* here.
*/
weblogic.jndi.Environment env =
new weblogic.jndi.Environment (System.getProperties()) ;
env.setSecurityPrincipal ("guest") ;
env.setSecurityCredentials ("guest") ;

weblogic.security.auth.Authenticate.authenticate (
env, subject);

/*
* Return that we have successfully authenticated
* the subject
*/
return true;
}
catch (Exception e) {
throw new LoginException (e.toString()) ;
}
}

/**

* This method is called if the overall authentication
* gsucceeded (even if this particular login module

* failed). This could happen if there are other login
* modules involved with the authentication process.

* This is our chance to perform additional operations,
* but since we are so simple, we don’t do anything.
*
* @return true if this method executes properly
*/
public boolean commit () throws LoginException {
return true;

}

/**

* This method is called if the overall authentication
* failed (even if this particular login module

* gucceeded). This could happen if there are other

* login modules involved with the authentication

Source 9.6 PasswordLoginModule.java (continued).

256 THE TRIAD OF BEANS

* process.

This is our chance to perform additional operations,

* but since we are so simple, we don’t do anything.
*

*
Y
public boolean abort() throws LoginException {

@return true if this method executes properly

return true;

}

/**
* Logout the user.
*
* @return true if this method executes properly
*/

public boolean logout () throws LoginException {
return true;

}

}

Source 9.6 PasswordLoginModule.java (continued).

package examples;

import java.security.*;

import javax.naming.*;

import java.util.Hashtable;

import javax.rmi.PortableRemoteObject;

/**

* This is a helper class that knows how to call a

* "Hello, World!" bean. It does so in a secure manner,
* automatically propagating the logged in security context
* to the J2EE server.

*/
public class CallHelloWorld implements PrivilegedAction {

/*
* This is our one business method. It performs an action
* securely, and returns application-specific results.
&t/

public Object run() {

Source 9.7 CallHelloWorld java.

Adding Functionality to Your Beans 257

String result = "Error";
try {
/*
* Make a bean
*/
Context ctx = new InitialContext (System.getProperties()) ;
Object obj = ctx.lookup("HelloHome") ;
HelloHome home = (HelloHome)
PortableRemoteObject.narrow(obj, HelloHome.class) ;
Hello hello = home.create();

/*

* Call a business method, propagating the security context
*/

result = hello.hello();

}

catch (Exception e) {
e.printStackTrace() ;

}

/*
* Return the result to the client
*/
return result;
}
}

Source 9.7 CallHelloWorld.java (continued).

Security Step 2: Authorization

Once the client has been authenticated, it must pass an authorization test to
call methods on your beans. You enforce authorization by defining security
policies for your beans. There are two ways to perform authorization with EJB:

With programmatic authorization, you hard-code security checks into your
bean code. Your business logic is interlaced with security checks.

With declarative authorization, the container performs all authorization
checks for you. You declare how you’d like authorization to be achieved
through the deployment descriptor, and the container generates all neces-
sary security checks. You are effectively delegating authorization to the EJB
container.

258

THE TRIAD OF BEANS

Security Roles

Regardless of whether you're performing programmatic or declarative autho-
rization, you need to understand the concept of security roles. A security role is
a collection of client identities. For a client to be authorized to perform an oper-
ation, its security identity must be in the correct security role for that opera-
tion. The EJB deployer is responsible for associating the identities with the
correct security roles after you write your beans.

The advantage to using security roles is you do not hard-code specific identi-
ties into your beans. This is necessary when you are developing beans for
deployment in a wide variety of security environments, because each environ-
ment will have its own list of identities. This also allows you to modify access
control without recompiling your bean code.

Specifying security roles in EJB is application server-specific but should not
affect portability of your code. Table 9.1 shows some sample mappings.

Performing Programmatic Authorization

Let’s see how to authorize programmatically. Then we’ll see how to authorize
declaratively and compare the two approaches.

Step 1: Write the Programmatic Security Logic

To perform explicit security authorization checks in your enterprise beans, you
must first get information about who is calling your bean’s method. You can
get this information by querying the container through the EJB context object.
We first learned about the EJB context in Chapter 3; feel free to refer back if you
need to.

The EJB context object has the following relevant security methods:
public interface javax.ejb.EJBContext

{

public java.security.Principal getCallerPrincipal () ;
public boolean isCallerInRole(String roleName) ;

Table 9.1 Sample Security Roles

SECURITY ROLE VALID IDENTITIES
employees EmployeeA, EmployeeB
managers ManagerA

administrators AdminA

Adding Functionality to Your Beans 259

isCallerInRole(String role) checks whether the current caller is in a particular
security role. When you call this method, you pass the security role that you
want the caller compared against. For example:

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

public void modifyEmployee (String employeelID)
throws SecurityException {
/*
* If the caller is not in the ‘administrators’
* gecurity role, throw an exception.
*/
if (!ctx.isCallerInRole("administrators")) {
throw new SecurityException(. . .);

// else, allow the administrator to modify the
// employee records
//

}

The preceding code demonstrates how to perform different actions based on
the security role of the client. Only if the caller is in the administrators role
(defined in Table 9.1, and setup using your container’s tools) does the caller
have administrator access.

The other programmatic security method, getCallerPrincipal(), retrieves the
current caller’s security principal. You can use that principal for many pur-
poses, such as using the caller’s distinguished name in a database query. This
might be handy if you're storing your security information in a database. Here
is sample code that uses getCallerPrincipal():

import java.security.Principal;

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

public void modifyEmployee() {
Principal id = ctx.getCallerIdentity();
String name = id.getName() ;
// Query a database based on the name

260

THE TRIAD OF BEANS

// to determine if the user is authorized

Step 2: Declare the Abstract Security Roles
Your Bean Uses

Next you must declare all the security roles that your bean code uses, such as
an administrators role, in your deployment descriptor. This signals to others
(like application assemblers and deployers) that your bean makes the security
check isCallerInRole (administrators). That is important information for the
deployer, because the deployer needs to fulfill that role, just like the deployer
fulfills EJB references, as mentioned earlier. Source 9.8 demonstrates this.

<enterprise-beans>
<session>

<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<l=-=

This declares that our bean code relies on

the administrators role; we must declare it here
to inform the application assembler and deployer.
-—>

<security-role-ref>

<description>

This security role should be assigned to the
administrators who are responsible for
modifying employees.

</description>

<role-name>administrators</role-name>

</security-role-ref>

</session>

</enterprise-beans>

Source 9.8 Declaring a Bean's required security roles.

Adding Functionality to Your Beans 261

Step 3: Map Abstract Roles to Actual Roles

Once you've written your bean, you can ship it for resale, build it into an
application, or make it part of your company’s internal library of beans. The
consumer of your bean might be combining beans from all sorts of sources,
and each source may have declared security roles a bit differently. For exam-
ple, we used the string administrators in our bean above, but another bean

<enterprise-beans>
<session>

<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-role-ref>

<description>

This security role should be assigned to the
administrators who are responsible for
modifying employees.

</description>

<role-name>administrators</role-name>

<i--

Here we link what we call "administrators" above, to
a real security-role, called "admins", defined below
-=>

<role-link>admins</role-1link>

</security-role-ref>

</session>

<assembly-descriptor>

<t--
This is an example of a real security role.
-—>

<security-role>

Source 9.9 Mapping abstract roles to actual roles.

262

THE TRIAD OF BEANS

<description>

This role is for personnel authorized to perform
employee administration.

</description>

<role-name>admins</role-name>
</security-role>

</assembly-descriptor>

</enterprise-beans>

Source 9.9 Mapping abstract roles to actual roles (continued).

provider might use the string sysadmins or have completely different security
roles. This might be especially true if another developer wrote that bean.

The deployer of your bean is responsible for generating the real security roles
that the final application will use. Source 9.9 shows this.

Once you've completed your application, you can deploy it in a wide variety
of scenarios. For example, if you write a banking application, you could
deploy that same application at different branches of that bank, because you
haven’t hard-coded any specific principals into your application. The deployer
of your application is responsible for mapping principals to the roles you've
declared. This mapping is called a security policy descriptor, a fancy term for the
statement, “Every container handles mapping roles to principals differently.”
The bottom line: Your deployer looks at your security roles and assigns princi-
pals to them using proprietary container APIs and tools.

Performing Declarative Authorization

Now that we’ve seen programmatic authorization, let's move on to declarative
authorization. The primary difference between the two models is that with
declarative authorization, you declare your bean’s authorization requirements in
your deployment descriptor. The container fulfills these requirements at runtime.

Step 1: Declare Method Permissions

You first need to declare permissions on the bean methods that you want to
secure. The container takes these instructions and generates security checks in
your EJB objects and EJB home objects. Source 9.10 demonstrates this.

Adding Functionality to Your Beans 263

<assembly-descriptor>

<1--
You can set permissions on the entire bean.

Example: Allow role "administrators"

to call every method on the bean class.

-=>

<method-permission>
<role-name>administrators</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name> *</method-name>
</method>
</method-permission>

<!--
You can set permissions on a method level.

Example: Allow role "managers" to call method
"modifySubordinate()" and "modifySelf()".
-—>
<method-permission>
<role-name>managers</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySubordinate</method-name>
</method>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySelf</method-name>
</method>
</method-permission>

<1--
If you have multiple methods with the same name
but that take different parameters, you can even set

permissions that distinguish between the two.

Example: allow role "employees" to call method

Source 9.10 Declaring a bean'’s security policies.

264 THE TRIAD OF BEANS

"modifySelf (String)" but not "modifySelf (Int)"
-—>
<method-permission>
<role-name>employees</role-name>

<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modifySelf</method-name>
<method-params>String</method-params>
</method>
</method-permission>

<l==
This is the list of methods that we don’t want
ANYONE to call. Useful if you receive a bean
from someone with methods that you don’t need.
-—>
<exclude-list>
<description>
We don’t have a 401k plan, so we don’t
support this method.
</description>
<method>
<ejb-name>EmployeeManagement</ejb-name>
<method-name>modify401kPlan</method-name>
<method-params>String</method-params>
</method>
</exclude-list>

</assembly-descriptor>

Source 9.10 Declaring a bean’s security policies (continued).

Once defined, the EJB container automatically performs these security checks
on your bean’s methods at runtime and throws a java.lang.SecurityException
back to the client code if the client identity is not authenticated or authorized.

Step 2: Declare Security Roles

Declaring security roles is a process similar to programmatic security. We need
to define our security roles, and (optionally) describe each so the deployer can
understand them. See Source 9.11.

Adding Functionality to Your Beans 265

<assembly-descriptor>

<security-role>
<description>
System administrators
</description>
<role-name>administrators</role-name>
</security-role>

<security-role>
<description>
Employees that manage a group
</description>
<role-name>managers</role-name>
</security-role>

<security-role>
<description>
Employees that don’t manage anyone
</description>
<role-name>employees</role-name>
</security-role>

</assembly-descriptor>

Source 9.11 Declaring security roles for the deployer.

The deployer reads in Source 9.11 and, using the container’s tools, maps these
roles to principals, as shown in Table 9.1.

Declarative or Programmatic?

As with persistence and transactions, security is a middleware service that you
should strive to externalize from your beans. By using declarative security, you
decouple your beans’ business purpose from specific security policies, enabling
others to modify security rules without modifying bean code. No security role
strings are hard-coded in your bean logic, keeping your code simple.

In the ideal world, we’d code all our beans with declarative security. But
unfortunately, the EJB specification does not provide adequate facilities for

266 THE TRIAD OF BEANS

this; specifically, there is no portable way to declaratively perform instance-
level authorization. This is best illustrated with an example.

Let’s say you have an enterprise bean that models a bank account. The caller
of the enterprise bean is a bank account manager who wants to withdraw or
deposit into that bank account. But this bank account manager is responsible
only for bank accounts with balances below $1,000, and we don’t want him
modifying bank accounts with larger balances. Declarative authorization has
no way to declare in your deployment descriptor that bank account managers
can modify only certain bean instances. You can specify security roles only on
the enterprise bean class, and those security rules apply for all instances of that
class. Thus, you would need to create separate methods for each security role,
as we did in Source 9.11. This gets hairy and makes your bean’s interface
dependent on security roles. For these situations, you should resort to pro-
grammatic security.

Security Propagation

Behind the scenes, all security checks are made possible due to security con-
texts. Security contexts encapsulate the current caller’s security state. You
never see security contexts in your application code, because the container
uses them behind the scenes. When you call a method in E]B, the container can
propagate your security information by implicitly passing your security con-
text within the stubs and skeletons.

For example, let’s say a client is authenticated and has associated security cre-
dentials. That client calls bean A, which calls bean B. Should the client’s secu-
rity credentials be sent to bean B, or should bean B receive a different
principal? By controlling security context propagation, you can specify the
exact semantics of credentials streaming from method to method in a distrib-
uted system.

You can control how security information is propagated in your deployment
descriptor. The following code takes the client’s credentials and propagates
them to all other beans you call:

<enterprise-beans>

<session>
<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-identity>
<use-caller-identity/>
</security-identity>

Adding Functionality to Your Beans 267

</session>

</enterprise-beans>

In comparison, the following code ignores the client’s credentials and propa-
gates the role admins to all other beans you call:

<enterprise-beans>

<session>
<ejb-name>EmployeeManagement</ejb-name>
<home>examples.EmployeeManagementHome</home>

<security-identity>
<run-as>
<role-name>admins</role-name>
</run-as>
</security-identity>

</session>
<assembly-descriptor>

<security-role>
<description>
This role is for personnel authorized
to perform employee administration.
</description>

<role-name>admins</role-name>

</security-role>

</assembly-descriptor>
</enterprise-beans>

Your EJB container is responsible for intercepting all method calls and ensur-
ing that your bean is running in the propagation settings you specify. It does
this by generating code that executes at the point of interception (inside the
EJB objects and EJB home objects).

Since message-driven beans receive JMS messages rather than RMI-110P calls, they
do not receive any credentials when they are called. It is therefore illegal for
message-driven beans to perform any programmatic or declarative security. As far as
propagation, it is also illegal for message-driven beans to propagate the nonexistent
client’s credentials. A message-driven bean can, however, run as a specified identity
when calling other beans.

268 THE TRIAD OF BEANS

Security Context Propagation Portability

Unfortunately, the EJB specification does not specify how containers should
propagate security contexts behind the scenes. What this means to you is that
any two EJB containers are likely to be incompatible in how they deal with
security. If you call a method from container A into container B, container B
will not understand how to receive the security context sent by container A. As
the RMI-IIOP interoperability is enhanced, we may see better security context
propagation, but that is not likely to emerge until well into the future.

The good news: Most organizations are having enough challenges with a sin-
gle EJB server! By the time most organizations need security context propaga-
tion between different vendors’ E]JB servers, we should have it.

Understanding Handles

Our final topic in this chapter is the subject of handles. Many EJB applications
require that clients are able to disconnect from beans and reconnect later to
resume using that bean. For example, if you have a shopping cart that you'd
like to save for a later time, and a stateful session bean manifests that shopping
cart, you'd want your shopping cart state maintained when you reconnect later.

EJB provides for this need with EJB object handles. An E]JB object handle is a
long-lived proxy for an EJB object. If for some reason you disconnect from the
EJB container/server, you can use the EJB object handle to reconnect to your
EJB object, so that you don’t lose your conversational state with that bean.
An EJB object handle is an essentially persistent reference to an EJB object. The
following code demonstrates using EJB object handles:

// First, get the EJB object handle from the EJB object.
javax.ejb.Handle myHandle = myEJBObject.getHandle() ;

// Next, serialize myHandle, and then save it in
// permanent storage.

ObjectOutputStream stream = ...;
stream.writeObject (myHandle) ;

// time passes...

// When we want to use the EJB object again,
// deserialize the EJB object handle
ObjectInputStream stream = . ;

Handle myHandle = (Handle) stream.readObject() ;

// Convert the EJB object handle into an EJB object

Adding Functionality to Your Beans 269

MyRemoteInterface myEJBObject = (MyRemoteInterface)
javax.rmi.PortableRemoteObject.narrow (
myHandle.getEJBObject (), MyRemoteInterface.class);

// Resume calling methods again
myEJBObject.callMethod() ;

The EJB specification does not require that handles have the ability to be saved
in one environment and then restored in a different environment. This means
handles are not guaranteed to be portable across EJB containers, nor across
machines.

Home Handles

A variant on E]JB object handles are the EJB home handles. These are simply
persistent references to home objects, rather than persistent references to EJB
objects. The following code shows how to use home handles.

// First, get the EJB home handle from the home object.
javax.ejb.HomeHandle homeHandle = myHomeObject.getHomeHandle() ;

// Next, serialize the home handle, and then save it in
// permanent storage.

ObjectOutputStream stream = ...;

stream.writeObject (homeHandle) ;

// time passes...

// When we want to use the home object again,
// deserialize the home handle
ObjectInputStream stream = ...;
javax.ejb.HomeHandle homeHandle =
(HomeHandle) stream.readObject () ;

// Convert the home object handle into a home object
MyHomeInterface myHomeObject = (MyHomeInterface)
javax.rmi.PortableRemoteObject.narrow (
homeHandle.getHomeObject (), MyHomeInterface.class);

// Resume using the home object
myHomeObject.create () ;

Home handles may be useful because you can acquire a reference to a home
object, persist it, and then use it again later without knowledge of the home
object’s JNDI location. But in our opinion, home handles are not going to ben-
efit most applications a tremendous amount. We have never seen any organi-
zation make use of them (email us and be the first!).

270 THE TRIAD OF BEANS

Summary

In this chapter, we learned a great deal about how to make our beans more
robust. We learned how to call beans from other beans, how to use resource
factories, how to access environment properties, how to use E]JB security, and
how to use handles. Most nontrivial EJB deployment will make use of some of
these concepts.

This completes Part 2. You've now covered the fundamentals, and should have
a strong foundation for learning about advanced concepts. Let’s now move on
to Part 3, which begins with transactions.

272 ADVANCED ENTERPRISE JAVABEANS CONCEPTS

Enterprise JavaBeans development. In Part Three, we raise the bar by moving

If you've read to this point, you should be quite familiar with the basics of
on to more advanced concepts. These include the following:

Transactions. Chapter 10 shows you how to harness transactions to make
your EJB deployments reliable. We'll discuss transactions at a conceptual
level and how to apply them to EJB. We’ll also learn about the Java Trans-
action API (JTA).

BMP and CMP relationships. Chapter 11 covers how to build relationships
between entity beans, both BMP and CMP. This is an essential EJB 2.0 topic
for anyone performing persistent operations with entity beans.

Persistence Best Practices. In Chapter 12, you’ll learn about some of the criti-
cal tradeoffs when building a persistence layer—how to choose between
session beans and entity beans, how to choose between BMP and CMP—
and survey a collection of persistence best practices that we’ve assembled
from our knowledge and experience.

EJB Design Strategies. Chapter 13 is one of the most important chapters in
this book. You'll learn about best practices when designing an EJB system.
These are not low-level design patterns (those are covered in the compan-
ion book, EJB Design Patterns by Floyd Marinescu). We’ll discuss tradeoffs
you can make when designing an EJB systems such as how to choose
between local interfaces and remote interfaces, how to choose between
stateful and stateless systems, and much more.

Clustering. Chapter 14 shows you how EJBs are clustered in large-scale sys-
tems. You'll learn how clustering works behind the scenes, and a few
strategies for how containers might achieve clustering. This is a critical
topic for anyone building a system that involves several machines working
together.

EJB project management. Chapter 15 shows you how to get your project off
on the right foot. This includes how to choose whether EJB is right for you,
how to build a first-pass of your system, and how to divide your develop-
ment team.

How to choose an EJB server. In Chapter 16, we'll describe our methodology
for how an organization can compare and contrast different vendors’ offer-
ings. We'll also list our criteria for what we would want in an EJB server.

Building a real-world EJB-J2EE system. Chapter 17 shows how each of the
EJB components can work together to solve a business problem, as well as
how EJB and J2EE can be integrated, as through Java Servlets and
JavaServer Pages (JSPs).

ADVANCED ENTERPRISE JAVABEANS CONCEPTS 273

These are extremely interesting middleware topics; indeed, many books could
be written on each subject alone. To understand these concepts, we highly rec-
ommend you read Part One and Part Two first. If, however, you're already
well-versed in EJB, please join us to explore these advanced issues.

Transactions

any middleware services are needed for secure, scalable, and reliable
server-side development. This includes resource pooling services, security
services, remotability services, persistence services, and more.

A key service required for robust server-side development is transactions.
Transactions, when used properly, can make your mission-critical opera-
tions run predictably in an enterprise environment. Transactions are an
advanced programming paradigm that allows you to write robust code.
Transactions are also very useful constructs to use when performing persis-
tent operations like updates to a database.

In the past, transactions have been difficult to use because developers
needed to code directly to a transaction API. With EJB, you can gain the
benefits of transactions without performing any transaction programming.

In this chapter, we’ll see some of the problems that transactions solve. We’ll
also see how transactions work and show how they’re used in EJB. Because
transactions are at the very core of EJB and are somewhat difficult to under-
stand, we’ll provide extensive background on the subject. To explain trans-
actions properly, we’ll occasionally get a bit theoretical. If the theory
presented in th