
Mastering Enterprise
JavaBeans™

Second Edition

Ed Roman

Ed Roman

Ed Roman
Thanks for downloading this file! This is a non-printable Adobe Acrobat PDF file and represents the complete Mastering EJB 2nd edition book.

So why did we make the PDF non-printable? For a few reasons:

1) The intention of this PDF file is to give you free access to preview the book before buying it.
2) Any book that you printed wouldn't look nice. It would be ugly, unbound, and would lack a cover.
3) It costs more money in paper and toner to print the book than to buy it!

Some people have told me that it's a bad idea to distribute this PDF, and that I will lose book sales as a result. I think they're wrong! I think that offering the book online will show people how great the book really is, and then they'll want to own it for themselves. So if you like this book, you can buy it right now on Amazon.com. Click here:

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405

Also, if you're just starting to learn about EJB, you may want to check out http://www.TheServerSide.com, which is a great web site to learn about the latest J2EE news.

You also may want to check out The Middleware Company (http://www.middleware-company.com), which offers EJB training courses to take your knowledge to the next level. Click on the link above to find out more.

Thanks again, and enjoy.
-Ed Roman

http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/00
http://www.middleware-company.com
http://www.amazon.com/exec/obidos/ASIN/0471417114/ref%3Dase%5Ftheserversidecom/002-9677343-9350405
http://www.TheServerSide.com
http://www.middleware-company.com

John W Atkins

John W Atkins

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Ed Roman
Scott Ambler

Tyler Jewell

Mastering Enterprise
JavaBeans™

Second Edition

Publisher: Robert Ipsen
Editor: Robert M. Elliott
Developmental Editor: Emilie Herman
Managing Editor: John Atkins
Associate New Media Editor: Brian Snapp
Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should con-
tact the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by The Middleware Company. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: permreq@wiley.com.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-41711-4

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To my wonderful wife, Younhi.

—Ed Roman

Acknowledgments xix

Preface xxi

Introduction xxv

About the Author xxxi

Part One Overview 1

Chapter 1 Overview 3
The Motivation for EJB 4

Divide and Conquer to the Extreme 5

Component Architectures 12

Introducing Enterprise JavaBeans 13
Why Java? 14
EJB as a Business Solution 14

The EJB Ecosystem 16
The Bean Provider 17
The Application Assembler 17
The EJB Deployer 18
The System Administrator 19
The Container and Server Provider 19
The Tool Vendors 20
Summary of Roles 20

The Java 2 Platform, Enterprise Edition (J2EE) 22
The J2EE Technologies 23

Summary 26

Chapter 2 EJB Fundamentals 29
Enterprise Beans 29

Types of Beans 30

Distributed Objects: The Foundation for EJB 32

Distributed Objects and Middleware 34
Explicit Middleware 34
Implicit Middleware 35

What Constitutes an Enterprise Bean? 37
The Enterprise Bean Class 37

C O N T E N TS

vii

The EJB Object 38
The Home Object 44
The Local Interfaces 46
Deployment Descriptors 50
Vendor-Specific Files 51
Ejb-Jar File 51
Summary of Terms 52

Summary 54

Chapter 3 Writing Your First Bean 55

How to Develop an EJB Component 55

The Remote Interface 57

The Local Interface 58

The Home Interface 58

The Local Home Interface 59

The Bean Class 62

The Deployment Descriptor 66

The Vendor-Specific Files 67

The Ejb-jar File 67

Deploying the Bean 68

The Optional EJB Client JAR file 68

Understanding How to Call Beans 69
Looking up a Home Object 70

Running the System 74
The Server-Side Output 75
The Client-Side Output 75

Implementing Component Interfaces 75
A Solution 76

Summary 77

Part Two The Triad of Beans 79

Chapter 4 Introduction to Session Beans 81

Session Bean Lifetime 81

Session Bean Subtypes 82
Stateful Session Beans 82
Stateless Session Beans 83

Special Characteristics of Stateful Session Beans 84
Achieving the Effect of Pooling with Stateful Beans 85
The Rules Governing Conversational State 86
Activation and Passivation Callbacks 87

C O N T E N TSviii

Method Implementation Summary 89
A Simple Stateful Session Bean 89
Life Cycle Diagrams for Session Beans 100

Summary 103

Chapter 5 Introduction to Entity Beans 105

Persistence Concepts 105
Java Object Serialization 106
Object-Relational Mapping 106
Object Databases 109

What Is an Entity Bean? 109
About the Files that Make up an Entity Bean 112

Features of Entity Beans 112
Entity Beans Survive Failures 112
Entity Bean Instances Are a View into a Database 113
Several Entity Bean Instances May Represent the Same

Underlying Data 114
Entity Bean Instances Can Be Pooled 116
There Are Two Ways to Persist Entity Beans 118
Creation and Removal of Entity Beans 119
Entity Beans Can Be Found 121
You Can Modify Entity Bean Data without Using EJB 123

Entity Contexts 124
getEJBLocalObject() / getEJBObject() 124
getPrimaryKey() 125

Summary 126

Chapter 6 Writing Bean-Managed Persistent Entity Beans 127

Entity Bean Coding Basics 127
Finding Existing Entity Beans: ejbFind() 129

Bean-Managed Persistence Example: A Bank Account 136
Account.java 137
AccountLocal.java 138
AccountHome.java 138
AccountLocalHome.java 138
AccountPK.java 139
AccountBean.java 143
AccountException.java 156
Client.java 156
The Deployment Descriptor 156
The Container-Specific Deployment Descriptor 161
Setting up the Database 161

Running the Client Program 161
Server-Side Output 162
Client-Side Output 163

CONTENTS ix

Putting It All Together: Walking through a BMP Entity
Bean’s Life Cycle 163

Summary 166

Chapter 7 Writing Container-Managed Persistent Entity Beans 167

Features of CMP Entity Beans 167
CMP Entity Beans Are Subclassed 167
CMP Entity Beans Have No Declared Fields 168
CMP Get/Set Methods Are Defined in the Subclass 170
CMP Entity Beans Have an Abstract Persistence Schema 172
CMP Entity Beans Have a Query Language 173
CMP Entity Beans Can Have ejbSelect() Methods 175

Implementation Guidelines for Container-Managed
Persistence 176

Container-Managed Persistence Example: A Product Line 180
Product.java 181
ProductLocal.java 182
ProductHome.java 182
ProductLocalHome.java 184
ProductPK.java 184
ProductBean.java 187
The Deployment Descriptor 191
The Container-Specific Deployment Descriptor 195
Client.java 196

Running the Client Program 196

The Life Cycle of a CMP Entity Bean 200

Summary 200

Chapter 8 Introduction to Message-Driven Beans 201

Motivation to Use Message-Driven Beans 201

The Java Message Service (JMS) 203
Messaging Domains 204
The JMS API 206

Integrating JMS with EJB 211
What Is a Message-Driven Bean? 212

Developing Message-Driven Beans 214
The Semantics 214
A Simple Example 215

Advanced Concepts 223

Message-Driven Bean Gotchas 225
Message Ordering 225
Missed ejbRemove() Calls 226
Poison Messages 228

C O N T E N TSx

How to Return Results Back to Message Producers 230
The Future: Asynchronous Method Invocations 235

Summary 236

Chapter 9 Adding Functionality to Your Beans 237

Calling Beans from Other Beans 237
Default JNDI Lookups 238
Understanding EJB References 239

Resource Factories 241

Environment Properties 244

Understanding EJB Security 245
Security Step 1: Authentication 246
Security Step 2: Authorization 257
Security Propagation 266

Understanding Handles 268
Home Handles 269

Summary 270

Part Three Advanced Enterprise JavaBeans Concepts 271

Chapter 10 Transactions 275

Motivation for Transactions 276
Atomic Operations 276
Network or Machine Failure 277
Multiple Users Sharing Data 278

Benefits of Transactions 279
The ACID Properties 280

Transactional Models 282
Flat Transactions 282
Nested Transactions 284
Other Transactional Models 286

Enlisting in Transactions with Enterprise JavaBeans 286
Underlying Transaction System Abstraction 287
Declarative, Programmatic, and Client-Initiated Transactions 287
Choosing a Transaction Style 290

Container-Managed Transactions 292
EJB Transaction Attribute Values 294

Programmatic Transactions in EJB 300
CORBA’s Object Transaction Service (OTS) 300
The Java Transaction Service (JTS) 301
The Java Transaction API (JTA) 301
Declarative versus Programmatic Transactions Example 304

CONTENTS xi

Transactions from Client Code 306

Transactional Isolation 307
The Need for Concurrency Control 308
Isolation and EJB 309
The Dirty Read Problem 311
The Unrepeatable Read Problem 312
The Phantom Problem 313
Transaction Isolation Summary 314
Isolation and EJB 315
Pessimistic and Optimistic Concurrency Control 316

Distributed Transactions 316
Durability and the Two-Phase Commit Protocol 317
The Transactional Communications Protocol and Transaction

Contexts 318

Designing Transactional Conversations in EJB 320

Summary 323

Chapter 11 BMP and CMP Relationships 325

The CMP and BMP Difference 326

Cardinality 326
1:1 Relationships 328
1:N Relationships 332
M:N Relationships 336

Directionality 344
Implementing Directionality with BMP 344
Implementing Directionality with CMP 345
Directionality May Not Map to Database Schemas 347
Bidirectional or Unidirectional? 349

Lazy Loading 349

Aggregation vs. Composition and Cascading Deletes 350

Relationships and EJB-QL 352

Recursive Relationships 353

Circular Relationships 354

Referential Integrity 355
Relationships, Referential Integrity, and Client Code 357

Summary 360

Chapter 12 Persistence Best Practices 361

When to Use Entity Beans 362
Control 362
Parameter Passing Analogy 362
Procedural Versus Object-Oriented 363
Caching 363

C O N T E N TSxii

Enforcement of Schema Independence 364
Ease of Use 364
Migration 364
Rapid Application Development 365

Choosing between CMP and BMP 365
Code Reduction and Rapid Application Development 365
Performance 366
Bugs 366
Control 367
Application Server and Database Independence 367
Relationships 368
Learning Curve and Cost 368

Choosing the Right Granularity for Entity Beans 368

Persistence Tips and Tricks 370
Beware the Object-Relational Impedance Mismatch 370
Hard-Coded Versus Soft-Coded SQL 370
When to Use Stored Procedures 371
Normalizing and Denormalizing 373
Use Your EJB Object Model to Drive Your Data Model 375
Follow a Good Data Design Process 375
Use Surrogate Keys 376
Understand the Impacts of Database Updates 377
Versioning EJB Components 377
Living with a Legacy Database Design 379
Handling Large Result Sets 387

Summary 390

Chapter 13 EJB Best Practices and Performance Optimizations 391

When to Use Stateful versus Stateless 391

When to Use Messaging versus RMI-IIOP 393

How to Guarantee a Response Time with Capacity Planning 397

How to Achieve Singletons with EJB 398

Wrap Entity Beans with Session Beans 398

Performance-Tuning Entity Beans 400

Choosing between Local Interfaces and Remote Interfaces 401

How to Debug EJB Issues 402

Partitioning Your Resources 404

Assembling Components 405

Developing Components to Be Reusable 406

When to Use XML in an EJB System 407

Legacy Integration with EJB 408

Summary 410

CONTENTS xiii

Chapter 14 Clustering 411

Overview of Large-Scale Systems 411
What Is a Large-Scale System? 412
Basic Terminology 413
Partitioning Your Clusters 415

Instrumenting Clustered EJBs 416
How EJBs Can Be Clustered 419
The Concept of Idempotence 420
Stateless Session Bean Clustering 421
Stateful Session Bean Clustering 423
Entity Bean Clustering 425
Message-Driven Bean Clustering 429

Other EJB Clustering Issues 430
First Contact 430
Initial Access Logic 430

Summary 431

Chapter 15 Starting Your EJB Project on the Right Foot 433

Get the Business Requirements Down 433

Decide Whether J2EE is Appropriate 434

Decide Whether EJB Is Appropriate 434

Staff Your Project 438

Design Your Complete Object Model 439

Implement a Single Vertical Slice 439

Choose an Application Server 442

Divide Your Team 443

Invest in Tools 445

Invest in a Standard Build Process 446

Next Steps 446

Summary 447

Chapter 16 Choosing an EJB Server 449

J2EE 1.3 Brand 450

Pluggable JRE 450

Conversion Tools 450

Complex Mappings 451

Third-Party JDBC Driver Support 451

Lazy-Loading 451

Deferred Database Writes 451

C O N T E N TSxiv

Pluggable Persistence Providers 451

In-Memory Data Cache 452

Integrated Tier Support 452

Scalability 452

High Availability 453

Security 453

IDE Integration 454

UML Editor Integration 454

Intelligent Load Balancing 455

Stateless Transparent Fail-over 455

Clustering 455

Java Management Extension (JMX) 456

Administrative Support 456

Hot Deployment 456

Instance Pooling 456

Automatic EJB Generation 457

Clean Shutdown 457

Real-Time Deployment 457

Distributed Transactions 458

Superior Messaging Architecture 458

Provided EJB Components 458

J2EE Connector Architecture (JCA) 459

Web Services 459

Workflow 459

Open Source 460

Specialized Services 460

Nontechnical Criteria 461

Summary 462

Chapter 17 EJB-J2EE Integration: Building a Complete Application 463

The Business Problem 463

A Preview of the Final Web Site 464

Scoping the Technical Requirements 468
Object Model for the Business Logic Tier 469
Object Model for the Presentation Tier 475

Example Code 482

Summary 488

CONTENTS xv

Part Four Appendixes 489

Appendix A RMI-IIOP and JNDI Tutorial 491

Java RMI-IIOP 492
Remote Method Invocations 492
The Remote Interface 493
The Remote Object Implementation 496
Stubs and Skeletons 497

Object Serialization and Parameter Passing 499
Passing By-Value 500
Object Serialization 500
What Should You Make Transient? 502
Object Serialization and RMI-IIOP 503

The Java Naming and Directory Interface (JNDI) 505
Naming and Directory Services 506
Problems with Naming and Directories 507
Enter JNDI 508
Benefits of JNDI 509
JNDI Architecture 509
JNDI Concepts 511
Programming with JNDI 515

Integrating RMI-IIOP and JNDI 517
Binding an RMI-IIOP Server to JNDI 518
Looking up an RMI-IIOP Server with JNDI 519

Summary 520

Appendix B CORBA Interoperability 523

What Is CORBA? 523
CORBA as the Basis for EJB 524

Why Should I Care about CORBA? 524
Drawbacks of CORBA 525

Understanding How CORBA Works 525
Object Request Brokers 525

OMG’s Interface Definition Language 526
OMG IDL Maps to Concrete Languages 528
CORBA Static Invocations 529

CORBA’s Many Services 531

The Need for RMI-IIOP 531
The Need for RMI-CORBA Interoperability 532
Combining RMI with CORBA 533

Steps to Take for RMI and CORBA to Work Together:
An Overview 538

RMI-IIOP Client with a CORBA Object Implementation 538

C O N T E N TSxvi

CORBA Client with an RMI-IIOP Object Implementation 539
Bootstrapping with RMI-IIOP and CORBA 540

The Big Picture: CORBA and EJB Together 540
Sample Code 541

Summary 543

Appendix C Deployment Descriptor Reference 545

How to Read a DTD 545

The Header and Root Element 546

Defining Session Beans 547
�session� 547

Defining Entity Beans 549
�entity� 549
�cmp-field� 551
�query� 552
�query-method� 552
�method-params� 553

Defining Message-Driven Beans 553
�message-driven� 553
�message-driven-destination� 555

Defining Environment Properties 555
�env-entry� 556

Defining EJB References 556
�ejb-ref� 557
�ejb-local-ref� 558

Defining Security 558
�security-role-ref> 558
�security-identity> 559
�run-as> 559

Defining Resource Factories 560
�resource-ref> 560
<resource-env-ref> 561

Defining Relationships 561
�relationships> 562
�ejb-relation> 562
�ejb-relationship-role> 563
�relationship-role-source> 563
�cmr-field> 564

Defining the Assembly Descriptor 564
�assembly-descriptor> 565
�security-role> 566
�method-permission> 566
�container-transaction> 567

CONTENTS xvii

<exclude-list> 567
�method> 568
�method-params> 568

Appendix D The EJB Query Language (EJB-QL) 569

Overview 569
A Simple Example 570
The Power of Relationships 571

EJB-QL Syntax 572
The FROM Clause 572
The WHERE Clause 574
The SELECT Clause 578
Truth Tables 581

Final Note 583

Summary 583

Appendix E EJB Quick Reference Guide 585

Session Bean Diagrams 586
Stateless Session Bean Diagrams 587
Stateful Session Bean Diagrams 589

Entity Bean Diagrams 592

Message-Driven Bean Diagrams 597

EJB API Reference 598
EJBContext 599
EJBHome 600
EJBLocalHome 601
EJBLocalObject 601
EJBMetaData 602
EJBObject 602
EnterpriseBean 603
EntityBean 604
EntityContext 610
Handle 610
HomeHandle 611
MessageDrivenBean 611
MessageDrivenContext 611
SessionBean 612
SessionContext 614
SessionSynchronization 614

Exception Reference 616

Transaction Reference 617

Index 621

C O N T E N TSxviii

This book has been a project spanning several years. Many have commented
that the first edition was one of the best technical books they ever read. What’s
made this book a reality are the many people that aided in its development.

We took a big risk in developing the second edition of this book and decided
to build the book on the Web. We received feedback from around the world
when writing this book, and thus we have an evolving list of contributors and
reviewers. The list is too large to mention here but is available at www.The
ServerSide.com.

As a special thanks, we’d like to acknowledge the great folks over at John
Wiley & Sons. They have been absolutely outstanding throughout this book’s
evolution. In particular, we’d like to thank Bob Elliott, Emilie Herman, and
Bob Ipsen for their incredible efforts.

A C K N O W L E D G E M E N TS

xix

xxi

As I write these words, I can’t help but think back to an inflection point that
occurred in my life almost three years ago. I remember sitting in my cubicle
at Trilogy Software, an e-commerce company in Austin, Texas, lost in deep
middleware thoughts. My challenge was to devise an interesting load-bal-
ancing strategy for our in-house application server, which we called the back-
bone.

The backbone was a superb software system. It was cleanly written, easy to
use, and boasted some very high-end features—features such as distributed
object support, object-relational mapping, and extensible domain object mod-
eling. It had almost anything you needed for Internet development. It was a
worthy investment for Trilogy.

I was part of a task force to add enterprise features to this backbone, such as
transaction control, security, and load-balancing. Our goal was to improve the
backbone into a product worthy of large-scale deployment.

So that day, after hours of racking my brain, I finally finished crafting what I
believed to be a highly creative and optimal load-balancing strategy. Looking
for feedback, I walked to my friend Court Demas’ office. Court is one of those
developers who can really pick apart almost any design and expose its flaws—
a unique quality that only a few developers I know have.

Walking into Court’s office, I was expecting a typical developer-level conver-
sation, and that’s what I received. We turned the design inside and out, mark-
ing up my freshly printed hard copy with scribbles and other unintelligible
comments that only we could understand. Finally, satisfied that we had
reached a conclusion, I thanked Court and walked toward the door, prepared
to implement the changes we had agreed upon.

But I didn’t make it that far. Court said something to me that would change my
way of thinking. His comment baffled and confused me at first, but would
eventually result in a complete paradigm shift and career move for me. What
did Court say? Nothing profound, but simply, “You know Ed, this stuff is
really what Enterprise JavaBeans is for.”

P R E FA C E

At first, I had no idea what he was talking about. Enterprise JavaBeans?
What’s that? Something like regular JavaBeans? Eventually, Court managed to
explain to me what EJB was. And once he explained it, I knew that Trilogy had
to do a 180-degree turn or lose its competitive advantage.

You see, EJB is a specification for a server-side component marketplace. EJB
enables you to purchase off-the-shelf components from one vendor, combine
them with components from another vendor, and run those components in an
application server written by yet a third vendor. This means companies can
collaborate on the server side. EJB enables you to buy, rather than build, ele-
ments of server-side applications.

The EJB value proposition had strong ramifications for Trilogy. EJB repre-
sented a way for Trilogy to get out of the middleware business and concentrate
on its e-commerce strategic efforts. This meant discarding the backbone com-
pletely in favor of a third-party vendor’s architecture. Not only would this
reduce Trilogy’s maintenance costs, but it would also solidify its software
suite, since their middleware would now be written by professionals who had
been in the business for 20 years. This proposition would eventually lead to
Trilogy forming an entirely new business unit.

I decided to start researching EJB and pushing for Trilogy to adopt it. I went to
the Sun Microsystems Web page, downloaded the EJB 1.0 specification in PDF
form, and printed it out. Back then, the specification was about a third of the
size it is today.

Understanding the specification turned out to be much more challenging than
downloading it. The specification was written for system-level vendors and
was not meant to be a tutorial for end developers. The section on entity beans,
for example, took me a good two months to really grasp, as the notion of per-
sistent components was new to me.

This arduous struggle with understanding the EJB specification is what even-
tually led me to write this book for you. This book represents everything I
wish I had when I first started using EJB in 1998. So what is this book about?
Well, it may be more accurate to tell you what this book is not. This is not EJB
propaganda. It is not a book on how to write EJB code on any single applica-
tion server. This is not a nice book that paints a perfect picture of the EJB
world. Nor is it an advertisement for any particular EJB product or a campaign
to rid the world of Microsoft.

The goal of this book is to help you. I want you to be able to craft solid, secure,
and scalable server-side deployments. As you read this book, you’ll learn how
to design, implement, and deploy EJB solutions. This book covers both the
vision and the reality of EJB from an independent developer’s perspective. I
hope it will prepare you for the challenges you will face.

P R E FA C Exxii

I wish the grass was greener and that I could write a book on how clean and
portable EJB is; but the truth is that this technology is not perfect, and you
should know exactly what the imperfections are. I will expose you to the grue-
some and incompatible parts of EJB and also explain how the industry is solv-
ing these problems.

Indeed, the newer specifications (especially EJB 2.0) improve portability and
reduce incompatibilities tremendously. I hope that by the time you’re done
reading this book, you are convinced that the vision of EJB is solid, and the
future is very bright.

My hope is that I can save you time and energy, and aid you in designing well-
crafted server-side deployments. But this is merely the beginning. The EJB
marketplace is just getting started, and there’s a whole lot more work ahead. I
encourage you to take an active role in the middleware industry and to work
with me taking EJB to the next level. Feel free to write your experiences, tips,
and design strategies, and post them on TheServerSide.com to share with
others. Our goal is to increase our knowledge of EJB as a community, and
together, we can do it.

Ed Roman

PREFACE xxiii

This book is a tutorial on Enterprise JavaBeans (EJB). It’s about EJB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-driven software, and more. Combining them
is a magnificent stride forward for the Java community, but with that comes a
myriad of concepts to learn and understand. This book will teach you the con-
cepts and techniques for authoring reusable components in Java, and it will
do so from the ground up. You need only to understand Java to understand
this book.

While you’re reading this book, you may want to download the EJB specifica-
tion, available on http://java.sun.com.

Goals for This Edition

The first edition of this book came out in 1999. We had to make some tough
calls when writing the second edition, and we are confident you’ll like them.
Here are our goals:

■■ To update the book for EJB 2.0. EJB 2.0 has many new useful features that
we will detail throughout the book.

■■ To be broad and also deep. We do not regurgitate the complete EJB speci-
fication in this book, nor do we cover every last detail of EJB in this book.
Rather, we cover the most important parts of EJB, leaving room to discuss
advanced issues. For a complete reference while you are coding, search
through the EJB specification using Adobe Acrobat. Readers who are look-
ing for a well-written book that is interactive, fun to read, and covers the
basics through advanced subjects have come to the right place.

I N T R O D U CT I O N

xxv

■■ To be concise. Your time as a reader is extremely valuable, and you’re
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually wanted
to reduce the size of this book as much as possible. So we’ve tightened
things up and eliminated redundant examples. This way, you can get to
actually program with EJB, rather than reading a book for months on end.
The irony of this story is that it was harder for us to write a shorter book
than a long book!

■■ To be a book for developers. This book is not intended for high-level
businessmen. This is a technical book for a technical audience.

■■ To write a book the right way. This book’s primary author, Ed Roman,
has taken his skills in training and knowledge transfer and applied them
to this book. Thus, we’ve infused this book with the following attributes:

■■ A conversational style. When you read this book, sometimes you’ll
feel like you’re almost having a discussion with us. We think this is far
superior to spending eons trying to re-read a formal writing style over
and over again.

■■ Use of diagrams and bulleted lists. The adage a picture is worth a
thousand words applies here. These tactics are great for breaking up
blocks of text. They keep things varied and make the book a much
faster read.

■■ A consistent voice. Even though several coauthors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed knowl-
edge from several expert coauthors, while maintaining a uniform look
and feel throughout the book.

■■ To be an introductory book, but also to get quickly into advanced top-
ics. We figured that the average developer has had enough of books that
merely skim the surface. We wanted to write a book that pushed beyond
the basics. Our approach when writing this book was to always err on the
side of being advanced. To achieve this, we did an immense amount of
research. We participated in the mailing lists, performed many real-world
projects, attended conferences and seminars, and networked with the top
experts throughout the world.

■■ To be vendor-neutral. All vendor-specific deployment steps are external-
ized to the book’s accompanying source code. This makes this book useful
for any EJB server.

■■ To add useful EJB information garnered from our instructor-led training
classes. Having taught EJB/J2EE for years, we have learned significantly

I N T R O D U CT I O Nxxvi

from our students. We have interlaced this book with many of our own
students’ questions and answers in relevant sections.

■■ To take all the source code and make it available online. By making the
code available on the Web, you know it’s the latest version. This will
ensure the code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

Part 1 is a whirlwind introduction to EJB programming. Part 1 serves as a
great overview for people in a hurry. While Part 1 is essential information
to EJB newcomers, veterans will also find nuggets of useful knowledge as
well. The following chapters are covered:

Chapter 1 is a tour of enterprise computing. We’ll talk about components,
distributed frameworks, and containers. We’ll also introduce EJB and J2EE.

Chapter 2 moves onto the fundamentals of building an EJB system, including
the tricky concept of request interception. We’ll also look at the files that
makeup an enterprise bean.

Chapter 3 shows you how to put together a simple enterprise bean. We’ll also
learn how JNDI is used in EJB, and see how to call that bean from a client.

Part 2 devotes exclusive attention to programming with EJB. We’ll see how to
use the triad of beans: entity beans, session beans, and message-driven
beans. We’ll cover the basics of writing each type of bean, including an
example as well as detailed life cycle diagrams.

Chapter 4 covers session beans. We’ll look at the difference between stateful
and stateless session beans, how to code a session bean, and what’s going
on behind-the-scenes with session beans.

Chapter 5 is a conceptual introduction to entity beans. We’ll look at persis-
tence concepts, what makes entity beans unique, and the files involved
when building entity beans.

Chapter 6 covers bean-managed persistent (BMP) entity beans. We’ll see how
to program a BMP entity bean, and also look at what’s happening behind
the scenes with BMP.

Chapter 7 covers container-managed persistent (CMP) entity beans. We’ll
focus in on the exciting new advances that EJB 2.0 has introduced, we’ll
learn how to program a CMP entity bean, and also look at what’s happen-
ing behind the scenes with CMP.

INTRODUCTION xxvii

Chapter 8 covers message-driven beans. We’ll first review the Java Message
Service (JMS), which is a pre-requisite for learning message-driven beans.
We’ll then dive in and understand how to program with message-driven
beans.

Chapter 9 discusses the EJB environment, along with services provided by
the container. This includes security, environment properties, resource fac-
tories, references between beans, and handles.

Part 3 is the most exciting part of the book, and covers advanced EJB con-
cepts. The following chapters are included:

Chapter 10 tackles transactions. Transactions are a crucial topic for anyone
building an EJB deployment that involves state. We’ll discuss transactions
at a conceptual level, and how to apply them to EJB. We’ll also learn about
the Java Transaction API (JTA).

Chapter 11 covers relationships between entity beans. This is a critical con-
cept for anyone performing complex persistence. We’ll understand the
concepts of cardinality, directionality, referential integrity, and cascading
deletes. We’ll also see how to code relationships for both CMP and BMP
entity beans.

Chapter 12 covers persistence best practices. You’ll learn exciting concepts
such as how to choose between session beans and entity beans, how to
choose between BMP and CMP, and survey a collection of persistence best
practices that we’ve assembled from our knowledge and experience.

Chapter 13 covers EJB design strategies to help your projects succeed. You’ll
learn about interesting topics such as how to choose between local inter-
faces and remote interfaces, how to choose between stateful and stateless
systems, and how to choose between a 3-tier and 4-tier deployment.

Chapter 14 discusses clustering in large-scale EJB systems. You’ll learn about
how clustering works behind-the-scenes, and learn a few strategies for
how containers might achieve clustering. This is a critical topic for anyone
building a system that involves several machines working together.

Chapter 15 covers EJB project management. We’ll talk about how to get your
project started on the right foot. This includes how to choose whether EJB
is right for you, how to build a first-pass of your system, and how to
divide up your development team.

Chapter 16 covers how to choose an EJB server. We’ll describe our methodol-
ogy for how an organization can compare and contrast different vendors’
offerings. We’ll also list our set of criteria for what we would want in an
EJB server.

Chapter 17 shows how to build a real-world J2EE system using EJB compo-
nents. We’ll see how the EJB components should be used together in an

I N T R O D U CT I O Nxxviii

enterprise, as well as how to connect them with clients such as Java
Servlets and JavaServer Pages (JSPs). We’ll also demonstrate how to design
an EJB object model using UML.

The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not need to do so.

Appendix A teaches you Java Remote Method Invocation over the Internet
Inter-ORB Protocol (RMI-IIOP) and the Java Naming and Directory Inter-
face (JNDI). These technologies are pre-requisites for using EJB. If you’re
just starting down the EJB road, you must read this appendix first.

Appendix B discusses how to integrate EJB and CORBA systems together.
We’ll learn about how EJB and CORBA are interoperable through RMI-
IIOP, and see sample code for calling an EJB component from a CORBA
client.

Appendix C is a deployment descriptor reference guide. This will be useful
for you later, when you’re writing a deployment descriptor and need a
guide.

Appendix D covers the new EJB query language (EJB-QL) in detail.

Appendix E is an API and diagram reference guide. This is useful when you
need to look up the purpose of a method or class in EJB.

Throughout the book, this icon will signal a tip, note, or other helpful advice n EJB
programming.

In a similar paradigm to our training courses, the content of this book is very interac-
tive. We have taken our knowledge of adult learning, and scattered boxes like this
throughout the book. Each box asks you a question to get you thinking. The answers
to the questions are posted on the book’s accompanying Web site. What do you
think the benefits are of this paradigm?

Illustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know
UML, pick up a copy of The Unified Modeling Language User Guide (Addison-
Wesley, ISBN 0201571684), which illustrates how to effectively use UML
in your everyday software. UML is a highly important achievement in
object-oriented methodology. It’s a common mechanism for engineers to

INTRODUCTION xxix

communicate and design, and it forces you to abstract your object model prior
to implementation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you’ll find

■■ All of the source code you see in this book. The code comes complete with
build scripts, ready to build and run. It should be portable to a variety of
application servers that are EJB 2.0- and J2EE 1.3-compliant.

■■ Updates to the source code examples.

■■ Links to EJB resources.

■■ Error corrections from the text.

The Web site is at www.wiley.com/compbooks/roman.

Feedback

When you begin your EJB programming, we’re sure you’ll have many experi-
ences to share with other readers as well. Feel free to email examples, case
studies, horror stories, or tips that you’ve found helpful in your experiences,
and we’ll post them on the Web site.

Send bug reports to bookbugs@middleware-company.com.

Send general communications to Ed Roman at:
edro@middleware-company.com.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans with Part 1, an introduction to EJB concepts and pro-
gramming.

I N T R O D U CT I O Nxxx

Ed Roman is one of the world’s leading authorities on high-end middleware
technologies. He has been heavily involved with Sun Microsystems’ enter-
prise Java solutions from their inception, and has designed, built, and de-
ployed a variety of enterprise applications, including architecting and
developing complete application server products. He devotes a significant
amount of time towards influencing and refining Sun’s enterprise specifica-
tions, contributes regularly to middleware interest mailing lists, and regularly
speaks at middleware-related conferences.

Ed is CEO of The Middleware Company (www.middleware-company.com), a
firm specializing in EJB, J2EE, and XML-based Web Services training and con-
sulting. The mission of The Middleware Company is to educate and aid in the
design, development, and deployment of middleware solutions. Are you or
your company making a purchase decision, performing EJB design work, inte-
grating a legacy system to EJB, performing e-commerce-related deployments,
or working on any other middleware endeavors? If you need some assistance,
The Middleware Company can be a valuable resource.

Ed also is CEO of TheServerSide.com, which is the de facto J2EE community
Web site. Every day, thousands of developers get together on TheServerSide.
com to share EJB design patterns, hear about the latest EJB news, ask and
answer EJB development questions, and read articles. After you’ve read this
book, visit TheServerSide.com to catch up on the latest EJB information.
TheServerSide.com is a completely free service and is intended to help the
community.

And last but not least, if you want to get involved in the middleware field, Ed
is always looking for great people who want to work on exciting projects using
the latest technologies. You can reach him at edro@middleware-company.com.

About the Coauthors

Tyler Jewell oversees BEA’s technology evangelism efforts, which are char-
tered to use print and speaking media to deepen developers’ respect for enter-
prise technologies and BEA products. Tyler is an experienced developer,

A B O U T T H E A U T H O R

xxxi

lecturer, and author. He has worked on more than 40 e-business development
projects, has delivered over 200 speeches, and has published nearly 6,000
pages of content worldwide.

Tyler is a co-author of Professional Java Server Programming—J2EE 1.3 (Wrox,
2001). He is a member of O’Reilly’s editorial advisory panel and maintains a
monthly J2EE column at www.onjava.com. He also is a technology adviser to
TheServerSide.com.

In his spare time, Tyler is an avid volleyball and poker enthusiast and a con-
noisseur of fine red wines. He can be reached at tyler@bea.com.

Scott W. Ambler is president and a senior consultant of Ronin International,
www.ronin-intl.com, a software services consulting firm that specializes in soft-
ware process mentoring, Agile Modeling (AM), and object/component-based
software architecture and development. He is also founder and thought leader
of the Agile Modeling (AM) methodology, www.agilemodeling.com.

Scott is the author of the books The Object Primer, 2nd Edition (2001), Building
Object Applications That Work (1997), Process Patterns (1998), and More Process
Patterns (1999), and co-author of The Elements of Java Style (2000), all published
by Cambridge University Press. He is author of the forthcoming Agile Model-
ing (Autumn 2001) from John Wiley & Sons. He is also co-editor with Larry
Constantine of the Unified Process series from R&D books (2000-2001). Scott is
a contributing editor with Software Development magazine (www.sdmagazine.
com), a contributor to IBM DeveloperWorks (www.ibm.com/developer), and a
columnist with Computing Canada.

Scott’s personal Web site, www.ambysoft.com, has a wide variety of white
papers, including the AmbySoft Inc. “Coding Standards for Java,” which are
available for free download. In his spare time, Scott studies T’ai Chi and the
Goju Ryu and Kobudo styles of karate. Scott has spoken at a wide variety of
international conferences including software development, UML world, object
expo, Java expo, and application development.

A B O U T T H E A U T H O Rxxxii

Overview

PA RTONE

In Part 1, we introduce the server-side development platform that is the Java 2
Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB) com-
ponent architecture is a vital piece. J2EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With J2EE, you can rapidly construct distributed, scalable, reliable,
and portable secure server-side deployments.

Chapter 1 begins by exploring the need for a server-side component architec-
ture such as EJB. You’ll see the rich needs of server-side computing, such as
scalability, high availability, resource management, and security. We’ll look
at each of the different parties that are involved in an EJB deployment.
We’ll also survey the J2EE server-side development platform.

Chapter 2 moves on to the Enterprise JavaBeans fundamentals. We’ll look at
the concept of request interception, which is crucial for understanding how
EJB works. We’ll also look at the different files that go into a bean and how
they work together.

Chapter 3 gets down and dirty with EJB programming. Here, we’ll write our
first simple bean. We’ll show how to code each of the files that compose
the bean, and we’ll also look at how to call that bean from clients.

O V E R V I E W2

C H A P T E R 1

3

Enterprise JavaBeans (EJB) is a server-side component architecture that simpli-
fies the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

If you are new to enterprise computing, these concepts will be clarified
shortly. EJB is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

■■ What plumbing do you need to build a robust distributed object
deployment?

■■ What is EJB, and what value does it add?

■■ Who are the players in the EJB ecosystem?

Let’s kick things off with a brainstorming session.

Overview

The Motivation for EJB

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

■■ A stock trading system

■■ A banking application

■■ A customer call center

■■ A procurement system

■■ An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page and
compare your list to ours. Don’t cheat!

O V E R V I E W4

Database

Client Client Client

Server Server

Figure 1.1 Standard multitier deployment.

In the past, most companies built their own middleware. For example, a finan-
cial services firm might build some of the middleware services above to help
them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide you with common mid-
dleware services, such as resource pooling, networking, and more. Applica-
tion servers allow you to focus on your application and not worry about the
middleware you need for a robust server-side deployment. You write the code
specific to your vertical industry and deploy that code into the runtime envi-
ronment of an application server. You’ve just solved your business problem by
dividing and conquering.

Divide and Conquer to the Extreme

We’ve just discussed how you can gain your middleware from an application
server, empowering you to focus on your business problem. But there’s even bet-
ter news: You may be able to buy a partial solution to the business problem itself.

To achieve this, you need to build your application out of components. A com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some
larger problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we’re order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules that may include:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 mem-
ory modules

Overview 5

O V E R V I E W6

Things to Consider When Building Large Business Systems

By now you should have a decent list of things you’d have to worry about when
building large business systems. Here’s a short list of the big things we came up
with. Don’t worry if you don’t understand all of them yet—you will.

■■ Remote method invocations. We need logic that connects a client and server via
a network connection. This includes dispatching method requests, brokering of
parameters, and more.

■■ Load balancing. Clients must be directed to the server with the lightest load. If a
server is overloaded, a different server should be chosen.

■■ Transparent fail-over. If a server crashes, or if the network crashes, can clients
be rerouted to other servers without interruption of service? If so, how fast
does fail-over happen? Seconds? Minutes? What is acceptable for your business
problem?

■■ Back-end integration. Code needs to be written to persist business data into
databases as well as integrate with legacy systems that may already exist.

■■ Transactions. What if two clients access the same row of the database simulta-
neously? Or what if the database crashes? Transactions protect you from these
issues.

■■ Clustering. What if the server contains state when it crashes? Is that state repli-
cated across all servers, so that clients can use a different server?

■■ Dynamic redeployment. How do you perform software upgrades while the site
is running? Do you need to take a machine down, or can you keep it running?

■■ Clean shutdown. If you need to shut down a server, can you do it in a smooth,
clean manner so that you don’t interrupt service to clients who are currently
using the server?

■■ Logging and auditing. If something goes wrong, is there a log that we can con-
sult to determine the cause of the problem? A log would help us debug the
problem so it doesn’t happen again.

■■ Systems Management. In the event of a catastrophic failure, who is monitoring
our system? We would like monitoring software that paged a system administra-
tor if a catastrophe occurred.

■■ Threading. Now that we have many clients connecting to a server, that server is
going to need the capability of processing multiple client requests simultane-
ously. This means the server must be coded to be multi-threaded.

■■ Message-oriented middleware. Certain types of requests should be message-
based where the clients and servers are very loosely coupled. We need infra-
structure to accommodate messaging.

■■ Object life cycle. The objects that live within the server need to be created or
destroyed when client traffic increases or decreases, respectively.

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers

Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other
industries, such as health care, appliances, airline tickets, and others need the
same pricing functionality. Obviously, it would be a huge waste of resources if
each company that needed complex pricing had to write its own sophisticated
pricing engine. Thus, it makes sense that a vendor provides a generic pricing
component that can be reused for different customers. For example:

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.2.

2. An automobile manufacturer can use the pricing component to determine
prices for cars. This manufacturer may set up a Web site that allows cus-
tomers to get price quotes for cars over the Internet. Figure 1.3 illustrates
this scenario.

Overview 7

■■ Resource pooling. If a client is not currently using a server, that server’s precious
resources can be returned to a pool to be reused when other clients connect.
This includes sockets (such as database connections) as well as objects that live
within the server.

■■ Security. The servers and databases need to be shielded from saboteurs. Known
users must be allowed to perform only operations that they have rights to
perform.

■■ Caching. Let’s assume there is some database data that all clients share and
make use of, such as a common product catalog. Why should your servers
retrieve that same catalog data from the database over and over again? You
could keep that data around in the servers’ memory and avoid costly network
roundtrips and database hits.

■■ And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. These services are needed in any business problem
and in any vertical industry. And each of these services requires a lot of thought
and a lot of plumbing to resolve. Together, these services are called middleware.

3. An online grocery store can use the pricing component as one discrete
part of a complete workflow solution. When a customer purchases gro-
ceries over the Web, the pricing component first computes the price of the
groceries. Next, a different vendor’s component bills the customer with
the generated price. Finally, a third component fulfills the order, setting
things in motion for the groceries to be delivered to the end user. We
depict this in Figure 1.4.

O V E R V I E W8

Post Office worker

Legacy System

Workstation / Dumb Terminal

Pricing
Component

Call into legacy system

Figure 1.2 Reusing a pricing component for the U.S. Postal Service.

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application
from prewritten components rather than writing the entire application from
scratch. This means:

Overview 9

Web Server

Network

Client Browser

Client Browser

Client Browser

Pricing
Component

Figure 1.3 Reusing a pricing component for quoting car prices over the Internet.

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving
development time.

O V E R V I E W10

Web Server

2: Bill Order to Customer

1: Price Order

Workflow Logic

3: Fulfill Order

Pricing
Component

Billing
Component

Fufillment
Component

Figure 1.4 Reusing a pricing component as part of an e-commerce workflow solution.

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the compo-
nent vendor is an expert in its field, the component generally has fewer
bugs and higher performance than an IT shop’s home-grown solution. This
reduces the IT shop’s maintenance costs.

Once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
reusable components to companies. The components are deployed within
application servers, which provide the needed middleware.

Overview 11

Is a Component Marketplace a Myth?

There is a very small component marketplace today. For years we’ve been hoping
that the marketplace will explode, but it is behind schedule. There are several
reasons for Independent Software Vendors (ISVs) not shipping components:

Maturity. Because components live inside application servers, the application
servers must be mature before we see components written to those servers.

Politics. Many ISVs have written their own application servers. Some (falsely) view
this as a competitive advantage.

Questionable value. Most ISVs are customer-driven (meaning they prioritize what
their customers are asking for). Since components are new to many customers,
many of them are not asking for their ISVs to support components.

It is our opinion that the marketplace will eventually explode, and it’s just a
matter of time. If you represent an ISV, this could be a fantastic opportunity
for you.

The good news is that the marketplace already beginning to emerge. Most
packaged e-commerce ISVs (Ariba, Broadvision, Vignette, and so on) are shipping
or have announced support for server-side Java technologies.

In the meantime, you’ll have to build your own components from scratch
within your organizations. Some of our customers at The Middleware Company
are attempting this by having departments provide components to other depart-
ments. In effect, that department is acting as an internal ISV.

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, well over 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be. The result? Once you bet on an appli-
cation server, your code was locked into that vendor’s solution. This greatly
reduced portability and was an especially tough pill to swallow in the Java
world, which promotes openness and portability. It also hampered the com-
merce of components, because a customer could not combine a component
written to one application server with another component written to a differ-
ent application server.

What we need is an agreement, or set of interfaces, between application servers
and components. This agreement will enable any component to run within
any application server. This will allow components to be switched in and out
of various application servers without having to change code or potentially
even recompile the components themselves. Such an agreement is called com-
ponent architecture and is shown in Figure 1.5.

If you’re trying to explain components to a nontechie, try these analogies:

■■ Any CD player can play any compact disc because of the CD standard. Think of an
application server as a CD player and components as compact discs.

■■ In the United States, any TV set can tune into any broadcast because of the NTSC
standard. Think of an application server as a TV set and components as television
broadcasts.

O V E R V I E W12

Application Server

agreed-upon
interfaces
specified by
component
architecture

Components

Figure 1.5 A component architecture.

Introducing Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard is a component architecture for
deployable server-side components in Java. It is an agreement between com-
ponents and application servers that enable any component to run in any
application server. EJB components (called enterprise beans) are deployable,
and can be imported and loaded into an application server, which hosts those
components.

The top three values of EJB are as follows:

1. It is agreed upon by the industry. Those who use EJB will benefit from its
widespread use. Because everyone will be on the same page, in the future
it will be easier to hire employees who understand your systems (since
they may have prior EJB experience), learn best practices to improve your
system (by reading books like this one), partner with businesses (since
technology will be compatible), and sell software (since customers will
accept your solution). The concept of “train once, code anywhere” applies.

2. Portability is easier. The EJB specification is published and available freely
to all. Since EJB is a standard, you do not need to gamble on a single, pro-
prietary vendor’s architecture. And although portability will never be
free, it is cheaper than without a standard.

3. Rapid application development. Your application can be constructed
faster because you get middleware from the application server. There’s
also less of a mess to maintain.

Note that while EJB does have these virtues, there are also scenarios where EJB
is inappropriate. See Chapter 15 for a complete discussion of when to (and
when not to) use EJB.

Physically, EJB is actually two things in one:

A specification. This is a 500-plus-page Adobe Acrobat PDF file, freely downloadable
from http://java.sun.com. This specification lays out the rules of engagement
between components and application servers. It constricts how you program so
that you can interoperate.

A set of Java interfaces. Components and application servers must conform to these
interfaces. Since all components are written to the same interfaces, they all look
the same to the application server. The application server therefore can manage
anyone’s components. You can freely download these interfaces from
http://java.sun.com.

Overview 13

Why Java?

EJB components must be written in Java only and require dedication to Java.
This is indeed a serious restriction. The good news, however, is that Java is an
ideal language to build components, for many reasons.

Interface/implementation separation. We need a clean interface/implemen-
tation separation to ship components. After all, customers who purchase com-
ponents shouldn’t be messing with implementation. Upgrades and support
will become horrendous. Java supports this at a syntactic level via the interface
keyword and class keyword.

Safe and secure. The Java architecture is much safer than traditional program-
ming languages. In Java, if a thread dies, the application stays up. Pointers are
no longer an issue. Memory leaks occur much less often. Java also has a rich
library set, so that Java is not just the syntax of a language but a whole set of
prewritten, debugged libraries that enable developers to avoid reinventing the
wheel in a buggy way. This safety is extremely important for mission-critical
applications. Sure, the overhead required to achieve this level of safety might
make your application slower, but 90 percent of all business programs are glo-
rified Graphical User Interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

Cross-platform. Java runs on any platform. Since EJB is an application of Java,
this means EJB should also easily run on any platform. This is valuable for cus-
tomers who have invested in a variety of powerful hardware, such as Win32,
UNIX, and mainframes. They do not want to throw away these investments.

If you don’t want to go the EJB route, you have two other choices as well:

■■ Microsoft’s .NET managed components, part of the Microsoft.NET platform

■■ The Object Management Group (OMG’s) Common Object Request Broker Archi-
tecture (CORBA)

Note that many EJB servers are based upon and can interoperate with CORBA (see
Appendix B for strategies for achieving this).

EJB as a Business Solution

EJB is specifically used to help solve business problems. EJB components (enter-
prise beans) might perform any of the following tasks.

Perform business logic. Examples include computing the taxes on the shop-
ping cart, ensuring that the manager has authority to approve the purchase
order, or sending an order confirmation email using the JavaMail API.

O V E R V I E W14

Access a database. Examples include submitting an order for books, transfer-
ring money between two bank accounts, or calling a stored procedure to
retrieve a trouble ticket in a customer support system. Enterprise beans
achieve database access using the Java Database Connectivity (JDBC) API.

Access another system. Examples include calling a high-performing CICS
legacy system written in COBOL that computes the risk factor for a new
insurance account, calling a legacy VSAM data store, or calling SAP R/3.
Enterprise beans achieve existing application integration via the Java Con-
nector Architecture (JCA).

EJB components are not GUI components; rather, enterprise beans sit behind
the GUIs and do all the hard work. Examples of GUIs that can connect to enter-
prise beans include the following:

Thick clients. Thick clients execute on a user’s desktop. They could connect
via the network with EJB components that live on a server. These EJB com-
ponents may perform any of the tasks listed above (business logic, data-
base logic, or accessing other systems). Thick clients in Java include applets
and applications.

Dynamically generated web pages. Web sites that are complex need their
Web pages generated specifically for each request. For example, the home-
page for Amazon.com is completely different for each user, depending on
the user’s profile. Java servlets and JavaServer Pages (JSPs) are used to
generate such specific pages. Both servlets and JSPs live within a Web
server and can connect to EJB components, generating pages differently
based upon the values returned from the EJB layer.

XML-based Web Service wrappers. Some business applications require no
user interface at all. They exist to interconnect with other business part-
ners’ applications that may provide their own user interface. For example,
Dell Computer Corporation needs to purchase Intel chips to manufacture
desktop computers. Intel could expose a Web Service that enables Dell’s
software to connect and order chips. In this case, Intel’s system does not
have a user interface of its own, but rather acts as a Web Service. Possible
technologies used here include SOAP, UDDI, ebXML, and WSDL. This is
shown in Figure 1.6.

The real difference between GUI components (thick clients, dynamically gener-
ated Web pages, and Web Service wrappers) and enterprise beans is the domain
that each component type is intended to be part of. GUI components are well
suited to handle client-side operations, such as rendering GUIs (although they
don’t necessarily need to have one), performing other presentation-related
logic, and lightweight business logic operations. They deal directly with the
end-user or business partner.

Overview 15

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24 � 7),
fault-tolerant, transactional, and multiuser secure environment. The applica-
tion server provides this high-end server-side environment for the enterprise
beans, and it provides the runtime containment necessary to manage enter-
prise beans.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than just
an application server and components. In fact, EJB encourages collaboration of
more than six different parties. Each of these parties is an expert in its own field
and is responsible for a key part of a successful EJB deployment. Because each
party is a specialist, the total time required to build an enterprise-class deploy-
ment is significantly reduced. Together, these players form the EJB Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on, think
about your company’s business model to determine which role you fill. If
you’re not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

The EJB Ecosystem is not for everyone. At my company, we’ve heard ghastly stories
of businesses choosing EJB because everyone else is using it, or because it is new
and exciting. Those are the wrong reasons to use EJB and can result in disappointing
results. For a complete discussion of when and when not to use EJB, see Chapter 15.

O V E R V I E W16

Dell
Web Site

HTTP

End-User Web Browser

Intel

EJBs
XML-Based

Web Service
Wrappers

(Servlets, JSPs)

SOAP
UDDI
ebXML
WSDL

Figure 1.6 EJBs as the back-end to Web services.

The Bean Provider

The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an ISV selling components or an internal department providing compo-
nents to other departments.

Many vendors ship reusable components today. You can get the complete list
from www.componentsource.com or www.flashline.com. In the future,
traditional enterprise software vendors (such as sales force automation ven-
dors, enterprise resource planning vendors, financial services vendors, and
e-commerce vendors) will offer their software as enterprise beans or provide
connectors to their current technology.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the applications that combine components. An application assembler
may even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of

Overview 17

JavaBeans. Enterprise JavaBeans

You may have heard of another standard called JavaBeans. JavaBeans are com-
pletely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods (similar
to Microsoft’s ActiveX controls) that can be easily wired together to create (often
visual) Java applications.

JavaBeans are much smaller than Enterprise JavaBeans. You can use JavaBeans
to assemble larger components or to build entire applications. JavaBeans, how-
ever, are development components and are not deployable components. You typ-
ically do not deploy a JavaBean; rather, JavaBeans help you construct larger
software that is deployable. And because they cannot be deployed, JavaBeans do
not need to live in a runtime environment. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them, and
to provide other services to them. The application itself is made up of JavaBeans.

settings. The application assembler is the consumer of the beans supplied by
the bean provider.

The application assembler could perform any or all of the following tasks:

■■ From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide an
effective solution; in essence, plan the application assembly.

■■ Supply a user interface (perhaps Swing, servlet/JSP, application/applet,
or Web Service wrapper).

■■ Write new enterprise beans to solve some problems specific to your busi-
ness problem.

■■ Write the code that calls on components supplied by bean providers.

■■ Write integration code that maps data between components supplied by
different bean providers. After all, components won’t magically work
together to solve a business problem, especially if different vendors write
the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

■■ Securing the deployment with a firewall and other protective measures

■■ Integrating with an LDAP server for security lists, such as Lotus Notes or
Microsoft Active Directory

■■ Choosing hardware that provides the required level of performance

■■ Providing redundant hardware and other resources for reliability and
fault tolerance

■■ Performance-tuning the system

Frequently the application assembler (who is usually a developer or systems
analyst) is not familiar with these issues. This is where the EJB deployer comes
into play. EJB deployers are aware of specific operational requirements and
perform the tasks above. They understand how to deploy beans within servers
and how to customize the beans for a specific environment. The EJB deployer

O V E R V I E W18

has the freedom to adapt the beans, as well as the server, to the environment in
which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.
Examples of EJB deployers include Loudcloud and HostJ2EE.com, which both
offer hosting solutions for EJB deployments.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

For example, a sophisticated EJB server might page a system administrator if
a serious error occurs that requires immediate attention. Some EJB servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others are providing their own systems
management by supporting the Java Management Extension (JMX).

The Container and Server Provider

The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. Examples of EJB containers

Overview 19

Qualities of Service in EJB

Monitoring of EJB deployments is not specified in the EJB specification. It is an
optional service that advanced EJB servers can provide. This means that each EJB
server could provide the service differently.

At first blush you might think this hampers application portability. However, in
reality this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies beneath
the application level and exists at the systems level. Changing application servers
should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and connection
pooling algorithms.

are BEA’s WebLogic, iPlanet’s iPlanet Application Server, IBM’s WebSphere,
Oracle’s Oracle 9i, Macromedia’s JRun, Persistence’s PowerTier, Brokat’s
Gemstone/J, HP’s Bluestone, IONA’s iPortal, Borland’s AppServer, and the
JBoss open source code application server.

The server provider is the same as the container provider. Sun has not yet dif-
ferentiated these (and they may never do so). We will use the terms EJB con-
tainer and EJB server interchangeably in this book.

The Tool Vendors

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several Integrated Development Environments (IDEs) assist you in
rapidly building and debugging components. Examples are Webgain’s Visual
Cafe, IBM’s VisualAge for Java, or Borland’s JBuilder.

Other tools enable you to model components in the Unified Modeling Lan-
guage (UML), which is the diagram style used in this book. You can then auto-
generate EJB code from that UML. Examples of products in this space are
Togethersoft’s Together/J and Rational’s Rational Rose.

There are other tools as well, such as tools to organize components (Flashline,
ComponentSource), testing tools (JUnit, RSW Software), and build tools (Ant).

Summary of Roles

Figure 1.7 summarizes the interaction of the different parties in EJB.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to
best-of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties EJB merely suggests possible duties, such as the system
administrator overseeing the well-being of a deployed system. For other par-
ties, such as the bean provider and container provider, EJB defines a set of

O V E R V I E W20

strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors’ products can interoperate.

A future EJB specification will define a new role, called the persistence manager,
which plugs into an application server. Your components harness the persistence
manager to map your business data into storage, such as mapping objects into rela-
tional databases.

The persistence manager may be written to understand how to persist business data
to any storage type. Examples include legacy systems, flat file systems, relational
databases, object databases, or a proprietary system.

The persistence manager provider may be the same as the container/server vendor,
such as the case with IBM’s WebSphere, which includes built-in persistence capabili-
ties. Examples of ISV persistence manager providers include WebGain’s TOPLink and
Thought Inc’s Cocobase.

Unfortunately, the persistence manager provider role is not explicitly defined in the
EJB 2.0 specification. Due to time constraints, a standard for plugging persistence
managers into application servers won’t exist until a future version of EJB. The good
news is this won’t affect the portability of your code, because your application
doesn’t care whether it’s being persisted by the container or by some persistence
manager that happens to plug into the container. The bad news is that you’ll need to
rely on proprietary agreements between persistence manager providers and applica-
tion server vendors, which means that not every persistence manager may work in
every application server — for now.

Overview 21

Bean Provider

EJB Container/Server
 Provider

Deployer System Administrator
(Maintains Deployment)

Application
Assembler

Constru
ct

Enterprise Beans

Build Application Deploy System

Supply

EJB Container/S
erver

Tool Provider

Supply Tools

Figure 1.7 The parties of EJB.

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from Sun Microsystems called the Java
2 Platform, Enterprise Edition (J2EE). The mission of J2EE is to provide a
platform-independent, portable, multiuser, secure, and standard enterprise-
class platform for server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so on. This
is a restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphi-
cal user interface facilities, and more. This platform contains what most
people use in standard Java Development Kit (JDK) programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise APIs
and bundles them together in a complete development platform for
enterprise-class server-side deployments in Java.

The arrival of J2EE is significant because it creates a unified platform for
server-side Java development. J2EE consists of the following deliverables
from Sun Microsystems.

Specifications. Each enterprise API within J2EE has its own specification,
which is a PDF file downloadable from http://java.sun.com. Each time
there is a new version of J2EE, Sun locks-down the versions of each Enter-
prise API specification and bundles them together as the de facto versions
to use when developing with J2EE. This increases code portability across
vendors’ products because each vendor supports exactly the same API
revision. This is analogous to a company such as Microsoft releasing a new

O V E R V I E W22

version of Windows every few years: Every time a new version of Win-
dows comes out, Microsoft locks-down the versions of the technologies
bundled with Windows and releases them together.

Test suite. Sun provides a test suite for J2EE server vendors to test their
implementations against. If a server passes the tests, Sun issues a compli-
ance brand, alerting customers that the vendor’s product is indeed J2EE-
compliant. There are numerous J2EE-certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against J2EE
as they have with the JDK, Sun provides its own free reference implemen-
tation of J2EE. Sun is positioning it as a low-end reference platform, as it is
not intended for commercial use.

BluePrints Document. Each of the Enterprise APIs has a clear role in J2EE, as
defined by Sun’s J2EE BluePrints document. This document is a download-
able PDF file that describes how to use the J2EE technologies together.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware ser-
vices that make life very easy for server-side application developers. J2EE
builds on the existing technologies in the J2SE. J2SE includes the base Java sup-
port and the various libraries (.awt, .net, .io) with support for both applets and
applications. Because J2EE builds on J2SE, a J2EE-compliant product must not
only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry has resulted in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

We will discuss version 1.3 of J2EE, which supports EJB 2.0. Some of the major
J2EE technologies are shown working together in Figure 1.8.

To understand more about the real value of J2EE, here is each API that a J2EE
1.3-compliant implementation must provide for you.

Enterprise JavaBeans (EJB). EJB defines how server-side components are
written and provides a standard contract between components and the
application servers that manage them. EJB is the cornerstone for J2EE and
uses several other J2EE technologies.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java lan-
guage’s native way to communicate between distributed objects, such as
two different objects running on different machines. RMI-IIOP is an exten-
sion of RMI that can be used for CORBA integration. RMI-IIOP is the offi-
cial API that we use in J2EE (not RMI). We cover RMI-IIOP in Appendix A.

Overview 23

Java Naming and Directory Interface (JNDI). JNDI is used to access naming
and directory systems. You use JNDI from your application code for a vari-
ety of purposes, such as connecting to EJB components or other resources
across the network, or accessing user data stored in a naming service such
as Microsoft Exchange or Lotus Notes. JNDI is covered in Appendix A.

Java Database Connectivity (JDBC). JDBC is an API for accessing relational
databases. The value of JDBC is that you can access any relational database
using the same API. JDBC is used in Chapter 6.

O V E R V I E W24

Firewall

EJBs

Existing System
Legacy System

ERP System

IIOP

Client Tier

J2EE Server

Back-End
Systems

Business
Partner

or Other System

Servlets

Business Partner
or Other System

Applets,
Applications,

CORBA Clients

IIOPWeb services technologies
(SOAP, UDDI, WSDL, ebXML) HTTP

Databases

Proprietary Protocol
Web Services Technologies
(SOAP, UDDI, WSDL, ebXML)

Connectors

SQL

JSPs

Web Browser Wireless Device

HTTP

JMS

Figure 1.8 A Java 2 Platform, Enterprise Edition deployment.

Java Transaction API (JTA) Java Transaction Service (JTS). The JTA and JTS
specifications allow for components to be bolstered with reliable transac-
tion support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for your J2EE deployment to
communicate using messaging. You can use messaging to communicate
within your J2EE system as well as outside your J2EE system. For example,
you can connect to existing message-oriented middleware (MOM) systems
such as IBM MQSeries or Microsoft Message Queue (MSMQ). Messaging is
an alternative paradigm to RMI-IIOP, and has its advantages and disad-
vantages. We explain JMS in Chapter 8.

Java Servlets. Servlets are networked components that you can use to extend
the functionality of a Web server. Servlets are request/response oriented in
that they take requests from some client host (such as a Web browser) and
issue a response back to that host. This makes servlets ideal for performing
Web tasks, such as rendering an HTML interface. Servlets differ from EJB
components in that the breadth of server-side component features that EJB
offers is not readily available to servlets. Servlets are much better suited to
handling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using Servlets
with EJB in Chapter 17.

Java Pages (JSPs). JSPs are very similar to servlets. In fact, JSP scripts are
compiled into servlets. The largest difference between JSP scripts and
servlets is that JSP scripts are not pure Java code; they are much more cen-
tered around look-and-feel issues. You would use JSP when you want the
look and feel of your deployment to be physically separate and easily
maintainable from the rest of your deployment. JSPs are perfect for this,
and they can be easily written and maintained by non-Java savvy staff
members (JSPs do not require a Java compiler). We illustrate using JSPs
with EJB in Chapter 17.

Java IDL. Java IDL is Sun Microsystems’ Java-based implementation of
CORBA. Java IDL allows for integration with other languages. Java IDL
also allows for distributed objects to leverage CORBA’s full range of
services. J2EE is thus fully compatible with CORBA, completing the
Java 2 Platform, Enterprise Edition. We discuss CORBA integration in
Appendix B.

JavaMail. The JavaMail service allows you to send email messages in a
platform-independent, protocol-independent manner from your Java pro-
grams. For example, in a server-side J2EE deployment, you can use Java-
Mail to confirm a purchase made on your Internet e-commerce site by
sending an email to the customer. Note that JavaMail depends on the

Overview 25

JavaBeans Activation Framework (JAF), which makes JAF part of J2EE as
well. We do not cover JavaMail in this book.

J2EE Connector Architecture (JCA). Connectors allow you to access existing
enterprise information systems from a J2EE deployment. This could
include any existing system, such as a mainframe systems running high-
end transactions (such as those deployed with IBM’s CICS or BEA’s
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own pro-
prietary systems. Connectors are useful because they automatically man-
age the details of middleware navigation to existing systems, such as
handling transaction and security concerns. Another value of the JCA is
that you can write a driver to access an existing system once, and then
deploy that driver into any J2EE-compliant server. This is important
because you only need to learn how to access any given existing system
once. Furthermore, the driver needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) who want their software to be accessible from within
application servers. Rather than write a custom driver for each server, the
ISV can write a single driver. We discuss legacy integration more in Chap-
ters 12 and 13.

The Java API for XML Parsing (JAXP). There are many applications of XML
in a J2EE deployment. For example, you might need to parse XML if you
are performing B2B interactions (such as through Web services), if you are
accessing legacy systems and mapping data to and from XML, or if you are
persisting XML documents to a database. JAXP is the de facto API for pars-
ing XML documents in a J2EE deployment and is an implementation-
neutral interface to XML parsers. You typically use the JAXP API from
within servlets, JSPs, or EJB components. There is a free whitepaper avail-
able on TheServerSide.com that describes how to build Web services
with J2EE.

The Java Authentication and Authorization Service (JAAS). JAAS is a stan-
dard API for performing security-related operations in J2EE. Conceptually,
JAAS also enables you to plug in a security system to a J2EE deployment.
See Chapter 9 for more details on security and EJB.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that a
server-side component architecture allows us to write complex business appli-
cations without understanding tricky middleware services. We then dove into

O V E R V I E W26

the EJB standard and fleshed out its value proposition. We investigated the
different players involved in an EJB deployment and wrapped up by explor-
ing J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves into the concept of
request interception, which is the mental leap you need to make to understand
EJB. Let’s go!

Overview 27

C H A P T E R 2

29

Chapter 1 introduced the motivation behind EJB. In this chapter, we’ll dive into
EJB in detail. After reading this chapter, you will understand the different
types of enterprise beans. You’ll also understand what an enterprise bean
component is comprised of, including the enterprise bean class, the remote
interface, the local interface, the EJB object, the local object, the home interface,
the home object, the deployment descriptor, and the Ejb-jar file.

EJB technology is based on two other technologies: Java RMI-IIOP and JNDI. Under-
standing these technologies is mandatory before continuing.

We have provided tutorials on each of these technologies in the appendices of this
book. If you don’t yet know RMI-IIOP or JNDI, go ahead and read Appendix A now.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed in
a distributed multitier environment. An enterprise bean can compose one or
more Java objects because a component may be more than just a simple object.
Regardless of an enterprise bean’s composition, the clients of the bean deal
with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the EJB specification. The specification
requires that your beans expose a few required methods; these required

EJB Fundamentals

methods allow the EJB container to manage beans uniformly, regardless of
which container your bean is running in.

Note that the client of an enterprise bean could be anything—a servlet, an
applet, or even another enterprise bean. In the latter case, a client request to a
bean can result in a whole chain of beans being called. This is a very powerful
idea because you can subdivide a complex bean task, allowing one bean to call
on a variety of prewritten beans to handle the subtasks. This hierarchical con-
cept is quite extensible.

As a real-world example, imagine you go to a music store to purchase a com-
pact disc. The cashier takes your credit card and runs it through a scanner. The
scanner has a small Java Virtual Machine running within it, which acts as a
client of enterprise beans running on a central server. The central server enter-
prise beans perform the following tasks:

1. Contact American Express, a Web service that itself has an EJB-compliant
application server containing a number of beans. The beans are responsi-
ble for conducting the credit card transaction on behalf of that client.

2. Call a product catalog bean, which updates inventory and subtracts the
quantity the customer purchased.

3. Call an order entry bean, which enters the record for the customer and
returns that record locator to the scanner to give to the customer on a
receipt.

As you can see, this is a powerful, flexible model, which can be extended as
needed.

Types of Beans

EJB 2.0 defines three different kinds of enterprise beans:

Session beans. Session beans model business processes. They are like verbs
because they are actions. The action could be anything, such as adding num-
bers, accessing a database, calling a legacy system, or calling other enterprise
beans. Examples include a pricing engine, a workflow engine, a catalog
engine, a credit card authorizer, or a stock-trading engine.

Entity beans. Entity beans model business data. They are like nouns because
they are data objects—that is, Java objects that cache database information.
Examples include a product, an order, an employee, a credit card, or a stock.
Session beans typically harness entity beans to achieve business goals, such as
a stock-trading engine (session bean) that deals with stocks (entity beans). For
more examples of this, see Table 2.1.

O V E R V I E W30

Message-driven beans. Message-driven beans are similar to session beans in
that they are actions. The difference is that you can call message-driven beans
only by sending messages to those beans (fully described in Chapter 8). Exam-
ples of message-driven beans include beans that receive stock trade messages,
credit card authorization messages, or workflow messages. These message-
driven beans might call other enterprise beans as well.

You may be wondering why the EJB paradigm is so robust in offering the var-
ious kinds of beans. Why couldn’t Sun come up with a simpler model?
Microsoft’s n-tier vision, for example, does not include the equivalent of entity
beans—components that represent data in permanent storage.

The answer is that Sun is not the only company involved in constructing the
EJB standard. Many companies have been involved, each with customers that
have different kinds of distributed systems. To accommodate the needs of dif-
ferent enterprise applications, Sun allowed users the flexibility of each kind of
bean.

Admittedly this increases the ramp-up time to learn EJB. It also adds an ele-
ment of danger because some developers may misuse the intentions of each
bean type. But it pays off in the long run with increased functionality. By
including session beans, Sun provides a mechanism to model business
processes in a distributed multitier environment. By including entity beans in
the EJB specification, Sun has taken the first steps toward persistent, distrib-
uted objects usable by those business processes. And with message-driven
beans, you can use messaging to access your EJB system.

See Figure 2.1 for a diagram showing some of the many possibilities of clients
interacting with an EJB component system.

EJB Fundamentals 31

SESSION BEAN ENTITY BEAN

Bank teller Bank account

Credit card authorizer Credit card

DNA sequencer DNA strand

Order entry system Order, Line item

Catalog engine Product

Auction broker Bid, Item

Purchase order Approval router Purchase order

Table 2.1 Session Beans Calling Entity Beans

Distributed Objects: The Foundation for EJB

Now that you’ve seen the different types of beans, let’s dive into the technol-
ogy behind them. EJB components are based on distributed objects. A distrib-
uted object is an object that is callable from a remote system. It can be called
from an in-process client, an out-of-process client, or a client located elsewhere
on the network.

Figure 2.2 shows how a client can call a distributed object. The following is an
explanation of the diagram:

1. The client calls a stub, which is a client-side proxy object. This stub is respon-
sible for masking network communications from the client. The stub

O V E R V I E W32

HTML Client

Messaging
Client

Application Server

Business
Partner System

EJB Session Bean

EJB Entity Bean

Java Application
Java Applet

RMI-IIOP

SOAP, UDDI,
WSDL, ebXML

Web Server

Servlet JSP

CORBA/IIOP

Presentation
Tier

Business
Tier

C++
Client

Messaging

EJB Message-
Driven Bean

EJB Session
BeanEJB Session Bean

EJB Session Bean

RMI-IIOP

Firewall

HTTP

RMI-IIOP

Figure 2.1 Clients interacting with an EJB component system.

knows how to call over the network using sockets, massaging parameters
as necessary into their network representation.

2. The stub calls over the network to a skeleton, which is a server-side proxy
object. The skeleton masks network communication from the distributed
object. The skeleton understands how to receive calls on a socket. It also
knows how to massage parameters from their network representations to
their Java representations.

3. The skeleton delegates the call to the distributed object. The distributed
object does its work, and then returns control to the skeleton, which
returns to the stub, which then returns control to the client.

A key point here is that both the stub and the distributed object implement the
same interface (called the remote interface). This means the stub clones the dis-
tributed object’s method signatures. A client who calls a method on the stub
thinks he is calling the distributed object directly; in reality, the client is calling
an empty stub that knows how to go over the network. This is called
local/remote transparency.

You can achieve distributed objects using many technologies, including the
OMG’s CORBA, Microsoft’s DCOM, and Sun’s Java RMI-IIOP.

EJB Fundamentals 33

Stub

Client
Distributed

Object

Skeleton

Remote Interface

Network

Remote Interface

Figure 2.2 Distributed objects.

Distributed Objects and Middleware

Distributed objects are great because they allow you to break up an application
across a network. However, as a distributed object application gets larger,
you’ll need help from middleware services, such as transactions and security.
There are two ways to get middleware: explicitly and implicitly. Let’s investi-
gate both approaches.

Explicit Middleware

In traditional distributed object programming (such as traditional CORBA),
you can harness middleware by purchasing that middleware off the shelf and
writing code that calls that middleware API. For example, you could gain
transactions by writing to a transaction API. We call this explicit middleware
because you need to write to an API to gain that middleware. This is shown in
Figure 2.3

O V E R V I E W34

Stub

Client Distributed
Object

Skeleton

Remote Interface

Network

Remote Interface

Transaction
Service

Security Service

Database Driver

Transaction API

Security API

Database API

Figure 2.3 Explicit middleware (gained through APIs).

Here’s a bank account distributed object that knows how to transfer funds
from one account to another. It is filled with pseudo-code that illustrates
explicit middleware.

transfer(Account account1, Account account2, long amount) {

// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other

// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

As you can see, we are gaining middleware, but our business logic is inter-
twined with the logic to call these middleware APIs. The downsides to this
approach are

Difficult to write. The code is bloated. We simply want to perform a transfer,
but it requires a large amount of code.

Difficult to maintain. If you want to change how you do middleware, you
need to rewrite your code.

Difficult to support. If you are an Independent Software Vendor (ISV) selling
an application, or an internal department providing code to another
department, you are unlikely to provide source code to your customers.
This is because the source code is your intellectual property, and also
because upgrading your customers to the next version of your software is
difficult if those customers modify source code. Thus, your customers can-
not change their middleware (such as changing how security works).

Implicit Middleware

The crucial difference between systems of the past (transaction processing
monitors such as TUXEDO or CICS, or traditional distributed object technolo-
gies such as CORBA, DCOM, or RMI) and the newer, component-based tech-
nologies (EJB, CORBA Component Model, and Microsoft.NET) is that in this
new world, you can harness complex middleware in your enterprise applica-
tions without writing to middleware APIs. This is shown in Figure 2.4, and
works as follows:

1. Write your distributed object to contain only business logic. Do not write to
complex middleware APIs. For example, this is the code that would run
inside the distributed object:

transfer(Account account1, Account account2, long amount) {

// 1: Subtract the balance from one account, add to the other

}

EJB Fundamentals 35

2. Declare the middleware services that your distributed object needs in a
separate descriptor file, such as a plain text file. For example, you might
declare that you need transactions, persistence, and a security check.

3. Run a command-line tool provided for you by the middleware vendor.
This tool takes your descriptor file as input and generates an object that
we’ll call the request interceptor.

4. The request interceptor intercepts requests from the client, performs the
middleware that your distributed object needs (such as transactions, secu-
rity, and persistence), and then delegates the call to the distributed object.

The values of implicit middleware (also called declarative middleware) are:

Easy to write. You don’t actually write any code to middleware APIs; rather,
you declare what you need in a simple text file. The request interceptor

O V E R V I E W36

Stub

Client

Request
Interceptor

Skeleton

Remote Interface

Network

Remote Interface Transaction
Service

Security Service

Database Driver

Transaction API

Security API

Database API

Distributed
Object

Remote Interface

The request
interceptor knows
what to do because
you describe your
needs in a special
descriptor file.

Figure 2.4 Implicit middleware (gained through declarations).

provides the middleware logic for you transparently. You focus away from
the middleware and concentrate on your application’s business code. This
is truly divide and conquer!

Easy to maintain. The separation of business logic and middleware logic is
clean and maintainable. It is less code, which makes things simpler.
Furthermore, changing middleware does not require changing
application code.

Easy to support. Customers can change the middleware they need by tweak-
ing the descriptor file. For example, they can change how a security check
is done without modifying source code. This avoids upgrade headaches
and intellectual property issues.

What Constitutes an Enterprise Bean?

Now that we understand request interception, we can dive in and see exactly
what constitutes an enterprise bean. As we will see, an enterprise bean com-
ponent is not a single monolithic file—a number of files work together to make
up an enterprise bean.

The Enterprise Bean Class

The first part of your bean is the implementation itself, which contains the guts
of your logic, called the enterprise bean class. This is simply a Java class that con-
forms to a well-defined interface and obeys certain rules. The rules are neces-
sary for your beans to run in any EJB container.

An enterprise bean class contains implementation details of your component.
Although there are no hard-and-fast rules in EJB, session bean, entity bean,
and message-driven bean implementations are all very different from each
other.

For session beans, an enterprise bean class typically contains business-
process-related logic, such as logic to compute prices, transfer funds between
bank accounts, or perform order entry.

For entity beans, an enterprise bean class typically contains data-related logic,
such as logic to change the name of a customer, reduce the balance of a bank
account, or modify a purchase order.

For message-driven beans, an enterprise bean class typically contains
message-oriented logic, such as logic to receive a stock trade message and call
a session bean that knows how to perform stock trading.

EJB Fundamentals 37

The EJB specification defines a few standard interfaces that your bean class can
implement. These interfaces force your bean class to expose certain methods
that all beans must provide, as defined by the EJB component model. The EJB
container calls these required methods to manage your bean and alert your
bean to significant events.

The most basic interface that all bean classes (session, entity, and message-
driven) must implement is the javax.ejb.EnterpriseBean interface, shown in
Source 2.1.

This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. The interesting aspect
of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that
all enterprise beans can be converted to a bit-blob and share all the properties
of serializable objects (described in Appendix A). This will become important
later.

Session beans, entity beans, and message-driven beans each have more spe-
cific interfaces that extend the javax.ejb.EnterpriseBean interface. All session
beans must implement javax.ejb.SessionBean; all entity beans must implement
javax.ejb.EntityBean; and all message-driven beans must implement javax.ejb.
MessageDrivenBean. We’ll see the details of these interfaces a bit later. For now,
know that your enterprise bean class never needs to implement the javax.ejb.
EnterpriseBean interface directly; rather, your bean class implements the inter-
face corresponding to its bean type.

The EJB Object

Enterprise beans are not full-fledged remote objects. When a client wants to
use an instance of an enterprise bean class, the client never invokes the method
directly on an actual bean instance. Rather, the invocation is intercepted by the
EJB container and then delegated to the bean instance. This is the concept of
request interception that we touched on earlier. By intercepting requests, the
EJB container can automatically perform implicit middleware. As a compo-
nent developer, this means your life is simplified greatly because you can
rapidly develop components without writing, debugging, or maintaining

O V E R V I E W38

public interface javax.ejb.EnterpriseBean extends java.io.Serializable

{

}

Source 2.1 The javax.ejb.EnterpriseBean interface.

code that calls middleware APIs. Some of the services that you get at the point
of interception include

Implicit distributed transaction management. Transactions allow for you to
perform robust, deterministic operations in a distributed environment by
setting attributes on your enterprise beans. We’ll get into the details of
transactions and how you can use them effectively in Chapter 10. For now,
know that the EJB container provides a transaction service—a low-level
implementation of transaction management and coordination. The transac-
tion service must be exposed through the Java Transaction API (JTA). The
JTA is a high-level interface that you can use to control transactions, which
we also cover in Chapter 10.

Implicit security. Security is a major consideration for multitier deployments.
The Java 2 Platform, Standard Edition yields a robust security service that
can authorize and authenticate users, securing deployments from
unwanted visitors. EJB adds to this the notion of transparent security,
allowing components to reap the benefits of a secure deployment without
necessarily coding to a security API.

Implicit resource management and component life cycle. The EJB container
implicitly manages resources for your enterprise beans, such as threads,
sockets, and database connections. The life cycle of the enterprise beans
themselves is also managed, allowing the EJB container to reuse the enter-
prise bean instances as necessary.

Implicit persistence. Persistence is a natural requirement of any deployment
that requires permanent storage. EJB offers assistance here by automati-
cally saving persistent object data to an underlying storage and retrieving
that data at a later time.

Implicit remote accessibility. Your enterprise bean class cannot be called
across the network directly because an enterprise bean class is not network
enabled. Your EJB container handles networking for you by wrapping your
bean in a network-enabled object. The network-enabled object receives
calls from clients and delegates these calls to instances of your bean class.
This saves you from having to worry about networking issues (the con-
tainer provides networking as a service to you). Thus EJB products auto-
matically convert your stand-alone, networkless components into
distributed, network-aware beings.

Implicit support. EJB containers automatically handle concurrent requests
from clients. EJB containers provide built-in thread support, instantiating
multiple copies of your component as necessary by instantiating lots of
instances of your enterprise bean and pushing one thread through each
instance. If multiple clients simultaneously invoke methods on a bean, the
invocations are serialized, or performed lock step. The container will only

EJB Fundamentals 39

allow one client to call a bean at once. The other clients are routed to other
bean instances of the same class, or are forced to wait. (Behind the scenes,
the container might use Java thread synchronization to aid with this. The
actual algorithm used is container-specific.) The value of threading is
obvious—who enjoys writing multithreaded code?

Implicit component location transparency. Clients of components are decou-
pled from the specific whereabouts of the component being used.

Implicit monitoring. The EJB container can track which methods are
invoked, display a real-time usage graph on a system administrator’s user
interface, gather data for intelligent load balancing, and more. An EJB con-
tainer is not required to perform these tasks; however, high-end EJB con-
tainers perform these tasks at the point of interception.

Thus, the EJB container acts as a layer of indirection between the client code
and the bean. This layer of indirection manifests itself as a single network-
aware object called the EJB object. The EJB object is the request interceptor we
alluded to earlier. As the old saying goes, a layer of indirection solves every
problem in computer science.

The EJB object is a surrogate object that knows about networking, transactions,
security, and more. It is an intelligent object that knows how to perform inter-
mediate logic that the EJB container requires before a method call is serviced
by a bean class instance. An EJB object is the request interceptor, or the glue,
between the client and the bean. EJB objects replicate and expose every busi-
ness method that the bean itself exposes. EJB objects delegate all client requests
to beans. We depict EJB objects in Figure 2.5.

O V E R V I E W40

EJB Container/Server

Enterprise
Bean

Client Code, such as
Servlets or Applets

1: Call a Method

EJB Object

Remote
Interface

4: Method Returns

5: Return Result

3: Call a Bean

Transaction Service,
Security Service,

Persistence Sevice, etc

2: Call Middleware APIs

Figure 2.5 EJB objects.

You should think of EJB objects as physical parts of the container; all EJB
objects have container-specific code inside of them. (Each container handles
middleware differently and provides different qualities of service.) Because
each bean’s EJB object is different, your container vendor generates the class file
for your EJB objects automatically.

Each EJB container ships with a suite of glue-code tools. These tools are meant to
integrate beans into the EJB container’s environment. The tools generate
helper Java code—stubs, skeletons, data access classes, and other classes that
this specific container requires. Bean providers do not have to think about the
specifics of how each EJB container works because the container’s tools gener-
ate its own proprietary Java code automatically.

The container’s glue-code tools are responsible for transforming an enter-
prise bean into a fully managed, distributed server-side component. This
involves logic to handle resource management, life cycle, state manage-
ment, transactions, security, persistence, remote accessibility, and many

EJB Fundamentals 41

The EJB Container: Your Silent Partner

EJB containers are responsible for managing your beans. Containers can interact
with your beans by calling your beans’ required management methods as neces-
sary. These management methods are your beans’ callback methods that the con-
tainer, and only the container, invokes. The management methods allow the
container to alert your beans when middleware events take place, such as when
an entity bean is about to be persisted to storage.

The most important responsibility of an EJB container is to provide an environ-
ment in which enterprise beans can run. EJB containers house the enterprise
beans and make them available for clients to invoke remotely. In essence, EJB
containers act as invisible middlemen between the client and the beans. They are
responsible for connecting clients to beans, performing transaction coordination,
providing persistence, managing a bean’s life cycle, and other tasks.

The key to understanding EJB containers is to realize that they are abstract
entities. Neither the beans nor the clients that call beans ever explicitly code to
the API of an EJB container. Rather, the container implicitly manages the over-
head of a distributed component architecture. The container is analogous to a
behind-the-scenes stage manager in a theater, providing the lighting and back-
drop necessary for a successful stage performance by the actors on stage. Neither
the actors nor the audience interact directly with the stage manager. The same is
true for EJB containers. Clients that call the beans never code directly to an EJB
container API.

other services. The generated code handles these services in the container’s
proprietary way.

The Remote Interface

As mentioned previously, bean clients invoke methods on EJB objects, rather
than the beans themselves. Therefore, EJB objects must clone every business
method that your bean classes expose. But how do the tools that autogenerate
EJB objects know which methods to clone? The answer is in a special interface
that a bean provider writes. This interface duplicates all the business logic
methods that the corresponding bean class exposes. This interface is called the
remote interface.

Remote interfaces must comply with special rules that the EJB specification
defines. For example, all remote interfaces must derive from a common inter-
face supplied by Sun Microsystems. This interface is called javax.ejb.EJBObject,
and it is shown in Source 2.2.

javax.ejb.EJBObject lists a number of interesting methods. For now, don’t worry
about fully understanding the meanings—just know that these are required
methods that all EJB objects must implement. And remember that you don’t
implement the methods—the EJB container does when it autogenerates the
EJB objects for you.

O V E R V I E W42

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

public javax.ejb.EJBHome getEJBHome()

throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey()

throws java.rmi.RemoteException;

public void remove()

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle()

throws java.rmi.RemoteException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

Source 2.2 A preview of the javax.ejb.EJBObject interface.

The client code that wants to work with your beans calls the methods in
javax.ejb.EJBObject. This client code could be stand-alone applications, applets,
servlets, or anything at all—even other enterprise beans.

In addition to the methods listed in Source 2.2, your remote interface dupli-
cates your beans’ business methods. When a bean’s client invokes any of these
business methods, the EJB object delegates the method to its corresponding
implementation, which resides in the bean itself.

EJB Fundamentals 43

The Instance-Pooling Concept

A multitier architecture’s overall scalability is enhanced when an application
server intelligently manages needed resources across a variety of deployed com-
ponents. The resources could be threads, socket connections, database connec-
tions, and more. For example, database connections could be pooled by
application servers and reused across heterogeneous components. In the EJB
realm, the container is responsible for providing all resource management ser-
vices behind the scenes.

In addition to resource management, the EJB container is responsible for con-
trolling the life cycle of the deployed enterprise bean components. As bean client
requests arrive, the EJB container dynamically instantiates, destroys, and reuses
beans as appropriate. For example, if a client requests a certain type of bean that
does not yet exist in memory, the EJB container may instantiate a new in-memory
instance on behalf of the client. On the other hand, if a bean already exists in
memory, it may not be appropriate to instantiate a new bean, especially if the
system is low on memory. It might make more sense to reassign a bean from one
client to another instead. It might also make sense to destroy some beans that
are not being used anymore. This is called instance pooling.

The benefit of bean instance pooling is that the pool of beans can be much
smaller than the actual number of clients connecting. This is due to client think
time, such as network lag or human decision time on the client side. The classic
example of this is an HTML (Web) client interacting with a human being. Web
users often click a button that executes some business logic in a component, but
then read text before initiating another action. While the user is waiting and
reading, the application server could reuse that component to service other
clients. While the client is thinking, the container can use the bean instances to
service other clients, saving previous system resources.

The take-away point here is that the EJB container is responsible for coordinat-
ing the entire effort of resource management as well as managing the deployed
beans’ life cycle. Note that the exact scheme used is EJB container-specific.

Java RMI-IIOP and EJB Objects

You may have noticed that javax.ejb.EJBObject extends java.rmi.Remote. The
java.rmi.Remote interface is part of Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP). Any object that implements
java.rmi.Remote is a remote object and is callable from a different Java Virtual
Machine. This is how remote method invocations are performed in Java. (We
fully describe this in Appendix A).

Because the EJB object provided by the container implements your remote
interface, it also indirectly implements java.rmi.Remote. Your EJB objects are
fully networked RMI-IIOP objects, able to be called from other Java Virtual
Machines or physical machines located elsewhere on the network. Thus, EJB
remote interfaces are really just RMI-IIOP remote interfaces—except that EJB
remote interfaces must also be built to conform to the EJB specification.

EJB remote interfaces must conform to RMI-IIOP’s remote interface rules. For
example, any method that is part of a remote object callable across virtual
machines must throw a special remote exception. A remote exception is a
java.rmi.RemoteException, or (technically) a subclass of it. A remote exception
indicates that something unexpected happened on the network while you
were invoking across virtual machines, such as a network, process, or machine
failure. Every method shown in Source 2.2 for javax.ejb.EJBObject throws a
java.rmi.RemoteException.

Remote interfaces must conform to RMI-IIOP’s parameter-passing conven-
tions as well. Not everything can be passed over the network in a cross-VM
method call. The parameters you pass in methods must be valid types for
RMI-IIOP. This includes primitives, serializable objects, and RMI-IIOP remote
objects. The full details of what you can pass are in Appendix A.

The Home Object
As we’ve seen, client code deals with EJB objects and never with beans directly.
The next logical question is, how do clients acquire references to EJB objects?

The client cannot instantiate an EJB object directly because the EJB object can
exist on a different machine than the one the client is on. Similarly, EJB pro-
motes location transparency, so clients should never be aware of exactly where
an EJB object resides.

To acquire a reference to an EJB object, your client code asks for an EJB object
from an EJB object factory. This factory is responsible for instantiating (and
destroying) EJB objects. The EJB specification calls such a factory a home object.
The chief responsibilities of home objects are the following:

O V E R V I E W44

■■ Create EJB objects

■■ Find existing EJB objects (for entity beans, which we’ll learn about in
Chapter 5)

■■ Remove EJB objects

Just like EJB objects, home objects are proprietary and specific to each EJB con-
tainer. They contain interesting container-specific logic, such as load-balancing
logic, logic to track information on a graphical administrative console, and
more. And just like EJB objects, home objects are physically part of the con-
tainer and are autogenerated by the container vendor’s tools.

The Home Interface

We’ve seen that home objects are factories for EJB objects. But how does a home
object know how you’d like your EJB object to be initialized? For example, one

EJB Fundamentals 45

Location Transparency

EJB inherits a significant benefit from RMI-IIOP. In RMI-IIOP, the physical loca-
tion of the remote object you’re invoking on is masked from you. This feature
spills over to EJB. Your client code is unaware of whether the EJB object it is
using is located on a machine next door or a machine across the Internet. It also
means the EJB object could be located on the same Java VM as the client. This is
called location transparency.

Why is location transparency beneficial? For one thing, you aren’t writing your
bean’s client code to take advantage of a particular deployment configuration
because you’re not hard-coding machine locations. This is an essential part of
reusable components that can be deployed in a wide variety of multitier
situations.

Location transparency also enables container vendors to provide additional
value-adds, such as the ability to take down a machine on the network temporar-
ily to perform system maintenance, install new software, or upgrade components
on that machine. During maintenance, location transparency allows another
machine on the network to serve up components for a component’s client
because that client is not dependent on the hard locations of any components. If
a machine that has components on it crashes due to hardware or software error,
you may be able to reroute client invocations to other machines without the
client even knowing about the crash, allowing for an enhanced level of fault
tolerance.

EJB object might expose an initialization method that takes an integer as a
parameter, and another EJB object might take a string instead. The container
needs to know this information to generate home objects. You provide this
information to the container by specifying a home interface. Home interfaces sim-
ply define methods for creating, destroying, and finding EJB objects. The con-
tainer’s home object implements your home interface. We show this in Figure 2.6.

As usual, EJB defines some required methods that all home interfaces must
support. These required methods are defined in the javax.ejb.EJBHome
interface—an interface that your home interfaces must extend. We show
javax.ejb.EJBHome in Source 2.3. We will learn about these methods later.

Notice that the parent javax.ejb.EJBHome derives from java.rmi.Remote. This
means your home interfaces do as well, implying that home objects are also
fully networked Java RMI remote objects, which can be called across VMs. The
types of parameters passed in the home interface’s methods must be valid
types for Java RMI-IIOP.

The Local Interfaces
One problem with the home interface is that creating beans through that inter-
face is very slow. The same is true for calling beans through the remote inter-
face. Just to give you an idea of what happens when you call an EJB object, the
following steps may occur:

O V E R V I E W46

EJB Container/Server

2: Create EJB Object

1: Create a New EJB Object

Home
Interface

Remote
Interface

3: Return EJB Object Reference

Client Code, Such
as Servlets or

Applets

Home Object

EJB Object

Enterprise
Beans

Figure 2.6 Home interfaces and objects.

EJB Fundamentals 47

1. The client calls a local stub.

2. The stub marshals parameters into a form suitable for the network.

3. The stub goes over a network connection to the skeleton.

4. The skeleton demarshals parameters into a form suitable for Java.

5. The skeleton calls the EJB object.

6. The EJB object performs needed middleware, such as connection pooling,
transactions, security, and lifecycle services.

7. Once the EJB object calls the enterprise bean instance, and the bean does
its work, each of the preceding steps must be repeated for the return
trip home.

Ouch! That’s a lot of overhead. Figure 2.4 shows this process.

New to EJB 2.0, you can now call enterprise beans in a fast, efficient way by
calling them through their local objects rather than EJB objects. Local objects
implement a local interface rather than a remote interface. The local objects are
speed demons that allow you to make high-performance enterprise beans. The
process works as follows:

1. The client calls a local object.

2. The local object performs needed middleware, such as connection pool-
ing, transactions, security, and lifecycle services.

3. Once the enterprise bean instance does its work, it returns control to the
local object, which then returns control to the client.

As you can see, we avoid the steps of the stub, skeleton, network, and
marshaling/demarshaling of parameters. This empowers us to write smaller
beans that perform more fine-grained tasks, without fear of a performance hit
at each and every cross-bean method call.

You can create beans in a fast way as well. Rather than using the home inter-
face and home object, you can call a special local home interface, which is imple-
mented by the container as the local home object.

These local interfaces are entirely optional; you can use them as a replacement
or as a complement to the remote interfaces. For simplicity, in the remainder of
this book, we will use the word EJB object to mean the request interceptor, the
remote interface to mean the interface to the request interceptor, the home
object to mean the factory, and the home interface to mean the factory inter-
face. Unless it’s pointed out explicitly, all information that applies to these
remote interfaces and remote objects also apply to their local counterparts.
Also note that the EJB specification has defined the term component interface to

O V E R V I E W48

public interface javax.ejb.EJBHome extends java.rmi.Remote

{

public EJBMetaData getEJBMetaData()

throws java.rmi.RemoteException;

public javax.ejb.HomeHandle getHomeHandle()

throws java.rmi.RemoteException;

public void remove(javax.ejb.Handle handle)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public void remove(Object primaryKey)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

}

Source 2.3 A preview of the javax.ejb.EJBHome interface.

Relationship between Home Objects,
EJB Objects, and Bean Instances

One question we frequently are asked in our EJB training courses is “How
many home objects are there for each bean?” The answer to this question is
vendor-specific. Most containers will have a 1:N relationship between home
objects and bean instances. This means that all clients use the same home object
instance to create EJB objects. The home object will probably be written to be
thread-safe so that it can service many client requests concurrently. It is perfectly
fine for the container to do this because the container itself is multithreaded
(only your beans are single-threaded).

Another question we typically get is “How many EJB object instances are there
for each bean instance?” Some containers can have a 1:N relationship, where
each EJB object is multithreaded (just like home objects). Other containers might
have an M:N relationship, where M represents the number of EJB objects instan-
tiated (and corresponds exactly to the number of clients currently connected),
and N represents the number of bean instances in the pool. In this case, each EJB
object is single-threaded.

None of this really matters to you as a bean provider because you should think
of the container as a black box. However, it’s sometimes fun to know what’s
going on behind the scenes in case low-level debugging is required.

mean either the remote interface or local interface. We will occasionally use
this term in this book.

When you write a local interface, you extend javax.ejb.EJBLocalObject, and
when you write a local home interface, you extend javax.ejb.EJBLocalHome.
Those interfaces are previewed in the following code, and are fully explained
in Appendix E.

public interface javax.ejb.EJBLocalObject {

public javax.ejb.EJBLocalHome getEJBLocalHome()

throws javax.ejb.EJBException;

public Object getPrimaryKey()

throws javax.ejb.EJBException;

public boolean isIdentical(javax.ejb.EJBLocalObject)

throws javax.ejb.EJBException;

public void remove()

throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

public interface javax.ejb.EJBLocalHome {

public void remove(java.lang.Object)

throws javax.ejb.RemoveException, javax.ejb.EJBException;

}

Local interfaces have two important side effects:

1. They only work when you’re calling beans in the same process—for example, if
you have a bank teller session bean that calls a bank account entity bean in the
same application server. But there lies the rub. You cannot call a bean remotely if
your code relies on the local interface. If you decide to switch between a local or
remote call, you must change your code from using the local interface to using the
remote interface. This is an inherent drawback to local interfaces.

2. They marshal parameters by reference rather than by value. While this may speed
up your application because parameters are not copied, it also changes the
semantics of your application. Be sure that you’re aware of this when coding your
clients and beans.

For a while, the primary author of this book (Ed Roman) has been pushing for Sun to
adopt some kind of flag that enables you to switch between local and remote access
to beans without changing code. The idea is that this flag would determine whether
the container-generated interceptor object would behave as a local object or remote
object. We think this is the best approach because (in reality) many developers will
misjudge whether to use remote or local interfaces when designing their object
models, and will have to rewrite parts of their code later in their projects.

EJB Fundamentals 49

The response so far from Sun is that this approach would not work because the se-
mantics of the application change when switching between local interfaces and re-
mote interfaces, due to the differences in pass-by-value versus pass-by-reference. It
would be error-prone to allow developers to “flip a switch” in this respect.

Personally, we don’t agree with Sun. We think developers are smart enough to avoid
these mistakes, and the potential benefits outweigh the drawbacks. Many EJB server
vendors disagree as well. They actually support this local/remote flag idea through
proprietary container tools or vendor-specific files that are separate from your bean.
Thus, if you want to, you may be able to still take advantage of these flags without
sacrificing portability.

Deployment Descriptors

To inform the container about your middleware needs, you as a bean provider
must declare your components’ middleware service requirements in a deploy-
ment descriptor file. For example, you can use a deployment descriptor to
declare how the container should perform lifecycle management, persistence,
transaction control, and security services. The container inspects the deploy-
ment descriptor to fulfill the requirements that you lay out. The deployment
descriptor is the key to implicit middleware.

For example, you can use a deployment descriptor to specify the following
requirements of your bean.

Bean management and lifecycle requirements. These deployment descriptor
settings indicate how the container should manage your beans. For exam-
ple, you specify the name of the bean’s class, whether the bean is a session,
entity, or message-driven bean, and the home interface that generates the
beans.

Persistence requirements (entity beans only). Authors of entity beans use
the deployment descriptors to inform the container about whether the
bean handles its persistence on its own or delegates the persistence to the
EJB container in which it’s deployed.

Transaction requirements. You can also specify transaction settings for beans
in deployment descriptors. These settings specify the bean requirements
for running in a transaction, such as a transaction must start whenever
anyone calls this bean, and the transaction must end after my bean com-
pletes the method call.

Security requirements. Deployment descriptors contain access control entries,
which the beans and container use to enforce access to certain operations.
For example, you can specify who is allowed to use which beans, and even
who is allowed to use each method on a particular bean. You can also spec-

O V E R V I E W50

ify what security roles the beans themselves should run in, which is useful
if the beans need to perform secure operations. For example only bank
executives can call the method to create new bank accounts.

In EJB 2.0, a deployment descriptor is an XML file. You can write these XML
files by hand, or (if you’re lucky) your Integrated Development Environment
(IDE) or EJB container will supply tools to generate the XML deployment
descriptor. In the latter case, you simply might need to step through a wizard
in a Java IDE to generate a deployment descriptor.

As a bean provider, you are responsible for creating a deployment descriptor.
Once your bean is used, other parties can modify its deployment descriptor
settings. For example, an application assembler who is piecing together an
application from beans can tune your deployment descriptor. Similarly, a
deployer who is installing your beans in a container in preparation for a
deployment to go live can tune your deployment descriptor settings as well.
This is all possible because deployment descriptors declare how your beans
should use middleware, rather than you writing code that uses middleware.
Declaring rather than programming enables people without Java knowledge
and without source code access to tweak your components at a later time. This
paradigm becomes an absolute necessity when purchasing EJB components
from a third party because third-party source code is typically not available.
By having a separate, customizable deployment descriptor, you can easily
fine-tune components to a specific deployment environment without chang-
ing source code.

Vendor-Specific Files

Since all EJB server vendors are different, they each have some proprietary
value-added features. The EJB specification does not touch these features, such
as how to configure load-balancing, clustering, monitoring, and so on. There-
fore, each EJB server vendor may require that you include additional files spe-
cific to that vendor, such as XML files, text files, or binary files.

Ejb-Jar File

Once you’ve generated your bean classes, your home interfaces, your remote
interfaces, and your deployment descriptor, it’s time to package them into an
Ejb-jar file. An Ejb-jar file is a compressed file that contains everything we have
described, and it follows the .ZIP compression format. Jar files are convenient,
compact modules for shipping your Java software. The Ejb-jar file creation
process is shown in Figure 2.7.

EJB Fundamentals 51

There are already a number of tools available to autogenerate Ejb-jar files, such
as Java IDEs. You can also generate these files yourself—we’ll show you how
in Chapter 3.

Once you’ve made your Ejb-jar file, your enterprise bean is complete, and it is
a deployable unit within an application server. When they are deployed (per-
haps after being purchased), the tools that EJB container vendors supply are
responsible for decompressing, reading, and extracting the information con-
tained within the Ejb-jar file. From there, the deployer has to perform vendor-
specific tasks, such as generating EJB objects, generating home objects,
importing your bean into the container, and tuning the bean. Support for Ejb-
jar files is a standard, required feature for all EJB tools.

Note that you can have more than one bean in an Ejb-jar file, allowing you to
ship an entire product set of beans in a single jar file.

Summary of Terms

For your convenience, we now list the definitions of each term we’ve
described so far. As you read future chapters, refer to these definitions when-
ever you need clarification. You may want to bookmark this page.

O V E R V I E W52

Enterprise Bean
Classes

Home Interfaces

Remote Interfaces

Deployment
Descriptor

Jar File Creator EJB Jar File

Local Interfaces

Vendor-specific
files

Figure 2.7 Creating an Ejb-jar file.

The enterprise bean instance is a Java object instance of an enterprise bean
class. It contains business method implementations of the methods defined
in the remote and/or local interface. The enterprise bean instance is net-
workless in that it contains no networked logic.

The remote interface is a Java interface that enumerates the business meth-
ods exposed by the enterprise bean class. In EJB, client code always goes
through the remote interface and never interacts with the enterprise bean
instance. The remote interface is network-aware in that the interface obeys
the rules for Java RMI-IIOP.

The local interface is the high-performing version of the remote interface.
Use the local interface when you are calling enterprise beans that live in
the same process. Your calls will not undergo stubs, skeletons, network
calls, or marshaling/demarshaling of parameters.

The EJB object is the container-generated implementation of the remote
interface. The EJB object is a network-aware intermediary between the
client and the bean instance, handling necessary middleware issues. All
client invocations go through the EJB object. The EJB object delegates calls
to enterprise bean instances and implements the remote interface.

The local object is the high-performing version of the EJB object. The local
object implements the local interface.

The home interface is a Java interface that serves as a factory for EJB objects.
Client code that wants to work with EJB objects must use the home inter-
face to generate them. The home interface is network-aware because clients
use it across the network.

The local home interface is the high-performing version of the home
interface.

The home object is the container-generated implementation of the home
interface. The home object is also network-aware, and it obeys RMI-IIOP’s
rules.

The local home object is the high-performing version of the home object.
The local home object implements the local home interface.

The deployment descriptor is an XML file that specifies the middleware
requirements of your bean. You use the deployment descriptor to inform
the container about the implicit middleware you want, such as how to
manage your bean, your bean’s lifecycle needs, your transactional needs,
your persistence needs, and your security needs.

The vendor-specific files allow you to take advantage of vendor-specific
features. These files are not portable between application servers.

EJB Fundamentals 53

The Ejb-jar file is the finished, complete .ZIP file that contains the above
files. It is the unit of deployment and is given to the application server. The
application server unpacks the Ejb-jar file and loads the bean.

Summary

In this chapter, we’ve taken a whirlwind tour of EJB. We started by looking at
what a bean is, and then discussed the different kinds of beans, including ses-
sion, entity, and message-driven beans.

We then took a bean apart into its constituent pieces, and examined each part:
the enterprise bean class, remote interface, local interface, EJB object, local
object, home interface, home object, deployment descriptor, and Ejb-jar file.

Congratulations are in order—you’ve made it to the end of Part I! In these
chapters, you’ve taken the first steps necessary to understanding and master-
ing EJB. Now that you understand the high-level concepts, let’s learn how to
write and use each type of EJB component, starting with a simple Hello World
example.

O V E R V I E W54

C H A P T E R 3

55

In this chapter, we’ll get down-and-dirty and write a real working EJB compo-
nent. Our stateless session bean will be responsible for the mighty task of
returning the string “Hello, World!” to the client. We’ll see how to write each
of the files that make up this bean and how to access it from clients.

This chapter is great for you if you want to discover how to get up and running
with EJB quickly. While this may not be the most functional demonstration of
the power of EJB, it illustrates the basics of EJB programming and is a useful
template for building more complex beans. This will give you the necessary
foundation to understand later chapters on entity beans, session beans, and
message-driven beans.

How to Develop an EJB Component

When building an EJB component, the following is a typical order of
operations:

1. Write the .java files that compose your bean: the component interfaces,
home interfaces, enterprise bean class file, and any helper classes you
might need.

2. Write the deployment descriptor.

3. Compile the .java files from step 1 into .class files.

Writing Your First Bean

4. Using the jar utility, create an Ejb-jar file containing the deployment
descriptor and .class files.

5. Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by running a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

6. Configure your EJB server so that it is properly configured to host your
Ejb-jar file. You might tune things such as database connections, thread
pools, and so on. This step is vendor-specific and might be done through a
Web-based console or by editing a configuration file.

7. Start your EJB container and confirm that it has loaded your Ejb-jar file.

8. Optionally, write a standalone test client .java file. Compile that test client
into a .class file. Run the test client from the command line and have it
exercise your bean’s APIs.

We will apply the above process to our Hello World example. The complete
build scripts are available with the book’s accompanying source code.

The object model for our Hello World example is shown in Figure 3.1.

O V E R V I E W56

Hello World Bean
Implementation

Class

<<interface>>
Hello World

Remote Interface

Hello World
EJB Object

<<interface>>
Hello World

Home Interface

Hello World
Home Object

Supplied by Bean provider (we will write)

Generated for us by container vendor's tools

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.SessionBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB distribution

Comes with Java 2 platform

<<interface>>
Hello World

Local Home Interface

Hello World
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Hello World

Local Interface

Hello World
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

Figure 3.1 Our Hello World object model.

The Remote Interface

First, let’s code up the remote interface. The remote interface duplicates every
business method that our beans expose. The code is shown in Source 3.1.

Things to notice about our remote interface include the following:

■■ We extend javax.ejb.EJBObject. This means the container-generated EJB
object, which implements the remote interface, will contain every method
that the javax.ejb.EJBObject interface defines. This includes a method to
compare two EJB objects, a method to remove an EJB object, and so on.

■■ We have one business method—hello()—which returns the String “Hello,
World!” back to the client. We need to implement this method in our
enterprise bean class. Because the remote interface is an RMI-IIOP remote
interface (it extends java.rmi.Remote), it must throw a remote exception.
This is the only difference between the remote interface’s hello() signature
and our bean’s hello() signature. The exception indicates a networking or
other critical problem.

Writing Your First Bean 57

package examples;

/**

* This is the HelloBean remote interface.

*

* This interface is what clients operate on when

* they interact with EJB objects. The container

* vendor will implement this interface; the

* implemented object is the EJB object, which

* delegates invocations to the actual bean.

*/

public interface Hello extends javax.ejb.EJBObject

{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello() throws java.rmi.RemoteException;

}

Source 3.1 Hello.java.

The Local Interface

Local clients will use our local interface, rather than remote interface, to call
our beans’ methods. It is shown in Source 3.2.

As you can see, there are trivial differences between the local interface and the
remote interface. We extend a different interface, and we don’t throw remote
exceptions.

The Home Interface

Next, let’s put together the home interface. The home interface has methods to
create and destroy EJB objects. The implementation of the home interface is the
home object, which is generated by the container tools.

The code for our home interface is shown in Source 3.3.

Notice the following about our home interface:

■■ The single create() is a factory method that clients use to get a reference to
an EJB object. The create() method is also used to initialize a bean.

O V E R V I E W58

package examples;

/**
* This is the HelloBean local interface.
*
* This interface is what local clients operate
* on when they interact with EJB local objects.
* The container vendor will implement this
* interface; the implemented object is the
* EJB local object, which delegates invocations
* to the actual bean.
*/

public interface HelloLocal extends javax.ejb.EJBLocalObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello();
}

Source 3.2 HelloLocal.java.

■■ The create() method throws a java.rmi.RemoteException and javax.ejb.Create-
Exception. Remote exceptions are necessary side effects of RMI-IIOP
because the home object is a networked RMI-IIOP remote object. The Cre-
ateException is also required in all create() methods. We explain this further
in the following sidebar.

■■ Our home interface extends javax.ejb.EJBHome. This is required for all
home interfaces. EJBHome defines a way to destroy an EJB object, so we
don’t need to write that method signature.

The Local Home Interface

Our local home interface, the higher-performing home interface used by local
clients, is in Source 3.4

The differences between the remote interface and local interface are as follows:

■■ The local home interface extends EJBLocalHome rather than EJBHome. The
EJBLocalHome interface does not extend java.rmi.Remote. This means that
the generated implementation will not be a remote object.

■■ The local home interface does not throw RemoteExceptions.

Writing Your First Bean 59

package examples;

/**
* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server's tools - the
* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.
*
* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome
{

/*
* This method creates the EJB Object.
*
* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,

javax.ejb.CreateException;
}

Source 3.3 HelloHome.java.

O V E R V I E W60

Exceptions and EJB

Every networked object in EJB conforms to the RMI-IIOP standard and must
throw a remote exception. Thus, every method in an EJB object and home object
(such as our hello() method) must throw a remote exception. When such an
exception is thrown, it indicates a special error condition—a network failure,
machine failure, or other catastrophic failure.

But how can your beans throw exceptions that indicate regular, run-of-the-mill
problems, such as bad parameters passed to a business method? EJB comes with
some built-in exceptions to handle this, and it also allows you to define your own
exception types.

More formally, EJB defines the following exception types:
1. A system-level exception is a serious error that involves some critical fail-

ure, such as a database malfunction.
2. An application-level exception is a more routine exception, such as an indi-

cation of bad parameters to a method or a warning of an insufficient bank
account balance to make a withdrawal. For example, in our “Hello, World!”
home interface, we throw a standard javax.ejb.CreateException from home

package examples;

/**

* This is the local home interface for HelloBean.

* This interface is implemented by the EJB Server's

* tools - the implemented object is called the

* local home object, and serves as a factory for

* EJB local objects.

*/

public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

HelloLocal create() throws javax.ejb.CreateException;

}

Source 3.4 HelloLocalHome.java.

Writing Your First Bean 61

interface’s create() method. This is an example of a required application-
level exception, indicating that some ordinary problem occurred during
bean initialization.

Why must we separate the concepts of system-level and application-level
exceptions? The chief reason is that system-level exceptions are handled quite
differently from application-level exceptions.

For example, system-level exceptions are not necessarily thrown back to the
client. Remember that EJB objects—the container-generated wrappers for beans—
are middlemen between a bean’s client and the bean itself. EJB objects have the
ability to intercept any exceptions that beans may throw. This allows EJB objects
to pick and choose which exceptions the client should see. In some cases, if a
bean fails, it may be possible to salvage the client’s invocation and redirect it to
another bean. This is known as transparent fail-over, a quality of service that
some EJB container/server vendors provide. This is an easy service to provide for
stateless beans because there is no lost state when a bean crashes. Some high-
end EJB products even provide transparent fail-over for stateful beans by rou-
tinely checkpointing the stateful bean’s conversational state (see Chapter 14 for
more). In case of a critical, unrecoverable problem, your EJB container may sup-
port professional monitoring systems, alerting a system administrator if a cata-
strophic error occurs.

By way of comparison, application-level exceptions should always be thrown
back to the client. Application-level exceptions indicate a routine problem, and
the exception itself is valuable data that the client needs. For example, we could
notify a client of insufficient funds in a bank account by throwing an application-
level exception. The client would always want to know about this because it is an
application-level problem, not a system-level problem.

Besides correctly routing system-level and application-level exceptions, the EJB
object is responsible for catching all unchecked exceptions (flavors of
java.lang.RuntimeException) that your bean may throw, such as a NullPointer
exception. These are typically not caught by code. Exceptions that are unchecked
in the bean could leave the bean in an abnormal state because the bean is not
expecting to handle such an exception. In this scenario, the EJB container inter-
cepts the exception and performs some action, such as throwing the exception
back to the client as a remote exception. It also probably stops using that bean
because the bean is in an undefined state.

The following two rules of thumb should help you with exceptions.
1. Application-level exceptions are always thrown back to the client. This

includes any exception the bean defines. It also includes the javax.ejb.
CreateException for creating beans (and the javax.ejb.FindException for
entity beans, which we’ll see in Chapters 5 through 7).

The Bean Class

Now let’s look at the bean class itself. The code is shown in Source 3.5.

This is just about the most basic bean class possible. Notice the following:

■■ Our bean implements the javax.ejb.SessionBean interface, which makes it a
session bean. This interface defines a few required methods that you must
fill in. The container uses these management methods to interact with the
bean, calling them periodically to alert the bean to important events. For
example, the container will alert the bean when it is being initialized and
when it is being destroyed. These callbacks are not intended for client use, so
you will never call them directly—only your EJB container will. We’ll learn
about the specifics of these management methods in the pages to come.

O V E R V I E W62

What Happens During create() and remove()

As we’ve learned, the container, rather than a client, creates and destroys your
beans. But if the container is responsible for bean life cycle, then why does the
home interface and local home interface specify create() and remove() methods?
What you must remember is that these methods are for creating and destroying
EJB objects. This may not correspond to the actual creation and destruction of
beans. The client shouldn’t care whether the actual bean is created or destroyed—
all the client code cares about is that the client has an EJB object to invoke. The
fact that beans are pooled and reused behind the EJB object is irrelevant.

So when debugging your EJB applications, don’t be alarmed if your bean isn’t
being created or destroyed when you call create() or remove() on the home
object or local home object. Depending on your container’s policy, your beans
may be pooled and reused, with the container creating and destroying at will.

2. When system-level exceptions occur, the EJB container can do anything it
wants to: page a system administrator with an alert, send an email to a
third party, or throw the exception back to the client. Your bean can throw a
system-level exception as either an RMI-IIOP remote exception or an
unchecked RuntimeException. If the exception is thrown to the client, it is
always thrown as a remote exception or a subclass of it.

Exceptions also have an impact on transactions. We’ll learn more about this
effect in Chapter 10.

Writing Your First Bean 63

package examples;

/**

* Demonstration stateless session bean.

*/

public class HelloBean implements javax.ejb.SessionBean {

private SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {

System.out.println("ejbCreate()");

}

public void ejbRemove() {

System.out.println("ejbRemove()");

}

public void ejbActivate() {

System.out.println("ejbActivate()");

}

public void ejbPassivate() {

System.out.println("ejbPassivate()");

}

public void setSessionContext(javax.ejb.SessionContext ctx) {

this.ctx = ctx;

}

//

// Business methods

//

public String hello() {

System.out.println("hello()");

return "Hello, World!";

}

}

Source 3.5 HelloBean.java.

■■ The bean has an ejbCreate() method which matches the home object’s cre-
ate() method, and takes no parameters.

■■ We have one business method, hello(). It returns Hello, World! to the
client.

■■ The ejbActivate() and ejbPassivate() methods do not apply to stateless ses-
sion beans, and so we leave these methods empty. We’ll see what these
methods mean and what to use them for later in this chapter.

■■ When we destroy the bean, there’s nothing to clean up, so we have a very
simple ejbRemove() method.

We also have a method called setSessionContext(). This method is explained in
the following sidebar.

O V E R V I E W64

EJBContexts: Your Gateway to the Container

Since your enterprise beans live in a managed container, the container is free to
call your EJB components’ methods at its leisure. But what if your bean needs to
query the container for information about its current status? For example, inside
your bean, you may want to access the security credentials of the user currently
calling your bean’s method.

The container houses all of this information in one object, called an EJB con-
text object. An EJB context object is your gateway to the container. EJB contexts
are physical parts containers and can be accessed from within your beans. Thus,
a context represents a way for beans to perform callbacks to the container. These
callbacks help beans both ascertain their current status and modify their current
status. This is shown in Figure 3.2.

The motivation behind a context is to encapsulate the bean’s domain in one
compact object. Note that a bean’s status may change over the bean’s life cycle,
and thus this context object can dynamically change over time as well. At run-
time, the container is responsible for changing the context to reflect any status
changes, such as the bean becoming involved in a new transaction.

Here is what the javax.ejb.EJBContext interface looks like (thrown exceptions
omitted):

public interface javax.ejb.EJBContext

{

/*

* Call these from within your bean to access

* your own home object or local home object.

*

* You can use them to create, destroy, or

* find EJB objects and EJB local objects

Writing Your First Bean 65

EJB Container/Server

Enterprise
Bean

EJB Object
3: Business Method

2: Store Context
in Private Variable

EJB Context
Object

4: Query the Container for
Environment Information

1: Give Context to Bean

Figure 3.2 EJB Contexts.

* of your own bean class type.

*/

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

/*

* These are transaction methods - see Chapter 10

*/

public boolean getRollbackOnly();

public void setRollbackOnly();

public javax.transaction.UserTransaction getUserTransaction();

/*

* These are security methods - see Chapter 9

*/

public boolean isCallerInRole(java.lang.String);

public java.security.Principal getCallerPrincipal();

}

An EJB context contains callbacks useful for session beans, entity beans, and
message-driven beans. In comparison, a session context, entity context, and
message-driven context are specific EJB contexts used only for session beans,
entity beans, and message-driven beans.

The container associates your bean with a context by calling
setSessionContext, setEntityContext, or setMessageDrivenContext, depending on
your bean type. When you define each of these methods, you should store the
context away in a member variable so the context can be queried later, as shown
in Source 3.5.

The Deployment Descriptor

Next, we need to generate a deployment descriptor, which describes our bean’s
middleware requirements to the container. Deployment descriptors are one of
the key features of EJB because they allow you to declaratively specify attributes
on your beans, rather than programming this functionality into the bean itself.

Physically, a deployment descriptor is an XML document. Your EJB container,
IDE environment, or other tool (such as a UML editor that can generate EJB
code) should supply tools to help you generate such a deployment descriptor.

Our deployment descriptor is shown in Source 3.6.

Many different settings make up a deployment descriptor. For a full deploy-
ment descriptor reference, see Appendix C. For now, here is an explanation of
our session bean descriptor:

<ejb-name> The nickname for this particular bean. Can be used later in the
deployment descriptor to refer back to this bean to set additional settings.

<home> The fully qualified name of the home interface.

<remote> The fully qualified name of the remote interface.

<local-home> The fully qualified name of the local home interface.

O V E R V I E W66

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" " http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Hello</ejb-name>

<home>examples.HelloHome</home>

<remote>examples.Hello</remote>

<local-home>examples.HelloLocalHome</local-home>

<local>examples.HelloLocal</local>

<ejb-class>examples.HelloBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Source 3.6 ejb-jar.xml.

<local> The fully qualified name of the local interface.

<ejb-class> The fully qualified name of the enterprise bean class.

<session-type> Whether the session bean is a stateful or stateless session
bean.

<transaction-type> Ignore for now—see Chapter 10 for more details on
transactions.

The Vendor-Specific Files

Next in our stateless session bean are vendor-specific files. These files exist
because the EJB specification can’t cover everything; vendors differentiate
their products in areas such as instance pooling algorithms, clustering algo-
rithms, and so on. The vendor-specific files are not portable and can use any
file format, including XML, flat file, or binary. In fact, it may not even exist as
files—the settings could be stored in some database with a GUI on top of it.

The source code that accompanies this book shows an example of a vendor-
specific file.

The Ejb-jar File

Now that we’ve written all the necessary files for our component, we need to
package all the files together in an Ejb-jar file. If you’re using a development
environment supporting EJB, the development environment may contain an
automated way to generate the Ejb-jar file for you. We can generate it manu-
ally as follows:

jar cf HelloWorld.jar *

The asterisk indicates the files to include in the jar—the bean class, home inter-
face, local home interface, remote interface, local interface, deployment
descriptor, and possibly vendor-specific files (depending on your container’s
policy).

The following is the folder structure within the Ejb-jar file:

META-INF/MANIFEST.MF

META-INF/ejb-jar.xml

examples/HelloBean.class

examples/HelloLocalHome.class

examples/HelloLocal.class

examples/Hello.class

Writing Your First Bean 67

The files must be in properly named subdirectories of the current directory.
For example, our Hello.class file is located in examples\Hello.class, below the
current directory. You must store your classes in a directory corresponding to
the package that the class belongs to, or the JVM will be unable to locate your
classes when it searches your jar. The ejb-jar.xml file must be placed in the
META-INF subfolder. The container consults that file first when opening the
Ejb-jar file to figure out what beans are inside the jar.

The MANIFEST.MF file is a listing of the files within the Ejb-jar file. It is auto-
generated by the jar utility. You don’t need to worry about this file.

Deploying the Bean

Finally, we’re ready to deploy our bean in an EJB container. This step varies
from container to container. When you reach this point, consult your con-
tainer’s documentation on how to deploy a bean. This could be anything from
running a command-line tool on your Ejb-jar file to copying your Ejb-jar file
into a well-known folder where your application server detects its presence.
For an example of deploying a bean, see the source code accompanying this
book.

When deploying an Ejb-jar file into a container, the following steps are usually
performed:

■■ The Ejb-jar file is verified. The container checks that the enterprise bean
class, the remote interface, and other items are valid. Any commercial tool
should report intelligent errors back to you, such as, “You need to define
an ejbCreate() method in your bean.”

■■ The container tool generates an EJB object and home object for you.

■■ The container tool generates any necessary RMI-IIOP stubs and skeletons.
(See Appendix A for more information about stubs and skeletons.)

Once you’ve performed these steps, start up your EJB container (if it isn’t
already running). Most products output a server log or have a GUI to view the
beans that are deployed. Make sure that your container is indeed making your
bean available. It should tell you it did so.

The Optional EJB Client JAR file

One common question deployers ask is, “Which classes do I need to deploy
with my client applications that call enterprise beans?” EJB allows you to spec-

O V E R V I E W68

ify the exact classes you need with an Ejb-client JAR file. An Ejb-client JAR file
is an archive of classes that must be deployed for any clients of a particular Ejb-
jar file. You specify the name of the Ejb-client jar file in your XML deployment
descriptor, as shown in Source 3.7.

When you build an Ejb-client jar file, you should bundle only the files needed
by the client. This typically includes interfaces, helper classes, and stubs.

You might find Ejb-client jar files useful for saving hard disk space, so you can
avoid copying the entire Ejb-jar file onto the client machine. This might be use-
ful if you’re in an applet environment.

However, Ejb-client jar files are completely optional and most deployments
will not make use of them. This is because hard disk space is usually not a
problem, especially if the client of your application server is a Web server.
Laziness will usually prevail.

Understanding How to Call Beans

We now take a look at the other half of the world—the client side. We are now
customers of the beans’ business logic, and we are trying to solve some real-
world problem by using one or more beans together. There are two different
kinds of clients.

Writing Your First Bean 69

...

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<!--

This is an optional instruction to the deployer that

he must make the this jar file accessible to

clients of these beans. If this instruction does not

exist, the deployer must make the entire Ejb-jar file

accessible to clients.

-->

<ejb-client-jar>HelloClient.jar</ejb-client-jar>

</ejb-jar>

Source 3.7 Declaring an Ejb-client jar file within a deployment descriptor.

Java RMI-IIOP based clients. These clients use the Java Naming and Directory
Interface (JNDI) to look up objects over a network, and they use the Java
Transaction API (JTA) to control transactions.

CORBA clients. Clients can also be written to the CORBA standard. This
would primarily be useful if you want to call your EJB components using
another language, such as C��. CORBA clients use the CORBA Naming
Service (COS Naming) to look up objects over the network, and they use
the CORBA’s Object Transaction Service (OTS) to control transactions.

Whether you’re using CORBA or RMI-IIOP, your client code typically looks
like this:

1. Look up a home object.

2. Use the home object to create an EJB object.

3. Call business methods on the EJB object.

4. Remove the EJB object.

You’re about to see how to call EJB components from RMI-IIOP clients. This is
the paradigm we’ll use throughout this book. If you’re interested in CORBA
clients, see Appendix B.

Looking up a Home Object

One of the goals of EJB is that your application code should be “write once, run
anywhere.” If you deploy a bean onto one machine and then switch it for a dif-
ferent machine, your code should not change because it is location transparent.

EJB achieves location transparency by leveraging naming and directory services.
Naming and directory services are products that store and look up resources
across a network. Some examples of directory service products are the iPlanet
Directory Server, Microsoft’s Active Directory, and IBM’s Lotus Notes Domino
Server.

Corporations traditionally have used naming and directory services to store
usernames, passwords, machine locations, printer locations, and so on. EJB
servers exploit naming services to store location information for resources that
your application code uses in an enterprise deployment. These resources
could be EJB home objects, enterprise bean environment properties, database
drivers, message service drivers, and other resources. By using naming ser-
vices, you can write application code that does not depend on specific machine
names or locations. This is all part of EJB’s location transparency, and it keeps
your code portable. If you decide later that resources should be located else-
where, your code does not need to be rebuilt because the naming service can

O V E R V I E W70

simply be updated to reflect the new resource locations. This greatly enhances
maintenance of a multitier deployment that may evolve over time. This
becomes absolutely necessary when purchasing prewritten software (such as
enterprise beans), because your purchased components’ source code will
likely not be made available to you to change.

While naming and directory servers have typically run standalone, they can also run
in the same process as the application server. Many containers are written in Java,
and so their naming and directory services are just bunches of Java classes that run
inside of the container.

Unless you’re using CORBA, the de facto API used to access naming and
directory services is the Java Naming and Directory Interface (JNDI), which
we explain in Appendix A. JNDI adds value to your enterprise deployments
by providing a standard interface for locating users, machines, networks,
objects, and services. For example, you can use the JNDI to locate a printer on
your corporate intranet. You can also use it to locate a Java object or to connect
with a database. In EJB, JNDI is used to lookup home objects. JNDI is also use-
ful for locating resources across an enterprise deployment, including environ-
ment properties, database resources, and more; we’ll show you how to
leverage JNDI for these purposes in Chapter 9.

How to Use JNDI to Locate Home Objects

To achieve location transparency, EJB containers mask the specific locations of
home objects from your enterprise beans’ client code. Clients do not hard-code
the machine names that home objects reside on; rather, they use JNDI to lookup
home objects. Home objects are physically located somewhere on the network
—perhaps in the address space of an EJB container residing on machine #1, or
perhaps on a container residing on machine #2. As a developer who writes
client code to use beans, you don’t care.

For clients to locate a home object, you must provide a nickname for your
bean’s home object. Clients will use this nickname to identify the home object
it wants. For example, our Hello World example might have a nickname Hel-
loHome. You specify this nickname using the proprietary vendor-specific files
that are bundled with your bean.

When you deploy your bean into the container, the container automatically
binds the nickname HelloHome to the home object. Then any client on any
machine across a multitier deployment can use that nickname to find home
objects, without regard to physical machine locations. Clients use the JNDI
API to do this. JNDI goes over the network to some naming service, or JNDI

Writing Your First Bean 71

tree, to look for the home object, perhaps contacting one or more naming ser-
vices in the process. Eventually the home object is found, and a reference to it
is returned to the client. This is shown in Figure 3.3.

The complete client source code is shown in Source 3.8.

O V E R V I E W72

EJB Container/Server

4: Create EJB Object

3: Create a New
EJB Object

Home
Interface

Remote
Interface

Client

Home Object

EJB Object

Naming Service
Such as LDAP

1: Retrieve
Home Object
Reference

2: Return
Home Object
Reference

JNDI

6: Invoke Business Method

5: Return
EJB Object
Reference

Enterprise Bean

7: Delegate Request to Bean

Figure 3.3 Acquiring a reference to a home object.

Writing Your First Bean 73

package examples;

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient {

public static void main(String[] args) throws Exception {

/*

* Setup properties for JNDI initialization.

*

* These properties will be read-in from

* the command-line.

*/

Properties props = System.getProperties();

/*

* Obtain the JNDI initial context.

*

* The initial context is a starting point for

* connecting to a JNDI tree. We choose our JNDI

* driver, the network location of the server, etc.

* by passing in the environment properties.

*/

Context ctx = new InitialContext(props);

/*

* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup("HelloHome");

/*

* Home objects are RMI-IIOP objects, and so

* they must be cast into RMI-IIOP objects

* using a special RMI-IIOP cast.

*

* See Appendix A for more details on this.

*/

HelloHome home = (HelloHome)

javax.rmi.PortableRemoteObject.narrow(

obj, HelloHome.class);

Source 3.8 HelloClient.java.

The client code is self-explanatory.

Running the System

To try the deployment, you first must bring up the application server. This
step varies depending on your vendor. Again, since we want to keep this
book vendor-neutral, please see the book’s accompanying source code for an
example.

Next, run the client application. When running the client, you need to supply
the client with JNDI environment information. As we explain in Appendix A,
JNDI requires a minimum of two properties to retrieve an initial context:

■■ The name of the initial context factory. An example is
com.sun.jndi.ldap.LdapCtxFactory.

■■ The provider URL, indicating the location of the JNDI tree to use. An
example is ldap://louvre:389/o�Airius.com.

O V E R V I E W74

/*

* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create();

/*

* Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

*

* We then print the result to the screen.

*/

System.out.println(hello.hello());

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove();

}

}

Source 3.8 HelloClient.java. (continued)

The actual parameters you need should be part of your EJB container’s docu-
mentation. See the book’s accompanying source code for examples of this.

For your EJB client code to work, you must take care to distribute the correct class
files on the right machines. If remote client code uses home interfaces and remote
interfaces, then you must deploy those class files in your client environment. And
because clients never directly access your bean implementation, you should not de-
ploy your bean classes in your client environment.

The Server-Side Output
When we run the client, our container shows the following debug log. (Debug
logs are great for seeing what your enterprise beans are doing.)

setSessionContext()

ejbCreate()

hello()

ejbRemove()

As you can see, the container associated our bean with a session context, called
create(), delegated a business method to the bean, and then called remove().
Note that some containers may give slightly different output than others—it’s
all implementation-specific and part of EJB product differentiation. Keep this
in mind when debugging your beans.

The Client-Side Output
After running the client, you should see the following output:

Hello, World!

Implementing Component Interfaces

We wrap up this chapter with a quick design strategy. As you probably
noticed, our enterprise bean class does not implement its own component
interface (either remote interface or local interface). But why not? Doesn’t the
component interface seem like a natural fit for the interface to your bean? After
all, the component interface defines every business method of the bean. Imple-
menting your component interface would be a nifty way to perform compile-
time checking to make sure your bean’s method signature matches your
component interface’s signature.

Writing Your First Bean 75

There are two good reasons not to implement your bean’s component interface:

Reason 1. Component interfaces extend interfaces defined by Sun, such as
javax.ejb.EJBObject or javax.ejb.EJBLocalObject. These superinterfaces define
additional methods intended for client use, and you’d therefore have
provide no-op implementations of those methods in your bean. Those
methods have no place in your bean class.

Reason 2. Let’s assume your enterprise bean wants to call a method on a dif-
ferent enterprise bean, and you want to pass a reference to your bean as a
parameter to the other bean’s method (similar to passing the this parameter
in Java). How can you do this in EJB?

Remember that all clients call methods on EJB objects, not beans. Thus, if your
bean calls another bean, you must pass a reference to your bean’s EJB object,
rather than a reference to your bean. The other bean should operate on your
EJB object, and not your bean, because the other bean is a client, just like any
other client, and all clients must go through EJB objects.

The danger here is if your enterprise bean class implements your EJB object’s
remote interface. You could accidentally pass a reference to the bean itself,
rather than pass a reference to the bean’s EJB object. Because your bean imple-
ments the same interface as the EJB object, the compiler would let you pass the
bean itself as a this parameter, which is an error.

A Solution
There is an alternative way to preserve compile-time checks of your method
signatures. The approach is to contain your bean’s business method signatures
within a common superinterface that your remote interface extends and your
bean implements. You can think of this superinterface as a business interface
that defines your business methods and is independent of EJB. The following
example illustrates this concept:

// Business interface

public interface HelloBusinessMethods {

public String hello() throws java.rmi.RemoteException;

}

// EJB remote interface

public interface HelloRemote extends javax.ejb.EJBObject,

HelloBusinessMethods {

}

// EJB local interface

public interface HelloLocal extends javax.ejb.EJBLocalObject,

HelloBusinessMethods {

}

// Bean implementation

O V E R V I E W76

public class HelloBean implements SessionBean, HelloBusinessMethods {

public String hello() {

return "Hello, World!";

}

< . . . define other required callbacks . . . >

}

The only problem with this approach is that the local interface throws remote
exceptions. If you can live with that, then this design strategy works.

Summary

In this chapter, we learned how to write the component interfaces, home inter-
face, enterprise bean class, deployment descriptor, and Ejb-jar file. You also
saw how to call beans using JNDI and RMI-IIOP. Congratulations are in order:
It took awhile, but you’ve successfully completed your first Enterprise Jav-
aBeans deployment!

Writing Your First Bean 77

The Triad of Beans

PA RTTWO

In Part 2, we’ll focus on the development details for implementing an EJB
application. We’ll learn about the three types of enterprise beans: session beans
(Chapter 4), entity beans (Chapter 5), and message-driven beans (Chapter 8).
We’ll also explore their subtypes: stateless session beans, stateful session
beans, bean-managed persistent entity beans (Chapter 6), and container-
managed persistent entity beans (Chapter 7). Not only will we see each of
these conceptually, but we’ll also write an example for each bean type. We’ll
end Part 2 with a discussion of container-provided services (Chapter 9), such
as security, the environment, and calling beans from other beans.

Part 2 is essential for those of you who are ready to delve into EJB program-
ming fundamentals. It is essential groundwork to prepare yourself for the
more advanced topics, such as transactions and EJB design strategies, which
are coming in Part 3.

T H E T R I A D O F B E A N S80

C H A P T E R 4

81

A session bean represents work being performed for client code that is calling it.
Session beans are business process objects. They implement business logic,
business rules, algorithms, and workflow. For example, a session bean can
perform price quoting, order entry, video compression, banking transactions,
stock trades, database operations, complex calculations, and more. They are
reusable components that contain logic for business processes.

Let’s examine the characteristics of session beans in detail and then code up a
stateful session bean.

Session Bean Lifetime

A chief difference between session beans and entity beans is the scope of their
lives. A session bean is a relatively short-lived component. It has roughly the
lifetime equivalent of a session or lifetime of the client code that is calling the
session bean.

For example, if the client code contacted a session bean to perform order entry
logic, the EJB container is responsible for creating an instance of that session
bean component. When the client later disconnects, the application server may
destroy the session bean instance.

A client’s session duration could be as long as a browser window is open, per-
haps connecting to an e-commerce site with deployed session beans. It could

Introduction to Session Beans

also be as long as your Java applet is running, as long as a standalone applica-
tion is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer is empowered to destroy session beans if clients time out. If your client
code is using your beans for 10 minutes, your session beans might live for
minutes or hours, but probably not weeks, months, or years. Typically ses-
sion beans do not survive application server crashes, nor do they survive
machine crashes. They are in-memory objects that live and die with their sur-
rounding environments.

In contrast, entity beans can live for months or even years because entity beans
are persistent objects. Entity beans are part of a durable, permanent storage,
such as a database. Entity beans can be constructed in memory from database
data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved to
permanent storage, whereas entity beans are. Note that session beans can per-
form database operations, but the session bean itself is not a persistent object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a
number of method calls between the client and the bean. A conversation
spans a business process for the client, such as configuring a frame-relay
switch, purchasing goods over the Internet, or entering information about a
new customer.

The two subtypes of session beans are stateful session beans and stateless session
beans. Each is used to model different types of these conversations.

Stateful Session Beans
Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular

T H E T R I A D O F B E A N S82

client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation.

Stateless Session Beans
Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold multimethod conver-
sations with their clients. After each method call, the container may choose to
destroy a stateless session bean, or recreate it, clearing itself out of all informa-
tion pertaining to past invocations. It also may choose to keep your instance
around, perhaps reusing it for all clients who want to use the same session
bean class. The exact algorithm is container specific. The takeaway point is
this: Expect your bean to forget everything after each method call, and thus
retain no conversational state from method to method. If your bean happens to
hang around longer, then great—but that’s your container’s decision, and you
shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

Stateless really means no conversational state. Stateless session beans can contain
state that is not specific to any one client, such as a database connection factory that
all clients would use. You can keep this around in a private variable. So long as
you’re willing to lose the data in your private variable at any time, you’ll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compres-
sion of audio or video data. The client could pass in a buffer of uncompressed
data, as well as a compression factor. The bean returns a compressed buffer
and is then available to service a different client. The business process spanned

Introduction to Session Beans 83

one method request. The bean does not retain any state from previous
requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answer, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call! We
show this in Figure 4.1.

Special Characteristics of Stateful
Session Beans

So far, we’ve seen session beans in general. We also coded up a simple stateless
session bean in Chapter 3. Now let’s look at the trickier flavor, stateful session
beans.

T H E T R I A D O F B E A N S84

Remote
Interface

Client

Invoke()

Bean

Bean Bean

Bean
Invoke()

Stateless Bean Pool

EJB Object

Figure 4.1 Stateless session bean pooling.

Achieving the Effect of Pooling
with Stateful Beans

With stateful session beans, pooling is not as simple with stateful session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of resources available, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the EJB server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus. When-
ever you run an application on a computer, you have only a fixed amount of
physical memory in which to run. The operating system still must provide a
way for many applications to run, even if the applications take up more aggre-
gate memory than is available physically. To provide for this, operating sys-
tems use your hard disk as an extension of physical memory. This effectively
extends your system’s amount of virtual memory. When an application goes
idle, its memory can be swapped out from physical memory and onto the hard
disk. When the application becomes active again, any needed data is swapped
in from the hard disk and into physical memory. This type of swapping hap-
pens often when switching between applications (called context switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But
that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, EJB does indeed support the effect of pooling stateful session beans. Only
a few instances can be in memory when there are actually many clients. But
this pooling effect does not come for free—the passivation/activation steps

Introduction to Session Beans 85

could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
Least Recently Used (LRU) passivation strategy, which simply means to passi-
vate the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a method
call. It’s up to the container to decide when passivation makes sense. There is
one exception to this rule: Any bean involved in a transaction (see Chapter 10)
cannot be passivated until the transaction completes.

To activate beans, most containers usually use a just-in-time algorithm. Just in
time means that beans should be activated on demand, as client requests come
in. If a client request comes in, but that client’s conversation has been passi-
vated, the container activates the bean on demand, reading the passivated
state back into memory.

In general, passivation and activation are not useful for stateless session beans.
Stateless beans do not have any state to passivate/activate, so the container
can simply destroy stateless beans arbitrarily.

The Rules Governing
Conversational State

More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to stor-
age is read back into memory and converted to in-memory bean data. What
makes this whole process work is the javax.ejb.EnterpriseBean interface extends
java.io.Serializable, and every enterprise bean class indirectly implements this
interface.

For every Java object that is part of a bean’s conversational state, the previous
algorithm is reapplied recursively on those objects. Thus, object serialization
constructs an entire graph of data referred to by the main bean. Note that while
your beans must follow the rules for object serialization, the EJB container

T H E T R I A D O F B E A N S86

itself does not necessarily need to use the default serialization protocol; it
could use a custom protocol to allow for flexibility and differentiation between
container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if the following apply:

■■ The member variable is a nontransient primitive type, or

■■ The member variable is a nontransient Java object (extends
java.lang.Object)

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

■■ EJB object references

■■ Home object references

■■ EJB context references (see Chapter 9)

■■ JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

public class MySessionBean implements javax.ejb.SessionBean

{

// State variables

private Long myLong;

private MySessionBeanRemoteInterface ejbObject;

private MySessionBeanHomeInterface homeObject;

private javax.ejb.SessionContext mySessionContext;

private javax.naming.Context envContext;

// EJB-required methods (fill in as necessary)

public void setSessionContext(SessionContext ctx) {}

public void ejbCreate() {}

public void ejbPassivate() {}

public void ejbActivate() {}

public void ejbRemove() {}

// Business methods

. . .

}

The container must retain the values of the preceding member variables across
passivation and activation operations.

Activation and Passivation Callbacks
Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The

Introduction to Session Beans 87

container informs the bean that it’s about to perform passivation by calling the
bean’s required ejbPassivate() callback method. ejbPassivate() is a warning to the
bean that its held conversational state is about to be swapped out.

It’s important that the container inform the bean using ejbPassivate() so that the
bean can relinquish held resources. These held resources include database con-
nections, open sockets, open files, or other resources that do not make sense to
be saved to disk or cannot be transparently saved using object serialization.
The EJB container calls the ejbPassivate() method to give the bean a chance to
release these resources or deal with the resources as the bean sees fit. Once the
container’s ejbPassivate() callback method into your bean is complete, your
bean must be in a state suitable for passivation. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

public void ejbPassivate() {

<close socket connections, etc . . . >

}

. . .

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on an EJB object that
does not have a bean tied to it in memory. The container’s pool size of beans
has been reached. Thus, the container needs to passivate a bean before han-
dling this client’s request.

Exactly the opposite process occurs during the activation process. The serial-
ized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s required ejbActivate() method. ejbActivate() gives
the bean a chance to restore the open resources it released during ejbPassivate().
For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

public void ejbActivate() {

<open socket connections, etc . . . >

}

. . .

}

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

You probably don’t need to worry about implementing ejbPassivate() and
ejbActivate() unless you are using open resources, such as socket connections or

T H E T R I A D O F B E A N S88

database connections, that must be reestablished after activation. In most
cases, you can simply leave these methods empty.

Method Implementation Summary
Table 4.1 summarizes how to develop session bean classes.

A Simple Stateful Session Bean
Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

Introduction to Session Beans 89

Storage

Remote
Interface

Client

EJB Object Enterprise Bean

1: Invoke Business Method

5: Store
Passivated
Bean State

2: Pick the Least
Recently Used Bean

3: Call ejbPassivate()

4: Serialize the Bean State

Other Enterprise
Beans

A typical stateful bean passivation
scenario. The client has invoked a
method on an EJB object that does
not have a bean tied to it in memory.
The container's pool size of beans has
been reached. Thus the container
needs to passivate a bean before
handling this client's request.

Figure 4.2 Passivation of a stateful bean.

T H E T R I A D O F B E A N S90

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
(S

TA
TE

LE
S

S
 S

ES
S

IO
N

 B
EA

N
S

)
(S

TA
TE

FU
L

S
ES

S
IO

N
 B

EA
N

S
)

se
tS

es
si

on
C

on
te

xt
As

so
ci

at
es

 y
ou

r
be

an

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a
 m

em
be

r
St

or
e

th
e

co
nt

ex
t a

w
ay

 in
 a

 m
em

be
r

(S
es

si
on

C
on

te
xt

 c
tx

)
w

ith
 a

 s
es

si
on

 c
on

te
xt

.
va

ria
bl

e
so

 th
e

co
nt

ex
t c

an
 b

e
qu

er
ie

d
va

ria
bl

e
so

 th
e

co
nt

ex
t c

an
 b

e
qu

er
ie

d
Yo

ur
 b

ea
n

ca
n

qu
er

y
la

te
r.

la
te

r.
th

e
co

nt
ex

t a
bo

ut
 it

s
cu

rr
en

t t
ra

ns
ac

tio
na

l
st

at
e,

 it
s

cu
rr

en
t s

ec
ur

ity

st
at

e,
 a

nd
 m

or
e.

ej
bC

re
at

e
..

.(
..

.)
In

iti
al

iz
es

 y
ou

r
se

ss
io

n
Pe

rf
or

m
 a

ny
 in

iti
al

iz
at

io
n

yo
ur

 b
ea

n
Pe

rf
or

m
 a

ny
 in

iti
al

iz
at

io
n

yo
ur

 b
ea

n
be

an
.

ne
ed

s,
 s

uc
h

as
 s

et
tin

g
m

em
be

r
ne

ed
s,

 s
uc

h
as

 s
et

tin
g

m
em

be
r

va
ria

bl
es

va

ria
bl

es
 to

 th
e

ar
gu

m
en

t v
al

ue
s

to
 th

e
ar

gu
m

en
t v

al
ue

s
pa

ss
ed

 in
. N

ot
e:

pa

ss
ed

 in
. N

ot
e:

 Y
ou

 c
an

 d
ef

in
e

Yo
u

ca
n

de
fin

e
on

ly
 a

 s
in

gl
e

em
pt

y
se

ve
ra

le
jb

C
re

at
e

..
.(

..
.)

m
et

ho
ds

,
ej

bC
re

at
e(

)
m

et
ho

d
w

ith
 n

o
pa

ra
m

et
er

s.

an
d

ea
ch

 c
an

 ta
ke

 d
iff

er
en

t a
rg

um
en

ts
.

If
it

ha
d

pa
ra

m
et

er
s,

 a
nd

 t
he

 b
ea

n
Yo

u
m

us
t p

ro
vi

de
 a

t l
ea

st
 o

ne

in
iti

al
iz

ed
 it

se
lf

to
 th

os
e

pa
ra

m
et

er
s,

 t
he

ej

bC
re

at
e

..
.(

..
.)

m
et

ho
d

in
 y

ou
r

be
an

 w
ou

ld
 n

ev
er

 r
em

em
be

r
w

ha
t

it
se

ss
io

n
be

an
.

in
iti

al
iz

ed
 it

se
lf

to
 u

po
n

su
bs

eq
ue

nt
 c

al
ls

,
si

nc
e

it
is

 s
ta

te
le

ss
!

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly

Re
le

as
e

an
y

re
so

ur
ce

s
yo

ur
 b

ea
n

m
ay

U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
be

fo
re

 y
ou

r
be

an
 is

be

 h
ol

di
ng

.
co

nv
er

sa
tio

na
l s

ta
te

; l
ea

ve
 e

m
pt

y.
pa

ss
iv

at
ed

 (
sw

ap
pe

d
ou

t t
o

di
sk

 b
ec

au
se

th

er
e

ar
e

to
o

m
an

y
in

st
an

tia
te

d
be

an
s)

.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly

Ac
qu

ire
 a

ny
 r

es
ou

rc
es

 y
ou

r
be

an

U
nu

se
d

be
ca

us
e

th
er

e
is

 n
o

be
fo

re
 y

ou
r

be
an

 is

ne
ed

s,
 s

uc
h

as
 th

os
e

re
le

as
ed

 d
ur

in
g

co
nv

er
sa

tio
na

l s
ta

te
; l

ea
ve

 e
m

pt
y.

ac
tiv

at
ed

 (
sw

ap
pe

d
in

ej

bP
as

si
va

te
()

.
fr

om
 d

is
k

be
ca

us
e

a
cl

ie
nt

 n
ee

ds
 y

ou
r

be
an

).

ej
bR

em
ov

e(
)

C
al

le
d

by
 th

e
co

nt
ai

ne
r

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

im
m

ed
ia

te
ly

 b
ef

or
e

Fr
ee

 a
ll

re
so

ur
ce

s
yo

u
m

ay
 h

av
e

Fr
ee

 a
ll

re
so

ur
ce

s
yo

u
m

ay
 h

av
e

yo
ur

 b
ea

n
is

 r
em

ov
ed

al

lo
ca

te
d.

al
lo

ca
te

d.
fr

om
 m

em
or

y.

Ta
b

le
 4

.1
Re

qu
ire

d
M

et
ho

ds
 fo

r
Se

ss
io

n
B

ea
n

C
la

ss
es

Introduction to Session Beans 91

The Count Bean’s Remote Interface

First let’s define our bean’s remote interface. The code is shown in Source 4.1.

Our remote interface defines a single business method, count(), which we will
implement in the enterprise bean class.

The Count Bean

Our bean implementation has one business method, count(), which is respon-
sible for incrementing an integer member variable, called val. The conversa-
tional state is the val member variable. We show the code for our counter bean
in Source 4.2.

Storage

Remote
Interface

Client

EJB Object Enterprise Bean

1: Invoke Business Method

2: Retrieve
Passivated
Bean State

3: Reconstruct Bean

4: Call ejbActivate()

5: Invoke Business Method

Other Enterprise
Beans

A typical just-in-time stateful
bean activation scenario. The
client has invoked a method on
an EJB object whose stateful
bean had been passivated.

Figure 4.3 Activation of a stateful bean.

T H E T R I A D O F B E A N S92

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* These are CountBean’s business logic methods.

*

* This interface is what clients operate on when they

* interact with EJB objects. The container vendor will

* implement this interface; the implemented object is

* the EJB object, which delegates invocations to the

* actual bean.

*/

public interface Count extends EJBObject {

/**

* Increments the int stored as conversational state

*/

public int count() throws RemoteException;

}

Source 4.1 Count.java.

package examples;

import javax.ejb.*;

/**

* Demonstration Stateful Session Bean. This Bean is initialized

* to some integer value, and has a business method which

* increments the value.

*

* This example shows the basics of how to write a stateful

* session bean, and how passivation/activation works.

*/

public class CountBean implements SessionBean {

// The current counter is our conversational state.

public int val;

//

// Business methods

//

Source 4.2 CountBean.java.

Introduction to Session Beans 93

/**

* Counts up

*/

public int count() {

System.out.println("count()");

return ++val;

}

//

// EJB-required methods

//

public void ejbCreate(int val) throws CreateException {

this.val = val;

System.out.println("ejbCreate()");

}

public void ejbRemove() {

System.out.println("ejbRemove()");

}

public void ejbActivate() {

System.out.println("ejbActivate()");

}

public void ejbPassivate() {

System.out.println("ejbPassivate()");

}

public void setSessionContext(SessionContext ctx) {

}

}

Source 4.2 CountBean.java (continued).

Note the following about our bean:

■■ The bean implements javax.ejb.SessionBean (described fully in Appendix
E). This means the bean must define all methods in the SessionBean inter-
face. By looking at the bean, you can see we’ve defined them but kept
them fairly trivial.

■■ Our ejbCreate() initialization method takes a parameter, val. This method
customizes our bean to the client’s needs. Our ejbCreate() method is

responsible for beginning a conversation with the client. It uses val as the
starting state of the counter.

■■ The val member variable obeys the rules for conversational state because
it is serializable. Thus, it lasts across method calls and is automatically
preserved during passivation/activation.

Notice, too, that our code has a setSessionContext() method. This associates our
bean with a session context, which is a specific EJB context used only for session
beans. Our bean can callback to the container through this object. The session
context interface looks like this:

public interface javax.ejb.SessionContext

extends javax.ejb.EJBContext

{

public javax.ejb.EJBLocalObject getEJBLocalObject();

public javax.ejb.EJBObject getEJBObject();

}

Notice that the SessionContext interface extends the EJBContext interface, giv-
ing session beans access to all the methods defined in EJBContext (see Chapter
3 or Appendix E).

Specific to session beans, the getEJBObject() and getEJBLocalObject() methods
are useful if your bean needs to call another bean and if you want to pass a ref-
erence to your own bean. In Java, an object can obtain a reference to itself with
the this keyword. In EJB, however, a bean cannot use the this keyword and pass
it to other beans because all clients invoke methods on beans indirectly
through a bean’s EJB object. Thus, a bean can refer to itself by using a reference
to its EJB object, rather than the this keyword.

The Count Bean’s Home Interface

To complete our stateful bean code, we must define a home interface. The
home interface details how to create and destroy our Count EJB object. The
code for our home interface is in Source 4.3.

Because we implement javax.ejb.EJBHome, our home interface gets the remove()
destroy method for free.

The Count Bean’s Deployment Descriptor

Now that we’ve got all our Java files for our bean, we need to define the
deployment descriptor to identify the bean’s settings to the container. The
deployment descriptor settings we use are listed in Source 4.4.

T H E T R I A D O F B E A N S94

Introduction to Session Beans 95

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* This is the home interface for CountBean. This interface

* is implemented by the EJB Server’s glue-code tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the CountBean file.

*/

public interface CountHome extends EJBHome {

/*

* This method creates the EJB Object.

*

* @param val Value to initialize counter to

*

* @return The newly created EJB Object.

*/

Count create(int val) throws RemoteException, CreateException;

}

Source 4.3 CountHome.java.

<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Count</ejb-name>

<home>examples.CountHome</home>

<remote>examples.Count</remote>

<ejb-class>examples.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Source 4.4 ejb-jar.xml.

Notice that our bean’s stateful nature is defined declaratively in the deploy-
ment descriptor. We never introduce the notion of a bean being stateful in the
bean code itself. This allows us to easily switch from the stateful to stateless
paradigm and back.

The Count Bean’s Proprietary Descriptor
and Ejb-jar File

To complete our component, we need to write any proprietary files that our
application server may require and package those files and our bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will make (which is vendor specific) will force the con-
tainer to have a maximum pool of two beans. We will then create three beans
and observe how the container must passivate instances to service requests.

To save space, in future examples we’ll consider that the proprietary descrip-
tors, the Ejb-jar file, and the deployment itself are implied steps. If you’re
really curious about how this is achieved, take a look at the source code accom-
panying the book.

The Count Bean’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.

2. We locate the home object using JNDI.

3. We use the home object to create three different Count EJB objects. Thus,
we are creating three different conversations and are simulating three dif-
ferent clients.

4. We limited the bean pool size to two beans, so during the previous step
some of the three beans must have been passivated. We print out a mes-
sage during the ejbPassivate() callback to illustrate this.

5. Next, we call count() on each EJB object. This forces the container to acti-
vate the instances, restoring the conversations to memory once again. We
print out a message during the ejbActivate() callback to illustrate this.

6. Finally, all the EJB objects are removed.

The code appears in Source 4.5.

T H E T R I A D O F B E A N S96

Introduction to Session Beans 97

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.util.Properties;

/**

* This class is a simple example of client code.

*

* We create 3 EJB Objects in this example, but we only allow

* the container to have 2 in memory. This illustrates how

* beans are passivated to storage.

*/

public class CountClient {

public static void main(String[] args) {

try {

/*

* Get System properties for JNDI initialization

*/

Properties props = System.getProperties();

/*

* Get a reference to the Home Object - the

* factory for EJB Objects

*/

Context ctx = new InitialContext(props);

CountHome home = (CountHome)

javax.rmi.PortableRemoteObject.narrow(

ctx.lookup("CountHome"), CountHome.class);

/*

* An array to hold 3 Count EJB Objects

*/

Count count[] = new Count[3];

int countVal = 0;

/*

* Create and count() on each member of array

*/

System.out.println("Instantiating beans . . . ");

for (int i=0; i < 3; i++) {

/*

* Create an EJB Object and initialize

* it to the current count value.

Source 4.5 CountClient.java.

T H E T R I A D O F B E A N S98

*/

count[i] = home.create(countVal);

/*

* Add 1 and print

*/

countVal = count[i].count();

System.out.println(countVal);

/*

* Sleep for 1/2 second

*/

Thread.sleep(500);

}

/*

* Let’s call count() on each EJB Object to

* make sure the beans were passivated and

* activated properly.

*/

System.out.println("Calling count() on beans . . . ");

for (int i=0; i < 3; i++) {

/*

* Add 1 and print

*/

countVal = count[i].count();

System.out.println(countVal);

/*

* Sleep for 1/2 second

*/

Thread.sleep(500);

}

/*

* Done with EJB Objects, so remove them

*/

for (int i=0; i < 3; i++) {

count[i].remove();

}

} catch (Exception e) {

e.printStackTrace();

}

}

}

Source 4.5 CountClient.java (continued).

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the
book’s accompanying source code for scripts.

Client-Side Output

After running the client, we see the following output:

Instantiating beans . . .

1

2

3

Calling count() on beans . . .

2

3

4

We first created three beans and then called count() on each. As expected, the
beans incremented their values by one each during the second pass, so output
is as expected. But were our beans really passivated and activated? Let’s check
the server log.

Server-Side Output

The container log yields the following results:

ejbCreate()

count()

ejbCreate()

count()

ejbCreate()

ejbPassivate()

count()

ejbPassivate()

ejbActivate()

count()

ejbPassivate()

ejbActivate()

count()

ejbPassivate()

ejbActivate()

count()

ejbPassivate()

ejbActivate()

ejbRemove()

ejbActivate()

ejbRemove()

ejbRemove()

Introduction to Session Beans 99

As you can see from the passivation/activation messages in the log, the con-
tainer is indeed passivating and activating beans to conserve system resources.
Because the client-side output is correct, each of our beans’ conversational
state was retained properly.

Life Cycle Diagrams for
Session Beans

Now that we’ve written a complete stateless session bean (in Chapter 3) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container (that is, the home object and EJB
objects) is calling methods on our bean.

T H E T R I A D O F B E A N S100

Bean Instance Does Not
Exist

Pool of Equivalent
Method-Ready Instances

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

1: ejbRemove()

Business Method

Container decided it
needs more instances
in the pool to service
clients.

Any client calls a
business method on
any EJB object.

Container decided it
doesn't need so
many instances
anymore.

Figure 4.4 The life cycle of a stateless session bean.

Let’s walk through this diagram.

First, the bean instance does not exist. Perhaps the application server has
just started up.

Next, the container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on the
container’s policy for pooling beans. The container may decide to instanti-
ate 10 beans all at once when the application server first starts because you
told the container to do so using the vendor-specific files that you ship
with your bean. Each of those beans are equivalent (because they are state-
less) and they can be reused for many different clients.

Then the container instantiates your bean. The container calls Class.newIn-
stance(“HelloBean.class”) on your session bean class, which is the dynamic
equivalent of calling new HelloBean(). The container does this so that the
container is not hard-coded to any specific bean name; the container is
generic and works with any bean. This action calls your bean’s default con-
structor, which can do any necessary initialization.

Next, the container calls setSessionContext(). This associates you with a
context object, which enables you to make callbacks to the container (see
Chapter 9 for some examples of these callbacks).

Then the container calls ejbCreate(). This initializes your bean. Note that
because stateless session beans’ ejbCreate() methods take no parameters,
clients never supply any critical information that bean instances need to
start up. EJB containers can exploit this and precreate instances of your
stateless session beans. In general when a client creates or destroys a bean
using the home object, that action might not necessarily correspond with
literally creating or destroying in-memory bean objects, because the EJB
container controls their life cycles to allow for pooling between heteroge-
neous clients.

Next, the container can call business methods on your bean. The container
can call as many business methods as it wants to call. Each business
method could originate from a completely different client because all bean
instances are treated exactly the same. All stateless session beans think
they are in the same state after a method call; they are effectively unaware
that previous method calls happened. Therefore the container can dynami-
cally reassign beans to client requests at the per-method level. A different
stateless session bean can service each method call from a client. Of course,
the actual implementation of reassigning beans to clients is container-
specific.

Finally, the container calls ejbRemove(). When the container is about to
remove your session bean instance, it calls your bean’s ejbRemove() callback
method. ejbRemove() is a clean-up method, alerting your bean that it is

Introduction to Session Beans 101

T H E T R I A D O F B E A N S102

Bean Instance Does
Not Exist

Ready

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(...)

ejbRemove()

ejbPassivate()

ejbActivate()

Passive

Client Times Out

Business Method

Client called
create(...) on the
home interface.

Client called a
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or client
times out.

Figure 4.5 Life cycle of a stateful session bean.

about to be destroyed and allowing it to end its life gracefully. ejbRemove()
is a required method of all beans, and it takes no parameters. Therefore
there is only one ejbRemove() method per bean. This is in stark contrast to
ejbCreate(), which has many forms. This makes perfect sense: Why should a
destructive method be personalized for each client? (This is an analogous
concept to destructors in C��.) Your implementation of ejbRemove()
should prepare your bean for destruction. This means you need to free all
resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in the
diagram, the container (not the client) is calling methods on our bean instance.

The life cycle for stateful session beans is very similar to stateless session
beans. The big differences are as follows:

■■ There is no pool of equivalent instances because each instance contains
state.

■■ There are transitions for passivating and activating state.

Summary

In this chapter, we learned the theoretical concepts behind session beans. We
learned about achieving instance pooling with session beans, activation, and
passivation. We wrote a stateful session bean that counted up and touched on
session beans’ life cycle.

This completes our introduction to session beans. In the next chapters, you’ll
learn about the more complex (and also quite interesting) entity bean. Turn the
page and read on!

Introduction to Session Beans 103

Don’t rely on ejbRemove()

Your container can call ejbRemove() at any time, even if the container decides
that the bean’s life has expired (perhaps due to a very long timeout). Note that
the container may never call your bean’s ejbRemove() method, such as if the con-
tainer crashes or if a critical exception occurs. You must be prepared for this con-
tingency. For example, if your bean performs shopping cart operations, it might
store temporary shopping cart data in a database. Your application should pro-
vide a utility that runs periodically to remove any abandoned shopping carts from
the database.

C H A P T E R 5

105

O ne of the key benefits of EJB is the power to create entity beans. Entity beans
are persistent objects that can be stored in permanent storage. This means you
can model your business’s fundamental, underlying data as entity beans.

In this chapter, we’ll cover these topics:

■■ The basic concepts of persistence

■■ A definition of entity beans, from a programmer’s perspective

■■ The features that entity beans have to offer

■■ Entity bean programming concepts

This chapter is relatively theoretical, and it is meant to give you a deep founda-
tion in entity bean programming concepts. For those of you with a traditional
procedural programming background, entity beans can be a tough topic to
grasp. You may need to reread this chapter a few times to really understand
how things work. Make sure you’ve read and understood the previous chapters
in this book; our discussion of entity beans will build on the knowledge you’ve
acquired so far. We’ll use these concepts with hands-on code in later chapters.

Persistence Concepts

Because entity beans are persistent objects, our discussion begins with a quick
look at popular ways to persist objects.

Introduction to Entity Beans

Java Object Serialization
When you work with Java objects, in many cases you would like to capture the
state of the object you’re currently working with and save it to a permanent
storage. One way to do this, as covered in Appendix A, is to use object serial-
ization. Object serialization is an easy way to marshal an object graph into a
compact representation. When you serialize an object graph, you convert the
graph into a byte stream. You can then do anything you want to with that
stream, such as push the data over the network (which is how Java RMI passes
parameters over the network), or you can save the stream to storage, such as a
file system, database, or JNDI tree. For sophisticated persistence, however,
object serialization falls short in many areas.

For example, let’s say we store a million serializable bank account objects onto
a file system. We do this by converting the objects to their bit-blob representa-
tion and then storing the bytes on disk. Let’s say we then want to retrieve all
bank accounts that have balances over $1,000. To do this with serialization,
we’d have to load each and every bank account serialized bit-blob from the
disk, construct the corresponding object, and then execute a method query on
the object to determine if the balance is over $1,000. We might want to perform
more advanced queries as well, such as retrieving all checking accounts that
have been inactive for six months. There is no efficient way to do this with
object serialization.

In general querying objects stored using object serialization is expensive and
cumbersome. Submitting queries against business data is an absolute neces-
sity for large-scale applications, which makes simple object serialization
unsuitable for persistent storage. Object serialization is best used in restricted
domains—for network communications and simple persistence. For EJB we
need a more robust persistence mechanism to address more complex querying
operations.

Object-Relational Mapping
Another popular way to store Java objects is to use a traditional relational data-
base, such as Oracle or Microsoft SQL Server. Rather than serialize each object,
we could decompose each object into its constituent parts and store each part
separately. For example, for a bank account object, the bank account number
could be stored in one relational database field and the bank account balance
in another field. When you save your Java objects, you would use JDBC or
SQL/J to map the object data into a relational database. When you want to load
your objects from the database, you would instantiate an object from that class,
read the data in from the database, and then populate that object instance’s
fields with the relational data read in. This is shown in Figure 5.1

T H E T R I A D O F B E A N S106

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (O/R) mapper may map your
objects to any kind of relational database schema. For example, a simple object-
relational mapping engine might map a Java class to a SQL table definition. An
instance of that class would map to a row in that table, while fields in that
instance would map to individual cells in that row. This is shown in Figure 5.2.
You’ll see more advanced cases of mapping data with relationships to other data
in Chapter 11.

Introduction to Entity Beans 107

Relational Database

Bank Account
Table

String accountID
String ownerName
double balance

Bank Account

Database API
Such as JDBC or

SQLJ

Figure 5.1 Object-relational mapping.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than simple object serialization. By decomposing your Java
objects as relational data, you can issue arbitrary queries for information. For
example, you can search through all the database records that have an account
balance entry greater than $1,000 and load only the objects that fulfill this
query. More advanced queries are also possible. You can also visually inspect
the database data since it is not stored as bit-blobs, which is great for debug-
ging or auditing.

Mapping of objects to relational data can be done in two ways. You can either
hand-craft this mapping in your code or use an object-relational mapping
product like WebGain’s TOPLink or Sun’s JavaBlend to automate or facilitate
this mapping. Today, most users hand-craft the mapping using a database
access API such as JDBC or SQL/J. Because the cost of developing and main-
taining an object-relational mapping layer is significant, the object-relational
mapping products are likely to be adopted as they mature.

T H E T R I A D O F B E A N S108

String accountID
String ownerName
double balance

Account Class

Relational Database

Ray Combs

accountID ownerName balance

1 1000

Bob Barker2 1500

Monty Haul3 2750

Account Table

accountID = 1
ownerName = Ray Combs
balance = 1000

Account Instance

Figure 5.2 An example of object-relational mapping.

Object Databases
An object database management system (ODBMS) is a persistent store that holds
entire objects. In an object database, your objects are first-class citizens in the
database. This means there is no O/R mapping layer—your Java objects them-
selves are stored as whole objects. Because of this, you don’t need to program
to a relational database API; rather, you program to the object database’s API.
This means you can sidestep object/relational mapping, resulting in simpli-
fied data access code.

Most object databases (and O/R mapping products) provide facilities to query
persisted objects by using an object query language (OQL). OQL is a nice high-
level interface that allows you to query object properties for arbitrary charac-
teristics. It also adds a layer of abstraction from relational database queries.

In addition to OQL-based queries, object databases support relationships
between objects. You can define a relationship between a Bank Account object
and a Customer object and transparently navigate between them. The trans-
parent navigation makes it easy to navigate the object model and provides
excellent performance compared to SQL-based joins that are needed to per-
form equivalent operations in relational databases.

Object databases also have predictable performance and scalability. They offer
strong integrity and security, and provide an excellent store for complex per-
sistent objects. Certain applications go really well with object databases
(geospatial or CAD/CAM, for example) are complete misfits for relational
databases. Other applications map easily to relational databases, such as most
business applications. For simple high-volume business transactions, rela-
tional databases typically scale better than object databases.

ObjectStore, Versant, and POET are a few of the current vendors who provide
object database technology. Unfortunately, the industry has not yet fully
embraced object database products. Although they are very useful for certain
applications, object databases are currently limited because they do not have
very many associated tools, such as reporting, tuning, and management tools.

Now that we’ve whetted your appetite with persistence mechanisms, let’s take
a look at how entity bean persistent objects are used in an EJB multitier
environment.

What Is an Entity Bean?

In any sophisticated, object-oriented multitier deployment, we can draw a
clear distinction between two different kinds of components deployed.

Introduction to Entity Beans 109

Application logic components. These components are method providers that
perform common tasks. Their tasks might include the following:

■■ Computing the price of an order

■■ Billing a customer’s credit card

■■ Computing the inverse of a matrix

Notice that these components represent actions (they’re verbs). They are
well suited to handle business processes.

Session beans model these application logic components very well. They
often contain interesting algorithms and logic to perform application tasks.
Session beans represent work being performed for a user. They represent
the user session, which includes any workflow logic.

Persistent data components. These are objects (perhaps written in Java) that
know how to render themselves into persistent storage. They use some
persistence mechanism, such as serialization, O/R mapping to a relational
database, or an object database. These kinds of objects represent data—sim-
ple or complex information that you’d like saved. Examples here include:

■■ Bank account information, such as account number and balance

■■ Human resources data, such as names, departments, and salaries of
employees

■■ Lead tracking information, such as names, addresses, and phone num-
bers of prospective customers that you want to keep track of over time

Notice that these components represent people, places, and things (they’re
nouns). They are well suited to handle business data.

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than dealing with raw
database data, such as relational rows? It is handy to treat data as objects
because they can be easily handled and managed and because they are repre-
sented in a compact manner. We can group related data in a unified object. We
associate some simple methods with that data, such as compression or other
data-related activities. We can also gain implicit middleware services from an
application server, such as relationships, transactions, network accessibility,
and security. We can also cache that data for performance.

Entity beans are these persistent data components. Entity beans are enterprise
beans that know how to persist themselves permanently to a durable storage
like a database or legacy system. They are physical, storable parts of an enter-
prise. Entity beans store data as fields, such as bank account numbers and
bank account balances. They also have methods associated with them, such as
getBankAccountNumber() and getAccountBalance(). For a full discussion of when
to (and when not to) use entity beans, see Chapter 12.

T H E T R I A D O F B E A N S110

In some ways, entity beans are analogous to serializable Java objects. Serializ-
able objects can be rendered into a bit-blob and then saved into a persistent
store; entity beans can persist themselves in many ways, including serializa-
tion, O/R mapping, or object database persistence. Nothing in the EJB specifi-
cation dictates any particular persistence mechanism.

Entity beans are very different from session beans. Session beans model a
process or workflow (actions that are started by the user and that go away
when the user goes away). Entity beans, on the other hand, contain core busi-
ness data—product information, bank accounts, orders, lead tracking infor-
mation, customer information, and more. An entity bean does not perform
complex tasks or workflow logic, such as billing a customer. Rather, an entity
bean is the customer itself. Entity beans represent persistent state objects
(things that don’t go away when the user goes away).

For example, you might want to read a bank account data into an entity bean
instance, thus loading the stored database information into the in-memory
entity bean instance’s fields. You can then play with the Java object and mod-
ify its representation in memory because you’re working with convenient Java
objects, rather than bunches of database records. You can increase the bank
account balance in-memory, thus updating the entity bean’s in-memory bank
account balance field. Then you can save the Java object, pushing the data back
into the underlying store. This would effectively deposit money into the bank
account.

The term entity bean is grossly overused. Sometimes it refers to an in-memory Java
object instance of an entity bean class, and sometimes it refers to database data
that an in-memory Java object instance represents. To make the distinction clear, we
introduce two new terms:

The entity bean instance is the in-memory view into the database. It is an instance
of your entity bean class.

The entity bean data (or data instance) is the physical set of data, such as a bank
account record, stored in the database.

In summary, you should think of an entity bean instance as the following:

■■ An in-memory Java representation of persistent data

■■ Smart enough to know how to read itself from a storage and populate its
fields with the stored data

■■ An object that can then be modified in-memory to change the values of
data

■■ Persistable, so that it can be saved back into storage again, thus updating
the database data

Introduction to Entity Beans 111

About the Files that Make up
an Entity Bean

An entity bean contains the standard set of files that all EJB components have,
including the remote and/or local interface, the home and/or local home
interface, the enterprise bean class, and the deployment descriptor.

There are several noteworthy differences between entity bean files and other
types of EJB components.

The entity bean class maps to an entity definition in a database schema. For
example, an entity bean class could map to a relational table definition. In
this case, an entity bean instance of that class would map to a row in that
table. Your entity bean class can expose simple methods to manipulate or
access that data, such as a method to decrease a bank account balance. Like
a session bean class, EJB also requires that an entity bean class must fill in
some standard callback methods. The EJB container will call these methods
appropriately to manage the entity bean.

The primary key class makes every entity bean different. For example, if you
have 1 million different bank account entity beans, each bank account
needs to have a unique ID (such as a bank account ID string) that can
never be repeated in any other bank account. A primary key is an object
that may contain any number of attributes. This could be whatever data
necessary to uniquely identify an entity bean data instance. In some
advanced cases, when the entity bean represents a complex relationship,
the primary key might be an entire object. EJB gives you the flexibility to
define what your unique identifier is by including a primary key class with
your entity bean. The one rule is that your primary key class must be seri-
alizable and follow the rules for Java object serialization. The rules for
object serialization are in Appendix A.

Features of Entity Beans

Let’s take a look at the features of entity beans.

Entity Beans Survive Failures
Entity beans are long lasting. They survive critical failures, such as application
servers crashing, or even databases crashing. This is because entity beans are
just representations of data in a permanent, fault-tolerant underlying storage.
If a machine crashes, the entity bean can be reconstructed in memory. All we
need to do is read the data back in from the permanent database and instanti-

T H E T R I A D O F B E A N S112

ate an entity bean Java object instance whose fields contain the data read in
from the database.

This is a huge difference between session and entity beans. Entity beans have
a life cycle much longer than a client’s session, perhaps years long, depending
on how long the data sits in the database. In fact, the database records repre-
senting an object could have existed before the company even decided to go
with a Java-based solution, because a database structure can be language-inde-
pendent. This makes sense—you definitely would want your bank account to
last for a few years, regardless of technology changes in your bank.

Entity Bean Instances Are a View
into a Database

When you load entity bean data into an in-memory entity bean instance, you
read in the data stored in a database so that you can manipulate the data
within a Java Virtual Machine. However, you should think of the in-memory object
and the database itself as one and the same. This means if you update the in-mem-
ory entity bean instance, the database should automatically be updated as
well. You should not think of the in-memory entity bean as a separate version
of the data in the database. The in-memory entity bean is simply a view or lens
into the database.

Of course, in reality there are multiple physical copies of the same data: the in-
memory entity bean instance and the entity bean data itself stored in the data-
base. Therefore, there must be a mechanism to transfer information back and
forth between the Java object and the database. This data transfer is accom-
plished with two special methods that your entity bean class must implement,
called ejbLoad() and ejbStore().

ejbLoad() reads the data in from the persistent storage into the entity bean’s
in-memory fields.

ejbStore() saves your bean instance’s current fields to the underlying data
storage. It is the complement of ejbLoad().

So who decides when to transfer data back and forth between the in-memory
bean and the database? That is, who calls ejbLoad() and ejbStore()? The answer
is your EJB container. ejbLoad() and ejbStore() are callback methods that the con-
tainer invokes. They are management methods required by EJB. The container
worries about the proper time to call ejbLoad() and ejbStore()—this is one of the
value-adds of the container. This is shown visually in Figure 5.3.

Your beans should be prepared to accept an ejbLoad() or ejbStore() call at almost
any time (but not during a business method). The container automatically

Introduction to Entity Beans 113

figures out when each of your instances needs to be refreshed depending on
the current transactional state (see Chapter 10). This means that you never
explicitly call your own ejbLoad() or ejbStore() methods. This is one of the
advantages of EJB: You don’t have to worry about synchronizing your objects
with the underlying database. The EJB black box handles it for you. That is
why you can think of the entity bean and the database as the same; there
should never be a time when the two are transactionally out of sync.

Several Entity Bean Instances May
Represent the Same Underlying Data

Let’s consider the scenario in which many threads of execution want to access
the same database data simultaneously. In banking, interest might be applied
to a bank account, while at the same time a company directly deposits a check
into that same account. In e-commerce, many different client browsers may be
simultaneously interacting with a catalog of products.

T H E T R I A D O F B E A N S114

EJB Container/Server

Entity Bean Instance

Database

Entity Bean Data

5: Write to
Database

2: Read from
Database

3: Business
Methods

1: ejbLoad()

4: ejbStore()

This ejbLoad()-business method-ejbStore()
cycle may be repeated many times.

Figure 5.3 Loading and storing an entity bean.

To facilitate many clients accessing the same data, we need to design a high-
performance access system to our entity beans. One possibility is to allow
many clients to share the same entity bean instance; that way, an entity bean
could service many client requests simultaneously. While this is an interesting
idea, it is not very appropriate for EJB, for two reasons. First, if we’d like an
entity bean instance to service many concurrent clients, we’d need to make
that instance thread-safe. Writing thread-safe code is difficult and error-prone.
Remember that the EJB value proposition is rapid application development.
Mandating that component vendors produce stable thread-safe code does not
encourage this. Second, having multiple threads of execution makes transac-
tions almost impossible to control by the underlying transaction system. For
these reasons, EJB dictates that only a single thread can ever be running within
a bean instance. With session beans and message-driven beans, as well as
entity beans, all bean instances are single-threaded.

Mandating that each bean can service only one client at a time could result in
performance bottlenecks. Because each instance is single-threaded, clients
need to effectively run in lockstep, each waiting their turn to use a bean. This
could easily grind performance to a halt in any large enterprise deployment.

To boost performance, we could allow containers to instantiate multiple
instances of the same entity bean class. This would allow many clients to con-
currently interact with separate instances, each representing the same under-
lying entity data. Indeed, this is exactly what EJB allows containers to do.
Thus, client requests do not necessarily need to be processed sequentially, but
rather concurrently.

Having multiple bean instances represent the same data now raises a new
problem: data corruption. If many bean instances are representing the same
underlying data via caching (see Chapter 14), we’re dealing with multiple in-
memory cached replicas. Some of these replicas could become stale, represent-
ing data that is not current.

To achieve entity bean instance cache consistency, each entity bean instance
needs to be routinely synchronized with the underlying storage. The container
synchronizes the bean with the underlying storage by calling the bean’s
ejbLoad() and ejbStore() callbacks, as described in the previous section.

The frequency with which beans are synchronized with an underlying storage
is dictated by transactions, a topic we cover in Chapter 10. Transactions allow
each client request to be isolated from every other request. They enable clients
to believe they are dealing with a single in-memory bean instance, when in fact
many instances are behind the scenes. Transactions give clients the illusion
that they have exclusive access to data when in fact many clients are touching
the same data.

Introduction to Entity Beans 115

Entity Bean Instances Can Be Pooled
Let’s say you’ve decided to author your own EJB container/server. Your prod-
uct is responsible for instantiating entity beans as necessary, with each bean
representing data in an underlying storage. As clients connect and disconnect,
you could create and destroy beans as necessary to service those clients.

Unfortunately this is not a scalable way to build an application server. Cre-
ation and destruction of objects is expensive, especially if client requests come
frequently. How can we save on this overhead?

One thing to remember is that an entity bean class describes the fields and
rules for your entity bean, but it does not dictate any specific data. For exam-
ple, an entity bean class may specify that all bank accounts have the following
fields:

■■ The name of the bank account owner

■■ An account ID

■■ An available balance

That bean class can then represent any distinct instance of database data, such
as a particular bank account record. The class itself, though, is not specific to
any particular bank account.

To save precious time instantiating objects, entity bean instances are therefore
recyclable objects and may be pooled depending on your container’s policy.
The container may pool and reuse entity bean instances to represent different
instances of the same type of data in an underlying storage. For example, a
container could use a bank account entity bean instance to represent different
bank account records. When you’re done using an entity bean instance, that
instance may be assigned to handle a different client’s request and may repre-
sent different data. The container performs this by dynamically assigning the
entity bean instance to different client-specific EJB objects. Not only does this
save the container from unnecessarily instantiating bean instances, but this
scheme also saves on the total amount of resources held by the system. We
show this in Figure 5.4

Instance pooling is an interesting optimization that containers may provide,
and it is not at all unique to entity beans. However, complications arise when
reassigning entity bean instances to different EJB objects. When your entity
bean is assigned to a particular EJB object, it may be holding resources such as
socket connections. But when it’s in the pool, it may not need that socket. Thus,
to allow the bean to release and acquire resources, your entity bean class must
implement two callback methods.

T H E T R I A D O F B E A N S116

ejbActivate() is the callback that your container will invoke on your bean
instance when transitioning your bean out of a generic instance pool.
This process is called activation, and it indicates that the container is associ-
ating your bean with a specific EJB object and a specific primary key. Your
bean’s ejbActivate() method should acquire resources, such as sockets, that
your bean needs when assigned to a particular EJB object.

ejbPassivate() is the callback that your container will invoke when transi-
tioning your bean into a generic instance pool. This process is called
passivation, and it indicates that the container is disassociating your bean
from a specific EJB object and a specific primary key. Your bean’s ejbPassi-
vate() method should release resources, such as sockets, that your bean
acquired during ejbActivate().

When an entity bean instance is passivated, it must not only release held
resources but also save its state to the underlying storage; that way, the storage
is updated to the latest entity bean instance state. To save the instance’s fields

Introduction to Entity Beans 117

EJB Container/Server

EJB Object 1
(John Smith's Bank

Account)

Client 1
John Smith

Client 2
Mary Jane

Client 3
Bob Hall

Remote
Interface

Remote
Interface

Remote
Interface

Entity Bean
Instances

Bean Pool

EJB Object 2
(Mary Jane's Bank

Account)

EJB Object 3
(Bob Hall's Bank

Account)

The EJB container can
dynamically assign entity
bean instances to
represent different data.

Figure 5.4 EJB container pooling of entity beans.

to the database, the container invokes the entity bean’s ejbStore() method prior
to passivation. Similarly, when the entity bean instance is activated, it must not
only acquire any resources it needs but also load the most recent data from the
database. To load data into the bean instance, the container invokes the entity
bean’s ejbLoad() method after activation. This is shown in Figure 5.5.

There Are Two Ways to Persist
Entity Beans

Since entity beans map to a storage, someone needs to actually write the data-
base access code.

A bean-managed persistent entity bean is an entity bean that must be persisted by
hand. In other words, you as the component developer must write code to
translate your in-memory fields into an underlying data store, such as a rela-

T H E T R I A D O F B E A N S118

Passivation entails
a state save.

Activation entails a
state load.

1: ejbStore()

Bean InstanceContainer

2: ejbPassivate()

1: ejbActivate()

2: ejbLoad()

Figure 5.5 Passivation of entity beans entails a state save, and activation entails a state
load.

tional database or an object database. You handle the persistent operations
yourself—including saving, loading, and finding data—within the entity
bean. Therefore, you must write to a persistence API, such as JDBC or SQL/J.
For example, with a relational database, your entity bean could perform an
SQL INSERT statement via JDBC to stick some data into a relational database.
You could also perform an SQL DELETE statement via JDBC to remove data
from the underlying store.

EJB offers an alternative to bean-managed persistence: You can have your EJB
container perform your persistence for you. This is called container-managed
persistence. In this case, you would usually strip your bean of any persistence
logic. Then, you inform the container about how you’d like to be persisted by
using the container’s tools. The container then generates the data access code
for you. For example, if you’re using a relational database, the container may
automatically perform SQL INSERT statements to create database data. Simi-
larly, it will automatically perform SQL DELETE statements to remove data-
base data, and it will handle any other necessary persistent operations. Even
if you are not working with a relational database, you can have your con-
tainer persist for you. If your container supports a nonrelational persistent
store, such as an object database or a VSAM file, the container will generate
the appropriate logic as necessary. In fact, you can wait until deployment time
before you setup the O/R mapping, which is great because you can write
storage-independent data objects, and reuse them in a variety of enterprise
environments.

Container-managed persistence reduces the size of your beans tremendously
because you don’t need to write JDBC code—the container handles all the persis-
tence for you. This is a huge value-add feature of EJB. Of course, it is still evolv-
ing technology. Once we’ve written a few entity beans, we’ll review the trade-offs
of bean-managed versus container-managed persistence (see Chapter 12).

Creation and Removal of Entity Beans
As we mentioned earlier, entity beans are a view into a database, and you
should think of an entity bean instance and the underlying database as one
and the same (they are routinely synchronized). Because they are one and the
same, the initialization of an entity bean instance should entail initialization of
database data. Thus, when an entity bean is initialized in memory during
ejbCreate(), it makes sense to create some data in an underlying database that
correlates with the in-memory instance. That is exactly what happens with
entity beans. When a bean-managed persistent entity bean’s ejbCreate()
method is called, the ejbCreate() method is responsible for creating database
data. Similarly, when a bean-managed persistent entity bean’s ejbRemove()
method is called, the ejbRemove() method is responsible for removing database

Introduction to Entity Beans 119

data. If container-managed persistence is used, the container will modify the
database for you, and you can leave these methods empty of data access logic.

Let’s look at this in more detail.

Understanding How Entity Beans Are
Created and Destroyed

In EJB, remember that clients do not directly invoke on beans—they invoke an
EJB object proxy. The EJB object is generated through the home object. There-
fore, for each ejbCreate() method signature you define in your bean, you must
define a corresponding create() in the home interface. The client calls the home
object’s create(), which delegates to your bean’s ejbCreate().

For example, let’s say you have a bank account entity bean class called
AccountBean, with a remote interface Account, home interface AccountHome,
and primary key class AccountPK. Given the following ejbCreate() method in
AccountBean:

public AccountPK ejbCreate(String accountID, String owner) throws . . .

you must have this create() in your home interface (notice there is no “ejb”
prefix):

public Account create(String accountID, String owner) throws . . .

Notice that there are two different return values here. The bean instance
returns a primary key (AccountPK), while the home object returns an EJB object
(Account). This makes sense—the bean returns a primary key to the container
(that is, to the home object) so that the container can identify the bean. Once
the home object has this primary key, it can generate an EJB object and return
that to the client. We show this process more rigorously with the sequence dia-
gram in Figure 5.6.

To destroy an entity bean’s data in a database, the client must call remove() on
the EJB object or home object. This method causes the container to issue an
ejbRemove() call on the bean. Figure 5.7 shows the relationship between remove()
and ejbRemove(). Note that remove() can be called on either the home object or
the EJB object. The figure happens to assume bean-managed persistence.

Note that ejbRemove() does not mean the in-memory entity bean instance is
going to be destroyed; ejbRemove() destroys only database data. The bean
instance can be recycled to handle a different database data instance, such as a
bank account bean representing different bank accounts.

ejbRemove() is a required method of all entity beans, and it takes no parameters.
There is only one form of ejbRemove(). With entity beans, ejbRemove() is not

T H E T R I A D O F B E A N S120

called if the client times out because the lifetime of an entity bean is longer
than the client’s session.

Entity Beans Can Be Found
Because entity bean data is uniquely identified in an underlying storage, entity
beans can also be found rather than created. Finding an entity bean is analo-
gous to performing a SELECT statement in SQL. With a SELECT statement,
you’re searching for data from a relational database store. When you find an

Introduction to Entity Beans 121

EJB Container/Server

Entity Bean
Instance

Home Object

EJB Object

Client Code

1: create()

2: ejbCreate()

Relationship between create()
and ejbCreate().

(Diagram leaves out a few minor
steps and happens to assume
bean-managed persistence.)

Database

Entity Bean Data

3: Create Database Data

4: Return Primary Key

5: Create EJB Object

6: Return EJB Object

Figure 5.6 Creating an entity bean and EJB object.

entity bean, you’re searching a persistent store for some entity bean data. This
differs from session beans because session beans cannot be found: They are not
permanent objects, and they live and die with the client’s session.

You can define many ways to find an entity bean. You list these ways as meth-
ods in your entity bean home interface. These are called finder methods. Your
home interface exposes finder methods in addition to methods for creating
and destroying entity beans. This is the one big difference between an entity
bean’s home interface and other types of beans; the other bean types do not
have finder methods.

T H E T R I A D O F B E A N S122

EJB Container/Server

Entity Bean
Instance

Home Object

EJB Object

Client Code

1: remove()
2: ejbRemove()

Database

Entity Bean Data

3: Remove Database Data

1: remove()
2: ejbRemove()

Relationship between remove()
and ejbRemove().
Note that remove() can be
called on either the home
object or the EJB object.

(Diagram happens to assume
bean-managed persistence.)

Figure 5.7 Destroying an entity bean’s data representation.

You Can Modify Entity Bean Data
without Using EJB

Usually you will create, destroy, and find entity bean data by using the entity
bean’s home object. But you can interact with entity beans another way, too: by
directly modifying the underlying database where the bean data is stored. For
example, if your entity bean instances are being mapped to a relational data-
base, you can simply delete the rows of the database corresponding to an
entity bean instance (see Figure 5.8). You can also create new entity bean data
and modify existing data by directly touching the database. This may be nec-
essary if you have an investment in an existing system that touches a database
directly.

These external database updates could raise cache consistency issues if you’re
choosing to cache your entity beans. See Chapter 14 for more on this.

Introduction to Entity Beans 123

Relational Database

Entity Bean
Data

Existing App

Direct Database Modifications

EJB Container/Server

Entity Beans

O/R Mapping

Figure 5.8 Modifying an entity bean’s database representation manually.

Entity Contexts

As you learned in Chapter 3, all enterprise beans have a context object that iden-
tifies the environment of the bean. These context objects contain environment
information that the EJB container sets. Your beans can access the context to
retrieve all sorts of information, such as transaction and security information.
For entity beans, the interface is javax.ejb.EntityContext.

We provide a refresher of the javax.ejb.EJBContext methods in Source 5.1.
Appendix E explains the meaning of each method.

Entity contexts add the following methods on top of the generic EJB context,
shown in Source 5.2.

Let’s look at each of these methods in more detail.

getEJBLocalObject() / getEJBObject()
Call this to retrieve the current, client-specific EJB object that is associated with
the entity bean. Remember that clients invoke on EJB objects, not on entity
beans directly. Therefore, you can use the returned EJB object as a way to pass
a reference to yourself, simulating the this argument in Java. getEJBLocalOb-
ject() is the same, except it gets the more optimized EJB local object.

T H E T R I A D O F B E A N S124

public interface javax.ejb.EJBContext {

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

public java.security.Principal getCallerPrincipal();

public boolean isCallerInRole(java.lang.String);

public void setRollbackOnly();

public boolean getRollbackOnly();

}

Source 5.1 The javax.ejb.EJBContext interface.

public interface javax.ejb.EntityContext

extends javax.ejb.EJBContext {

public javax.ejb.EJBLocalObject getEJBLocalObject();

public javax.ejb.EJBObject getEJBObject();

public java.lang.Object getPrimaryKey();

}

Source 5.2 The javax.ejb.EntityContext interface.

getPrimaryKey()
getPrimaryKey() is new to entity beans. It retrieves the primary key that is cur-
rently associated with this entity bean instance. Primary keys uniquely iden-
tify an entity bean. When an entity bean is persisted in storage, the primary
key can be used to uniquely retrieve the entity bean because no two entity
bean database data instances can ever have the same primary key.

Why would you want to call getPrimaryKey()? You call it whenever you want
to figure out with which database data your instance is associated. Remember
that entity bean instances can be reused and pooled, as we saw in Figure 5.4.
When the container wants to switch an entity bean instance from one data
instance to another, the container needs to passivate and activate that entity
bean instance. When this happens, your bean instance may switch to a differ-
ent data instance and thus a different primary key. But your entity bean
instance is never told this explicitly when it is activated. Rather, your entity
bean must perform a getPrimaryKey() callback to the entity context to figure
out what data it should be dealing with.

Thus, when you have an entity bean that’s performing any persistent work
(with bean-managed persistence), you should be calling getPrimaryKey()
whenever you need to figure out what data you’re bean is associated with.
This is very useful, for example, in the following methods:

ejbLoad(). Recall that ejbStore() and ejbLoad() are bean callbacks to synchro-
nize a bean instance with an underlying storage. ejbStore() saves data to
storage, and ejbLoad() reads data from storage. When the container calls ejb-
Store(), your bean knows exactly what data to save because the bean
instance has the data in memory. But when the container calls ejbLoad(),
how does your bean know what data to load? After all, bean instances are
pooled and can be dynamically assigned to different data. The answer is to
use getPrimaryKey(); it will tell you what primary key you should be look-
ing for in the underlying storage when loading database data.

ejbRemove(). Recall that ejbCreate() and ejbRemove() are callbacks for creating
and removing data from an underlying storage, respectively. When the
container calls ejbCreate(), your bean knows exactly what data to create in
the database because your bean has received information in the parameters
of ejbCreate(). But when the container calls ejbRemove(), how does your bean
know what data to remove? Because bean instances are pooled and
dynamically assigned to handle different data instances, you might be
deleting the wrong data. Thus, you must call getPrimaryKey() to figure out
what data, keyed on the primary key, your bean should remove from the
database.

Introduction to Entity Beans 125

It is important to consider bean pooling when writing your enterprise beans,
and getPrimaryKey() is the key to knowing what data your bean is representing.

Summary

In this chapter, we’ve taken the first steps toward developing with entity
beans. We started by learning about various persistence mechanisms, includ-
ing object serialization, object/relational mapping, and persistence to pure
object databases. We then looked at exactly what an entity bean is, and we saw
the files included with an entity bean component. After surveying their fea-
tures, we took a look at entity contexts.

But the best is yet to come. In the coming chapters, we’ll learn hands-on about
entity bean programming. Chapter 6 explains bean-managed persistent entity
beans and guides you through the steps in developing them using JDBC.
Chapter 7 continues with container-managed persistent entity beans. In Chap-
ter 11 we’ll learn how to program entity beans that require relationships. By
the time you’re through, you’ll be armed to create your own entity beans in
enterprise deployments.

T H E T R I A D O F B E A N S126

C H A P T E R 6

127

In this chapter, we’ll demonstrate how to program bean-managed persistent entity
beans, the first of two flavors of entity beans. When you code these types of
entity beans, you must provide your own data access logic. You are responsi-
ble for providing the implementation to map your entity bean instances to and
from storage. To do this, you typically use a database API such as JDBC or
SQL/J. This is in stark contrast to container-managed persistent entity beans,
which have their data access handled for them by the EJB container. This chap-
ter will teach you the basics of bean-managed persistence and show you how
to build a simple bean-managed entity bean using JDBC.

Entity Bean Coding Basics

To write an entity bean class, you write a Java class that implements the
javax.ejb.EntityBean interface. This interface defines a number of required
methods that your entity bean class must implement. Most of these methods
are management methods called by your EJB container. The following code
(Source 6.1 and 6.2) details javax.ejb.EntityBean, as well as its parent,
javax.ejb.EnterpriseBean (exceptions are omitted).

The javax.ejb.EnterpriseBean interface defines no methods—it is simply a
marker interface. The javax.ejb.EntityBean interface defines callback methods
that your bean must implement. The container will call these methods when-
ever it wishes.

Writing Bean-Managed Persistent
Entity Beans

T H E T R I A D O F B E A N S128

Java Database Connectivity (JDBC)

This chapter uses Java Database Connectivity (JDBC). JDBC is a standard Java
extension that allows Java programmers to access relational databases. By using
JDBC, Java programmers can represent database connections, issue SQL state-
ments, process database results, and more in a relatively portable way. Clients
program to the unified JDBC API, which is implemented by a JDBC Driver, an
adapter that knows how to talk to a particular database in a proprietary way (see
Figure 6.1). JDBC is similar to the Open Database Connectivity (ODBC) standard,
and the two are quite interoperable through JDBC-ODBC bridges. JDBC contains
built-in support for database connection pooling, further enhancing the database
independence of your application code.

public interface javax.ejb.EnterpriseBean implements java.io.

Serializable {

}

Source 6.1 The javax.ejb.EnterpriseBean interface.

public interface javax.ejb.EntityBean

extends javax.ejb.EnterpriseBean {

public void setEntityContext(javax.ejb.EntityContext);

public void unsetEntityContext();

public void ejbRemove();

public void ejbActivate();

public void ejbPassivate();

public void ejbLoad();

public void ejbStore();

}

Source 6.2 The javax.ejb.EntityBean interface.

All entity bean classes, both bean-managed persistent and container-managed
persistent, must implement the javax.ejb.EntityBean interface. This interface
defines callback methods that the container invokes on your beans. There are
additional methods you also may define, such as methods to create and find
your entity beans.

Table 6.1 is a preview of what you should implement in each method in your
entity bean, assuming your entity bean’s persistence is bean-managed. For
now, take a quick glance at the chart; you should refer back to it when reading
through the code in this chapter or when programming your own entity bean
classes.

Finding Existing Entity Beans:
ejbFind()

Notice from Table 6.1 that we have methods labeled ejbFind(). Finder methods
are used to find an existing entity bean in storage. Finder methods do not cre-
ate new database data—they simply load old entity bean data.

You only define ejbFind() methods when you use bean-managed persistence. With
container-managed persistence, these method implementations are generated for
you.

Writing Bean-Managed Persistent Entity Beans 129

Client

JDBC Driver

JDBC API

Relational Database(s)

Figure 6.1 Java Database Connectivity.

T H E T R I A D O F B E A N S130

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

se
tE

nt
ity

C
on

te
xt

()
If

th
e

co
nt

ai
ne

r
w

an
ts

 to
 in

cr
ea

se
 it

s
po

ol
 s

iz
e

of

St
ic

k
th

e
en

tit
y

co
nt

ex
t s

om
ew

he
re

, s
uc

h
as

 in

be
an

 in
st

an
ce

s,
 it

 w
ill

 in
st

an
tia

te
 a

 n
ew

 e
nt

ity

a
m

em
be

r
va

ria
bl

e.
 Y

ou
 c

an
 a

cc
es

s
th

e
co

nt
ex

t
be

an
 in

st
an

ce
. F

ol
lo

w
in

g
th

is
, t

he
 c

on
ta

in
er

 c
al

ls
la

te
r

to
 a

cq
ui

re
 e

nv
iro

nm
en

t i
nf

or
m

at
io

n,
 s

uc
h

th
e

in
st

an
ce

’s
 s

et
En

tit
yC

on
te

xt
()

. T
hi

s
m

et
ho

d
as

 s
ec

ur
ity

 in
fo

rm
at

io
n,

 fr
om

 th
e

co
nt

ai
ne

r.
as

so
ci

at
es

 a
 b

ea
n

w
ith

 c
on

te
xt

 in
fo

rm
at

io
n

—
in

fo
rm

at
io

n
ab

ou
t t

he
 b

ea
n’

s
en

vi
ro

nm
en

t.
O

nc
e

Yo
u

sh
ou

ld
 a

ls
o

re
qu

es
t a

ny
 r

es
ou

rc
es

 y
ou

r
in

st
an

ce

th
is

 m
et

ho
d

is
 c

al
le

d,
 th

e
be

an
 c

an
 a

cc
es

s
w

ill
 n

ee
d

re
ga

rd
le

ss
 o

f w
ha

t d
at

a
th

e
be

an
 r

ep
re

se
nt

s.
in

fo
rm

at
io

n
ab

ou
t i

ts
 e

nv
iro

nm
en

t.
Th

e
be

an
 is

 n
ow

 in
 a

 p
oo

l,
do

es
 n

ot
 h

av
e

an
y

sp
ec

ifi
c

da
ta

ba
se

 d
at

a
in

si
de

 o
f i

t,
an

d
is

 n
ot

 b
ou

nd
 to

 a
ny

pa
rt

ic
ul

ar
 E

JB
 o

bj
ec

t.

ej
bF

in
d<

..
.>

(<
..

.>
)

W
hi

le
 y

ou
r

be
an

 in
st

an
ce

 is
 s

til
l i

n
th

e
po

ol
, t

he

Se
ar

ch
 th

ro
ug

h
a

da
ta

 s
to

re
 u

si
ng

 a
 s

to
ra

ge
 A

PI
 s

uc
h

(a
ls

o
ca

lle
d

fin
de

r
co

nt
ai

ne
r

ca
n

us
e

yo
ur

 b
ea

n
to

 s
er

vi
ce

 a
 fi

nd
er

as
 J

D
B

C
 o

r
SQ

L/
J.

Fo
r

ex
am

pl
e,

 y
ou

 m
ig

ht
 p

er
fo

rm

m
et

ho
ds

)
m

et
ho

d.
 F

in
de

r
m

et
ho

ds
 lo

ca
te

 o
ne

 o
r

m
or

e
a

re
la

tio
na

l q
ue

ry
 s

uc
h

as
 “

SE
LE

C
T

id
 F

RO
M

ex

is
tin

g
en

tit
y

be
an

 d
at

a
in

st
an

ce
s

in
 th

e
ac

co
un

ts
 W

H
ER

E
ba

la
nc

e
>

 0
.”

un
de

rly
in

g
pe

rs
is

te
nt

 s
to

re
. Y

ou
 m

us
t d

ef
in

e
at

le
as

t o
ne

 fi
nd

er
 m

et
ho

d
—

ej
bF

in
dB

yP
ri

m
ar

yK
ey

()
.

W
he

n
yo

u’
ve

 fo
un

d
so

m
e

da
ta

, r
et

ur
n

th
e

pr
im

ar
y

ke
ys

 fo
r

th
at

 d
at

a
ba

ck
 to

 th
e

co
nt

ai
ne

r
by

 c
re

at
in

g
on

e
or

 m
or

e
pr

im
ar

y
ke

y
Ja

va
 o

bj
ec

t i
ns

ta
nc

es
. T

he
co

nt
ai

ne
r

w
ill

 th
en

 c
re

at
e

EJ
B

 o
bj

ec
ts

 fo
r

th
e

cl
ie

nt
 t

o
in

vo
ke

 o
n

an
d

po
ss

ib
ly

 a
ss

oc
ia

te
 s

om
e

en
tit

y
be

an
in

st
an

ce
s

w
ith

 th
os

e
EJ

B
 o

bj
ec

ts
.

Th
os

e
en

tit
y

be
an

 in
st

an
ce

s
ar

e
no

 lo
ng

er
 in

 th
e

po
ol

—
th

ey
 n

ow
 h

av
e

sp
ec

ifi
c

da
ta

ba
se

 d
at

a
in

si
de

 o
f

th
em

, a
nd

 th
ey

 a
re

 b
ou

nd
 to

 p
ar

tic
ul

ar
 E

JB
 o

bj
ec

ts
.

Ta
b

le
 6

.1
D

es
cr

ip
tio

ns
 a

nd
 Im

pl
em

en
ta

tio
n

G
ui

de
lin

es
 fo

r
B

ea
n-

M
an

ag
ed

 P
er

si
st

en
t E

nt
iti

es

Writing Bean-Managed Persistent Entity Beans 131

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

ej
bH

om
e<

..
.>

So
m

et
im

es
 y

ou
 n

ee
d

m
et

ho
ds

 o
n

an
 e

nt
ity

 b
ea

n
Pe

rf
or

m
 y

ou
r

gl
ob

al
 o

pe
ra

tio
ns

, s
uc

h
as

 c
ou

nt
in

g
up

(<

..
.>

)
th

at
 a

re
 n

ot
 s

pe
ci

fic
 to

 a
ny

 g
iv

en
 d

at
a

in
st

an
ce

th

e
ro

w
s

in
 a

 d
at

ab
as

e
vi

a
JD

B
C

, a
nd

 r
et

ur
n

th
e

re
su

lt
(o

r
ro

w
).

 F
or

 e
xa

m
pl

e,
 c

ou
nt

in
g

th
e

to
ta

l n
um

be
r

to
 th

e
cl

ie
nt

.
of

 a
cc

ou
nt

s
in

 a
 ta

bl
e.

 Y
ou

 c
an

 w
rit

e
ho

m
e

m
et

ho
ds

to
 p

er
fo

rm
 th

es
e

op
er

at
io

ns
. T

he
 h

om
e

m
et

ho
ds

 a
re

 s
pe

ci
al

 b
us

in
es

s
m

et
ho

ds
 b

ec
au

se

th
ey

 a
re

 c
al

le
d

fr
om

 a
 b

ea
n

in
 th

e
po

ol
, b

ef
or

e
th

e
be

an
 is

 a
ss

oc
ia

te
d

w
ith

 a
ny

 s
pe

ci
fic

 d
at

a.
 C

lie
nt

s
ca

ll
ho

m
e

m
et

ho
ds

 fr
om

 th
e

ho
m

e
in

te
rf

ac
e

or

lo
ca

l h
om

e
in

te
rf

ac
e.

ej
bC

re
at

e(
<

..
.>

)
W

he
n

a
cl

ie
nt

 c
al

ls
 c

re
at

e(
)

on
 a

 h
om

e
ob

je
ct

,
M

ak
e

su
re

 th
e

cl
ie

nt
’s

 in
iti

al
iz

at
io

n
pa

ra
m

et
er

s
ar

e
N

ot
e:

 Y
ou

 d
o

no
t n

ee
d

th
e

co
nt

ai
ne

r
ca

lls
 e

jb
C

re
at

e(
)

on
 a

 p
oo

le
d

be
an

va

lid
. E

xp
lic

itl
y

cr
ea

te
 th

e
da

ta
ba

se
 r

ep
re

se
nt

at
io

n
of

to

 w
ri

te
 a

ny
 e

jb
C

re
at

e(
)

in
st

an
ce

.e
jb

C
re

at
e(

)
m

et
ho

ds
 a

re
 r

es
po

ns
ib

le

th
e

da
ta

 v
ia

 a
 s

to
ra

ge
 A

PI
 li

ke
 J

D
B

C
 o

r
SQ

L/
J,

ty
pi

ca
lly

m

et
ho

ds
 if

 y
ou

 d
on

’t
fo

r
cr

ea
tin

g
ne

w
 d

at
ab

as
e

da
ta

 a
nd

 fo
r

in
iti

al
iz

in
g

th
ro

ug
h

a
SQ

L
IN

SE
RT

. T
he

n
re

tu
rn

 a
 p

rim
ar

y
ke

y
to

w

an
t E

JB
 c

lie
nt

s
to

 b
e

yo
ur

 b
ea

n.
 E

ac
h

ej
bC

re
at

e(
)

m
et

ho
d

yo
u

de
fin

e
th

e
co

nt
ai

ne
r,

so
 th

at
 th

e
co

nt
ai

ne
r

ca
n

id
en

tif
y

w
hi

ch

ab
le

 to
 c

re
at

e
ne

w

gi
ve

s
cl

ie
nt

s
a

di
ffe

re
nt

 w
ay

 to
 c

re
at

e
yo

ur
 e

nt
ity

da

ta
 y

ou
r

in
st

an
ce

 r
ep

re
se

nt
s.

da
ta

ba
se

 d
at

a.

be
an

s,
 s

uc
h

as
 m

et
ho

ds
 to

 c
re

at
e

a
ch

ec
ki

ng

In
st

ea
d,

 y
ou

 c
ou

ld

ac
co

un
t a

nd
 a

 s
av

in
gs

 a
cc

ou
nt

.
Yo

ur
 e

nt
ity

 b
ea

n
in

st
an

ce
 is

 n
o

lo
ng

er
 in

 th
e

po
ol

—
m

an
da

te
 th

at
 a

ll
it

no
w

 h
as

 s
pe

ci
fic

 d
at

ab
as

e
da

ta
 in

si
de

 o
f i

t.
Th

e
da

ta
 is

 c
re

at
ed

co

nt
ai

ne
r

w
ill

 b
in

d
yo

ur
 in

st
an

ce
 to

 a
 p

ar
tic

ul
ar

 E
JB

th

ro
ug

h
ot

he
r

m
ea

ns
,

ob
je

ct
s.

su
ch

 a
s

vi
a

di
re

ct

da
ta

ba
se

 in
se

rt
s

or

th
ro

ug
h

ba
tc

h
fil

es
.

co
nt

in
ue

s

T H E T R I A D O F B E A N S132

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

ej
bP

os
tC

re
at

e(
<

..
.>

)
Yo

ur
 b

ea
n

cl
as

s
m

us
t d

ef
in

e
on

e
Th

e
co

nt
ai

ne
r

ca
lls

 e
jb

Po
st

C
re

at
e(

)
af

te
r

it
ha

s
ej

bP
os

tC
re

at
e(

)
fo

r
ea

ch
 e

jb
C

re
at

e(
).

Ea
ch

as

so
ci

at
ed

 y
ou

r
be

an
 in

st
an

ce
 w

ith
 a

n
EJ

B
 o

bj
ec

t.
pa

ir
m

us
t a

cc
ep

t t
he

 s
am

e
pa

ra
m

et
er

s.
 T

he

Yo
u

ca
n

no
w

 c
om

pl
et

e
yo

ur
 in

iti
al

iz
at

io
n

by
 d

oi
ng

co

nt
ai

ne
r

ca
lls

 e
jb

Po
st

C
re

at
e(

)
rig

ht
 a

fte
r

an
yt

hi
ng

 y
ou

 n
ee

d
to

 th
at

 r
eq

ui
re

s
th

at
 E

JB
 o

bj
ec

t,
ej

bC
re

at
e(

).
su

ch
 a

s
pa

ss
in

g
yo

ur
 b

ea
n’

s
EJ

B
 o

bj
ec

t
re

fe
re

nc
e

to

ot
he

r
be

an
s.

Yo
u

m
ig

ht
 a

ls
o

us
e

th
is

 m
et

ho
d

to
 r

es
et

 c
er

ta
in

tr

an
sa

ct
io

n-
re

la
te

d
pa

ra
m

et
er

s.
 F

or
 e

xa
m

pl
e,

 y
ou

co

ul
d

ke
ep

 a
 d

at
a

st
at

us
 fl

ag
 in

 th
e

be
an

 t
o

in
di

ca
te

w
he

th
er

 a
 fi

el
d

ha
s

be
en

 c
ha

ng
ed

. B
ec

au
se

 t
he

 b
ea

n
in

st
an

ce
 m

ay
 h

av
e

be
en

 u
se

d
be

fo
re

, t
he

se
 fi

el
ds

m
ig

ht
 h

av
e

di
rt

y
da

ta
.

ej
bA

ct
iv

at
e(

)
W

he
n

a
cl

ie
nt

 c
al

ls
 a

 b
us

in
es

s
m

et
ho

d
on

 a
n

Ac
qu

ire
 a

ny
 r

es
ou

rc
es

, s
uc

h
as

 s
oc

ke
t

co
nn

ec
tio

ns
,

EJ
B

 o
bj

ec
t,

bu
t n

o
en

tit
y

be
an

 in
st

an
ce

 is
 b

ou
nd

th

at
 y

ou
r

be
an

 n
ee

ds
 to

 s
er

vi
ce

 a
 p

ar
tic

ul
ar

 c
lie

nt

to
 th

e
EJ

B
 o

bj
ec

t,
th

e
co

nt
ai

ne
r

ne
ed

s
to

 ta
ke

 a

w
he

n
it

is
 m

ov
ed

 in
to

 th
e

re
ad

y
st

at
e.

be
an

 fr
om

 th
e

po
ol

 a
nd

 tr
an

si
tio

n
it

in
to

 a
 r

ea
dy

st

at
e.

 T
hi

s
is

 c
al

le
d

ac
tiv

at
io

n.
 U

po
n

ac
tiv

at
io

n,

N
ot

e
th

at
 y

ou
 s

ho
ul

d
no

tr
ea

d
th

e
en

tit
y

be
an

 d
at

a
th

e
ej

bA
ct

iv
at

e(
)

m
et

ho
d

is
 c

al
le

d
by

 th
e

EJ
B

fr

om
 th

e
da

ta
ba

se
 in

 th
is

 m
et

ho
d.

 T
ha

t
is

 h
an

dl
ed

 b
y

co
nt

ai
ne

r.
a

se
pa

ra
te

 m
et

ho
d,

 e
jb

Lo
ad

()
, w

hi
ch

 is
 c

al
le

d
rig

ht
af

te
r

ej
bA

ct
iv

at
e(

).

ej
bL

oa
d(

)
Th

e
EJ

B
 c

on
ta

in
er

 c
al

ls
 th

is
 to

 lo
ad

 d
at

ab
as

e
Fi

rs
t,

yo
ur

 b
ea

n
in

st
an

ce
 m

us
t f

ig
ur

e
ou

t
w

ha
t

da
ta

 it

da
ta

 in
to

 y
ou

r
be

an
 in

st
an

ce
 (

ty
pi

ca
lly

 a
 S

Q
L

sh
ou

ld
 lo

ad
. C

al
l t

he
 g

et
Pr

im
ar

yK
ey

()
m

et
ho

d
on

 t
he

SE

LE
C

T)
, b

as
ed

 o
n

th
e

cu
rr

en
t t

ra
ns

ac
tio

na
l s

ta
te

.
en

tit
y

co
nt

ex
t;

th
at

 w
ill

 te
ll

yo
ur

 b
ea

n
w

ha
t

da
ta

 it
sh

ou
ld

 b
e

lo
ad

in
g.

 N
ex

t,
re

ad
 d

at
ab

as
e

da
ta

 in
to

 y
ou

r
be

an
 v

ia
 a

 s
to

ra
ge

 A
PI

 s
uc

h
as

 J
D

B
C

 o
r

SQ
L/

J.

ej
bS

to
re

()
Th

e
EJ

B
 c

on
ta

in
er

 c
al

ls
 th

is
 to

 u
pd

at
e

th
e

Ex
pl

ic
itl

y
up

da
te

 th
e

da
ta

ba
se

 r
ep

re
se

nt
at

io
n

of
 t

he

da
ta

ba
se

 to
 th

e
ne

w
 v

al
ue

s
of

 y
ou

r
in

-m
em

or
y

da
ta

 v
ia

 a
 s

to
ra

ge
 A

PI
 li

ke
 J

D
B

C
. T

yp
ic

al
ly

, y
ou

’ll
 w

rit
e

fie
ld

s,
 th

us
 s

yn
ch

ro
ni

zi
ng

 th
e

da
ta

ba
se

. T
he

a

nu
m

be
r

of
 y

ou
r

m
em

be
r

va
ria

bl
e

fie
ld

s
ou

t
to

 d
is

k
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te
 d

ic
ta

te
s

w
he

n
th

is

th
ro

ug
h

a
SQ

L
U

PD
AT

E.
m

et
ho

d
is

 c
al

le
d.

 T
hi

s
m

et
ho

d
is

 a
ls

o
ca

lle
d

du
rin

g
pa

ss
iv

at
io

n,
 d

ire
ct

ly
 b

ef
or

e
ej

bP
as

si
va

te
()

.

Ta
b

le
 6

.1
D

es
cr

ip
tio

ns
 a

nd
 Im

pl
em

en
ta

tio
n

G
ui

de
lin

es
 fo

r
B

ea
n-

M
an

ag
ed

 P
er

si
st

en
t E

nt
iti

es
 (

co
nt

in
ue

d)

Writing Bean-Managed Persistent Entity Beans 133

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

ej
bP

as
si

va
te

()
Th

e
EJ

B
 c

on
ta

in
er

 c
al

ls
 th

is
 m

et
ho

d
w

he
n

it
Re

le
as

e
an

y
re

so
ur

ce
s,

 s
uc

h
as

 s
oc

ke
t

co
nn

ec
tio

ns
,

w
an

ts
 to

 r
et

ur
n

yo
ur

 e
nt

ity
 b

ea
n

to
 th

e
po

ol
.

th
at

 y
ou

 a
llo

ca
te

d
in

 e
jb

Ac
tiv

at
e(

)
an

d
th

at
 y

ou
r

Th
is

 is
 c

al
le

d
pa

ss
iv

at
io

n
an

d
is

 th
e

op
po

si
te

 o
f

be
an

 w
as

 h
ol

di
ng

 d
ur

in
g

th
e

re
ad

y
st

at
e

fo
r

a
ac

tiv
at

io
n.

 O
n

pa
ss

iv
at

io
n,

 th
e

ej
bP

as
si

va
te

()
pa

rt
ic

ul
ar

 c
lie

nt
.

m
et

ho
d

is
 c

al
le

d
by

 th
e

EJ
B

 c
on

ta
in

er
.

Yo
u

sh
ou

ld
 n

ot
 s

av
e

th
e

en
tit

y
be

an
 d

at
a

in
to

 t
he

da

ta
ba

se
 in

 th
is

 m
et

ho
d.

 T
ha

t i
s

ha
nd

le
d

by
 a

se

pa
ra

te
 m

et
ho

d,
 e

jb
St

or
e(

),
w

hi
ch

 is
 c

al
le

d
rig

ht
be

fo
re

ej
bP

as
si

va
te

()
.

ej
bR

em
ov

e(
)

D
es

tr
oy

s
da

ta
ba

se
 d

at
a.

 It
 is

 n
ot

 u
se

d
to

Fi

rs
t,

fig
ur

e
ou

t w
ha

t d
at

a
yo

u
sh

ou
ld

 d
es

tr
oy

 v
ia

de

st
ro

y
th

e
Ja

va
 o

bj
ec

t;
th

e
ob

je
ct

 c
an

 b
e

ge
tP

rim
ar

yK
ey

()
 o

n
th

e
En

tit
yC

on
te

xt
. T

he
n

po
ol

ed
 a

nd
 r

eu
se

d
fo

r
di

ffe
re

nt
 d

at
a.

ex
pl

ic
itl

y
de

le
te

 th
e

da
ta

ba
se

 r
ep

re
se

nt
at

io
n

of
 t

he
da

ta
 v

ia
 a

 s
to

ra
ge

 A
PI

 li
ke

 J
D

B
C

, t
yp

ic
al

ly
 t

hr
ou

gh
 a

SQ

L
D

EL
ET

E.

un
se

tE
nt

ity
C

on
te

xt
()

Th
is

 m
et

ho
d

di
sa

ss
oc

ia
te

s
a

be
an

 fr
om

 it
s

Re
le

as
e

an
y

re
so

ur
ce

s
yo

u
al

lo
ca

te
d

du
rin

g
en

vi
ro

nm
en

t.
Th

e
co

nt
ai

ne
r

ca
lls

 th
is

 r
ig

ht

se
tE

nt
ity

C
on

te
xt

()
, a

nd
 g

et
 r

ea
dy

 to
 b

e
ga

rb
ag

e
be

fo
re

 y
ou

r
en

tit
y

be
an

 in
st

an
ce

 is
 d

es
tr

oy
ed

co

lle
ct

ed
.

(w
he

n
it

w
an

ts
 to

 r
ed

uc
e

th
e

po
ol

 s
iz

e)
.

You can have many different finder methods, all of which perform different
operations. Here are some examples:

/**

* Finds the unique bank account indexed by primary key

*/

public AccountPK ejbFindByPrimaryKey(AccountPK key)

throws FinderException { . . . }

/**

* Finds all the product entity beans. Returns a Collection

* of primary keys.

*/

public Collection ejbFindAllProducts()

throws FinderException { . . . }

/**

* Finds all Bank Accounts that have at least a minimum balance.

* Returns a Collection of primary keys.

*/

public Collection ejbFindBigAccounts(int minimum)

throws FinderException { . . . }

/**

* Finds the most recently placed order

*/

public OrderPK ejbFindMostRecentOrder()

throws FinderException { . . . }

Here are some of the rules about finder methods.

All finder methods must begin with ejbFind. This is simply a syntactic rule.

You must have at least one finder method, called ejbFindByPrimaryKey.
This method finds one unique entity bean instance in the database based
on its unique primary key. Because every entity bean has an associated pri-
mary key, it makes sense that every entity bean class supports this method.

You can have many different finder methods, each with different names
and different parameters. This allows you to find using different seman-
tics, as illustrated by the examples above.

A finder method must return either the primary key for the entity bean it
finds or a collection of primary keys if it finds more than one. Because
you could find more than one data instance in the database, finder meth-
ods can return collections of primary keys.

As with ejbCreate(), clients do not invoke your finder methods on the bean
instance itself. A finder method is just like any other method on your
entity bean class—clients never directly call any of your bean’s methods.
Rather, clients invoke finder methods on home objects, implemented by

T H E T R I A D O F B E A N S134

the EJB container, that delegate to your bean. Therefore, for each finder
method you define in your bean class, you should define a corresponding
finder in the local home interface. Clients call your local home object’s
finder methods, which delegate to your bean’s finders.

For example, given the following finder method in the local home interface:

public Accountlocal findBigAccounts(int minimum) throws FinderException;

here is the finder implementation in your bean class (notice the ejb prefix):

public AccountPK ejbFindBigAccounts(int minimum)

throws FinderException { . . . }

As with ejbCreate(), the home signature and the bean class signature have a
couple of differences:

■■ The entity bean instance returns a primary key to the container, whereas
the home object returns an EJB object to the client.

■■ The bean class signature is the same as the home signature, except for an
extra, mandatory ejb prefix and that the first letter in the word Find is
capitalized.

These signature differences between the home and bean are valid because the
bean does not implement the local home interface. Rather, the local home
object delegates to the bean, so strict signature matching is not needed.

Another interesting aspect of finders is that they can return collections. Your
database search may turn up more than one result and therefore more than one
entity bean. Here is the local home interface signature:

public Collection findAllProducts() throws FinderException;

And here is the bean implementation signature:

public Collection ejbFindAllProducts()

throws FinderException { . . . }

The finder process works as follows:

■■ When the client invokes the home object’s finder, the home object asks a
bean to find all primary keys matching the client’s criteria. The bean then
returns a collection of those primary keys to the container.

■■ When the container receives the collection of keys from the entity bean
instance, it creates a collection of EJB objects, one for each primary key, and
returns those EJB objects in its own collection to the client. The client can
then invoke methods on the EJB objects: Each EJB object represents its
own instance of data within the entity bean’s database storage.

Writing Bean-Managed Persistent Entity Beans 135

Bean-Managed Persistence Example:
A Bank Account

Our first example is a simple bank account entity bean. This bank account
bean can be used to represent and manipulate real bank account data in an
underlying relational database. The object model for our bank account is
detailed in Figure 6.2.

Notice that we’re developing both local and remote interfaces. When this bean
is used in production, the local interfaces will be used, because this entity bean
will be accessed by other beans that run in-process. However, for testing pur-
poses, and to help you understand entity beans easily, we don’t want to intro-
duce other beans. Rather, we will connect to this bean from a standalone
application. Since a standalone application is remote, we thus need to use its
remote interface. This is a common issue with EJB programming—to test
beans on an individual basis in this manner, you need to code its remote inter-
face even though you only plan to use the local interface in production. The
good news is that the code is almost identical for the local interface—see the
book’s accompanying source code (the e-commerce example) for examples of

T H E T R I A D O F B E A N S136

Bank Account Bean
Implementation

Class

<<interface>>
Bank Account

Remote Interface

Bank Account
EJB Object

<<interface>>
Bank Account
Home Interface

Bank Account
Home Object

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

Bank Account
Primary Key Class

<<interface>>
java.rmi.Remote

<<interface>>

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB Distribution

Comes with Java 2 Platform

<<interface>>
Bank Account

Local Home Interface

Bank Account
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Bank Account
Local Interface

Bank Account
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

java.io.serializable

Figure 6.2 The bank account object model.

calling entity beans through their local interfaces. Now let’s take a look at each
of the files that we must create for our entity bean component.

Account.java
Account.java is our entity bean’s remote interface—what remote clients use to
call our bean’s methods. It is shown in Source 6.3.

Writing Bean-Managed Persistent Entity Beans 137

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* This is the remote interface for AccountBean.

*

* This interface is what clients operate on when they interact with

* beans. The container will implement this interface; the

* implemented object is called the EJB object, which delegates

* invocations to the actual bean.

*/

public interface Account extends EJBObject {

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException,

RemoteException;

/**

* Withdraws amt from bank account.

* @throw AccountException thrown in amt < available balance

*/

public void withdraw(double amt) throws AccountException,

RemoteException;

// Getter/setter methods on Entity Bean fields

public double getBalance() throws RemoteException;

public String getOwnerName() throws RemoteException;

public void setOwnerName(String name) throws RemoteException;

public String getAccountID() throws RemoteException;

public void setAccountID(String id) throws RemoteException;

}

Source 6.3 Account.java.

Notice that the account remote interface extends javax.ejb.EJBObject, which all
remote interfaces must do. Our interface exposes a number of methods for
manipulating entity beans, such as for making deposits and withdrawals. All
of our methods throw remote exceptions to facilitate system-level catastrophic
failures. Notice that in our withdrawal method, we also throw our own cus-
tom application-level exception, AccountException. We’ll define that exception
later.

AccountLocal.java
AccountLocal.java is our entity bean’s local interface—what local clients use to
call our bean’s methods. It is shown in Source 6.4.

AccountHome.java
Our home interface is specified by AccountHome.java, shown in Source 6.5.

We provide one create method to create a new account. This will create new
database data representing a bank account. It returns an EJB object to the client
so the client can manipulate that newly created account. Notice that we throw
the application-level javax.ejb.CreateException, which all create() methods must
throw.

We also have two finder methods. findByPrimaryKey() searches the database
for a bank account that already exists; it searches by the account ID, which we
will define in AccountPK.java. We also have a custom finder method, findBy-
OwnerName(), which searches the database for all bank accounts that have the
same owner’s name. Because we’re using bean-managed persistence, we need
to implement both of these finder methods in our entity bean implementation.
(If we were using container-managed persistence, the container would search
the database for us). As with our create method, both finders return EJB objects
so the client can manipulate the newly found bank accounts. We throw the
application-level javax.ejb.FinderException, which all finders must throw.

Finally, we have a business method, getTotalBankValue(). This business method
is an operation applied to the entire table rather than to an individual row.
Thus it is a global method that is independent of any particular entity bean
instance. This business method will be implemented in the bean class as an ejb-
Home() method, as previously described in Table 6.1.

AccountLocalHome.java
Our local home interface, the higher performing home interface used by local
clients, is specified by AccountLocalHome.java, shown in Source 6.6.

T H E T R I A D O F B E A N S138

Writing Bean-Managed Persistent Entity Beans 139

package examples;

import javax.ejb.*;

/**

* This is the local interface for AccountBean.

*

* This interface is what clients operate on when they interact with

* beans. The container will implement this interface; the

* implemented object is called the local object, which delegates

* invocations to the actual bean.

*/

public interface AccountLocal extends EJBLocalObject {

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException;

/**

* Withdraws amt from bank account.

* @throw AccountException thrown in amt < available balance

*/

public void withdraw(double amt) throws AccountException;

// Getter/setter methods on Entity Bean fields

public double getBalance();

public String getOwnerName();

public void setOwnerName(String name);

public String getAccountID();

public void setAccountID(String id);

}

Source 6.4 AccountLocal.java.

The only differences between the local home interface and the home interface
are that the local home interface does not throw remote exceptions, and the
local home interface extends a different parent interface.

AccountPK.java
Our entity bean’s primary key class is defined by AccountPK.java, detailed in
Source 6.7.

T H E T R I A D O F B E A N S140

package examples;

import javax.ejb.*;

import java.util.Collection;

import java.rmi.RemoteException;

/**

* This is the home interface for Account. This

* interface is implemented by the EJB container's tools - the

* implemented object is called the home object, which

* is a factory for EJB objects.

*/

public interface AccountHome extends EJBHome {

/**

* We define a single create() method in this home interface,

* which corresponds to the ejbCreate() method in AccountBean.

* This method creates the local EJB object.

*

* Notice that the local home interface returns a local interface,

* whereas the bean returns a PK.

*

* @param accountID The number of the account (unique)

* @param ownerName The name of the person who owns the account

* @return The newly created local object.

*/

Account create(String accountID, String ownerName) throws

CreateException, RemoteException;

/**

* Finds a Account by its primary Key (Account ID)

*/

public Account findByPrimaryKey(AccountPK key) throws

FinderException, RemoteException;

/**

* Finds all Accounts under an owner name

*/

public Collection findByOwnerName(String name) throws

FinderException, RemoteException;

/**

* This home business method is independent of any particular

* account. It returns the total of all accounts in the bank.

*/

public double getTotalBankValue() throws AccountException,

RemoteException;

}

Source 6.5 AccountHome.java.

Writing Bean-Managed Persistent Entity Beans 141

package examples;

import javax.ejb.*;
import java.util.Collection;

/**
* This is the local home interface for Account. This
* interface is implemented by the EJB container's tools - the
* implemented object is called the local home object, which
* is a factory for local EJB objects.
*/

public interface AccountLocalHome extends EJBLocalHome {

/**
* We define a single create() method in this home interface,
* which corresponds to the ejbCreate() method in AccountBean.
* This method creates the local EJB object.
*
* Notice that the local home interface returns a
* local interface, whereas the bean returns a PK.
*
* Notice we don't throw RemoteExceptions because we are
* local not remote.
*
* @param accountID The number of the account (unique)
* @param ownerName The name of the person who owns the account
* @return The newly created local object.
*/

public AccountLocal create(String accountID, String ownerName)
throws CreateException;

/**
* Finds an Account by its primary Key (Account ID)
*/

public AccountLocal findByPrimaryKey(AccountPK key) throws
FinderException;

/**
* Finds all Accounts under an owner's name
*/

public Collection findByOwnerName(String name) throws
FinderException;

/**
* This home business method is independent of any particular
* account instance. It returns the total of all the bank
* accounts in the bank.
*/

public double getTotalBankValue() throws AccountException;

}

Source 6.6 AccountLocalHome.java.

Notice the following about Source 6.7:

■■ Our primary key contains a simple String—the account ID string. For
example, an account ID string could be “ABC-123-0000.” This string must
be unique to its bank account; we rely on the client code that constructs
our account ID to make sure it is unique. The primary key is used to iden-
tify each bank account uniquely. More advanced entity beans that map to
more than one table may have primary key classes that have several fields
inside of them, each representing the primary key of a table in the
database.

■■ There is a required toString() method. This container calls this method to
retrieve a String value of this primary key. For simple primary keys, we

T H E T R I A D O F B E A N S142

package examples;

import java.io.Serializable;

/**

* Primary Key class for Account.

*/

public class AccountPK implements java.io.Serializable {

public String accountID;

public AccountPK(String id) {

this.accountID = id;

}

public AccountPK() {

}

public String toString() {

return accountID;

}

public int hashCode() {

return accountID.hashCode();

}

public boolean equals(Object account) {

return ((AccountPK)account).accountID.equals(accountID);

}

}

Source 6.7 AccountPK.java.

just return the stored field. For more advanced primary keys, we need to
somehow combine the various fields in the primary key class to form a
String.

■■ There is a required hashCode() method. By supplying this method, our pri-
mary key class can be stored in a Hashtable. The container needs this
because inside of the container it may use a Hashtable or similar structure
to store a list of all entity beans it has in memory, keyed on their primary
keys.

■■ There is a required equals() method. The container calls this to compare
this primary key to others when determining internally if two cached
entity beans (which each have a primary key) are representing the same
database data.

AccountBean.java
Next we have our entity bean implementation class, AccountBean.java. Our
bean implementation code is quite lengthy and is divided into several
sections.

Bean-managed state fields. These are the persistable fields of our entity bean
class. Our bean instance will load and store the database data into these
fields.

Business logic methods. These methods perform services for clients, such as
withdrawing or depositing into an account. They are exposed by the
remote interface, Account.

EJB-required methods. These are EJB-required methods that the container
calls to manage our bean. They also include our creator and finder meth-
ods defined in the home interface.

The code is presented in Source 6.8 through Source 6.10. We divide the code
into three parts because the code is extremely cumbersome, even for a simple
bank account. This is an unfortunate drawback of bean-managed persistence
because you must provide all data access code.

The first part of our bean is straightforward. We have our bean’s fields (one of
which is the primary key field), and a default constructor. We keep an Entity-
Context around so that we can query the container from our bean as necessary
(However, the EntityContext is not a persistent field).

The next part of our bean is the business logic methods, shown in Source 6.9.

Our withdraw and deposit methods simply modify the in-memory fields of
the entity bean instance. If the client tries to withdraw from a negative account,
we throw our custom application-level exception, AccountException.

Writing Bean-Managed Persistent Entity Beans 143

T H E T R I A D O F B E A N S144

... continued ...

//

// Business Logic Methods

//

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

System.out.println("deposit(" + amt + ") called.");

Source 6.9 AccountBean.java (Part 2 of 3).

package examples;

import java.sql.*;

import javax.naming.*;

import javax.ejb.*;

import java.util.*;

/**

* Demonstration Bean-Managed Persistent Entity Bean.

* This Entity Bean represents a Bank Account.

*/

public class AccountBean implements EntityBean {

protected EntityContext ctx;

//

// Bean-managed state fields

//

private String accountID; // PK

private String ownerName;

private double balance;

public AccountBean() {

System.out.println("New Bank Account Entity Bean Java Object

created by EJB Container.");

}

... methods continue ...

Source 6.8 AccountBean.java (Part 1 of 3).

Writing Bean-Managed Persistent Entity Beans 145

balance += amt;

}

/**

* Withdraws amt from bank account.

* @throw AccountException thrown in amt < available balance

*/

public void withdraw(double amt) throws AccountException {

System.out.println("withdraw(" + amt + ") called.");

if (amt > balance) {

throw new AccountException("Your balance is " +

balance + "! You cannot withdraw "

+ amt + "!");

}

balance -= amt;

}

// Getter/setter methods on Entity Bean fields

public double getBalance() {

System.out.println("getBalance() called.");

return balance;

}

public void setOwnerName(String name) {

System.out.println("setOwnerName() called.");

ownerName = name;

}

public String getOwnerName() {

System.out.println("getOwnerName() called.");

return ownerName;

}

public String getAccountID() {

System.out.println("getAccountID() called.");

return accountID;

}

public void setAccountID(String id) {

System.out.println("setAccountID() called.");

this.accountID = id;

}

/**

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

T H E T R I A D O F B E A N S146

* This home business method is independent of any

* particular account instance. It returns the total

* of all the bank accounts in the bank.

*/

public double ejbHomeGetTotalBankValue() throws AccountException

{

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println("ejbHomeGetTotalBankValue()");

/*

* Acquire DB connection

*/

conn = getConnection();

/*

* Get the total of all accounts

*/

pstmt = conn.prepareStatement(

"select sum(balance) as total from accounts");

ResultSet rs = pstmt.executeQuery();

/*

* Return the sum

*/

if (rs.next()) {

return rs.getDouble("total");

}

}

catch (Exception e) {

e.printStackTrace();

throw new AccountException(e);

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

throw new AccountException("Error!");

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 147

}

/**

* Gets JDBC connection from the connection pool.

*

* @return The JDBC connection

*/

public Connection getConnection() throws Exception {

try {

Context ctx = new InitialContext();

javax.sql.DataSource ds = (javax.sql.DataSource)

ctx.lookup("java:comp/env/jdbc/ejbPool");

return ds.getConnection();

}

catch (Exception e) {

System.err.println("Couldn't get datasource!");

e.printStackTrace();

throw e;

}

}

}

Source 6.9 AccountBean.java (Part 2 of 3) (continued).

The ejbHome() business method implementation adds the total of all bank account
balances in the database. It retrieves a JDBC connection via the getConnection()
helper method. In that getConnection() method we lookup the database connec-
tion via JNDI (see Chapter 9 for a full description of this process).

Notice, too, that we close each connection after every method call. This allows
our EJB container to pool JDBC connections. When the connection is not in use,
another bean can use our connection. This is the standard, portable way for
connection pooling. The connection pooling is built-into the JDBC 2.0 specifica-
tion and happens automatically behind the scenes.

The final part of our bean is the various EJB callback methods, shown in
Source 6.10.

Source 6.10 is quite long because of the enormous amount of JDBC coding
required to write even a simple bean-managed persistent entity bean. The bulk
of the code occurs in the methods that perform CRUD operations (Create,
Read, Update, Delete). These are namely ejbCreate(), ejbFind() and ejbLoad(),
ejbStore(), and ejbRemove(). The code is self-documenting and you should be
able to understand it if you cross-reference Table 6.1. If you’re still stuck, we
will further explain these methods later in this chapter when we discuss the
lifecycle of a bean-managed persistent entity bean.

T H E T R I A D O F B E A N S148

... continued ...

//

// EJB-required methods

//

/**

* Called by Container. Implementation can acquire

* needed resources.

*/

public void ejbActivate() {

System.out.println("ejbActivate() called.");

}

/**

* Removes entity bean data from the database.

* Corresponds to when client calls home.remove().

*/

public void ejbRemove() throws RemoveException {

System.out.println("ejbRemove() called.");

/*

* Remember that an entity bean class can be used to

* represent different data instances. So how does

* this method know which instance in the database

* to delete?

*

* The answer is to query the container by calling

* the entity context object. By retrieving the

* primary key from the entity context, we know

* which data instance, keyed by the PK, that we

* should delete from the DB.

*/

AccountPK pk = (AccountPK) ctx.getPrimaryKey();

String id = pk.accountID;

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new JDBC Connection

*/

conn = getConnection();

/*

* 2) Remove account from the DB

*/

Source 6.10 AccountBean.java (Part 3 of 3).

Writing Bean-Managed Persistent Entity Beans 149

pstmt = conn.prepareStatement(

"delete from accounts where id = ?");

pstmt.setString(1, id);

/*

* 3) Throw a system-level exception if something

* bad happened.

*/

if (pstmt.executeUpdate() == 0) {

throw new RemoveException(

"Account " + pk +

" failed to be removed from the database");

}

}

catch (Exception ex) {

throw new EJBException(ex.toString());

}

finally {

/*

* 4) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

/**

* Called by Container. Releases held resources for

* passivation.

*/

public void ejbPassivate() {

System.out.println("ejbPassivate () called.");

}

/**

* Called by the container. Updates the in-memory entity

* bean object to reflect the current value stored in

* the database.

*/

public void ejbLoad() {

System.out.println("ejbLoad() called.");

/*

* Again, query the Entity Context to get the current

* Primary Key, so we know which instance to load.

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

T H E T R I A D O F B E A N S150

*/

AccountPK pk = (AccountPK) ctx.getPrimaryKey();

String id = pk.accountID;

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new DB Connection

*/

conn = getConnection();

/*

* 2) Get account from the DB, querying

* by account ID

*/

pstmt = conn.prepareStatement(

"select ownerName, balance from accounts "

+ "where id = ?");

pstmt.setString(1, id);

ResultSet rs = pstmt.executeQuery();

rs.next();

ownerName = rs.getString("ownerName");

balance = rs.getDouble("balance");

}

catch (Exception ex) {

throw new EJBException(

"Account " + pk

+ " failed to load from database", ex);

}

finally {

/*

* 3) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

/**

* Called from the Container. Updates the database

* to reflect the current values of this in-memory

* entity bean instance.

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 151

public void ejbStore() {

System.out.println("ejbStore() called.");

PreparedStatement pstmt = null;

Connection conn = null;

try {

/*

* 1) Acquire a new DB Connection

*/

conn = getConnection();

/*

* 2) Store account in DB

*/

pstmt = conn.prepareStatement(

"update accounts set ownerName = ?, balance = ?"

+ " where id = ?");

pstmt.setString(1, ownerName);

pstmt.setDouble(2, balance);

pstmt.setString(3, accountID);

pstmt.executeUpdate();

}

catch (Exception ex) {

throw new EJBException(

"Account " + accountID

+ " failed to save to database", ex);

}

finally {

/*

* 3) Release the DB Connection

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

/**

* Called by the container. Associates this bean

* instance with a particular context. We can query

* the bean properties that customize the bean here.

*/

public void setEntityContext(EntityContext ctx) {

System.out.println("setEntityContext called");

this.ctx = ctx;

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

T H E T R I A D O F B E A N S152

}

/**

* Called by Container. Disassociates this bean

* instance with a particular context environment.

*/

public void unsetEntityContext() {

System.out.println("unsetEntityContext called");

this.ctx = null;

}

/**

* Called after ejbCreate(). Now, the Bean can retrieve

* its EJBObject from its context, and pass it as

* a 'this' argument.

*/

public void ejbPostCreate(String accountID, String ownerName) {

}

/**

* This is the initialization method that corresponds to the

* create() method in the Home Interface.

*

* When the client calls the Home Object's create() method,

* the Home Object then calls this ejbCreate() method.

*

* @return The primary key for this account

*/

public AccountPK ejbCreate(String accountID, String ownerName)

throws CreateException {

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println("ejbCreate() called.");

this.accountID = accountID;

this.ownerName = ownerName;

this.balance = 0;

/*

* Acquire DB connection

*/

conn = getConnection();

/*

* Insert the account into the database

*/

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

Writing Bean-Managed Persistent Entity Beans 153

pstmt = conn.prepareStatement(

"insert into accounts (id, ownerName, balance)"

+ " values (?, ?, ?)");

pstmt.setString(1, accountID);

pstmt.setString(2, ownerName);

pstmt.setDouble(3, balance);

pstmt.executeUpdate();

/*

* Generate the Primary Key and return it

*/

return new AccountPK(accountID);

}

catch (Exception e) {

throw new CreateException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

/**

* Finds a Account by its primary Key

*/

public AccountPK ejbFindByPrimaryKey(AccountPK key)

throws FinderException {

PreparedStatement pstmt = null;

Connection conn = null;

try {

System.out.println("ejbFindByPrimaryKey("

+ key + ") called");

/*

* Acquire DB connection

*/

conn = getConnection();

/*

* Find the Entity in the DB

*/

pstmt = conn.prepareStatement(

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

T H E T R I A D O F B E A N S154

"select id from accounts where id = ?");

pstmt.setString(1, key.toString());

ResultSet rs = pstmt.executeQuery();

rs.next();

/*

* No errors occurred, so return the Primary Key

*/

return key;

}

catch (Exception e) {

throw new FinderException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

/**

* Finds Accounts by name

*/

public Collection ejbFindByOwnerName(String name)

throws FinderException {

PreparedStatement pstmt = null;

Connection conn = null;

Vector v = new Vector();

try {

System.out.println(

"ejbFindByOwnerName(" + name + ") called");

/*

* Acquire DB connection

*/

conn = getConnection();

/*

* Find the primary keys in the DB

*/

pstmt = conn.prepareStatement(

"select id from accounts where ownerName = ?");

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

When a statement is sent to a database, the container’s installer JDBC driver parses
it, determines the best way to execute the statement based on statistics that it main-
tains, and then executes the statement. Parsing and determining an execution strat-
egy can be computationally expensive. The good news is that JDBC is smart—when
an instance of PreparedStatement is executed on a connection, it first checks its
cache to see if this statement has been executed previously; if so, it reuses the previ-
ously prepared version, thus improving performance. For more information, refer to
Billy Newport’s article, “How Prepared Statements Greatly Improve Performance,”
posted at www.ejbinfo.com.

Writing Bean-Managed Persistent Entity Beans 155

pstmt.setString(1, name);

ResultSet rs = pstmt.executeQuery();

/*

* Insert every primary key found into a vector

*/

while (rs.next()) {

String id = rs.getString("id");

v.addElement(new AccountPK(id));

}

/*

* Return the vector of primary keys

*/

return v;

}

catch (Exception e) {

throw new FinderException(e.toString());

}

finally {

/*

* Release DB Connection for other beans

*/

try { if (pstmt != null) pstmt.close(); }

catch (Exception e) {}

try { if (conn != null) conn.close(); }

catch (Exception e) {}

}

}

}

Source 6.10 AccountBean.java (Part 3 of 3) (continued).

T H E T R I A D O F B E A N S156

package examples;

/**

* Exceptions thrown by Accounts

*/

public class AccountException extends Exception {

public AccountException() {

super();

}

public AccountException(Exception e) {

super(e.toString());

}

public AccountException(String s) {

super(s);

}

}

Source 6.11 AccountException.java.

AccountException.java
Our custom exception class is AccountException.java, displayed in Source 6.11.
It simply delegates to the parent java.lang.Exception class. It is still useful to
define our own custom exception class, however, so that we can distinguish
between a problem with our bank account component and a problem with
another part of a deployed system.

Client.java

Our last Java file is a simple test client to exercise our bean’s methods. It is
shown in Source 6.12.

The client code is fairly self-explanatory. We perform some bank account oper-
ations in the try block. We have a finally clause to make sure our bank account
is properly deleted afterward, regardless of any exceptions that may have been
thrown.

The Deployment Descriptor
Now, let’s take a look at our deployment descriptor, shown in Source 6.13.

Writing Bean-Managed Persistent Entity Beans 157

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.*;

import java.util.*;

/**

* Sample client code that manipulates a Bank Account Entity Bean.

*/

public class AccountClient {

public static void main(String[] args) throws Exception {

Account account = null;

try {

/*

* Get a reference to the Account Home Object - the

* factory for Account EJB Objects

*/

Context ctx =

new InitialContext(System.getProperties());

Object obj = ctx.lookup("AccountHome");

AccountHome home = (AccountHome)

PortableRemoteObject.narrow(

obj, AccountHome.class);

System.err.println(

"Total of all accounts in bank initially = "

+ home.getTotalBankValue());

/*

* Use the factory to create the Account EJB Object

*/

home.create("123-456-7890", "John Smith");

/*

* Find an account

*/

Iterator i = home.findByOwnerName(

"John Smith").iterator();

if (i.hasNext()) {

account = (Account)

javax.rmi.PortableRemoteObject.narrow(

Source 6.12 Client.java.

T H E T R I A D O F B E A N S158

i.next(), Account.class);

}

else {

throw new Exception("Could not find account");

}

/*

* Call the balance() method, and print it

*/

System.out.println(

"Initial Balance = " + account.getBalance());

/*

* Deposit $100 into the account

*/

account.deposit(100);

/*

* Retrieve the resulting balance.

*/

System.out.println(

"After depositing 100, account balance = "

+ account.getBalance());

System.out.println(

"Total of all accounts in bank now = "

+ home.getTotalBankValue());

/*

* Retrieve the Primary Key from the EJB Object

*/

AccountPK pk = (AccountPK) account.getPrimaryKey();

/*

* Release our old EJB Object reference. Now call

* find() again, this time querying on Account ID

* (i.e. the Primary Key).

*/

account = null;

account = home.findByPrimaryKey(pk);

/*

* Print out current balance

*/

System.out.println(

"Found account with ID " + pk + ". Balance = "

+ account.getBalance());

Source 6.12 Client.java (continued).

Writing Bean-Managed Persistent Entity Beans 159

/*

* Try to withdraw $150

*/

System.out.println(

"Now trying to withdraw $150, which is more "

+ "than is currently available. This should "

+ "generate an exception..");

account.withdraw(150);

}

catch (Exception e) {

System.out.println("Caught exception!");

e.printStackTrace();

}

finally {

/*

* Destroy the Entity permanently

*/

try {

System.out.println("Destroying account..");

if (account != null) {

account.remove();

}

}

catch (Exception e) {

e.printStackTrace();

}

}

}

}

Source 6.12 Client.java (continued).

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>Account</ejb-name>

<home>examples.AccountHome</home>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor.

Notice the following features of our deployment descriptor that are different
from session beans:

■■ The persistence-type element indicates whether we are bean-managed
persistent (set it to “Bean”) or container-managed persistent (set it to
“Container”).

■■ The prim-key-class element specifies our primary key class.

■■ The reentrant element dictates whether our bean can call itself through
another bean. A given bean A is reentrant if bean A calls bean B, which
calls back on bean A. This is a special case of multithreading because it is
really only one path of execution that happens to loop back on itself. If we

T H E T R I A D O F B E A N S160

<remote>examples.Account</remote>

<local-home>examples.AccountLocalHome</local-home>

<local>examples.AccountLocal</local>

<ejb-class>examples.AccountBean</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>examples.AccountPK</prim-key-class>

<reentrant>False</reentrant>

<resource-ref>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>Account</ejb-name>

<method-intf>Local</method-intf>

<method-name>*</method-name>

</method>

<method>

<ejb-name>Account</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Source 6.13 The Account Bean’s ejb-jar.xml deployment descriptor (continued).

would like to support this reentrant behavior, we should set this setting to
True so that the container will allow two threads to run inside of bean A at
once. Since our bean doesn’t call itself through another bean, we set it to
False, which is usually what you’ll want to do to avoid unintended multi-
threading issues.

■■ The resource-ref element sets up our JDBC driver and makes it available at
the proper JNDI location (see Chapter 9 for a full description of this
process).

■■ The assembly-descriptor associates transactions with our bean. We will
describe transactions fully in Chapter 10.

The Container-Specific Deployment
Descriptor

Finally, we have our container-specific deployment descriptor, which config-
ures our bean in ways specific to a particular EJB server. We will not show this
file because we wish the code in this book to remain vendor-neutral. Typically
you would use this proprietary descriptor to associate the home interface,
local home interface, and JDBC driver with JNDI locations. For an example
descriptor, see the book’s accompanying source code.

Setting up the Database
Lastly, you need to create the appropriate database table and columns for our
bank accounts. You can do this through your database’s GUI or command-line
interface. The book’s included source code comes with a preconfigured sample
database that you can use right away. If you’re using a different database, you
should enter the following SQL Data Definition Language (DDL) statements in
your database’s SQL interface:

drop table accounts;

create table accounts (id varchar(64), ownername varchar(64), balance

numeric(18));

This creates an empty table of bank accounts. The first column is the bank
account ID (the primary key), the second column is the bank account owner’s
name, and the third column is the bank account balance.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on what your EJB container’s Java Naming and Directory Interface (JNDI)
connection parameters are—see your container’s documentation):

Writing Bean-Managed Persistent Entity Beans 161

java -Djava.naming.factory.initial=

weblogic.jndi.WLInitialContextFactory

-Djava.naming.provider.url=

t3://localhost:7001

examples.AccountClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

Server-Side Output
When you run the client, you should see something similar to the following on
the server side. Note that your particular output may vary, due to variances in
EJB container behavior.

New Bank Account Entity Bean Java Object created by EJB Container.

setEntityContext called.

ejbHomeGetTotalBankValue() called.

ejbCreate() called.

ejbStore() called.

New Bank Account Entity Bean Java Object created by EJB Container.

setEntityContext called.

ejbFindByOwnerName(John Smith) called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

deposit(100.0) called.

ejbStore() called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbHomeGetTotalBankValue() called.

ejbFindByPrimaryKey(123-456-7890) called.

ejbLoad() called.

getBalance() called.

ejbStore() called.

ejbLoad() called.

withdraw(150.0) called.

ejbStore() called.

ejbLoad() called.

ejbRemove() called.

Notice what’s happening here:

■■ When our client code called create() on the home object, the container cre-
ated an entity bean instance. The container first called newInstance() and
setEntityContext() to get the entity bean into the available pool of entity
beans. The container then serviced our client’s home business method and
used the bean in the pool. Then the client called create(), which caused the

T H E T R I A D O F B E A N S162

container to take the bean out of the pool and call the bean’s ejbCreate()
method, which created some new database data, and returned control
back to the container. Finally, the container associated the bean instance
with a new EJB object and returned that EJB object to the client.

■■ To service our finder method, the container instantiated another entity
bean. The container called newInstance() and then setEntityContext() to get
that new bean instance into the available pool of entity beans. It then used
the bean in the pool to service our finder method. Note that the bean
instance is still in the pool and could service any number of finder
methods.

■■ In addition to the methods that the client calls, our EJB container inter-
leaved a few ejbStore() and ejbLoad() calls to keep the database in synch.

Client-Side Output
Running the client program yields the following client-side output:

Total of all accounts in bank initially = 1200000.0

Initial Balance = 0.0

After depositing 100, account balance = 100.0

Total of all accounts in bank now = 1200100.0

Found account with ID 123-456-7890. Balance = 100.0

Now trying to withdraw $150, which is more than is currently available.

This should generate an exception..

Caught exception!

examples.AccountException: Your balance is 100.0! You cannot withdraw

150.0!

Destroying account..

Our table already had $1,200,000 from previous records in the database. We
then created an entity bean, deposited into it, and tried to withdraw more than
we had. The entity bean correctly threw an application-level exception back to
us indicating that our balance had insufficient funds.

Putting It All Together: Walking through
a BMP Entity Bean’s Life Cycle

Let’s wrap up this chapter by examining the big picture and understanding
exactly how a container interacts with a BMP entity bean. The state machine
diagram in Figure 6.3 illustrates the life cycle of a BMP entity bean.

Here is what’s going on in this diagram.

1. The does not exist state represents entity bean instances that have not been
instantiated yet.

Writing Bean-Managed Persistent Entity Beans 163

2. To create a new instance, the container calls the newInstance() method on
the entity bean class. This calls your entity bean’s default constructor,
bringing a new instance into memory. Next, the container associates your
entity bean with an entity context object via a callback that you imple-
ment, called setEntityContext(EntityContext ctx). Note that this step occurs
only when the container wants to increase the available pool of entity
bean instances, not necessarily when a client connects.

T H E T R I A D O F B E A N S164

Does Not Exist

Pooled

Ready

ejbRemove()

ejbStore()

1: newInstance()
2: setEntityContext()

1: unsetEntityContext()
2: JVM Will Garbage Collect
 and Call finalize()

ejbFind()

Activate Your Bean:
1: ejbActivate()
2: ejbLoad()

Passivate Your Bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

Business Method

The lifecycle of a bean-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Figure 6.3 The BMP entity bean life cycle.

3. Next, your entity bean is in a pool of other entity beans. At this point your
entity bean does not have any entity bean database data loaded into it,
and it does not hold any bean-specific resources, such as socket connec-
tions. Your bean instance can be used in this mode to find entity data in
the database, by servicing a finder method on behalf of a client. Your bean
instance can also perform operations not dependent on a particular data
instance by servicing an ejbHome() method on behalf of a client. If the con-
tainer wants to reduce its pool size, it can destroy your bean. The con-
tainer signals your bean instance that it is about to be destroyed by calling
the unsetEntityContext() method on your bean. Once this is done, the con-
tainer releases any references to your bean, and eventually, the Java
garbage collector cleans up the memory your instance had been using.
Therefore your unsetEntityContext() method should prepare your bean to
be cleaned up, perhaps by releasing any resources your bean had claimed
during setEntityContext().

4. When the client wants to create some new database data (say, a new order
for goods placed over the Internet), it calls a create() method on your
entity bean’s home object. The container then grabs an entity bean
instance from the pool, and the instance’s ejbCreate() method is called.
ejbCreate() initializes the entity bean to a specific data set. For example, if a
client calls a create() method to create a bank account, it might pass the
bank account holder’s name and the initial balance as parameters. Your
entity bean’s ejbCreate() method would populate its member variables
with these parameters. It would also create the corresponding database
representation (if you’re using bean-managed persistence). Now your
bean is in the “ready” state.

5. While your bean is in the ready state, it is tied to specific data and hence a
specific EJB object. If there are other entity bean instances that are views
into the same database data, the container may occasionally need to syn-
chronize your bean instance with the underlying database, so that you
will always be working with the most recent data. The ejbLoad() and ejb-
Store() methods do this; the container calls them as appropriate, based on
how you define your transactions (see Chapter 10).

6. Your entity beans can be kicked back into the pool in two ways. If a client
calls remove() on the home object, the container will call your instance’s
ejbRemove(). The underlying database data is destroyed and so, of course,
your entity bean instance will become disassociated with the client’s EJB
object to which it was bound.

7. The second way your bean can return to the pool is if the EJB container
decides that your client has timed out, if the container needs to use your
bean to service a different client, or if the container is simply running out

Writing Bean-Managed Persistent Entity Beans 165

of resources. At this point, your bean is passivated, and the container calls
your ejbStore() method to ensure the database has the most recent version
of your in-memory data. Next the container calls your ejbPassivate()
method, allowing your bean instance to release held resources. Your bean
instance then enters the pool.

8. When the container wants to assign you to an EJB object again, your bean
instance must be activated. The container calls your bean’s ejbActivate()
method, allowing your bean to acquire resources. The container then calls
your instance’s ejbLoad() method to load the database data into your bean.

Note that there are a few other minor steps in this process, such as transac-
tional synchronization. Overall, these stages are the essence of a BMP entity
bean instance’s life cycle. The next step is for you to look at this diagram again
and make sure you fully grasp it. Do you understand how a single Java object
instance can be pooled and reused, going back and forth through various tran-
sitions between the pooled and ready state, perhaps representing different
database data each time? If so, congratulations. This is a crucial step towards
fully understanding EJB.

Summary

In this chapter, you’ve seen how to write bean-managed persistent entity
beans. Bean-managed persistent entity beans are useful if you need to control
the underlying database operations yourself. But the real advantage of EJB
comes from container-managed persistent entity beans. Container-managed per-
sistent entity beans can be developed much more rapidly because the con-
tainer handles all data access logic for you. The next chapter covers the new
EJB 2.0 container-managed persistence model, an exciting and interesting new
addition to EJB.

T H E T R I A D O F B E A N S166

C H A P T E R 7

167

In the previous chapters, we learned the basics of entity beans and wrote a
bean-managed persistent entity bean representing a bank account. In this
chapter, we’ll see how things change when we move to a container-managed
persistent (CMP) model. With container-managed persistence, you don’t
implement any persistence logic (such as JDBC or SQL/J) in the entity bean
itself; rather, the EJB container performs storage operations for you. As you
will see, this greatly simplifies bean development.

Features of CMP Entity Beans

We’ll kick things off by looking at the major differences between CMP and
bean-managed persistence (BMP). Before reading this, you should be familiar
with the entity bean concepts we covered in the last two chapters.

CMP Entity Beans Are Subclassed
Imagine that you are a bean provider who writes beans that others will con-
sume, such as an independent software vendor (ISV) or a department that
writes components that other departments reuse. You need to write your
beans to be database-independent because you don’t know what storage the
consumers of your bean will use. You certainly don’t want to allow the
consumers of your beans to access your source code, because it violates your

Writing Container-Managed
Persistent Entity Beans

intellectual property rights. Furthermore, if they modify the code, it makes
future upgrades to new versions of your components difficult.

To answer this need, the authors of the EJB specification have tried to make
CMP have a clean separation between an entity bean and its persistent repre-
sentation—that is, a separation between the data logic methods (such as logic
in your entity bean to add two fields together) and the JDBC. This separation
is valuable because you can modify the persistent representation of an entity
bean (such as changing from a relational database to an object database) with-
out affecting the entity bean logic. This is a crucial feature for bean providers.

To achieve this clean separation, you write your CMP entity bean class to be
devoid of any JDBC or other persistence logic. The container then generates the
JDBC by subclassing your entity bean class. The generated subclass inherits
from your entity bean class. Thus, all CMP entity beans are each broken up
into two classes: the superclass, which you write and which contains the entity
bean data logic; and the subclass, which the container generates and which
contains the persistence logic. These two classes achieve a clean separation of
entity bean logic and persistent representation. The actual entity bean is a com-
bination of the superclass and the subclass. This is shown in Figure 7.1.

Entity beans are very different between EJB 1.1 and EJB 2.0. EJB 1.1 entity beans do
not require the use of subclassing. EJB 2.0 containers must support both the old EJB
1.1 style and the new EJB 2.0 style of entity beans.

CMP Entity Beans Have No
Declared Fields

Another issue with CMP is that the container might have additional fields or
logic that are part of your persistent representation but are container-specific.
As a bean developer, you should be oblivious to this information. Here are two
examples:

■■ A container might keep around a bit vector that tracks which of your
entity bean fields have been modified (that is, are dirty) and need to be
written to storage. Then when your bean is stored, the container persists
only the part of your bean that has changed.

■■ Your bean might hold references to other beans. The container must
preserve referential integrity of those relationships, as described in
Chapter 11.

Since every container has its own proprietary way of dealing with your per-
sistent representation, your persistent fields are kept in the subclass, not the
superclass. This is another paradigm shift with container-managed persistent

T H E T R I A D O F B E A N S168

entity beans: You don’t declare any persistent fields in your bean. For example,
take a look at the following is a snippet of code from a BMP bank account
entity bean class that we wrote in Chapter 6:

// BMP

public class AccountBean implements EntityBean {

public String accountID; // PK

public String ownerName;

Writing Container-Managed Persistent Entity Beans 169

CMP Entity Bean Class
(Contains Data Logic)

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

Comes with EJB Distribution

Comes with Java 2 Platform

CMP Entity Bean Subclass
(Contains Persistence Logic)

Figure 7.1 The subclassing concept.

public double balance;

...methods...

}

With CMP, the fields are not present. Rather, the container generates your per-
sistent fields in the subclass. For example, the following subclass might be gen-
erated from the container tools:

// CMP Subclass

public class AccountBeanSubClass extends AccountBean {

public String accountID; // PK

public String ownerName;

public double balance;

...methods...

}

CMP Get/Set Methods Are Defined
in the Subclass

One corollary of the subclass paradigm is that the subclass, not the superclass,
implements the get/set methods. For example, here is that BMP bank account
again:

// BMP

public class AccountBean implements EntityBean {

public String accountID; // PK

public String ownerName;

public double balance;

public String getOwnerName() {

return ownerName;

}

public void setOwnerName(String ownerName) {

this.ownerName = ownerName;

}

...other methods...

}

With CMP, the get/set methods would appear in the subclass, since that is
where the fields exist and thus the only place they can be accessed. Here is
what the container-generated subclass looks like.

// CMP subclass

public class AccountBeanSubClass extends AccountBean {

public String accountID; // PK

public String ownerName;

T H E T R I A D O F B E A N S170

public double balance;

public String getOwnerName() {

return ownerName;

}

public void setOwnerName(String ownerName) {

this.ownerName = ownerName;

}

...other methods...

}

So what does the superclass look like? First, realize that the superclass cannot
possibly implement the get/set methods because it doesn’t have access to the
fields. However, the superclass does need to call those get/set methods. For
example, let’s say you have a shopping cart entity bean that contains a subtotal
field and a taxes field on the contents in the shopping cart. One useful method
you might want to write is a getTotal() method, which returns the subtotal �
taxes. That is more than just a simple get/set method and thus cannot be gen-
erated automatically by the container in the subclass. Therefore you need to
write that method in the superclass yourself. But what would that getTotal()
method look like? With BMP, it could look like this:

// BMP

public class CartBean implements EntityBean {

...

public float getTotal() {

return this.getSubtotal() + this.getTaxes();

}

...

}

This code works well with BMP because we can define the getSubtotal() and
getTaxes() methods. But with CMP, the simple get/set methods getSubtotal()
and getTaxes() are defined in the subclass, so how can we access those get/set
methods? The answer is to declare your get/set methods as abstract methods
in the superclass. An abstract method is a method whose implementation is
deferred to a subclass; yet by defining a method as abstract you can call it from
the superclass. For example, a CMP shopping cart bean would look like this:

// CMP superclass

public abstract class CartBean implements EntityBean {

// no fields

// abstract get/set methods

public abstract float getSubTotal();

Writing Container-Managed Persistent Entity Beans 171

public abstract float getTaxes();

// other business methods

public float getTotal() {

return this.getSubtotal() + this.getTaxes();

}

// EJB required methods follow

}

The subclass for this bean is the subclass we showed earlier. As another exam-
ple, a CMP account bean would look like this:

// CMP superclass

public abstract class AccountBean implements EntityBean {

// no fields

// abstract get/set methods

public abstract String getOwnerName();

public abstract void setOwnerName(String ownerName);

// EJB required methods follow

}

CMP Entity Beans Have an Abstract
Persistence Schema

So far, we’ve discussed how the container generates JDBC code, persistent
fields, and get/set method implementations. One lurking question is how
does the container knows what to generate? The answer is that you declare it in
your bean’s deployment descriptors. The EJB container inspects the deploy-
ment descriptors to figure out what to generate. This definition of how you’d
like to be persisted is called your abstract persistence schema. For example, here
is a snippet from an Account deployment descriptor:

...

<cmp-version>2.x</cmp-version>

<abstract-schema-name>AccountBean</abstract-schema-name>

<cmp-field>

<field-name>accountID</field-name>

</cmp-field>

<cmp-field>

<field-name>ownerName</field-name>

</cmp-field>

<cmp-field>

<field-name>balance</field-name>

T H E T R I A D O F B E A N S172

</cmp-field>

<primkey-field>accountID</primkey-field>

...

Here is a brief explanation of this deployment descriptor snippet.

■■ The cmp-version must be 2.x if you want to take advantage of EJB 2.0 CMP.
If you are on the older EJB 1.1 specification, you should define this to be
1.x. For an example of an EJB 1.1 CMP bean, see the book’s accompanying
source code.

■■ The abstract-schema-name is the nickname you want to give this abstract
persistence schema. It can have any value you want. We recommend nam-
ing it after your bean. Later we will reference this nickname when doing
queries.

■■ The cmp-field elements are your container-managed persistent fields. Each
field is a persistent field that the container will generate in the subclass.
The names of these fields must match the names of your abstract get/set
methods, except the first letter is not capitalized. For example, if your
abstract get/set methods are getOwnerName() and setOwnerName() then
your cmp-field should be called ownerName. The container derives the
types of these fields from the get/set methods as well.

We will see a complete example of an abstract persistence schema later in this
chapter.

CMP Entity Beans Have
a Query Language

Another piece of our CMP entity bean puzzle is addressing how to query
entity beans. To enable clients of your bean to find you, you must define finder
methods. For example, in BMP you’d define this method in your home
interface:

public Collection findBigAccounts(int minimum);

The home object would delegate this call to your bean, whose implementation
would be:

public Collection ejbFindBigAccounts(int minimum) {

// Perform JDBC, and return primary keys for

// all accounts whose balance is greater

// than the minimum passed in

}

With CMP, the container generates this JDBC for us. However, we need a way
to tell the container how to generate that JDBC, because the container can’t

Writing Container-Managed Persistent Entity Beans 173

magically know what find big accounts means. We want to specify how to gen-
erate the persistence code in a portable way so that we don’t have to com-
pletely rewrite the definitions of these finder methods every time we port our
bean to a new container.

The solution to this challenge is the EJB Query Language (EJB-QL). EJB-QL is an
object-oriented SQL-like syntax for querying entity beans. It contains a
SELECT clause, a FROM clause, and an optional WHERE clause. You write the
EJB-QL code in the deployment descriptor, and the container should be able to
generate the corresponding database logic (such as SQL), perhaps with some
help from the container tools. This is a similar concept to the Object Query
Language (OQL) described in Chapter 5.

Here is an example of EJB-QL that finds all accounts:

SELECT OBJECT(a)

FROM Account AS a

WHERE a.accountID IS NOT NULL

If you are using a relational database, at deployment time and with the help of
the container’s tools that you use, the container will inspect this code and gen-
erate the appropriate JDBC code.

Here is another example that satisfies the findBigAccounts() home method:

SELECT OBJECT(a)

FROM Account AS a

WHERE a.balance > ?1

In the above code, ?1 means the first parameter passed in, which in this case is
the variable minimum.

We will see more EJB-QL in the example later in this chapter. There is also a
complete reference in Appendix D.

Not all fields within the bean have to be managed by the container. You might be
pulling data manually from a secondary source, or you might have calculated fields.
The EJB container automatically notifies your bean class during persistent opera-
tions, allowing you to manage these fields.

In general, containers are not responsible for persisting any data in the superclass,
such as entity context references or environment naming contexts used for JNDI
lookups. You never store these persistently as container-managed fields because
they contain runtime EJB-specific information, and they do not represent persistent
business data.

The complete process of developing and deploying a CMP entity bean is
shown in Figure 7.2.

T H E T R I A D O F B E A N S174

CMP Entity Beans Can Have
ejbSelect() Methods

The final major difference between BMP and CMP entity beans is that CMP
entity beans can have special ejbSelect() methods. An ejbSelect() method is a
query method (like a finder method) but is not directly exposed to the client in
the home interface or component interface. Rather, ejbSelect() is used internally
within an entity bean as a helper method to access a storage. ejbSelect() is use-
ful when you have entity beans in relationships with external data, such as
other entity beans.

For example, in our bank account example from the previous chapter, we
defined a method called ejbHomeGetTotalBankValue(), which added up the total
of all bank accounts in the bank table by performing a SQL SELECT statement
using JDBC. With CMP, you shouldn’t be writing this JDBC code—rather, the
container should generate it for you in an ejbSelect() method, and you should
call that ejbSelect() method from the ejbHomeGetTotalBankValue() method. You
then tell the container how to write the ejbSelect() method just like you do a
finder method—by using the EJB Query Language (EJB QL) described earlier.

For example, you might define the following method in your entity bean:

public abstract double ejbSelectAllAccountBalances()

throws FinderException;

public double ejbHomeGetTotalBankValue() throws Exception {

Writing Container-Managed Persistent Entity Beans 175

EJB Container/Server
 Provider

Deployer System Administrator
(Maintains Deployment)

Bean Provider
and/or

Application Assembler

Build CMP Entity Bean
Design Abstract
Persistence Schema
Write EJB-QL

Supply

EJB Container/S
erve

r

Design Database Mapping
Code with Container Tools
Generate Subclass and
Other Helper Code

Figure 7.2 The process of developing and deploying a CMP entity bean.

// Get a collection of bank account balances

Collection c = this.ejbSelectAllAccountBalances();

// Loop through collection and return sum

}

ejbSelect() methods are not exposed to end clients via the remote interface or
local interface. They must be called from within your bean, either from a busi-
ness method or a home business method.

The value of ejbSelect() methods are threefold:

■■ Select methods can perform fine-grained database operations that your
bean needs, but that you do not want to expose to end clients.

■■ Select methods can retrieve data from other entity beans that you have
relationships with (see Chapter 11 to learn more about relationships).

■■ Like finder methods, select methods can return entity beans. But select
methods are more powerful because they can also return container-man-
aged fields, such as our example above—it returns a collection of double
values.

You tell the container about how to implement your select method by defining
an EJB-QL query string. For more details on how EJB-QL affects ejbSelect()
methods, see Appendix D.

As you may have noticed by now, the major differences between CMP and BMP lie in
the entity bean class and the deployment descriptors. The remote interface, local in-
terface, home interface, local home interface, and primary key class remain basically
the same. This means it is possible to switch between CMP and BMP without chang-
ing the clients who call your beans, which is a nice side effect.

Implementation Guidelines for
Container-Managed Persistence

Now that we’ve explored CMP entity beans in theory, let’s see how to build
CMP entity beans. The method implementations of your BMP entity beans
should be different for CMP. No longer are you controlling the routine persis-
tent operations of your beans, and so many of the methods can be left empty—
the container will do it for you. Table 7.1 summarizes what you should imple-
ment in each method, assuming your entity bean’s persistence is container
managed. Take a quick glance at the table for now. As you can see, many of the
database-intensive operations have been reduced in scope significantly. You

T H E T R I A D O F B E A N S176

Writing Container-Managed Persistent Entity Beans 177

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

se
tE

nt
ity

C
on

te
xt

()

If
th

e
co

nt
ai

ne
r

w
an

ts
 to

 in
cr

ea
se

 it
s

po
ol

 s
iz

e
St

ic
k

th
e

en
tit

y
co

nt
ex

t s
om

ew
he

re
, s

uc
h

as
 in

 a

(s
am

e
as

 B
M

P)
of

 b
ea

n
in

st
an

ce
s,

 it
 in

st
an

tia
te

s
a

ne
w

 e
nt

ity

m
em

be
r

va
ria

bl
e.

 Y
ou

 c
an

 a
cc

es
s

th
e

co
nt

ex
t

be
an

 in
st

an
ce

. F
ol

lo
w

in
g

th
is

, t
he

 c
on

ta
in

er

la
te

r
to

 a
cq

ui
re

 e
nv

iro
nm

en
t i

nf
or

m
at

io
n,

 li
ke

ca

lls
 th

e
in

st
an

ce
’s

 s
et

En
tit

yC
on

te
xt

()
. T

hi
s

se
cu

rit
y

in
fo

rm
at

io
n,

 fr
om

 th
e

co
nt

ai
ne

r.
Yo

u
m

et
ho

d
as

so
ci

at
es

 a
 b

ea
n

w
ith

 c
on

te
xt

sh

ou
ld

 a
ls

o
re

qu
es

t a
ny

 r
es

ou
rc

es
 y

ou
r

in
st

an
ce

in

fo
rm

at
io

n
—

in
fo

rm
at

io
n

ab
ou

t t
he

 b
ea

n’
s

w
ill

 n
ee

d
re

ga
rd

le
ss

 o
f w

ha
t d

at
a

th
e

be
an

en

vi
ro

nm
en

t.
O

nc
e

th
is

 m
et

ho
d

is
 c

al
le

d,
 th

e
re

pr
es

en
ts

. T
he

 b
ea

n
is

 n
ow

 in
 a

 p
oo

l,
do

es
 n

ot

be
an

 c
an

 a
cc

es
s

in
fo

rm
at

io
n

ab
ou

t i
ts

ha

ve
 a

ny
 s

pe
ci

fic
 d

at
ab

as
e

da
ta

 in
si

de
 o

f i
t,

an
d

en
vi

ro
nm

en
t.

is
 n

ot
 b

ou
nd

 to
 a

ny
 p

ar
tic

ul
ar

 E
JB

 o
bj

ec
t.

ej
bF

in
d�

..
.�

(�
..

.�
)

Yo
u

do
 n

ot
 w

ri
te

 fi
nd

er
 m

et
ho

ds
 fo

r
co

nt
ai

ne
r-

Yo
u

sh
ou

ld
 n

ot
 im

pl
em

en
t t

he
se

 m
et

ho
ds

 fo
r

(n
ew

 fo
r

C
M

P)
m

an
ag

ed
 b

ea
ns

. T
he

 E
JB

 c
on

ta
in

er
 w

ill
 h

an
dl

e
C

M
P

en
tit

y
be

an
s.

al
li

ss
ue

s
re

la
tin

g
to

 fi
nd

in
g

da
ta

 fo
r

yo
u.

 B
ut

ho

w
 d

oe
s

th
e

EJ
B

 c
on

ta
in

er
 k

no
w

 w
ha

t k
in

ds

of
 fi

nd
er

 m
et

ho
ds

 y
ou

 w
an

t i
n

yo
ur

 b
ea

n?
Af

te
r

al
l,

an
 in

fin
ite

 v
ar

ie
ty

 o
f w

ay
s

ex
is

t t
o

fin
d

da
ta

in

 a
 d

at
ab

as
e.

 T
he

 a
ns

w
er

 is
 th

at
 y

ou
r

EJ
B

co

nt
ai

ne
r

sh
ip

s
w

ith
 to

ol
s

fo
r

th
is

 p
ur

po
se

. Y
ou

us

e
EJ

B
-Q

L
an

d
th

e
co

nt
ai

ne
r

to
ol

s
to

 te
ll

th
e

co
nt

ai
ne

r
w

ha
t l

og
ic

 to
 e

xe
cu

te
 w

he
n

th
e

cl
ie

nt

pe
rf

or
m

s
a

fin
de

r
m

et
ho

d
on

 th
e

ho
m

e
ob

je
ct

.

ej
bS

el
ec

t�
..

.�
(�

..
.�

)
ej

bS
el

ec
t(

)
m

et
ho

ds
 a

re
 h

el
pe

r
m

et
ho

ds
 th

at

D
ef

in
e

th
is

 m
et

ho
d

as
 a

bs
tr

ac
t.

Th
en

 w
rit

e
(n

ew
 fo

r
C

M
P)

pe
rf

or
m

 q
ue

rie
s

in
te

rn
al

ly
 b

y
yo

ur
 b

ea
n

bu
t a

re

EJ
B

-Q
L

in
 th

e
de

pl
oy

m
en

t d
es

cr
ip

to
r

to
 s

et
 u

p
no

t a
cc

es
si

bl
e

to
 c

lie
nt

s
of

 y
ou

r
be

an
.

th
e

qu
er

y.

ej
bH

om
e�

..
.�

(�
..

.�
)

So
m

et
im

es
 y

ou
 n

ee
d

m
et

ho
ds

 o
n

an
 e

nt
ity

Pe

rf
or

m
 y

ou
r

gl
ob

al
 o

pe
ra

tio
ns

, s
uc

h
as

 c
ou

nt
in

g
(n

ew
 fo

r
C

M
P)

be
an

 th
at

 a
re

 n
ot

 s
pe

ci
fic

 to
 a

ny
 g

iv
en

 d
at

a
up

 th
e

ro
w

s
in

 a
 d

at
ab

as
e

an
d

re
tu

rn
in

g
th

e
in

st
an

ce
 (

or
 r

ow
) —

fo
r

ex
am

pl
e,

 c
ou

nt
in

g
up

 th
e

re
su

lts
 to

 th
e

cl
ie

nt
. T

he
 fa

st
-a

nd
-e

as
y

w
ay

 t
o

to
ta

l n
um

be
r

of
 a

cc
ou

nt
s

in
 a

 ta
bl

e.
 Y

ou
 c

an

ac
hi

ev
e

th
is

 is
 to

 u
se

 J
D

B
C

. T
he

 c
le

an
er

 (
bu

t
w

rit
e

ej
bH

om
e

m
et

ho
ds

 to
 p

er
fo

rm
 th

es
e

lo
w

er
-p

er
fo

rm
in

g
if

yo
u’

re
 n

ot
 c

ar
ef

ul
)

w
ay

 is
 t

o
op

er
at

io
ns

. T
he

 e
jb

H
om

e
m

et
ho

ds
 a

re
 s

pe
ci

al

ca
ll

ej
bS

el
ec

t(
)

an
d

pe
rh

ap
s

ot
he

r
en

tit
y

be
an

bu

si
ne

ss
 m

et
ho

ds
 b

ec
au

se
 th

ey
 a

re
 c

al
le

d
fr

om

m
et

ho
ds

.
a

be
an

 in
 th

e
po

ol
 b

ef
or

e
th

e
be

an
 is

 a
ss

oc
ia

te
d

w
ith

 a
ny

 s
pe

ci
fic

 d
at

a.
 C

lie
nt

s
ca

ll
th

es
e

m
et

ho
ds

fr

om
 th

e
ho

m
e

in
te

rf
ac

e
or

 lo
ca

l h
om

e
in

te
rf

ac
e.

co
nt

in
ue

s

Ta
b

le
 7

.1
D

es
cr

ip
tio

ns
 a

nd
 Im

pl
em

en
ta

tio
n

G
ui

de
lin

es
 fo

r
C

on
ta

in
er

-M
an

ag
ed

 P
er

si
st

en
t E

nt
iti

es

T H E T R I A D O F B E A N S178

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

ej
bC

re
at

e(
�

..
.�

)
(n

ew

W
he

n
a

cl
ie

nt
 c

al
ls

 c
re

at
e(

)
on

 a
 h

om
e

ob
je

ct
,

D
o

no
t c

re
at

e
da

ta
ba

se
 d

at
a

in
 th

is
 m

et
ho

d.

fo
r

C
M

P)
th

e
co

nt
ai

ne
r

th
en

 c
al

ls
 e

jb
C

re
at

e(
)

on
 a

 p
oo

le
d

Ra
th

er
, v

al
id

at
e

th
e

cl
ie

nt
’s

 in
iti

al
iz

at
io

n
pa

ra
m

et
er

s.
N

ot
e:

 Y
ou

 d
o

no
t n

ee
d

be
an

 in
st

an
ce

. e
jb

C
re

at
e(

)
m

et
ho

ds
 a

re

C
al

l y
ou

r
ab

st
ra

ct
 s

et
()

m
et

ho
ds

 to
 in

iti
al

iz
e

th
e

to
 w

ri
te

 a
ny

 e
jb

C
re

at
e(

)
re

sp
on

si
bl

e
fo

r
cr

ea
tin

g
ne

w
 d

at
ab

as
e

da
ta

ge

ne
ra

te
d

be
an

 s
ub

cl
as

s
to

 th
e

pa
ra

m
et

er
s

pa
ss

ed

m
et

ho
ds

 if
 y

ou
 d

on
’t

w
an

t
an

d
in

iti
al

iz
in

g
yo

ur
 b

ea
n.

in
. T

he
 c

on
ta

in
er

 w
ill

 th
en

 u
se

 th
es

e
va

lu
es

 in
 t

he

EJ
B

 c
lie

nt
s

to
 b

e
ab

le
 to

su

bc
la

ss
 to

 c
re

at
e

th
e

da
ta

ba
se

 d
at

a
fo

r
yo

u.
 Y

ou
r

cr
ea

te
 n

ew
 d

at
ab

as
e

da
ta

.
en

tit
y

be
an

 in
st

an
ce

 is
 th

en
 n

o
lo

ng
er

 in
 t

he

So
m

e
sy

st
em

s
m

ay
 a

llo
w

po

ol
—

it
no

w
 h

as
 s

pe
ci

fic
 d

at
ab

as
e

da
ta

 in
si

de
 it

.
cr

ea
tio

n
of

 d
at

a
to

 o
cc

ur

Th
e

co
nt

ai
ne

r
w

ill
 b

in
d

yo
ur

 in
st

an
ce

 t
o

a
vi

a
di

re
ct

 d
at

ab
as

e
in

se
rt

s
pa

rt
ic

ul
ar

 E
JB

 o
bj

ec
ts

.
th

ro
ug

h
ba

tc
h

fil
es

 o
r

ot
he

r
m

ea
ns

.

ej
bP

os
tC

re
at

e(
�

..
.�

)
Th

er
e

is
 o

ne
 e

jb
Po

st
C

re
at

e(
..

.)
fo

r
ea

ch

Th
e

co
nt

ai
ne

r
ca

lls
 e

jb
Po

st
C

re
at

e(
)

af
te

r
it

ha
s

(s
am

e
as

 B
M

P)
ej

bC
re

at
e(

..
.)

. E
ac

h
pa

ir
ha

s
th

e
sa

m
e

as
so

ci
at

ed
 y

ou
r

be
an

 in
st

an
ce

 w
ith

 a
n

EJ
B

 o
bj

ec
t.

pa
ra

m
et

er
s.

 T
he

 c
on

ta
in

er
 c

al
ls

 y
ou

r
be

an

Yo
u

ca
n

no
w

 c
om

pl
et

e
yo

ur
 in

iti
al

iz
at

io
n

by
 d

oi
ng

in

st
an

ce
’s

ej
bP

os
tC

re
at

e(
..

.)
m

et
ho

d
fo

llo
w

in
g

an
yt

hi
ng

 y
ou

 n
ee

d
to

 th
at

 r
eq

ui
re

s
th

at
 E

JB
 o

bj
ec

t,
ej

bC
re

at
e(

..
.)

.
su

ch
 a

s
pa

ss
in

g
yo

ur
 b

ea
n’

s
EJ

B
 o

bj
ec

t
re

fe
re

nc
e

to
ot

he
r

be
an

s.

N
ot

e:
 B

y
no

w
 th

e
EJ

B
 c

on
ta

in
er

 w
ill

 h
av

e
cr

ea
te

d
yo

ur
 p

ri
m

ar
y

ke
y

ob
je

ct
, s

o
yo

u
ca

n
re

tr
ie

ve
 a

nd

us
e

it.

ej
bA

ct
iv

at
e(

)
W

he
n

a
cl

ie
nt

 c
al

ls
 a

 b
us

in
es

s
m

et
ho

d
on

 a
n

EJ
B

Ac

qu
ire

 a
ny

 b
ea

n-
sp

ec
ifi

c
re

so
ur

ce
s,

 li
ke

 s
oc

ke
t

(s
am

e
as

 B
M

P)
ob

je
ct

, b
ut

 n
o

en
tit

y
be

an
 in

st
an

ce
 is

 b
ou

nd
 to

co

nn
ec

tio
ns

, t
ha

t y
ou

r
be

an
 n

ee
ds

 t
o

se
rv

ic
e

a
th

e
EJ

B
 o

bj
ec

t,
th

e
co

nt
ai

ne
r

ne
ed

s
to

 ta
ke

 a

pa
rt

ic
ul

ar
 c

lie
nt

 w
he

n
it

is
 m

ov
ed

 in
to

 t
he

 r
ea

dy

be
an

 fr
om

 th
e

po
ol

 a
nd

 tr
an

si
tio

n
it

in
to

 a
 r

ea
dy

st

at
e.

st
at

e.
 T

hi
s

is
 c

al
le

d
ac

tiv
at

io
n.

 O
n

ac
tiv

at
io

n,
 th

e
ej

bA
ct

iv
at

e(
)

m
et

ho
d

is
 c

al
le

d
by

 th
e

EJ
B

co

nt
ai

ne
r.

Ta
b

le
 7

.1
D

es
cr

ip
tio

ns
 a

nd
 Im

pl
em

en
ta

tio
n

G
ui

de
lin

es
 fo

r
C

on
ta

in
er

-M
an

ag
ed

 P
er

si
st

en
t E

nt
iti

es
 (

co
nt

in
ue

d)

Writing Container-Managed Persistent Entity Beans 179

M
ET

H
O

D
EX

P
LA

N
A

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

ej
bL

oa
d(

)
Th

e
EJ

B
 c

on
ta

in
er

 c
al

ls
 th

is
 to

 lo
ad

 d
at

ab
as

e
da

ta

D
o

no
t r

ea
d

da
ta

 fr
om

 th
e

da
ta

ba
se

 in
 th

is
 m

et
ho

d.

(n
ew

 fo
r

C
M

P)
in

to
 y

ou
r

be
an

 in
st

an
ce

, b
as

ed
 o

n
th

e
cu

rr
en

t
Ra

th
er

, t
he

 E
JB

 c
on

ta
in

er
 w

ill
 r

ea
d

in
 d

at
a

fr
om

 t
he

tr

an
sa

ct
io

na
l s

ta
te

.
da

ta
ba

se
 fo

r
yo

u
au

to
m

at
ic

al
ly

 r
ig

ht
 b

ef
or

e
ca

lli
ng

yo
ur

ej
bL

oa
d(

)
m

et
ho

d.
 It

 d
oe

s
th

is
 b

y
se

tt
in

g
yo

ur
co

nt
ai

ne
r-

m
an

ag
ed

 fi
el

ds
 to

 th
e

da
ta

 it
 r

ea
ds

 fr
om

th
e

da
ta

ba
se

. I
n

th
is

 m
et

ho
d,

 y
ou

 s
ho

ul
d

pe
rf

or
m

an
y

ut
ili

tie
s

yo
u

ne
ed

 to
 w

or
k

w
ith

 t
he

 r
ea

d-
in

 d
at

a,
su

ch
 a

s
de

co
m

pr
es

si
ng

 a
 te

xt
 fi

el
d.

ej
bS

to
re

()

Th
e

EJ
B

 c
on

ta
in

er
 c

al
ls

 th
is

 to
 u

pd
at

e
th

e
D

o
no

t u
pd

at
e

th
e

da
ta

ba
se

 in
 th

is
 m

et
ho

d.
 R

at
he

r,
(n

ew
 fo

r
C

M
P)

da
ta

ba
se

 to
 th

e
ne

w
 v

al
ue

s
of

 y
ou

r
in

-m
em

or
y

th
e

EJ
B

 c
on

ta
in

er
 w

ill
 u

pd
at

e
th

e
da

ta
ba

se
 fo

r
yo

u
fie

ld
s,

 th
us

 s
yn

ch
ro

ni
zi

ng
 th

e
da

ta
ba

se
. T

he

au
to

m
at

ic
al

ly
 r

ig
ht

 a
fte

r
ca

lli
ng

 y
ou

r
ej

bS
to

re
()

cu
rr

en
t t

ra
ns

ac
tio

na
l s

ta
te

 d
ic

ta
te

s
w

he
n

th
is

m

et
ho

d.
 It

 d
oe

s
th

is
 in

 th
e

su
bc

la
ss

 b
y

w
rit

in
g

yo
ur

m

et
ho

d
is

 c
al

le
d.

 T
hi

s
m

et
ho

d
is

 a
ls

o
ca

lle
d

co
nt

ai
ne

r-
m

an
ag

ed
 fi

el
ds

 to
 th

e
da

ta
ba

se
. I

n
th

is

du
rin

g
pa

ss
iv

at
io

n,
 d

ire
ct

ly
 b

ef
or

e
ej

bP
as

si
va

te
()

.
m

et
ho

d,
 y

ou
 s

ho
ul

d
pr

ep
ar

e
yo

ur
 c

on
ta

in
er

-
m

an
ag

ed
 fi

el
ds

 to
 b

e
w

rit
te

n
to

 th
e

da
ta

ba
se

. F
or

ex
am

pl
e,

 y
ou

 c
an

 c
om

pr
es

s
th

e
te

xt
 o

f y
ou

r
fie

ld
s

if
ne

ce
ss

ar
y

by
 c

al
lin

g
yo

ur
 o

w
n

ab
st

ra
ct

 s
et

()

m
et

ho
ds

.

ej
bP

as
si

va
te

()

Th
e

EJ
B

 c
on

ta
in

er
 c

al
ls

 th
is

 m
et

ho
d

w
he

n
it

Re
le

as
e

an
y

re
so

ur
ce

s,
 s

uc
h

as
 s

oc
ke

t
co

nn
ec

tio
ns

,
(s

am
e

as
 B

M
P)

w
an

ts
 to

 r
et

ur
n

yo
ur

 e
nt

ity
 b

ea
n

to
 th

e
po

ol
.

th
at

 y
ou

 a
llo

ca
te

d
in

 e
jb

Ac
tiv

at
e(

)
an

d
th

at
 y

ou
r

Th
is

 is
 c

al
le

d
pa

ss
iv

at
io

n
an

d
is

 th
e

op
po

si
te

be

an
 w

as
 h

ol
di

ng
 d

ur
in

g
th

e
re

ad
y

st
at

e
fo

r
a

of
 a

ct
iv

at
io

n.
 O

n
pa

ss
iv

at
io

n,
 th

e
ej

bP
as

si
va

te
()

pa
rt

ic
ul

ar
 c

lie
nt

.
m

et
ho

d
is

 c
al

le
d

by
 th

e
EJ

B
 c

on
ta

in
er

.

ej
bR

em
ov

e(
)

Th
e

cl
ie

nt
 c

al
ls

 th
e

ho
m

e
ob

je
ct

’s
 r

em
ov

e(
)

D
o

no
t d

es
tr

oy
 d

at
ab

as
e

da
ta

 in
 th

is
 m

et
ho

d.

(n
ew

 fo
r

C
M

P)
m

et
ho

d
to

 d
es

tr
oy

 d
at

ab
as

e
da

ta
 r

em
ov

e(
),

th
en

Ra

th
er

, s
im

pl
y

pe
rf

or
m

 a
ny

 o
pe

ra
tio

ns
 t

ha
t

m
us

t
be

ca

lls
 y

ou
r

ej
bR

em
ov

e(
).

N
ot

e
th

at
 th

is
 d

oe
s

no
t

do
ne

 b
ef

or
e

th
e

da
ta

 in
 th

e
da

ta
ba

se
 is

 d
es

tr
oy

ed
.

de
st

ro
y

th
e

Ja
va

 O
bj

ec
t b

ec
au

se
 th

e
ob

je
ct

 c
an

Th

e
EJ

B
 c

on
ta

in
er

 w
ill

 d
es

tr
oy

 th
e

da
ta

 fo
r

yo
u

rig
ht

be

 p
oo

le
d

an
d

re
us

ed
 fo

r
di

ffe
re

nt
 d

at
a.

af
te

r
ej

bR
em

ov
e(

)
is

 c
al

le
d.

un
se

tE
nt

ity
C

on
te

xt
()

Th

is
 m

et
ho

d
di

sa
ss

oc
ia

te
s

a
be

an
 fr

om
 it

s
Re

le
as

e
an

y
re

so
ur

ce
s

yo
u

al
lo

ca
te

d
du

rin
g

(s
am

e
as

 B
M

P)
en

vi
ro

nm
en

t.
Th

e
co

nt
ai

ne
r

ca
lls

 th
is

 r
ig

ht
 b

ef
or

e
se

tE
nt

ity
C

on
te

xt
()

, a
nd

 g
et

 r
ea

dy
 fo

r
yo

ur
 e

nt
ity

 b
ea

n
in

st
an

ce
 is

 d
es

tr
oy

ed
 (

w
he

n
it

ga
rb

ag
e

co
lle

ct
io

n.
w

an
ts

 to
 r

ed
uc

e
th

e
po

ol
 s

iz
e)

.

should refer to the table when reading through the code in this chapter or
when programming your own entity bean classes.

Looking to see how BMP and CMP method implementations compare? Appendix E
has a table comparing them.

Container-Managed Persistence Example:
A Product Line

Let’s see a quick demonstration of CMP in action, applied to the concept of a
product line.

If you work for a product-based company, your company’s product line is the
suite of products that your company offers. For example, if you’re an appli-
ance company, you might offer a dishwasher, a stove, and a dryer. If you’re a
computer hardware company, you might offer memory, hard disks, and
processors. We’re going to model a generic product as an entity bean that
uses CMP.

The object model for our product line is detailed in Figure 7.3.

T H E T R I A D O F B E A N S180

Product
Bean Abstract Class

<<interface>>
Product

Remote Interface

Product
EJB Object

<<interface>>
Product

Home Interface

Product
Home Object

Supplied by Bean Provider (We Will Write)

Generated for Us by Container Vendor's Tools

Product
Primary Key Class

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EntityBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB Distribution

Comes with Java 2 Platform

<<interface>>
Product

Local Home Interface

Product
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Product

Local Interface

Product
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

Product
Bean Subclass

Figure 7.3 The object model for our product line.

Let’s take a look at each of the files that we must create for our entity bean
component.

Product.java
Remote clients will call our remote interface. The only case in which a remote
client should call an entity bean is when you are writing small test applications
to exercise your entity bean’s API, as we will do in this example. Otherwise
you should use the local interface for performance reasons, and wrapper your
entity beans with session beans (see Chapter 13). The remote interface is
shown in Source 7.1.

Our remote interface is quite simple. It has methods to modify the entity bean
instance’s fields and throws remote exceptions to indicate system-level errors.

Writing Container-Managed Persistent Entity Beans 181

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

/**

* These are the public business methods of ProductBean.

*

* This remote interface is what remote clients operate

* on when they interact with beans. The EJB container

* will implement this interface; the implemented object

* is called the EJB Object, which delegates invocations

* to instances of the entity bean class.

*/

public interface Product extends EJBObject {

public String getName() throws RemoteException;

public void setName(String name) throws RemoteException;

public String getDescription() throws RemoteException;

public void setDescription(String description) throws

RemoteException;

public double getBasePrice() throws RemoteException;

public void setBasePrice(double price) throws RemoteException;

public String getProductID() throws RemoteException;

}

Source 7.1 Product.java.

ProductLocal.java
Our local interface is our business interface called by local clients, such as ses-
sion beans or other entity beans. It is shown in Source 7.2.

The local interface is trivially different than the remote interface. The only dif-
ferences are the lack of thrown RemoteExceptions and the fact that we extend
EJBLocalObject rather than EJBObject.

ProductHome.java
Next, we have the product’s home interface, which is shown in Source 7.3. As
with the remote interface, this home interface should be used only by remote
clients, such as a standalone application.

Our home interface defines a single create() method to create a new product in
the database. It returns a Product EJB object so the client can manipulate the

T H E T R I A D O F B E A N S182

package examples;

import javax.ejb.*;

/**

* These are the public business methods of ProductBean.

*

* This local interface is what local clients operate

* on when they interact with our bean. The container

* will implement this interface; the implemented object

* is called the EJB local object, which delegates

* invocations to instances of the entity bean class.

*/

public interface ProductLocal extends EJBLocalObject {

public String getName();

public void setName(String name);

public String getDescription();

public void setDescription(String description);

public double getBasePrice();

public void setBasePrice(double price);

public String getProductID();

}

Source 7.2 ProductLocal.java.

Writing Container-Managed Persistent Entity Beans 183

package examples;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

/**

* This is the home interface for Product. This interface

* is implemented by the EJB container. The implemented

* object is called the Home Object, and serves as a

* factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the bean class.

*/

public interface ProductHome extends EJBHome {

/*

* Creates a product

*

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB Object.

*/

Product create(String productID, String name, String description,

double basePrice) throws CreateException, RemoteException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of

// these methods in the deployment descriptor through

// EJB-QL and container tools.

public Product findByPrimaryKey(ProductPK key) throws

FinderException, RemoteException;

public Collection findByName(String name) throws FinderException,

RemoteException;

public Collection findByDescription(String description) throws

FinderException, RemoteException;

public Collection findByBasePrice(double basePrice) throws

FinderException, RemoteException;

Source 7.3 ProductHome.java.

entity bean data and throws a javax.ejb.CreateException to indicate an
application-level problem.

We also expose all sorts of finder methods to find existing products. One of the
finders returns a single EJB object, while others return a java.util.Collection of
multiple EJB objects. This is needed if the finder methods find more than one
matching object. Note that findByPrimaryKey() should never return a collec-
tion, because primary keys must be unique.

ProductLocalHome.java
Our entity bean’s local home interface is the more optimized (see Chapter 2)
home interface that session beans or other entity beans should use. The code is
in Source 7.4.

ProductPK.java
Our primary key class is defined by ProductPK.java, shown in Source 7.5. This
unique identifier uses a productID that could represent the product’s SKU
number.

As with BMP, CMP dictates that your primary key class must be serializable.
Because the EJB container is persisting for you, it may need to query the pri-
mary key class and manipulate or compare its fields with the fields in your
bean. Thus, an important restriction with CMP is that the fields you have in
your primary key class must come from the container-managed fields defined
in your deployment descriptor.

In our example, the ProductPK class is valid because it is serializable and
because its public fields come from our container-managed fields, which we
will define shortly in the deployment descriptor.

T H E T R I A D O F B E A N S184

public Collection findExpensiveProducts(double minPrice) throws

FinderException, RemoteException;

public Collection findCheapProducts(double maxPrice) throws

FinderException, RemoteException;

public Collection findAllProducts() throws FinderException,

RemoteException;

}

Source 7.3 ProductHome.java (continued).

Writing Container-Managed Persistent Entity Beans 185

package examples;

import javax.ejb.*;

import java.util.Collection;

/**

* This is the local home interface for Product.

* This interface is implemented by the EJB container.

* The implemented object is called the local home object,

* and serves as a factory for EJB local objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in the bean class.

*/

public interface ProductLocalHome extends EJBLocalHome {

/*

* Creates a product

*

* @param productID The number of the product (unique)

* @param name The name of the product

* @param description Product description

* @param basePrice Base Price of product

*

* @return The newly created EJB local Object.

*/

ProductLocal create(String productID, String name, String

description, double basePrice) throws CreateException;

// Finder methods. These are implemented by the

// container. You can customize the functionality of

// these methods in the deployment descriptor through

// EJB-QL and container tools.

public ProductLocal findByPrimaryKey(ProductPK key) throws

FinderException;

public Collection findByName(String name) throws FinderException;

public Collection findByDescription(String description) throws

FinderException;

public Collection findByBasePrice(double basePrice) throws

FinderException;

public Collection findExpensiveProducts(double minPrice) throws

FinderException;

Source 7.4 ProductLocalHome.java.

T H E T R I A D O F B E A N S186

package examples;

import java.io.Serializable;

/**

* Primary Key class for our 'Product' Container-Managed

* Entity Bean

*/

public class ProductPK implements java.io.Serializable {

/*

* Note that the primary key fields must be a

* subset of the the container-managed fields.

* The fields we are marking as container-managed in

* our Bean are productID, name, desc, and basePrice.

* Therefore our PK fields need to be from that set.

*/

public String productID;

public ProductPK(String productID) {

this.productID = productID;

}

public ProductPK() {}

public String toString() {

return productID.toString();

}

public int hashCode() {

return productID.hashCode();

}

public boolean equals(Object prod) {

return ((ProductPK)prod).productID.equals(productID);

}

}

Source 7.5 ProductPK.java.

public Collection findCheapProducts(double maxPrice) throws

FinderException;

public Collection findAllProducts() throws FinderException;

}

Source 7.4 ProductLocalHome.java (continued).

Writing Container-Managed Persistent Entity Beans 187

ProductBean.java
Next, we have our container-managed entity bean implementation, Product-
Bean.java, shown in Source 7.6.

package examples;

import javax.ejb.*;

/**

* Entity Bean that demonstrates Container-Managed persistence.

*

* This is a product that’s persistent. It has an ID #, a name,

* a description, and a base price.

*/

public abstract class ProductBean implements EntityBean {

protected EntityContext ctx;

public ProductBean() {

}

//---

// Begin abstract get/set methods

//---

public abstract String getName();

public abstract void setName(String name);

public abstract String getDescription();

public abstract void setDescription(String description);

public abstract double getBasePrice();

public abstract void setBasePrice(double price);

public abstract String getProductID();

public abstract void setProductID(String productID);

//---

// End abstract get/set methods

//---

//---

// Begin EJB-required methods. The methods below

// are called by the Container, and never called

// by client code.

//---

/**

Source 7.6 ProductBean.java.

T H E T R I A D O F B E A N S188

* Called by Container.

* Implementation can acquire needed resources.

*/

public void ejbActivate() {

System.out.println("ejbActivate() called.");

}

/**

* EJB Container calls this method right before it

* removes the Entity Bean from the database.

* Corresponds to when client calls home.remove().

*/

public void ejbRemove() {

System.out.println("ejbRemove() called.");

}

/**

* Called by Container.

* Releases held resources for passivation.

*/

public void ejbPassivate() {

System.out.println("ejbPassivate () called.");

}

/**

* Called from the Container. Updates the entity bean

* instance to reflect the current value stored in

* the database.

*

* Since we’re using Container-Managed Persistence, we

* can leave this method blank. The EJB Container will

* automatically load us in the subclass.

*/

public void ejbLoad() {

System.out.println("ejbLoad() called.");

}

/**

* Called from the Container. Updates the database to

* reflect the current values of this in-memory Entity Bean

* instance representation.

*

* Since we’re using Container-Managed Persistence, we can

* leave this method blank. The EJB Container will

* automatically save us in the subclass.

*/

public void ejbStore() {

Source 7.6 ProductBean.java (continued).

Writing Container-Managed Persistent Entity Beans 189

System.out.println("ejbStore() called.");

}

/**

* Called by Container. Associates this Bean instance with

* a particular context. Once done, we can query the

* Context for environment info

*/

public void setEntityContext(EntityContext ctx) {

System.out.println("setEntityContext called");

this.ctx = ctx;

}

/**

* Called by Container. Disassociates this Bean instance

* with a particular context environment.

*/

public void unsetEntityContext() {

System.out.println("unsetEntityContext called");

this.ctx = null;

}

/**

* Called after ejbCreate(). Now, the Bean can retrieve

* its EJBObject from its context, and pass it as a 'this'

* argument.

*/

public void ejbPostCreate(String productID, String name, String

description, double basePrice) {

System.out.println("ejbPostCreate() called");

}

/**

* This is the initialization method that corresponds to the

* create() method in the Home Interface.

*

* When the client calls the Home Object’s create() method,

* the Home Object then calls this ejbCreate() method.

*

* We need to initialize our Bean’s fields with the

* parameters passed from the client, so that the Container

* can create the corresponding database entries in the

* subclass after this method completes.

*/

public String ejbCreate(ProductPK productID, String name,

String description, double basePrice)

throws CreateException {

Source 7.6 ProductBean.java (continued).

This bean is more complex than our bank account example. We’ve defined
many finder methods, and we have more persistent fields. Yet even though
we’ve added this complexity, our bean is less than 40 percent of the size of our
Bank Account bean. This is an amazing reduction in code complexity. And
because our bean has no database code in it, we have reduced the chance for
bugs in our bean due to user error working with JDBC code. This is a huge sav-
ings in development and testing time.

We do not have any fields, since the container declares them in the subclass.
We have a few abstract get/set methods, which the container also implements
in the subclass. The only really interesting method is ejbCreate(), which takes
the parameters passed in from the client and calls the bean’s own abstract set()
methods to populate the bean with the initialization data. The container then
performs a SQL INSERT in the subclass once ejbCreate() concludes.

The rest of our bean is just empty EJB-required methods and comments. In
fact, if we took the comments, whitespace, and println’s out, the bean would
just be this:

package examples;

import javax.ejb.*;

public abstract class ProductBean implements EntityBean {

protected EntityContext ctx;

public abstract String getName();

T H E T R I A D O F B E A N S190

System.out.println("ejbCreate() called");

setProductID(productID);

setName(name);

setDescription(description);

setBasePrice(basePrice);

return new ProductPK(productID);

}

// No finder methods

// (they are implemented by Container)

//---

// End EJB-required methods

//---

}

Source 7.6 ProductBean.java (continued).

Writing Container-Managed Persistent Entity Beans 191

public abstract void setName(String name);

public abstract String getDescription();

public abstract void setDescription(String description);

public abstract double getBasePrice();

public abstract void setBasePrice(double price);

public abstract String getProductID();

public abstract void setProductID(String productID);

public void ejbActivate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;

}

public void unsetEntityContext() { this.ctx = null; }

public void ejbPostCreate(String productID, String name,

String description, double basePrice) {}

public String ejbCreate(String productID, String name,

String description, double basePrice) {

setProductID(productID);

setName(name);

setDescription(description);

setBasePrice(basePrice);

return productID;

}

}

The Deployment Descriptor
We now need to inform our container about our entity bean, including our
container-managed fields and our EJB-QL. The deployment descriptor is
shown in Source 7.7.

Our deployment descriptor begins by identifying the name of the bean, then
the bean class, and so on, which is the same as BMP. We then define the con-
tainer-managed fields, which must match the abstract get/set methods in the
enterprise bean class.

The bulk of the descriptor following this is the code for our queries. For exam-
ple, the findExpensiveProducts() finder method locates all products that are
more expensive than the double parameter passed in. To instruct the container
on how to implement this finder functionality, we define our EJB-QL as
follows:

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice > ?1]]>

T H E T R I A D O F B E A N S192

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>Product</ejb-name>

<home>examples.ProductHome</home>

<remote>examples.Product</remote>

<local-home>examples.ProductLocalHome</local-home>

<local>examples.ProductLocal</local>

<ejb-class>examples.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>examples.ProductPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>ProductBean</abstract-schema-name>

<cmp-field>

<field-name>productID</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

<cmp-field>

<field-name>description</field-name>

</cmp-field>

<cmp-field>

<field-name>basePrice</field-name>

</cmp-field>

<query>

<query-method>

<method-name>findByName</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE name =

?1]]>

</ejb-ql>

Source 7.7 ejb-jar.xml.

Writing Container-Managed Persistent Entity Beans 193

</query>

<query>

<query-method>

<method-name>findByDescription</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE description

= ?1]]>

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findByBasePrice</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice =

?1]]>

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findExpensiveProducts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice >

?1]]>

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findCheapProducts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

Source 7.7 ejb-jar.xml (continued).

T H E T R I A D O F B E A N S194

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice <

?1]]>

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM ProductBean AS a WHERE productID

IS NOT NULL]]>

</ejb-ql>

</query>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>Product</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Source 7.7 ejb-jar.xml (continued).

When the container interprets this EJB-QL, it generates database access code
(such as JDBC) to find all of the expensive products whose basePrice column is
greater in value than the double passed in, represented by the ?1. Whenever a
client wants to execute a finder method on the home object, the container auto-
matically runs the database access code.

Notice also the word CDATA. This instructs the container’s XML parser to
ignore the text SELECT OBJECT(a) FROM ProductBean AS a WHERE basePrice
� ?1. This is important because the container’s XML parser may think that the

Writing Container-Managed Persistent Entity Beans 195

text inside the CDATA section does not comply with the XML standard; it may
think the � character is actually the closing of an XML tag, rather than a less-
than sign. Thus, all EJB-QL must be enclosed in CDATA sections.

The end of our descriptor associates transactions with our entity bean, which
we’ll learn about in Chapter 10.

The Container-Specific
Deployment Descriptor

In addition to the deployment descriptor, we need to tell the container exactly
how to perform persistent operations. This is one trade-off of CMP—you still
need to declare persistent rules, rather than code them into your bean using
JDBC or SQL/J.

If you’re using a relational data store, you need to define exactly how your
entity bean’s public fields map to that database. Thus, we must define a series
of object-relational mapping entries. These entries map entity bean fields to
relational database column names. The EJB container uses this mapping when
storing or retrieving our container-managed fields from the database. Note

When to Use Custom Primary Key Classes

In our bean we’ve declared a custom primary key class, ProductPK. We then have
this element in our deployment descriptor:

<prim-key-class>examples.ProductPK</prim-key-class>

This is not strictly necessary, however. You can choose not to invent a custom
primary key class and just use one of your container-managed fields as the pri-
mary key. For example, we could use the productID String field as the primary
key, rather than wrapping it in another primary key wrapper class. Then we would
declare the primary key class to be a java.lang.String, and we would have this
element after we declare the container-managed fields:

<primkey-field>productID</primkey-field>

When should you use a custom primary key class, and when should you use
one of your fields? In our opinion, you should avoid using your own fields as pri-
mary key classes. The reason is because having a primary key class wrapper iso-
lates you from changes to how you’d like to be uniquely represented in an
underlying storage. Having a primary key class wrapper makes it much easier to
change how you’d like to be uniquely identified without breaking code.

T H E T R I A D O F B E A N S196

that this is very EJB container-specific! Some EJB containers support object
databases and thus do not have a mapping into a two-dimensional relational
database. Consult your EJB container’s documentation for more information.
Our product line’s persistent entries for a relational database are shown in
Table 7.2. See the book’s accompanying source code for the actual descriptor.

Client.java
Our client code is a simple suite of test cases to try out our bean, as shown
Source 7.8.

Because this standalone application runs in a separate process from the appli-
cation server, for testing purposes this client calls through the bean’s remote
interface rather than a local interface. However, in a real-world scenario, we
would wrap this entity bean with a session bean and calling through its local
interface.

The client performs a JNDI lookup to acquire the home object and create some
entity bean data. We then try out a couple of finder methods. We can loop
through the finders’ returned collection and call business methods on each EJB
object. We then destroy all the EJB objects we created in a finally{} clause.

Running the Client Program

To run the client program, type a command similar to the following (depend-
ing on your EJB container’s JNDI initialization parameters):

java -D java.naming.factory.initial�weblogic.jndi.

WLInitialContextFactory -Djava.naming.provider.url�t3://localhost:7001

examples.ProductClient

The initialization parameters are required by JNDI to find the home object, as
we learned in Chapter 3.

OBJECT/RELATIONAL SETTING
(ENTITY BEAN FIELD � RELATIONAL COLUMN NAME)

productID�id

name�name

description�description

basePrice�basePrice

Table 7.2 Sample Persistent Settings for ProductBean

Writing Container-Managed Persistent Entity Beans 197

package examples;

import javax.ejb.*;

import javax.naming.*;

import java.rmi.*;

import javax.rmi.PortableRemoteObject;

import java.util.*;

/**

* Client test application on a CMP Entity Bean, Product.

*/

public class ProductClient {

public static void main(String[] args) throws Exception {

ProductHome home = null;

try {

/*

* Get a reference to the Product Home Object - the

* factory for Product EJB Objects

*/

Context ctx = new InitialContext(System.getProperties());

home = (ProductHome) PortableRemoteObject.narrow(

ctx.lookup("ProductHome"), ProductHome.class);

/*

* Use the factory to create the Product EJB Object

*/

home.create("123-456-7890", "P5-350", "350 Mhz Pentium", 200);

home.create("123-456-7891", "P5-400", "400 Mhz Pentium", 300);

home.create("123-456-7892", "P5-450", "450 Mhz Pentium", 400);

home.create("123-456-7893", "SD-64", "64 MB SDRAM", 50);

home.create("123-456-7894", "SD-128", "128 MB SDRAM", 100);

home.create("123-456-7895", "SD-256", "256 MB SDRAM", 200);

/*

* Find a Product, and print out its description

*/

Iterator i = home.findByName("SD-64").iterator();

System.out.println("These products match the name SD-64:");

while (i.hasNext()) {

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

System.out.println(prod.getDescription());

}

Source 7.8 Client.java.

T H E T R I A D O F B E A N S198

/*

* Find all products that cost $200

*/

System.out.println("Finding all products that cost $200");

i = home.findByBasePrice(200).iterator();

while (i.hasNext()) {

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

System.out.println(prod.getDescription());

}

}

catch (Exception e) {

e.printStackTrace();

}

finally {

if (home != null) {

System.out.println("Destroying products..");

/*

* Find all the products

*/

Iterator i = home.findAllProducts().iterator();

while (i.hasNext()) {

try {

Product prod = (Product) PortableRemoteObject.narrow(

i.next(), Product.class);

if (prod.getProductID().startsWith("123")) {

prod.remove();

}

}

catch (Exception e) {

e.printStackTrace();

}

}

}

}

}

}

Source 7.8 Client.java (continued).

Writing Container-Managed Persistent Entity Beans 199

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2:setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()
or

ejbSelect()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method
or

ejbSelect()

The life cycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Figure 7.4 The CMP entity bean life cycle.

T H E T R I A D O F B E A N S200

When we run the client, we first create a few products and then perform a find
for all products that cost $200. Indeed, multiple entity beans were returned in
our collection, as shown below:

These products match the name SD-64:

64 MB SDRAM

Finding all products that cost $200

350 Mhz Pentium

256 MB SDRAM

Destroying products..

The Life Cycle of a CMP Entity Bean

Now that we’ve seen a complete CMP entity bean example, let’s fully under-
stand how the container interacts with CMP entity beans. Figure 7.4 shows
this.

The life cycle of a CMP entity bean is exactly the same as that of a BMP entity
bean, which we fully described at the end of the previous chapter (refer back if
you need to refresh your memory). The only differences are that ejbSelect()
methods can be called from the pooled state or ready state.

Summary

In this chapter, you learned how to write CMP entity beans. We saw how the
bean instance callback methods differ between BMP and CMP. We then went
through an example that modeled a product line. Finally, we wrapped up with
a look at the life cycle of a CMP entity bean.

In the next chapter, we’ll look at the new EJB 2.0 bean type, message-driven
beans.

C H A P T E R 8

201

In this chapter, we will learn about messaging, which is a lightweight vehicle for
communications. Messaging is more appropriate than RMI-IIOP in numerous
scenarios. We’ll also learn about message-driven beans, special beans that can be
accessed via messaging and a new addition to the EJB 2.0 specification.

Specifically, you’ll learn about the following:

■■ An introduction to messaging, including an overview of asynchronous
behavior and message-oriented middleware

■■ A brief tutorial of the Java Message Service (JMS), which message-driven
beans depend on

■■ Features of message-driven beans

■■ How message-driven beans compare with entity and session beans

■■ How to develop message-driven beans

■■ Advanced message-driven bean topics, gotchas, and possible solutions

Motivation to Use Message-Driven Beans

In previous chapters, you learned how to code session and entity beans—dis-
tributed components that are accessed using RMI-IIOP. RMI-IIOP is a tradi-
tional, heavyweight way to call components. While RMI-IIOP may be useful in
many scenarios, several other areas are challenging for RMI-IIOP. Here are just
three examples.

Introduction to
Message-Driven Beans

Performance. An RMI-IIOP client must wait (or block) while the server per-
forms its processing. Only when the server completes its work does the
client receive a return result, which allows it to continue processing.

Reliability. When an RMI-IIOP client calls the server, it has to be running. If
the server crashes or the network crashes, the client cannot perform its
intended operation.

Support for multiple senders and receivers. RMI-IIOP limits you to a single
client talking to a single server at any given time. There is no built-in func-
tionality for multiple clients to broadcast events to multiple servers.

Messaging is an alternative to remote method invocations and is shown in Fig-
ure 8.1. The idea behind messaging is that a middleman sits between the client
and the server. (A layer of indirection solves every problem in computer sci-
ence). This middleman receives messages from one or more message producers
and broadcasts those messages to one or more message consumers. Because of
this middleman, the producer can send a message and then continue process-
ing. He can optionally be notified of the response later when the consumer fin-
ishes. This is called asynchronous programming.

Messaging addresses the three previous concerns with RMI-IIOP as follows.

Performance. A messaging client does not need to block when performing a
request. As an example, when you purchase a book using Amazon.com’s
one-click order functionality, you can continue browsing the site without
waiting to see if your credit card authorizes. Unless something goes
wrong, Amazon.com sends you a confirmation email afterwards. This type
of fire-and-forget system could easily be coded using messaging. When the
user clicks to buy the book, a message is sent that results in credit card pro-
cessing later. The user can continue to browse.

T H E T R I A D O F B E A N S202

Application

Message
MiddlewareApplication Application

Application

Remote Method Invocations:

Messaging:

Figure 8.1 Remote method invocations vs. messaging.

Reliability. If your message-oriented middleware supports guaranteed deliv-
ery, you can send a message and know for sure that it will reach its destina-
tion, even if the consumer is not available. You send the message to the
MOM middleman, and that middleman routes the message to the con-
sumer when he comes back alive again. With RMI-IIOP, this is not possible
because there is no middleman: If the server is down, an exception is
thrown.

Support for multiple senders and receivers. Most message-oriented middle-
ware products can accept messages from many senders and broadcast
them to many receivers. This allows you to have n-ary communications.

Note that messaging also has many disadvantages. Performance, for one, can
be slower in many circumstances due to the overhead of having the messaging
middleman. For a complete comparison of when to (and when not to) use mes-
saging, see Chapter 13.

Message-oriented middleware (MOM) is a term used to refer to any infrastructure
that supports messaging. A variety of products are considered to have a MOM-
based architecture. Examples include Tibco Rendezvous, IBM MQSeries, BEA
Tuxedo/Q, Microsoft MSMQ, Talarian SmartSockets, Progress SonicMQ, and
Fiorano FioranoMQ. These products can give you a whole host of value-added
services, such as guaranteed message delivery, fault tolerance, load balancing
of destinations, subscriber throttling of message consumption, inactive sub-
scribers, and much, much more. By allowing the MOM server to address these
infrastructure issues, you can focus on the business task at hand.

The Java Message Service (JMS)

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary API.

The Java Message Service (JMS) is a messaging standard, designed to eliminate
many of the disadvantages that MOM-based products faced over past years.
JMS has two parts: an API, which you write code to send and receive mes-
sages, and a Service Provider Interface (SPI) where you plug in JMS drivers. A
JMS driver knows how to talk to a specific MOM implementation. The JMS
promise is that you can learn the JMS API once and reuse your messaging code
with different plug-and-play MOM implementations (an idea similar to the
other J2EE APIs, such as JNDI or JDBC).

Introduction to Message-Driven Beans 203

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

Messaging Domains

When you perform messaging, you need to choose a domain. A domain is a
fancy word for style of messaging. The types of domains are:

Publish/subscribe (pub/sub). Publish/subscribe is analogous to watching
television. Many TV stations broadcast their signals, and many people lis-
ten to those broadcasts. Thus, with publish/subscribe, you can have many

T H E T R I A D O F B E A N S204

How Does Guaranteed Message Delivery Work?

With guaranteed message delivery, the MOM system persists your messages to a
file, database, or other store. Your message resides in the persistent store until
it’s sent to a message consumer, and the message consumer acknowledges the
consumption of the message. If the acknowledgement of a message is not
received in a reasonable amount of time, the message remains on the persistent
store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is espe-
cially true in industries such as financial services, where messages represent
securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer, but also generates a consumption receipt that is
delivered to the message originator, indicating a successful consumption of the
message. Certified message delivery is used by producers to better manage com-
munication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward allows a message producer to successfully send a message to
an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers. Guar-
anteed message delivery without the store-and-forward option requires produc-
ers to send messages to active MOM systems, but consumers do not have to be
active. Store and forward with guaranteed message delivery allows messages to
be sent whether MOM systems or consumers are active or inactive.

message producers talking to many message consumers. In this sense, the
pub/sub domain is an implementation of a distributed event-driven pro-
cessing model. Subscribers (listeners) register their interest in a particular
event topic. Publishers (event sources) create messages (events) that are dis-
tributed to all of the subscribers (listeners). Producers aren’t hard-coded to
use specific consumers; rather, the MOM system maintains the subscriber
list.

Point-to-point (PTP). Point-to-point is analogous to calling a toll-free number
and leaving a voice mail. Some person will listen to your voice mail and
then delete it. Thus, with point-to-point, you can have only a single con-
sumer for each message. Multiple consumers can grab messages off the
queue, but any given message is consumed exactly once. In this sense,
point-to-point is a degenerate case of publish/subscribe. Multiple produc-
ers can send messages to the queue, but each message is delivered only to
a single consumer. The way this works is that publishers send messages
directly to the consumer or to a centralized queue. Messages are typically
distributed off the queue in a first-in, first-out (FIFO) order, but this isn’t
assured.

The difference between publish/subscribe and point-to-point is shown in Fig-
ure 8.2.

Introduction to Message-Driven Beans 205

Publish/Subscribe:

Topic

Producer 1 Consumer 1

Producer 2 Consumer 2

Point-to-Point:

Queue

Producer 1

Consumer 1

Producer 2

Figure 8.2 Publish/subscribe vs. point-to-point.

Another domain called request/reply is less broadly used than the others. The re-
quest/reply domain is analogous to RMI-IIOP. It requires any producer that gener-
ates a message to receive a reply message from the consumer at some later point in
time. Typically, most MOM architectures implement a request/reply paradigm using
the technologies supplied in the point-to-point and publish/subscribe domains.

The JMS API

The JMS API is more involved than RMI-IIOP. You need to become familiar
with many different interfaces to get going. Despite the complexities involved
with working with each of these interfaces, low-level topology issues such as
networking protocol, message format and structure, and server location are
mostly abstracted from the developer.

The JMS programming model is shown in Figure 8.3. It is explained as follows:

1. Locate the JMS driver. You first need to get access to the driver to the partic-
ular JMS product you’re using. You do this by looking up the driver using
JNDI, just like with JDBC. The driver is called a ConnectionFactory.

2. Create a JMS connection. A JMS Connection is an active connection to the
JMS provider, managing the low-level network communications (similar
to a JDBC connection). You use the ConnectionFactory to get a Connection. If
you’re in a large deployment, this connection might be load-balanced
across a group of machines.

3. Create a JMS session. A JMS Session is a helper object that you use when
sending and receiving messages. It serves as a factory for message con-
sumers and producers, and also allows you to encapsulate your messages
in transactions. You use the Connection to get a Session.

4. Locate the JMS destination. A JMS Destination is the channel to which you’re
sending or from which you’re receiving messages. Locating the right des-
tination is analogous to tuning into the right channel when watching tele-
vision or answering the correct phone, so that you get the messages you
desire. Yourdeployer typically sets up the destination in advance by using
your JMS provider’s tools, so that the destination is permanently setup.
Your code looks up that destination using JNDI. This enables your pro-
grams to use the destination over and over again at runtime.

5. Create a JMS producer or a JMS consumer. If you want to send messages, you
need to call a JMS object to pass it your messages. This object is called the
producer. To receive messages, you call a JMS object and ask it for a mes-
sage. This object is called the Consumer. You use the Session and Destina-
tion to make a Producer or a Consumer.

T H E T R I A D O F B E A N S206

6. Send or receive your message. If you’re producing, you first need to put your
message together. There are many different types of messages, such as
text, bytes, streams, objects, and maps. After you instantiate your mes-
sage, you send it using the Producer. If, on the other hand, you’re receiving
messages, you first receive a message using the Consumer, and then crack
it open (depending on the message type) and see what it is.

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in italics above represent actual JMS interface
names. There are two different flavors of those interfaces, and the flavor you

Introduction to Message-Driven Beans 207

JMS Server

Queue1

Queue2

Topic1

Serialized
Message

Communication

Naming Service
Such as LDAP

1: Retrieve
JMS Driver
(Connection
Factory)

Client

JMS Connection
Factory

JMS Connection

3: Create
Session

4: Lookup
JMS Destination

JNDI

5: Create
Producer
or Consumer

JMS Producer
or

JMS Consumer

6: Send or
Receive
Message

JMS Session

2: Create
Connection

JMS Driver Client Runtime

Figure 8.3 Client view of a JMS system.

use depends on if you’re using publish/subscribe or point-to-point. See
Table 8.1 for a list.

As you can see from Table 8.1, point-to-point has two types of message consumers:
a receiver and a browser. What do you think these are for? And why does
publish/subscribe have only one type of consumer?

As an example, the code for a client application that publishes a TextMessage to
a topic using publish/subscribe is provided in Source 8.1.

Most of Source 8.1 is self-explanatory. Here are the answers to a few questions
you might have.

■■ The parameters to InitialContext should be your JNDI driver information.
If your JMS provider is integrated into your EJB server, the JNDI parame-
ters should be the same as those when you lookup an EJB home. You spec-
ify this via the command-line using the -D switch to the java runtime. See
the book’s accompanying source code for example scripts.

■■ Our JNDI name for the TopicConnectionFactory is javax.jms.TopicConnec-
tionFactory but it could be anything—it depends on your container’s pol-
icy and also where you choose to place it using your container’s tools.

■■ When we create a Session, we pass two parameters: false, which indicates
that we don’t want to use transactions (see Chapter 10 for more on trans-
actions), and Session.AUTO_ACKNOWLEDGE, which indicates how we
should acknowledge messages that we receive. Since our code is sending
(not receiving) messages, this parameter doesn’t matter. If you’re curious
about how message acknowledgement works, see Table 8.3 later in this
chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in

T H E T R I A D O F B E A N S208

PARENT INTERFACE POINT-TO-POINT PUB/SUB

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

Table 8.1 The Two Flavors of JMS Interfaces

Table 8.1. We’ll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

Introduction to Message-Driven Beans 209

import javax.naming.*;

import javax.jms.*;

import java.util.*;

public class Client {

public static void main (String[] args) throws Exception {

// Initialize JNDI

Context ctx = new InitialContext(System.getProperties());

// 1: Lookup ConnectionFactory via JNDI

TopicConnectionFactory factory =

(TopicConnectionFactory)

ctx.lookup("javax.jms.TopicConnectionFactory");

// 2: Use ConnectionFactory to create JMS connection

TopicConnection connection =

factory.createTopicConnection();

// 3: Use Connection to create session

TopicSession session = connection.createTopicSession(

false, Session.AUTO_ACKNOWLEDGE);

// 4: Lookup Desintation (topic) via JNDI

Topic topic = (Topic) ctx.lookup("testtopic");

// 5: Create a Message Producer

TopicPublisher publisher = session.createPublisher(topic);

// 6: Create a text message, and publish it

TextMessage msg = session.createTextMessage();

msg.setText("This is a test message.");

publisher.publish(msg);

}

}

Source 8.1 TopicClient.java.

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free tutorial is available
on http://java.sun.com. Rather than repeating this free information, let’s
cover some more interesting topics—JMS-EJB integration, advanced message-
driven bean topics, and gotchas.

T H E T R I A D O F B E A N S210

Single-Threaded versus Multithreaded Beans

One great benefit of EJB is you don’t need to write thread-safe code. You design
your enterprise beans as single-threaded components and never need to worry
about thread synchronization when concurrent clients access your component.
Your EJB container automatically instantiates multiple instances of your compo-
nent to service concurrent client requests.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in your
application code. The restriction is that some problems lend themselves well to
multithreaded programming, and that class of problems cannot be easily solved
in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve component developers’ worry about threads or thread syn-
chronization. The EJB container handles those issues for you by load-balancing
client requests to multiple instances of a single-threaded component. An EJB
server provides a highly scalable environment for single-threaded components.

If the EJB specification allowed for beans to control threads, then a Pandora’s
box of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans are randomly starting and stopping
threads, especially because transaction information is often associated with a
thread.

One alternative to threading is to use a transactional messaging API, such as
JMS, that allows for asynchronous actions to occur in a distributed object envi-
ronment. JMS enables you to safely and reliably achieve multitasking without the
beans themselves messing around with threads.

The bottom line is that EJB was not meant be a Swiss army knife, solving every
problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It would allow EJB components to
benefit from the value proposition of messaging, such as nonblocking clients
and n-ary communications.

To help us figure out why Sun needed to make message-driven beans, let’s
imagine for a moment that we worked at Sun Microsystems. We’d have sev-
eral different approaches to integrating JMS with EJB. They include:

Using a Java object that receives JMS messages to call EJB components.
Rather than coming up with a whole new type of bean, Sun could have
promoted the idea of a Java object that knew how to receive messages as a
wrapper for your other types of EJB components, such as session beans
and entity beans. The problems with this approach are:

■■ You’d need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we saw previously).

■■ Your Java object would need some way of starting up, since it
wrapped your other EJB components. If the class ran in-process to the
container, you would need to use an EJB server-specific startup class to
activate your Java object when the EJB server came up. This is not
portable. If the class ran out-of-process, your application would not be
as elegant and you’d need to deal with multiple processes context-
switching.

■■ Your Java object wouldn’t receive any services from an EJB container,
such as automatic life cycle management, clustering, pooling, and
transactions. You would need to hard-code this yourself, which is diffi-
cult and error-prone.

■■ You would need to hard-code the JMS destination name in your Java
object. This hurts reusability, because you couldn’t reuse that Java
object with other destinations. If you read the destination from a disk
(such as with property files), this is a bit clunky.

Reuse an existing type of EJB component somehow to receive JMS mes-
sages. Sun could have tried to shoehorn session beans or entity beans into
receiving JMS messages. Problems with this approach include:

■■ Threading. If a message arrives for a bean while its processing other
requests, how can it take that message, given that EJB does not allow
components to be multithreaded?

■■ Life cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

Introduction to Message-Driven Beans 211

■■ Transactions. If a bean error occurs, what happens? Does the message
get put back on the queue?

What Is a Message-Driven Bean?

A message-driven bean is a special EJB component that can receive JMS mes-
sages. A message-driven bean consumes messages from queues or topics that
are sent by any valid JMS client. Message-driven beans are new to EJB 2.0.

A message-driven bean is decoupled from any clients that send messages to it.
A client cannot access a message-driven bean through a component interface. JMS is
the API you use to send messages to message-driven beans. This is shown in Fig-
ure 8.4.

The following are some major characteristics of message-driven beans.

T H E T R I A D O F B E A N S212

EJB Server

Message-Driven
Bean Pool

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Message-Driven
Bean Instances

JMS DestinationClient

Sends /
Publishes

Figure 8.4 A client calling message-driven beans.

A message-driven bean does not have a home interface, local home inter-
face, remote interface, or a local interface. You do not call message-driven
beans using an object-oriented remote method invocation interface. The
reason is that message-driven beans process messages, and those messages
can come from any messaging client, such as an MQSeries client, an
MSMQ client, or (most likely) a J2EE client using the JMS API. Message-
driven beans can consume any valid JMS message from either a topic or a
queue.

Message-driven beans have a single, weakly typed business method.
Message-driven beans are merely receiving messages from a JMS destina-
tion, and that JMS destination doesn’t know anything about what’s inside
the messages. Therefore a message-driven bean has only one business
method, called onMessage(). This method accepts a JMS Message, which
could represent anything—a BytesMessage, ObjectMessage, TextMessage,
StreamMessage, or MapMessage. You cannot provide lots of different business
methods on your message-driven beans; rather, you need to crack open the
message at runtime and figure out what to do with it, perhaps with a bunch
of if statements. In formal terms, you don’t get compile-time type-checking
of messages that are consumed; rather, you need to use the instanceof opera-
tor to determine the exact type of a consumed message at runtime. This also
means that you need to be careful to make sure the message you receive is
intended for you. In comparison, session or entity beans can support lots of
strongly typed business methods. Type checking can be performed at com-
pile time to ensure that clients are properly using a given interface.

Message-driven beans do not have any return values. This is because
message-driven beans are decoupled from message producers. The mes-
sage producers don’t wait for your message-driven bean to respond
because they continue processing once the message is sent. The good news
is that it is possible to send a response to a message producer using any
number of design patterns. We discuss this later in this chapter.

Message-driven beans cannot send exceptions back to clients. Again, this is
because message producers don’t wait for your message-driven bean to
receive a message so therefore can’t receive any exceptions. In fact, the EJB
specification prohibits application exceptions from being thrown by a
message-driven bean. A message-driven bean, however, is allowed to gen-
erate system exceptions. The container (rather than the client) handles sys-
tem exceptions.

Message-driven beans are stateless. Message-driven beans hold no conver-
sational state. It would be impossible to spread messages across a cluster of
message-driven beans if a message-driven bean held state. In this sense,
they are similar to stateless session beans because the container can simi-
larly treat each message-driven bean instance as equivalent to all other

Introduction to Message-Driven Beans 213

instances. All instances are anonymous and do not have an identity that is
visible to a client. Thus, multiple instances of the bean can process multiple
messages from a JMS destination concurrently.

Message-driven beans can be durable or nondurable subscribers. A durable
subscription to a topic means that a JMS subscriber receives all messages,
even if the subscriber is inactive. If a message is sent to a topic that has an
inactive durable subscriber, the message is persisted and delivered when
the durable subscriber is once again active. A nondurable subscription to a
topic means the subscriber receives only messages that are published while
the subscriber is active. Any messages delivered while the subscriber is
inactive are lost. Since message-driven bean containers are JMS consumers,
the container can register itself as a durable or nondurable subscriber to
messages published to a topic. Durability allows persistent messages to be
sent to a topic even though the application server hosting the message-
driven bean consumers has crashed. The messages will persist until the
crashed application server restarts and the durable subscriber message-
driven bean container positively acknowledges consumption all of the
stored messages.

Developing Message-Driven Beans

Let’s now take a look at what’s involved with developing message-driven
beans.

The Semantics

Message-driven beans are classes that implement two interfaces: javax.jms.
MessageListener and javax.ejb.MessageDrivenBean. Additionally, every message-
driven bean implementation class must provide an ejbCreate() method that
returns void and accepts no arguments. Here is what the javax.jms.MessageLis-
tener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage(Message message);

}

Here is what the javax.ejb.MessageDrivenBean interface looks like:

public interface javax.ejb.MessageDrivenBean

extends javax.ejb.EnterpriseBean {

public void ejbRemove()

T H E T R I A D O F B E A N S214

throws EJBException;

public void setMessageDrivenContext(MessageDrivenContext ctx)

throws EJBException;

}

We summarize the methods that must be provided in every message-driven
bean implementation class in Table 8.2.

Given this simple description, you can see that developing message-driven
beans is significantly less complicated than developing session or entity beans.
The number of methods that have to be implemented is less than with session
or entity beans.

The life cycle of a message-driven bean is also very straightforward. See Fig-
ure 8.5 for a diagram of the life cycle of a message-driven bean. A message-
driven bean is either in the does not exist state or in the pooled state. When a
container decides to add another instance to its pool, it creates a new instance,
passes the instance its MessageDrivenContext object describing the domain, and
then calls ejbCreate() allowing the bean to initialize itself. That application
server will likely create an initial pool of beans at boot time and then increase
the size of the pool as the quantity of messages increases. A container will
remove an instance from the pool and destroy it at system shutdown or when
the container decides it needs to decrease the size of the pool to conserve cache
space. If the container decides to take an instance out of the bean pool, it calls
the bean’s ejbRemove() method.

A Simple Example

Now that we’ve learned the theory behind message-driven beans, let’s apply
our knowledge to construct a simple bean that logs text messages to the screen.
In the future, you could generalize this bean and make it into a generic logging
facility, where you have different log levels depending on the urgency of the
log.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see Chapter 17, along with the book’s accompanying source code.

As we will see when writing this bean, the rules for writing message-driven
beans are trivial. Part of the reason is that message-driven beans are brand new
to the EJB 2.0 specification. As the technology matures, we’re sure that Sun will
come up with a bunch of special rules and restrictions for message-driven
beans. For now, we get to bask in the simplicity.

Introduction to Message-Driven Beans 215

T H E T R I A D O F B E A N S216

METHOD DESCRIPTION

onMessage(Message) This method is invoked for each message that is consumed by
the bean. The input parameter of the method is the incoming
message that is being consumed. The container is responsible
for serializing messages to a single message-driven bean. A
single message-driven bean can process only one message at
a time. It is the container’s responsibility to provide concurrent
message consumption by pooling multiple message-driven
bean instances. A single instance cannot concurrently process
messages, but a container can. This method does not have to
be coded for reentrancy and should not have any thread syn-
chronization code contained within.

ejbCreate() This method is invoked when a message-driven bean is first
created and added to a pool. Application server vendors can
implement an arbitrary algorithm that decides when to add
message-driven bean instances from the pool. Beans are typi-
cally added to the pool when the component is first deployed
or when message throughput increases. Bean developers
should initialize variables and references to resources needed
by the bean, such as other EJBs or database connections. Bean
developers should initialize only references to resources that
are needed for every message that is consumed by the bean,
as opposed to gaining access and releasing the resource every
time a message is consumed.

ejbRemove() This method is invoked when a message-driven bean is being
removed from a pool. Application server vendors can imple-
ment an arbitrary algorithm that decides when to remove
message-driven bean instances from the pool. Beans are typi-
cally removed from the pool when the component is being
undeployed or when message throughput decreases and idle
instances are wasting system resources. Bean developers
should use this method to clean up any dangling resources
that are used by the bean.

setMessageDriven This method is called as part of the event transition that a
Context(Message message-driven bean goes through when it is being added to
DrivenContext) a pool. This method is called before the ejbCreate() method is

invoked. The input parameter for this method is an instance of
the MessageDrivenContext interface. The input parameter
gives the bean access to information about the environment
that it executes within. The only methods on the Mes-
sageDrivenContext that are accessible by the message-driven
bean are transacted-related methods. Other methods, such as
getCallerPrincipal(), cannot be invoked in this method
because message-driven beans do not have home, local
home, remote, or local interface and have no client-visible
security context.

Table 8.2 Methods to Be Implemented in Message-Driven Beans

The Bean Implementation Class

Since message-driven beans do not have home, component, local home, or
local interfaces associated with them, we can completely skip designing the
public interface to our bean. We can get right to the heart of development of
this bean and write the implementation class. The code for the implementation
class is shown in Source 8.2.

This is the most basic message-driven bean. Notice the following:

■■ Our bean implements the javax.ejb.MessageDrivenBean interface that makes
it a message-driven bean.

■■ Our bean implements the javax.jms.MessageListener interface that provides
the methods necessary for message consumption.

■■ The setMessageDrivenContext(. . .) method associates a bean with an envi-
ronment. We store the context as a member of the implementation class so
that other methods of the bean can make use of it.

Introduction to Message-Driven Beans 217

Does Not Exist

Pooled

1: newInstance()
2: setMessageDrivenContext()
3: ejbCreate()

ejbRemove()

onMessage()

The life cycle of a
message-driven bean.
Each method call shown is
an invocation from the
container to the bean
instance.

Figure 8.5 Life cycle of a message-driven bean.

T H E T R I A D O F B E A N S218

package examples;

import javax.ejb.*;

import javax.jms.*;

/**

* Sample Message-Driven Bean

*/

public class LogBean implements MessageDrivenBean, MessageListener {

protected MessageDrivenContext ctx;

/**

* Associates this Bean instance with a particular context.

*/

public void setMessageDrivenContext(MessageDrivenContext ctx) {

this.ctx = ctx;

}

/**

* Initializes the bean

*/

public void ejbCreate() {

System.err.println("ejbCreate()");

}

/**

* Our one business method

*/

public void onMessage(Message msg) {

if (msg instanceOf TextMessage) {

TextMessage tm = (TextMessage) msg;

try {

String text = tm.getText();

System.err.println("Received new message : " + text);

}

catch(JMSException e) {

e.printStackTrace();

}

}

}

/**

* Destroys the bean

Source 8.2 LogBean.java.

■■ The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical ini-
tialization method—a simple ejbCreate() that takes no arguments.

■■ The onMessage(. . .) method receives a message, checks to make sure that
the passed-in message is of type TextMessage by using the instanceof opera-
tor, and then downcasts appropriately. If the passed in message is not a
TextMessage, the method just returns. TextMessage is a particular type of
JMS message that has methods for getting and setting the text as the body
of the message. After downcasting the input parameter, the method prints
out the content of the message, if any exists.

■■ When the bean is being destroyed, there is nothing to clean up so we have
a very simple ejbRemove() method.

Notice that you don’t hard-code message-driven beans for a specific queue or
topic. Your message-driven bean code is independent of destination. The
deployment descriptor determines whether a topic or a queue is consumed, as
we will see.

The Deployment Descriptor

Message-driven beans have only a couple of deployment descriptor tags
applicable to them. The portion of the deployment descriptor relevant to our
simple message-driven bean is shown in Source 8.3.

Table 8.3 contains definitions for additional deployment descriptor tags that
are unique to message-driven beans. All of these tags are optional. Just glance
over it now—it’s not important to fully understand them if you’re just starting
to learn message-driven beans. See Appendix C for a complete deployment
descriptor reference.

Introduction to Message-Driven Beans 219

*/

public void ejbRemove() {

System.err.println("ejbRemove()");

}

}

Source 8.2 LogBean.java (continued).

As you can see, developing the deployment descriptor for message-driven
beans is simple. In addition to the characteristics that are definable for all
message-driven beans, application server vendors can provide value-add
extensions in an application server-specific deployment descriptor. For exam-
ple, an application server vendor may provide a deployment descriptor
parameter that defines the maximum size of the message-driven bean pool
and/or another parameter that defines its initial size.

A question that you may be wondering now is, “Exactly how does the appli-
cation server bind a message-driven bean container to a specific topic or
queue?” If you look carefully at the deployment descriptor provided in Source
8.3, the �message-driven-destination� tag specifies whether the bean should
consume queue or topic messages; however, it never indicates which topic or

T H E T R I A D O F B E A N S220

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<!--

For each message-driven bean that is located in an

ejb-jar file, you have to define a <message-driven> entry

in the deployment descriptor.

-->

<message-driven>

<!-- The nickname for the bean could be used later in DD -->

<ejb-name>Log</ejb-name>

<!-- The fully qualified package name of the bean class -->

<ejb-class>examples.LogBean</ejb-class>

<!-- The type of transaction supported (see Chapter 10) -->

<transaction-type>Container</transaction-type>

<!-- Whether I’m listening to a topic or a queue -->

<message-driven-destination>

<destination-type>javax.jms.Topic</destination-type>

</message-driven-destination>

</message-driven>

</enterprise-beans>

</ejb-jar>

Source 8.3 ejb-jar.xml for the simple bean.

Introduction to Message-Driven Beans 221

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

�
m

es
sa

ge
-s

el
ec

to
r�

A
m

es
sa

ge
 s

el
ec

to
r

fil
te

rs
, o

r
lim

its
, w

hi
ch

�

m
es

sa
ge

-s
el

ec
to

r�
m

es
sa

ge
s

ar
e

se
nt

 to
 y

ou
r

be
an

. M
es

sa
ge

 s
el

ec
to

rs
 a

re
 v

er
y

JM
ST

yp
e

�
‘lo

g’
 A

N
D

po
w

er
fu

l—
th

ey
 in

cr
ea

se
 o

ve
ra

ll
pe

rf
or

m
an

ce
 b

y
re

du
ci

ng
 th

e
lo

gL
ev

el
 �

‘s
ev

er
e’

nu
m

be
r

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 c

lie
nt

s
th

at
 h

av
e

no
 in

te
re

st

�
/m

es
sa

ge
-s

el
ec

to
r�

in
 th

e
m

es
sa

ge
. T

o
us

e
m

es
sa

ge
 s

el
ec

to
rs

, f
irs

t y
ou

r
JM

S
cl

ie
nt

se

ts
 u

p
he

ad
er

 fi
el

ds
 o

n
JM

S
m

es
sa

ge
s

us
in

g
th

e
JM

S
AP

I.
Fo

r
N

ot
e:

Yo
u

ca
n

us
e

m
or

e
ex

am
pl

e,
 th

e
JM

S
cl

ie
nt

 m
ig

ht
 c

al
l m

es
sa

ge
.s

et
St

ri
ng

Pr
op

er
ty

co
m

pl
ic

at
ed

 S
Q

L-
lik

e
(

“l
og

Le
ve

l”,
 “

se
ve

re
”)

 b
ef

or
e

se
nd

in
g

th
e

m
es

sa
ge

. W
he

n
th

e
fu

nc
tio

na
lit

y
he

re
 a

s
w

el
l,

su
ch

JM

S
de

st
in

at
io

n
re

ce
iv

es
 th

e
m

es
sa

ge
, t

he
 c

on
ta

in
er

 a
pp

lie
s

as
 a

rit
hm

et
ic

, l
og

ic
al

 o
pe

ra
to

rs

th
e

m
es

sa
ge

 s
el

ec
to

r
cr

ite
ria

 d
ef

in
ed

 in
 th

e
de

pl
oy

m
en

t
(A

N
D

/O
R/

N
O

T)
, a

nd
 m

or
e.

de

sc
rip

to
r.

O
nl

y
m

es
sa

ge
s

w
ith

 h
ea

de
rs

 th
at

 m
at

ch
 th

e
If

yo
u

us
e

gr
ea

te
r

th
an

 (
�

)
or

se

le
ct

or
 a

re
 d

el
iv

er
ed

.
le

ss
 th

an
 (

�
)

si
gn

s
th

en
 y

ou

ne
ed

 to
 w

ra
p

th
is

 in
 a

 C
D

AT
A

se
c-

tio
n,

 to
 a

vo
id

 X
M

L
pa

rs
in

g
co

nf
u-

si
on

, a
s

w
e

de
sc

rib
ed

 in
 C

ha
pt

er
 7

.
Se

e
th

e
JM

S
sp

ec
ifi

ca
tio

n,
 d

ow
n-

lo
ad

ab
le

 fr
om

 h
tt

p:
//

ja
va

.s
un

.c
om

,
fo

r
th

e
co

m
pl

et
e

ru
le

s
fo

r
m

es
sa

ge
se

le
ct

or
 s

yn
ta

x,
 w

hi
ch

 is
 a

 s
ub

se
t

of
th

e
SQ

L
92

 s
ta

nd
ar

d.

�
ac

kn
ow

le
dg

e-
m

od
e�

If
yo

u
le

t t
he

 c
on

ta
in

er
 h

an
dl

e
tr

an
sa

ct
io

ns
 fo

r
yo

u
(c

al
le

d
�

ac
kn

ow
le

dg
e-

m
od

e�
co

nt
ai

ne
r-

m
an

ag
ed

 tr
an

sa
ct

io
ns

 d
es

cr
ib

ed
 in

 C
ha

pt
er

 1
0)

,
Au

to
-a

ck
no

w
le

dg
e

an
d

th
e

co
nt

ai
ne

r
de

liv
er

s
th

e
m

es
sa

ge
 to

 y
ou

 in
 a

 tr
an

sa
ct

io
n.

�

/a
ck

no
w

le
dg

e-
m

od
e�

Th
er

e
is

 n
o

ne
ed

 fo
r

m
es

sa
ge

 a
ck

no
w

le
dg

em
en

t t
he

n,
 b

ec
au

se

if
th

e
tr

an
sa

ct
io

n
ro

lls
 b

ac
k,

 th
e

m
es

sa
ge

 is
 a

ut
om

at
ic

al
ly

 p
ut

ba

ck
 o

n
th

e
qu

eu
e.

 If
 y

ou
 p

ro
gr

am
 y

ou
r

ow
n

tr
an

sa
ct

io
ns

(c

al
le

d
be

an
-m

an
ag

ed
 tr

an
sa

ct
io

ns
),

 th
e

tr
an

sa
ct

io
n

oc
cu

rs

w
ith

in
 y

ou
r

be
an

, a
nd

 b
eg

in
s

an
d

en
ds

 a
fte

r
th

e
m

es
sa

ge
 h

as

be
en

 d
el

iv
er

ed
 to

 y
ou

r
be

an
; t

hu
s

th
e

co
ns

um
pt

io
n

of
 th

e
m

es
sa

ge
 o

cc
ur

s
ou

ts
id

e
th

e
tr

an
sa

ct
io

n.
 T

he
re

fo
re

, i
f y

ou
’re

 u
si

ng

be
an

-m
an

ag
ed

 tr
an

sa
ct

io
ns

, y
ou

 n
ee

d
to

 te
ll

th
e

co
nt

ai
ne

r
to

co
nt

in
ue

s

Ta
b

le
 8

.3
O

pt
io

na
l S

ub
-E

le
m

en
ts

 fo
r

th
e

<
m

es
sa

ge
-d

riv
en

>
 T

ag

T H E T R I A D O F B E A N S222

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

ac
kn

ow
le

dg
e

m
es

sa
ge

s.
 S

et
tin

g
th

is
 ta

g
to

 A
ut

o-
ac

kn
ow

le
dg

e
fo

rc
es

 th
e

co
nt

ai
ne

r
to

 a
ck

no
w

le
dg

e
a

m
es

sa
ge

 w
he

n
th

e
m

es
sa

ge
-d

riv
en

 b
ea

n’
s

on
M

es
sa

ge
()

m
et

ho
d

ha
s

su
cc

es
sf

ul
ly

re

tu
rn

ed
. S

et
tin

g
th

is
 ta

g
to

 D
up

s-
ok

-a
ck

no
w

le
dg

e
al

lo
w

s
th

e
co

nt
ai

ne
r

to
 a

ck
no

w
le

dg
e

th
e

m
es

sa
ge

 w
he

n
it

fe
el

s
lik

e
do

in
g

so
 to

 s
av

e
re

so
ur

ce
s

an
d

pr
oc

es
si

ng
 ti

m
e.

 S
in

ce
 it

 m
ay

 n
ot

ac

kn
ow

le
dg

e
th

e
m

es
sa

ge
 fa

st
 e

no
ug

h,
 y

ou
 r

un
 th

e
ris

k
of

 t
he

 J
M

S
de

st
in

at
io

n
se

nd
in

g
yo

u
a

du
pl

ic
at

e
m

es
sa

ge
. Y

ou

sh
ou

ld
 u

se
 th

is
 o

nl
y

if
yo

u
ca

n
to

le
ra

te
 d

up
lic

at
e

m
es

sa
ge

s.

�
m

es
sa

ge
-d

riv
en

-
Th

is
 ta

g
pr

ov
id

es
 a

dv
ic

e
to

 th
e

de
pl

oy
er

 a
s

to
 w

he
th

er
 a

de

st
in

at
io

n�
m

es
sa

ge
-d

riv
en

 b
ea

n
is

 in
te

nd
ed

 fo
r

co
ns

um
pt

io
n

by
 a

 q
ue

ue

�
de

st
in

at
io

n-
ty

pe
�

or
 a

 to
pi

c.
 T

he
 b

ea
n

de
ve

lo
pe

r
is

 r
es

po
ns

ib
le

 fo
r

pr
ov

id
in

g
�

su
bs

cr
ip

tio
n-

du
ra

bi
lit

y�
in

iti
al

 v
al

ue
s

to
 th

es
e

ta
gs

 e
ve

n
th

ou
gh

 th
e

be
an

 d
ep

lo
ye

r
m

ay

ov
er

rid
e

th
em

. T
hi

s
el

em
en

t h
as

 tw
o

su
b-

el
em

en
ts

: �
de

st
in

at
io

n-
ty

pe
�

an
d

�
su

bs
cr

ip
tio

n-
du

ra
bi

lit
y�

. T
he

 v
al

id
 v

al
ue

s
fo

r
�

de
st

in
at

io
n-

ty
pe

�
ar

e
ja

va
x.

jm
s.

Q
ue

ue
an

d
ja

va
x.

jm
s.

To
pi

c.
If

th
e

�
de

st
in

at
io

n-
ty

pe
�

ta
g

is
 ja

va
x.

jm
s.

To
pi

c,
 th

e
�

su
bs

cr
ip

tio
n-

du
ra

bi
lit

y�
el

em
en

t m
ay

 b
e

in
cl

ud
ed

 to
 in

di
ca

te

w
he

th
er

 th
is

 m
es

sa
ge

-d
riv

en
 b

ea
n

sh
ou

ld
 b

e
a

du
ra

bl
e

to
pi

c
su

bs
cr

ib
er

 o
f m

es
sa

ge
s.

 T
he

 v
al

id
 v

al
ue

s
fo

r
�

su
bs

cr
ip

tio
n-

du
ra

bi
lit

y�
ar

e
du

ra
bl

e
an

d
no

nd
ur

ab
le

.

Ta
b

le
 8

.3
O

pt
io

na
l S

ub
-E

le
m

en
ts

 fo
r

th
e

<
m

es
sa

ge
-d

riv
en

>
 T

ag
 (

co
nt

in
ue

d)

queue the message-driven bean container should bind to. This is done pur-
posely to make message-driven beans portable across application servers.
Since the names of actual topics and queues deployed into a JMS server are
application server-specific, the mapping of a bean’s container to a specific JMS
server destination has to be done in an application server-specific deployment
descriptor. Most EJB vendors are expected to have a custom deployment
descriptor that binds the bean to a specific destination.

The Client Program

The client application for our simple message-driven bean example is the JMS
client we developed earlier in this chapter in Source 8.1. This shows you the
power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a message-driven bean is consuming the
messages.

If you’d like to try this example yourself, see the book’s accompanying source
code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of with developing message-driven
beans. Now let’s take a deeper look at the support containers can give for
message-driven beans. We’ll see how they might integrate with transactions,
provide advanced JMS features, and behave in a clustered environment.

Transactions

Message-driven beans do not run in the same transaction as the producer who
sends the message, because there are typically two transactions associated
with every durable JMS message (one transaction for the producer to put the
message on the queue, and another transaction for the message-driven bean to
get the message off the queue). It is theoretically impossible for the message-
driven bean to participate in the same transaction (and hence the same unit of
work) as the producer, because until the producer commits the transaction, the
message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to message-
driven beans, see Chapter 10.

Introduction to Message-Driven Beans 223

Security

Message-driven beans do not receive the security identity of the producer who
sends the message, because there is no standard way to stick security informa-
tion into a JMS message. Therefore you cannot perform EJB security opera-
tions (described in Chapter 9) with message-driven beans.

Load-balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 14). With session and entity beans, your requests are
load-balanced across a group of containers. The load-balancing algorithm
guesses which server is the least-burdened server and pushes requests out to
that server. It’s guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about what requests it receives.

With message-driven beans, producers put messages onto a destination. The
messages reside in the destination until a consumer takes the messages off of
the destination, or (if the messages are nondurable) the server hosting the des-
tination crashes. This is a pull model, since the message resides on the destina-
tion until a consumer asks for it. The containers contend (fight) to get the next
available message on the destination.

Thus, message-driven beans feature an ideal load-balancing paradigm and dis-
tribute load more smoothly than session or entity beans. The server that is the
least burdened and asks for a message gets the message. The tradeoff for this
optimal load-balancing is that messaging has extra overhead because a desti-
nation “middleman” sits between the client and the server.

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven beans instances to concur-
rently process multiple messages, so some concern can arise around
message-driven bean containers that subscribe to JMS topics.

In particular, if a message-driven bean container has pooled five instances of
its message-driven bean type and is subscribed to the DogTopic, how many
consumers will consume a message sent to the DogTopic topic? Will the mes-
sage be consumed by each message-driven bean instance in the container or
just once by a single message-driven bean? The answer is simple: A container

T H E T R I A D O F B E A N S224

that subscribes to a topic consumes any given message only once. This means
that for the five instances that the container created to concurrently process
messages, only one of the instances will receive any particular message freeing
up the other instances to process other messages that have been sent to the
DogTopic.

Be careful, though. Each container that binds to a particular topic will consume
a message sent to that topic. The JMS subsystem will treat each message-
driven bean container as a separate subscriber to the message. This means that
if the same message-driven bean is deployed to many containers in a cluster,
then each deployment of the message-driven bean will consume a message
from the topic it subscribes to. If this is not the behavior you want, and you
need to consume messages exactly once, you should consider deploying a
queue instead of a topic.

For message-driven beans that bind to a queue, the JMS server will deliver any
message on the queue to only one consumer. Each container registers as a con-
sumer to the queue, and the JMS server load-balances messages to consumers
based upon availability. Message-driven beans that bind to queues that are
deployed in a cluster are ideal for scalable processing of messages. For exam-
ple, if you have two servers in your cluster and 50 messages on a queue, each
server will consume on average 25 messages—as opposed to a single server
responsible for consuming 50 messages.

Message-driven beans in a cluster are shown in Figure 8.6. Notice that many
message-driven beans process the same message from Topic #1. Also notice
that only a single bean processes any given message from Queue #1.

Message-Driven Bean Gotchas

Although developing message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this sec-
tion we uncover some of these message-driven demons and suggest solutions
to help speed you on your way to successful implementation.

Message Ordering
A JMS server is not guaranteed to deliver messages to a pool of message-
driven beans in any particular order. The container likely attempts to deliver
messages in an order that doesn’t impact the concurrency of message process-
ing, but there is no guarantee as to the order that the beans actually process the
message. Therefore message-driven beans should be prepared to process mes-
sages that are not in sequence. For example, a message adding a second ham-
burger to a fast food order might be processed before the message indicating

Introduction to Message-Driven Beans 225

that a new fast food order with a hamburger should be created. Bean develop-
ers must take these scenarios into account and handle them appropriately.

Missed ejbRemove() Calls
As with session and entity beans, you are not guaranteed that the container
will call your ejbRemove() method when your bean is destroyed. In particular,

T H E T R I A D O F B E A N S226

JMS Server

Queue1

Queue1-M1

Server1

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server2

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server3

Message-Driven
Bean Pool

Message Driven
Bean Instances

Since messages from a queue
are delivered only to one
consumer, the queue can have
multiple messages processed
concurrently by different servers
in a cluster!

Topic1

Queue1-M2

Queue1-M3

Topic1-M1

Since messages from a topic can
be consumed by more than one
client, each message-driven bean
container that binds to a given
topic will receive each message.

Topic1-M1

Topic1-M1

Figure 8.6 Message-driven beans in a cluster.

if there is a system crash or a crash from within the EJB container, any active
message-driven bean instances are destroyed without going through the
proper life cycle shutdown. Additionally, for any method that throws a system
exception, such as EJBException, the ejbRemove() method is not invoked. Devel-
opers should be alert to this fact and perform any relevant cleanup before
throwing a system exception.

Developers should also be aware that the ejbRemove() method is invoked by
the container only when the container no longer needs that instance. Many
containers pool the necessary number of message-driven bean instances
needed to concurrently handle multiple messages. The boundaries on the
minimum and maximum size of the message-driven bean pool is typically

Introduction to Message-Driven Beans 227

Using Queues to Partition Business Processing in a Cluster

Suppose you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a pro-
duction environment. You need to make sure that traffic coming from test clients
are sent to the development cluster, while traffic coming from real clients is sent
to the production cluster.

As one solution, you could setup your JMS server with two queues: Develop-
mentQueue and ProductionQueue. You could deploy a series of JSPs or front-end
stateless session beans that analyze each incoming request, format it into a JMS
message, and then place requests onto one of the queues. Requests that come
from an internal development machine could be placed onto the Developmen-
tQueue, and all other requests could be placed on the ProductionQueue.

On the back end, you could configure two clusters: One cluster has message-
driven beans bound to the DevelopmentQueue, and the other cluster has
message-driven beans bound to the ProductionQueue. The logic for each of these
beans can vary based upon the needs of the system. For example, the behavior of
the message-driven beans bound to the DevelopmentQueue can mimic those
bound to the ProductionQueue but add on debugging statements. You can also
tune each cluster independently based upon load to the system. Since the Pro-
ductionQueue will likely have more throughput than the DevelopmentQueue, you
could independently grow the size of the cluster servicing the ProductionQueue
without impacting the cluster servicing the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business logic
processing. Rather than the servers pulling messages off a single queue, you pre-
choose which machines get the messages by splitting the queue into two queues.
This is an artificial way to achieve control load-balancing in a JMS system.

set in an application-server specific deployment descriptor. A container adds
and removes message-driven bean instances to and from the pool as appro-
priate. However, since message-driven beans are extremely lightweight
objects, a container generally destroys a message-driven bean instance only
when the EJB itself is being undeployed (the whole EJB component is being
undeployed). For most systems, the only time container undeployment
occurs is at system shutdown or when an administrator decides to undeploy
the component. The important point here is that message-driven bean con-
tainers are rarely undeployed and therefore message-driven instances are
rarely destroyed. As a general rule of thumb, the ejbRemove() method is
rarely invoked.

Poison Messages
When using container-managed transactions (see Chapter 10) with a message-
driven bean, it is easy to code yourself into a situation that causes the genera-
tion of poison messages. A poison message is a message that is continually
retransmitted by a JMS destination to consumer because the consumer contin-
uously fails to acknowledge the consumption of the message. Any time your
message-driven bean does not acknowledge messages to the JMS destination,
you have a situation with potential to create poison messages. See Figure 8.7 to
see a diagram indicating how poison messages can inadvertently be generated.

For example, suppose you have a stock-quoting message-driven bean that
accepts a text message, which represents the stock ticker symbol to be quoted.
Your bean cracks open that message. If the string contained within the mes-
sage matches a stock symbol, the bean retrieves the value of that symbol and

T H E T R I A D O F B E A N S228

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point
...

JMS Server

Queue1

JMS Consumer

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back
...

Message

Figure 8.7 How message-driven beans can cause poison messages.

sends a response message. Otherwise, the bean throws a system exception or
calls MessageDrivenContext.setRollbackOnly(). This causes the transaction to be
rolled back, which means the message acknowledgement never to be sent to
the JMS destination. The JMS destination eventually resends the same mes-
sage to the container, causing this same process to occur.

See Source 8.4 for an example of a message-driven bean implementation class
that will cause a poison message scenario. Note that our abuse of theading is
for illustrative purposes only!

Introduction to Message-Driven Beans 229

package examples;

import javax.ejb.*;

import javax.jms.*;

public class PoisonBean

implements MessageDrivenBean, MessageListener {

private MessageDrivenContext ctx;

public void setMessageDrivenContext(MessageDrivenContext ctx) {

this.ctx = ctx;

}

public void ejbCreate() {}

public void ejbRemove() {}

public void onMessage(Message msg) {

try {

System.out.println("Received msg " + msg.getJMSMessageID());

// Let’s sleep a little bit so that we don’t

// see rapid fire re-sends of the message.

Thread.sleep(3000);

// We could either throw a system exception here or

// manually force a rollback of the transaction.

ctx.setRollbackOnly();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

Source 8.4 PoisonBean.java.

Several strategies can resolve poison messages:

■■ Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJBException are intended
to indicate system and/or container failure. If this were a session or entity
bean, the ideal solution would be to generate an application exception
and throw it (especially since application exceptions do not force transac-
tions to be rolled back). However, the EJB specification prohibits applica-
tion exceptions from being thrown from the onMessage() method of a
message-driven bean. The ideal solution to this problem would likely
involve logging the business error message and then quietly returning.

■■ Consider using bean-managed transactions instead of container-managed
transactions. Message consumption and acknowledgement is not part of
the transaction if bean-managed transactions are used. A bean-managed
transaction can be rolled back and the message is acknowledged anyway.

■■ Some application servers allow you to configure a poison message queue.
Messages that are redelivered a certain number of times is flagged as poi-
son messages, removed from their primary queue, and placed into a poi-
son message queue. Typically, any message that is redelivered from three
to five times can be considered a poison message. You can then bind spe-
cial consumers or message-driven beans to the poison message queue to
handle any unexpected error conditions.

■■ Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your message-driven bean could check the value
of a retry count (if it exists) to see if it has repeatedly consumed the same
message.

■■ Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destination
delays the redelivery of a message after it receives a negative acknowl-
edgement. This way, your system doesn’t grind to a halt in case of rapid-
fire poison messages.

How to Return Results Back to
Message Producers

The EJB specification does not outline any mechanism that allows a message-
driven bean to propagate a response back to the client that originally gener-
ated the message. So we need to build those facilities ourselves. Figure 8.8
shows how this could be accomplished.

Here is an explanation of Figure 8.8:

T H E T R I A D O F B E A N S230

■■ The client that generates a JMS message for consumption creates a tempo-
rary destination associated with its Connection. The JMS server temporarily
creates a Topic or Queue and that object exists for the lifetime of the Con-
nection.

■■ The request message that the client sends contains extra information, so
the receiving message-driven bean knows how to reply correctly. Specifi-
cally, the client sticks the name of the temporary queue in the JMSReplyTo
header field of the request message. The message-driven bean can harness
this field to reply on the correct queue. The client also has a unique identi-
fier of the original message in the JMSCorrelationID header field of the
original message. When the message-driven bean replies, it embeds this
original identifier, so the client knows to which original message he’s
receiving a reply.

■■ The client creates a new Session and registers a MessageListener to consume
messages sent to the temporary destination that was just created.

■■ The client sends the message.

Introduction to Message-Driven Beans 231

JMS Server

Incoming Queue

JMS Client

Message-Driven
Bean Pool

Message-Driven
Bean Instances

Outgoing Temporary Queue

3. Client creates request message with
temporary queue as value of JMSReplyTo field.
4. Client sends request message.

1. Client creates temporary queue.
2. Client binds consumer to temporary queue.
8. Client receives response message.

5. MDB consumes
request message.

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request
 message.

In-Message

In-Message

Out-Message

Figure 8.8 A simple request/response paradigm solution.

■■ After consuming the message, the message-driven bean formats a
response and sends it using the JMSReplyTo and JMSCorrelationID
attribute of the received message.

■■ The client’s MessageListener class asynchronously consumes the message
that is sent to the temporary destination, recognizes that it is a response to
the original message, and processes it.

Even though this scenario seems like a straightforward solution for respond-
ing to clients from within a message-driven bean, it could potentially lead to
some unexpected results. The problem arises if the client itself is an EJB com-
ponent, such as a stateful session bean. When your stateful session bean cre-
ates the temporary destination, that temporary destination has a lifespan
equal to the lifespan of the JMS connection that your bean currently holds. If
your bean is passivated (meaning swapped out of memory), then you need to
release that connection. The temporary destination then goes away, and
you’ve lost all messages delivered to that temporary destination while you
were passivated, even if you recreate the destination after you are swapped
into memory again.

We propose two possible solutions to this problem:

1. Don’t use a stateful session bean. Instead the end client, such as a servlet,
application, or JSP tag library (rather than the stateful session bean), cre-
ates a temporary queue that all response messages are sent to. The stateful
session bean is therefore not holding onto a connection, eliminating any
danger of the destination going away because of passivation. See the
book’s accompanying source code for an implementation of this solution.

The advantages of using this architecture include:

Ease of implementation. Creating temporary queues doesn’t require any
extra configuration from an administrator, whereas setting up a dedicated
response topic requires management on the part of the administrator and
your application.

Security. Since temporary queues are bound to a particular connection,
malicious clients cannot bind to a temporary queue and intercept response
messages.

Immediate client notification. Since the remote client creates and manages
the receiving logic for the temporary queue, the client is notified immedi-
ately when a response message is generated, rather than having to wait for
a middleman session bean to respond.

The disadvantages of this architecture include:

T H E T R I A D O F B E A N S232

No persistent messages. Temporary queues cannot have persistent stores
associated with them and therefore cannot support guaranteed message
delivery. If the system fails while a response message is located on the tem-
porary queue, the message will be lost.

Poor abstraction. Since temporary queues are associated with a Connection
object, a stateful session EJB cannot perform middle-tier management of
the request/response process. It might be more natural to abstract away the
JMS request/response logic from the client.

2. A permanent response topic is configured and deployed in the JMS server.
All response messages are delivered to the same response topic for all
clients. Clients filter out the messages that belong to them by registering a
message selector with the JMS server. Any request message that is sent
has a custom application property called ClientName�MyID where MyID
varies for each client. The message-driven bean that consumes the request
message takes the application property from the request message and
inserts the same property in the response message. All response messages
are sent to the same response topic irrespective of the client. Figure 8.9
illustrates this scenario, and the book’s accompanying source code has its
implementation.

The advantages of using this architecture include:

Better fault tolerance. Because this architecture proposes that a permanent
topic be set up for all outgoing messages, the response topic could be asso-
ciated with a persistent store. All outgoing messages could then be sent
persistently with guaranteed message delivery. Temporary topics and
queues cannot have persistent messages delivered to them. This could be
ideal for a data retrieval system. For example, suppose you had a remote
client that randomly connected to the central server requesting a download
of the latest market data as it pertains to that client. The data could be any-
where from 1K to 1MB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to break up
the data chunks into 100K messages. If the client needed to retrieve 1MB of
data, you would need to send 10 response messages. All of the response
messages could be sent with guaranteed message delivery. If the remote
client application were to fail during the download process, it could easily
resume from the last response message that it received instead of having to
restart the entire download process.

Better filtering. You can add on additional filtering of response messages
through the message selector that the client registers with the JMS server.
In the example provided with this book, the client registers to receive
messages that have an application property ClientName�MyID. You could

Introduction to Message-Driven Beans 233

conceivably add on application properties about the response message that
the client filters on. These properties could be message size, message
importance, and so on.

The main disadvantage of this architecture is lack of security. Since the JMS
specification does not have any security restrictions on which clients can
bind which message selectors, any client can register any message selector.
This presents the opportunity for a malicious client to register for con-
sumption of response messages that are destined for another client. This
malicious behavior is not possible with temporary destinations. Of course,
if you’re secured by a firewall, security probably isn’t an issue. Also, it
would take a pretty snazzy developer to actually figure out that you’re
sending messages and register a message listener.

As a final note, it is important to mention that this approach allows a ses-
sion EJB to act as a mediator between the client and the back-end system, as
mentioned in the actual description of the problem. By using an intermedi-
ary session EJB, security can be improved, because the topic that response
messages are delivered to can be made available only internally by simply
not exposing it to a client or blocking the message server using a firewall or

T H E T R I A D O F B E A N S234

JMS Server

Incoming Queue

JMS Client
Message-Driven
Bean Pool

Message-Driven
Bean Instances

OutgoingResponseTopic

2. Client creates request message with
application property:ClientName=MyID.
MyID changes for each client.
3. Client sends request message.

1. Client binds consumer to permanent
response topic. The registration on the
topic has a message selector that will
filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client.
7. Client receives response message.

4. MDB consumes
request message.

5. MDB creates response message. The MDB
sets the response message ClientName
property to be the value of the request message.
6. MDB sends response to response topic.

In-Message

In-Message

Out-Message

Figure 8.9 Another request/response paradigm solution.

other security measure. The session EJB can be coded to filter out messages
based upon the logged-in user name.

An alternative request/response paradigm.

If you don’t feel like writing your own request/response code as we’ve just
described, you can tap into JMS’s facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor, that implement
a simple request/response paradigm. You call a method called request() that
takes as input the request message and returns the response message. This is
implemented in the book’s accompanying source code.

The downsides to this approach are:

You need to block when waiting for a response. You can’t continue process-
ing and do other things, which is one of the major advantages of messag-
ing in the first place.

You can’t use transactions. If you did, the outgoing message would be
buffered until the transaction committed. Since the QueueRequestor class
doesn’t commit right away, but instead blocks until it receives a response
message, it will block indefinitely. The outgoing request message will wait
forever to be flushed from the buffer. See Chapter 10 for more on
transactions.

The Future: Asynchronous Method
Invocations

One of the downsides to message-driven beans is that you need to learn a
whole new API, JMS, to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your mes-
sage-driven bean; rather, you are sending messages using the JMS API, and the
server has a single method to crack the message open and then call the
intended method using a giant if statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the server,
such as logMessage() or quoteStock(). You can choose whether you want to
block and wait for an asynchronous response or to immediately return and to
not wait for a response. Furthermore, the server can take on the context infor-
mation of the client.

Asynchronous RMI and Microsoft’s Queued Components are asynchronous
method invocation infrastructures. CORBA also has some support for this,

Introduction to Message-Driven Beans 235

with a slightly different definition of deferred synchronous invocations: “A
request where the client does not wait for completion of the request, but does
intend to accept results later.”

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you’ll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing message-driven beans and the
pitfalls associated with doing asynchronous development with EJBs. We
started by learning about the various benefits of developing asynchronous
components and how message-driven beans compare to their session and
entity bean counterparts. We looked at how to build a message-driven bean
and deploy it. Next we looked at how a message-driven bean behaves in its
environment, including how it interacts with transactions. Finally, we took a
look at the common pitfalls of using message-driven beans and proposed
some solutions.

T H E T R I A D O F B E A N S236

C H A P T E R 9

237

In previous chapters, you learned the fundamentals of EJB programming. In
this chapter, we’ll build on that knowledge and cover a slew of essential top-
ics, including:

■■ How to call beans from other beans

■■ How to use environment properties to customize your beans and access
those environment properties at runtime

■■ How to access resource factories (such as JDBC or JMS drivers) from your
bean

■■ How to use the EJB security model

■■ How to use EJB object handles and EJB home handles

This knowledge is key for building nontrivial EJB deployments. So let’s get to
it!

Calling Beans from Other Beans

Any nontrivial EJB object model has layers of beans calling other beans. For
example, a bank teller bean might call a bank account bean, or a customer bean
might call a credit card bean. In this chapter, we’ll use the example of:

■■ A pricing engine that computes prices of products, using all sorts of inter-
esting rules, such as discounts, taxes, and shipping costs.

Adding Functionality to
Your Beans

■■ A catalog engine that is a catalog for products, retrieving products from
the database as necessary.

The pricing engine calls the catalog engine. For simplicity, we’ll assume that
both of these beans are stateless session beans, since that’s what you’ve
learned so far.

Default JNDI Lookups

For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean might:

1. Look up the other bean’s home object via JNDI

2. Call create() on the home object

3. Call business methods on the EJB object

4. Call remove() on the EJB object

As we learned about earlier, to lookup a home via JNDI, you first need to sup-
ply JNDI initialization parameters, such as the JNDI driver you’re using, which
differs from container to container. But if you’re writing a bean that calls
another bean, how do you know what JNDI service provider to use? After all,
your beans should be container-independent. Hard-coding that JNDI informa-
tion into your bean would destroy portability.

The good news is that if you’re looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the

// no-argument constructor

Context ctx = new InitialContext();

// Look up the home interface

Object result = ctx.lookup("java:comp/env/ejb/CatalogHome");

// Convert the result to the proper type, RMI-IIOP style

CatalogHome home = (CatalogHome)

javax.rmi.PortableRemoteObject.narrow(

result, CatalogHome.class);

// Create a bean

Catalog c = home.create(...);

T H E T R I A D O F B E A N S238

The preceding code is portable because nobody ever needs to supply
container-specific JNDI initialization parameters.

Understanding EJB References

Notice from the previous section that we looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends (but does not
require) you put beans that are referenced from other beans.

Unfortunately, you cannot guarantee that the JNDI location you’ve specified
will be available. This could happen if your bean has a conflict with another
bean or if the deployer has a funky JNDI tree that is spread out across multiple
domain boundaries.

Thus, your code will break if the JNDI location changes at deployment time.
And often, the deployer is unable to modify your code, because it comes to
him as .class files only. This could happen for example, if you are an indepen-
dent software vendor that ships beans, and you want to protect your intellec-
tual property and make future upgrades easier by preventing customers from
seeing source code.

EJB resolves this situation with EJB references. An EJB reference is a nickname for
the JNDI location that you want to lookup a bean. This nickname may not cor-
respond to the actual JNDI location the deployer sticks your bean into. Your
code looks up a home via its nickname, and the deployer then binds that nick-
name to the JNDI location of his choice, perhaps using symbolic links (an
advanced JNDI feature not covered in this book—see the JNDI specification
for more). Once again, a layer of indirection solves every problem in computer
science.

EJB references are declared in the deployment descriptor. Source 9.1 illustrates
references.

Programming with EJB references is straightforward. Our pricer bean is using
a catalog bean, so inside the pricer bean we simply list all the necessary infor-
mation about the catalog bean in an EJB reference. The deployer then knows
that our pricer bean uses exactly one other enterprise bean—catalog—and no
other. This is useful, because the deployer now knows which class files pricer
depends on and what JNDI location needs to be bound. Similarly, the con-
tainer’s tools can easily inspect the deployment descriptor and verify that the
deployer has done his job.

Note that while this example declares the catalog bean within our deployment
descriptor, we didn’t have to do this. The catalog bean could have been in its
own Ejb-jar file with its own deployment descriptor.

Adding Functionality to Your Beans 239

T H E T R I A D O F B E A N S240

. . .

<enterprise-beans>

<!--

Here, we define our Catalog bean. Notice we use the

"Catalog" ejb-name. We will use this below.

-->

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

. . .

</session>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

. . .

<ejb-ref>

<description>

This EJB reference says that the Pricing Engine

session bean (Pricer) uses the Catalog Engine

session bean (Catalog)

</description>

<!--

The nickname that Pricer uses to look

up Catalog. We declare it so the deployer

knows to bind the Catalog home in

java:comp/env/ejb/CatalogHome. This may not

correspond to the actual location to which the

deployer binds the object via the container

tools. The deployer may set up some kind of

symbolic link to have the nickname point to the

real JNDI location.

-->

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<!-- Catalog is a Session bean -->

<ejb-ref-type>Session</ejb-ref-type>

<!-- The Catalog home interface class -->

<home>examples.CatalogHome</home>

<!-- The Catalog remote interface class -->

Source 9.1 Declaring an EJB reference.

You can also access EJB components from other EJB components through their
local interfaces rather than their remote interfaces. To do this, our deployment
descriptor would be almost exactly the same—except instead of calling the ele-
ment �ejb-ref� we would call it �ejb-local-ref�, instead of �home� we
would use �local-home�, and instead of �remote� we would use �local�.
The JNDI code to lookup the bean would change as well; it would lookup the
local home interface rather than the home interface, and call the local interface
rather than the remote interface:

// Obtain the DEFAULT JNDI initial context by calling the

// no-argument constructor

Context ctx = new InitialContext();

// Look up the home interface

Object result = ctx.lookup("java:comp/env/ejb/CatalogLocalHome");

// Convert the result to the proper type. No RMI-IIOP cast

// required since local interfaces are being used.

CatalogLocalHome home = (CatalogLocalHome) result;

// Create a bean

CatalogLocal c = home.create(...);

Resource Factories

Our next topic is how to perform callouts to external resources from an EJB
component. A resource factory is a provider of resources. Examples include a
Java Database Connectivity (JDBC) driver, a Java Message Service (JMS) dri-
ver, or a J2EE Connector Architecture (JCA) resource adapter. A resource fac-
tory is the driver that gives you connections, such as a JDBC driver giving you
a database connection.

Adding Functionality to Your Beans 241

<remote>examples.Catalog</remote>

<!-- (Optional) the Catalog ejb-name -->

<ejb-link>Catalog</ejb-link>

</ejb-ref>

</session>

</enterprise-beans>

. . .

Source 9.1 Declaring an EJB reference (continued).

To begin using a resource factory, you need to locate it. EJB mandates that you
use JNDI to look up a resource factory. This is very nice, because you merely
need to learn a single API—JNDI—and you can lookup JDBC drivers, JMS
drivers, JCA drivers, and so on. In fact, you already know how to perform this
lookup. It’s the same JNDI code as looking up an EJB home object:

// Obtain the initial JNDI context

Context initCtx = new InitialContext();

// Perform JNDI lookup to obtain resource factory

javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/ejbPool");

Notice that we’re using java:comp/env/jdbc. While this is the EJB-suggested
location for your JDBC resources, you must specify your resource factory’s
JNDI location in the deployment descriptor. When your bean is deployed, the
deployer binds a real resource factory to that JNDI location. The correspond-
ing deployment descriptor is shown in Source 9.2.

Source 9.2 is fairly self-explanatory, except for the res-auth entry. To understand
it, realize that when you acquire a connection to a database or other resource,
that resource may require authorization. For example, you may need to spec-
ify a username and password when obtaining a JDBC connection. EJB gives
you two choices for authenticating yourself to a resource:

Perform the authentication yourself in the bean code. Call the resource fac-
tory with the appropriate sign-on information, such as a login name and
password. In this case, set the deployment descriptor’s res-auth element to
Application.

Let the deployer handle authentication for you. The deployer specifies all
sign-on information in the deployment descriptor. In this case, set the
deployment descriptor’s res-auth element to Container.

T H E T R I A D O F B E A N S242

Connection Pooling

Connection pooling is the reuse of sockets. If a client isn’t using a socket, a dif-
ferent client can harness the socket. This increases the scalability of a system.
Connection pooling is built into most containers. JDBC specifies standard inter-
faces for connection pooling, further enhancing your code portability. The con-
nection pooling typically happens completely behind the scenes, and your bean
code is oblivious to it.

Adding Functionality to Your Beans 243

. . .

<enterprise-beans>

<session>

<ejb-name>Catalog</ejb-name>

<home>examples.CatalogHome</home>

. . .

<!--

This element indicates a resource factory reference

-->

<resource-ref>

<description>

This is a reference to a JDBC driver used within

the Catalog bean.

</description>

<!--

The JNDI location that Catalog uses to look up

the JDBC driver.

We declare it so the deployer knows to bind the

JDBC driver in java:comp/env/jdbc/ejbPool.

-->

<res-ref-name>jdbc/ejbPool</res-ref-name>

<!--

The resource factory class

-->

<res-type>javax.sql.DataSource</res-type>

<!--

Security for accessing the resource factory.

Can either be "Container" or "Application".

-->

<res-auth>Container</res-auth>

<!--

Whether connections should be shared with other

clients in the different transactions

-->

<res-sharing-scope>Sharable</res-sharing-scope>

</resource-ref>

</session>

</enterprise-beans>

. . .

Source 9.2 Declaring a resource factory reference within a deployment descriptor.

The second choice is the most useful, especially when you are writing beans
for resale or reuse by other companies, because only the deployer will know
what sign-on credentials are needed to access a particular resource.

Environment Properties

Our next tidbit of essential EJB knowledge is how to customize our beans at
runtime. What does customization mean? Well, our pricing bean might have
several different pricing algorithms it could apply. We’d like the consumers of
our bean to be able to select their preferred algorithm.

Your bean’s environment properties are application-specific properties that your
beans read in at runtime. These properties can be used to customize your bean
and make your beans data-driven. It’s a quick-and-dirty alternative to storing
information in a database.

The first step to using environment properties is to declare them in the deploy-
ment descriptor. The container reads in this deployment descriptor and makes
the environment properties available for your bean to access at runtime. An
example is shown in Source 9.3.

The environment property declared in Source 9.3 tells our pricing engine to
use an algorithm that gives all customers no taxes, due to the Internet tax
moratorium that we all love.

You use JNDI to access the environment from your bean. The following code
illustrates this.

// 1: Acquire the initial context

Context initCtx = new InitialContext();

// 2: Use the initial context to look up

// the environment properties

String taxAlgorithm = (String)

initCtx.lookup("java:comp/env/Pricer/algorithm">);

// 3: Do what you want with the properties

if (!taxAlgorithm.equals("NoTaxes")) {

// add tax

}

Notice that we lookup environment properties under the JNDI name
java:comp/env. All EJB environment properties must be somewhere beneath this
naming context.

T H E T R I A D O F B E A N S244

Understanding EJB Security

The next topic is adding security to your enterprise beans. So let’s get right
down to the meat: There are two security measures that clients must pass
when you add security to an EJB system.

Adding Functionality to Your Beans 245

. . .

<enterprise-beans>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

. . .

<!--

This element contains a single environment property.

The property is only accessible from the Pricer.

-->

<env-entry>

<description>

The algorithm for this pricing engine.

</description>

<!--

The JNDI location that Pricer uses to look up

the environment property. We declare it so the

container knows to bind the property in

java:comp/env/PricerProperties/algorithm.

-->

<env-entry-name>Pricer/algorithm</env-entry-name>

<!-- The type for this environment property -->

<env-entry-type>java.lang.String</env-entry-type>

<!-- The environment property value -->

<env-entry-value>NoTaxes</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

. . .

Source 9.3 Declaring environment properties within an EJB deployment descriptor.

First, the client must be authenticated. Authentication verifies that the client
is who he claims to be. For instance, the client may enter a username/pass-
word in an application or Web browser, and those credentials are checked
against a permanent client profile stored in a database or LDAP server.
Once the client is authenticated, he is associated with a security identity for
the remainder of his session.

Then the client must be authorized. Once the client has been authenticated,
he must have permission to perform desired operations. For example, in a
procurement application, you want to ensure that while anyone can submit
purchase orders, only supervisors can approve purchase orders.

There is an important difference here—authentication verifies that the client is
who he claims to be, whereas authorization checks to see if an already authenti-
cated client is allowed to perform a task. Authentication must be performed
sometime before an EJB method is called. If the client has an identity, then it
has been authenticated. Authorization, on the other hand, occurs during an
EJB method call.

Security Step 1: Authentication

In earlier versions of EJB (1.0 and 1.1), there was no portable way to achieve
authentication. The specific way your client code became associated with a
security identity was left to the discretion of your application and your EJB con-
tainer. This meant each EJB container may handle authentication differently.

The good news is that in EJB 2.0, authentication is now portable and robust.
You perform authentication through the Java Authentication and Authorization
Service (JAAS), a separate J2EE API. Let’s now take a minitutorial of JAAS and
see how it can be used in an EJB environment.

JAAS Overview

JAAS is a portable interface that enables you to authenticate and authorize
users in Java. In a nutshell, it allows you to log into a system without knowing
about the underlying security system being used. Behind the scenes in JAAS,
the implementation (such as an application server) then determines if your
credentials are authentic.

The power of JAAS lies in its ability to use almost any underlying security sys-
tem. Some application servers allow you to set up usernames and passwords
in the application server’s properties, which the application server reads in at
runtime. More advanced servers support complex integration with existing
security systems, such as a list of usernames and passwords stored in an LDAP

T H E T R I A D O F B E A N S246

server, database, or custom security system. Other systems support certificate-
based authentication. Regardless, the integration should be performed behind
the scenes by your container and should not affect your application code.

There are two likely candidate scenarios when you may want to use JAAS
from your code, shown in Figure 9.1.

Adding Functionality to Your Beans 247

Client Machine

J2EE Server

EJB Component

5: call business logic
with authenticated
security identity

Servlet/JSP (if web-based)
Java class (if standalone app)

Portable JAAS
API

2: login

3: call J2EE server
using proprietary protocol

Proprietary
J2EE Server

Security
Provider

LDAP, RDBMS, home
grown, or other
existing security

system

4: authenticate

Vendor-specific
logic

Web Browser (if Web-based application)

1: provide credentials

User (if standalone app)

1: provide credentials

Figure 9.1 JAAS overview.

1. When you have a standalone application connecting to a remote EJB sys-
tem, the user would supply credentials to the application (or perhaps the
application would retrieve the credentials from a file or other system). The
standalone application would then use the JAAS API to authenticate the
user prior to calling the EJB components residing within the application
server. The application server would verify the user’s credentials. Once
the user has been authenticated via JAAS, the client can call EJB methods
securely, and the user’s security identity will be propagated to the server
upon method invocations.

2. When you have a Web browser client connecting to a servlet/JSP layer,
the web browser user supplies credentials to a servlet/JSP layer, and the
servlet/JSP layer could use JAAS to authenticate the user. The Web
browser could supply the credentials in one of four ways:

Basic authentication. The Web client supplies a username and password
to the Web server. The server checks these credentials against a perma-
nent storage of usernames and passwords. Note that while this is a sim-
ple approach, this is not a secure form of authentication because the
password is sent in clear-text to the server. Some J2EE servers allow you
to use secure socket layer (SSL) to encrypt this data.

Form-based authentication. This is just like basic authentication, except
the application uses a customizable form, such as a special login screen.

Digest authentication. The Web client supplies a special message digest
to the Web server. This message digest is a mathematical transformation
on both the user’s password and the HTTP message itself. The pass-
word itself is not sent to the Web server. The Web server then tries to
reproduce the message digest by performing the same mathematical
transformation, except this time the Web server uses a secure copy of
the user’s password kept in permanent storage. If the digests match, the
user is authenticated.

Certificate authentication. The client can establish an identity with X.509
certificates. The client can also (optionally) ensure that a third party is
not impersonating the server by receiving X.509 certificates that authen-
ticate the server.

As with standalone applications, once the user has been authenticated via
JAAS, the client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

The JAAS ideas and JAAS code we’re about to present are useful for both Web clients
(servlets and JSPs) as well as standalone clients. However, if you’re developing a
Web-based system, it behooves you to learn more about the four methods of Web

T H E T R I A D O F B E A N S248

authentication. We recommend that you take a look at the J2EE BluePrints docu-
ment, as well as the J2EE Platform Specification, both freely downloadable from
http://java.sun.com. Note that, unfortunately, J2EE does not require that all servers
support security interoperability between the Web layer and the EJB layer. Check
your J2EE server’s documentation before embarking down this path.

The JAAS Architecture

Sun has built JAAS to be a very robust. It has a powerful design, and is sur-
prisingly complicated for what you think would be a simple subject. We have
distilled JAAS down into a simple procedure to make it easier for you to
understand.

Figure 9.2 shows the basics of a JAAS authentication procedure.

The JAAS authentication procedure breaks down as follows. Follow along
with the picture as we review each step:

1. The client instantiates a new login context. This is a container-provided
class (you don’t write it). It’s responsible for coordinating the authentica-
tion process.

Adding Functionality to Your Beans 249

Client - e.g. servlet, JSP, or applicaiton
(you write this)

LoginContext
(provided for you)

1: new()
7: login()

Configuration
(you write this)

One or more
LoginModules

(you write them)

5: new()
6: initialize()

8: login()
10: commit() or abort()

Subject
(provided for you)

9: getSubject()

11: return
subject

13: doAs(subject, action)

Action
(you write this)

12: new()

14: run()

2: new()

4: return list of LoginModules

J2EE Server

9: authenticate using proprietary API

Network

15: perform secure operation
(such as calling an EJB)

Network

3: getAppConfigurationEntry()

Figure 9.2 JAAS authentication in detail.

2. The login context instantiates a new configuration object, which you must
have written beforehand. This configuration object knows about the type
of authentication you want to achieve. For example, your configuration
object might know that you want to perform both password-based
authentication and certificate-based authentication.

3. The login context asks the configuration object for the list of authentica-
tion mechanisms that we’re going to use (such as password-based and
certificate-based).

4. The configuration object returns a list of authentication mechanisms. Each
one is called a login module. A login module knows how to contact a spe-
cific security provider and authenticate in some proprietary way.

5. The login context instantiates your login modules. You can have many
login modules if you want to authenticate across several different security
providers. In the example we’re about to show, we will use only one login
module, and it will know how to authenticate using a username/pass-
word to a J2EE server.

6. The login context initializes the login modules.

7. The client code tries to log in by calling the login() method on the login
context.

8. The login context delegates the login() call to the login modules, since only
the login modules know how to perform the actual authentication.

9. The login modules (written by you) authenticate you using a proprietary
means. In the example we’re about to show, our username/password
login module will try to contact a J2EE server and tell the J2EE server our
username and password. That J2EE server will verify the credentials
against a permanent record of usernames and passwords, such as ones
stored in a flat file, database, or LDAP server.

10. If the logins succeed, then the login modules are told to commit(). They
can also abort() if the login process fails. This is not a very critical step to
understand—read the JAAS docs if you’re curious to understand more.

11. A new subject is returned to the client code. This subject represents some-
one (or something) that has been authenticated. You can use this subject to
perform secure operations.

12. Your client code instantiates a new action. An action is an object that you
write. It knows how to perform an operation you want to perform
securely, such as calling an EJB component, using a database, and so on.

13. You tell the subject to do the action as the subject—hence the doAs()
method name.

14. The subject calls the action’s run() method.

T H E T R I A D O F B E A N S250

15. The action performs its operation (such as calling an EJB component) and
the logged-in security context is automatically propagated along with the
method call. This completes authentication. Since the security context is
sent to the server, the server can now perform authorization.

That’s it—a mere 15 steps. You’ve got to hand it to Sun for being elegant.

What’s neat about JAAS is that the login modules are separate from the configura-
tion, which means you can chain together different login modules in interesting
combinations by using different configuration objects. You can choose the config-
uration class that you want typically via system properties, although this may vary
from container to container. You can also theoretically make an entry called
login.configuration.provider=<class name of your configuration object> in the
java.security file located within your J2SE SDK install folder, but this did not work in
testing at the time of this writing.

JAAS Sample Code

Let’s show a simple JAAS example. The code will authenticate and then call a
“Hello, World” method on a bean. If the password is right, then the invocation
succeeds. If not, then an exception is thrown while trying to log in.

The code is in Source 9.4 through 9.7, and is fairly self-documenting. By
reviewing Figure 9.2, this sample code, and the process we laid our earlier, you
should be able to get a feeling for what this code is doing.

Adding Functionality to Your Beans 251

package examples;

import javax.naming.*;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

import javax.rmi.PortableRemoteObject;

public class HelloClient {

public static void main(String[] args) throws Exception {

/*

* Authenticate via JAAS

*/

Source 9.4 HelloClient.java.

T H E T R I A D O F B E A N S252

package examples;

import java.util.Hashtable;

import javax.security.auth.login.*;

/**

* Sample configuration class for JAAS user authentication.

* This class is useful because it can be rewritten to use

* different login modules without affecting client code.

*

* For example, we could have a login module that did

* username/password authentication, and another that did

* public/private key certificate authentication.

*/

public class PasswordConfig extends Configuration {

/**

* A configuration class must have a no-argument constructor

*/

Source 9.5 PasswordConfig.java.

LoginContext loginContext = new LoginContext("Hello Client");

loginContext.login();

/*

* Retrieve the logged-in subject

*/

Subject subject = loginContext.getSubject();

/*

* Perform business logic while impersonating the

* authenticated subject

*/

CallHelloWorld action = new CallHelloWorld();

String result = (String) Subject.doAs(subject, action);

/*

* Print the return result from the business logic

*/

System.out.println(result);

}

}

Source 9.4 HelloClient.java (continued).

Adding Functionality to Your Beans 253

public PasswordConfig() {}

/**

* This method chooses the proper login module.

*/

public AppConfigurationEntry[]

getAppConfigurationEntry(String applicationName)

{

/*

* Return the one login module we’ve written, which uses

* username/password authentication.

*

* - The "REQUIRED" flag says that we require that this

* login module succeed for authentication.

* - The new hashtable is a hashtable of options that

* our login module will receive. For example, we might

* define an option that turns debugging on. Our login

* module would inspect this hashtable and start logging

* output.

*/

AppConfigurationEntry[] loginModules

= new AppConfigurationEntry[1];

loginModules[0] = new AppConfigurationEntry(

"examples.PasswordLoginModule",

AppConfigurationEntry.LoginModuleControlFlag.REQUIRED,

new Hashtable());

return loginModules;

}

/**

* Refresh and reload the Configuration object by reading

* all of the login configurations again.

*/

public void refresh() {}

}

Source 9.5 PasswordConfig.java (continued).

package examples;

import java.util.*;

import javax.naming.Context;

import javax.security.auth.*;

import javax.security.auth.callback.*;

Source 9.6 PasswordLoginModule.java.

T H E T R I A D O F B E A N S254

import javax.security.auth.login.*;

import javax.security.auth.spi.*;

/**

* Sample login module that performs password authentication.

*

* The purpose of this class is to actually go out and perform

* the authentication.

*/

public class PasswordLoginModule implements LoginModule {

private Subject subject = null;

/**

* Initializes us. We set ourselves to the particular

* subject which we will later authenticate.

*/

public void initialize(Subject subject,

CallbackHandler callbackHandler,

Map sharedState,

Map options)

{

this.subject = subject;

}

/**

* This method authenticates the user. It is called when

* the client tries to login in.

*

* Our method implementation contains the vendor-specific way

* to access our permanent storage of usernames and passwords.

*

* Note that while this code is not portable, it is 100%

* hidden from your application code behind the LoginModule.

* The intention is that you develop a different LoginModule

* for each J2EE server.

*

* In this case, BEA has provided us with a helper class that

* talks JNDI to the Weblogic server, and the server then goes

* to whatever the currently configured security realm is,

* such as a file, RDBMS, or LDAP server.

*/

public boolean login() throws LoginException

{

try {

/*

* Authenticate the user’s credentials, populating Subject

*

Source 9.6 PasswordLoginModule.java (continued).

Adding Functionality to Your Beans 255

* Note: In a real application, we would not hardcode the

* username and password. Rather, we would write a reusable

* LoginModule that would work with any username and password.

* We would then write a special callback handler that knows

* how to interact with the user, such as prompting the user

* for a password. We would then call that callback handler

* here.

*/

weblogic.jndi.Environment env =

new weblogic.jndi.Environment(System.getProperties());

env.setSecurityPrincipal("guest");

env.setSecurityCredentials("guest");

weblogic.security.auth.Authenticate.authenticate(

env, subject);

/*

* Return that we have successfully authenticated

* the subject

*/

return true;

}

catch (Exception e) {

throw new LoginException(e.toString());

}

}

/**

* This method is called if the overall authentication

* succeeded (even if this particular login module

* failed). This could happen if there are other login

* modules involved with the authentication process.

*

* This is our chance to perform additional operations,

* but since we are so simple, we don’t do anything.

*

* @return true if this method executes properly

*/

public boolean commit() throws LoginException {

return true;

}

/**

* This method is called if the overall authentication

* failed (even if this particular login module

* succeeded). This could happen if there are other

* login modules involved with the authentication

Source 9.6 PasswordLoginModule.java (continued).

T H E T R I A D O F B E A N S256

* process.

*

* This is our chance to perform additional operations,

* but since we are so simple, we don’t do anything.

*

* @return true if this method executes properly

*/

public boolean abort() throws LoginException {

return true;

}

/**

* Logout the user.

*

* @return true if this method executes properly

*/

public boolean logout() throws LoginException {

return true;

}

}

Source 9.6 PasswordLoginModule.java (continued).

package examples;

import java.security.*;

import javax.naming.*;

import java.util.Hashtable;

import javax.rmi.PortableRemoteObject;

/**

* This is a helper class that knows how to call a

* "Hello, World!" bean. It does so in a secure manner,

* automatically propagating the logged in security context

* to the J2EE server.

*/

public class CallHelloWorld implements PrivilegedAction {

/*

* This is our one business method. It performs an action

* securely, and returns application-specific results.

*/

public Object run() {

Source 9.7 CallHelloWorld.java.

Adding Functionality to Your Beans 257

String result = "Error";

try {

/*

* Make a bean

*/

Context ctx = new InitialContext(System.getProperties());

Object obj = ctx.lookup("HelloHome");

HelloHome home = (HelloHome)

PortableRemoteObject.narrow(obj, HelloHome.class);

Hello hello = home.create();

/*

* Call a business method, propagating the security context

*/

result = hello.hello();

}

catch (Exception e) {

e.printStackTrace();

}

/*

* Return the result to the client

*/

return result;

}

}

Source 9.7 CallHelloWorld.java (continued).

Security Step 2: Authorization
Once the client has been authenticated, it must pass an authorization test to
call methods on your beans. You enforce authorization by defining security
policies for your beans. There are two ways to perform authorization with EJB:

With programmatic authorization, you hard-code security checks into your
bean code. Your business logic is interlaced with security checks.

With declarative authorization, the container performs all authorization
checks for you. You declare how you’d like authorization to be achieved
through the deployment descriptor, and the container generates all neces-
sary security checks. You are effectively delegating authorization to the EJB
container.

Security Roles

Regardless of whether you’re performing programmatic or declarative autho-
rization, you need to understand the concept of security roles. A security role is
a collection of client identities. For a client to be authorized to perform an oper-
ation, its security identity must be in the correct security role for that opera-
tion. The EJB deployer is responsible for associating the identities with the
correct security roles after you write your beans.

The advantage to using security roles is you do not hard-code specific identi-
ties into your beans. This is necessary when you are developing beans for
deployment in a wide variety of security environments, because each environ-
ment will have its own list of identities. This also allows you to modify access
control without recompiling your bean code.

Specifying security roles in EJB is application server-specific but should not
affect portability of your code. Table 9.1 shows some sample mappings.

Performing Programmatic Authorization

Let’s see how to authorize programmatically. Then we’ll see how to authorize
declaratively and compare the two approaches.

Step 1: Write the Programmatic Security Logic

To perform explicit security authorization checks in your enterprise beans, you
must first get information about who is calling your bean’s method. You can
get this information by querying the container through the EJB context object.
We first learned about the EJB context in Chapter 3; feel free to refer back if you
need to.

The EJB context object has the following relevant security methods:

public interface javax.ejb.EJBContext

{

...

public java.security.Principal getCallerPrincipal();

public boolean isCallerInRole(String roleName);

...

}

T H E T R I A D O F B E A N S258

SECURITY ROLE VALID IDENTITIES

employees EmployeeA, EmployeeB

managers ManagerA

administrators AdminA

Table 9.1 Sample Security Roles

isCallerInRole(String role) checks whether the current caller is in a particular
security role. When you call this method, you pass the security role that you
want the caller compared against. For example:

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

...

public void modifyEmployee(String employeeID)

throws SecurityException {

/*

* If the caller is not in the ‘administrators’

* security role, throw an exception.

*/

if (!ctx.isCallerInRole("administrators")) {

throw new SecurityException(. . .);

}

// else, allow the administrator to modify the

// employee records

// . . .

}

}

The preceding code demonstrates how to perform different actions based on
the security role of the client. Only if the caller is in the administrators role
(defined in Table 9.1, and setup using your container’s tools) does the caller
have administrator access.

The other programmatic security method, getCallerPrincipal(), retrieves the
current caller’s security principal. You can use that principal for many pur-
poses, such as using the caller’s distinguished name in a database query. This
might be handy if you’re storing your security information in a database. Here
is sample code that uses getCallerPrincipal():

import java.security.Principal;

...

public class EmployeeManagementBean implements SessionBean {

private SessionContext ctx;

...

public void modifyEmployee() {

Principal id = ctx.getCallerIdentity();

String name = id.getName();

// Query a database based on the name

Adding Functionality to Your Beans 259

// to determine if the user is authorized

}

}

Step 2: Declare the Abstract Security Roles
Your Bean Uses

Next you must declare all the security roles that your bean code uses, such as
an administrators role, in your deployment descriptor. This signals to others
(like application assemblers and deployers) that your bean makes the security
check isCallerInRole (administrators). That is important information for the
deployer, because the deployer needs to fulfill that role, just like the deployer
fulfills EJB references, as mentioned earlier. Source 9.8 demonstrates this.

T H E T R I A D O F B E A N S260

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

. . .

<!--

This declares that our bean code relies on

the administrators role; we must declare it here

to inform the application assembler and deployer.

-->

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

</security-role-ref>

. . .

</session>

. . .

</enterprise-beans>

. . .

Source 9.8 Declaring a Bean’s required security roles.

Step 3: Map Abstract Roles to Actual Roles

Once you’ve written your bean, you can ship it for resale, build it into an
application, or make it part of your company’s internal library of beans. The
consumer of your bean might be combining beans from all sorts of sources,
and each source may have declared security roles a bit differently. For exam-
ple, we used the string administrators in our bean above, but another bean

Adding Functionality to Your Beans 261

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

. . .

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

<!--

Here we link what we call "administrators" above, to

a real security-role, called "admins", defined below

-->

<role-link>admins</role-link>

</security-role-ref>

. . .

</session>

<assembly-descriptor>

. . .

<!--

This is an example of a real security role.

-->

<security-role>

Source 9.9 Mapping abstract roles to actual roles.

T H E T R I A D O F B E A N S262

<description>

This role is for personnel authorized to perform

employee administration.

</description>

<role-name>admins</role-name>

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

. . .

Source 9.9 Mapping abstract roles to actual roles (continued).

provider might use the string sysadmins or have completely different security
roles. This might be especially true if another developer wrote that bean.

The deployer of your bean is responsible for generating the real security roles
that the final application will use. Source 9.9 shows this.

Once you’ve completed your application, you can deploy it in a wide variety
of scenarios. For example, if you write a banking application, you could
deploy that same application at different branches of that bank, because you
haven’t hard-coded any specific principals into your application. The deployer
of your application is responsible for mapping principals to the roles you’ve
declared. This mapping is called a security policy descriptor, a fancy term for the
statement, “Every container handles mapping roles to principals differently.”
The bottom line: Your deployer looks at your security roles and assigns princi-
pals to them using proprietary container APIs and tools.

Performing Declarative Authorization

Now that we’ve seen programmatic authorization, let’s move on to declarative
authorization. The primary difference between the two models is that with
declarative authorization, you declare your bean’s authorization requirements in
your deployment descriptor. The container fulfills these requirements at runtime.

Step 1: Declare Method Permissions

You first need to declare permissions on the bean methods that you want to
secure. The container takes these instructions and generates security checks in
your EJB objects and EJB home objects. Source 9.10 demonstrates this.

Adding Functionality to Your Beans 263

. . .

<assembly-descriptor>

. . .

<!--

You can set permissions on the entire bean.

Example: Allow role "administrators"

to call every method on the bean class.

-->

<method-permission>

<role-name>administrators</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<!--

You can set permissions on a method level.

Example: Allow role "managers" to call method

"modifySubordinate()" and "modifySelf()".

-->

<method-permission>

<role-name>managers</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySubordinate</method-name>

</method>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

</method>

</method-permission>

<!--

If you have multiple methods with the same name

but that take different parameters, you can even set

permissions that distinguish between the two.

Example: allow role "employees" to call method

Source 9.10 Declaring a bean’s security policies.

Once defined, the EJB container automatically performs these security checks
on your bean’s methods at runtime and throws a java.lang.SecurityException
back to the client code if the client identity is not authenticated or authorized.

Step 2: Declare Security Roles

Declaring security roles is a process similar to programmatic security. We need
to define our security roles, and (optionally) describe each so the deployer can
understand them. See Source 9.11.

T H E T R I A D O F B E A N S264

"modifySelf(String)" but not "modifySelf(Int)"

-->

<method-permission>

<role-name>employees</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

<method-params>String</method-params>

</method>

</method-permission>

<!--

This is the list of methods that we don’t want

ANYONE to call. Useful if you receive a bean

from someone with methods that you don’t need.

-->

<exclude-list>

<description>

We don’t have a 401k plan, so we don’t

support this method.

</description>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modify401kPlan</method-name>

<method-params>String</method-params>

</method>

</exclude-list>

. . .

</assembly-descriptor>

. . .

Source 9.10 Declaring a bean’s security policies (continued).

The deployer reads in Source 9.11 and, using the container’s tools, maps these
roles to principals, as shown in Table 9.1.

Declarative or Programmatic?

As with persistence and transactions, security is a middleware service that you
should strive to externalize from your beans. By using declarative security, you
decouple your beans’ business purpose from specific security policies, enabling
others to modify security rules without modifying bean code. No security role
strings are hard-coded in your bean logic, keeping your code simple.

In the ideal world, we’d code all our beans with declarative security. But
unfortunately, the EJB specification does not provide adequate facilities for

Adding Functionality to Your Beans 265

<assembly-descriptor>

. . .

<security-role>

<description>

System administrators

</description>

<role-name>administrators</role-name>

</security-role>

<security-role>

<description>

Employees that manage a group

</description>

<role-name>managers</role-name>

</security-role>

<security-role>

<description>

Employees that don’t manage anyone

</description>

<role-name>employees</role-name>

</security-role>

. . .

</assembly-descriptor>

Source 9.11 Declaring security roles for the deployer.

this; specifically, there is no portable way to declaratively perform instance-
level authorization. This is best illustrated with an example.

Let’s say you have an enterprise bean that models a bank account. The caller
of the enterprise bean is a bank account manager who wants to withdraw or
deposit into that bank account. But this bank account manager is responsible
only for bank accounts with balances below $1,000, and we don’t want him
modifying bank accounts with larger balances. Declarative authorization has
no way to declare in your deployment descriptor that bank account managers
can modify only certain bean instances. You can specify security roles only on
the enterprise bean class, and those security rules apply for all instances of that
class. Thus, you would need to create separate methods for each security role,
as we did in Source 9.11. This gets hairy and makes your bean’s interface
dependent on security roles. For these situations, you should resort to pro-
grammatic security.

Security Propagation
Behind the scenes, all security checks are made possible due to security con-
texts. Security contexts encapsulate the current caller’s security state. You
never see security contexts in your application code, because the container
uses them behind the scenes. When you call a method in EJB, the container can
propagate your security information by implicitly passing your security con-
text within the stubs and skeletons.

For example, let’s say a client is authenticated and has associated security cre-
dentials. That client calls bean A, which calls bean B. Should the client’s secu-
rity credentials be sent to bean B, or should bean B receive a different
principal? By controlling security context propagation, you can specify the
exact semantics of credentials streaming from method to method in a distrib-
uted system.

You can control how security information is propagated in your deployment
descriptor. The following code takes the client’s credentials and propagates
them to all other beans you call:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

...

<security-identity>

<use-caller-identity/>

</security-identity>

...

T H E T R I A D O F B E A N S266

</session>

...

</enterprise-beans>

In comparison, the following code ignores the client’s credentials and propa-
gates the role admins to all other beans you call:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeManagement</ejb-name>

<home>examples.EmployeeManagementHome</home>

...

<security-identity>

<run-as>

<role-name>admins</role-name>

</run-as>

</security-identity>

...

</session>

<assembly-descriptor>

. . .

<security-role>

<description>

This role is for personnel authorized

to perform employee administration.

</description>

<role-name>admins</role-name>

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

Your EJB container is responsible for intercepting all method calls and ensur-
ing that your bean is running in the propagation settings you specify. It does
this by generating code that executes at the point of interception (inside the
EJB objects and EJB home objects).

Since message-driven beans receive JMS messages rather than RMI-IIOP calls, they
do not receive any credentials when they are called. It is therefore illegal for
message-driven beans to perform any programmatic or declarative security. As far as
propagation, it is also illegal for message-driven beans to propagate the nonexistent
client’s credentials. A message-driven bean can, however, run as a specified identity
when calling other beans.

Adding Functionality to Your Beans 267

Security Context Propagation Portability

Unfortunately, the EJB specification does not specify how containers should
propagate security contexts behind the scenes. What this means to you is that
any two EJB containers are likely to be incompatible in how they deal with
security. If you call a method from container A into container B, container B
will not understand how to receive the security context sent by container A. As
the RMI-IIOP interoperability is enhanced, we may see better security context
propagation, but that is not likely to emerge until well into the future.

The good news: Most organizations are having enough challenges with a sin-
gle EJB server! By the time most organizations need security context propaga-
tion between different vendors’ EJB servers, we should have it.

Understanding Handles

Our final topic in this chapter is the subject of handles. Many EJB applications
require that clients are able to disconnect from beans and reconnect later to
resume using that bean. For example, if you have a shopping cart that you’d
like to save for a later time, and a stateful session bean manifests that shopping
cart, you’d want your shopping cart state maintained when you reconnect later.

EJB provides for this need with EJB object handles. An EJB object handle is a
long-lived proxy for an EJB object. If for some reason you disconnect from the
EJB container/server, you can use the EJB object handle to reconnect to your
EJB object, so that you don’t lose your conversational state with that bean.
An EJB object handle is an essentially persistent reference to an EJB object. The
following code demonstrates using EJB object handles:

// First, get the EJB object handle from the EJB object.

javax.ejb.Handle myHandle = myEJBObject.getHandle();

// Next, serialize myHandle, and then save it in

// permanent storage.

ObjectOutputStream stream = ...;

stream.writeObject(myHandle);

// time passes...

// When we want to use the EJB object again,

// deserialize the EJB object handle

ObjectInputStream stream = . . .;

Handle myHandle = (Handle) stream.readObject();

// Convert the EJB object handle into an EJB object

T H E T R I A D O F B E A N S268

MyRemoteInterface myEJBObject = (MyRemoteInterface)

javax.rmi.PortableRemoteObject.narrow(

myHandle.getEJBObject(), MyRemoteInterface.class);

// Resume calling methods again

myEJBObject.callMethod();

The EJB specification does not require that handles have the ability to be saved
in one environment and then restored in a different environment. This means
handles are not guaranteed to be portable across EJB containers, nor across
machines.

Home Handles
A variant on EJB object handles are the EJB home handles. These are simply
persistent references to home objects, rather than persistent references to EJB
objects. The following code shows how to use home handles.

// First, get the EJB home handle from the home object.

javax.ejb.HomeHandle homeHandle = myHomeObject.getHomeHandle();

// Next, serialize the home handle, and then save it in

// permanent storage.

ObjectOutputStream stream = ...;

stream.writeObject(homeHandle);

// time passes...

// When we want to use the home object again,

// deserialize the home handle

ObjectInputStream stream = ...;

javax.ejb.HomeHandle homeHandle =

(HomeHandle) stream.readObject();

// Convert the home object handle into a home object

MyHomeInterface myHomeObject = (MyHomeInterface)

javax.rmi.PortableRemoteObject.narrow(

homeHandle.getHomeObject(), MyHomeInterface.class);

// Resume using the home object

myHomeObject.create();

Home handles may be useful because you can acquire a reference to a home
object, persist it, and then use it again later without knowledge of the home
object’s JNDI location. But in our opinion, home handles are not going to ben-
efit most applications a tremendous amount. We have never seen any organi-
zation make use of them (email us and be the first!).

Adding Functionality to Your Beans 269

Summary

In this chapter, we learned a great deal about how to make our beans more
robust. We learned how to call beans from other beans, how to use resource
factories, how to access environment properties, how to use EJB security, and
how to use handles. Most nontrivial EJB deployment will make use of some of
these concepts.

This completes Part 2. You’ve now covered the fundamentals, and should have
a strong foundation for learning about advanced concepts. Let’s now move on
to Part 3, which begins with transactions.

T H E T R I A D O F B E A N S270

Advanced Enterprise
JavaBeans Concepts

PA RTTHREE

If you’ve read to this point, you should be quite familiar with the basics of
Enterprise JavaBeans development. In Part Three, we raise the bar by moving
on to more advanced concepts. These include the following:

Transactions. Chapter 10 shows you how to harness transactions to make
your EJB deployments reliable. We’ll discuss transactions at a conceptual
level and how to apply them to EJB. We’ll also learn about the Java Trans-
action API (JTA).

BMP and CMP relationships. Chapter 11 covers how to build relationships
between entity beans, both BMP and CMP. This is an essential EJB 2.0 topic
for anyone performing persistent operations with entity beans.

Persistence Best Practices. In Chapter 12, you’ll learn about some of the criti-
cal tradeoffs when building a persistence layer—how to choose between
session beans and entity beans, how to choose between BMP and CMP—
and survey a collection of persistence best practices that we’ve assembled
from our knowledge and experience.

EJB Design Strategies. Chapter 13 is one of the most important chapters in
this book. You’ll learn about best practices when designing an EJB system.
These are not low-level design patterns (those are covered in the compan-
ion book, EJB Design Patterns by Floyd Marinescu). We’ll discuss tradeoffs
you can make when designing an EJB systems such as how to choose
between local interfaces and remote interfaces, how to choose between
stateful and stateless systems, and much more.

Clustering. Chapter 14 shows you how EJBs are clustered in large-scale sys-
tems. You’ll learn how clustering works behind the scenes, and a few
strategies for how containers might achieve clustering. This is a critical
topic for anyone building a system that involves several machines working
together.

EJB project management. Chapter 15 shows you how to get your project off
on the right foot. This includes how to choose whether EJB is right for you,
how to build a first-pass of your system, and how to divide your develop-
ment team.

How to choose an EJB server. In Chapter 16, we’ll describe our methodology
for how an organization can compare and contrast different vendors’ offer-
ings. We’ll also list our criteria for what we would want in an EJB server.

Building a real-world EJB-J2EE system. Chapter 17 shows how each of the
EJB components can work together to solve a business problem, as well as
how EJB and J2EE can be integrated, as through Java Servlets and
JavaServer Pages (JSPs).

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS272

These are extremely interesting middleware topics; indeed, many books could
be written on each subject alone. To understand these concepts, we highly rec-
ommend you read Part One and Part Two first. If, however, you’re already
well-versed in EJB, please join us to explore these advanced issues.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS 273

C H A P T E R 10

275

Many middleware services are needed for secure, scalable, and reliable
server-side development. This includes resource pooling services, security
services, remotability services, persistence services, and more.

A key service required for robust server-side development is transactions.
Transactions, when used properly, can make your mission-critical opera-
tions run predictably in an enterprise environment. Transactions are an
advanced programming paradigm that allows you to write robust code.
Transactions are also very useful constructs to use when performing persis-
tent operations like updates to a database.

In the past, transactions have been difficult to use because developers
needed to code directly to a transaction API. With EJB, you can gain the
benefits of transactions without performing any transaction programming.

In this chapter, we’ll see some of the problems that transactions solve. We’ll
also see how transactions work and show how they’re used in EJB. Because
transactions are at the very core of EJB and are somewhat difficult to under-
stand, we’ll provide extensive background on the subject. To explain trans-
actions properly, we’ll occasionally get a bit theoretical. If the theory
presented in this chapter piques your interest, many tomes written on trans-
actions are available for further reading. See the book’s accompanying Web
site, www.wiley.com/compbooks/roman, for links to more information.

Transactions

Motivation for Transactions

We begin our discussion with a few motivational problems that transactions
address.

Atomic Operations
Imagine that you would like to perform multiple discrete operations yet have
them execute as one contiguous, large, atomic operation. Take the classic bank
account example. When you transfer money from one bank account to
another, you want to withdraw funds from one account and deposit those
funds into the other account. Ideally, both operations will succeed. But if an
error occurs, you would like both operations to always fail; otherwise, you’ll
have incorrect funds in one of the accounts. You never want one operation to
succeed and the other to fail, because both operations are part of a single
atomic transaction.

One simplistic way to handle this is to perform exception handling. You could
use exceptions to write a banking module to transfer funds from one account
to another, as in the following pseudo-code:

try {

// Withdraw funds from account 1

}

catch (Exception e) {

// If an error occurred, do not proceed.

return;

}

try {

// Otherwise, deposit funds into account 2

}

catch (Exception e) {

// If an error occurred, do not proceed,

// and redeposit the funds back into account 1.

return;

}

This code tries to withdraw funds from account 1. If a problem occurs, the
application exits and no permanent operations occur. Otherwise, we try to
deposit the funds into account 2. If a problem occurs here, we redeposit the
money back into account 1 and exit the application.

There are many problems with this approach:

■■ The code is bulky and unwieldy.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS276

■■ We need to consider every possible problem that might occur at every
step and code error-handling routines to consider how to roll back our
changes.

■■ Error-handling gets out of control if we perform more complex processes
than a simple withdrawal and deposit. It is easy to imagine, for example,
a 10-step process that updates several financial records. We’d need to code
error-handling routines for each step. In the case of a problem, we need to
code facilities to undo each operation. This gets tricky and error-prone to
write.

■■ Testing this code is yet another challenge. You would have to simulate
logical problems as well as failures at many different levels.

Ideally, we would like a way to perform both operations in a single, large,
atomic operation, with a guarantee that both operations either always succeed,
or both always fail.

Network or Machine Failure
Let’s extend our classic bank account example and assume our bank account
logic is distributed across a multitier deployment. This may be necessary for
security, scalability, and modularization reasons. In a multitier deployment, any
client code that wants to use our bank account application must do so across the
network via a remote method invocation. We show this in Figure 10.1.

Distributing our application across the network introduces failure and reli-
ability concerns. For example, what happens if the network crashes during a

Transactions 277

Bank Logic
Implementation

Bank
Application
(with GUI)

Tier Boundary

Figure 10.1 A distributed banking application.

banking operation? Typically, an exception (such as a Java RMI RemoteExcep-
tion) is generated and thrown back to the client code—but this exception is
quite ambiguous. The network may have failed before money was withdrawn
from an account. It’s also possible that the network failed after we withdrew
the money. There’s no way to distinguish between these two cases—all the
client code sees is a network failure exception. Thus, we can never know for
sure how much money is in the bank account.

The network may not be the only source of problems. In dealing with bank
account data, we’re dealing with persistent information residing in a database.
It’s entirely feasible that the database itself could crash. The machine that the
database is deployed on could also crash. If a crash occurs during a database
write, the database could be in an inconsistent, corrupted state.

None of these situations is acceptable for a mission-critical enterprise applica-
tion. Mainframe systems and other highly available systems offer preventive
measures to avoid system crashes. But in reality, nothing is perfect. Machines,
processes, or networks will always fail. There needs to be a recovery process to
handle these crashes. Simple exception handling such as Java RMI’s Remote-
Exception is not sufficient for enterprise-class deployments.

Multiple Users Sharing Data
In any enterprise-level distributed system, you will see the familiar pattern of
multiple clients connecting to multiple application servers, with those appli-
cation servers maintaining some persistent data in a database. Let’s assume
these application servers all share the same database, as in Figure 10.2. Because
each server is tied to the same database image, servers could potentially be
modifying the same set of data records within that database.

For example, you might have written a tool to maintain your company’s cata-
log of products in a database. Your catalog may contain product information
that spans more than one database record. Information about a single product
could span several database records or even tables.

Several people in your organization may need to use your tool simultaneously.
But if two users modify the same product data simultaneously, their opera-
tions may become interleaved. Therefore, your database may contain product
data that’s been partially supplied by one tool and partially supplied by
another tool. This is essentially corrupted data, and it is not acceptable in any
serious deployment. The wrong data in a bank account could result in loss of
millions of dollars to a bank or the bank’s customers.

Thus, there needs to be a mechanism to deal with multiple users concurrently
modifying data. We must guarantee data integrity even when many users con-
currently update the data.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS278

Benefits of Transactions

The problems raised in the previous sections can lead to catastrophic errors.
You can avoid these problems by properly using transactions.

A transaction is a series of operations that appear to execute as one large,
atomic operation. Transactions guarantee an all-or-nothing value proposition:
Either all of your operations will succeed, or none of them will. Transactions
account for network or machine failure in a graceful, reliable way. Transactions
allow multiple users to share the same data and guarantee that any set of data
they update will be completely and wholly written, with no interleaving of
updates from other clients.

Transactions 279

Application
Server

Application
Server

Application
Server

Database

Client Code Client Code Client CodeClient Code

Table

Figure 10.2 Application servers tied to a single database.

By using transactions properly, you can enforce that multiuser interactions
with databases (or other storages) occur independently. For example, two
clients reading and writing from the same database will be mutually exclusive
if transactions are properly used. The database system automatically performs
the necessary concurrency control (that is, locking) on the database to keep
client threads from affecting each other.

Transactions offer far more than simply letting simultaneous users use the
same persistent stores. By having your operations run within a transaction,
you are effectively performing an advanced form of concurrency control and
exception handling.

The ACID Properties
When you properly use transactions, your operations will always execute with
a suite of four guarantees. These four guarantees are well known as the ACID

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS280

Transaction Vocabulary

Before we get into the specifics of transactions, let’s establish a vocabulary. There
are several types of participants in a transaction: transactional objects, transac-
tion managers, resources, and resource managers. Let’s take a look at each of
these parties in more detail.

A transactional object (or transactional component) is an application compo-
nent, such as a banking component, that is involved in a transaction. This could
be an enterprise bean, a Microsoft.NET-managed component, a CORBA compo-
nent, and so on. These components perform operations that need to execute in a
robust fashion, like database interactions.

A transaction manager is responsible for managing the transactional opera-
tions of the transactional components. It manages the entire overhead of a trans-
action, running behind the scenes to coordinate things (similar to how a
conductor coordinates a symphony).

A resource is a persistent storage from which you read or write. A resource
could be a database, a message queue, or other storage.

A resource manager manages a resource. An example of a resource manager
is a driver for a relational database, object database, message queue, or other
store. Resource managers are responsible for managing all state that is perma-
nent. The most popular interface for resource managers is the X/Open XA
resource manager interface. Most database drivers support this interface.
Because X/Open XA is the de facto standard for resource managers, a deploy-
ment with heterogeneous resource managers from different vendors can
interoperate.

properties of transactions. The word ACID stands for atomicity, consistency, iso-
lation, and durability. Here’s the breakdown of each property.

Atomicity guarantees that many operations are bundled together and appear
as one contiguous unit of work. In our banking example, when you transfer
money from one bank account to another, you want to add funds to one
account and remove funds from the other account, and you want both
operations to occur or neither operation to occur. Atomicity guarantees
that operations performed within a transaction undergo an all-or-nothing
paradigm—either all the database updates are performed, or nothing hap-
pens if an error occurs at any time. Many different parties can participate
in a transaction, such as an enterprise bean, a CORBA object, a servlet, and
a database driver. These transaction participants can force the transaction
to result in nothing happening for any reason. This is similar to a voting
scheme: Each transaction participant votes on whether the transaction
should be successful, and if any vote no, the transaction fails. If a transac-
tion fails, all the partial database updates are automatically undone. In this
way, you can think of transactions as a robust way of performing error
handling.

Consistency guarantees that a transaction leaves the system’s state to be con-
sistent after a transaction completes. What is a consistent system state? A
bank system state could be consistent if the rule bank account balances must
always be positive is always followed. This is an example of an invariant set
of rules that define a consistent system state. During the course of a trans-
action, these rules may be violated, resulting in a temporarily inconsistent
state. For example, your enterprise bean component may temporarily
make your account balance negative during a withdrawal. When the trans-
action completes, the state is consistent once again; that is, your bean never
leaves your account at a negative balance. And even though your state can
be made inconsistent temporarily, this is not a problem. Remember that
transactions execute atomically as one, contiguous unit of work (from the
atomicity property above). Thus, to a third party, it appears that the sys-
tem’s state is always consistent. Atomicity helps enforce that the system
always appears to be consistent.

Isolation protects concurrently executing transactions from seeing each
other’s incomplete results. Isolation allows multiple transactions to read or
write to a database without knowing about each other because each trans-
action is isolated from the others. This is useful for multiple clients modify-
ing a database at once. It appears to each client that he or she is the only
client modifying the database at that time. The transaction system achieves
isolation by using low-level synchronization protocols on the underlying
database data. This synchronization isolates the work of one transaction
from that of another. During a transaction, locks on data are automatically

Transactions 281

assigned as necessary. If one transaction holds a lock on data, the lock pre-
vents other concurrent transactions from interacting with that data until
the lock is released. For example, if you write bank account data to a data-
base, the transaction may obtain locks on the bank account record or table.
The locks guarantee that, while the transaction is occurring, no other con-
current updates can interfere. This allows many users to modify the same
set of database records simultaneously without concern for interleaving of
database operations.

Durability guarantees that updates to managed resources, such as database
records, survive failures. Some examples of failures are machines crashing,
networks crashing, hard disks crashing, or power failures. Recoverable
resources keep a transactional log for exactly this purpose. If the resource
crashes, the permanent data can be reconstructed by reapplying the steps
in the log.

Transactional Models

Now that you’ve seen the transaction value proposition, let’s dive a bit deeper
and explore how transactions work. We begin by taking a look at transactional
models, which are the different ways you can perform transactions.

There are many different models for performing transactions. Each model
adds its own complexity and features to your transactions. The two most pop-
ular models are flat transactions and nested transactions.

To use a particular transaction model, your underlying transaction service must sup-
port it. And unfortunately, not all of the vendors who crafted the EJB specification
currently implement nested transactions in their products. Hence, Enterprise Jav-
aBeans mandates flat transactions but does not support nested transactions. Note
that this may change in the future based on industry demands.

Flat Transactions
A flat transaction is the simplest transactional model to understand. A flat
transaction is a series of operations that are performed atomically as a single
unit of work. After a flat transaction begins, your application can perform any
number of operations. Some may be persistent operations, and some may not.
When you decide to end the transaction, there is always a binary result: either
success or failure. A successful transaction is committed, while a failed
transaction is aborted. When a transaction is committed, all of the persistent
operations become permanent changes; that is, all of the updates to resources,
such as databases, are made durable into permanent storage only if the trans-

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS282

action ends with a commit. If the transaction is aborted, none of the resource
updates are made durable, and thus all changes are rolled back. When a trans-
action aborts, all persistent operations that your application may have per-
formed are automatically undone by the underlying system. Your application
can also be notified in case of an abort, so that your application can undo in-
memory changes that occurred during the transaction.

This is the all-or-nothing proposition we described above. The flat transaction
process is outlined in Figure 10.3.

A transaction might abort for many reasons. Many components can be
involved in a transaction, and any one component could suffer a problem that
would cause an abort. These problems include the following:

Invalid parameters passed to one of the components. For instance, a bank-
ing component may be called with a null argument, when it was expecting
a bank account ID string.

An invariant system state was violated. For example, if a bank account has a
negative balance, your banking component can force the transaction to
abort, undoing all associated bank account operations.

Hardware or software failure. If the database that your component is using
crashes, the transaction is rolled back and all permanent changes are
undone. Similarly, if there is a software failure (such as a distributed sys-
tem where a JVM crashes) the transaction is rolled back.

Transactions 283

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Figure 10.3 The flat transaction.

Any of these problems can cause a transaction to abort. But when an abort
occurs, how is the transactional state rolled back? That is the topic of the next
section.

How Transactional State Is Rolled Back

Let’s assume you’re performing a flat transaction that includes operations on
physical, permanent resources, such as databases. After the transaction begins,
one of your business components requests a connection to a database. This
database connection is automatically enlisted in the transaction in which your
component is involved. Next, your component performs some persistent oper-
ations, such as database updates. But when this happens, your database’s
resource manager does not permanently apply the updates to the database—
your persistent operations are not yet durable and permanent. The resource
manager waits until a commit statement has been issued. A commit is issued
only when all your business components have finished performing all of the
operations under that transaction—when the transaction is complete. If the
resource is told to commit, it persists the data permanently. If the transaction
aborts, the data is not persisted at all.

The take-away point from this discussion is that your business components
typically do not perform any rollback of permanent state; if there’s an abort, the
resource (such as a database) does not make your database updates perma-
nent. Your components don’t have any undo logic for permanent data inside of
them; rather, the underlying system does it for you behind the scenes. Your
components control the transaction and tell the transaction to abort, but the
persistent state rollback is performed for you automatically. Thus, when your
business components perform operations under a transaction, each compo-
nent should perform all persistent operations assuming that the transaction
will complete properly.

Now that you’ve seen flat transactions, let’s take a quick look at nested trans-
actions.

Nested Transactions
We begin our nested transactions discussion with a motivational example.
Let’s say you need to write an application that can plan trips for a travel
agency. You need to code your application to plan trips around the world, and
your application must purchase the necessary travel tickets for the trip. Con-
sider that your application performs the following operations:

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS284

1. Your application purchases a train ticket from Boston, USA, to New York,
USA.

2. Your application purchases a plane ticket from New York, USA, to Lon-
don, England.

3. Your application purchases a balloon ride ticket from London, England, to
Paris, France.

4. Your application finds out that there are no outgoing flights from France.

This is the famous trip-planning problem. If this sequence of bookings were per-
formed under a flat transaction, your application would have only one option:
to roll back the transaction. Thus, because there are no outgoing flights from
France, your application has lost all of its bookings! But it may be possible to
use another means of transportation out of France, allowing you to salvage the
train ticket, plane ticket, and balloon ride. Thus, a flat transaction is insuffi-
cient. The all-or-nothing proposition is shooting us in the foot, and we need a
more robust transactional model.

A nested transaction solves this problem. A nested transaction allows you to
embed atomic units of work within other units of work. The unit of work that
is nested within another unit of work can roll back without forcing the entire
transaction to roll back. Therefore the larger unit can attempt to retry the
embedded unit of work. If the embedded unit can be made to succeed, the
larger unit can succeed. If the embedded unit of work cannot be made to work,
it will ultimately force the entire unit to fail.

You can think of a nested transaction as a tree of transactions, all spawning off
one root- or top-level transaction. The root transaction is the main transaction: In
our trip-planning example, the root transaction is the overall process of book-
ing tickets around the world. Every other transaction in the tree is called a sub-
transaction. The subtransactions can be flat or nested transactions. Figure 10.4
illustrates this concept.

What’s special about nested transactions is that subtransactions can indepen-
dently roll back without affecting higher transactions in the tree. That’s a very
powerful idea, and it solves our trip-planning problem: If each individual
booking is a nested transaction, we can roll back any one booking without can-
celing all our other reservations. But in the end, if the nested transaction can-
not be committed, the entire transaction will fail.

Transactions 285

Other Transactional Models
This concludes our discussion of transactional models. There are other models
as well, such as chained transactions and sagas, but we will not address these
subjects here because the EJB specification does not support them. And
because the EJB specification does not currently mandate support for nested
transactions, for the rest of this chapter we’ll assume that our transactions are
flat.

Enlisting in Transactions with
Enterprise JavaBeans

Let’s apply what we’ve learned so far about transactions to the EJB world.

Enterprise beans can be transactional in nature. This means they can fully
leverage the ACID properties to perform reliable, robust server-side opera-
tions. Thus, enterprise beans are ideal modules for performing mission-critical
tasks.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS286

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Perform One or More
Smaller-Grained Transactions

The smaller-grained
transactions can be retried
without affecting the main
transaction.

Figure 10.4 The nested transaction.

Underlying Transaction
System Abstraction

In EJB, your code never gets directly involved with the low-level transaction
system. Your enterprise beans never interact with a transaction manager or a
resource manager. You write your application logic at a much higher level,
without regard for the specific underlying transaction system. The low-level
transaction system is totally abstracted out by the EJB container, which runs
behind the scenes. Your bean components are responsible for simply voting on
whether a transaction should commit or abort. If things run smoothly, you
should commit; otherwise, abort.

Declarative, Programmatic, and
Client-Initiated Transactions

Throughout this chapter, we’ve said that once a transaction begins, it ends
with either commit or abort. The key piece of information we’re lacking is who
begins a transaction, who issues either a commit or abort, and when each of
these steps occurs. This is called demarcating transactional boundaries. There are
three ways to demarcate transactions: programmatically, declaratively, or client-
initiated.

Programmatic Transactions

Most existing systems demarcate transactional boundaries programmatically.
When using programmatic transactions, you are responsible for programming
transaction logic into your application code. That is, you are responsible for
issuing a begin statement and either a commit or an abort statement.

For example, an EJB banking application might have an enterprise bean that
acts as a bank teller. A teller bean would expose a method to transfer funds
from one bank account to another. With programmatic transactions, the teller
bean is responsible for issuing a begin statement to start the transaction,
performing the transfer of funds, and issuing either a commit or abort state-
ment. This is the traditional way to perform transactions, and it is shown in
Figure 10.5.

Declarative Transactions

Declarative transactions allow for components to automatically be enlisted in
transactions. That is, your enterprise beans never explicitly issue a begin, com-
mit, or abort statement. The EJB container performs it for you.

Transactions 287

Let’s take our bank teller example again, and assume some client code has
called our teller bean to transfer funds from one account to another. With
declarative transactions, the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean. That is, the container issues
the begin statement to the underlying transaction system to start the transac-
tion. The container then delegates the invocation to your enterprise bean,
which performs operations in the scope of that transaction. Your bean can do
anything it wants to, such as perform logic, write to a database, send an asyn-
chronous message, or call other enterprise beans. If a problem occurs, the bean
can signal to the container that the transaction must abort. When the bean is
done, it returns control back to the container. The container then issues either
a commit or abort statement to the underlying transaction system, depending
on whether a problem occurred. This is a very simple model, and it is shown
in Figure 10.6.

EJB declarative transactions add huge value to your deployments because
your beans may not need to interact with any transaction API. In essence, your
bean code and your client are not even really aware of transactions happening
around them.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS288

Teller Bean Transaction
Service

3: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

Client Code

1: Call Method

EJB Container/Server

Teller EJB
Object

2: Delegate

Figure 10.5 Beans with programmatic transactions.

So how do you instruct the container about whether your bean is using declar-
ative or programmatic transactions? EJB allows you to specify how your enter-
prise bean is enrolled in a transaction through the deployment descriptor, as
follows:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise Jav-

aBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Hello</ejb-name>

<home>examples.HelloHome</home>

<remote>examples.Hello</remote>

<ejb-class>examples.HelloBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Transactions 289

Teller Bean

2: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

Client Code

1: Call Method

EJB Container/Server

3: Delegate

Transaction
Service

Teller EJB
Object

Figure 10.6 Beans with declarative transactions.

The above deployment descriptor chooses container-managed (declarative)
transactions. If instead of Container we chose Bean, then we would use bean-
managed (programmatic) transactions.

Client-Initiated Transactions

The final way to perform transactions is to write code to start and end the
transaction from the client code outside of your bean. For example, if you have
a servlet, JSP tag library, application, applet, CORBA client, or other enterprise
bean as a client of your beans, you can begin and end the transaction in that
client. This is shown in Figure 10.7.

Note that the enterprise bean the client calls would still need to be written to
use either programmatic or declarative transactions.

Choosing a Transaction Style
One question that students often ask in our EJB training classes is, “Should I
use declarative, programmatic, or client-controlled transactions?”

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS290

Teller Bean

1: Call begin()

4: Perform Business Operations

5: Call commit() or abort()

2: Call Method

EJB Container/Server

3: Delegate

Transaction
Service

Client Code

Teller EJB
Object

Figure 10.7 Beans with client-initiated transactions.

The benefit of programmatic transactions is that your bean has full control
over transactional boundaries. For instance, you can use programmatic trans-
actions to run a series of minitransactions within a bean method. In compari-
son, with declarative or client-initiated transactions, your entire bean method
must either run under a transaction or not run under a transaction.

Transactions 291

Transactions and Entity Beans

Perhaps one of the most misunderstood concepts in EJB is how transactions
relate to entity beans. Let’s explore this concept.

When you call an entity bean in a transaction, the first action that happens is
the entity bean needs to load database data through the ejbLoad() method,
which acquires locks in the database and ensures the entity bean cache is consis-
tent. Then one or more business methods are called. When the transaction is
committed, the entity bean’s ejbStore() method is called, which writes all updates
to the database and releases the locks. A transaction should thus span both
ejbLoad(), business methods, and the final ejbStore(), so that if any one of those
operations fail, they all fail.

If we were to use bean-managed transactions, we would write code to perform
begin() and commit() methods inside our bean (perhaps around the JDBC code).
Perhaps we would start the transaction in ejbLoad(), and then commit the trans-
action in ejbStore(). The problem, though, is that you do not call your own
ejbLoad() or ejbStore() methods—the container does. The bean cannot enforce
that these methods happen in this order, if at all. Therefore if you started a trans-
action in ejbLoad(), the transaction may never complete.

Because of this, bean-managed transactions are illegal for entity beans. Entity
beans must use declarative transactions. Session beans or message-driven beans
can use bean-managed transactions because a session bean can load database
data, perform operations on that data, and then store that data, all in a single
method call, and thus is in direct control over the transaction.

A corollary of this discussion is that entity beans do not load and store their
data on every method call; rather, they load and store their data on every transac-
tion. If your entity beans are not performing well, it could be because a transac-
tion is happening on each method call, and thus a database read/write is
happening on every get/set method. The solution is to make sure your transac-
tions begin earlier and end later, perhaps encompassing many entity bean
method calls. By properly controlling the duration of your transactions with trans-
action attributes (as we will see later in this chapter), you can control when data-
base reads and writes happen with entity beans. For more on this design strategy,
see Chapter 13.

The benefit of declarative transactions is that they are simpler. You don’t need
to write transactional logic into your bean class, which saves coding time and
allows you to tune transactions without having access to source code. Also, by
having transactions automatically start up and end, you keep client code from
misusing your beans. If you’re a bean vendor, this will reduce a great number
of headaches down the line.

To understand the benefit of client-controlled transactions, consider the fol-
lowing scenario in which we don’t use client-controlled transactions. Imagine
that a nontransactional remote client calls an enterprise bean that performs its
own transactions (either programmatically or declaratively). The bean suc-
ceeds in the transaction, but the network or application server crashes before
the result is returned to a remote client. The remote client would receive a Java
RMI RemoteException indicating a network error, but would not know whether
the transaction that took place in the enterprise bean was a success or a failure.
The remote client would then have to write code to check the state of the server
if a RemoteException was ever thrown. This code can get very messy and is
error-prone because it may never be able to contact the server.

With client-controlled transactions, you do not need to worry about this sce-
nario, because the transaction is defined in the client code. If anything goes
wrong, the client will know about it. The downside to client-controlled trans-
actions is that if the client is located far from the server, the transactions are
likely to roll back due to conflicts. Because of this, use client-transactions spar-
ingly—especially if the client is far away.

Container-Managed Transactions

Let’s now assume that we are using container-managed transactions and
understand how to implement them. Although we’re not writing any code
that starts and stops transactions, we still need to provide instructions to the
container for how we’d like our transactions to operate. For example, how can
we choose whether a bean always runs in a transaction, or whether a bean
never runs in a transaction?

A transaction attribute is a setting that you give to a bean to control how your
bean is enlisted in container-managed transactions. You can specify a different
transaction attribute on each bean in your system, regardless of how many
beans are working together.

The transactional attribute is a required part of each bean’s deployment
descriptor. The container knows how transactions should be handled with a
bean by reading that bean’s transaction attribute from its deployment descrip-
tor. Note that you can specify transaction attributes for entire beans or for indi-

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS292

vidual bean methods. If both are specified, then method-level attributes take
precedence. See Source 10.1 transaction.

You must specify transaction attributes on all business methods for your
beans. Furthermore, with entity beans you must specify transaction attributes
that cover home interface methods, because the home interface creation meth-
ods insert database data and thus need to be transactional.

Transactions 293

Transactions and Message-Driven Beans

When using message-driven beans, your choice of transaction style has a big
impact on your bean.

If you use container-managed transactions, your message-driven bean will
read a message off the destination in the same transaction as it performs its
business logic. If something goes wrong, the transaction will roll back and the
message acknowledgement will occur.

If you use bean-managed transactions, the transaction begins and ends after
your message-driven bean receives the message. You can then use deployment
descriptor acknowledgement modes to instruct the container about when to
acknowledge messages (see Chapter 8).

If you don’t support transactions at all, the container will acknowledge the
message at some later time, perhaps when your bean’s method completes. The
timing is not guaranteed, however.

So which style do you use? If you don’t use container-managed transactions,
you can’t cause the messages to remain on the original destination if something
goes wrong, because your bean has no way to indicate a problem.

In general, we recommend using container-managed transactions with
message-driven beans. If you want to perform many smaller transactions, con-
sider breaking up your message-driven bean into several other beans, with each
bean having a granularity of a single transaction.

Note that there is a huge caveat with container-managed transactions. Let’s
say you have got an EJB component (any type of component) that sends and then
receives a message all within one big container-managed transaction. It is possi-
ble for the send to never get its message on the queue, because the transaction
doesn’t commit until after the receive ends. Thus, you’ll be waiting for the receive
to complete forever. This is called the infinite block problem, also known as the
halting problem in computer science.

Many developers overlook an easy solution to this problem: After sending the
request message, you can call commit() on the JMS Session, which is your JMS
transaction helper object. This causes the outgoing message buffer to be flushed.

EJB Transaction Attribute Values
Every enterprise bean must have a transaction attribute setting. The following
are the possible values for the transaction attribute in the deployment descriptor.

Required

You should use the Required mode if you want your bean to always run in a
transaction. If a transaction is already running, your bean joins in on that
transaction. If no transaction is running, the EJB container starts one for you.

For example, say you write a credit card component that performs operations
on credit cards, such as charging a credit card or refunding money on a credit
card. Let’s assume you ship the component with the Required transaction
attribute. You then sell that component to two customers.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS294

<assembly-descriptor>

<!--

This demonstrates setting a transaction attribute

on every method on the bean class.

-->

<container-transaction>

<method>

<ejb-name>Employee</ejb-name>

<method-name>*</method-name>

</method>

<!--

Transaction attribute. Can be "NotSupported",

"Supports", "Required", "RequiresNew",

"Mandatory", or "Never".

-->

<trans-attribute>Required</trans-attribute>

</container-transaction>

<!--

You can also set transaction attributes on individual methods.

-->

<container-transaction>

<method>

Source 10.1 Declaring transaction attributes in the deployment descriptor.

Transactions 295

<ejb-name>Employee</ejb-name>

<method-name>setName</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<!--

You can even set different transaction attributes on

methods with the same name that take different parameters.

-->

<container-transaction>

<method>

<ejb-name>Employee</ejb-name>

<method-name>setName</method-name>

<method-param>String</method-param>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

Source 10.1 Declaring transaction attributes in the deployment descriptor (continued).

Customer 1 deploys our component in its customer service center, using the
component to refund money when an angry customer calls. The customer
writes some proprietary code to call your bean as necessary. When the
client code calls your bean, the container automatically starts a transaction
by calling begin and then delegating the call to your bean. When your
method completes, the container issues either a commit or abort statement,
depending on whether a problem occurred.

Customer 2 uses our billing component as part of a complete workflow solu-
tion. The customer wants to use the credit card component to charge a
user’s credit card when a user purchases a product from a Web site. The
customer then wants to submit an order to manufacture that product,
which is handled by a separate component. Thus, the customer has two
separate components running but both of them to run under the same
transaction. If the credit card cannot be charged, the customer doesn’t want
the order to be submitted. If the order cannot be submitted, the customer

doesn’t want the credit card charged. Therefore the customer produces his
or her own workflow bean, which first calls our credit card charging bean
and then calls the bean to generate a manufacturing order. The workflow
bean is deployed with Required, so a transaction automatically starts up.
Because your credit card bean is also deployed with Required, you join that
transaction, rather than starting your own transaction. If the order submis-
sion component is also deployed with Required, it joins the transaction as
well. The container commits or aborts the transaction when the workflow
bean is done.

Thus, Required is a flexible transaction attribute that allows you to start your
own transaction or join existing ones, depending on the scenario.

RequiresNew

You should use the RequiresNew attribute if you always want a new transaction
to begin when your bean is called. If a transaction is already underway when
your bean is called, that transaction is suspended during the bean invocation.
The container then launches a new transaction and delegates the call to the
bean. The bean performs its operations and eventually completes. The con-
tainer then commits or aborts the transaction and finally resumes the old
transaction. Of course, if no transaction is running when your bean is called,
there is nothing to suspend or resume.

RequiresNew is useful if your bean needs the ACID properties of transactions
but wants to run as a single unit of work without allowing other external logic
to also run in the transaction.

Supports

When a bean is called with Supports, it runs only in a transaction if the client
had one running already—it joins that transaction. If the client does not have a
transaction, the bean runs with no transaction at all.

Supports is similar in nature to Required, with the one exception: Required
enforces that a new transaction is started if one is not running already. Because
Supports will sometimes not run within a transaction, you should be careful
when using this attribute. Mission-critical operations should be encapsulated
with a stricter transaction attribute (like Required).

Mandatory

Mandatory mandates that a transaction must be already running when your bean
method is called. If a transaction isn’t running, the javax.ejb.TransactionRe-

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS296

quiredException exception is thrown back to the caller (or javax.ejb.Tranasction-
RequiredLocalException exception if the client is local).

Mandatory is a safe transaction attribute to use. It guarantees that your bean
should run in a transaction. There is no way your bean can be called if a trans-
action isn’t already running. However, Mandatory relies on a third party to
start the transaction before your bean is called. The container will not auto-
matically start a transaction; rather, an exception is thrown back to the caller.
This is the chief difference between Mandatory and Supports. Mandatory is use-
ful if your component is designed to run within a larger system, such as a
workflow system, where your bean is only part of a larger suite of operations,
and you want to mandate that the larger operations start a transaction before
calling your bean.

NotSupported

If you set your bean to use NotSupported, then your bean cannot be involved in
a transaction at all. For example, assume we have two enterprise beans, A and
B. Let’s assume bean A begins a transaction and then calls bean B. If bean B is
using the NotSupported attribute, the transaction that A started is suspended.
None of B’s operations are transactional, such as reads/writes to databases.
When B completes, A’s transaction is resumed.

You should use NotSupported if you are certain that your bean operations do
not need the ACID properties. This should be used only if your beans are per-
forming nonmission-critical operations, where you are not worried about iso-
lating your bean’s operations from other concurrent operations. An example
here is an enterprise bean that performs rough reporting. If you have an
e-commerce Web site, you might write a bean that routinely reports a rough
average number of e-commerce purchases per hour by scanning a database.
Because this is a low-priority operation and you don’t need exact figures, Not-
Supported is an ideal, low-overhead mode to use.

Never

The Never transaction attribute means that your bean cannot be involved in a
transaction. Furthermore, if the client calls your bean in a transaction, the con-
tainer throws an exception back to the client (java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

This transaction attribute is useful when you want to make sure all clients that
call your bean do not use transactions. This can help reduce errors in client
code, because a client will not be able to erroneously call your bean in a trans-
action and expect your bean to participate in the ACID properties with other

Transactions 297

transaction participants. If you are developing a system that is not transac-
tional in nature and would like to enforce that behavior, consider using the
Never attribute.

Transaction Attribute Summary

Table 10.1 is a summary of the effects of each transaction attribute. In the chart,
T1 and T2 are two different transactions. T1 is a transaction passed with the
client request, and T2 is a secondary transaction initiated by the container.

Table 10.1 is important because you can use this information to control the
length of your transaction. For example, let’s say you want to perform a trans-
fer between two bank accounts. To achieve this, you might have a bank teller
session bean that calls into two bank account entity beans. If you deploy all
three of these beans with the Required transaction attribute, they will all be
involved in a single transaction, as shown in Figure 10.8. In this example,
assume all three beans are deployed with the Required attribute. Notice that

■■ Transactions always begin and end in the same place. In this case, the
Teller EJB object.

■■ Both Account beans automatically enlist in the Teller’s transaction. Thus,
we have created a transaction spanning three beans by merely using
transaction attributes.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS298

TRANSACTION CLIENT’S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION

Required none T2

T1 T1

RequiresNew none T2

T1 T2

Supports none none

T1 T1

Mandatory none error

T1 T1

NotSupported none none

T1 none

Never none none

T1 error

Table 10.1 The Effects of Transaction Attributes

Finally, you should note that not all transaction attributes are available for use
on all beans. Table 10.2 shows which are permissible.

Here is a brief explanation of why certain transaction attributes are disal-
lowed.

■■ Entity beans and stateful session beans with SessionSynchronization must
use transactions. The reason is that both these types of beans are inher-
ently transactional in nature. Entity beans perform database updates, and
stateful session beans with SessionSynchronization (which we describe later
in this chapter) are also transactional. Therefore you normally can’t use
the following attributes: Never, NotSupported, Supports. Note that the EJB
specification does allow for containers to optionally support these attrib-
utes—but only if you’re using non-transactional data stores—and with the
warning that if you use this, your beans will not be portable, and you may
find that you receive inconsistent results.

Transactions 299

2: Call begin()

8: Call commit() or
abort()

1: Call
Method

EJB Container/Server

Teller EJB
Object

Teller EJB
Object

3: Delegate

4: withdraw()

6: deposit()

5: Delegate

7: Delegate

Client Code

Account #1
EJB Object

Account #2
EJB Object

Account #1
Bean

Transaction
Service

Account #2
Bean

Teller
Bean

In this example,
assume all three beans
are deployed with the
Required attribute.

Notice:
• Transactions always
 begin and end in the
 same place, in this
 case, the Teller EJB
 object.
• Both Account beans
 automatically enlist
 in the Teller's
 transaction spanning
 three beans by merely
 using transaction
 attributes.

Figure 10.8 Using transaction attributes to control a transaction’s length.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS300

STATEFUL SESSION
STATELESS BEAN IMPLEMENTING MESSAGE-

TRANSACTION SESSION SESSION ENTITY DRIVEN
ATTRIBUTE BEAN SYNCHRONIZATION BEAN BEAN

Required Yes Yes Yes Yes

RequiresNew Yes Yes Yes No

Mandatory Yes Yes Yes No

Supports Yes No No No

NotSupported Yes No No Yes

Never Yes No No No

Table 10.2 Permissible Transaction Attributes for Each Bean Type

A client does not call a message-driven bean directly; rather, message-driven
beans read messages off a message queue in transactions separate from the
client’s transaction. There is no client, and therefore transaction attributes that
deal with the notion of a client’s transaction make no sense for message-driven
beans—namely Never, Supports, RequiresNew, and Mandatory.

Programmatic Transactions in EJB

Next let’s discuss how you can control transactions programmatically in EJB.
Programmatic transactions allow for more advanced transaction control than
declarative transactions, but they are trickier to use. To control transaction
boundaries yourself, you must use the Java Transaction API (JTA). We begin
by taking a look at how the JTA was established.

CORBA’s Object Transaction
Service (OTS)

When we described the ACID properties earlier in this chapter, we mentioned
that many parties, such as an enterprise bean and a database driver, can par-
ticipate in a transaction. This is really an extension to the basic ACID proper-
ties, and it’s the primary reason that Object Management Group (OMG)
developed a standardized Object Transaction Service (OTS) as an optional
CORBA service. OTS improved on earlier transaction systems that didn’t sup-
port multiple parties participating in a transaction.

OTS is a suite of well-defined interfaces that specify how transactions can run
behind the scenes—interfaces that the transaction manager, resource manager,

and transactional objects use to collaborate. OTS is decomposed into two
parts: CosTransactions and CosTSPortability.

The CosTransactions interfaces are the basic interfaces that transactional
objects/components, resources, resource managers, and transaction man-
agers use to interoperate. These interfaces ensure that any combination of
these parties is possible.

The CosTSPortability interface offers a portable way to perform transac-
tions with many participants.

The inner workings of OTS are not relevant to the development of enterprise
beans. As an EJB programmer, you should need to think only about writing
your application, not about low-level transaction services. This is how EJB
achieves rapid application development; you can write a distributed server-
side application without understanding complex middleware APIs. EJB
shields you from transaction services such as OTS.

The Java Transaction Service (JTS)
Sun realized that you, as an application developer, should not care about most
of OTS. Only system-level vendors need to be concerned with the inner work-
ings of OTS. Part of OTS is very applicable to you, however, because it allows
you to demarcate transaction boundaries programmatically. Hence, Sun has
split up OTS into two sub-APIs: the Java Transaction Service (JTS) and the Java
Transaction API (JTA).

The Java Transaction Service (JTS) is a Java mapping of CORBA OTS for system-
level vendors. JTS defines the interfaces used by transaction managers and
resource managers behind the scenes. It is used to have various vendors’ prod-
ucts interoperate. It also defines various objects passed around and used by
transaction managers and resource managers. As an application programmer,
you should not care about most of OTS, and you should not care about JTS at
all. What you should care about is the Java Transaction API (JTA).

The Java Transaction API (JTA)
The Java Transaction API (JTA) is a transaction API used by component and
application developers. You can use the JTA in your client and bean code to
programmatically control transactional boundaries. The JTA package is a stan-
dard Java extension, so the package is automatically downloaded if needed.

You can do very useful things with the JTA, such as start a transaction inside
your bean, call other beans that also are involved in a transaction, and control
whether things commit or abort. Nonbeans can use the JTA as well—the client

Transactions 301

code that calls your beans can use the JTA to control transaction boundaries in
a workflow scenario, where the client code is calling multiple beans and wants
each bean to participate in one transaction.

JTA consists of two sets of interfaces: one for X/Open XA resource managers
(which we don’t need to worry about) and one that we will use to support pro-
grammatic transaction control. The interface you use to programmatically con-
trol transactions is javax.transaction.UserTransaction.

javax.transaction.UserTransaction

The javax.transaction.UserTransaction interface allows you to programmatically
control transactions. Here is what the javax.transaction.UserTransaction inter-
face looks like:

public interface javax.transaction.UserTransaction {

public void begin();

public void commit();

public int getStatus();

public void rollback();

public void setRollbackOnly();

public void setTransactionTimeout(int);

}

As you can see, six methods are exposed by the UserTransaction interface.
Three of them—begin, commit, and rollback—are used to begin a new transac-
tion, commit a transaction permanently, and roll back a transaction in case
some problem occurred, respectively. The JTA methods are in Table 10.3.

JTA also defines a number of constants that indicate the current status of a
transaction. You might see these constants when you call the UserTransac-
tion.getStatus() method:

public interface javax.transaction.Status {

public static final int STATUS_ACTIVE;

public static final int STATUS_NO_TRANSACTION;

public static final int STATUS_MARKED_ROLLBACK;

public static final int STATUS_PREPARING;

public static final int STATUS_PREPARED;

public static final int STATUS_COMMITTING;

public static final int STATUS_COMMITTED;

public static final int STATUS_ROLLING_BACK;

public static final int STATUS_ROLLEDBACK;

public static final int STATUS_UNKNOWN;

}

Table 10.4 explains the values of those constants.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS302

Transactions 303

METHOD DESCRIPTION

begin() Begins a new transaction. This transaction becomes
associated with the current thread.

commit() Runs the two-phase commit protocol on an existing
transaction associated with the current thread. Each
resource manager will make its updates durable.

getStatus() Retrieves the status of the transaction associated with
this thread.

rollback() Forces a rollback of the transaction associated with the
current thread.

setRollbackOnly() Calls this to force the current transaction to roll back.
This will eventually force the transaction to abort.

setTransactionTimeout(int) The transaction timeout is the maximum amount of
time that a transaction can run before it’s aborted. This
is useful to avoid deadlock situations, when precious
resources are being held by a transaction that is cur-
rently running.

Table 10.3 The javax.transaction.UserTransaction Methods for Transactional Boundary
Interaction

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and is active.

STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort because
it’s been marked for rollback. This could be because
some party called UserTransaction.setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be committed
(during Phase One of the two-phase commit protocol).

STATUS_PREPARED The current transaction has been prepared to be com-
mitted (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of being com-
mitted right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed (Phase
Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process of rolling back.

STATUS_ROLLEDBACK The current transaction has been rolled back.

STATUS_UNKNOWN The status of the current transaction cannot be
determined.

Table 10.4 The javax.transaction.Status Constants for Transactional Status

Declarative versus Programmatic
Transactions Example

We now show you how to write an enterprise bean in two equivalent ways:
using programmatic (or bean-managed) transactions and using declarative (or
container-managed) transactions. To illustrate this, we’ll use a bank account
example. This example has a method called deposit() that deposits funds into
an account. We’ll make this method transactional.

The following code illustrates a deposit method using declarative trans-
actions:

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

System.out.println("deposit(" + amt + ") called.");

balance += amt;

}

A bean using the preceding method relies on the EJB container to demarcate
transactional boundaries. Therefore, the bean’s deployment descriptor should
use a transaction attribute that provides this (such as Required, Mandatory, or
RequiresNew). We showed the code for such a deployment descriptor earlier in
this chapter.

The following code illustrates the same method using programmatic trans-
actions:

/**

* Deposits amt into account.

*/

public void deposit(double amt) throws AccountException {

javax.transaction.UserTransaction userTran = null;

try {

System.out.println("deposit(" + amt + ") called.");

userTran = ctx.getUserTransaction();

userTran.begin();

balance += amt;

userTran.commit();

}

catch (Exception e) {

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS304

Transactions 305

Doomed Transactions

Dooming a transaction means to force a transaction to abort. You may need to
doom a transaction if something goes wrong, such as a database being unavail-
able or the client sending you bad parameters.

If you’re performing programmatic or client-initiated transactions, you are call-
ing the begin() and commit() methods. You can easily doom a transaction by call-
ing rollback() on the JTA, rather than commit(). But how can you doom a
transaction if you are participating in a transaction that someone else started?
This can occur in one of two cases:

1) Your transaction participant is an EJB component using declarative transac-
tions. The container then starts and ends transactions on your behalf. To instruct
the container to abort the transaction, your first instinct might be to throw an
exception and expect the container to abort the transaction. But this approach
will not work in all cases, because if you are throwing your own custom excep-
tion classes, the container has no way of knowing whether the exception is criti-
cal enough to indicate a failed transaction and will not abort the transaction. The
best way to doom a transaction from a bean with container-managed transac-
tions is to call setRollbackOnly() on your EJB context object, which we introduced
in Chapter 3.

2) Your transaction participant is not an EJB component, such as a Java object.
You can doom a transaction by looking up the JTA and calling the JTA’s setRoll-
backOnly() method, shown in Table 10.3.

Dooming transactions brings up an interesting side discussion. Imagine you
have 10 beans in a chain executing in the same transaction, and bean 2 decides to
doom the transaction by calling setRollbackOnly(). Why should beans 3 through
10 perform their work if the transaction is doomed to failure anyway? After all,
those beans might be performing CPU- or database-intensive operations, and this
work will all be wasted when the transaction aborts. The solution is that your
beans can detect doomed transactions and avoid performing work when a
doomed transaction exists. You can detect doomed transactions as follows:

Container-managed transactional beans can detect doomed transactions by calling
the getRollbackOnly() method on the EJB context object. If this method returns
true, the transaction is doomed.

Other participants, such as bean-managed transactional beans, can call the JTA’s
getStatus() method, as described in Table 10.3.

You should write code to detect doomed transactions if you expect a good
number of transactions to roll back and are performing intensive operations.

if (userTran != null) userTran.rollback();

throw new AccountException("Deposit failed because of " +

e.toString());

}

}

Here, we are controlling the transactional boundaries explicitly in code. We
first retrieve the JTA from our bean’s EJB context object. Then, rather than rely-
ing on the EJB container to begin and commit transactions, we perform these
steps ourselves. A bean using the preceding method should be deployed with
the deployment descriptor �transaction-type� of Bean, because the bean is
performing its own transaction boundary demarcation.

Take a look at the size difference between the two sets of source code. Bean-
managed transactions clutter your source code because you need to write to a
transaction API. Container-managed transactions allow you to elegantly write
application code and externalize all transaction logic to the container. This is
analogous to how we saw entity beans with container-managed persistence as
much smaller than those with bean-managed persistence in Chapter 7.

When using programmatic transactions, always try to complete your transactions in
the same method that you began them. Doing otherwise results in spaghetti code
where it is difficult to track the transactions; the performance decreases because the
transaction is held open longer, and the behavior of your system may be odd. See
the EJB specification for more details about what the container will do if your trans-
action is left open.

Transactions from Client Code

The last way you can control transactions is from client code (with the word
client here meaning anything that calls into your beans, even other enterprise
beans). You use the Java Transaction API (JTA) to control transactions from
client code.

To control transactions from client code, you must lookup the JTA UserTransac-
tion interface with the Java Naming and Directory Interface (JNDI). JNDI is a
generic lookup facility to lookup resources across a network, and it is fully
described in Appendix A. The following code illustrates looking up the JTA
UserTransaction interface from client code using JNDI:

try {

/*

* 1: Set environment up. You must set the JNDI Initial

* Context factory, the Provider URL, and any login

* names or passwords necessary to access JNDI. See

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS306

* your application server product’s documentation for

* details on their particular JNDI settings.

*/

java.util.Properties env = ...

/*

* 2: Get the JNDI initial context

*/

Context ctx = new InitialContext(env);

/*

* 3: Look up the JTA UserTransaction interface

* via JNDI. The container is required to

* make the JTA available at the location

* java:comp/UserTranasction.

*/

userTran = (javax.transaction.UserTransaction)

ctx.lookup("java:comp/UserTransaction");

/*

* 4: Execute the transaction

*/

userTran.begin();

// perform business operations

userTran.commit();

}

catch (Exception e) {

// deal with any exceptions, including ones

// indicating an abort.

}

When you demarcate transactional boundaries in client code, you should be
very careful. Always strive to keep your transactions as short in duration as
possible. Longer-lived transactions result in multiuser performance grinding
to a halt. If you need a long transaction (that lasts for minutes, hours, or days)
use a distributed locking mechanism, such as the CORBA locking service.
Unfortunately, no distributed locking service equivalent currently exists in the
Java 2 Platform, Enterprise Edition.

Transactional Isolation

Now that you’ve seen how to enlist enterprise beans in transactions, let’s dis-
cuss the I in ACID: isolation. Isolation is the guarantee that concurrent users
are isolated from one another, even if they are touching the same database
data. Isolation is important to understand because it does not come for free. As

Transactions 307

we’ll see, you can control how isolated your transactions are from one another.
Choosing the right level of isolation is critical for the robustness and scalabil-
ity of your deployment.

The underlying transaction system achieves isolation by performing concur-
rency control behind the scenes. We elaborate on this concept in the following
section.

The Need for Concurrency Control
Let’s begin our isolation discussion with a motivational example. Imagine
there are two instances of the same component executing concurrently, per-
haps in two different processes or two different threads. Let’s assume that the
component wants to update a shared database using a database API such as
JDBC or SQL/J. Each of the instances of the component performs the follow-
ing steps:

1. Read an integer X from a database.

2. Add 10 to X.

3. Write the new value of X to the database.

If each these three steps executes together in an atomic operation, everything
is fine. Neither instance can interfere with the other instance’s operations.
Remember, though, that the thread-scheduling algorithm being used in the
background does not guarantee this. If two instances are executing these three
operations, the operations could be interleaved. The following order of opera-
tions is possible:

1. Instance A reads integer X from the database. The database now contains
X � 0.

2. Instance B reads integer X from the database. The database now contains
X � 0.

3. Instance A adds 10 to its copy of X and persists it to the database. The
database now contains X � 10.

4. Instance B adds 10 to its copy of X and persists it to the database. The
database now contains X � 10.

What happened here? Due to the interleaving of database operations, instance
B is working with a stale copy of X: The copy before instance A performed a
write. Thus, instance A’s operations have been lost! This famous problem is
known as a lost update. It is a very serious situation—instance B has been work-
ing with stale data and has overwritten instance A’s write. How can transac-
tions avoid this scenario?

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS308

The solution to this problem is to use locking on the database to prevent the two
components from reading data. By locking the data your transaction is using,
you guarantee that your transaction and only your transaction has access to
that data until you release that lock. This prevents interleaving of sensitive
data operations.

In our scenario, if our component acquired an exclusive lock before the trans-
action began and released that lock after the transaction, then no interleaving
would be possible.

1. Request a lock on X.

2. Read an integer X from a database.

3. Add 10 to X.

4. Write the new value of X to the database.

5. Release the lock on X.

If another component ran concurrently with ours, that component would have
to wait until we relinquished our lock, which would give that component our
fresh copy of X. We explore locking further in the Isolation and Locking
sidebar.

Isolation and EJB
As an EJB component developer, you can control how isolated your transac-
tions are from one another. You can enforce strict isolation or allow relaxed iso-
lation. If you have very strict isolation, you can rest assured that each
concurrent transaction will be isolated from all other transactions. But some-
times enforcing strict isolation is a hindrance rather than a benefit. Because iso-
lation is achieved by acquiring locks on an underlying data storage, the locks
can result in unacceptable performance degradation.

Thus, you need to be smart about how much isolation you really need. Isolation
levels give you a choice over how much isolation you want and allow you to
specify concurrency control at a very high level. If you specify a very strict iso-
lation level, then your transactions will be perfectly isolated from one another,
at the expense of performance. If you specify a very loose isolation level, your
transactions will not be isolated, but you will achieve higher concurrent trans-
action performance.

There are four transaction isolation levels:

The READ UNCOMMITTED mode does not offer any isolation guarantees
but offers the highest performance.

The READ COMMITTED mode solves the dirty read problem.

Transactions 309

The REPEATABLE READ mode solves the previous problem as well as the
unrepeatable read problem.

The SERIALIZABLE mode solves the previous problems as well as the phan-
tom problem.

It’s important to understand why dirty reads, unrepeatable reads, and phantoms
occur, or you won’t be able to use transactions properly in EJB. This section
gives you the information you need to make an intelligent isolation level
choice when programming with transactions.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS310

Isolation and Locking

During a transaction, a number of locks are acquired on the resource being
updated. These locks are used to ensure isolation: Multiple clients all updating
the same data set cannot interfere with each other. The locks are implicitly
retrieved when you interact with resource managers—you do not have to worry
about obtaining them yourself.

By intelligently acquiring locks on the resource being used, transactions guar-
antee a special property: serializability. Serializability means that a suite of con-
currently executing transactions behaves as if the transactions were executing
one after another (nonconcurrently). This is guaranteed no matter how schedul-
ing of the transactions is performed.

The problem with locking is that it physically locks out other concurrent trans-
actions from performing their database updates until you release your locks. This
can lead to major performance problems. In addition, a deadlock scenario (not
specific to databases, by the way) can arise. Deadlock causes the entire system to
screech to a dead stop. An example of deadlock occurs when two concurrent
transactions are both waiting for each other to release a lock.

To improve performance, transactions distinguish between two main types of
locks: read locks and write locks. Read locks are nonexclusive, in that any num-
ber of concurrent transactions can acquire a read lock. In comparison, write locks
are exclusive—only one transaction can hold a write lock at any time.

Locking exists in many circles: databases, Version Control Systems, and the
Java language itself (through the synchronized keyword). The problems experi-
enced in locking are common to all arenas. EJB abstracts concurrency control
away from application developers via isolation levels.

If you would like more details about locking and transactions, check out Prin-
ciples of Databases Systems by Jeffrey D. Ullman (Computer Science Press, 1980).
This is a classic, theoretical book on databases that forms the basis for many
database systems today.

The Dirty Read Problem
A dirty read occurs when your application reads data from a database that has
not been committed to permanent storage yet. Consider two instances of the
same component performing the following:

1. You read integer X from the database. The database now contains X � 0.

2. You add 10 to X and save it to the database. The database now contains
X � 10. You have not issued a commit statement yet, however, so your
database update has not been made permanent.

3. Another application reads integer X from the database. The value it reads
in is X � 10.

4. You abort your transaction, which restores the database to X � 0.

5. The other application adds 10 to X and saves it to the database. The data-
base now contains X � 20.

The problem here is the other application read your update before you com-
mitted. Because you aborted, the database data has erroneously been set to 20;
your database update has been added in despite the abort! This problem of
reading uncommitted data is a dirty read. (The word dirty occurs in many areas
of computer science, such as caching algorithms. A dirty cache is a cache that
is out of sync with the main source.)

READ UNCOMMITTED

Dirty reads can occur if you use the weakest isolation level, called READ
UNCOMMITTED. With this isolation level, if your transaction is executing
concurrently with another transaction, and the other transaction writes some
data to the database without committing, your transaction will read that data
in. This occurs regardless of the isolation level being used by the other
transaction.

READ UNCOMMITTED experiences the other transactional problems as well:
unrepeatable reads and phantoms. We’ll describe those problems in the pages
to come.

When to Use READ UNCOMMITTED

This isolation level is dangerous to use in mission-critical systems with shared
data being updated by concurrent transactions. It is inappropriate to use this
mode in sensitive calculations, such as in a debit/credit banking transaction.
For those scenarios, it’s better to go with one of the stricter isolation levels we
detail later.

Transactions 311

This level is most appropriate if you know beforehand that an instance of your
component will be running only when there are no other concurrent transac-
tions. Because there are no other transactions to be isolated from, this isolation
level is adequate. But for most applications that use transactions, this isolation
level is insufficient.

The advantage of this isolation level is performance. The underlying transac-
tion system doesn’t have to acquire any locks on shared data in this mode. This
reduces the amount of time that you need to wait before executing, and it also
reduces the time concurrent transactions waste waiting for you to finish.

READ COMMITTED

The READ COMMITTED isolation level is very similar to READ UNCOM-
MITTED. The chief difference is that your code will read committed data only
when running in READ COMMITTED mode. When you execute with this iso-
lation level, you will not read data that has been written but is uncommitted.
This isolation level thus solves the dirty read problem.

Note that this isolation level does not protect against the more advanced trans-
actional problems, such as unrepeatable reads and phantoms.

When to Use READ COMMITTED

This isolation level offers a step up in robustness from the READ UNCOM-
MITTED mode. You aren’t going to be reading in data that has just been writ-
ten but is uncommitted, which means that any data you read is going to be
consistent data.

One great use for this mode is for programs that read data from a database to
report values of the data. Because reporting tools aren’t in general mission-
critical, taking a snapshot of committed data in a database makes sense.

When you run in READ COMMITTED mode, the underlying concurrency
control system needs to acquire additional locking. This makes performance
slower than with READ UNCOMMITTED. READ COMMITTED is the default
isolation level for most databases, such as Oracle or Microsoft SQL Server.

The Unrepeatable Read Problem
Our next concurrency control problem is an Unrepeatable Read. Unrepeatable
reads occur when a component reads some data from a database, but upon
rereading the data, the data has been changed. This can arise when another
concurrently executing transaction modifies the data being read. For example:

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS312

1. You read a data set X from the database.

2. Another application overwrites data set X with new values.

3. You reread the data set X from the database. The values have magically
changed.

Again, by using transactional locks to lock out those other transactions from
modifying the data, we can guarantee that unrepeatable reads will never
occur.

REPEATABLE READ

REPEATABLE READ guarantees yet another property on top of READ COM-
MITTED: Whenever you read committed data from a database, you will be
able to reread the same data again at a later time, and the data will have the
same values as the first time. Hence, your database reads are repeatable. In con-
trast, if you are using the READ COMMITTED mode or a weaker mode,
another concurrent transaction may commit data between your reads.

When to Use REPEATABLE READ

Use REPEATABLE READ when you need to update one or more data elements
in a resource, such as one or more records in a relational database. You want to
read each of the rows that you’re modifying and then be able to update each
row, knowing that none of the rows are being modified by other concurrent
transactions. If you choose to reread any of the rows at any time later in the
transaction, you’d be guaranteed that the rows still have the same data that
they did at the beginning of the transaction.

The Phantom Problem
Finally, we have the phantom problem. A phantom is a new set of data that
magically appears in a database between two database read operations. For
example:

1. Your application queries the database using some criteria and retrieves a
data set.

2. Another application inserts new data that would satisfy your query.

3. You perform the query again, and new sets of data have magically
appeared.

The difference between the unrepeatable read problem and the phantom prob-
lem is that unrepeatable reads occur when existing data is changed, whereas

Transactions 313

phantoms occur when new data that didn’t exist before is inserted. For exam-
ple, if your transaction reads a relational record, and a concurrent transaction
commits a new record to the database, a new phantom record appears that
wasn’t there before.

SERIALIZABLE

You can easily avoid phantoms (as well as the other problems described ear-
lier) by utilizing the strictest isolation level: SERIALIZABLE. SERIALIZABLE
guarantees that transactions execute serially with respect to each other, and it
enforces the isolation ACID property to its fullest. This means that each trans-
action truly appears to be independent of the others.

When to Use SERIALIZABLE

Use SERIALIZABLE for mission-critical systems that absolutely must have
perfect transactional isolation. You are guaranteed that no data will be read
that has been uncommitted. You’ll be able to reread the same data again and
again. And mysterious committed data will not show up in your database
while you’re operating due to concurrent transactions.

Use this isolation level with care because serializability does have its cost. If all
of your operations execute in SERIALIZABLE mode, you will quickly see how
fast your database performance grinds to a halt. (A personal note: Because
transactional errors can be very difficult to detect, due to scheduling of
processes, variable throughput, and other issues, we subscribe to the view that
it’s better to be safe than sorry.)

Transaction Isolation Summary

The various isolation levels and their effects are summarized in Table 10.5.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS314

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

Table 10.5 The Isolation Levels

Isolation and EJB
Now that you understand isolation in theory, let’s see how to set up isolation
in an EJB environment.

If your bean is managing transactions, you specify isolation levels with your
resource manager API (such as JDBC). For example, you could call
java.sql.Connection.SetTransactionIsolation(. . .).

If your container is managing transactions, there is no way to specify isola-
tion levels in the deployment descriptor. You need to either use resource
manager APIs (such as JDBC), or rely on your container’s tools or data-
base’s tools to specify isolation.

If you’re using different resource managers within a single transaction, each
resource manager can have a different isolation level, yet all run together
under a single transaction. Note that any particular resource manager running
under a transaction usually requires a single isolation level for the duration of
that transaction. This new model has some drawbacks as well, as described in
the following sidebar.

Transactions 315

Isolation Portability Issues

Unfortunately, there is no way to specify isolation for container-managed transac-
tional beans in a portable way—you are reliant on container and database tools.
This means if you have written an application, you cannot ship that application
with built-in isolation. The deployer now needs to know about transaction isola-
tion when he uses the container’s tools, and the deployer might not know a
whole lot about your application’s transactional behavior. This approach is also
somewhat error-prone, because the bean provider and application assembler
need to informally communicate isolation requirements to the deployer, rather
than specifying it declaratively in the deployment descriptor.

When we queried Sun on this matter, Mark Hapner, coauthor of the EJB specifi-
cation, provided this response: “Isolation was removed because the vendor com-
munity found that implementing isolation at the component level was too
difficult. Some felt that isolation at the transaction level was the proper solution;
however, no consensus was reached on a specific replacement semantics.

“This is a difficult problem that unfortunately has no clear solution at this time
. . . The best strategy is to develop EJBs that are as tolerant of isolation differ-
ences as possible. This is the typical technique used by many optimistic concur-
rency libraries that have been layered over JDBC and ODBC.”

Pessimistic and Optimistic
Concurrency Control

The two basic object concurrency control strategies that your EJBs may follow,
pessimistic and optimistic, are summarized in Table 10.6. Pessimistic concur-
rency control is the algorithm we’ve been assuming throughout this chapter—
you acquire a lock the data for the duration of the transaction, ensuring that
nobody messes with your data.

With optimistic concurrency control, your EJB component does not hold the
lock for the duration of the transaction. Instead, you hope everything will be
OK. Then if the database detects a collision, the transaction rolls back. The
basic assumption behind optimistic concurrency is that because it is unlikely
that separate users will access the same object simultaneously, it is better to
handle the occasional collision than to limit the size of your system.

Distributed Transactions

Now that we’ve concluded our discussion of isolation levels, we’ll shift gears
and talk about distributed transactions, which are transactions over a multitier
deployment with several transaction participants.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS316

STRATEGY ADVANTAGES DISADVANTAGES

Pessimistic—Your EJB locks the ■■ Brute force approach ■■ Does not scale well
source data for the entire time ■■ Provides reliable because it blocks
it needs the data, not allowing access to data simultaneous access
anything else (at least anything ■■ Suitable for small- to common
greater than read/view access) scale systems resources
to potentially update the data ■■ Suitable for systems
until it completes its transaction. where concurrent

access is rare

Optimistic—Your EJB implements ■■ Suitable for large ■■ Requires complex
a strategy to detect whether a system code to be written
change has occurred to the ■■ Suitable for systems ro support collision
source data between the time it requiring significant detection and
was read and the time it now concurrent access handling
needs to be updated. Locks are
placed on the data only for the
small periods of time the EJB
interacts with the database.

Table 10.6 Comparing Pessimistic and Optimistic Concurrency Control Strategies.

The most basic flat transaction occurs with a single application server tied to a
single database. Depending on the functionality of your application server’s
transaction service, you may be able to perform distributed flat transactions as
well. Distributed flat transactions obey the same rules as simple flat transac-
tions: If one component on one machine aborts the transaction, the entire
transaction is aborted. But with distributed flat transactions, you can have
many different types of resources coordinating in a single transaction across
the network. Here are some possible use-cases for which you may need dis-
tributed flat transactions.

■■ You have multiple application servers coordinating in the same transaction.

■■ You have updates to different databases in the same transaction.

■■ You are trying to perform a database update and send or receive a mes-
sage from a message queue in the same transaction.

■■ You are connecting to a legacy system as well as one or more other types
of storage (such as databases, message queues, or other legacy systems) in
the same transaction.

Each of these scenarios requires multiple processes or machines to collaborate,
potentially across a network, to solve a business problem. Distributed flat
transactions allow multiple transaction participants, written by different ven-
dors, to collaborate under one transactional hood.

Durability and the Two-Phase Commit
Protocol

One important ACID property is durability. Durability guarantees that all
resource updates that are committed are made permanent. Durability is easy
to implement if you have one storage into which you are persisting. But what
if multiple resource managers are involved? If one of your resources under-
goes a catastrophic failure, such as a database crash, you need to have a recov-
ery mechanism. How do transactions accomplish this?

One way would be to log all database operations before they actually happen,
allowing you to recover from a crash by consulting the log and reapplying the
updates. This is exactly how transactions guarantee durability. To accomplish
this, transactions complete in two phases.

Phase One begins by sending a before commit message to all resources
involved in the transaction. At this time, the resources involved in a trans-
action have a final chance to abort the transaction. If any resource involved
decides to abort, the entire transaction is cancelled and no resource
updates are performed. Otherwise, the transaction proceeds on course and

Transactions 317

cannot be stopped, unless a catastrophic failure occurs. To prevent cata-
strophic failures, all resource updates are written to a transactional log or
journal. This journal is persistent, so it survives crashes and can be con-
sulted after a crash to reapply all resource updates.

Phase Two occurs only if Phase One completed without an abort. At this
time, all of the resource managers, which can all be located and controlled
separately, perform the actual data updates.

The separation of transaction completion into two phases is called the two-
phase commit protocol or 2PC. The two-phase commit protocol is useful because
it allows for many transaction managers and resource managers to participate
in a transaction across a deployment. If any participant votes that the transac-
tion should abort, all participants must roll back.

In the distributed two-phase commit, there is one master transaction manager
called the distributed transaction coordinator. The transaction coordinator runs
the show and coordinates operations among the other transaction managers
across the network. The following steps occur in a distributed two-phase com-
mit transaction:

1. The transaction coordinator sends a prepare to commit message to each
transaction manager involved.

2. Each transaction manager may propagate this message to the resource
managers that are tied to that transaction manager.

3. Each transaction manager reports back to the transaction coordinator. If
everyone agrees to commit, the commit operation that’s about to happen
is logged in case of a crash.

4. Finally, the transaction coordinator tells each transaction manager to com-
mit. Each transaction manager in turn calls each resource manager, which
makes all resource updates permanent and durable. If anything goes
wrong, the log entry can be used to reapply this last step.

This process is shown in Figure 10.9.

The Transactional Communications
Protocol and Transaction Contexts

A distributed two-phase commit transaction complicates matters, because the
transaction managers must all agree on a standard mechanism of communi-
cating. Remember that each of the participants in a distributed transaction
may have been written by a different vendor, such as a deployment with het-
erogeneous application servers. The communication mechanism used is called

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS318

the transactional communications protocol. An example of such a protocol is the
Internet Inter-ORB Protocol (IIOP), which we describe in Appendix B.

The most important piece of information sent over the transactional commu-
nications protocol is the transaction context. A transaction context is an object
that holds information about the system’s current transactional state. It is
passed around among parties involved in transactions. By querying the trans-
action context, you can gain insight into whether you’re in a transaction, what
stage of a transaction you are at, and other useful data. For any component to
be involved in a transaction, the current thread in which the component is exe-
cuting must have a transaction context associated with it.

The EJB specification suggests, but does not require, that application server vendors
support on-the-wire transaction context interoperability. If an application server
does support interoperable transactions, EJB requires that it leverage the transaction
context propagation facilities built in to CORBA’s Object Transaction Service (OTS)
and the Internet Inter-ORB Protocol (IIOP). Application servers that use these tech-
nologies should be interoperable and run in a distributed 2PC transaction.

Transactions 319

Transaction
Coordinator

Transaction
Manager

Transaction
Manager

Transaction
Manager

Resource Manager

Resource Manager

1: Prepare to
Commit

Transaction Participants

4: Commit

2: Return

3: Log Result

5: Return

Figure 10.9 A distributed flat transaction using a two-phase commit protocol.

Since the EJB specification does not require this level of interoperability, appli-
cation servers from different vendors cannot be guaranteed to work together
and participate in a distributed two-phase commit transaction, because they
may not be able to communicate in a standard way.

For most users, this is acceptable because distributed 2PC has poor perfor-
mance. And more to the point, most organizations struggle enough as it is with
a single application server vendor.

It’s important to understand which communications protocol your application
server uses. If you want to perform a distributed two-phase commit transac-
tion, the transaction participants must agree on a standard protocol.

Designing Transactional Conversations in EJB

In this chapter we’ve seen that a transactional abort entails an automatic roll-
back of database updates that were performed during the transaction. But
database updates are only half of the picture. Your application code needs to
consider the impacts of a failed transaction as well.

When a transaction aborts, your application code has several choices. You can
abort your business process and throw an exception back to the client, or you
can attempt to retry the transaction several times. But unfortunately, your
application cannot sit in a loop retrying transactions forever, as that would
yield horrible performance for concurrent threads of execution. If the transac-
tion cannot eventually be made to succeed, you should consider aborting your
business process.

For a stateless session bean, aborting a business process is a simple task—sim-
ply throw an exception back to the client. But for a stateful session bean, things
are a bit trickier. Stateful session beans represent business processes that span
multiple method calls and hence have in-memory conversational state. Tossing
away that conversation and throwing an exception to the client could entail a
significant amount of lost work.

Fortunately, a well-designed stateful session bean can salvage its conversa-
tions in the case of failed transactions. The key is to design your beans to be
aware of changes to conversational state and to be smart enough to undo any
of those changes if a transactional abort occurs.

Because this process is highly application-specific, your application server
cannot automate this task for you. Your application server can aid you in deter-
mining when a transaction failed, enabling you to take application-specific
steps. If your session bean needs to be alerted to transaction status (like failed

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS320

transactions), your enterprise bean class can implement an optional interface
called javax.ejb.SessionSynchronization, shown in the following code:

public interface javax.ejb.SessionSynchronization

{

public void afterBegin();

public void beforeCompletion();

public void afterCompletion(boolean);

}

You should implement this interface in your enterprise bean class and define
your own implementations of each of these methods. The container will call
your methods automatically at the appropriate times during transactions,
alerting you to important transactional events. This adds to the existing arse-
nal of alerts that your session beans receive already—life-cycle alerts via
ejbCreate() and ejbRemove(), passivation alerts via ejbActivate() and ejbPassi-
vate(), and now transactional alerts via afterBegin(), beforeCompletion(), and
afterCompletion().

Here’s what each of the SessionSynchronization methods do:

afterBegin() is called by the container directly after a transaction begins.

beforeCompletion() is called by the container right before a transaction
completes.

afterCompletion() is called by the container directly after a transaction
completes.

The key method that is most important for rolling back conversations is after-
Completion(). The container calls your afterCompletion() method when a trans-
action completes either in a commit or an abort. You can figure out whether a
commit or an abort happened by the Boolean parameter that gets passed to
you in afterCompletion(): True indicates a successful commit, false indicates an
abort. If an abort happened, you should roll back your conversational state to
preserve your session bean’s conversation.

Here’s an example of afterCompletion() in action:

public class CountBean implements SessionBean, SessionSynchronization {

public int val;

public int oldVal;

public void ejbCreate(int val) {

this.val=val;

this.oldVal=val;

}

Transactions 321

public void afterBegin() { oldVal = val;}

public void beforeCompletion() {}

public void afterCompletion(boolean b) { if (b == false) val = oldVal; }

public int count() { return ++val; }

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext ctx) {}

}

This is a new version of our count bean from Chapter 4. The conversational
state is val, an integer that increases incrementally whenever count() is called.
We also keep a backup copy of val, called oldVal, which we revert back to in
case of transactional rollback. Here is what’s going on:

1. When our bean is first initialized in ejbCreate(), or when a transaction first
begins in afterBegin(), val and oldVal are set to the same value.

2. One or more count() business methods are called, incrementing val.

3. If the transaction fails, the afterCompletion() method is called when the
transaction completes. If the transaction failed (that is, if a false value was
passed into afterCompletion()), we roll back our conversational state by
reverting back to oldVal.

Note that for this to work, we must make count() transactional in the deploy-
ment descriptor using transaction attributes that we described earlier in this
chapter.

SessionSynchronization is also useful when your stateful session bean caches
database data in memory during a transaction. You can use SessionSynchro-
nization to track when to cache and when not to cache data as follows.

When the container calls afterBegin(), the transaction has just started. You
should read in any database data you want to cache in your stateful ses-
sion bean.

When the container calls beforeCompletion(), the transaction has ended.
Write out any database data you’ve cached.

You can implement SessionSynchronization only if you’re using a stateful session
bean with declarative (container-managed) transactions. If your bean is using pro-
grammatic (bean-managed) transactions, you are already in control of the transac-
tion because you issue the begin(), commit(), and abort() statements. Stateless
session beans do not hold conversations and hence do not need these callbacks.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS322

Summary

Whew! That’s a lot of data to digest. You may want to reread this chapter later
to make sure you’ve grasped all the concepts.

In this chapter, we learned about transactions and how they can make a server-
side deployment robust. We saw the virtues of transactions, which are called
the ACID properties. We looked at different transactional models, including
flat and nested transactions.

We then applied this transactional knowledge to EJB. We saw how declarative,
programmatic, and client-initiated transactions are useful in EJB and learned
how to code with each model. We looked at transaction isolation levels and
understood the problems that each level solves. Finally, we learned about dis-
tributed transactions and the two-phase commit protocol, and ended with a
look at writing transactional conversations.

Reading this chapter will prove well worth the effort, because now you have a
wealth of knowledge about the importance and usefulness of transactions in
EJB. You should definitely return to this chapter frequently when you’re creat-
ing transactional beans.

Transactions 323

C H A P T E R 11

325

In previous chapters, we looked at how to build entity beans using BMP and
CMP. In this chapter, we’ll heat things up and learn about relationships between
data. Examples of relationships include an order having one or more line
items, a student registering for a course, and a person having an address.
These relationships need to be defined and maintained for advanced data
models.

In this chapter, we’ll learn about the following relationship topics:

■■ Cardinality

■■ Directionality

■■ Aggregation vs. composition and cascading deletes

■■ Recursive, circular, and lazily-loaded relationships

■■ Referential integrity

■■ Accessing relationships from client code via collections

■■ How to implement each of the above topics using both CMP and BMP

If these concepts are new to you, don’t worry—you’ll be an expert on them
shortly.

To help you understand the concepts and to keep things brief, we’ll use a bit of
pseudo-code in this chapter. If you would like a complete example of code that you
can copy and paste into your deployment illustrating relationships, download the
book’s source code from the accompanying Web site.

BMP and CMP Relationships

The CMP and BMP Difference

Relationships in EJB are implemented quite differently for CMP and for BMP.
BMP entity beans manage relationships explicitly in the bean itself. You need
to write a good deal of scaffolding code to maintain the relationship. At the
high level, your BMP entity bean looks like this:

public class OrderBean implements EntityBean {

// private fields

// get/set methods

// code to manage relationships in ejbXXX methods

}

With CMP, you declare how you would like your relationships to work in your
deployment descriptor. The container then generates all the relationship code
you need when the container subclasses your entity bean. At the high level,
your deployment descriptor looks like this:

<ejb-jar>

<enterprise-beans>

... define enterprise beans ...

</enterprise-beans>

<relationships>

... define EJB relationships ...

</relationships>

</ejb-jar>

Let’s explore what goes into the comments above by tackling each relationship
topic in detail.

Cardinality

Our first relationship topic is cardinality. Cardinality specifies how many
instances of data can participate in a relationship. There are three flavors of
cardinality:

One-to-one (1:1) relationships, such as the relationship between an
employee and his home address. Each employee has exactly one home
address, and each home address has exactly one employee.

One-to-many (1:N) relationships, such as the relationship between a man-
ager and his employees. Each manager can have many employees working
for him, but each employee can have only one manager.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS326

Many-to-many (M:N) relationships such as the relationship between an
employee and an e-mail list. Each employee can be subscribed to many
email lists, and each email list can have many employees subscribed.

Just to get you thinking:
Why don’t we talk about many-to-one relationships?

Figure 11.1 depicts the three flavors of cardinality visually. Let’s look at how to
code each type of relationship, for both BMP and CMP.

BMP and CMP Relationships 327

Implementing Relationships in Session Beans

Session beans can perform persistence that involves relationships, just like CMP
and BMP entity beans can. If you are familiar with traditional procedural pro-
gramming, Microsoft programming, or programming involving servlets or JSPs
talking straight to a database via JDBC, the session bean approach is quite
analogous.

You can use a stateful session bean just like an entity bean; the only differ-
ence is that with a stateful session bean, you expose methods to a client for
loading and storing data, and the client controls when the bean is loaded and
stored by calling those methods. In this case, all of the best practices for relation-
ship persistence that apply to BMP entity beans apply to stateful session beans
that use JDBC.

You can also use a stateless session bean to perform persistence that involves
relationships. Stateless session beans do not hold state and therefore do not
have an identity, so you can’t treat a stateless session bean like an entity bean.
You need to use the stateless session bean as a service to read and write rows to
and from the database, marshaling the state back to the client on each method
call. In essence, the stateless session bean serves as a stateless persistence
engine, and the relationship code needs to be custom coded.

In general, if you have complex relationships, we do not recommend the ses-
sion bean approach, due to all the manual coding. The entity bean value proposi-
tion really shines through when it comes to relationships.

1:1 Relationships
In a one-to-one relationship, each constituent can have at most one relation-
ship with the other constituent. Examples of one-to-one relationships include:

■■ Person:Address

■■ Car:Windshield

■■ Order:Shipment

1:1 relationships are typically set up by a foreign key relationship in the data-
base. Figure 11.2 shows a possible database setup.

In Figure 11.2, the order has a relationship with a shipment. The order table
has a foreign key, which is the shipment table’s primary key. This foreign key
is the link between the two tables. Note that this isn’t the only way to setup a
one-to-one relationship. You could also have the shipment point to the order.

Implementing 1:1 Relationships
Using BMP

The following code shows how to implement a 1:1 relationship using BMP:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment() { return shipment; }

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS328

Student Course
* *

Manager Employee
*1

Order Shipment
1 1

Figure 11.1 The three flavors of cardinality.

public void setShipment(Shipment s) { this.shipment = s;}

...

public void ejbLoad() {

// 1: SQL SELECT Order. This also retrieves the

// shipment foreign key.

//

// 2: JNDI lookup of ShipmentHome

//

// 3: Call ShipmentHome.findByPrimaryKey(), passing

// in the shipment foreign key

}

public void ejbStore() {

// 1: Call shipment.getPrimaryKey() to retrieve

// the Shipment foreign key

//

// 2: SQL UPDATE Order. This also stores the

// Shipment foreign key.

}

}

As with all BMP entity beans, we must define our SQL statements in our bean.
See Chapter 5 for more on this. The special relationship management code is in
bold.

The relationship management code is only necessary at the instant we trans-
form our bean to-and-from relational data. It is necessary because we can’t just
persist a stub, like we can with our other fields (such as a String). If we did per-
sist a stub, and (by some miracle) that worked, it would look like a bit-blob in
the foreign key column. That bit-blob foreign key would not match up to the
primary key in the shipment table.

BMP and CMP Relationships 329

1010112345 10101Software Order12345

78727Austin10101

OrderPK OrderName

ShipmentPK City ZipCode

Shipment
ForeignPK

Figure 11.2 A possible one-to-one cardinality database schema.

Here is an explanation for what’s happening in our bean:

Our ejbLoad() method loads the database data of the order, and part of that
data is a foreign key to the shipment. We need to transform that foreign
key into a stub to a shipment bean. Therefore we need to perform a JNDI
lookup of the shipment home and then call a finder method, passing in the
foreign key. This gives us a stub, and we can then call business methods on
the shipment.

Our ejbStore() method stores the database data for the order, and part of that
data is a foreign key to the shipment. We need to transform the shipment
stub into a foreign key. Therefore we need to call getPrimaryKey() on the
shipment stub. This gives us our foreign key, and we can then perform the
SQL.

Implementing 1:1 Relationships Using CMP

The following code shows how to implement that same 1:1 relationship using
CMP:

public abstract class OrderBean implements EntityBean {

// no fields

public abstract Shipment getShipment();

public abstract void setShipment(Shipment s);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

As with all CMP entity beans, we define our get/set methods as abstract meth-
ods and have no fields. The container implements these methods (and defines
the fields) when the container subclasses our bean (see Chapter 6).

What’s exciting is that our ejbLoad() and ejbStore() methods are free of any scaf-
folding code because the container generates all that scaffolding code for us.
We do need to specify the relationship in the deployment descriptor, and we
do so as follows:

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS330

<!-- This declares a relationship -->

<ejb-relation>

<!-- The nickname we’re giving this relationship -->

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<!--

This declares the 1st half of the relationship

(the Order side)

-->

<ejb-relationship-role>

<!-- The nickname we’re giving this half of the relationship -->

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<!-- The Cardinality of this half of the relationship -->

<multiplicity>One</multiplicity>

<!--

The name of the bean corresponding to this

half of the relationship

-->

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<!--

Recall that a CMP entity bean has an abstract get/set

method for the relationship. We need to tell the

container which get/set method corresponds to this

relationship, so that the container can generate the

appropriate scaffolding code when subclassing our bean.

That is the purpose of this element, which is called the

container-managed relationship (CMR) field. The value

of the CMR field should be the name of your get/set

method, but without the get/set, and with a slight

change in capitalization. getShipment() becomes shipment.

-->

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<!--

This declares the 2nd half of the relationship

(the Shipment side)

-->

<ejb-relationship-role>

<ejb-relationship-role-name>

BMP and CMP Relationships 331

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

The deployment descriptor should be self-explanatory. Once we write the pro-
prietary descriptor that maps CMP fields to columns, we will have supplied
enough information to the container that its tools should be able to generate
any necessary relationship code, such as the code we saw in the BMP example.

1:N Relationships
A one-to-many relationship is one of the more common relationships you’ll
see in your object model. This is because one-to-one relationships will often be
combined into a single data object, rather than having a relationship between
two separate data objects. Examples of one-to-many relationships include:

■■ Order:LineItems

■■ Customer:Orders

■■ Company:Employees

1:N relationships are also typically set up by a foreign key relationship in the
database. Figure 11.3 shows a possible database setup.

In Figure 11.3, the company has a relationship with many employees. The
company has a vector of line-item foreign keys, stored as a bit-blob in the data-
base. We need a vector because we have a relationship with many employees,
not just one employee.

The approach shown in Figure 11.3 is not ideal, because it’s very nasty to deal
with bit-blobs in the database. Queries and reporting become challenging, as
databases were not meant to handle relationships in this way. Figure 11.4
shows an alternative.

In Figure 11.4, each employee has a foreign key, which is the company table’s
primary key. Thus, the employees are pointing back to their company. This
may seem backwards if we want to get from the company to the employees. It
works, however, because the database doesn’t care—it is a flat structure with-
out a sense of direction. You can still construct queries that get from the com-
pany to employees.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS332

Implementing 1:N Relationships
Using BMP

The following code shows how to implement a 1:N relationship using BMP:

public class CompanyBean implements EntityBean {

private String companyPK;

private String companyName;

BMP and CMP Relationships 333

12345 The Middleware Company

M

Ed20202

Floyd20203

M

<Vector BLOB>

CompanyPK Name Employee FKs

Name SexEmployeePK

Figure 11.3 A possible one-to-many cardinality database schema.

12345 The Middleware Company

NameCompanyPK

M

12345Ed20202

12345Floyd20203

Sex CompanyNameEmployeePK

M

Figure 11.4 Another one-to-many cardinality database schema.

private Vector employees; // EJB object stubs

public Collection getEmployees() { return employees; }

public void setEmployees(Collection e) {

this.employees = (Vector) e;

}

...

public void ejbLoad() {

// 1: SQL SELECT Company

// 2: JNDI lookup of EmployeeHome

// 3: Call EmployeeHome.findByCompany(companyPK)

}

public void ejbStore() {

// 2: SQL UPDATE Company

}

The code is explained as follows:

■■ A 1:N relationship has a Vector of stubs, rather than a single stub. Our
get/set method gets and sets this Vector (a Vector is a Collection).

■■ Our ejbLoad() method is responsible for loading the company state, as well
as loading the relationships to employees. How can we achieve this?
Remember that the employee table contains the foreign key relationships
to the company, not the reverse. Therefore it is natural for the employee
bean to access that relationship data, not the company bean. Thus, we do
not deal with foreign keys in our bean—we let the employee bean deal
with them. We do so by calling a finder method on the employee local
home object. That finder method locates each employee that is a member
of this company and returns a collection of stubs to us. Note that this
causes a second SQL statement to be executed.

■■ Our ejbStore() method is extremely straightforward. Since our ejbLoad()
method is not responsible for dealing with foreign keys, neither is our ejb-
Store() method. It doesn’t even know about the relationship. The
employee (not the company) has an ejbStore() that persists foreign keys to
the company.

If you’re good at SQL, you might have noticed that in our example, if we really
wanted to do so, we could load both the company and the foreign keys for our
employee in one SQL statement. But this would not help us, because we would
still need to transform those foreign keys into stubs. We’d need to call Employee-
Home.findByPrimaryKey() for each found key, which would generate even more SQL.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS334

Implementing 1:N Relationships
Using CMP

The following code shows how to implement a 1:N relationship using CMP:

public abstract class CompanyBean implements EntityBean {

// no fields

public abstract Collection getEmployees();

public abstract void setEmployees(Collection employees);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Company-Employees</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Company-Employs-Employees

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Company</ejb-name>

</relationship-role-source>

<!--

When you have a relationship with more than one object, you

can use either a java.util.Collection or a java.util.Set.

We need to identify which one we’re using. How do you choose

between a Collection and a Set? A Collection can contain

duplicates, whereas a Set cannot. This needs to match up to

your bean’s get/set methods.

-->

<cmr-field>

<cmr-field-name>employees</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

BMP and CMP Relationships 335

<ejb-relationship-role>

<ejb-relationship-role-name>

Employees-WorkAt-Company

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Employee</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

As you can see, this is much simpler than BMP. If you understood the deploy-
ment descriptor for a 1:1 relationship described earlier in this chapter, then you
should be able to grasp this one fairly easily.

Relationships with CMP can be much higher performing than their BMP equivalents.
To load a 1:N relationship with BMP, we need to perform two SQL statements: We
need to ejbLoad() the “1” side of the relationship and then find() the “N” side of the
relationship.

This is an inherent downside to BMP—you are limited to performing SQL operations
at the granularity of an entity bean. With CMP, if your container is good, you can op-
timize and tell the container to perform one gigantic SQL statement to load yourself
and your relationships.

M:N Relationships
A many-to-many relationship is not as common as a one-to-many relationship
but is still important. Examples of one-to-many relationships include:

■■ Student:Course

■■ Investor:MutualFund

■■ Stock:Portfolio

M:N relationships are typically set up by an association table in the database.
An association table contains foreign keys to two other tables. Figure 11.5
shows a possible database setup.

What’s interesting about Figure 11.5 is that we’ve created a third table, called
an Enrollment table, which models the relationship between a student and a
course. The alternative to an association table is for each half of the relation-
ship to have a vector of foreign keys to the other half, persisted as bit-blobs,
which is nasty to deal with.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS336

Two Choices when Implementing
M:N Relationships

When you model an M:N relationship using entity beans, you have two
choices.

Fake the M:N relationship by introducing a third entity bean. Our enroll-
ment table could theoretically include other information as well, such as the
date when the enrollment was made. It then makes sense to model the M:N
relationship itself as an entity bean—an enrollment bean. The enrollment bean
would map to the association table. This demonstrates a great modeling prin-
ciple: When you have a many-to-many relationship, consider making the rela-
tionship itself into a first-class citizen. When you do this, you are introducing
an intermediary. That intermediary has two 1:N relationships. Thus, we have
effectively reduced the M:N relationship problem into two 1:N relationship
problems!

Model the M:N relationship as a true M:N relationship. If all you’re doing is
storing relationship information, you might not need to introduce a third
entity bean. In this case, you have only two entity beans, each representing half
the relationship. Each entity beans would contain a Collection of the other

BMP and CMP Relationships 337

202021010112345

CoursePKStudentPKEnrollmentPK

EJB for Architects20202

CourseNameCoursePK

Joe
Student10101

StudentNameStudentPK

Figure 11.5 A possible many-to-many cardinality database schema.

entity bean. Each entity bean would be persisted to its own table, and each
entity bean’s Collection would be persisted to the relationships table. With
BMP, you are in control of the JDBC, so you can map an entity bean to two
tables very easily. With CMP, you’re dependent on your container’s persister.

We prefer the fake approach, because it keeps your entity beans pure and
clean. The fewer relationships that you code into your entity beans, the more
reusable your entity beans are in a variety of circumstances, and the less bloat
your entity beans incur. This approach also has the advantage that your entity
bean and database are similar to one another, making mapping more straight-
forward.

What’s cool, however, is that your EJB components can map to the database
however you’d like. That is, both approaches can map to association tables.
This is because the database is completely unaware of how it’s being repre-
sented in the middle tier. You can even switch back and forth between the fake
and real approach if you’d like. And even if you’re not using an association
table but some other approach, you can still map your beans however you’d
like, assuming you’re good with JDBC (in the BMP case) or assuming your
container vendor has a good persistence engine (in the CMP case).

Let’s see how to model both fake and real M:N relationships with both BMP
and CMP.

Implementing Fake M:N Relationships
Using BMP

The following code shows how to implement an M:N relationship as two 1:N
relationships using BMP:

public class StudentBean implements EntityBean {

private String studentPK;

private String studentName;

...

public void ejbLoad() { // SQL SELECT Student }

public void ejbStore() { // SQL UPDATE Student }

}

public class CourseBean implements EntityBean {

private String coursePK;

private String courseName;

...

public void ejbLoad() { // SQL SELECT Course }

public void ejbStore() { // SQL UPDATE Course }

}

public class EnrollmentBean implements EntityBean {

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS338

private String enrollmentPK;

private Student student; // EJB local object stub

private Course course; // EJB local object stub

public Course getCourse() { return course; }

public void setCourse(Course c) { this.course = c;}

public Student getStudent() { return student; }

public void setStudent(Student s) { this.student = s; }

. . .

public void ejbLoad() {

// 1: SQL SELECT Enrollment. This loads both the

// Enrollment plus the foreign keys to Student

// and Course.

//

// 2: JNDI lookup of StudentHome, CourseHome

//

// 3: Call findByPrimaryKey() on both the Student

// and Course homes, passing the foreign keys

}

public void ejbStore() {

// 1: Call getPrimaryKey() on Student,Course. This

// gives us our foreign keys.

//

// 2: SQL UPDATE Enrollment

}

}

As usual, the relationship code is in bold. A brand-new entity bean, enroll-
ment, models the relationship between student and course. The enrollment
bean keeps a stub for a course and a stub for a student, and has get/set meth-
ods for clients to access those stubs. At the point in which object/relational
mapping occurs, we transform those stubs to and from their foreign key data-
base representation.

Implementing Fake M:N Relationships
Using CMP

The following code shows how to implement a fake M:N relationship using
CMP:

public abstract class StudentBean implements EntityBean {

// no fields

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

BMP and CMP Relationships 339

public abstract class CourseBean implements EntityBean {

// no fields

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

public abstract class EnrollmentBean implements EntityBean {

// no fields

public abstract Course getCourse();

public abstract void setCourse(Course c);

public abstract Student getStudent();

public abstract void setStudent(Student s);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Enrollment-Student</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Enrollments-AreRegisteredBy-Student

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Enrollment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>student</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Student-Has-Enrollments

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS340

<ejb-name>Student</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

<ejb-relation>

<ejb-relation-name>Enrollment-Course</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Enrollments-AreRegistrationsFor-Course

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Enrollment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>course</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Course-Has-Enrollments

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Course</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

As you can see from the preceding deployment descriptor, we model our fake
M:N relationship as two N:1 relationships (one for each bean in the relation-
ship). An N:1 relationship is conceptually the same as a 1:N relationship, and
we learned how to model a 1:N relationship with CMP earlier.

Implementing True M:N Relationships
Using BMP

The following code shows how to implement a true M:N relationship using
BMP:

public class StudentBean implements EntityBean {

private String studentPK;

private String name;

private Vector courses; // EJB object stubs

public Collection getCourses() { return courses; }

public void setCourses(Collection c) { this.courses = c;}

BMP and CMP Relationships 341

...

public void ejbLoad() {

// 1: SQL SELECT Student

// 2: JNDI lookup of CourseHome

// 3: Call CourseHome.findByStudent(studentPK)

}

public void ejbStore() {

// SQL UPDATE Student

}

public class Course implements EntityBean {

private String coursePK;

private String name;

private Vector students; // EJB object stubs

public Collection getStudents() { return students; }

public void setStudents(Collection s) { this.students = s;}

...

public void ejbLoad() {

// 1: SQL SELECT Course

// 2: JNDI lookup of StudentHome

// 3: Call StudentHome.findByCourse(coursePK)

}

public void ejbStore() {

// SQL UPDATE Course

}

The relationship code is in bold. As you can see, all we’ve done to model a true
M:N relationship is to code a 1:N relationship for each bean in the relationship.
This is similar code to the code presented when we learned about 1:N
relationships.

Implementing True M:N Relationships
Using CMP

The following code shows how to implement a true M:N relationship using
CMP:

public abstract class StudentBean implements EntityBean {

// no fields

public abstract Collection getCourses();

public abstract void setCourses(Collection courses);

...

public void ejbLoad() {} // Empty

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS342

public void ejbStore() {} // Empty

}

public abstract class CourseBean implements EntityBean {

// no fields

public abstract Collection getStudents();

public abstract void setStudents(Collection students);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

Our ejbLoad() and ejbStore() methods are free of any scaffolding code. The rela-
tionships are specified in the deployment descriptor as follows:

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Student-Course</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

Students-EnrollIn-Courses

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Student</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>courses</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

Courses-HaveEnrolled-Students

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Course</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>students</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

BMP and CMP Relationships 343

</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

As you can see, modeling a true M:N relationship using CMP is extremely
straightforward. We just use the word Many on each half of the relationship,
and state that each half of the relationship has a collection of the other half.

If you’ve made it this far, congratulations—this concludes our cardinality dis-
cussion! Let’s move on to directionality.

Directionality

The directionality of a relationship specifies the direction in which you can nav-
igate a relationship. There are two flavors of directionality.

Bidirectional. You can get from entity A to entity B, and can also get from
entity B to entity A.

Unidirectional. You can get from entity A to entity B, but cannot get from
entity B to entity A.

Directionality applies to all cardinalities (1:1, 1:N, and M:N). Directionality
and cardinality are orthogonal and complementary concepts. You can mix and
match them however you would like.

Let’s use our 1:1 relationship example of an order and a shipment to help us
figure out directionality.

Implementing Directionality
with BMP

The following code is a bidirectional relationship, with the key information in
bold:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

// EJB local object stub, must be stored/loaded

private Shipment shipment;

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s; }

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS344

...

}

public class ShipmentBean implements EntityBean {

private String shipmentPK;

private String shipmentName;

// EJB local object stub, must be stored/loaded

private Order order;

public Order getOrder() { return order; }

public void setOrder(Order o) { this.order = o; }

...

}

As you can see, in a bidirectional relationship, each bean in the relationship
has a field pointing to the other bean, along with a get/set method.

In comparison, with a unidirectional relationship, we don’t allow the user to
get from the second bean to the first bean.

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

// EJB local object stub, must be stored/loaded

private Shipment shipment;

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s; }

...

}

public class ShipmentBean implements EntityBean {

private String shipmentPK;

private String shipmentName;

// No Order stub, no Order get/set method

...

}

Implementing Directionality
with CMP

The following is a bidirectional CMP relationship:

public abstract class OrderBean implements EntityBean {

// no fields

BMP and CMP Relationships 345

public abstract Shipment getShipment();

public abstract void setShipment(Shipment s);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

public abstract class ShipmentBean implements EntityBean {

// no fields

public abstract Order getOrder();

public abstract void setOrder(Order o);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

As you can see, in a bidirectional CMP relationship, each bean in the relation-
ship has a pair of abstract get/set methods pointing to the other bean. We need
to tell the container that these get/set methods are special relationship meth-
ods so that the container can generate relationship code. Here is the deploy-
ment descriptor that achieves this.

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS346

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

In the deployment descriptor, we set up two container-managed relationship
(CMR) fields: one for each bean’s abstract get/set method pair that points to
the other bean.

To make this into a unidirectional relationship, we would simply get rid of an
abstract get/set method pair, along with its corresponding CMR field.

Directionality May Not Map
to Database Schemas

Note that directionality in entity beans may not correspond to the inherent
directionality of the database schema. An entity bean can provide for direc-
tionality even though the database does not do so easily, and vice versa. For
example, Figure 11.6 is a normalized database schema for a Person:Address
relationship. Figure 11.7 is a denormalized schema.

BMP and CMP Relationships 347

Relationships and Local Interfaces

A common theme throughout this book has been to always use local interfaces
when possible. This is especially true for entity beans, and has a big impact on
relationships.

Specifically, if you decide for some bizarre reason to use remote interfaces
with entity beans, then

■■ You must not expose get/set methods for relationship fields to remote
clients. Doing so creates problems because, for example, the client does
not have access to the container-implemented collection interface.

■■ Your entity bean can only have unidirectional relationships with other
entity beans. The lack of a local interface prevents other entity beans from
having a relationship with you.

Both of these schemas give us enough information to derive relationship infor-
mation. You can, if you choose to do so, map entity beans to both these
schemas and use bidirectional relationships. The difference is that the denor-
malized schema allows for more efficient SQL. That is the classic computer sci-
ence space-time tradeoff. If you denormalize the database, you waste space
and increase maintenance problems, but you gain speed.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS348

202021010112345

CoursePKStudentPKEnrollmentPK

EJB for Architects20202

CourseNameCoursePK

Joe
Student10101

StudentNameStudentPK

Figure 11.6 A normalized schema.

10101Ed Roman12345

78727 12345Austin10101

PersonPK

AddressPK City ZipCode PersonForeignPK

PersonName Address

Figure 11.7 A denormalized schema.

Bidirectional or Unidirectional?
How do you choose between bidirectional and unidirectional relationships?
Here are some questions to ask:

■■ Should each bean know about the other bean? Would that hamper reuse?

■■ From the client’s perspective, does it make intuitive sense to navigate the
relationship from the direction in question?

■■ Is the database mapping of stubs to foreign keys straightforward, or does
adding directionality result in mapping to multiple tables, resulting in
inadequate performance?

Lazy Loading

All the relationship code we’ve seen so far makes a big assumption: Whenever
an entity bean is loaded, all of the other entity beans that it has a relationship
with are also loaded. This is called aggressive loading. We saw this, for example,
with our Order:Shipment relationship at the beginning of this chapter. The
order bean looked up the shipment bean in the order bean’s ejbLoad() method.

Aggressive loading is nice because you can load all database data in a single
transaction. However, it does have its downside. Aggressive loading could
lead to loading a very large entity bean graph, and you may not need that
entire graph.

Lazy loading means to load only related beans when you need to access those
beans. For example, with the Order:Shipment relationship using BMP that we
presented at the beginning of this chapter, we would rewrite the code to lazy-
load as follows:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private String shipmentFK; // Foreign key to shipment

private Shipment shipment; // EJB local object stub

public void ejbLoad() {

// 1: SQL SELECT Order, loading the shipment foreign key

// 2: Set shipmentFK field to the loaded key

}

public Shipment getShipment() {

// 1: JNDI lookup of ShipmentHome

// 2: Call ShipmentHome.findByPrimaryKey(shipmentFK)

return shipment;

BMP and CMP Relationships 349

}

...

}

In the preceding code, we are looking up the shipment just in time when the
client calls getShipment(), rather than in ejbLoad(). ejbLoad() merely locates the
appropriate foreign key, which getShipment() uses.

With CMP, lazy-loading happens automatically behind the scenes. You are,
however, reliant on container-specific flags to enable lazy-loading. Most major
containers support this, so check your container documentation.

Aggregation vs. Composition
and Cascading Deletes

When you have a relationship between two entity beans, you need to think
about whether that relationship is an aggregation or a composition relationship.

An aggregation relationship is a uses relationship. For example, students use
courses. If you delete a student, you don’t delete the courses the student is reg-
istered in, because other students are using that course. Similarly, if you delete
a course, you don’t murder a student!

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS350

Design Tip: Aggressively Load in One Direction
Only for Many-to-Many Relationships

With many-to-many relationships, you need to be careful with how aggressively
you load your entity bean graph. For example assume that Larry lives at
addresses A, B, and C; Curly at C and D; Moe at C and E; and E is a commune with
37 people living in it. Larry, Curly, Moe, and everyone in the commune is a cus-
tomer of ours. If we cascade the load across the relationship in both directions
when we read in Larry, we would retrieve at least five address objects and 40
customer objects, not to mention any other addresses that the commune people
also live in and any customers and their addresses that those retrievals would
then cascade to. The same problem arises if we also cascade the deletion in both
directions. We need to cascade the retrieval and deletion in one direction, or be
incredibly smart about how we cascade in both directions. Unless your entity
bean graph is small, we recommend you use lazy-loading for at least one direc-
tion of the relationship.

A composition relationship is an is-assembled-of relationship. For example,
orders are assembled of line items. Deleting an order deletes all line items.
Line items shouldn’t be around if their parent order is gone.

Once you’ve figured out whether your relationship is an aggregation or com-
position, you need to write your entity beans so they model the semantics you
desire. This all boils down to a concept called a cascading delete. An aggregation
relationship does not cause a cascading delete, whereas a composition rela-
tionship does.

With BMP, you implement a cascading delete manually in your ejbRemove()
method. For example, an order bean’s ejbRemove() method would not only per-
form a SQL DELETE of the order, but would also call the shipment bean’s
ejbRemove() method:

public class OrderBean implements EntityBean {

private String orderPK;

private String orderName;

private Shipment shipment; // EJB local object stub

public Shipment getShipment() { return shipment; }

public void setShipment(Shipment s) { this.shipment = s;}

...

public void ejbRemove() {

// 1: SQL DELETE Order

// 2: shipment.remove();

}

}

With CMP, the container generates cascading delete code for you. If you have
a composition relationship, you just need to set up a �cascade-delete/� tag in
the deployment descriptor, as follows:

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

BMP and CMP Relationships 351

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>shipment</cmr-field-name></cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<cascade-delete/>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field><cmr-field-name>order</cmr-field-name></cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

If you have an aggregation relationship, you just leave the �cascade-delete/�

tag out.

Relationships and EJB-QL

When setting up CMP relationships, you can also set up special queries using
the EJB Query Language (EJB-QL), which we briefly described in Chapter 6
and fully explain in Appendix C. The following is relevant to our discussion
and is excerpted from Appendix C.

The big difference between EJB-QL and SQL is that EJB-QL allows you to tra-
verse relationships between entity beans using a dot notation. For example:

SELECT o.customer

FROM Order o

In this EJB-QL, we are returning all customers that have placed orders. We are
navigating from the order entity bean to the customer entity bean easily using
a dot notation. This is quite seamless.

What’s exciting about this notation is that bean providers don’t need to know
about tables or columns; they merely need to understand the relationships
between the entity beans that they’ve authored. The container will handle the
traversal of relationships for us because we declare our entity beans in the

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS352

same deployment descriptor and Ejb-jar file, empowering the container to
manage all of our beans and thus understand their relationships.

In fact, you can traverse more than one relationship. That relationship can
involve container-managed relationship fields and container-managed persis-
tent fields. For example:

SELECT o.customer.address.homePhoneNumber

FROM Order o

The restriction on this type of recursive relationship traversal is that you are
limited by the navigatability of the relationships that you define in the deploy-
ment descriptor. For example, let’s say that in the deployment descriptor, you
declare that orders have a one-to-many relationship with line items, but you
do not define the reverse many-to-one relationship that line items have with
orders. When performing EJB-QL, you can get from orders to line items, but
not from line items to orders.

Recursive Relationships

A recursive relationship is one in which an entity bean instance has a relation-
ship with another instance of the same entity bean class, such as what’s shown
in Figure 11.8.

Figure 11.8 shows an Employee:Manager relationship. All that this means is
that our employee entity bean has a relationship with another employee entity
bean.

As you would expect, recursive relationships are implemented exactly as non-
recursive relationships. All the principles we learned earlier apply, and
nothing is new. We just happen to have a relationship with an instance of an
entity bean that uses the same class.

BMP and CMP Relationships 353

Employee
Employee

Figure 11.8 A recursive relationship.

Circular Relationships

A circular relationship is similar to a recursive relationship except that instead
of involving a single entity bean, it involves several. Figure 11.9 depicts a cir-
cular relationship.

The following relationships exist:

■■ Employees work in a division.

■■ A division owns one or more workstations.

■■ An employee has a workstation.

The problem with circular relationships is that if your beans automatically find
each other, you will get into an endless circle of finding. The same problem
exists for cascading deletes.

So how do you implement circular relationships between EJBs appropriately?
You have several implementation strategies.

1. Some containers allow you optimize performance and load an entity bean
at the same time that it’s found. This is where the circularity issue stems
from, because the ejbLoad() method performs the cascading find. Not load-
ing an entity bean when it’s found means no cascading find operation
occurs.

2. Break the circular relationship by removing one of the relationships alto-
gether. This is a harsh approach to resolving the problem.

3. Break the circular relationships within your model by making one or more
relationships unidirectional, effectively breaking the circle in both direc-

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS354

Employee

DivisionWorkstation
1*

*

11

1

Figure 11.9 A circular relationship.

tions. This isn’t always an option because your requirements may not per-
mit it.

4. Use lazy-loading rather than aggressive loading, and do not use cascading
deletes.

5. Choose a persister that detects circular relationships. Many persistence
administration tools automatically detect and warn you of circular rela-
tionships when you define them. This allows you to prevent the problem
before it occurs.

Referential Integrity

Referential integrity is the assurance that a reference from one entity to
another entity is valid. For example:

■■ Let’s say a company, department, and position each have relationships
with an employee. If the employee is removed, all references to it must
also be removed, or your system must not allow the removal.

■■ Let’s say an order has a 1:N relationship with a line item. Someone adding
a second order to an order line item is trying to change a 1:N relationship
to an M:N relationship. We must therefore break the line item’s relation-
ship with the original order so that we maintain our intended 1:N
semantics.

Referential integrity issues arise in both the database (keeping foreign keys
correct) and in the application server (keeping stubs correct). So how do you
ensure referential integrity within your EJB applications?. You have three fun-
damental options:

1. Enforce referential integrity within your database with triggers. For exam-
ple, you could write a trigger that fires off when an employee is deleted.
This trigger would delete the relationships the employee had with other
database tables to preserve referential integrity.

2. Enforce referential integrity within your database with stored procedures.
Your EJB component would call these stored procedures to perform data-
base operations, and the stored procedures would be responsible for pre-
serving referential integrity.

3. Enforce referential integrity within EJB components.

Implementing referential integrity in your database has the advantage that
other nonEJB applications can take advantage of it, your database being the
lowest common denominator within your organization. Relational databases

BMP and CMP Relationships 355

implement triggers for exactly this purpose, and most data modeling tools
support the generation of trigger code to simplify this effort for you. The
drawback of implementing logic in your database is that it increases the pro-
cessing burden on your database server(s), running the risk that your database
becomes a bottleneck to your application. You can also take a hybrid approach
to implementing referential integrity—your EJBs handle the referential
integrity for some entities and your database for others.

Of these options, we believe that the EJB approach is the cleanest and easiest to
maintain over the long term, because your EJB layer encapsulates all relation-
ships. Here is how you do it with EJB:

With BMP you need to take care of referential integrity on your own. You do
so by manually breaking old relationships. If someone tries to assign a sec-
ond order to your line item, your line item bean should call the order bean
and tell the order bean to remove you from its list of line items.

With CMP the container will automatically handle referential integrity for
you. You never have to worry about these issues. This is one neat feature
the container provides that makes CMP a compelling value proposition.

Note that it’s not quite this simple. To complicate matters, you might have a
farm of EJB application servers, and your component might exist simultane-
ously on several machines. Furthermore, if you have other applications access-
ing your database then it is possible that they too have representations of your
data in their memory as well. The good news is that transactions (see Chapter
10) solve this problem. For example, when you delete an employee and also
delete the relationships it has with other entities within a transaction, either all
or none of the deletions occur, preserving referential integrity.

Writing code to enforce referential integrity in your EJB components instead of your
database works only when all of your applications are written this way (and hope-
fully they share a common code base). However, this is rarely the case. In many or-
ganizations, some or often most applications are written assuming that the
database(s) will handle referential integrity. This is clearly an inappropriate layering
of these applications because business logic is now implemented on several dis-
parate architectural tiers, making the applications less robust. However, it is a reality
that many EJB developers must accept—some of their business logic will be imple-
mented in the database, perhaps through triggers or through Java objects imple-
mented within the database.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS356

Relationships, Referential Integrity,
and Client Code

Throughout this chapter, we’ve seen lots of fascinating relationships. Many of
those relationships involved collections. For example, here is our Company:
Employee 1:N CMP relationship again.

public abstract class CompanyBean implements EntityBean {

// no fields

public abstract Collection getEmployees();

public abstract void setEmployees(Collection employees);

...

public void ejbLoad() {} // Empty

public void ejbStore() {} // Empty

}

This code has methods to get/set entire Collections of employees. But what’s
interesting is that there is no API for clients to perform operations on individ-
ual employees.

This is where the Collection comes into play. By using the Collection from
client code, you can modify the contents of a 1:N relationship. For example:

// Lookup local home objects

Context ctx = new InitialContext(...);

CompanyHome companyHome = (CompanyHome) ctx.lookup("CompanyHome");

EmployeeHome employeeHome = (EmployeeHome) ctx.lookup("EmployeeHome");

// Make a new employee

Employee employeeA = employeeHome.create("Ed Roman");

// Find a company

Company company =

companyHome.findByPrimaryKey("The Middleware Company");

Collection employees = company.getEmployees();

// Add the employee to the company.

// This demonstrates the add() Collection API method

employees.add(employeeA);

// Look at each employee in the company.

// This demonstrates using iterators to loop through collections

BMP and CMP Relationships 357

Iterator i = employees.iterator();

while (i.hasNext()) {

Employee emp = (Employee) i.next();

System.out.println(emp.getName());

}

// Remove the employee from the company.

// This demonstrates the remove() Collection API

employees.remove(employeeA);

Since we’re using local interfaces, the collection that the client modifies is the
same as the collection inside the bean. This is because the get/set methods
pass the collection by reference rather than by value. Thus, when the client
modifies the contents of the collection, he is actually changing the bean’s rela-
tionships. If remote interfaces were used, the relationships would not be acces-
sible through the remote interface to begin with, due to the remote interface
restrictions discussed earlier in this chapter.

The container is responsible for providing an implementation of the Collection
interface. This needs to be a smart collection that understands how to preserve
referential integrity behind the scenes.

Be careful when using iterators and relationships. If you want to modify a relation-
ship while an iterator is at work, use only the java.util.Iterator.remove() method.
Adding or removing elements from a collection while the iterator is in progress will
throw off the iterator.

Table 11.1 lists the effects that client operations have on referential integrity.
Note that for the 1:N and M:N rows on the table, we are performing operations
on collections and using the collections API for operations such as add() and
remove().

Try to only look at the first three columns of Table 11.1, and see if you can guess
what the fourth column should be.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS358

BMP and CMP Relationships 359

S
IT

U
A

TI
O

N
O

R
IG

IN
A

L
R

E
LA

TI
O

N
S

H
IP

S
O

P
E

R
A

TI
O

N
N

EW
 R

E
LA

TI
O

N
S

H
IP

S

1:
1

Re
la

tio
ns

hi
p

or
de

rA
-s

hi
pm

en
tA

,
or

de
rA

.s
et

Sh
ip

m
en

t
O

rd
er

A-
Sh

ip
m

en
tB

, O
rd

er
B

-N
U

LL
O

rd
er

:S
hi

pm
en

t
or

de
rB

-s
hi

pm
en

tB
(o

rd
er

B
.g

et
Sh

ip
m

en
t(

))
;

1:
N

 R
el

at
io

ns
hi

p
co

m
pa

ny
A-

em
pl

oy
ee

A,

C
om

pa
ny

A.
se

tE
m

pl
oy

ee
s

N
U

LL
-e

m
pl

oy
ee

A,
 N

U
LL

-e
m

pl
oy

ee
B

,
C

om
pa

ny
:E

m
pl

oy
ee

co
m

pa
ny

A-
em

pl
oy

ee
B

,
(C

om
pa

ny
B

.
co

m
pa

ny
A-

em
pl

oy
ee

C
,

co
m

pa
ny

B
-e

m
pl

oy
ee

C
,

ge
tE

m
pl

oy
ee

s(
))

;
co

m
pa

ny
A-

em
pl

oy
ee

D
,

co
m

pa
ny

B
-e

m
pl

oy
ee

D
co

m
pa

ny
B

-E
m

pt
y

C
ol

le
ct

io
n

1:
N

 R
el

at
io

ns
hi

p
co

m
pa

ny
A-

em
pl

oy
ee

A,

Em
pl

oy
ee

A.
se

tC
om

pa
ny

co
m

pa
ny

B
-e

m
pl

oy
ee

A,

C
om

pa
ny

:E
m

pl
oy

ee
co

m
pa

ny
A-

em
pl

oy
ee

B
,

(e
m

pl
oy

ee
C

.g
et

co
m

pa
ny

A-
em

pl
oy

ee
B

,
co

m
pa

ny
B

-e
m

pl
oy

ee
C

,
C

om
pa

ny
()

);
co

m
pa

ny
B

-e
m

pl
oy

ee
C

,
co

m
pa

ny
B

-e
m

pl
oy

ee
D

co
m

pa
ny

B
-e

m
pl

oy
ee

D

1:
N

 R
el

at
io

ns
hi

p
co

m
pa

ny
A-

em
pl

oy
ee

A,

C
om

pa
ny

B
.g

et
co

m
pa

ny
B

-e
m

pl
oy

ee
A,

C

om
pa

ny
:E

m
pl

oy
ee

co
m

pa
ny

A-
em

pl
oy

ee
B

,
Em

pl
oy

ee
s(

).
co

m
pa

ny
A-

em
pl

oy
ee

B
,

co
m

pa
ny

B
-e

m
pl

oy
ee

C
,

ad
d(

em
pl

oy
ee

A)
;

co
m

pa
ny

B
-e

m
pl

oy
ee

C
,

co
m

pa
ny

B
-e

m
pl

oy
ee

D
co

m
pa

ny
B

-e
m

pl
oy

ee
D

1:
N

 R
el

at
io

ns
hi

p
co

m
pa

ny
A-

em
pl

oy
ee

A,

C
om

pa
ny

A.
ge

t
N

U
LL

-e
m

pl
oy

ee
A

C
om

pa
ny

:E
m

pl
oy

ee
co

m
pa

ny
A-

em
pl

oy
ee

B
,

Em
pl

oy
ee

s(
).

re
m

ov
e

co
m

pa
ny

A-
em

pl
oy

ee
B

,
co

m
pa

ny
B

-e
m

pl
oy

ee
C

,
(e

m
pl

oy
ee

A)
;

co
m

pa
ny

B
-e

m
pl

oy
ee

C
,

co
m

pa
ny

B
-e

m
pl

oy
ee

D
co

m
pa

ny
B

-e
m

pl
oy

ee
D

M
:N

 R
el

at
io

ns
hi

p
st

ud
en

tA
-c

ou
rs

eA
,

st
ud

en
tA

.s
et

C
ou

rs
es

st
ud

en
tA

-c
ou

rs
eB

,
St

ud
en

t:C
ou

rs
e

st
ud

en
tA

-c
ou

rs
eB

,
(s

tu
de

nt
B

.g
et

C
ou

rs
es

()
);

st
ud

en
tA

-c
ou

rs
eC

,
st

ud
en

tB
-c

ou
rs

eB
,

st
ud

en
tB

-c
ou

rs
eB

,
st

ud
en

tB
-c

ou
rs

eC
st

ud
en

tB
-c

ou
rs

eC

M
:N

 R
el

at
io

ns
hi

p
st

ud
en

tA
-c

ou
rs

eA
,

st
ud

en
tA

.g
et

C
ou

rs
es

()
.

st
ud

en
tA

-c
ou

rs
eA

,
St

ud
en

t:C
ou

rs
e

st
ud

en
tA

-c
ou

rs
eB

,
ad

d(
co

ur
se

C
);

st
ud

en
tA

-c
ou

rs
eB

,
st

ud
en

tB
-c

ou
rs

eB
,

st
ud

en
tA

-c
ou

rs
eC

,
st

ud
en

tB
-c

ou
rs

eC
st

ud
en

tB
-c

ou
rs

eB
, s

tu
de

nt
B

-c
ou

rs
eC

M
:N

 R
el

at
io

ns
hi

p
st

ud
en

tA
-c

ou
rs

eA
,

st
ud

en
tA

.g
et

C
ou

rs
es

()
.

st
ud

en
tA

-c
ou

rs
eA

,
St

ud
en

t:C
ou

rs
e

st
ud

en
tA

-c
ou

rs
eB

,
re

m
ov

e(
co

ur
se

B
);

st
ud

en
tB

-c
ou

rs
eB

,
st

ud
en

tB
-c

ou
rs

eB
,

st
ud

en
tB

-c
ou

rs
eC

st
ud

en
tB

-c
ou

rs
eC

Ta
b

le
 1

1.
1

C
lie

nt
 O

pe
ra

tio
ns

 a
nd

 R
ef

er
en

tia
l I

nt
eg

rit
y

Summary

Still with us? Fantastic! Pat yourself on the back, because you’ve achieved a
great deal in this chapter. You learned about cardinality, directionality, referen-
tial integrity, cascading deletes, recursive relationships, circular relationships,
lazily loaded relationships, and how to control relationships from client code.
You also saw how to implement each of the above topics using both CMP and
BMP.

You should be prepared now to go ahead and implement relationships in your
own deployments. For concrete examples without pseudo-code that you can
use as a basis for your own deployments, see the book’s accompanying source
code (www.wiley.com/compbooks/roman).

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS360

C H A P T E R 12

361

Most modern business applications require that you persist data—create,
retrieve, update, and delete. Persisting data from EJB components can be as
simple as defining a few simple class-to-table mappings using an EJB con-
tainer’s persistence administration tool, or as difficult as writing sophisti-
cated Java source code.

In this chapter we explore the issues surrounding EJB persistence and
explore the various approaches to persistence that you may employ within
your EJB applications. We’ll cover the following topics:

■■ When to use entity beans, and when not to use them

■■ How to choose between container managed persistence (CMP) and
bean managed persistence (BMP)

■■ A collection of persistence best practices, such as versioning EJB com-
ponents, and dealing with a legacy data design

This chapter is written with the assumption that you will use one or more
relational databases to store your business objects. We are considering only
relational databases because that’s what most organizations use.

Persistence Best Practices

When to Use Entity Beans

A fundamental issue that you need to address is how to persist the information
encapsulated by your EJBs. The approaches are

■■ Session beans plus JDBC. A session bean persists data manually, typically
via JDBC.

■■ Persisting through entity beans, either BMP or CMP.

Let’s first figure out when entity beans (either CMP or BMP) are a good idea
compared to session beans plus JDBC. This discussion will highlight the
advantages and disadvantages of using entity beans and will help you make
that decision in your projects. Then we’ll be able to compare and contrast
different approaches for persisting using session beans. We’ll also compare
BMP and CMP.

Control
There are significant control differences between performing persistence via
session beans and entity beans. Session beans are more of a service-based
architecture because you call methods explicitly to load and store data. Thus,
you are in command of when to use JDBC explicitly. This is very similar to the
Microsoft approach to business components. In comparison, with entity beans,
the container automatically loads and stores data on your behalf.

This loss of control that entity beans give you can be somewhat disturbing. If
you’re not careful to tune your container properly using its flags, and to start
and end transactions at the right times, operations that require a single SQL
statement can take several statements. Proper education of your developers
will help solve these problems.

Parameter Passing Analogy
Another way to compare session and entity persistence differences is through
an analogy to parameter passing conventions.

When you do a query via a session bean, the session bean typically returns a
result set to the client. This is similar to pass-by-value because the data is being
returned from the session bean to the client. When you do a query via an entity
bean home, you get stubs to server-side objects, rather than a result set. This is
analogous to pass-by-reference. The first thing that should come to mind is
how does the performance compare between these two models?

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS362

In a typical deployment, the session beans are colocated with the entity beans
in the same process, and they communicate with each other via local inter-
faces. The fact that entity beans are a pass-by-reference model does not affect
performance because there is no need to traverse the network.

If, on the other hand, you’re building a GUI client (such as Java servlets, JSPs,
applets, or applications communicating remotely to EJB components), you’ll
typically need to get database data into the GUI client. In this case, a pass-by-
reference model will hurt you because the GUI client needs to traverse the net-
work to get data from the entity beans. You can work around this by wrapping
your entity beans with colocated session beans. The session beans copy the
entity bean data into serializable Java objects, sending them to the GUI client.
The GUI client then does not need to traverse the network to access the data.

The point to take away is that there are few performance implications when
comparing session beans and entity beans from the pass-by-value versus pass-
by-reference paradigm. This should probably not factor into your decision cri-
teria.

Procedural Versus Object-Oriented
Most EJB deployments work with data that is either procedural (tabular) or
object-oriented in nature. Session beans that return result sets are naturally
suited for tabular, business data. Entity beans, on the other hand, are Java
objects. Thus, they benefit from encapsulation and relationships, and represent
data in an object-oriented fashion, such as data that requires encapsulation or
relationships with other data.

Caching
Middle-tier data caching is extremely important because it empowers you to
reduce database traffic, and your database will most likely be your bottleneck.

Session beans do not represent database data and therefore cannot be cached
at all. The rows they read in are cache-consistent for the duration of a single
transaction only. Entity beans can be cached across multiple transactions if the
application server has exclusive access to that part of the database. You set this
up using container-specific flags.

If data is shared, entity bean caching benefits are more prominent because that
data is likely to be viewed many times. An example of shared data is a product
catalog, such as the hottest 100 books on Amazon.com.

If your data is exclusive (not shared), caching offers almost no benefits. An
example of exclusive data is a personal account, such as your personal account

Persistence Best Practices 363

settings on Amazon.com. In the exclusive data case, the extra SQL statements
that sometimes occur through entity beans may offset the caching benefits,
making entity beans a lower-performing solution. However, in most deploy-
ments, most data is shared and read-only, and hence caching is an important
performance boost that entity beans provide.

Enforcement of Schema
Independence

Schema independence is an extremely important feature of your persistence
layer. As a nightmare motivational story, a project for one of our clients took
three developers four months to change two columns in a database because of
spaghetti SQL all over the place. Encapsulating that data with a layer would
have avoided those headaches.

Entity beans force developers to go through an entity bean layer, yielding a
single entry point to the database. Developers are isolated from the schema,
allowing ease of schema evolution and data encapsulation.

In comparison, session beans can also isolate you from the schema, if you take
great care when crafting your session bean layer. It takes good internal best
practices to enforce that this remains constant throughout your organization.

In the end, if your developers are on top of things, either session beans or
entity beans will give you schema independence.

Ease of Use
For most people, session beans are much easier conceptually than entity beans.
Session beans represent a more procedural style of programming, where
result-sets are returned. People understand how to use a service-based archi-
tecture because they are in explicit control of everything.

Entity beans, on the other hand, are a new concept to many people. Thus, it is
much easier to screw up performance when using entity beans. We urge you to
consider the quality of your developers when making the call about whether
to use entity beans.

Migration
Most EJB deployments are based on existing databases. These databases
are likely to be tabular in nature, and many have SQL code that has been
tuned over the years to be high-performing. It is a known commodity that
works well.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS364

Session bean persistence is somewhat procedural in nature and is a natural
evolution of those legacy procedural systems. For some deployments, applica-
tion developers can simply copy SQL code from existing solutions into the
new EJB system. This eliminates a risk factor in a new EJB architecture.

In comparison, entity beans represent data in an object-oriented manner and
may require some SQL rewrites for an intuitive object-oriented interface. This
is a good long-term solution, but may slow you down and introduce short-
term risk.

Rapid Application Development
When building a new EJB system, entity beans provide a rapid application
development advantage over session beans. Most popular UML editors
(Rational Rose, Together/J) allow you to autogenerate entity beans from UML
diagrams. Furthermore, tools (such as IDEs or a popular command-line tool
called EJBGen) allow you to generate complete entity bean Ejb-jar files from a
few bits of information about the data you’re modeling.

Note, however, that using EJB at all can sometimes increase the time it takes to
build a system. This is because of all the overhead you need to go through to
write all the files that comprise a bean. If you’re not using tools, or at least
copying and pasting template code, then you may find yourself bogged down.

Choosing between CMP and BMP

Now that we’ve compared session beans and entity beans, let’s assume we’re
using entity beans. In Chapter 5, you discovered two approaches for persisting
entity beans: With BMP, you are responsible for coding all database logic,
while with CMP, the container handles the persistence for you.

The choice between CMP and BMP is not necessarily clear cut. Both bean man-
aged and container managed beans have virtues and drawbacks.

Code Reduction and Rapid
Application Development

The promise of CMP is quite compelling. If you tell the EJB container a couple
of things about your bean, container managed persistence can perform all data
access logic for you. This reduces the size of your bean tremendously—no
more JDBC code in your beans—which reduces overall development time.
It also makes code easier to understand and maintain. CMP beans are also

Persistence Best Practices 365

fantastic for prototyping. If you need to get something working right away, go
with CMP, knowing that you can take a BMP approach later if required.

Know that in reality you still may need to write persistent code with container
managed beans. This could be going through a series of wizards to specify
how your entity beans map to an underlying store. You also need to specify the
logic behind your finder methods. The difference is that with CMP, your data
access logic is now specified declaratively, whereas with BMP, you’re writing
the logic in Java. To CMP’s credit, the amount of programming you’re doing is
much less.

Performance
CMP entity beans, if tuned properly, are much higher performing than BMP
entity beans.

For example, with BMP, it takes two SQL statements to load an entity bean: the
first to call a finder method (loading only the primary key) and the second
during ejbLoad() to load the actual bean data. A collection of n bean-managed
persistent entity beans requires n�1 database calls to load that data (one finder
to find a collection of primary keys, and then n loads).

With CMP, the container can reduce the n�1 database calls problem to a single
call, by performing one giant SELECT statement. You typically set this up
using container-specific flags (which do not affect bean portability). Check
your container’s documentation to see if this feature is supported.

There is a hack work-around to increase BMP performance. It’s called the fat key
pattern and is explained on the companion Web site, www.wiley.com/
compbooks/roman.

Bugs
CMP systems tend to be harder to debug than BMP systems. The reason is that
with BMP, you are in total control of the JDBC code; if something goes wrong,
you can debug that code.

With CMP, you are generating code based on deployment descriptor values.
While it may be true that user error is reduced at the database level, serious
ramifications occur if there is some kind of bug. Because the container is per-
forming your persistence for you, it is tough to figure out what database oper-
ations the container is really doing. You may need to trace through
container-generated code if it’s available, decompile the container, or possibly
wait on technical support lines, delaying a project.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS366

Furthermore, since we’re all human, we make mistakes writing CMP deploy-
ment descriptors, such as having values that are incorrect or that do not match
up perfectly to our bean files. Often the container’s JDBC code generator is too
dumb to point out your error and simply generates bad code. Other times,
your container’s generator tool might even crash, making it even harder to fig-
ure out what the problem is. (This is really annoying!)

See Chapter 13 for strategies for debugging misbehaving EJB applications.

Control
BMP gives you ultimate control over JDBC, and thus you have unlimited flex-
ibility for how you map your objects to the database. For CMP, many contain-
ers support complex mappings, but some containers don’t. For example, if
your container-managed persistent entity bean class has a vector of Java
objects as a container-managed field, you may need to convert that vector
into a bit-blob or other form that the container can handle when mapping to
storage.

Application Server and Database
Independence

One nice thing about container managed persistence is that you aren’t hard-
coding a particular database storage API into your beans, such as JDBC.
Because you aren’t issuing explicit relational database calls in your persistence
layer, you can easily move into a different database, such as Oracle instead of
SQL Server. Theoretically, you might even port your beans to use object data-
bases without changing code.

Database independence is important for those who are providing beans to
others. Often those beans must be able to work with whatever target database
the customer has. Given that enterprise beans represent intellectual property,
they most likely will not ship with their source code. This means that if an
entity bean uses BMP, the customer cannot easily tweak the data access logic.
For these vendors, CMP is the only alternative to shipping multiple versions of
the same bean code.

Unfortunately, there is no standard way to specify the actual O/R mapping
with CMP. Each container has its own tools, wizards, and/or mapping files
that specify which fields correspond to which database columns. But what if
you want to install your bean in a different container? You’ll need to respecify
your persistent operations using the new container’s tools. If you have a com-
plex object model, this could become a hefty task. Furthermore, since not all

Persistence Best Practices 367

application servers support your complex persistence needs, your beans may
not be portable to other containers.

Because of this, sometimes using BMP and allowing your SQL to be hand-
tuned via EJB environment properties (see Chapter 9) is the way to go if you
want to be application server- and database-neutral.

Relationships
The EJB 2.0 CMP model offers many useful relationship features to bean
providers. These include referential integrity, cardinality, relationship man-
agement, and cascading deletes. The container can take care of all these issues
for you.

With BMP, you must write the scaffolding code to manage and persist the
relationships between entity beans. This can get very hairy. You’ll notice that a
big chunk of your BMP code is dedicated to managing these relationships,
which decreases time-to-market and makes your beans more difficult to
understand.

Learning Curve and Cost
Most developers already understand how to perform relational database
access from Java, and thus BMP does not require much of a learning curve. In
comparison, some advanced EJB servers ship with complex O/R mappers for
CMP. These mappers provide useful functionality, but do require training and
ramp-up time. They also might cost some money, depending on your vendor’s
policy.

Most people would love to go with CMP, but are afraid to risk its not being flexible
enough. If you’re in this category, you have a path to try out CMP before you buy.
You can make all your entity beans use CMP, and then subclass those beans as
necessary if you want to use BMP. This works because CMP entity beans are
abstract classes.

Choosing the Right Granularity
for Entity Beans

If you do decide to go with entity beans (instead of session beans plus JDBC,
or session beans plus Java classes), then you need to decide on the granularity
of your entity beans. The granularity refers to how big (or small) your entity
beans are.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS368

In the past, entity beans were restricted to only represent large chunks of data,
involving complex joins across multiple tables. Now with the advent of local
interfaces and the new CMP model, the container can make many more opti-
mizations. This means the idea of small-grained entity beans is much more
viable—if you tune your entity beans properly (see Chapter 13 for tips here).

Another choice you have is to make some of your entity beans be Java classes.
These Java classes would hang off other entity beans. For example, you could
have an order entity bean that has a vector of line-item Java classes. If you’re
using CMP, the EJB specification refers to these Java classes as dependent value
classes. Don’t be confused by the terminology—this is just Sun’s way of giving
a fancy name to Java classes that hang off a CMP entity bean.

For example, here is a dependent value class:

package examples;

public class LineItem implements java.io.Serializable {

private String product;

private int quantity;

public void setProduct(String product) { this.product = product; }

public String getProduct() { return product; }

public void setQuantity(int quantity) { this.quantity = quantity; }

public int getQuantity() { return quantity; }

}

If you’re going to use them, then you should know that there are a few rules
for dependent value classes:

■■ Dependent value classes are defined as CMP fields, and they work just
like CMP fields. For example, rather than having a java.util.String CMP
field, you might have a custom class like examples.LineItem instead. Every-
thing we learned about how to use CMP fields in Chapter 7 applies to
these custom Java classes too.

■■ Dependent value classes may not be container-managed relationship
(CMR) fields, which we learned about in Chapter 11. Relationships only
exist between entity beans, not Java classes.

■■ Dependent value classes cannot contain references to other entity beans.
For example, this sequence of references would be illegal: order (entity
bean) points to line item (dependent value class) points to address (entity
bean).

■■ Dependent value classes must be serializable. Getting and setting
them are performed by-value rather than by-reference. This hampers
performance, but does allow you to access it via the remote interface.

Persistence Best Practices 369

The real value of dependent value classes over entity beans is that they
are quick to develop. The downside is that you lose many of the entity bean
benefits described earlier in this chapter.

Persistence Tips and Tricks

In this section, we’ll present a number of best practices when performing
object-to-relational mapping.

Beware the Object-Relational
Impedance Mismatch

The object-oriented paradigm, which EJB follows, is based on proven software
engineering principles for building applications out of objects that have both
data and behavior. The relational paradigm, however, is based on proven
mathematical principles for efficiently storing data. Difficulties arise when
you attempt to use object and relational technologies together, such as EJBs
and relational databases, because of the impedance mismatch between the two
paradigms. The impedance mismatch becomes apparent when you look at the
preferred approach to access: With the object paradigm you traverse objects
via their relationships, whereas with the relational paradigm you join the data
rows of tables. This fundamental difference results in a nonideal combination
of object and relational technologies. Of course, when have you ever used two
different things together without a few hitches? To be successful using EJB and
relational databases together is to understand both paradigms and their dif-
ferences, and then make intelligent tradeoffs based on that knowledge.

Hard-Coded Versus Soft-Coded SQL
Most developers hard-code SQL into their BMP entity beans. We showed an
example of this in Chapter 6. The problem with this approach is that when
your data schema changes, you need to update your source code, retest it,
compile it, and redeploy it.

Another possibility is to take a soft-coded approach to SQL, where the map-
ping of your EJB object schema to your database schema is maintained outside
your EJBs. You can keep a list of database mappings in a file or a database, or
internally as a data collection, or you can use EJB environment properties
accessed via JNDI (see Chapter 9 for more on this). The advantage of the soft-
coded approach is that you need to update only the meta data representing
your mappings, not the EJB code itself, along the same lines that CMP works
for entity beans.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS370

To implement soft-coded SQL within your session beans, you could either
build a mapping facility yourself or adopt one of several Java persistence
layers/frameworks. The high-level design of a persistence layer, as well as
links to several vendors of commercial and open source products, is provided
at www.ambysoft.com/persistenceLayer.html.

When to Use Stored Procedures
Stored procedures are operations that run within a database. A stored proce-
dure typically runs some SQL code, massages the data, and then hands back a
response in the form of zero or more records, or a response code, or as a data-
base error message. In the past, stored procedures were written in a propri-
etary language, such as Oracle’s PL/SQL, although Java is quickly becoming
the language of choice for database programming. You can invoke stored pro-
cedures from a J2EE deployment via JDBC.

The following code invokes a stored procedure (thrown exceptions omitted):

// Define the code to invoke a stored function

CallableStatement orderCounter = connection.prepareCall(

"{call ? = COUNT_CUSTOMER_ORDERS[(?)]}");

// Invoke the stored function

orderCounter.registerOutParameter(1, java.sql.Types.FLOAT);

orderCounter.setInt(2, customer.getCustomerID());

orderCounter.execute();

// Get the return value

numberOfOrders = orderCounter.getFloat(2);

// End the transaction and close the connection

connection.commit();

orderCounter.close();

So now that you’ve seen how to call stored procedures, when should we use
them in an EJB environment? Here are some good use cases.

1. Performance. Often you’re performing data intensive operations with
small result sets, and stored procedures then become very appetizing. For
example, a good candidate for a stored procedure would be to produce
counts listing the number of critical orders (criticality defined by a busi-
ness rule involving a list of preferred customers, preferred products, and
order total) that have been outstanding for more than 30, 60, or 90 days.
This operation is data intensive; it would need to take a pass at every
order record that has been outstanding for more than 30 days and run it
through the defined business rule to determine if it is critical or not. This

Persistence Best Practices 371

involves an amount of data that you wouldn’t want to bring across the
network to an EJB application server, convert to objects, and then process
accordingly. The stored procedure could do all the work on the database
server and simply send back the three resulting numbers. Stored proce-
dures are also precompiled, resulting in performance wins.

2. Shared business rules. We encourage organizations to first and foremost
strive towards centralizing on an EJB layer for all their applications. How-
ever, due to political reasons, the reality is that this may not be feasible for
all organizations. When your application must share a relational database
with other non-EJB applications, such as a legacy system or Microsoft-
based system, the database becomes an option for implementing your
business rules. This is especially true when legacy applications are unable
to access better approaches to implementing business rules, such as an
EJB application server or a business rules server. As a result, your rela-
tional database becomes the most viable option to implement shared busi-
ness rules because it is the lowest common denominator that your suite of
applications can interact with.

3. Data security access control logic. If you have external systems touching
your database without going through your EJB layer, you can secure your
data through stored procedures. For example, you may want to give
another department access to view salary data, but not update it.

4. Legacy database encapsulation. You often find that you need to write
stored procedures to present a clean view of a legacy database to your
EJBs. Most legacy designs are completely inappropriate for access by
object-oriented code, or non-object code for that matter, yet cannot easily
be reworked due to the large number of legacy applications coupled to
them. You can create stored procedures to read and write records that look
like the objects that you want. Dealing with legacy databases is discussed
later in this chapter.

5. Centralized SQL. The SQL is kept in the stored procedures and is written
by database experts who excel at writing optimized SQL and do not need
to know Java.

6. Easier migration for fast-changing schemas. If your database schema
changes, then compiling a stored procedure will result in a compile-time
error. This makes it easy to find out the ripple effect on schema changes,
which is very useful if your schema is being enhanced at a high velocity.
SQL code from Java can only be debugged at runtime or by combing
through your code.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS372

Note that there are also many reasons to avoid the use of stored procedures:

1. The server can quickly become a bottleneck using this approach. You
really need to be careful when moving functionality onto your server: A
stored procedure can bring the server to its knees if it is invoked often
enough.

2. Stored procedures that are written in a proprietary language can be prob-
lematic if you want to be able to port your application to another database
vendor in the future. It is quite common to find that you need to port your
database to scale it to meet new transaction volumes—don’t underesti-
mate the importance of portability. These proprietary languages also
increase your learning time before you’re productive.

3. You dramatically increase the coupling within your database because
stored procedures directly access tables, coupling the tables to the stored
procedures. This increased coupling reduces the flexibility of your data-
base administrators. When they want to refactor the database schema,
they need to rewrite stored procedures.

4. You increase the maintenance burden for your application because those
who maintain your system need to deal with application logic in two
places: your EJBs and stored procedures. Your system will become messy
over time and difficult to deal with.

The following statement sums up our thoughts on stored procedures: Use
them only when necessary.

Normalizing and Denormalizing
When building your data model, you’ll often be confronted with a space ver-
sus time tradeoff. For example, if you have an order that uses a customer, you
can keep the two separate and unique in the database, or you can copy the cus-
tomer data into the order table. By duplicating the customer information, you
may make queries for orders faster, since you don’t have to JOIN across sev-
eral tables. Data normalization is the process of eliminating data redundancy in
a database, while denormalization is the process of increasing redundancy for
performance.

The advantage of having a highly normalized data schema is that information
is stored in one place and one place only, reducing the possibility of inconsis-
tent data. Furthermore, highly normalized data schemas in general are closer
conceptually to object-oriented schemas, such as those you would create for

Persistence Best Practices 373

your EJB design because the object-oriented goals of promoting high cohesion
and loose coupling between classes results in similar solutions (at least from a
data point of view). This generally makes it easier to map your EJBs to your
data schema.

The disadvantage of normalized data schemas is that when put into produc-
tion, they often suffer from performance problems. An important part of data
modeling is to denormalize portions of your data schema to improve database
access times.

For example, often by analyzing the relationships between data, you will see
many opportunities for denormalization. One-to-one relationships, such as
those between customer and address, are often prime candidates for denormal-
ization. Their data may be stored in a single customer table to improve perfor-
mance (the address data would be stored as one or more columns within the
customer table). This is particularly true of leaf tables, tables that are related to
only one other table, a trait that the address table also exhibited.

Note that if your initial, normalized data design meets the performance needs of
your EJBs, it is fine as is. Denormalization should be resorted to only when per-
formance testing shows that you have a problem with your beans and subse-
quent profiling reveals that you need to improve database access time.
Enterprise-ready databases such as Oracle, Sybase, and DB2 include data access
monitoring tools that allow you to do exactly this. But if it ain’t broke, don’t fix it.

Table 12.1 summarizes the three most common normalization rules describing
how to put data entities into a series of increasing levels of normalization.
Strategies for achieving normalization are classic database challenges that are
beyond the scope of this book. An Introduction to Database Systems, 7th Edition
by C.J. Date (Addison-Wesley, 2000) goes into greater detail.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS374

LEVEL RULE

First normal form A data entity is in 1NF when it contains no repeating
groups of data.

Second normal form A data entity is in 2NF when it is in 1NF and when all of its
non-key attributes are fully dependent on its primary key.

Third normal form A data entity is in 3NF when it is in 2NF and when all of its
attributes are directly dependent on the primary key.

Table 12.1 Data Normalization Rules

When you are trying to track down the source of an EJB performance problem, you’ll
often discover that database access is the source of the problem. This is why it is
important for your data design to be driven by your EJB design, and for you to be
prepared to move away from a pure/normalized database design to one that is
denormalized to reflect the actual performance needs of your EJBs.

Use Your EJB Object Model to
Drive Your Data Model

For EJB components to map well to a relational database, your EJB schema and
relational database schema must reflect one another. This evokes the question
should your EJB object model drive your data model or the other way around?
Whenever you are given the choice, your EJB object model should drive the
development of your data model. Data models take into account only half of
the picture (data), whereas object-oriented EJB models take into account the
entire picture (data and behavior). By using your EJB models to drive the
development of your data models, you ensure that your database schema
actually supports the needs of your EJB components.

Note that for this to work, you need to have the freedom to define your data
schema, which you will not have if you have to work with a legacy data
schema. You also may find that you’re not allowed to define the data model;
rather, another group at your organization handles that. This approach often
proves to be a disaster, resulting in poor performance and significant rework
later in the project. In reality, data modeling is an iterative approach. You will
likely need to make several iterations of your object model based on feedback
from your data modeling efforts, and vice versa.

Follow a Good Data Design Process
Your life as an EJB programmer accessing a relational database will be much
more sane if you apply a process to object/relational mapping. We recom-
mend the following steps:

1. Develop a data schema based on your object schema. Strip away the oper-
ations from each class, declare the classes to be tables, and remove any
tables that have no attributes. Associations between classes, including
inheritance, simple associations, aggregation, and composition are trans-
lated into relationships between tables. It is important to understand that
this provides you with a starting point, not a final solution.

Persistence Best Practices 375

2. Apply data naming conventions. Your organization may have naming
conventions for the names of tables and columns; if so, apply them as
appropriate. For example, the customer table may be called TCustomer
and the first name column of that table FIRST_NAME_C.

3. Identify keys for each data entity. Each table should have a primary key,
one or more columns that uniquely identify an individual row in the
table. Foreign keys need to be introduced to implement relationships
between tables, and many-to-many relationships between tables need to
be resolved via the introduction of an associative table.

4. Normalize and/or denormalize your data schema as required. You nor-
malize your data schema to improve the robustness of your design,
although you may find that you need to denormalize occasionally.

5. Refactor your object schema and your data schema as required. Perfor-
mance problems require that your team tune the container, change the EJB
object model, or change the relational database schema to improve the
data access times of your EJBs.

Use Surrogate Keys
A common challenge in EJB deployments is to generate unique primary keys.
You can generate two basic types of keys

A natural key is one or more existing data attributes that are unique to the
business concept. For example, a customer table might have two candidate
natural keys, CustomerNumber and SocialSecurityNumber.

A surrogate key is a key that has no business meaning, such as an AddressID
column of an address table. Addresses don’t have an easy natural key
because you would need to use all of the columns of the address table to
form a key for it. Introducing a surrogate key is therefore a much better
option in this case.

The foremost advantage of natural keys is that they already exist; you don’t
need to introduce a new, unnatural value to your data schema. However, the
primary disadvantage of natural keys is that because they have business
meaning, they may need to change if your business requirements change.
For example, if your users decide to make CustomerNumber alphanumeric
instead of numeric, in addition to updating the schema for the customer table
(which is unavoidable), you would have to change every single table where
CustomerNumber is used as a foreign key. If the customer table instead used a
surrogate key, the change would have been localized to just the customer table

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS376

itself (CustomerNumber in this case would just be a non-key column of the
table). Naturally, if you needed to make a similar change to your surrogate key
strategy, perhaps adding a couple of extra digits to your key values because
you’ve run out of values, you would have the exact same problem. This points
out the need to set a workable surrogate key strategy.

For a key to remain a surrogate, you must never display its value, never allow
anyone to edit it, and never allow anyone to use it for anything other than
identification. As soon as you display or edit a value you give it business
meaning, which effectively makes it a natural key. For example, a Customer-
Number could have been originally intended to serve as a surrogate key, but if
one day a customer number is printed on an invoice, the customer number has
effectively evolved into a natural key. Ideally nobody should know that the
persistent object identifier even exists, except perhaps the person(s) debug-
ging your data schema during initial development of your application.

It’s important that your primary keys are unique. There are dozens of ways to gener-
ate unique keys, such as using a database’s built-in counter, an entity bean, an RMI-
IIOP object, the current System time, and so forth. Each approach has its advantages
and disadvantages. This discussion is fully presented in Floyd Marinescu’s book, EJB
Design Patterns.

Understand the Impacts of
Database Updates

It is important to recognize that changes to database data affect the state of the
EJB components that represent that data in your application server. A database
should not be updated, either by an EJB or a non-EJB application, if the impact
of those changes is not fully understood. You can prevent that from happening
by setting an internal policy that all database access should go through a com-
mon persistence layer (of either session beans, entity beans, or both) and
championing that policy to all developers who access that database.

Versioning EJB Components
Sometimes you might need to track versions of an EJB component, which
means to access old information that no longer exists in your bean. For exam-
ple, if a customer suddenly got married, her last name might change. You
might want to access her maiden name when trying to get information about
her that may be stored in a different system. As another example, the historical
titles that an employee has held at your organization might be important data
for you to determine the next title in her career path.

Persistence Best Practices 377

To develop a versionable EJB component, you have several strategies at your
disposal:

1. As your object changes, record those changes in an audit log. You can
store entire objects in the log, or you can just store the deltas (changes) to
your objects. You might write to this log by using an XML structure or
serialized string. To restore an object from the log, either read the object of
the appropriate version in, or (if you’re using deltas) perform a manual
merge.

2. Add versioning columns to your tables. Tables representing versionable
objects require several columns to be added, as described in Table 12.2.
Whenever an object is updated, a new record is inserted into the appropri-
ate table(s) and made the current version. The previously current version
is closed, the CurrentVersion column is set to false, and the EffectiveEnd col-
umn is set to the current datetime. Note that both of those columns are
optional: You can determine which row represents the current version of
the object by taking the one with the most recent value for EffectiveStart,
and a previous version can be restored for a specific point in time by tak-
ing the row with the effective start date just previous to the requested
point in time. This approach is called the immutable object design pattern.

3. Add historical tables. With this strategy you have one set of operational
tables for your system that you use as you normally would, and a corre-
sponding set of historical tables that have the same schemas with the
addition of the EffectiveEnd column described in Table 12.2. When an

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS378

COLUMN TYPE PURPOSE

CurrentVersion (Optional) Boolean Indicates whether the row represents the
current version of the object, simplifying
retrieval for most business transactions.

EffectiveStart Datetime Indicates the beginning of the period
when the values contained in the row
were valid. Must be set to the current
datetime when the row is first inserted.

EffectiveEnd (Optional) Datetime Indicates the end of the period when the
values contained in the row were valid.
The value is set to the current datetime
when the replacement version of an
object is first inserted.

Table 12.2 Potential Table Columns to Support Versioning

object is updated or deleted, the operational tables are changed in the
normal way. In addition, the values that had been initially retrieved into
memory are written to the corresponding historical table(s), with the
EffectiveEnd value set to the current datetime.

A few quick observations about making your EJB components versionable:

■■ The addition of versioning columns is not an option if you are mapping to
a legacy database schema.

■■ For any of these approaches to work, all systems/objects accessing your
database must follow them consistently.

■■ Versioning is performance intensive, requiring additional writes to sup-
port updates and deletions as well as more complex retrievals.

■■ There is no explicit support for versioning with CMP entity beans. If
you’re using CMP, check your EJB container’s documentation to see if it
supports versioning.

■■ If your EJB object model and database schemas vary wildly, the audit log
approach is likely your best bet.

■■ These approaches focus on the versioning of data only, not behavior. To
version behavior, you need to support different versions of the same
classes and/or apply the strategy or command design patterns.

■■ Avoid versioning if you can because it is complex, error-prone, and nega-
tively affects performance.

Living with a Legacy Database Design
For the sake of simplicity we have assumed throughout this chapter that you
are in a position to define your data schema. If this is actually your situation,
consider yourself among the lucky few. The vast majority of EJB developers
are often forced to tolerate an existing legacy design, one that is often difficult,
if not impossible, to change because of corresponding changes that would be
required to the legacy applications that currently access it. The problem pre-
sented by your legacy database is often too difficult to fix immediately; you
therefore have to learn to work around it.

This section is not about general integration with non-RDBMS legacy systems, such
as an SAP R/3 system or a CICS/COBOL system. For strategies on integration with
legacy systems, see Chapter 13.

Persistence Best Practices 379

How do you learn to live with a legacy data design? The first step is to under-
stand the scope of the challenge. Start by identifying and understanding the
impact of typical data-related problems that you will encounter with legacy
data. Table 12.3 lists the most common data problems and summarizes their
potential impact on your application. You will likely experience several of
these problems in any given database, and any given table or even column
within the database will exhibit these problems.

Table 12.3 is lengthy and intended for reference purposes only—you don’t
need to read or understand the entire table right now. When you encounter a
legacy database and want to migrate that into an EJB environment, return to
this table.

Both data and database design problems have a common impact on your EJB com-
ponents: They make it harder to take advantage of CMP because your EJB container
needs the ability to overcome the problems appropriately. For those living with a
hairy legacy design, we recommend BMP or session beans plus JDBC.

The good news is that your project team isn’t the only one facing these sorts of
challenges—almost every organization has these problems. As a result, a large
market exists for tools to help deal with legacy databases. A sampling is listed
in Table 12.4. The basic features are extraction of legacy data, transformation of
the legacy data to cleanse it, and the loading of that data into a new data
schema that is more robust. Products that support all of these features are
referred to as ETL (extract, transform, load) tools.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS380

Patterns for Things That Change with Time

Martin Fowler has developed a pattern language for the development of version-
able objects. Posted online at www.martinfowler.com, the language consists of
the following patterns:

1. Audit log—A simple log of changes, intended to be easily written and
nonintrusive.

2. Effectivity—Add a time period to an object to show when it is effective.
3. Snapshot—A view of an object at a point in time.
4. Temporal object—An object that changes over time.
5. Temporal property—A property that changes over time.
6. Time point—Represents a point in time to some granularity.

Persistence Best Practices 381

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

A
si

ng
le

 c
ol

um
n

is
 u

se
d

fo
r

Ad
di

tio
na

l i
nf

or
m

at
io

n
fo

r
an

 in
ve

nt
or

y
■

■
O

ne
 o

r
m

or
e

at
tr

ib
ut

es
 o

f y
ou

r
EJ

B

se
ve

ra
l p

ur
po

se
s.

ite
m

 is
 s

to
re

d
in

 th
e

N
ot

es
 c

ol
um

n.

co
m

po
ne

nt
s

m
ay

 n
ee

d
to

 b
e

m
ap

pe
d

to
 t

hi
s

Ad
di

tio
na

l i
nf

or
m

at
io

n
w

ill
 b

e
on

e
or

fie

ld
, r

eq
ui

rin
g

a
co

m
pl

ex
 p

ar
si

ng
 a

lg
or

ith
m

m

or
e

of
 a

 le
ng

th
y

de
sc

rip
tio

n
of

 th
e

ite
m

,
to

 d
et

er
m

in
e

th
e

pr
op

er
 u

sa
ge

 o
f t

he
 c

ol
um

n.

st
or

ag
e

re
qu

ire
m

en
ts

, o
r

sa
fe

ty

■
■

Yo
ur

 E
JB

 c
om

po
ne

nt
(s

)
m

ay
 b

e
fo

rc
ed

 t
o

re
qu

ire
m

en
ts

 w
he

n
ha

nd
lin

g
th

e
ite

m
.

im
pl

em
en

t a
 s

im
ila

r
at

tr
ib

ut
e

in
st

ea
d

of

im
pl

em
en

tin
g

se
ve

ra
l a

tt
rib

ut
es

 a
s

yo
ur

 d
es

ig
n

or
ig

in
al

ly
 d

es
cr

ib
ed

.

Th
e

pu
rp

os
e

of
 a

 c
ol

um
n

is

If
th

e
va

lu
e

of
 D

at
eT

yp
e

is
 1

7,
 P

er
so

nD
at

e
■

■
A

po
te

nt
ia

lly
 c

om
pl

ex
 m

ap
pi

ng
 is

 r
eq

ui
re

d
to

de

te
rm

in
ed

 b
y

th
e

va
lu

e
of

 o
ne

re

pr
es

en
ts

 th
e

da
te

 o
f b

irt
h

of
 th

e
pe

rs
on

.
w

or
k

w
ith

 th
e

va
lu

e
st

or
ed

 in
 th

e
co

lu
m

n.
or

 m
or

e
ot

he
r

co
lu

m
ns

.
If

th
e

va
lu

e
is

 8
4,

 P
er

so
nD

at
e

is
 th

e
pe

rs
on

’s
 d

at
e

of
 g

ra
du

at
io

n
fr

om
 h

ig
h

sc
ho

ol
. I

f t
he

 v
al

ue
 is

 b
et

w
ee

n
35

 a
nd

 4
8,

it

is
 th

e
da

te
 th

e
pe

rs
on

 e
nt

er
ed

 h
ig

h
sc

ho
ol

.

In
co

rr
ec

t d
at

a
va

lu
es

Th
e

Ag
eI

nY
ea

rs
co

lu
m

n
fo

r
a

pe
rs

on
 r

ow
 is

■

■
Yo

ur
 E

JB
 c

om
po

ne
nt

s
ne

ed
 to

 im
pl

em
en

t
–3

 o
r

th
e

Ag
eI

nY
ea

rs
co

lu
m

n
co

nt
ai

ns
 7

,
va

lid
at

io
n

co
de

 to
 e

ns
ur

e
th

at
 th

ei
r

ba
se

al

th
ou

gh
 th

e
B

ir
th

D
at

e
is

 A
ug

us
t 1

4,
 1

96
7

da
ta

 v
al

ue
s

ar
e

co
rr

ec
t.

an
d

th
e

cu
rr

en
t d

at
e

is
 O

ct
ob

er
 1

0,
 2

00
1.

■
■

St
ra

te
gi

es
 to

 r
ep

la
ce

 in
co

rr
ec

t v
al

ue
s

m
ay

ne

ed
 to

 b
e

de
fin

ed
 a

nd
 im

pl
em

en
te

d.

■
■

An
 e

rr
or

-h
an

dl
in

g
st

ra
te

gy
 n

ee
ds

 t
o

be
 d

ev
el

-
op

ed
 to

 d
ea

l w
ith

 b
ad

 d
at

a.
 T

hi
s

m
ay

 in
cl

ud
e

lo
gg

in
g

of
 th

e
er

ro
r,

at
te

m
pt

in
g

to
 fi

x
th

e
er

ro
r,

or
 d

ro
pp

in
g

th
e

da
ta

 fr
om

 p
ro

ce
ss

in
g

un
til

 t
he

pr
ob

le
m

 is
 c

or
re

ct
ed

.

In
co

ns
is

te
nt

/i
nc

or
re

ct
 d

at
a

Th
e

na
m

e
of

 a
 p

er
so

n
is

 s
to

re
d

in
 o

ne
 ta

bl
e

■
■

Pa
rs

in
g

co
de

 w
ill

 b
e

re
qu

ire
d

to
 b

ot
h

re
tr

ie
ve

fo

rm
at

tin
g

in
 th

e
fo

rm
at

 F
irs

tn
am

e
Su

rn
am

e,
 y

et
 in

an

d
st

or
e

th
e

da
ta

 a
s

ap
pr

op
ria

te
.

an
ot

he
r

ta
bl

e,
 S

ur
na

m
e,

 F
irs

tn
am

e.

M
is

si
ng

 d
at

a
Th

e
da

te
 o

f b
irt

h
of

 a
 p

er
so

n
ha

s
no

t
■

■
Se

e
st

ra
te

gi
es

 fo
r

de
al

in
g

w
ith

 in
co

rr
ec

t
da

ta

be
en

 r
ec

or
de

d
in

 s
om

e
re

co
rd

s.
va

lu
es

.

co
nt

in
ue

s

Ta
b

le
 1

2.
3

Ty
pi

ca
l L

eg
ac

y
D

at
a

Pr
ob

le
m

s

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS382

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

M
is

si
ng

 c
ol

um
ns

Yo

u
ne

ed
 a

 p
er

so
n’

s
m

id
dl

e
na

m
e,

 b
ut

 a

■
■

Yo
u

m
ay

 n
ee

d
to

 a
dd

 th
e

co
lu

m
n

to
 t

he

co
lu

m
n

fo
r

it
do

es
 n

ot
 e

xi
st

.
ex

is
tin

g
le

ga
cy

 s
ch

em
a.

■

■
Yo

u
m

ig
ht

 n
ee

d
to

 d
o

w
ith

ou
t t

he
 d

at
a.

■

■
Id

en
tif

y
a

de
fa

ul
t v

al
ue

 u
nt

il
th

e
da

ta
 is

 a
va

ila
bl

e.

■
■

An
 a

lte
rn

at
e

so
ur

ce
 fo

r
th

e
da

ta
 m

ay
 n

ee
d

to
 b

e
fo

un
d.

Ad
di

tio
na

l c
ol

um
ns

Th

e
So

ci
al

 S
ec

ur
ity

 n
um

be
r

fo
r

a
pe

rs
on

 is

■
■

Fo
r

co
lu

m
ns

 th
at

 a
re

 r
eq

ui
re

d
fo

r
ot

he
r

st
or

ed
 in

 th
e

da
ta

ba
se

 a
nd

 y
ou

 d
on

’t
ne

ed
 it

.
ap

pl
ic

at
io

ns
, y

ou
 m

ay
 b

e
re

qu
ire

d
to

 im
pl

em
en

t
th

em
 in

 y
ou

r
EJ

B
 c

om
po

ne
nt

s
to

 e
ns

ur
e

th
at

th

e
ot

he
r

ap
pl

ic
at

io
ns

 c
an

 u
se

 th
e

da
ta

 y
ou

r
ap

pl
ic

at
io

n
ge

ne
ra

te
s.

■

■
Yo

u
m

ay
 n

ee
d

to
 w

rit
e

th
e

ap
pr

op
ria

te
 d

ef
au

lt
va

lu
e

to
 th

e
da

ta
ba

se
 w

he
n

in
se

rt
in

g
a

ne
w

re

co
rd

.
■

■
Fo

r
da

ta
ba

se
 u

pd
at

es
, y

ou
 m

ay
 n

ee
d

to
 r

ea
d

th
e

or
ig

in
al

 v
al

ue
, a

nd
 th

en
 w

rit
e

it
ou

t
ag

ai
n.

M
ul

tip
le

 s
ou

rc
es

 fo
r

th
e

C
us

to
m

er
 in

fo
rm

at
io

n
is

 s
to

re
d

in
 th

re
e

■
■

Id
en

tif
y

a
si

ng
le

 s
ou

rc
e

fo
r

yo
ur

 in
fo

rm
at

io
n

sa
m

e
da

ta

se
pa

ra
te

 le
ga

cy
 d

at
ab

as
es

.
an

d
us

e
on

ly
 th

at
.

■
■

B
e

pr
ep

ar
ed

 to
 a

cc
es

s
m

ul
tip

le
 s

ou
rc

es
 fo

r
th

e
sa

m
e

in
fo

rm
at

io
n.

■
■

Id
en

tif
y

ru
le

s
fo

r
ch

oo
si

ng
 a

 p
re

fe
rr

ed
 s

ou
rc

e
w

he
n

yo
u

di
sc

ov
er

 th
e

sa
m

e
in

fo
rm

at
io

n
is

st
or

ed
 in

 s
ev

er
al

 p
la

ce
s.

Im
po

rt
an

t e
nt

iti
es

, a
tt

rib
ut

es
,

A
N

ot
es

 te
xt

 fi
el

d
co

nt
ai

ns
 th

e
in

fo
rm

at
io

n
■

■
D

ev
el

op
 c

od
e

to
 p

ar
se

 th
e

in
fo

rm
at

io
n

fr
om

an
d

re
la

tio
ns

hi
ps

 h
id

de
n

an
d

C
la

rk
 a

nd
 L

oi
s

Ke
nt

, D
ai

ly
 P

la
ne

t
th

e
fie

ld
s.

flo

at
in

g
in

 te
xt

 fi
el

ds

Pu
bl

ic
at

io
ns

.
■

■
D

o
w

ith
ou

t t
he

 in
fo

rm
at

io
n.

Ta
b

le
 1

2.
3

Ty
pi

ca
l L

eg
ac

y
D

at
a

Pr
ob

le
m

s
(c

on
tin

ue
d)

Persistence Best Practices 383

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

D
at

a
va

lu
es

 th
at

 s
tr

ay
 fr

om

Th
e

m
ai

de
n

na
m

e
co

lu
m

n
is

 b
ei

ng
 u

se
d

to

■
■

Yo
u

ne
ed

 to
 u

pd
at

e
th

e
do

cu
m

en
ta

tio
n

to

th
ei

r
fie

ld
 d

es
cr

ip
tio

ns
 a

nd

st
or

e
a

pe
rs

on
’s

 fa
br

ic
 p

re
fe

re
nc

e
fo

r
re

fle
ct

 th
e

ac
tu

al
 u

sa
ge

.
bu

si
ne

ss
 r

ul
es

cl
ot

hi
ng

.
■

■
B

ea
n

pr
ov

id
er

s
th

at
 to

ok
 th

e
do

cu
m

en
ta

tio
n

at
fa

ce
 v

al
ue

 m
ay

 n
ee

d
to

 u
pd

at
e

th
ei

r
co

de
.

■
■

D
at

a
an

al
ys

is
 s

ho
ul

d
be

 p
er

fo
rm

ed
 t

o
de

te
rm

in
e

th
e

ex
ac

t u
sa

ge
 in

 c
as

e
di

ffe
re

nt
 a

pp
lic

at
io

ns
 a

re
us

in
g

th
e

fie
ld

 fo
r

di
ffe

re
nt

 p
ur

po
se

s.

Va
rio

us
 k

ey
 s

tr
at

eg
ie

s
fo

r
th

e
O

ne
 ta

bl
e

st
or

es
 c

us
to

m
er

 in
fo

rm
at

io
n

■
■

Yo
u

ne
ed

 to
 b

e
pr

ep
ar

ed
 to

 a
cc

es
s

si
m

ila
r

da
ta

sa

m
e

ty
pe

 o
f e

nt
ity

us
in

g
SS

N
 a

s
th

e
ke

y,
 a

no
th

er
 u

se
s

th
e

vi
a

se
ve

ra
l s

tr
at

eg
ie

s,
 im

pl
yi

ng
 t

he
 n

ee
d

fo
r

C
lie

nt
ID

 a
s

th
e

ke
y,

 a
nd

 a
no

th
er

 u
se

s
a

si
m

ila
r

fin
de

r
op

er
at

io
ns

 in
 s

om
e

cl
as

se
s.

su
rr

og
at

e
ke

y.
■

■
So

m
e

at
tr

ib
ut

es
 o

f a
n

en
tit

y
be

an
 m

ay
 b

e
im

m
ut

ab
le

—
th

ei
r

va
lu

e
ca

nn
ot

 b
e

ch
an

ge
d

—
be

ca
us

e
th

ey
 r

ep
re

se
nt

 p
ar

t o
f a

 k
ey

 in
 y

ou
r

re
la

-
tio

na
l d

at
ab

as
e.

 N
ot

e
th

at
 th

es
e

at
tr

ib
ut

es
 w

ou
ld

no
t b

e
pa

rt
 o

f t
he

 p
rim

ar
y

ke
y

cl
as

s
fo

r
yo

ur
en

tit
y

be
an

.

U
nr

ea
liz

ed
 r

el
at

io
ns

hi
ps

 b
et

w
ee

n
A

cu
st

om
er

 h
as

 a
 p

rim
ar

y
re

si
de

nc
e

an
d

a
■

■
D

at
a

m
ay

 b
e

in
ad

ve
rt

en
tly

 r
ep

lic
at

ed
. E

ve
nt

ua
lly

da

ta
 r

ec
or

ds
su

m
m

er
 h

om
e.

 B
ot

h
of

 h
is

 h
om

es
 a

re

a
ne

w
 a

dd
re

ss
 r

ec
or

d
is

 in
ad

ve
rt

en
tly

 c
re

at
ed

re

co
rd

ed
 in

 y
ou

r
da

ta
ba

se
, b

ut
 th

er
e

is
 n

o
(a

nd
 th

e
re

la
tio

ns
hi

p
no

w
 d

ef
in

ed
)

fo
r

th
e

re
la

tio
ns

hi
p

st
or

ed
 in

 th
e

da
ta

ba
se

 r
eg

ar
di

ng

su
m

m
er

 h
om

e
ev

en
 th

ou
gh

 o
ne

 a
lre

ad
y

th
is

 fa
ct

.
ex

is
ts

.
■

■
Ad

di
tio

na
l c

od
e

m
ay

 n
ee

d
to

 b
e

de
ve

lo
pe

d
to

de
te

ct
 p

ot
en

tia
l p

ro
bl

em
s.

 P
ro

ce
du

re
s

fo
r

ha
n-

dl
in

g
th

e
pr

ob
le

m
s

w
ill

 a
ls

o
be

 r
eq

ui
re

d.

O
ne

 a
tt

rib
ut

e
is

 s
to

re
d

in

Th
e

pe
rs

on
 c

la
ss

 r
eq

ui
re

s
a

si
ng

le
 n

am
e

■
■

Po
te

nt
ia

lly
 c

om
pl

ex
 p

ar
si

ng
 c

od
e

m
ay

 b
e

se
ve

ra
l f

ie
ld

s.
fie

ld
, b

ut
 is

 s
to

re
d

in
 th

e
co

lu
m

ns
 F

ir
st

N
am

e
re

qu
ire

d
to

 r
et

rie
ve

, a
nd

 th
en

 s
av

e
th

e
an

d
Su

rn
am

e
in

 y
ou

r
da

ta
ba

se
.

da
ta

.

co
nt

in
ue

s

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS384

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

In
co

ns
is

te
nt

 u
se

 o
f s

pe
ci

al

A
da

te
 u

se
s

hy
ph

en
s

to
 s

ep
ar

at
e

th
e

ye
ar

,
■

■
C

om
pl

ex
ity

 o
f p

ar
si

ng
 c

od
e

in
cr

ea
se

s.

ch
ar

ac
te

rs
m

on
th

, a
nd

 d
ay

, w
he

re
as

 a
 n

um
er

ic
al

 v
al

ue

■
■

Ad
di

tio
na

l d
oc

um
en

ta
tio

n
is

 r
eq

ui
re

d
to

st
or

ed
 a

s
a

st
rin

g
us

es
 h

yp
he

ns
 to

 in
di

ca
te

in

di
ca

te
 c

ha
ra

ct
er

 u
sa

ge
.

ne
ga

tiv
e

nu
m

be
rs

.

D
iff

er
en

t d
at

a
ty

pe
s

fo
r

si
m

ila
r

A
cu

st
om

er
 ID

 is
 s

to
re

d
as

 a
 n

um
be

r
in

■

■
Yo

u
m

ay
 n

ee
d

to
 d

ec
id

e
ho

w
 y

ou
 w

an
t

th
e

co
lu

m
ns

on
e

ta
bl

e
an

d
a

st
rin

g
in

 a
no

th
er

.
da

ta
 to

 b
e

ha
nd

le
d

by
 y

ou
r

EJ
B

s
an

d
th

en

tr
an

sf
or

m
 it

 to
/f

ro
m

 y
ou

r
da

ta
 s

ou
rc

e(
s)

as

 a
pp

ro
pr

ia
te

.
■

■
If

fo
re

ig
n

ke
y

fie
ld

s
ha

ve
 a

 d
iff

er
en

t
ty

pe
 t

ha
n

or
ig

in
al

 d
at

a
th

ey
 r

ep
re

se
nt

, t
he

n
ta

bl
e

jo
in

s,

an
d

he
nc

e
an

y
SQ

L
em

be
dd

ed
 in

 y
ou

r
EJ

B
s,

be
co

m
e

m
or

e
di

ffi
cu

lt.

D
iff

er
en

t
le

ve
ls

 o
f d

et
ai

l
A

be
an

 r
eq

ui
re

s
th

e
to

ta
l s

al
es

 fo
r

th
e

■
■

Po
te

nt
ia

lly
 c

om
pl

ex
 m

ap
pi

ng
 c

od
e

m
ay

 b
e

m
on

th
, b

ut
 y

ou
r

da
ta

ba
se

 s
to

re
s

in
di

vi
du

al

re
qu

ire
d

to
 r

es
ol

ve
 th

e
va

rio
us

 le
ve

ls
 o

f
to

ta
ls

 fo
r

ea
ch

 o
rd

er
; o

r
a

be
an

 r
eq

ui
re

s
th

e
de

ta
il.

w

ei
gh

t o
f i

nd
iv

id
ua

l c
om

po
ne

nt
s

of
 a

n
ite

m
,

su
ch

 a
s

th
e

do
or

s
an

d
en

gi
ne

 o
f a

 c
ar

, b
ut

yo

ur
 d

at
ab

as
e

re
co

rd
s

on
ly

 th
e

ag
gr

eg
at

e
w

ei
gh

t.

D
iff

er
en

t m
od

es
 o

f o
pe

ra
tio

n
So

m
e

da
ta

 is
 a

 r
ea

d-
on

ly
 s

na
ps

ho
t o

f
■

■
Th

e
de

si
gn

 o
f y

ou
r

EJ
B

s
m

us
t r

ef
le

ct
 t

he
 n

at
ur

e
in

fo
rm

at
io

n,
 b

ut
 o

th
er

 d
at

a
is

 r
ea

d-
w

rit
e.

of
 th

e
da

ta
 th

ey
 a

re
 m

ap
pe

d
to

. E
JB

s
ba

se
d

on
re

ad
-o

nl
y

da
ta

, t
he

re
fo

re
, c

an
no

t
up

da
te

 o
r

de
le

te
 it

.

Va
ry

in
g

tim
el

in
es

s
of

 d
at

a
Th

e
cu

st
om

er
 d

at
a

is
 c

ur
re

nt
, a

dd
re

ss
 d

at
a

■
■

Yo
ur

 E
JB

 c
od

e
m

us
t r

ef
le

ct
, a

nd
 p

ot
en

tia
lly

is

 o
ne

 d
ay

 o
ut

 o
f d

at
e,

 a
nd

 th
e

da
ta

re

po
rt

 to
 t

he
ir

cl
ie

nt
s,

 th
e

tim
el

in
es

s
of

 t
he

pe

rt
ai

ni
ng

 to
 c

ou
nt

rie
s

an
d

st
at

es
 is

in

fo
rm

at
io

n
th

at
 th

ey
 a

re
 b

as
ed

 o
n.

ac
cu

ra
te

 to
 th

e
en

d
of

 th
e

pr
ev

io
us

 q
ua

rt
er

be

ca
us

e
yo

u
pu

rc
ha

se
 th

at
 in

fo
rm

at
io

n
fr

om
 a

n
ex

te
rn

al
 s

ou
rc

e.

Ta
b

le
 1

2.
3

Ty
pi

ca
l L

eg
ac

y
D

at
a

Pr
ob

le
m

s
(c

on
tin

ue
d)

Persistence Best Practices 385

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

Va
ry

in
g

de
fa

ul
t v

al
ue

s
Yo

ur
 E

JB
 u

se
s

a
de

fa
ul

t o
f g

re
en

 fo
r

a
■

■
Yo

u
m

ay
 n

ee
d

to
 n

eg
ot

ia
te

 a
 n

ew
 d

ef
au

lt
va

lu
e

gi
ve

n
va

lu
e,

 y
et

 a
no

th
er

 a
pp

lic
at

io
n

ha
s

w
ith

 y
ou

r
us

er
s.

be

en
 u

si
ng

 y
el

lo
w

, r
es

ul
tin

g
in

 a

■
■

Yo
u

m
ay

 n
ot

 b
e

al
lo

w
ed

 to
 s

to
re

 y
ou

r
de

fa
ul

t
pr

ep
on

de
ra

nc
e

(i
n

th
e

op
in

io
n

of
 y

ou
r

va
lu

e
(g

re
en

 is
 a

n
ill

eg
al

 v
al

ue
 in

 t
he

us

er
s)

 o
f y

el
lo

w
 v

al
ue

s
st

or
ed

 in
 th

e
da

ta
ba

se
).

da
ta

ba
se

.

Va
rio

us
 r

ep
re

se
nt

at
io

ns

Th
e

da
y

of
 th

e
w

ee
k

is
 s

to
re

d
as

 T
, T

ue
s,

■

■
Tr

an
sl

at
io

n
co

de
 b

ac
k

an
d

fo
rt

h
be

tw
ee

n
a

2,
 a

nd
 T

ue
sd

ay
 in

 fo
ur

 s
ep

ar
at

e
co

lu
m

ns
.

co
m

m
on

 v
al

ue
 th

at
 y

ou
r

EJ
B

(s
)

us
e

w
ill

 n
ee

d
to

 b
e

de
ve

lo
pe

d.

D
at

ab
as

e
en

ca
ps

ul
at

io
n

Ac

ce
ss

 to
 th

e
da

ta
ba

se
 is

 p
ro

vi
de

d
on

ly

■
■

To
 e

na
bl

e
C

M
P

th
e

en
ca

ps
ul

at
io

n
sc

he
m

e
m

us
t

sc
he

m
e

ex
is

ts
 .

th
ro

ug
h

st
or

ed
 p

ro
ce

du
re

s;
 fo

r
ex

am
pl

e,

be
 m

ad
e

to
 lo

ok
 li

ke
 a

 d
at

a
so

ur
ce

 t
ha

t
yo

ur

to
 c

re
at

e
a

ne
w

 c
us

to
m

er
 y

ou
 m

us
t i

nv
ok

e
pe

rs
is

te
nc

e
co

nt
ai

ne
r

re
co

gn
iz

es
. O

th
er

w
is

e
a

sp
ec

ifi
ed

 s
to

re
d

pr
oc

ed
ur

e.
 A

cc
es

s
to

yo

u
w

ill
 b

e
fo

rc
ed

 to
 ta

ke
 a

 S
es

si
on

 B
ea

ns
 p

lu
s

vi
ew

s
on

 th
e

da
ta

ba
se

 is
 p

er
m

itt
ed

; d
ire

ct

JD
B

C
 o

r
B

M
P

ap
pr

oa
ch

 to
 p

er
si

st
en

ce
.

ta
bl

e
ac

ce
ss

 is
 d

en
ie

d.
 T

he
 d

at
ab

as
e

m
us

t
■

■
Th

e
en

ca
ps

ul
at

io
n

sc
he

m
e

w
ill

 li
ke

ly
 in

cr
ea

se

be
 a

cc
es

se
d

vi
a

an
 A

PI
 im

pl
em

en
te

d
by

 a

th
e

re
sp

on
se

 ti
m

e
of

 d
at

ab
as

e
ac

ce
ss

.
C

 o
r

CO
B

O
L

w
ra

pp
er

 th
at

 in
 tu

rn
 a

cc
es

se
s

■
■

Th
e

in
di

vi
du

al
 c

om
po

ne
nt

s
of

 th
e

en
ca

ps
ul

at
io

n
th

e
da

ta
ba

se
 d

ire
ct

ly
. T

he
 d

at
ab

as
e

m
us

t
sc

he
m

e
m

ay
 n

ot
 b

e
ab

le
 to

 b
e

in
cl

ud
ed

 a
s

a
be

 a
cc

es
se

d
vi

a
pr

ed
ef

in
ed

 d
at

a
st

ep
 in

 a
 tr

an
sa

ct
io

n.
cl

as
se

s/
ob

je
ct

s.

N
am

in
g

co
nv

en
tio

ns
Yo

ur
 d

at
ab

as
e(

s)
 m

ay
 fo

llo
w

 d
iff

er
en

t
■

■
Th

e
be

an
 d

ep
lo

ye
r(

s)
 w

ill
 n

ee
d

to
 u

nd
er

st
an

d
na

m
in

g
co

nv
en

tio
ns

 fr
om

 o
ne

 a
no

th
er

al

l r
el

ev
an

t n
am

in
g

co
nv

en
tio

ns
.

an
d

lik
el

y
do

 n
ot

 fo
llo

w
 c

om
m

on
 J

av
a

■
■

Po
lit

ic
al

 p
re

ss
ur

e
m

ay
 b

e
pu

t o
n

yo
ur

 t
ea

m

na
m

in
g

co
nv

en
tio

ns
.

to
 fo

llo
w

 in
ap

pr
op

ria
te

 c
or

po
ra

te
 d

at
a

na
m

in
g

co
nv

en
tio

ns
 fo

r
us

e
w

ith
 y

ou
r

EJ
B

s.

In
ad

eq
ua

te
 d

oc
um

en
ta

tio
n

Th
e

do
cu

m
en

ta
tio

n
fo

r
yo

ur
 d

at
ab

as
e

is

■
■

A
si

gn
ifi

ca
nt

 le
ga

cy
 d

at
a

an
al

ys
is

 e
ffo

rt
 w

ill
 b

e
sp

ar
se

, n
on

ex
is

te
nt

, o
r

ou
t o

f d
at

e.
re

qu
ire

d
to

 d
et

er
m

in
e

th
e

pr
op

er
 u

sa
ge

 o
f e

ac
h

ta
bl

e,
 c

ol
um

n,
 a

nd
 s

to
re

d
pr

oc
ed

ur
e

w
ith

in
 y

ou
r

da
ta

ba
se

.

co
nt

in
ue

s

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS386

P
R

O
B

LE
M

EX
A

M
P

LE
P

O
TE

N
TI

A
L

IM
P

A
C

T

O
rig

in
al

 d
es

ig
n

go
al

s
ar

e
at

 o
dd

s
Th

e
le

ga
cy

 d
at

ab
as

e
w

as
 b

ui
lt

fo
r

in
te

rn
al

■

■
G

oo
d

lu
ck

. Y
ou

’ll
 n

ee
d

it.
w

ith
 c

ur
re

nt
 p

ro
je

ct
 n

ee
ds

.
us

e
by

 d
at

a
en

tr
y

cl
er

ks
 to

 c
ap

tu
re

cu

st
om

er
 o

rd
er

s
in

 b
at

ch
 m

od
e,

 w
he

re
as

yo

u
ar

e
bu

ild
in

g
a

24
x7

 o
rd

er
 e

nt
ry

ap

pl
ic

at
io

n
to

 b
e

de
pl

oy
ed

 o
ve

r
th

e
In

te
rn

et
.

In
co

ns
is

te
nt

 k
ey

 s
tr

at
eg

y
Yo

ur
 d

at
ab

as
e

us
es

 n
at

ur
al

 k
ey

s
fo

r
■

■
B

ea
n

pr
ov

id
er

s
m

us
t u

nd
er

st
an

d,
 a

nd
 t

he
n

so
m

e
ta

bl
es

, s
ur

ro
ga

te
 k

ey
s

in
 o

th
er

s,
 a

nd

ap
pr

op
ria

te
ly

 c
od

e
su

pp
or

t f
or

 t
he

 v
ar

io
us

 k
ey

di

ffe
re

nt
 s

tr
at

eg
ie

s
fo

r
su

rr
og

at
e

ke
ys

st

ra
te

gi
es

 fo
r

th
ei

r
EJ

B
s.

w
he

n
th

ey
 a

re
 u

se
d.

■
■

Ke
y

ge
ne

ra
tio

n
co

de
 in

cr
ea

se
s

in
 c

om
pl

ex
ity

 t
o

su
pp

or
t t

he
 v

ar
io

us
 s

tr
at

eg
ie

s.

■
■

Ad
di

tio
na

l s
ou

rc
e

co
de

 to
 v

al
id

at
e

th
at

 n
at

ur
al

ke

ys
 a

re
, i

n
fa

ct
, u

ni
qu

e
w

ill
 b

e
re

qu
ire

d.

■
■

Re
la

tio
ns

hi
p

m
an

ag
em

en
t c

od
e

in
cr

ea
se

s
in

co
m

pl
ex

ity
 b

ec
au

se
 y

ou
 c

an
’t

co
de

, a
nd

 t
he

n
re

us
e

a
si

ng
le

 a
pp

ro
ac

h.

Ta
b

le
 1

2.
3

Ty
pi

ca
l L

eg
ac

y
D

at
a

Pr
ob

le
m

s
(c

on
tin

ue
d)

Once you’ve identified the challenges in your legacy integration efforts, the
second step is to determine how you will address the problems that you have
found with your legacy data and the legacy database design. Table 12.5 com-
pares and contrasts several strategies at your disposal.

Although descriptions of how to implement these three strategies is clearly
beyond the scope of this book, we can provide some advice:

1. Do not underestimate the effort required to address this problem. If it can
be done at all, data migration/improvement efforts often prove to be a
project, or a series of projects, that span several years. This is easily on the
order of magnitude of your organization’s Year 2000 (Y2K) efforts.

2. Think small. A series of small changes, or refactorings, is often preferable
to a single big-bang approach in which you need to re-release all of your
organization’s applications at once. Martin Fowler’s book Refactoring:
Improving the Design of Existing Code (Addison Wesley, 1999) describes the
principles and practices of refactoring. It should provide some insight into
how to make incremental changes to your legacy data design (many of his
refactorings are geared to changing object-oriented designs, but the fun-
damentals still apply).

3. Did we mention not to underestimate the effort required?

Handling Large Result Sets
A serious problem when writing finder methods of entity beans (or any rela-
tional database code for that matter) is handling larger-than-expected result
sets. If you locate too much data, you are causing undue performance issues,
because you may not need the entire result set. To handle this situation, you
have several strategies at your disposal:

Persistence Best Practices 387

TOOL URL

Informatica PowerCenter www.informatica.com

ETI*Extract www.evtech.com

Information Logistics Network www.d2k.com

Ascential Software’s DataSage www.ascentialsoftware.com

INTEGRITY Data Re-Engineering Environment www.vality.com

Trillium Control Center www.trilliumsoft.com

Table 12.4 Sample Legacy Data Integration Tools

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS388

ST
R

A
TE

G
Y

A
D

V
A

N
TA

G
ES

D
IS

A
D

V
A

N
TA

G
ES

C
re

at
e

yo
ur

 o
w

n
pr

iv
at

e
■

■
Yo

u
ha

ve
 c

om
pl

et
e

co
nt

ro
l o

ve
r

yo
ur

 d
at

ab
as

e.

■
■

Re
pl

ic
at

io
n

of
 c

om
m

on
 d

at
a

is
 li

ke
ly

.
da

ta
ba

se
 fo

r
ne

w
 a

tt
rib

ut
es

.
■

■
Yo

u
m

ay
 b

e
ab

le
 to

 a
vo

id
 c

on
fo

rm
in

g
to

 le
ga

cy
■

■
U

na
bl

e
to

 e
as

ily
 ta

ke
 a

dv
an

ta
ge

 o
f t

he

pr
oc

ed
ur

es
 w

ith
in

 y
ou

r
or

ga
ni

za
tio

n,
 s

pe
ed

in
g

ex
is

tin
g

co
rp

or
at

e
le

ga
cy

 d
at

a.
up

 d
ev

el
op

m
en

t.
■

■
M

ay
 s

til
l b

e
re

qu
ire

d
to

 in
te

gr
at

e
w

ith

th
e

le
ga

cy
 c

or
po

ra
te

 d
at

ab
as

e(
s)

 v
ia

tr

ig
ge

rs
, p

ro
gr

am
m

ed
 b

at
ch

 jo
bs

, o
r

ET
L

to
ol

s.

■
■

Yo
ur

 te
am

 m
us

t h
av

e
da

ta
ba

se
 e

xp
er

tis
e.

■

■
Yo

ur
 p

ro
je

ct
 r

is
ks

 s
ig

ni
fic

an
t

po
lit

ic
al

 p
ro

b-
le

m
s

be
ca

us
e

yo
u

m
ay

 b
e

pe
rc

ei
ve

d
as

no
t b

ei
ng

 te
am

 p
la

ye
rs

.

Re
fa

ct
or

 y
ou

r
da

ta
 s

ch
em

a.
■

■
Yo

u
ha

ve
 a

 c
le

an
 d

at
ab

as
e

de
si

gn
 to

 w
or

k
w

ith
.

■
■

Th
is

 is
 v

er
y

di
ffi

cu
lt

to
 a

ch
ie

ve
.

■
■

Yo
ur

 d
at

ab
as

e
sc

he
m

a
ca

n
be

 r
ed

es
ig

ne
d

to

■
■

Le
ga

cy
 a

pp
lic

at
io

ns
 w

ill
 n

ee
d

to
 b

e
re

fle
ct

 th
e

ne
ed

s
of

 m
od

er
n,

 o
bj

ec
t-

or
ie

nt
ed

up

da
te

d
to

 r
ef

le
ct

 th
e

ne
w

 d
at

a
sc

he
m

a.
an

d
co

m
po

ne
nt

-b
as

ed
 te

ch
no

lo
gi

es
, s

uc
h

as
 E

JB
.

■
■

Yo
u

w
ill

 n
ee

d
to

 id
en

tif
y

an
d

fix
 a

ll
of

yo

ur
 d

at
a-

re
la

te
d

pr
ob

le
m

s,
 r

eq
ui

rin
g

si
gn

ifi
ca

nt
 e

ffo
rt

.
■

■
Yo

u
ne

ed
 to

 d
ev

el
op

, a
nd

 t
he

n
fo

llo
w

,
pr

oc
ed

ur
es

 to
 e

ns
ur

e
th

at
 y

ou
r

da
ta

ba
se

de
si

gn
 r

em
ai

ns
 c

le
an

; o
th

er
w

is
e

yo
u

w
ill

en
d

up
 in

 th
e

sa
m

e
po

si
tio

n
se

ve
ra

l y
ea

rs
fr

om
 n

ow
.

En
ca

ps
ul

at
e

da
ta

ba
se

 a
cc

es
s

■
■

A
cl

ea
n

ac
ce

ss
 a

pp
ro

ac
h

to
 e

nc
ap

su
la

tio
n

ca
n

be

■
■

Le
ga

cy
 a

pp
lic

at
io

ns
 s

ho
ul

d
be

 r
ew

rit
te

n
w

ith
 s

to
re

d
pr

oc
ed

ur
es

, v
ie

w
s,

pr

es
en

te
d

to
 a

pp
lic

at
io

n
de

ve
lo

pe
rs

.
to

 u
se

 th
e

ne
w

 a
cc

es
s

ap
pr

oa
ch

 t
o

da
ta

 c
la

ss
es

/o
bj

ec
ts

, o
r

an
 A

PI
.

en
su

re
 in

te
gr

ity
 w

ith
in

 th
e

da
ta

ba
se

.
■

■
Im

pl
em

en
tin

g
yo

ur
 e

nc
ap

su
la

tio
n

st
ra

te
gy

m

ay
 r

eq
ui

re
 s

ig
ni

fic
an

t e
ffo

rt
.

■
■

Yo
ur

 e
nc

ap
su

la
tio

n
ap

pr
oa

ch
 m

ay

be
co

m
e

an
 a

rc
hi

te
ct

ur
al

 b
ot

tle
ne

ck
.

■
■

D
ep

en
di

ng
 o

n
th

e
ra

ng
e

of
 t

ec
hn

ol
og

ie
s

w
ith

in
 y

ou
r

or
ga

ni
za

tio
n,

 y
ou

 m
ay

 n
ot

 b
e

ab
le

 to
 fi

nd
 o

ne
 s

tr
at

eg
y

th
at

 w
or

ks
 fo

r
al

l
ap

pl
ic

at
io

ns
.

Ta
b

le
 1

2.
5

St
ra

te
gi

es
 fo

r
M

iti
ga

tin
g

Le
ga

cy
 D

at
a

Pr
ob

le
m

s

Persistence Best Practices 389

ST
R

A
TE

G
Y

A
D

V
A

N
TA

G
ES

D
IS

A
D

V
A

N
TA

G
ES

D
es

ig
n

yo
ur

 E
JB

s
to

 w
or

k
w

ith

■
■

Yo
ur

 E
JB

s
w

or
k

w
ith

 th
e

le
ga

cy
 d

at
ab

as
e(

s)
.

■
■

Si
gn

ifi
ca

nt
 r

ed
es

ig
n

an
d

co
di

ng
 is

 li
ke

ly

th
e

ex
is

tin
g

de
si

gn
 a

s
is

.
to

 b
e

re
qu

ire
d

fo
r

th
is

 to
 w

or
k.

■

■
Th

e
ac

tu
al

 p
ro

bl
em

, a
 p

oo
r

da
ta

ba
se

de
si

gn
, i

s
no

t a
dd

re
ss

ed
 a

nd
 w

ill
 c

on
tin

ue
to

 a
ffe

ct
 fu

tu
re

 p
ro

je
ct

s.
■

■
Th

is
 m

ay
 n

ot
 b

e
fe

as
ib

le
, d

ep
en

di
ng

 o
n

th
e

ex
te

nt
 o

f t
he

 m
is

m
at

ch
 b

et
w

ee
n

th
e

le
ga

cy
 d

at
ab

as
e

de
si

gn
 a

nd
 t

he
 r

eq
ui

re
-

m
en

ts
 fo

r
yo

ur
 a

pp
lic

at
io

n.

■
■

Pe
rf

or
m

an
ce

 is
 li

ke
ly

 to
 b

e
si

gn
ifi

ca
nt

ly
im

pa
ct

ed
 b

ec
au

se
 o

f t
he

 r
es

ul
tin

g
ov

er
-

he
ad

 o
f m

ap
pi

ng
 y

ou
r

EJ
B

s
to

 t
he

 d
at

a-
ba

se
 a

nd
 th

e
tr

an
sf

or
m

at
io

ns
 r

eq
ui

re
d

to
su

pp
or

t t
ho

se
 m

ap
pi

ng
s.

■

■
C

om
m

on
 a

pp
ro

ac
he

s
to

 p
er

si
st

en
ce

, s
uc

h
as

 C
M

P
an

d
th

e
us

e
of

 a
 p

er
si

st
en

ce
la

ye
r/

fr
am

ew
or

k,
 is

 li
ke

ly
 n

ot
 a

n
op

tio
n

if
th

e
m

is
m

at
ch

 is
 to

o
gr

ea
t.

Ta
b

le
 1

2.
5

St
ra

te
gi

es
 fo

r
M

iti
ga

tin
g

Le
ga

cy
 D

at
a

Pr
ob

le
m

s
(c

on
tin

ue
d)

■■ Add code to estimate the size of the result set, a feature most relational
databases support, and throw an exception if it’s too big. This works for
Session Beans plus JDBC.

■■ Learn to live with the large result set. If it doesn’t happen very often, it
might not be worth your while to write code to deal with this. This works
for Session Beans plus JDBC, BMP, and CMP.

■■ Write tighter SELECT statements by introducing additional parameters to
narrow the results. This works for Session Beans plus JDBC, BMP, and
CMP.

■■ Limit the results of the finder via the SQL bound to the method (a feature
of most databases).

■■ Use a scrollable result set. JDBC 2.0 introduced the ability to access the
results of SELECT clauses as database cursors, enabling bean providers to
write code that brings portions of the result set across the network at a
time. This works for Session Beans plus JDBC.

■■ Use session beans to control how the result set is handled. For example,
you can use a stateful session bean that caches a collection of primary
keys. When the client requests data, return only a block (say 20 pieces) of
data at a time based on the primary keys.

■■ Let your persistence container handle it. Some persistence containers,
such as WebGain’s TOPLink, implement strategies for dealing with large
result sets. This works for entity beans.

Summary

In this chapter, we touched on a variety of best practices and strategies when
performing persistence in an EJB environment. We learned when (and when
not to) use entity beans, and how to choose between BMP and CMP, and we
surveyed a large collection of persistence best practices.

In the next chapter, we’ll take a look at an advanced EJB topic—design
strategies.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS390

C H A P T E R 13

391

In this chapter, we will discuss EJB best practices—tried-and-true approaches to
designing, building, and working with EJB. By being aware of these best prac-
tices, you will avoid common pitfalls that others have experienced when
building EJB systems. We’ll also discuss performance issues when building
EJB systems.

Let’s begin now with our collection of development strategies.

This chapter does not cover low-level EJB design patterns. We started to put those
together but realized that those patterns deserved a book of their own. That’s what
gave birth to Floyd Marinescu’s book, EJB Design Patterns, published by John Wiley
& Sons and a companion to this book.

When to Use Stateful versus Stateless

Lately there’s been a lot of fuss over statelessness. The limitations of stateless-
ness are often exaggerated, as are its benefits. Many statelessness proponents
blindly declare that statelessness leads to increased scalability, while stateful
backers argue about having to rearchitect entire systems to accommodate
statelessness. What’s the real story?

Designed right, statelessness has two virtues:

■■ With stateless beans, the EJB container is able to easily pool and reuse
beans, allowing a few beans to service many clients. While the same

EJB Best Practices and
Performance Optimizations

paradigm applies to stateful beans, if the server is out of memory or has
reached its bean instance limit, then the bean state may be passivated and
activated between method calls, possibly resulting in I/O bottlenecks. So
one practical virtue of statelessness is the ability to easily pool and reuse
components at little or no overhead.

■■ Because a stateful session bean caches a client conversation in memory, a
bean failure may entail losing your conversation. This can have severe
repercussions if you don’t write your beans with this in mind or if you
don’t use an EJB product that provides stateful recovery. In a stateless
model, the request could be transparently rerouted to a different compo-
nent because any component can service the client’s needs.

The largest drawback to statelessness is that you need to push client-specific
data into the stateless bean for each method invocation. Most stateless session
beans need to receive some information that is specific to a certain client, such
as a bank account number for a banking bean. This information must be resup-
plied to stateless beans each time a client request arrives because the bean can-
not hold any state on behalf of a particular client.

One way to supply the bean with client-specific data is to pass the data as
parameters into the bean’s methods. This can lead to performance degrada-
tion, however, especially if the data being passed is large. This also clogs the
network, reducing available bandwidth for other processes.

Another way to get client-specific data to a stateless bean is for the bean to
store data persistently on behalf of a client. The client then does not need to
pass the entire state in a method invocation but simply needs to supply an
identifier to retrieve the data from persistent storage. The trade-off here is,
again, performance—storing conversations persistently could lead to storage
I/O bottlenecks, rather than network I/O bottlenecks.

Yet another way to work around the limitations of statelessness is for a bean to
store client-specific data in a directory structure using JNDI. The client could
later pass the bean an identifier for locating the data in the directory structure.
This is quite similar to storing data in a database. The big difference is that a
JNDI implementation could be an in-memory implementation (an effect simi-
lar to a shared property manager, familiar to COM� readers). If client data is
stored in memory, there is no database hit.

When choosing between stateful and stateless, you should ask if the business
process spans multiple invocations, requiring a conversation. If so, the stateful
model fits nicely because client-specific conversations can be part of the bean
state. On the other hand, if your business process lasts for a single method call,
the stateless paradigm better suits your needs.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS392

Note that if you are going to use state, and if you’re building a Web-based sys-
tem, you may be able to achieve what you need with a servlet’s HttpSession
object, which is the Web server equivalent to a stateful session bean and is eas-
ier to work with because it does not require custom coding. We have found
that a stateful session bean should be used over an HttpSession when:

■■ You need a stateful object that’s transactionally aware. Your session bean
can achieve this by implementing SessionSynchronization, described in
Chapter 10.

■■ You have both Web-based and non-Web-based clients accessing your EJB
layer, and both need state.

■■ You are using a stateful session bean to temporarily store temporary state
for a business process that occurs within a single HTTP request and
involves multiple beans. To understand this point, consider that you are
going through a big chain of beans, and a bean deep in the chain needs to
access state. You could marshal the state in the parameter list of each bean
method (ugly and could be a performance problem if you’re using remote
interfaces). The better solution is to use a stateful session bean and just
pass the object reference through the stack of bean calls.

In summary, most sophisticated deployments are likely to have a complex and
interesting combination of the stateless and stateful paradigm. Use the para-
digm that’s most appropriate for your business problem. The one exception is
if there is an obvious bottleneck, such as keeping megabytes of state in mem-
ory. But if you are on the fence about stateful versus stateless, you may find
that statefulness may not be your primary issue—until you test your code,
you’re just shooting in the dark. If it turns out that your statefulness is your
bottleneck, you could refactor your code if necessary.

When to Use Messaging versus RMI-IIOP

Another hot topic when designing an EJB object model is choosing when (and
when not) to use messaging, rather than RMI-IIOP.

The following advantages of messaging provide reasons why you might want
to use it:

Database performance. If you are going to perform relational database work,
such as persisting an order to a database, it may be advantageous to use
messaging. Sending a message to a secondary message queue to be
processed later relieves stress on your primary database during peak
hours. In the wee hours of the morning, when site traffic is low, you can

EJB Best Practices and Performance Optimizations 393

process messages off the message queue and insert the orders into the
database. Note that this only works if the user doesn’t need an immediate
answer to whether his operation was a success; it would not work, for
example, when checking the validity of a credit card.

Quick responses. A client may not want to block and wait for a response that
it knows does not exist. For methods that return void, the only possible
return values are nothing or an exception. If a client never expects to
receive an exception, why should it block for a response? Messaging
allows clients to process other items when they would otherwise be block-
ing for the method to return.

Smooth load balancing. In Chapter 8, we discussed how message-driven
beans distribute load more smoothly than session or entity beans. With ses-
sion and entity beans, a load-balancing algorithm makes an educated guess
about which server is the least burdened. With messaging, the server that
is the least burdened and asks for a message, gets the message. This also
aids upgrading your system, since you merely need to detect when your

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS394

What If My Stateful Bean Dies?

Bean failure is an important factor to consider. Because a stateful session bean
caches a client conversation in memory, a bean failure may entail losing your
conversation. This was not a problem with statelessness—there was no conversa-
tion to be lost. Unless you are using an EJB product that routinely checkpoints
(that is, persists) your conversations, your conversations will be lost if an applica-
tion server fails.

Losing a conversation has devastating impacts. If you have large conversations
that span time, you’ve lost important work. And the more stateful session beans
that you use in tandem, the larger the existing network of interconnected objects
that each rely on the other’s stability. This means that if your code is not pre-
pared for a failure, you may have a grim situation. Not an exciting prospect for
mission-critical computing, is it?

When designing your stateful beans, use the following guidelines:

■■ Make sure your problem lends itself to a stateful conversation.

■■ Keep your conversations short.

■■ If the performance is feasible, consider checkpointing stateful conversations
yourself, to minimize the impacts of bean failure.

■■ Write smart client code that anticipates a bean failure and reestablishes the
conversational state with a fresh stateful session bean.

queue size reaches a threshold. This indicates that the number of con-
sumers is not great enough, which means you need to add new machines.

Request prioritization. Asynchronous servers can queue, prioritize, and
process messages in a different order than they arrive into the system.
Some messaging systems allow message queues to be prioritized to order
messages based upon business rules. For example, in a military battle tank,
if all requests for the system sent to a centralized dispatch queue are made
asynchronously, disaster could result if a fire control message was queued
up behind 100 communication messages that had to be processed first. In a
military system, it would be advantageous to process any fire control and
safety messages before communication messages. A prioritized queue
would allow for the reordering of messages on the queue to account for the
urgency of fire control in a battle tank.

Rapidly assembling disparate systems. Many legacy systems are based on
message-oriented middleware and can easily interact with your J2EE sys-
tem through messaging. Messaging provides a rapid development envi-
ronment for systems that have distributed nodes that perform business
processing and must communicate with one another.

Loosely coupled systems. Messaging enables loose coupling between appli-
cations. Applications do not need to know about each other at compile
time. This empowers you to have dynamic discovery of applications, which
may be useful in a rapidly changing, service-oriented business environ-
ment.

Geographically disperse systems. Messaging is very useful when you have
applications communicating over the Internet or a wide-area network. The
network is slow and unreliable, and RMI-IIOP is not intended for such
broad-range communications. Messaging along with guaranteed message
delivery adds an element of safety to your transactions. Another choice
you have is Web services technologies (XML/HTTP).

Parallel processing. Messaging is a way to perform pseudo-threading in an
EJB deployment. You can launch a series of messages and continue pro-
cessing, which is the distributed equivalent of launching threads.

Reliability. Messaging can be used even if a server is down. System-level
problems (such as a database crashing) typically do not affect the success
of the operation, because when you’re using guaranteed message delivery the
message remains on the queue until the system-level problem is resolved.
Even if the message queue fails, message producers can spool messages
and send them when the queue comes back up (called store and forward). By
combining guaranteed message delivery with store-and-forward, the sys-
tem will not lose any requests unless there is a complete system failure at
all tiers (extremely unlikely).

EJB Best Practices and Performance Optimizations 395

Many-to-many communications. If you have several parties communicating
together, messaging is appropriate since it enables many producers and
many consumers to collaborate, whereas RMI-IIOP is a single-source,
single-sink request model.

The following are scenarios for which you might not want to use messaging:

When you’re not sure if the operation will succeed. RMI-IIOP systems can
throw exceptions, whereas message-driven beans cannot.

When you need a return result. RMI-IIOP systems can return a result imme-
diately because the request is executed immediately. Not so for messaging.
You can return results eventually with messaging, but it’s clunky—you
need to send a separate return message and have the original client listen
for it.

When you need an operation to be part of a larger transaction. When you
put a message onto a destination, the receiving message-driven bean does
not act upon that message until a future transaction. This is inappropriate
when you need the operation to be part of a single, atomic transaction that
involves other operations. For example, if you’re performing a bank
account transfer, it would be a bad idea to deposit money into one bank
account using RMI-IIOP and then withdraw money using messaging,
because the withdrawal might fail.

When you need to propagate the client’s security identity to the server.
Since messaging does not propagate the client’s security identity to the
receiving message-driven bean, you cannot easily secure your business
operations.

When you are concerned about request performance. Messaging is inher-
ently slower than RMI-IIOP because there’s a middleman (the JMS destina-
tion) sitting between the sender and the receiver.

When you want a strongly-typed, OO system. You send messages using a
messaging API such as JMS. This is a flat API and is not object-oriented. If
you want to perform different operations, the server needs to crack open
the message or filter it somehow. In comparison, RMI-IIOP allows you to
call different business methods depending on the business operation you
want to perform. This is much more intuitive. It’s also easier to perform
compile-time semantic checking.

When you want a tighter, more straightforward system. Synchronous devel-
opment tends to be more straightforward than messaging. You have great
freedom when sending data types, and the amount of code you need to
write is minimal compared to messaging. Debugging is also much more
straightforward. When using services that are completely synchronous,

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS396

each client thread of control has a single execution path that can be traced
from the client to the server and vice versa. The effort to trace any bugs in
the system is thus minimal.

How to Guarantee a Response Time
with Capacity Planning

Many types of business problems are trivial, such as basic Web sites or non-
mission critical applications. But then there are those that must not fail and
must guarantee a certain response time. For example, a trading application
needs to guarantee a response time because stock market conditions might
change if the trade is delayed. For those serious deployments, capacity plan-
ning is essential for your deployment.

The specific amount of hardware that you’ll need for your deployment varies
greatly depending on the profile of your application, your anticipated user
load, and the EJB server you choose. The major EJB server vendors each have
strategies for capacity planning that they can share with you.

One strategy, however, works with all EJB server vendors. The idea is to throt-
tle, or limit, the amount of work any given EJB server instance can process at
any one time. Why would you ever want to limit the amount of work a
machine can handle? A machine can only guarantee a response time for the
clients it serves and be reliable if it isn’t using up every last bit of hardware
resources it has at its disposal. For example, if your EJB server runs out of
memory, it either starts swapping your beans out to disk because of passiva-
tion/activation, or it uses virtual memory and uses the hard disk as swap
space. Either way, the response time and reliability of your box is jeopardized.
You want to prevent this from happening at all costs by limiting the amount of
traffic your server can handle at once.

You can throttle (limit) how much traffic your machine can handle using a
variety of means. One is by limiting the thread pool of your EJB server. By set-
ting an upper bound on the number of threads that can execute concurrently,
you effectively limit the number of users that can be processed at any given
time. Another possibility is to limit the bean instance pool. This lets you control
how many EJB components can be instantiated at once, which is great for
allowing more requests to execute with lightweight beans and fewer requests
to execute with heavyweight beans.

Once you’ve throttled your machine and tested it to make sure it’s throttled
correctly, you need to devise a strategy to add more machines to the deploy-
ment in case your cluster-wide capacity limit is reached. An easy way to do

EJB Best Practices and Performance Optimizations 397

this is to have a standby machine that is unused under normal circumstances.
When you detect that the limit is breached (such as by observing message
queue growth, indicating that your servers cannot take consume off the queue
fast enough), the standby machine kicks in and takes over the excess load. A
system administrator can then be paged to purchase a new standby machine.

This algorithm guarantees a response time because each individual server can-
not exceed its limit, and there’s always an extra box waiting if traffic increases.

How to Achieve Singletons with EJB

A singleton is a very useful design pattern in software engineering. In a nut-
shell, a singleton is a single instantiation of a class with one global point of
access. You would normally create a singleton in Java by using the static key-
word when defining a class. However, one restriction of EJB is that you cannot
use static fields in your beans. This precludes the use of the singleton design
pattern. But we’d still like to use singletons—how?

The answer is JNDI. You can use JNDI to store arbitrary objects to simulate the
singleton pattern. If all your objects know of a single, well-known place in a
JNDI tree where a particular object is stored, they can effectively treat the
object as a single instance. You can perform this by binding an RMI-IIOP stub
to a JNDI tree. Any client code that accessed the JNDI tree would get a copy of
that remote stub, and each copy would point back to the same RMI-IIOP
server object.

The downside to this pattern is you are leaving the EJB sandbox and down-
grading to vanilla RMI-IIOP, and thus you lose all the services provided by EJB.

Wrap Entity Beans with Session Beans

Consider the following scenarios:

■■ A bank teller component performs the business process of banking opera-
tions, but the data used by the teller is the bank account data.

■■ An order-entry component performs the business process of submitting
new orders for products, such as submitting an order for a new computer
to be delivered to a customer. But the data generated by the order-entry
component is the order itself, which contains a number of order line-items
describing each part ordered.

■■ A stock portfolio manager component performs the business process of
updating a stock portfolio, such as buying and selling shares of stock. But

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS398

the data manipulated by the portfolio manager is the portfolio itself,
which might contain other data such as account and stock information.

In each of these scenarios, business process components are manipulating data
in some underlying data storage, such as a relational database. The business
process components map very well to session beans, and the data components
map very well to entity beans. The session beans use entity beans to represent
their data, similar to how a bank teller uses a bank account. Thus, a great EJB
design strategy is to wrap entity beans with session beans.

Another benefit of this approach is performance. Accessing an entity bean
directly over the network is expensive, due to:

■■ The stub

■■ The skeleton

■■ Marshaling/demarshaling

■■ The network call

■■ The EJB object interceptor

You can minimize these expensive calls to entity beans by wrapping them with
session beans. The session beans perform bulk create, read, update, delete
(CRUD) operations on behalf of remote clients. The session bean also serves as a
transactional façade, enforcing that transactions occur on the server, rather than
involving a remote client. This makes entity beans into an implementation detail of
session beans. The entity beans are never seen to the external client; rather, entity
beans just happen to be the way that the session bean performs persistence.

A final benefit of this approach is that your entity beans typically achieve a
high level of reuse. For instance, consider an order entry system, where you
have an order submission session bean that performs operations on an order
entity bean. In the next generation of your application, you may want an order
fulfillment session bean, an order reporting session bean, and so on. That same
order entity bean can be reused for each of these session beans. This approach
allows you to fine-tune and change your session bean business processes over
time as user requirements change.

Thus, in practice you can expect the reuse of entity beans to be high. Session
beans model a current business process, which can be tweaked and tuned with
different algorithms and approaches. Entity beans, on the other hand, define
your core business. Data such as purchase orders, customers, and bank
accounts do not change very much over time.

There are also a few of caveats about this approach:

■■ You can also wrap entity beans with other entity beans, if you have a com-
plex object model with relationships.

EJB Best Practices and Performance Optimizations 399

■■ The value of session beans as a network performance optimization goes
away if you do not have remote clients. This could occur, for example, if
you deploy an entire J2EE application into a single process, with servlets
and JSPs calling EJB components in-process. However, the session façade
could still be used for proper design considerations and to isolate your
deployment from any particular multitier configuration. If you’re lazy, an
alternative is to use an entity bean’s home business methods, which are
instance-independent business methods that act effectively as stateless
session bean methods, except they are located on the entity bean.

■■ Note that what we’ve presented here are merely guidelines, not hard-and-
fast rules. Indeed, a session bean can contain data-related logic as well,
such as a session bean performing a bulk database read via JDBC. The key
is that session beans never embody permanent data, but merely provide
access to data.

Performance-Tuning Entity Beans

There is a great deal of fear, uncertainty, and doubt (FUD) in the industry
about entity beans. Many organizations are using them improperly, creating
performance issues. Here are some tips and tricks to make your entity beans
high performing:

■■ Entity beans should not be called directly from remote clients, but rather
from session or entity beans located in the same process. Because of this,
you should always call entity beans through their local interfaces, not
their remote interfaces.

■■ Use your container’s caching options as much as possible. If your beans
are read-only, instruct your container to keep them cached permanently. If
they are read-mostly or read-write, many containers have algorithms to
deal with this. Remember: Memory is cheap.

■■ Be sure your transactions run on the server, are as short as possible, and
encapsulate all of the entity bean operations you’d like to participate in
that transaction. This is important because the JDBC occurs at the begin-
ning and end of transactions. If you have a transaction occurring for each
entity bean get/set operation, you are performing SQL hits on each
method call. The best way to perform transactions with entity beans is to
wrap all your entity bean calls within a session bean method. Deploy both
the session and entity beans with the container-managed transaction
attribute of Required. This creates a transaction in the session bean that
encapsulates all entity beans in the same transaction.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS400

■■ Consider having your container batch JDBC updates all at once at the end
of the transaction. That way, if you perform many JDBC operations in a
single transaction, you only need one network call to the database.

■■ For performance, use container managed persistence, if possible. As con-
voluted as it may sound, container managed persistence can actually be
higher-performing than bean managed persistence, for reasons outlined in
Chapter 12. Just make sure that you’re using a good persister that gives
you great flexibility when performing O/R mapping.

■■ If you are not going to access your entire entity bean’s data on each trans-
action, lazy-load some of your fields rather than loading it all when the
entity bean is first accessed. You can lazy-load your fields programmati-
cally using BMP by fine-tuning your JDBC code, or you can lazy-load
your fields declaratively using CMP if your container tools support it.

■■ If you’re using CMP, instruct your container to persist fields in bulk. For
example, BEA Weblogic has the notion of field groups. This empowers
you to define groups of fields (even across relationships) that persist
together, reducing the amount of SQL required.

■■ If you’re using CMP, use your container tools to force the container to
have your finder methods automatically load your bean, rather than hav-
ing finders and loading happen separately, resulting in two SQL state-
ments. The only time you should not do this is if you’re not going to read
data from your entity bean (for example, setting fields, but not getting
fields).

■■ Send output to a good logging/tracing system, such as a logging
message-driven bean. This allows you to understand the methods that
are causing bottlenecks, such as repeated loads or stores.

■■ Use a performance-profiling tool to identify bottlenecks, such as Opti-
mizeIt or JProbe. If your program is hanging on the JDBC driver, chances
are the database is your bottleneck.

Performance-tuning your entity beans opens up the possibility to create fine-
grained entity beans that model a single row in the database, as well as coarse-
grained entity beans that model a complex set of data spanning multiple tables.

Choosing between Local Interfaces
and Remote Interfaces

Local interfaces, a new feature in EJB 2.0, allow you to access your EJB com-
ponents without incurring network traffic. They also allow you to pass

EJB Best Practices and Performance Optimizations 401

nonserializable parameters around, which is handy. So what is the value of a
remote interface? Well, there really isn’t a value, unless:

■■ You need to access your system remotely (say from a remote Web tier).

■■ You are trying to test EJB components individually and need to access
them from a standalone client to perform the testing.

■■ You need to allow your containers more choices for workload distribution
and failover in a clustered-server environment.

For optimal performance, we recommend that you build your system using all
local interfaces, and then have one or more session bean wrappers with remote
interfaces, exposing the system to remote clients.

Note that the problem with local and remote interfaces is that the code is
slightly different for each paradigm. Local interfaces have a different interface
name and do not use PortableRemoteObject.narrow(), and there are no Remote-
Exceptions thrown. Because of this, you need to recode your clients when
switching between the two paradigms. This is an unfortunate consequence of
having a programmatic approach to performance-tuning.

To limit the amount of recoding you’ll need to do, decide whether the clients
of your beans are going to be local or remote before you start coding. For exam-
ple, if you’re building a Web-based system, decide whether your system will
be a complete J2EE application in a single process, or whether your Web tier
will be split off from your EJB tier into a separate process. We discuss the trade-
offs of these approaches in Chapter 14.

As a final note, if you are connecting to your EJB deployment from a very dis-
tant client (such as an applet or application that gets downloaded by remote
users), consider exposing your EJB system as an XML-based Web service,
rather than a remote interface. This will be slower than a straight RMI/IIOP
call, but is more appropriate for WAN clients.

How to Debug EJB Issues

As EJB is evolving quickly, the containers are evolving as well. The containers
or their tools often have small oddities. In addition, users may introduce bugs
that are difficult to debug. How do you debug with EJB?

Unfortunately, true debugging is a problem with EJB. Because your beans run
under the hood of a container, you’d have to load the container itself into a
debugger. But for some containers, this is impossible because you don’t have
access to the container’s source code, or the source code has been obfuscated.
For these situations, you may need to use the tried-and-true debugging
method of logging.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS402

An even more serious debugging problem occurs if exceptions are being
thrown from the EJB container, rather than from your beans. This can happen
for a number of reasons:

Your EJB container’s generated classes are incorrect because your inter-
faces, classes, or deployment descriptor haven’t fully complied with the
EJB specification. Your EJB container’s tools should ship with compliance
checkers to help resolve this. But know that not everything can be checked.
Often because of user error, your deployment descriptor will not match
your interfaces. This type of problem is extremely difficult to target, espe-
cially if your container tools crash!

Your EJB container has a real bug. This is a definite possibility that you must
be prepared to encounter. In the future, however, this should not happen
very often because EJB containers that comply with J2EE must test their
implementations against Sun Microsystems’ robust test suite.

A user error occurs within the EJB container. Probably the most frustrating
part of an application is doing the database work. Punctuation errors or
misspellings are tough to debug when performing JDBC. This is because
your JDBC queries are not compiled—they are interpreted at runtime, so
you don’t get the nifty things like type checking that the Java language
gives you. You are basically at the mercy of the JDBC driver. It may or may
not give you useful feedback. For example, let’s say that you’re modeling a
product, and you use the word desc rather than description to describe your
products. Unfortunately, the keyword desc is an SQL reserved keyword.
This means that your JDBC driver would throw an exception when trying
to execute any database updates that involved the word desc. These excep-
tions might be cryptic at best, depending on your JDBC driver. And when
you try to figure out what JDBC code is acting up, you will run into a road-
block: With container managed persistence, the JDBC code won’t be avail-
able because your bean does not perform its own data access! What do you
do in this situation?

When you’re faced with grim situations like this, contacting your EJB vendor
is probably not going to be very helpful. If you are operating with a deadline,
it may be too late by the time your vendor comes up with a solution. If you
could only somehow get access to the JDBC code, you could try the query
yourself using the database’s tools.

You can try several options here:

■■ Some EJB containers support IDE debugging environments, allowing you
to step through your code in real time to pinpoint problems. This is some-
thing you should look for when choosing a container.

■■ Check your database’s logfile to view a snapshot of what is really happening.

EJB Best Practices and Performance Optimizations 403

■■ Use a JDBC driver wrapper that logs all SQL statements (one is available
from Provision6, Inc).

■■ Your EJB container tools may have an option to keep generated Java files,
rather than to delete them when compiling them into classes. For exam-
ple, you can do this with BEA’s WebLogic with the keepgenerated option to
its EJB compiler tool. This is analogous to how you can use the keepgener-
ated option to keep generated proxies with Java RMI’s rmic compiler.

■■ As a last resort, you may have to decompile the offending classes to see
what’s going on. A good decompiler is Jad by Pavel Kouznetsov (see the
book’s accompanying Web site for a link). Of course, decompiling may be
illegal, depending on your container’s license agreement.

Partitioning Your Resources

When programming with EJB, we’ve found it very handy to separate the kinds
of resources your beans use into two categories: bean-specific resources and bean-
independent resources.

Bean-specific resources are resources your bean uses that are tied to a spe-
cific data instance in an underlying storage. For example, a socket connec-
tion is a bean-specific resource if that socket is used only when particular
bank account data is loaded. That is, the socket is used only when your
bean instance is bound to a particular EJB object. Such a resource should be
acquired when a bean instance is created in ejbCreate() or when activated in
ejbActivate() and released when the instance is removed in ejbRemove() or
passivated in ejbPassivate().

Bean-independent resources are resources that can be used over and over
again, no matter what underlying data your instance represents. For exam-
ple, a socket connection is a bean-independent resource if your bean can
reuse that socket no matter what bank account your bean represents (that
is, no matter what EJB object your bean instance is assigned to). Global
resources like these should be acquired when your bean is first created,
and they can be used across the board as your bean is assigned to different
EJB objects. When the container first instantiates your bean, it associates
you with a context object (such as the setEntityContext() method); then you
should acquire your bean-independent resources. Similarly, when you are
disassociated with a context object (such as the unsetEntityContext()
method), you should release bean-independent resources.

Because acquiring and releasing resources may be costly operations, catego-
rizing your resources as outlined is a vital step. Of course, the most stingy way

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS404

to handle resources is to acquire them on a just-in-time basis and release them
directly after use. For example, you could acquire a database connection only
when you’re about to use it and release it when you’re done. Then there would
be no resources to acquire/release during activation/passivation. In this case,
you’d let the container pool your resources and thus manage the resources for
you. The disadvantage is you need to code resource requests/releases over
and over again in your bean code.

Assembling Components

The EJB paradigm enables corporations to assemble applications from existing
prewritten components that solve most of the business problem already. As
good as this sounds, assembling applications from disparate components is
not all roses. The problem with assembling heterogeneous components is get-
ting them all to work together. For example, let’s say you purchase a bean that
computes prices, and you combine it with some home-grown entity beans,
such as an order bean and a product bean. Let’s assume we also use a billing
component from a different vendor. How do you get these components to
work together? None were created with the knowledge of the others.

There is no easy answer to this problem. EJB defines standard interfaces for
components to be deployable in any container, but EJB cannot specify how
domain-specific components interact. For example, EJB cannot specify the de
facto bean to represent a product or an order because each corporation models
these differently in its existing information systems.

Unfortunately, you’re always going to need to write some workflow compo-
nent that maps to each vendor’s proprietary API and object model. The only
way you can get around mapping to APIs is if a standards committee decides
on an official object model for a problem domain, such as standardizing what
a purchase order looks like. Problem domains such as pricing are open and
customizable, which makes this a large challenge.

A second problem with having these components work together is data map-
ping. How does the billing component understand the data computed by the
pricing component? Sure, you might be able to call the billing component’s
API, but it won’t magically know how to deal with the data passed to it. The
data was formatted by another vendor’s component. You’re going to need to
write an adapter object that bridges the gap between the two formats. If you
purchase components from n vendors, you’re going to spend all your time
writing adapter code. This is quite mindless and boring, although it is often
better than writing your own business logic that you’ll have to create, main-
tain, and test.

EJB Best Practices and Performance Optimizations 405

The final issue that must be overcome to get components to work together is
that every participant component must agree on a standard representation, or
schema, for exchanged data. This is a trivial problem when a single vendor
writes the components, because that vendor can simply invent a data schema
and include it with its components. This becomes a monstrous problem,
though, when integrating heterogeneous vendors’ components.

We therefore recommend that organizations purchase either small, fine-
grained horizontal components that will work anywhere (like a logging ser-
vice), or large, coarse-grained components that all come from a single vendor
(like a sales force automation suite of components). We do not recommend try-
ing to mix and match medium-to-large-sized component groups that make
different data schema assumptions.

Developing Components to Be Reusable

Our next best-practice addresses the challenge of developing reusable compo-
nents. This may be important, for example, if you’re developing beans to be
reused by other departments within your organization.

First, let’s do a reality check. Don’t believe anyone who tells you that enter-
prise beans are reusable by definition—because that is false. You need to design
your beans correctly if you want them to be reusable. You need to consider the
different applications, domains, and users of your enterprise beans, and you
need to develop your beans with as much flexibility as possible. Developing a
truly reusable set of beans will likely require many iterations of feedback from
customers using your beans in real-world situations.

Roughly speaking, bean reusability can fall into three different levels:

Reuse as given. The application assembler uses the acquired bean as it is to
build an application. The bean functionality cannot be tailored to fit the
application. Most projects will have a difficult time reusing these compo-
nents because of their inflexibility.

Reuse by customization. The application assembler configures the acquired
bean by modifying the bean properties to fit the specific needs of the appli-
cation. Bean customization typically occurs during development time. To
allow for a more flexible maintenance environment, some bean providers
allow runtime bean customization.

Reuse by extension (subclass). The application assembler creates custom
application-specific beans by subclassing the prebuilt acquired beans. The
behavior of the resulting bean is tailored for the application. This level of

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS406

reusability is generally more powerful but difficult to achieve. Reuse by
extension is made available by only a few bean providers.

The more reusability levels that a bean provides, the more useful a bean is. By
leveraging prebuilt beans, organizations can potentially lower the develop-
ment time of building enterprise applications.

Many organizations have tried—and failed—at truly reusing components. Because of
this, it is a perfectly valid strategy to not attempt true reuse at all. Rather, you can
shoot for a copy-and-paste reuse strategy, which means to make the source code for
components available in a registry to other team members or other teams. They can
take your components and change them as necessary to fit their business problem.
While this may not be true reuse, it still offers many benefits. Another approach to
reuse is to divide up your applications into Web services that call one another. The
Middleware Company offers a service to help organizations rearchitect their applica-
tions in this manner.

When to Use XML in an EJB System

XML is a popular buzzword these days, and so we should discuss the appro-
priateness of XML in an EJB deployment.

XML is useful in the following scenarios:

■■ As an interface to legacy systems. If you have a large number of legacy
systems, or even if you have one big hairy legacy system, you’ll need a
way to view the data that you send and receive from the legacy system.
XML can help you. Rather than sending and receiving data in proprietary
structures that the legacy system might understand, you can invent an
XML façade to the legacy systems. The façade takes XML input from your
EJB components and maps that XML to the proprietary structures that the
legacy system supports. When the legacy system returns data to your EJB
application, the XML façade transforms the legacy data into XML data
that your EJB application can understand. This is also useful for business
analysts involved with a J2EE application. They can help perform the data
mapping by working with XML, a technology that’s fairly simple to
understand.

■■ As a document persistence mechanism. If you are persisting large docu-
ments (news reports, articles, books, and so on), representing those docu-
ments using XML may be appropriate.

■■ As a Web service interface. As described in Chapter 1, EJB components
can also be wrapped as a Web service. XML then becomes the on-the-wire

EJB Best Practices and Performance Optimizations 407

data format sent between Web services. We have a free whitepaper on
how to build a J2EE-based Web service, as well as how to call another Web
service from a J2EE system, available on www.TheServerSide.com.

The one important scenario that XML is not useful for is as an on-the-wire for-
mat for communication between EJB components.

The idea is that rather than application components sending proprietary data
to each other, components could interoperate by passing XML documents as
parameters. Because the data is formatted in XML, each component could
inspect the XML document to determine what data it received.

Although several J2EE-based workflow solutions use this approach, XML is
often inappropriate for EJB-EJB communications because of performance.
Parsing XML documents takes time, and sending XML documents over the
wire takes even longer. For high-performance enterprise applications, using
XML at runtime for routine operations is costly. The performance barrier is
slowly becoming less important, however, as XML parsers become higher per-
forming and as people begin to use text compression to send XML documents
over the wire. However, it is still the bottleneck in many systems.

Another important reason not to use XML is because it’s often simply not
needed. Assuming that a single organization writes all your EJB components,
there is less need for data mapping between disparate systems, since you con-
trol the object model.

Legacy Integration with EJB

Most large-scale EJB/J2EE deployments involve one or more existing systems.
Devising a strategy for dealing with these legacy systems is critical. You have
two basic choices:

Rewrite that existing system using EJBs. This option is the cleanest solution
but requires the most effort. It may, however, be infeasible. Legacy systems
tend to be complex. Developers who understand the legacy system may be
difficult to find, and the time-to-market needs of the organization may not
permit a rewrite. Finally, the performance of existing systems that use
native code may not be acceptable in the Java world.

Bridge into that existing system. The if it ain’t broke, don’t fix it rule dictates
that this is the most straightforward solution. However, you will need to
maintain the bridged solution, which uses two different technologies.

If you decide to bridge into existing systems, we recommend wrapping your
legacy system with an EJB layer rather than accessing it directly (from a servlet

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS408

or JSP), because this abstraction layer will enable you to replace the legacy sys-
tem in the future, if you so desire. The EJB layer could be session beans, entity
beans, message-driven beans, or all three. The choice of which EJB compo-
nents to use depends on the nature of your existing system.

If your existing system is highly data-oriented, entity beans are a good
choice. The entity beans would represent the legacy system data as Java
objects. Note, however, that the data must be able to be represented in an
object-oriented way for this to work; otherwise you should consider using
session beans.

If your existing system is highly process-oriented, session beans are a good
choice. The session beans then serve as a façade to your existing business
process engines.

If your existing system uses message-oriented middleware as its interface,
message-driven beans are a good choice. You can send messages to the
existing system using a session bean or message-driven bean. Then a mes-
sage-driven bean can receive messages from the existing system.

The next challenge is how to actually achieve the bridge to the existing system.
That is, what is happening inside the EJB layer that talks to the existing sys-
tem? Again, you have several choices.

Proprietary bridges. You can buy an off-the-shelf bridge that connects to a
specific legacy system, perhaps an EJB-COM bridge or a container-
provided API. The disadvantage of these proprietary bridges is a loss of
portability, since there is no guarantee this code will run in other J2EE-
compliant servers.

The Java Native Interface (JNI). JNI enables you to bridge into native code,
such as C�� code. The advantage of the JNI is that it’s faster than the
other approaches. The disadvantages are that it can’t connect to any sys-
tem (just native code), the existing system needs to run-in process, and JNI
is platform-specific—so if your code needs to run on multiple platforms
you’re multiplying the testing and maintenance effort.

The Common Object Request Broker Architecture (CORBA). CORBA is an
older middleware technology that competes with EJB (since it has its own
component architecture) and also underlies EJB (since some J2EE servers
are old CORBA products wearing a new hat). The big difference between
CORBA and EJB/J2EE is that CORBA is language-neutral, while EJB/J2EE
is specialized to Java. While CORBA has this advantage over EJB/J2EE, it
has very little industry momentum behind it and is more appropriate as a
technology for performing integration with existing systems. You can
bridge into code written in almost any language by calling that legacy

EJB Best Practices and Performance Optimizations 409

system via CORBA APIs from within your EJB layer. This is highly appro-
priate for existing systems that are already CORBA-based. The disadvan-
tages of CORBA integration is that it requires an out-of-process remote call
which slows performance, and it also requires that you learn a whole new
technology if you don’t know CORBA already.

Java Message Service (JMS). JMS (along with message-driven beans) enables
you to bridge to existing systems using message-oriented middleware. You
send messages to existing systems rather than invoking them directly
through API calls. This is a bit slower, but also is a loosely coupled para-
digm that enables you to build complex messaging workflows. JMS is
highly appropriate if your existing system already uses messaging.

Web services. Web services (essentially XML/HTTP) is an attractive
approach to integrating to existing systems. You’d use XML to represent
the data sent to existing systems, and HTTP is your transport, which
allows you to navigate firewalls easily. This is a nonintrusive approach
because any system that is Internet-enabled can use Web services without
need of a whole separate communications infrastructure such as CORBA
or JMS. The disadvantage of Web services is that the XML parsing over-
head may slow you down. See www.TheServerSide.com for a J2EE Web
services whitepaper.

The J2EE Connector Architecture (JCA). The JCA is a specification that
enables you to acquire drivers that connect with existing systems and plug
them into your J2EE server to connect to a legacy system. You can connect
to any existing system for which drivers exist, and if no driver exists (such
as a proprietary internal system you’ve built in-house), you can write your
own driver. A marketplace of JCA-compliant resource adapters is evolving,
which is analogous to JDBC drivers connecting to relational databases.
Examples include CICS, TUXEDO, MVS/VSAM, SAP R/3, PeopleSoft, and
more. This makes the JCA one of the most exciting specifications in J2EE.
See http://java.sun.com/j2ee/connector for more on the JCA.

Each of these approaches has benefits and drawbacks. You need to decide
which approach is right for your business problem. For more help on legacy
integration, see Chapter 12.

Summary

In this chapter, we reviewed a series of best practices when working on an EJB
project. We hope that you refer back to these design strategies when you begin
to work with EJB—after all, an ounce of prevention is worth a pound of cure.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS410

C H A P T E R 14

411

In this chapter, we’ll talk about clustering technology, which exists to address
many of the challenges faced by large, high-capacity systems. This chapter
also explores many issues relating to EJB and large systems. It is designed to
provide you with the broadest possible understanding of the issues as well as
solutions that exist to address these issues.

Specifically, we’ll cover the following topics:

■■ Approaches and characteristics of large-scale systems with J2EE applica-
tion servers

■■ Approaches that can be employed to instrument clustered EJBs

■■ Issues related to designing clustered EJB systems

■■ Issues that impact EJB performance in a clustered system

Overview of Large-Scale Systems

The number of systems being developed is rapidly increasing year after year.
Some of these systems are small, targeted at a specific, well-defined user group
that is understood when development of the system begins. Other systems are
large, targeted at a diverse, massive user group that evolves over time. Given
the variety of systems that can be designed, what makes a system large scale?
And, more importantly, how can EJB technology operate in a large-scale
system?

Clustering

This section discusses some of the principles behind large systems and defines
terminology that will be used throughout the chapter. This section also pro-
vides some background and history of theories applicable to large-scale sys-
tems in the past.

What Is a Large-Scale System?
Unfortunately, there is no complete computer science definition of a large-
scale system. Since requirements for systems vary wildly, what may be con-
sidered large for one project is insignificant for another project.

For the purposes of this book, we will define an application server large-scale
system as one that requires the use of more than one application server that
typically operates in a cluster. A cluster is a loosely coupled group of servers
that provide unified services to their clients. Clients that use services deployed
into a cluster typically are not aware that their requests are being serviced by a
cluster and typically do not have any control over deciding which servers in
the cluster process their requests. Servers that operate in a cluster may operate
on one or more computers, each of which may have one or more processors.

In comparison, a system that employs multiple databases, firewalls, or Web
servers but uses only a single application server would not be considered a
large-scale system by this definition. This narrowness of the definition is key.

Many organizations fail to estimate the load that their systems will require and so
design their system with only small-scale characteristics in mind. For example, we
have seen organizations take advantage of threading (which is restricted in EJB), not
considering the long-term impact of such a decision when building it out to be large
scale.

Because of this, we recommend you always assume the worst: that you will need a
large-scale system eventually. This way, you always have a path to follow if your user
load increases, due to future business forces that are out of your control.

Large-scale systems can be characterized by the following three properties
(collectively called RAS):

Reliability gauges whether the system performs at a constant level as the
stresses on that system change. Reliability is not the same as performance.
For example, if the simplest request takes 10 ms to complete with one user,
the system is reliable if the same request takes 10 ms with 1,000,000 concur-
rent users. The measure of reliability can take many different forms: It can
be as broad as supporting a certain number of registered users, or as spe-
cific as requiring the round trip time for a single method invocation to be
within a discrete range. The most reliable system is one in which a request

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS412

can be entirely handled in a single process. Every time a request has to
make an interprocess hop, as when a proxy forwards a request to a node in
a cluster, the reliability of the system is reduced. For every component
added to a system, the number of scenarios that can cause a disruption in
reliable service increases and thus decreases the reliability of the overall
system. Depending upon the type of architecture employed, a cluster may
improve or reduce reliability.

Availability measures the percentage of time that your system is available
for use by its clients. A measurement of availability is not related to the
effectiveness of servicing those requests; rather, it focuses on whether or
not the services are accessible. A system may be unavailable for a variety of
reasons, such as network blockage, network latency, or total system failure.
The principle of availability states that if the probability of a single applica-
tion server being available is 1/m, the probability an application server
will be unavailable is 1—1/m. If there are n application servers in a cluster,
the probability of the system being unavailable is (1—1/m)n. The value of
(1—1/m)n decreases as n increases, implying that a cluster will always be
more available than a single server.

Serviceability measures how manageable your system is. System manage-
ment occurs at a variety of levels, including runtime monitoring, configu-
ration, maintenance, upgrades, etc. The principle of serviceability states
that two application servers are more complex to service than a single
application server. This implies that a cluster is inherently more difficult to
service than a nonclustered system.

The takeaway point is that increasing the reliability of a system impacts its avail-
ability and serviceability. A similar argument can be made for attempting to improve
the availability or serviceability of a system. It is important to appreciate that there
is no such thing as a perfect system. Any system that has a high level of avail-
ability will likely not have a high level of reliability and serviceability.

Basic Terminology
When working on large-scale projects, engineers and developers tend to freely
use a variety of terms in relation to clusters and large-scale system without
fully understanding the meaning of those terms. Here are definitions for terms
used in this chapter:

A cluster is a loosely coupled group of servers that provide a unified, simple
view of the services that they offer individually. Servers in a cluster may or
may not communicate with one another. Generally, the overall goal of
employing a cluster is to increase the availability or reliability of the
system.

Clustering 413

A node is a single server in the cluster.

Load balancing distributes the requests among cluster nodes to optimize the
performance of the whole system. A load-balancing algorithm can be sys-
tematic or random.

A highly available system can process requests even if the initial node desig-
nated to handle the request is unavailable.

Fail-over redirects a single request to another node in the cluster because the
original node could not process the request.

Request-level fail-over occurs when a packet that is directed to a node for
servicing cannot be serviced by that node and is subsequently redirected to
another node.

Transparent or automatic session fail-over occurs at the invocation level
when a current executing invocation fails and is transparently rerouted to
another server to complete execution.

Single access point simplicity is the idea that clients generate requests to the
cluster rather than individual nodes of the cluster. The requests are trans-
parently directed to a node in the cluster that can handle the request. The
client’s view of the cluster is a single, simple system, not a group of collab-
orating servers.

Transactions per second (TPS) measures the number of transactions exe-
cuted by a system in a second. A single request can cause zero, one, or
more transactions to occur. TPS is a measure of how well the system’s
transaction management performs and is commonly used to compare the
performance of different systems or algorithms.

Requests per second (RPS) measures how many requests can be processed
and responded to in a second. In a typical system, a number of threads are
responsible for processing messages arriving into the system and placing
those messages into a processing queue. A separate pool of threads is respon-
sible for taking messages off of the processing queue and actually execut-
ing the appropriate service. RPS is a measure of how many messages can
be serviced off of the processing queue in a second.

Arrivals per second (APS) measures how many incoming messages from
clients can be taken from a connection and placed onto a processing queue
in a second.

Throughput measures how many requests can be fully serviced in a given
time period. This measure includes the processing of arrivals and the han-
dling of requests. If the throughput of a system is high, the system is capa-
ble of processing many requests in a given amount of time.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS414

Invocations per second (IPS) measures how many component invocations
can be made in a second. IPS usually applies to the number of EJB invoca-
tions that can be made in a second.

Partitioning Your Clusters
Now that we’ve gotten the definitions out of the way, let’s look at the different
choices you have for how to cluster a J2EE system.

Most modern J2EE servers contain both a Web server and application server.
This means that in a Web-based system, the following cluster configurations
are possible:

A 3-tier architecture runs the Web server components (servlets and JSPs) and
application server components (EJBs) in the same process.

A 4-tier architecture separates the Web server components and application
server components into separate processes.

The differences between the two architectures are shown visually in Fig-
ure 14.1.

Some may not consider the browser to be a separate tier, since no logic runs in the
browser. This doesn’t matter for our discussion. All that matters is that you under-
stand the difference between the top picture and the bottom picture.

Clustering 415

Database

Database

Browser

Browser

Web Server and Application Server

Web Server
Application

Server

3-tier

4-tier

Web Server and Application Server

Figure 14.1 3-tier versus 4-tier.

The 3-tier versus 4-tier debate is important because you typically have a fixed
budget for your deployment. For example, let’s say that we have enough
money to buy two machines. We can run a cluster of combined J2EE servers, or
we can have a dedicated Web server box and a dedicated application server
box. Either way, our budget is fixed, and we can buy two machines.

This debate is scalable to any size project. If you have a larger budget, you can
expand and have either n combined J2EE servers, or you can have n/2 Web
servers and n/2 application servers.

The pros and cons of 3-tier versus 4-tier are listed in Table 14.1.

Our favorite is the 3-tier approach. The arguments for 4-tier tend to be weaker
in most circumstances. For example:

Static data. The fact that static data can be served faster in 4-tier is not impor-
tant in many scenarios. Most companies will actually have a separate Web
server box just for static data. This can be harnessed in both 3-tier and
4-tier. That static Web page server could also make use of a Storage Area
Network (SAN), a network of hard drives to increase throughput.

Security. The fact that you can have a firewall in 4-tier systems (between the
Web servers and application servers) doesn’t buy you a whole lot. After all,
if you expose your EJB components, how many hackers are going to know
how to perform a JNDI lookup of your EJB components and call them?
Furthermore, you can still secure your 3-tier system by putting a firewall in
front of your entire J2EE server cluster.

A common argument in favor of 4-tier is that the presentation and business logic
tiers can be scaled separately. Additional nodes can be added to the presentation
cluster without adding additional nodes to the back-end cluster and vice versa. This
is a flawed argument, because there is no value in being able to scale each tier sepa-
rately. Remember, we have a fixed budget and can buy only so many machines.
We’re going to have X machines whether we choose 3-tier or 4-tier. Those machines’
hardware resources will be used more efficiently in 3-tier than 4-tier, for reasons
listed in Table 14.1.

Instrumenting Clustered EJBs

Although the exact algorithm that your J2EE server uses is proprietary, most
application servers have similar approaches to clustering. Let’s look at the pos-
sible options that application server vendors have for clustering EJBs of all
types. We’ll then look at the specifics of clustering stateless session, stateful
session, entity, and message-driven beans.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS416

Clustering 417

FE
A

TU
R

E
3

-T
IE

R
4

-T
IE

R
W

IN
N

E
R

?

Re
lia

bi
lit

y
H

ig
h,

 b
ec

au
se

 th
er

e
is

 n
o

Lo
w

, b
ec

au
se

 th
er

e
is

 in
te

rp
ro

ce
ss

3-

tie
r

in
te

rp
ro

ce
ss

 c
om

m
un

ic
at

io
n.

co

m
m

un
ic

at
io

n
be

tw
ee

n
W

eb
 s

er
ve

rs
 a

nd

Ev
er

yt
hi

ng
 is

 in
 a

 s
in

gl
e

pr
oc

es
s.

ap
pl

ic
at

io
n

se
rv

er
s.

 T
he

re
 a

re
 m

or
e

ne
tw

or
k

co
nn

ec
tio

ns
 a

nd
 m

or
e

m
ac

hi
ne

s
in

vo
lv

ed
 w

ith
 a

si

ng
le

 r
eq

ue
st

, w
hi

ch
 m

ea
ns

 m
or

e
th

in
gs

 c
an

br

ea
k

on
 a

 s
in

gl
e

re
qu

es
t.

Av
ai

la
bi

lit
y

H
ig

h,
 b

ec
au

se
 a

ny
 m

ac
hi

ne
 c

an

H
ig

he
r

th
an

 n
o

cl
us

te
r

at
 a

ll,
 b

ut
 lo

w
er

 t
ha

n
3-

tie
r

fa
il-

ov
er

 to
 a

ny
 o

th
er

 m
ac

hi
ne

.
3-

tie
r

be
ca

us
e

th
er

e
ar

e
ha

lf
as

 m
an

y
m

ac
hi

ne
s

th
at

 c
an

 p
ro

vi
de

 fo
r

fa
il-

ov
er

 in
 a

 g
iv

en
 ti

er
 c

om
pa

re
d

to
 3

-t
ie

r.

Se
rv

ic
ea

bi
lit

y
H

ig
h,

 b
ec

au
se

 e
ac

h
bo

x
is

Lo

w
, b

ec
au

se
 th

e
W

eb
 s

er
ve

r
cl

us
te

r
m

us
t b

e
3-

tie
r

id
en

tic
al

 (
hi

gh
er

 d
eg

re
e

of

m
ai

nt
ai

ne
d

di
ffe

re
nt

ly
 th

an
 th

e
ap

pl
ic

at
io

n
se

rv
er

si

m
pl

ic
ity

),
 a

nd
 th

er
e

is
 n

o
cl

us
te

r.
Th

er
e

is
 a

ls
o

a
ne

tw
or

k
co

nn
ec

tio
n

be
tw

ee
n

ne
tw

or
k

co
nn

ec
tio

n
be

tw
ee

n
th

e
tie

rs
.

th
e

W
eb

 s
er

ve
rs

 to
 b

ot
he

r
w

ith
.

In
te

rf
ac

es
 u

se
d

Th
e

W
eb

 s
er

ve
r

co
m

po
ne

nt
s

ca
n

Th
e

W
eb

 s
er

ve
r

co
m

po
ne

nt
s

m
us

t c
al

l t
he

 lo
w

-
3-

tie
r

ca
ll

hi
gh

-p
er

fo
rm

in
g

EJ
B

 lo
ca

l
pe

rf
or

m
in

g
EJ

B
 r

em
ot

e
in

te
rf

ac
es

, w
hi

ch
 m

ea
ns

in

te
rf

ac
es

.
m

or
e

m
ar

sh
al

in
g

ov
er

he
ad

.

N
et

w
or

k
N

o
in

te
rp

ro
ce

ss
 c

om
m

un
ic

at
io

n
In

te
rp

ro
ce

ss
 c

om
m

un
ic

at
io

n
be

tw
ee

n
W

eb
 s

er
ve

rs

3-
tie

r
ef

fic
ie

nc
y

m
ea

ns
 n

o
so

ck
et

s
to

 tr
av

er
se

an

d
ap

pl
ic

at
io

n
se

rv
er

s
sl

ow
s

th
in

gs
 d

ow
n

be
tw

ee
n

th
e

W
eb

 s
er

ve
rs

 a
nd

si

gn
ifi

ca
nt

ly
.

ap
pl

ic
at

io
n

se
rv

er
s.

Ef
fic

ie
nt

 u
se

H

ig
h,

 b
ec

au
se

 a
 J

2E
E

se
rv

er
 w

ill
 b

e
Lo

w
, b

ec
au

se
 y

ou
 n

ee
d

to
 p

re
de

te
rm

in
e

ho
w

 m
an

y
3-

tie
r

of
 h

ar
dw

ar
e

us
ed

 fo
r

w
ha

te
ve

r
pu

rp
os

e
its

m

ac
hi

ne
s

to
 d

ev
ot

e
to

 W
eb

 s
er

ve
r

ta
sk

s,
 a

nd
 h

ow

ne
ed

ed
 fo

r
at

 th
e

cu
rr

en
t t

im
e

m
an

y
m

ac
hi

ne
s

to
 d

ev
ot

e
to

 a
pp

lic
at

io
n

se
rv

er
 ta

sk
s.

(W

eb
 s

er
ve

r
ta

sk
s

or
 a

pp
lic

at
io

n
Th

is
 m

ay
 n

ot
 b

e
ex

ac
tly

 o
pt

im
al

, a
nd

 y
ou

r
lo

ad

se
rv

er
 ta

sk
s)

.
ch

ar
ac

te
ris

tic
s

m
ay

 c
ha

ng
e

ov
er

 ti
m

e.

co
nt

in
ue

s

Ta
b

le
 1

4.
1

3-
Ti

er
 V

er
su

s
4-

Ti
er

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS418

FE
A

TU
R

E
3

-T
IE

R
4

-T
IE

R
W

IN
N

E
R

?

Se
cu

rit
y

Yo
u

ca
n

pl
ac

e
a

fir
ew

al
l b

et
w

ee
n

Yo
u

ca
nn

ot
 p

la
ce

 a
 fi

re
w

al
l b

et
w

ee
n

yo
ur

 W
eb

 s
er

ve
r

4-
tie

r
th

e
W

eb
 s

er
ve

rs
 a

nd
 a

pp
lic

at
io

n
an

d
ap

pl
ic

at
io

n
se

rv
er

, b
ec

au
se

 th
ey

 a
re

 in
-p

ro
ce

ss
.

se
rv

er
s,

 e
xp

os
in

g
on

ly
 w

ha
t y

ou

Th
er

ef
or

e,
 y

ou
r

EJ
B

 c
om

po
ne

nt
s

ar
e

ex
po

se
d

to
 th

e
ne

ed
 to

 e
xp

os
e

to
 th

e
In

te
rn

et
: t

he

w
or

ld
.

W
eb

 s
er

ve
rs

.

Si
te

 d
ow

n
If

th
er

e
is

 a
 c

lu
st

er
-w

id
e

fa
ilu

re

If
th

er
e

is
 a

 c
lu

st
er

-w
id

e
fa

ilu
re

 (
pe

rh
ap

s
du

e
to

4-

tie
r

pa
ge

(p
er

ha
ps

 d
ue

 to
 p

ro
gr

am
m

er
 e

rr
or

)
pr

og
ra

m
m

er
 e

rr
or

)
in

 th
e

ap
pl

ic
at

io
n

se
rv

er
s,

 th
e

W
eb

in

 th
e

ap
pl

ic
at

io
n

se
rv

er
s

or
 W

eb

se
rv

er
s

w
ill

 s
til

l b
e

up
. Y

ou
 c

an
 th

en
 d

is
pl

ay
 a

 s
ite

se

rv
er

s,
 th

e
en

tir
e

si
te

 is
 d

ow
n.

do

w
n

pa
ge

, w
hi

ch
 is

 b
et

te
r

th
an

 n
o

re
sp

on
se

 a
t a

ll.

Se
rv

in
g

qu
ic

k
If

th
e

ap
pl

ic
at

io
n

se
rv

er
s

ar
e

If
th

e
ap

pl
ic

at
io

n
se

rv
er

s
ar

e
ov

er
lo

ad
ed

, s
ta

tic
 d

at
a

4-
tie

r
st

at
ic

 d
at

a,
 o

r
ov

er
lo

ad
ed

, s
ta

tic
 d

at
a

(s
uc

h
as

(s

uc
h

as
 H

TM
L

an
d

im
ag

es
)

ca
n

be
 s

er
ve

d
up

 q
ui

ck
ly

si

m
pl

e
W

eb

H
TM

L
an

d
im

ag
es

)
ar

e
se

rv
ed

 u
p

be
ca

us
e

th
e

W
eb

 s
er

ve
rs

 a
re

 d
ed

ic
at

ed
. T

hi
s

is

re
qu

es
ts

 th
at

 d
o

sl
ow

ly
 b

ec
au

se
 th

e
W

eb
 s

er
ve

rs
 a

re

im
po

rt
an

t b
ec

au
se

 m
os

t h
om

ep
ag

es
 a

re
 p

rim
ar

ily

no
t i

nv
ol

ve
 E

JB

co
m

pe
tin

g
fo

r
ha

rd
w

ar
e

re
so

ur
ce

s
st

at
ic

 c
on

te
nt

. M
os

t p
eo

pl
e

ar
e

w
ill

in
g

to
 w

ai
t l

on
ge

r
co

m
po

ne
nt

s
w

ith
 th

e
ap

pl
ic

at
io

n
se

rv
er

s.
fo

r
su

bs
eq

ue
nt

 r
eq

ue
st

s
in

 y
ou

r
W

eb
 s

ite
, o

nc
e

th
ey

kn

ow
 fo

r
su

re
 th

at
 th

e
ho

m
ep

ag
e

w
or

ks
 a

nd
 th

e
si

te
 is

 u
p

to
da

y.

Po
lit

ic
al

Th

e
W

eb
 te

am
 a

nd
 E

JB
 te

am
 u

se

Th
e

W
eb

 te
am

 a
nd

 E
JB

 te
am

 u
se

 d
iff

er
en

t b
ox

es
.

4-
tie

r
O

w
ne

rs
hi

p
th

e
sa

m
e

bo
xe

s,
 w

hi
ch

 c
ou

ld
 m

ea
n

Th
ey

 d
on

’t
in

te
rf

er
e

w
ith

 e
ac

h
ot

he
r

as
 m

uc
h,

 w
hi

ch

ow
ne

rs
hi

p
co

nf
lic

ts
 if

 y
ou

’re
 in

 a

is
 g

re
at

 if
 y

ou
’re

 in
 a

 p
ol

iti
ca

l e
nv

iro
nm

en
t.

po
lit

ic
al

 e
nv

iro
nm

en
t.

Lo
ad

-b
al

an
ci

ng
Yo

u
ne

ed
 to

 s
et

 u
p

a
se

pa
ra

te
 lo

ad
-

Yo
u

ne
ed

 to
 s

et
 u

p
a

se
pa

ra
te

 lo
ad

-b
al

an
ci

ng
 b

ox
 in

Eq

ua
l

ba
la

nc
in

g
bo

x
in

 fr
on

t o
f t

he
J2

EE

fr
on

t o
f t

he
 W

eb
 s

er
ve

rs
. E

xa
m

pl
es

 in
cl

ud
e

a
so

ftw
ar

e
se

rv
er

s.
 E

xa
m

pl
es

 in
cl

ud
e

a
lo

ad
-b

al
an

ce
r

ru
nn

in
g

on
 a

 c
he

ap
 L

in
ux

 b
ox

, o
r

a
so

ftw
ar

e
lo

ad
-b

al
an

ce
r

ru
nn

in
g

on

ha
rd

w
ar

e
lo

ad
-b

al
an

ce
r

lik
e

a
lo

ca
l d

ire
ct

or
.

a
ch

ea
p

Li
nu

x
bo

x,
 o

r
a

ha
rd

w
ar

e
lo

ad
-b

al
an

ce
r

lik
e

a
lo

ca
l d

ire
ct

or
.

Ta
b

le
 1

4.
1

3-
Ti

er
 V

er
su

s
4-

Ti
er

 (
co

nt
in

ue
d)

How EJBs Can Be Clustered
There are many locations that vendors can provide clustering logic (such as
load-balancing or fail-over logic):

JNDI driver. A vendor could perform load-balancing logic in the JNDI driver
(the InitialContext) that is used to locate home objects. The JNDI driver
could spread traffic across numerous machines.

Container. A vendor could provide clustering logic directly within the con-
tainer. The containers would communicate with one another behind the
scenes using an interserver communication protocol. This protocol could
be used to perform clustering operations. For example, if a ShoppingCart
stateful session bean container has filled up its cache and is constantly acti-
vating and passivating EJBs to and from secondary storage, it might be
advantageous for the container to send all create(. . .) invocations to
another container in a different server that hasn’t reached its cache limit.
When the container’s burden has been reduced, it can continue servicing
new requests.

Home stub. This object is the first object accessed by remote clients and runs
locally on a client’s virtual machine. Since stub code is autogenerated by a
vendor, the underlying logic in a stub can be vendor-specific. Vendors can
instrument method-level load balancing and fail-over schemes directly in a
stub. Every create(. . .), find(. . .), and home method invocation can have its
request load balanced to a different server in the cluster; it doesn’t matter
which machine handles each request.

Remote Stub. This object is the client’s proxy representing a specific enter-
prise bean instance. It can perform the same types of load balancing and
fail-over as a home stub, but vendors have to be careful about when they
choose to do so. Remote stubs must load balance and fail-over requests to
instances that can properly handle the request without disrupting the system.

The most common scenario is for stubs to be generated at development time
through a utility, such as a vendor-specific EJB compiler. This isn’t the only option,
however. Some application servers can use interception technology such as the JDK
1.3 Proxy class to automatically generate remote home and remote stub logic dy-
namically at runtime. The JBoss application server is an example of a server that has
an EJB container using this approach.

Whether or not an application server uses interception technology or creates custom
classes for the stubs and skeletons does not alter the places where cluster-based
logic can be inserted. In the following discussions, we continue to reference home
stubs, remote stubs, or containers irrespective of how or when these pieces are
generated.

Clustering 419

The different options that are available to developers and vendors provide a
vast array of configurations with which clusterable EJB may be instrumented.
By now, you must be thinking, “How do I know what to use, when and
where?” The answer lies within the capabilities of any single application
server. The rest of this chapter discusses the various issues that application-
server vendors face when attempting to provide a clusterable infrastructure
for stateless session, stateful session, entity, and message-driven EJBs.

Load-balancing and fail-over logic doesn’t exist for local interfaces. Remember that
local interfaces do not spread traffic across the network. Parameters must be mar-
shaled by-reference rather than by-value (serialization). If there is no network be-
tween the local client and the bean, it does not make sense for a vendor to
implement clustering logic for local interfaces. Thus, our discussion applies only to
remote clients.

The Concept of Idempotence
An idempotent (pronounced i-dim-po-tent, not i-dimp-uh-tent) method is one
that can be called repeatedly with the same arguments and achieve the same
results.

An idempotent method in a distributed system doesn’t impact the state of the
system. It can be called repeatedly without worry of altering the system so that
it becomes unusable or provides errant results. Generally any methods that
alter a persistent store are not idempotent since two invocations of the same
method will alter the persistent store twice. For example, if a sequencer is
stored in a database and m1() increments the sequencer, two calls to m1() will
leave the sequencer at a different value than if m1() was invoked a single time.
An idempotent method leaves the value in the persistent store the same no
matter how many invocations of m1() occur.

Remote clients that witness a failure situation of a server-side service are faced
with a perplexing problem: Exactly how far did the request make it before the
system failed? A failed request could have occurred at one of three points:

■■ After the request has been initiated, but before the method invocation on
the server has begun to execute. Fail-over of the request to another server
should always occur in this scenario.

■■ After the method invocation on the server has begun to execute, but
before the method has completed. Fail-over of the request to another
server should only occur if the method is idempotent.

■■ After the method invocation on the server has completed, but before the
response has been successfully transmitted to the remote client. Fail-over

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS420

of the request to another server should only occur if the method is
idempotent.

Why is this important? A remote stub that witnesses a server failure never
knows which of the three points of execution the request was in when the fail-
ure occurred. Even though failures of requests that haven’t even begun
method execution should always fail-over, a client can never determine when
a failed request is in this category.

Thus, remote stubs can only automatically fail-over requests that were sent to
methods flagged as idempotent. In comparison, fail-over of nonidempotent
methods must occur programmatically by the client that originated the
request. If your EJB server vendor is a major player, it will likely give you the
ability to mark an EJB component’s method as idempotent or nonidempotent
using proprietary container descriptors.

You might think that all methods that are marked to require a new transaction are
idempotent. After all, if failure happens, the transaction will roll back, and all trans-
actional state changes (such as transactional JDBC operations) will be undone. So
why can’t the stub fail-over to another bean to retry the operation?

The answer is that container-managed transactions have an inherent flaw, which we
first discussed in Chapter 10. What if the transaction commits on the server, and the
network crashes on the return trip to the stub? The stub would then not know
whether the server’s transaction succeeded or not and would not be able to fail-over.

Stateless Session Bean Clustering
Now, let’s take a look at how we can cluster each type of EJB component. We
begin with stateless session beans.

Load Balancing

All Java object instances of a stateless session bean class are considered identi-
cal. There is no way to tell them apart, since they do not hold state. Therefore
all method invocations on the remote home stub and remote stub can be load
balanced. Some EJB servers also give you flexibility here, and allow you to pin
stubs so that they direct requests to a single server only. Some vendors even
allow you to configure subsets of methods on a single stub to be pinned or
load balanced. This flexibility in load balancing stateless session bean
instances is what drives the perception that stateless session EJBs are the most
scalable types of synchronous EJB components.

Clustering 421

Fail-Over

For stateless session beans, automatic fail-over on remote home stubs can always
occur. Recall that stateless session bean home stubs have only one method,
which is an empty create() method. This corresponds to the bean’s ejbCreate()
method. But your container does not call ejbCreate() when the client calls
home.create()—the container can call ejbCreate() whenever it feels like kicking
beans into the pool, as we saw in Chapter 4. Therefore, your ejbCreate() meth-
ods should not modify your system’s state and should be coded as idempotent.

Automatic fail-over on remote stubs can only occur if the called method is idem-
potent. If your method is nonidempotent, or if your vendor does not support
automatic fail-over, you might be able to manually fail-over by writing code to
retry the method. You need to be careful, however, and factor business rules
and other logic into the decision as to whether a fail-over request should be
made.

For example, the following pseudo-code manually fails-over any method
invocation that is not automatically done so by the remote home or remote
stub.

InitialContext ctx = null;

SomeHomeStub home = null;

SomeRemoteStub remote = null;

try {

ctx = ...;

home = ctx.lookup(...);

// Loop until create() completes successfully

boolean createSuccessful = false;

while (createSuccessful == false) {

try {

remote = home.create();

} catch (CreateException ce) {

// Handle create exception here.

// If fail over should occur, call continue;

continue;

} catch (RemoteException re) {

// Handle system exception here.

// If fail over should occur, call continue;

} catch (Exception e) {

// Home stub failure condition detected.

// If fail over should occur, call continue;

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS422

continue;

}

// If processing gets here, then no failure condition detected.

createSuccessful = true;

}

boolean answerIsFound = false;

while (answerIsFound == false) {

try {

remote.method(...);

} catch (ApplicationException ae) {

// Handle application exception here.

// If fail over should occur, call continue.

} catch (RemoteException re) {

// Handle server-side exception here.

// If fail over should occur, call continue.

} catch (Exception e) {

// Failure condition detected.

// If fail over should occur, call continue.

continue;

}

// If processing gets here, then no failure condition detected.

answerIsFound = true;

} // while

} catch (Exception e) {}

If we wanted it to do so, our EJB component could also assist with this fail-
over decision by checking the system state before continuing.

Stateful Session Bean Clustering
Stateful session beans are clustered a bit differently than their stateless cousins.
The major EJB server vendors support replication of state. It works like this.
When a stateful session bean is created, the state must be copied to another
machine. The backup copy isn’t used unless the primary fails. The bean is rou-
tinely synchronized with its backup to ensure that both locations are current.
If the container ever has a system failure and loses the primary bean instance,
the remote stub of the bean fails-over invocations to another machine. That

Clustering 423

other machine can use the backup state and continue processing. A new
backup is then nominated, and the state begins to replicate to that new backup.
This all occurs magically behind the scenes once you configure your EJB server
to replicate state, using your EJB server’s proprietary descriptors or adminis-
trative console.

Stateful replication should be used with caution. It will limit your performance. In-
stead, you may want to consider placing critical, transactional, and persistent data in
a database via session beans � JDBC or entity beans. Stateful session beans should
be used for session-oriented (conversational) data that would not adversely impact
the system if the data were lost.

Replication of stateful data typically occurs at one of two points:

At the end of every method. This is not ideal since unnecessary replication of
nonaltered data can frequently occur.

After the commit of a transaction. For reasons touched upon in Chapter 10,
this is ideal. Transactions give you an all-or-nothing fail-over paradigm. By
replicating on transactional boundaries, your stateful session bean state is
consistent in time with other changes to your system state (such as per-
forming JDBC work).

Most EJB servers perform stateful fail-over in one of two ways:

In-memory replication. The state could be replicated in-memory across the
cluster. In-memory replication is fast. The downside is that most EJB
servers limit the replication to only two machines, since memory then
becomes a scarce resource.

Persistent storage to a shared hard drive or database. This approach is
slower than in-memory replication, but every server in the cluster has
access to the persistent state of the replicated bean.

Load Balancing

With stateful session beans, remote home stubs can freely load balance create(. . .)
requests to different servers in the cluster. These factory methods do not apply
to an individual instance in a container but can be serviced by any container in
the cluster.

However, remote stubs cannot load balance as easily. Your client requests can be
sent only to the server that has your state. Note that if your stateful session
bean is replicated across multiple servers, a remote stub could conceivably load
balance different requests to different servers. This wouldn’t be ideal, how-
ever, since most vendors have a designated primary object that requests are

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS424

sent to first. The effort involved with load balancing requests in this scenario
outweighs any benefits.

Fail-Over

You might think that fail-over can always occur with stateful session beans if
the state is replicated across a cluster. After all, if something goes wrong, we
can always fail-over to the replica.

However, this is not the case. If your bean is in the middle of a method call, we
still need to worry about idempotency. Your bean might be modifying state
elsewhere, such as calling a database using JDBC or a legacy system using the
J2EE Connector Architecture. Your stub can fail-over to a backup only if the
method is idempotent. The only time your EJB server can disregard idempo-
tency is if your container crashed when nobody was calling it, either between
method calls or between transactions, depending on how often you replicate.

For stateful session beans, automatic fail-over on a remote stub or remote home
stub can occur only if your methods are idempotent. Most methods are not
idempotent, such as a create(. . .) method, which performs JDBC work, or a
set() method. However, a stateful session beans can have some idempotent
methods! Any method that does not alter the state of the system or alters the
value of the state stored in the stateful session EJB is an idempotent method.
For example, if a stateful session EJB has a series of get() accessor methods to
retrieve the values of state stored in the server, these get() accessor methods
would be idempotent.

If your method is not idempotent, or if your container does not support repli-
cation, you can manually fail-over, similar to our approach to stateless session
beans.

Entity Bean Clustering
Now that we’ve seen session beans, let’s see how entity beans are clustered.

Load Balancing

If you’re coding your EJB deployments correctly, you will wrap entity beans
with a session bean façade. Therefore, most access to entity EJBs should occur
over local interfaces by in-process session beans, rather than remote clients.
Thus, the need for load balancing goes away. Note that most containers do
support load-balancing for entity beans through stubs, similarly to how it
works for session beans. But you’ll probably never take advantage of it.

Clustering 425

Fail-Over

Since you should always access entity beans using local interfaces, fail-over
makes little sense. Consider this: If you called an entity bean using a local
interface and that failed-over to another machine, you’d suddenly be using its
remote interface, changing the client API and entailing pass-by-value rather
than pass-by-reference.

If you are accessing entity beans remotely, then as with all other bean types, you can
automatically fail-over entity beans only if the methods are idempotent. This usually
means get(), finder(), and possibly some ejbHome() business methods.

Entity beans don’t have the same replication needs as stateful session beans. This is
because entity beans are routinely synchronized with a database via its store/load
operations. Thus, an entity bean is backed up on a regular basis by design. From this
perspective, you can think of an entity bean as a stateful session bean that is always
replicated by the container on transactional boundaries through store/load opera-
tions. Those automatic load/store operations are the most important differences be-
tween stateful session beans and entity beans.

Since entity beans are backed up on transactional boundaries, transparent fail-over
can only occur in-between transactions (and not between methods that are part of a
larger transaction). If you have a transaction committing on every method call (for
example, through the Requires New transaction attribute), fail-over can occur at the
method granularity. However, this is not a recommended approach, since your ses-
sion beans should initiate the transaction and serve as a transactional façade.

Caching

Because entity beans are basically Java objects that represent database data,
they are in themselves a middle tier cache for that database. It is a tricky and
technically complicated task for an application server to support this cache
well. It is also a common misperception that caching always improves the per-
formance of a system. Caching makes a system perform better only when the
average overhead associated with updating the cache is less than the overhead
that would be needed to access individual instances repeatedly between cache
updates. Since the amount of synchronization needed to manage a cache in a
cluster is high, a cache generally needs to be accessed three or four times
between updates for the benefits of having the cache to outweigh not having it.

Containers provide many different types of caching algorithms. Each of these
algorithms has the same principle behind it: to reduce the frequency of
ejbLoad() and ejbStore() methods, which are normally called on transactional
boundaries.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS426

You set up these caches using proprietary container tools or descriptors. No
Java coding should be required.

Read-Only Caches

A read-only cache contains a bunch of read-only entity beans. This is a very use-
ful cache because most enterprise data is read-only. This type of caching has
enormous benefits.

Since read-only entity beans never change, their ejbStore() methods are never
called, and they are never called with a transactional context. If your entity
bean methods are participating in a read-only cache, they need to have Never
or Not Supported as their transactional attribute.

Read-only caches implement an invalidation strategy that determines when the
data in the read-only instance is no longer valid and should be reloaded from
the persistent store. Common algorithms include:

Timeout. Every X seconds, the cache is invalidated and the read-only entity
bean is reloaded immediately or upon the next method invocation. You set
the time-out interval based on your tolerance for witnessing stale data.

Programmatic. Your vendor provides a home stub or remote stub with invali-
date(. . .) or similar methods that allow a client to programmatically invali-
date entity beans.

System-wide notification. When someone changes entity beans in a
read/write cache, the container invalidates those entity beans that also
reside in a read-only cache elsewhere.

It doesn’t take long for you to perform operations on a read-only entity bean.
The lock on the entity bean only needs to be held just long enough to perform
the method call that gets you the data you need. Thus, each server’s read-only
cache typically keeps a single entity bean instance in memory for each primary
key. This saves overhead involved with creating multiple instances and man-
aging the concurrent access.

Distributed Shared Object Caches

A distributed shared-object cache is an advanced EJB server feature that few ven-
dors provide today. It is a cluster-wide cache for read/write data. This imme-
diately introduces an obvious problem: cache consistency. How does the
container stay in sync with the database? What if someone updates the data-
base behind your back? You’ll need to refresh your cache.

A distributed shared object cache could theoretically detect collisions at the
database level. This might be detected through database triggers, although

Clustering 427

this gets very hairy. The idea is that when someone updates the database
behind your back, a trigger is fired. The cache is notified by this trigger and
updates its contents so that read-only clients can access the latest data. Because
each of the servers receives the notification, updating of the data can occur
concurrently across the cluster.

A distributed shared object cache also needs stay in sync with other caches in
the cluster. It needs to replicate itself to other nodes on regular intervals, simi-
lar to the idea of stateful session bean replication. It also needs to implement a
distributed lock manager that locks objects in memory, similar to how a data-
base locks database rows. Additionally, if a nonreliable messaging infrastruc-
ture such as IP multicast is used to send notification messages between
servers, a system runs the risk of having two caches trying to lock the same
data concurrently—their notification messages might cross in mid-air! An
algorithm that allows the pausing of other systems during the period where
critical events and notification messages are generated needs to be imple-
mented. As you can see, this convergence of state across multiple nodes is very
difficult to implement.

Because of these issues, we do not recommend usage of a distributed shared object
cache for most systems. However, if you’d like to give it a shot, we recommend
strongly testing your system for a variety of failure conditions before going live.

Read-Mostly Caches

Some application servers provide an exciting read-mostly algorithm. This pow-
erful idea allows you to have read-only entity beans that are also updated
every now and then, without having the burden of a true distributed shared
object cache. The idea is that for any given entity bean class, some instances
will be read-only, and some will not be cached at all (read/write).

When you perform a read operation, you use a cached, read-only entity bean
for performance.

When you perform a write operation, you use a regular, noncached entity
bean. When you modify a regular entity bean and a transaction completes,
all of the read-only entity bean caches become invalidated. When the read-
only entity beans are next used, they need to reload from the database.

This read-mostly pattern has some interesting characteristics:

■■ Each cache uses a different JNDI name. For example, a read-only cache
might have RO appended to the JNDI name, while a read/write cache
might have RW appended to the JNDI name. This is somewhat annoying.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS428

■■ This pattern only requires the use of a read-only cache, which almost all
application servers have. You don’t need to deal with the complexity of a
true distributed shared object cache.

When using a read-mostly algorithm, be sure that your container uses a reli-
able communications protocol when invalidating the read-only cache. If a
message is accidentally lost, you could be working with stale data.

Message-Driven Bean Clustering
Message-driven beans behave differently than session and entity beans and
thus have different implications in a cluster. Since message-driven beans do
not have home or remote interfaces, they don’t have any stubs or skeletons
remotely that can perform load balancing and fail-over logic on their behalf.

Message-driven beans are consumers of messages; they behave in a pull sce-
nario grasping for messages to consume, rather than a push scenario in which
a remote client sends invocations directly to the consumer. See Chapter 8 for a
full discussion of this behavior.

Message-driven bean clustering is really about JMS clustering. A message-
driven bean is dependent upon the clusterable features of the JMS server and
destinations that it binds itself to. Message-driven beans achieve load balanc-
ing by having multiple EJB servers of the same type bound to a single JMS
queue for message consumption. If four messages arrive concurrently at the
queue and four containers of the same message-driven bean type are bound to
the destination, each container is delivered one of the messages for consump-
tion. Each container consumes its message concurrently, achieving a pseudo-
load-balancing effect.

We’ve just discussed how load balancing of messages works for a point-to-point JMS
queue. Why don’t we worry about load balancing for publish/subscribe messages
that are put on a topic?

Fail-over of message-driven beans is integrated into the very nature of the
beans themselves. Fail-over occurs any time a message that is being processed
is acknowledged as unsuccessful to the JMS server. An unacknowledged mes-
sage is placed back on the destination for reconsumption. The message-driven
bean that consumes the message a second (or third, fourth, and so on) time
need not be the one that consumed it the first time.

In some advanced JMS server implementations, JMS destination replication
allows nonpersistent messages to be replicated across servers in a cluster.
Message-driven beans that bind to a replicated destination detect any server

Clustering 429

failures and automatically rebind themselves as a consumer to the server host-
ing the replicated destination.

Other EJB Clustering Issues

This final section discusses some miscellaneous issues about J2EE clustering
that can impact the behavior of a system.

First Contact
When a client wants to use an EJB component, whether it is a session, entity, or
message-driven bean, the client must always first connect to the JNDI tree:

■■ Clients that want to use a session or entity bean lookup their home stub.

■■ Clients that want to send a JMS message to be consumed by a message-
driven bean must lookup a JMS ConnectionFactory and Destination object.

Since all EJB clients use JNDI, naming server clustering ultimately has an
impact on the behavior of EJB components in a cluster, too. What kind of clus-
tering enhancements can be made to naming servers, and how does this
impact EJBs? There are two types of clustered naming servers:

Centralized. The naming server is hosted on a single server. All EJB servers
register their same EJB components on the single naming server, and all
clients lookup EJB components on the single naming server. The naming
server can even distribute clients to the identical servers in the cluster.

Shared, replicated. Each node in a cluster hosts its own JNDI naming server
that contains replicated objects hosted on other servers in the cluster. The
naming servers replicate their contents (including home stubs, JDBC Data-
Source objects, JMS ConnectionFactory object, JMS Destination objects) to the
other naming servers in the cluster. Thus, every naming server has a copy
of every other naming server’s objects in the tree. In a scenario in which
the same EJB component is deployed on every server in the cluster, each
naming server has a copy of the home stub representing each server. If a
server in the cluster crashes, all of the other naming servers that are still
active merely have to remove from their naming server the objects hosted
on the other machine.

Initial Access Logic
When an application server provides a centralized naming server, the logic that
clients use to get access to the cluster is simple: They hard-code the DNS name

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS430

or IP address of the centralized naming server into all of their InitialContext
creation calls.

But what about J2EE vendors that support a shared, replicated naming server?
Clients can connect to any server in the cluster and make a request for a service
hosted anywhere else in the cluster. Architects have a variety of options avail-
able to them.

DNS round robining. This allows multiple IP addresses to be bound to a sin-
gle DNS name. Clients that ask for an InitialContext pass in the DNS round-
robin name as the URL of the naming server. Every translation of the DNS
round-robin name results in the generation of a different IP address that is
part of the round-robin list. Using this technique, every client InitialContext
request is directed to a different server. Networks support this feature or
do not—it is not dependent upon the capabilities of your application
server.

Software proxies. Software proxies maintain open connections to a list of
servers that are preconfigured in a descriptor file. Software proxies can
maintain keep-alive TCP/IP connections with each of the servers to pro-
vide better performance instead of attempting to reconnect every request.
These software proxies immediately detect any server crash or unrespon-
siveness because its link is immediately lost. Software proxies can also sup-
port a wider range of load balancing algorithms including round robin,
random, and weight-based algorithms.

Hardware proxies. Hardware proxies have capabilities similar to software
proxies but often can outperform their software counterparts. Hardware
proxies can also double as firewalls and gateways.

Summary

In this chapter, we discussed the major challenges and solutions for working
with EJB in a clustered system. We discussed what makes a system large and
the major characteristics that large systems exhibit. We then compared the 3-
tier and 4-tier approaches to clustering. We analyzed the type-specific behav-
ior that can be exhibited by stateless session, stateful session, entity, and
message-driven beans in a cluster. And finally, we discussed cluster deploy-
ments of EJB, clustered naming servers, and initial access logic to naming
servers. So pat yourself on the back! You’ve just learned a great deal about
clustering. Stay with us now and we’ll learn all about how to get your EJB proj-
ect started the right way.

Clustering 431

C H A P T E R 15

433

To be successful with an EJB/J2EE project, you must plan and understand a
great deal beyond the technologies themselves. You must overcome a wealth
of project management challenges, including designing the object model,
dividing up your team, and educating your team.

This chapter is a guide for how to get started on your EJB project, with links to
external resources that you should consider in your project. They are taken
from real-world experiences and intended to help you build enterprise Java
systems. As you read the chapter, you may find project management issues
that you may not have considered. If this happens, consider weaving these
issues into your project plan, or highlight the issues for future reference when
you begin an enterprise Java project. While we may not answer every question
for each issue, we will point you towards external resources to help you find
your own answers.

Get the Business Requirements Down

Before embarking on a J2EE project, try to lock down as many of the business
requirements as possible. A suggested process is as follows:

1. Build a complete list of requested features. This is the phase in which you
ask questions about user interface requirements, legacy integration
requirements, use-case analysis, and so on. If your feature list is incom-
plete, you should consult with any subject matter experts you can access.

Starting Your EJB Project
on the Right Foot

2. Weight each feature based upon corporate and business goals, as well as
the time anticipated to implement it. Prioritize the list by feature weight.

3. Gain stakeholder support for the feature list to avoid future bickering.

4. Secure a committed project budget from stakeholders.

You should now have a fairly complete basis for designing an object model.

Decide Whether J2EE is Appropriate

Once you have the business requirements, you need to settle on an architec-
ture. J2EE may be appropriate, but then again, it may not. Spend the time for
the appropriate research on the various alternatives up front. Table 15.1 lists
external resources to help you make a sound decision.

Decide Whether EJB Is Appropriate

A recent Gartner Group report cited that companies overspent by $1 billion on
EJB in 2000, when they could have gotten by with servlets/JSPs. This moti-
vates our next discussion. Once you’ve decided whether server-side Java is the
way to go, you need to make the all-important decision: Are you actually
going to use EJB on this project? Or is EJB overkill?

As an example, consider an e-commerce site that has involved business
processes. When you buy something on an e-commerce site, the site needs to:

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS434

RESOURCE DESCRIPTION

TheServerSide.com Keeps you up-to-date with various news
(www.TheServerSide.com) bulletins and articles about the J2EE space.

EJB vs. COM� Live Debate Transcript Live debate transcript from Austin TX.
featuring Ed Roman and Roger Ed Roman and Roger Sessions duke it out.
Sessions (www.TheServerSide.com) A bit outdated, since COM� has been

replaced by .NET.

“J2EE vs. Microsoft.NET” whitepaper Whitepaper that compares comparing J2EE
by Chad Vawter and Ed Roman and Microsoft.NET. J2EE wins.
(www.TheServerSide.com)

“J2EE vs. Microsoft.NET” whitepaper Whitepaper comparing J2EE and
by Roger Sessions Microsoft.NET. Microsoft.NET wins.
(www.objectwatch.com)

Table 15.1 Resources to Help You Decide If J2EE Is Appropriate

■■ Validate your credit card.

■■ Debit your credit card.

■■ Perhaps run some antifraud checking algorithms.

■■ Check inventory.

■■ Send a confirmation e-mail.

■■ Submit the order.

■■ Fulfill the order.

■■ Track the order after it is fulfilled.

■■ Handle returns.

You can achieve all of this by using vanilla servlets and JSPs. For example, you
could have the servlets and JSPs call Java classes. Those Java classes perform
your business logic. In fact, we can consider three scenarios in which it is pos-
sible to use Java classes rather than EJB components:

■■ In a browser client Web-based system with servlets and JSPs.

■■ In a Web services system where business partners call your servlets and
JSPs using XML/HTTP. (See www.TheServerSide.com for a whitepaper
on how to build Web services using J2EE.)

■■ In a 2-tier client/server system such as a Java applet or Java application
connecting to a server, you could use servlets and JSPs on the server. The
thick client could communicate with the server via HTTP, which easily
navigates through firewalls (compared to IIOP, which does not). Behind
the servlets and JSPs could be Java classes instead of EJB components.

A servlet/JSP HTTP layer is important only if the users of your system are going to be
behind firewalls, such as anonymous Internet clients, business partners, or other de-
partments within your organization. It is also important if your thick client is located
across the Internet, because HTTP is a lightweight protocol that travels across the In-
ternet easily. If there is no firewall issue, or if your users are not located across the
Internet (but are on your local area network), you could get rid of your HTTP layer
and connect the client to EJB components directly. In this case, the EJB value propo-
sition is strong, because EJB allows the client to call the server using intuitive
method names, removes the need to perform XML marshaling, and gives you auto-
matic remotability and load balancing.

So how do you decide which is the right paradigm? Let’s start with the reasons
that most people think are important for deciding between EJB and Java
classes, but which are actually not important at all:

EJB server cost. The major J2EE server vendors—IBM, BEA, and Oracle—do
not sell their EJB layer separately from their servlet/JSP layer. They sell a

Starting Your EJB Project on the Right Foot 435

single J2EE server that bundles both layers. So if you go with a market
leader, you’re probably going to buy an EJB server whether you like it or
not. The only way to avoid this cost is to purchase an open-source or inex-
pensive servlet/JSP implementation. Although this is a viable option, it is
not recommended for major deployments because the cost of the J2EE
server is often a drop in the bucket compared to the total cost of the proj-
ect. If the server doesn’t work out, consider the retraining you’ll need to
pay for and the code you may need to rewrite if the servers use different
versions of the J2EE specifications. Consider the difficulty in hiring skilled
professionals if you don’t go with a market leader, the cost of relearning
how to tune your new server, and the cost of learning to administer that
new server. The cost of the application server should not be an issue for
most serious deployments. Most major vendors are charging very reason-
able fees, far less than the $50,000 per processor that was charged in days
gone by. Rather, you should consider whether an EJB layer or a Java class
layer is appropriate for your project. The professional services fees—we call
it geek time—tends to dwarf the application server cost.

Resource pooling. Nearly all the major J2EE server vendors allow you to get
connection pooling and thread pooling whether you use servlets/JSPs or
EJB components.

Clean separation of business logic and presentation logic. EJB is nice
because it enforces a separation of presentation logic (servlets and JSPs)
from business logic (EJB components). We like this because in the future
we can support different types of presentation logic, such as a WAP-
enabled phone or an XML data stream client from a business partner. But
you can achieve the same results with Java classes. You just need to enforce
some coding best practices in your organization for the proper usage of
Java classes as a business layer façade.

Now that we’ve blown away the fear, uncertainty, and doubt (FUD), here are
the real reasons not to use EJB:

You can’t deal with the limitations of EJB. Examples include threading, sta-
tic variables, and native code. Most companies can deal with these,
because the restrictions exist for good reasons. But for example, if you need
to have a multithreaded engine, and you can’t deal with the EJB paradigm
of load balancing across single-threaded instances, EJB is not a good fit for
you. EJB is a square peg—don’t try to fit it into a round hole.

Your have existing skillsets or investments in a working technology. If your
developers are proficient in CORBA, why not stick with it? The Middle-
ware Company once consulted with a client who wrote a CORBA applica-
tion that assisted with mapping the human genome. It worked well with

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS436

CORBA, and our client had no major complaints; and so we recommended
they stick with CORBA and avoid the EJB hype.

Your application is a big GUI to a database. If you are just a big GUI to a
database—heavy on data logic but no business logic—you could achieve a
deployment easily using JSPs with tag libraries connecting to a database
via JDBC.

Your application is simple. If you are prototyping, building a simple system,
or developing a one-off application that will not evolve over time, EJB may
be overkill.

You need an initial system built extremely fast. Using Java classes means
you don’t need to worry about building all the little files that comprise an
Ejb-jar file.

And here are the real reasons to use EJB over Java classes:

In the long term, your system is built faster and more reliably. EJB compo-
nents benefit from declarative middleware, such as instance pooling, trans-
actions, security, container-managed persistence, container-managed
relationships, and data caching. If you used regular Java classes, you’d
need to write this middleware yourself over time. Eventually you might
find that you have your own middleware framework. Framework is a fancy
word for building your own home-grown application server. The frame-
work needs to be tested and debugged, and features need to be added.
This is a nontrivial task indeed. Can you honestly say your staff is capable
of building a better application server than the market leaders who special-
ize in middleware?

It is easier to hire new employees. If you build your own custom framework
using Java classes, new hires need to be trained on this framework. You
can no longer look for EJB on a resume when hiring developers and expect
them to be productive on your system.

You benefit from the best practices the world is building around EJB. You
can figure out how to optimize your system by reading articles on the
Internet or picking up a book on EJB best practices. This global knowledge
base is not at your disposal with a proprietary Java class framework.

You can have different user interfaces. You can reuse the same EJB compo-
nent layer for a thick client as well as a servlet/JSP client. You cannot
achieve this with Java classes because they are not remotely accessible. If
you wrapped those Java classes in RMI objects, you’d need to invent your
own load balancing, instance pooling, and fail-over.

You can work with industry-standard tools to rapidly develop your system.
While in the short run it may seem that Java classes will develop your

Starting Your EJB Project on the Right Foot 437

system faster than writing all those files that comprise an EJB component,
in reality many tools help streamline the EJB development process.
Command-line tools generate the files you need, IDEs help you build EJB
components, and UML editors help you generate EJB components from
UML diagrams. See www.TheServerSide.com for more.

You can separate your Web tier and application server. If you require your
business logic to be protected by a firewall, you can deploy the Web server
and application server on separate machines and stick a firewall in the
middle.

Staff Your Project

When you are building a J2EE project team, you will often find an insufficient
number of people in house, if any at all, with experience developing with J2EE
technology. Don’t despair; many organizations are in the same position. You
have several options:

Hire full-time experienced J2EE employees. Full-time experienced employ-
ees are the most cost-effective way to staff a development team. However,
candidates for full-time employment, particularly those with significant
J2EE skills, are often difficult to find. You must have a solid recruiting
process.

Educate existing developers on J2EE. For organizations with existing devel-
opment teams, a much easier alternative to hiring full-time J2EE experts is
to educate your existing staff on Java and J2EE through training provided
by firms. You can fill in holes in your staff by hiring Java developers or
computer science graduates who are both eager to learn J2EE.

Hire short-term consultants. Consultants hired for several days or weeks can
help you with specific issues such as choosing a J2EE application server;
selecting tools, standards, and guidelines; resolving internal debates; pro-
viding an unbiased architectural review of your project; aiding project ini-
tiation and planning; and mentoring in a specific technology. Short-term
consultants are a bit pricey but provide significant benefit to your project
when used effectively for that expertise. Because of their cost, engage these
experts for short-term use only. All project teams can benefit from bringing
in one or more consultants at the onset of a project.

Hire long-term contractors. Long-term contractors are a happy medium
between full-time employees and consultants. They’re paid more than
employees but often significantly less than consultants. They are often eas-
ier to hire because most developers perceive contracting as high paying yet
low risk, therefore more people choose this career path and typically have

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS438

the experience that you require. (Today’s J2EE contractor was yesterday’s
full-time J2EE employee somewhere else.) Contractors are an effective way
to fill out your project team when you don’t have enough full-time
employees with J2EE experience and don’t want to pay consulting rates for
a significant portion of your staff. Skills that you should demand of your
contractors include expertise in the specific application server that you are
using, experience on one or more projects of similar scope, and ideally,
experience on one or more projects of a similar nature.

If you decide to go the training or contracting route, the authors of this book
may be able to help you. See Table 15.2.

Design Your Complete Object Model

Once your team is assembled and has a good level of J2EE understanding, you
are empowered to flesh out your object model. Ideally you should minimize
risk by working hand-in-hand with an external J2EE expert who has built such
systems in the past.

Whenever you inject a new object into this object model, all layers should be
considered. Ignoring the user interface, the business layer, or the data layer
could lead to false assumptions that bite you down the line.

See Table 15.3 for suggested resources when building a J2EE object model.

Implement a Single Vertical Slice

Once you have defined an initial architecture, you need to start building to that
architecture. We recommend implementing an initial vertical slice of the system.
A vertical slice is a subset of the use-cases in your system. For example, if

Starting Your EJB Project on the Right Foot 439

VENDOR SERVICE FOCUS

The Middleware Company Provides training, consultants, and
(www.middleware-company.com) contractors for Java, EJB, J2EE, and XML

projects.

Ronin International Provides consultants and contractors for
(www.ronin-intl.com) object-oriented and component-based

architecture and software process
development.

Table 15.2 J2EE-Related Service Vendors

you’re putting together an e-Commerce site, you might have the vertical slice
be the search engine or the product catalog. A vertical slice should demonstrate
usage of all the J2EE technologies in tandem—you would want to show that a
browser can connect to a Web server running servlets, which in turn interacts
both with EJBs that access your back-end database and with JSPs to generate
HTML to return to the browser. A vertical slice is not just EJBs. Developing an
initial vertical slice offers several benefits:

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS440

RESOURCE DESCRIPTION

TheServerSide.com Design Patterns section is invaluable
(www.TheServerSide.com) resource for building J2EE systems.

Chapters 13 and 17 of this book Chapter 13 is a group of EJB design
strategies. Chapter 17 is a sample design
for a complete EJB/J2EE system.

“EJB Design Patterns” by Floyd Patterns for building EJB object models.
Marinescu, published by John
Wiley & Sons

“Core J2EE Patterns” by John Crupi, Patterns for building J2EE systems (includes
et al. published by Addison-Wesley Web tier and EJB tier patterns).

J2EE Blueprints Best practices guide for J2EE systems.
(http://java.sun.com/j2ee)

Table 15.3 Resources for Building Your J2EE Object Model

Reuse of J2EE Components

In our experience, it is a myth that J2EE components achieve high reuse across
projects. Components are often copied-and-pasted, but not reused in the true
O-O sense.

For large organizations building complex J2EE systems, we recommend invest-
ing in a J2EE best practices task force. This task force enforces coding standards
across all projects, that all teams speak the same vocabulary for objects in their
system, and that correct design patterns are applied in projects. The benefits of
this task force include easing communication between projects and enabling
developers to easily transition between projects with minimal ramp-up time.

If you are going to go down the path of reuse, we recommend using a reusable
component manager, which helps you organize components within your enter-
prise. ComponentSource and Flashline.com each provide these products.

Provides experience developing J2EE software. By developing an end-to-
end vertical slice, you learn how to work with all of the technologies, tools,
and techniques that you are going to apply on your project. You have to
start somewhere, and it’s better to discover and address any problems as
early in your project as possible.

Provides experience deploying J2EE software. The first time you deploy a
J2EE application can be confusing. You have several types of nodes to
potentially install and configure—Web servers, application servers, data-
base servers, security servers, and so on. You can safely gain this experi-
ence by internally deploying your initial vertical slice into your staging
area.

Reduces unsoundness risk. By developing an initial vertical slice, you show
that the technologies you have chosen all work together, thereby eliminat-
ing nasty integration surprises later in your project. Remember the old say-
ing: Everything works well in management presentations, but not
necessarily in reality.

Proves to your project stakeholders that your approach works. At the begin-
ning of a project, your stakeholders may support you because they have
faith that your team can deliver what you have promised; but their sup-
port will be even stronger if you show that you can actually deliver. Fur-
thermore, developing and then deploying (at least internally) an initial
vertical slice can be incredibly important to your project politically because
your detractors can no longer claim that it isn’t going to work.

Answers the question: Will it scale? The vertical slice is a real working piece
of your system and should demonstrate how well your design scales
under load. You can stress test this slice before building the rest of your
system. This reduces risk, especially in situations where you may have
questions about whether your object model will work (for example, will
EJB entity beans scale?).

Gets the design patterns right early on. Building the vertical slice gives you
experience with what works and what doesn’t work with J2EE. For exam-
ple, you’ll have an opportunity to compare and contrast different model-
view-controller (MVC) paradigms. This leads to discovery of a common
technical vision. Once you’ve locked down that framework, you can apply
those best practices to other vertical slices and enable developers with
lesser skills to implement them.

Starting Your EJB Project on the Right Foot 441

Choose an Application Server

The choice of an application server is important to your project. Although your
J2EE applications may be portable between vendors, the differences make it
painful to switch vendors.

Companies that are eager to get started with their EJB development should go
with one of the current market leaders. But companies who want to reduce
risk before jumping into purchasing a J2EE server should spend the time to
research whether the vendor they’re thinking about using is right for them.
This is applicable for both large and small projects. Our recommended process
is as follows:

1. List the features you want in an application server. A consultant can help
you build this list.

2. Weight and prioritize the feature list.

3. Eliminate all vendors that don’t meet the majority of your criteria.

4. With the two or three vendors left, download and deploy your initial verti-
cal slice into those application servers. You can then measure how well
these application servers handle your specific business problem, as well
as their general usability.

In all cases, we recommend you do not purchase your application server until
you’ve deployed your vertical slice into the application server. You may find
the application server does not behave as the vendor’s marketing propaganda

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS442

Do You Start Fresh or Evolve Your Initial Slice?

Once you have developed your initial vertical slice, you need to make an impor-
tant decision: Do you throw it away to start fresh on future vertical slices, or do
you continue to evolve it into your system? The answer depends on the quality of
your work. If it is poor quality, either because you rushed or simply because you
were new to the technologies or techniques and made some fundamental mis-
takes, you should consider starting fresh. There’s absolutely nothing wrong with
starting fresh—you still gain all the benefits. On the other hand, if the quality of
your initial vertical slice is good enough, you can and should consider keeping
the code (or at least applicable portions of it) and use it as a base from which to
develop your system. This is something that the rational unified process refers to
as building the skeleton first.

promised. Download that free evaluation copy and deploy that real, working
slice of your system into the server to see for yourself.

The following are suggested resources for choosing an application server:

■■ Chapter 16 of this book, a guide to choosing an EJB server

■■ TheServerSide.com application server “Reviews” section (www.
TheServerSide.com)

■■ “Selecting a J2EE Vendor” by Simon Blake (www.TheServerSide.com)

■■ EJB Portal—Product & Vendors Directory (www.ejbportal.com)

■■ Enterprise JavaBeans Supporters (Sun Microsystems)
(java.sun.com/products/ejb)

■■ Flashline.com—Application Server Comparison Matrix
(www.flashline.com)

■■ App-Serv Central Contenders List (www.app-serv.com)

Divide Your Team

Dividing your J2EE team is one of your most critical decisions. When assem-
bling a J2EE project team, you have two basic choices:

Horizontal approach. Have folks specialize in different technologies. For
example, you’d have a JSP team, a servlets team, an EJB session beans
team, and an EJB entity beans team. Members of your team become special-
ists in specific technologies.

Vertical approach. Have folks specialize in vertical business use cases. For
example, you’d have a search engine team, a product catalog team, and a
payment processing team. Team members become generalists and gain
experience with all the J2EE technologies involved in that domain, such as
servlets, JSPs, and EJBs.

You can also use a hybrid approach, which is a combination of the two. Table
15.4 describes the horizontal, vertical, and hybrid approaches to team organi-
zation with their advantages and disadvantages. Table 15.5 lists several rec-
ommended resources for building project teams.

So which approach is better? The answer depends on the goals for your
project:

■■ If your goal is to get your project completed quickly and in a consistent
manner, our experience has shown us that the horizontal or hybrid
approach is superior. Design patterns, paradigms, and frameworks are

Starting Your EJB Project on the Right Foot 443

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS444

ST
R

A
TE

G
Y

A
D

V
A

N
TA

G
ES

D
IS

A
D

V
A

N
TA

G
ES

H
or

iz
on

ta
l —

Yo
ur

 te
am

 is
 c

om
po

se
d

of

■
■

Th
e

sa
m

e
te

am
 u

se
s

th
e

sa
m

e
AP

I
■

■
Sp

ec
ia

lis
ts

 d
o

no
t g

ai
n

ex
po

su
re

 t
o

ot
he

r
sp

ec
ia

lis
ts

in
 p

ar
tic

ul
ar

 J
2E

E
AP

Is
.

ac
ro

ss
 a

ll
ve

rt
ic

al
 u

se
-c

as
es

. T
hi

s
AP

Is
, r

es
ul

tin
g

in
 d

is
co

nn
ec

ts
 b

et
w

ee
n

Ea
ch

 d
ev

el
op

er
 w

or
ks

 o
n

se
ve

ra
l u

se

en
su

re
s

co
ns

is
te

nc
y

in
 d

es
ig

n
pa

tt
er

ns
,

la
ye

rs
.

us
e-

ca
se

s
us

in
g

th
at

 A
PI

.
pa

ra
di

gm
s,

 a
nd

 fr
am

ew
or

ks
 u

se
d.

■

■
Re

qu
ire

s
st

ro
ng

 p
la

nn
in

g
to

 a
ch

ie
ve

■

■
Sp

ec
ia

lis
ts

 b
ec

om
e

pr
of

ic
ie

nt
 w

ith
 th

ei
r

pa
ra

lle
l d

ev
el

op
m

en
t.

N
ee

d
to

 d
ef

in
e

AP
I,

yi
el

di
ng

 r
ap

id
 a

pp
lic

at
io

n
ro

ck
-s

ol
id

 in
te

rf
ac

es
 b

et
w

ee
n

la
ye

rs
.

de
ve

lo
pm

en
t.

■
■

Re
te

nt
io

n
is

su
es

 a
ris

e.
 S

pe
ci

al
is

ts
 d

o
no

t
ha

ve
 a

 c
on

ce
pt

 o
f o

w
ne

rs
hi

p
of

 a
 u

se
-c

as
e.

Th
ey

 o
nl

y
un

de
rs

ta
nd

 o
nl

y
a

si
ng

le
 p

ar
t

of
J2

EE
, a

nd
 s

o
th

ei
r

sk
ill

s
gr

ow
 m

or
e

sl
ow

ly
.

Ve
rt

ic
al

—
Yo

ur
 t

ea
m

 is
 c

om
po

se
d

of

■
■

Sm
oo

th
 e

nd
-t

o-
en

d
de

ve
lo

pm
en

t o
n

an

■
■

G
en

er
al

is
ts

 n
ee

d
to

 k
no

w
 m

an
y

ge
ne

ra
lis

td
ev

el
op

er
s

w
ho

 g
ai

n
in

di
vi

du
al

 u
se

-c
as

e
ba

si
s.

te

ch
no

lo
gi

es
 a

nd
 a

re
 ty

pi
ca

lly
 h

ig
hl

y
ex

pe
rie

nc
e

w
ith

 e
ve

ry
 J

2E
E

■
■

Pa
ra

lle
l d

ev
el

op
m

en
t i

s
ea

sy
 if

 u
se

-
pa

id
 a

nd
 d

iff
ic

ul
t t

o
fin

d.

te
ch

no
lo

gy
. T

he
y

fo
cu

s
on

 a
 s

pe
ci

fic

ca
se

s
ar

e
se

pa
ra

te
d

w
el

l.
Ea

ch

■
■

G
en

er
al

is
ts

 ty
pi

ca
lly

 d
o

no
t

ha
ve

 t
he

pr

ob
le

m
 d

om
ai

n
or

 u
se

-c
as

e.
de

ve
lo

pe
r

w
or

ks
 o

n
hi

s
ow

n
us

e-
ca

se
.

sp
ec

ifi
c

te
ch

ni
ca

l e
xp

er
tis

e
re

qu
ire

d
■

■
D

ev
el

op
er

s
ha

ve
 a

 c
on

ce
pt

 o
f o

w
ne

rs
hi

p
to

 q
ui

ck
ly

 s
ol

ve
 d

et
ai

le
d

pr
ob

le
m

s.
of

 a
 u

se
-c

as
e.

 T
he

y
ga

in
 a

 w
id

er
 r

an
ge

■

■
Su

bj
ec

t m
at

te
r

ex
pe

rt
s

m
us

t
w

or
k

w
ith

of

 s
ki

lls
. G

oo
d

fo
r

re
te

nt
io

n.

se
ve

ra
l d

ev
el

op
er

 g
ro

up
s,

 in
cr

ea
si

ng

■
■

G
oo

d
fo

r
ed

uc
at

in
g

de
ve

lo
pe

rs
 o

n
th

ei
r

bu
rd

en
.

di
ffe

re
nt

 te
ch

no
lo

gi
es

 u
se

d
in

 y
ou

r
■

■
D

es
ig

n
pa

tt
er

ns
, p

ar
ad

ig
m

s,
 a

nd

sy
st

em
 to

 g
iv

e
th

em
 a

 b
ro

ad
er

 p
ic

tu
re

.
fr

am
ew

or
ks

 u
se

d
m

ay
 c

ha
ng

e
be

tw
ee

n
us

e-
ca

se
s.

■
■

If
us

e-
ca

se
s

ar
e

in
te

rd
ep

en
de

nt
, i

t
is

 d
iff

i-
cu

lt
to

 p
ar

tit
io

n
th

e
te

am
.

H
yb

rid
—

Yo
ur

 t
ea

m
 is

 m
ad

e
up

 o
f

■
■

Th
e

sa
m

e
te

am
 u

se
s

th
e

sa
m

e
AP

I
■

■
Re

qu
ire

s
pl

an
ni

ng
 a

nd
 s

tr
uc

tu
re

 e
ar

ly
 o

n
bo

th
 g

en
er

al
is

ts
 a

nd
 s

pe
ci

al
is

ts
.

ac
ro

ss
 a

ll
ve

rt
ic

al
 u

se
-c

as
es

. T
hi

s
in

 th
e

pr
oj

ec
t.

Th
e

ge
ne

ra
lis

ts
 h

av
e

au
th

or
ity

 o
ve

r
en

su
re

s
co

ns
is

te
nc

y
in

 d
es

ig
n

■
■

Re
qu

ire
s

an
 u

nd
er

st
an

di
ng

 a
nd

 b
uy

-in

on
e

or
 m

or
e

us
e-

ca
se

s.
 T

he
y

su
pp

or
t

pa
tt

er
ns

, p
ar

ad
ig

m
s,

 a
nd

 fr
am

ew
or

ks

fr
om

 th
e

te
am

 th
at

 th
e

ge
ne

ra
lis

ts
 h

av
e

AP
I s

pe
ci

al
is

ts
 w

ho
 w

or
k

on
 m

an
y

us
ed

.
au

th
or

ity
 w

ith
in

 th
ei

r
us

e-
ca

se
s.

us

e-
ca

se
s

w
ith

in
 a

 p
ar

tic
ul

ar
 A

PI
.

■
■

Sp
ec

ia
lis

ts
 b

ec
om

e
pr

of
ic

ie
nt

 w
ith

■

■
M

us
t s

til
l s

pe
c

ou
t i

nt
er

fa
ce

s
be

tw
ee

n
th

ei
r

AP
I,

yi
el

di
ng

 r
ap

id
 a

pp
lic

at
io

n
la

ye
rs

 fo
r

sp
ec

ia
lis

ts
 to

 d
ev

el
op

 in
 p

ar
al

le
l.

de
ve

lo
pm

en
t.

■
■

In
di

vi
du

al
 u

se
 u

se
-c

as
es

 a
re

im

pl
em

en
te

d
co

ns
is

te
nt

ly
 .

Ta
b

le
 1

5.
4

Te
am

 O
rg

an
iz

at
io

n
St

ra
te

gi
es

kept consistent across the board. Specialists build a core competency in
their API, yielding rapid application development.

■■ If your goal is to invest in the education of your developers to reduce
retention issues or to give them a broader long-term skill set, the vertical
approach works well. Developers gain experience with every technology
in J2EE. The downside is consistency of design patterns across use cases.
In a day and age when good software professionals are hard to find, let
alone keep, this is an important consideration.

Invest in Tools

A number of tools are worth a look when building your EJB/J2EE deployment.
These include testing tools (JUnit), profiling tools (JProbe or OptimizeIt), UML
modeling tools (Together/J or Rational Rose), IDEs (JBuilder or WebGain Stu-
dio), and more.

Starting Your EJB Project on the Right Foot 445

RESOURCE DESCRIPTION

Peopleware: Productive Projects This book is the de facto classic within the
and Teams, 2nd Edition, Tom information technology industry for how to
Demarco and Timothy Lister, build and manage a software project team.
1999, Dorset House Publishing

Constantine on Peopleware, This book presents is a collection of writings
Larry L. Constantine, 1995, about the software aspects of software
Yourdon Press development, including developer productiv-

ity, teamwork, group dynamics, and devel-
oper personalities. This is a good book to
read for anyone trying to understand how to
organize and then manage a bunch of soft-
ware “geeks.”

Organizational Patterns for Teams, The paper describes a collection of patterns
Neil B. Harrison, 1996, Pattern for building a software development team,
Languages of Program Design 2, including Unity of Purpose, Diversity of
pages 345—352, Addison-Wesley Membership, and Lock ‘Em Up Together.
Publishing Company

The Unified Process Inception This book describes a collection of activities
Phase, Scott W. Ambler & and and best practices for the Rational Unified
Larry L. Constantine, 2001, Process (RUP) Inception phase, including
CMP Books, www.ambysoft.com advice for building your project team.

Table 15.5 Recommended Resources for Building a Project Team

Rather than describe each and every tool that’s out there, we are providing a
free up-to-date EJB/J2EE product matrix where users can describe and submit
reviews for products and tools in the EJB/J2EE industry. This is located on
www.TheServerSide.com.

Invest in a Standard Build Process

An easy choice when picking tools is a tool to help you with a standard build
process. If you decide to use a standard build process, you must use some sort
of build scripts, written in some scripting language. The build tool does not
take place of your build process—it only acts as a tool to support it. What char-
acteristics would you like to have in this scripting language?

Widely understood. It would be nice if your developers (who are more often
than not doing the builds) already understood the technology behind the
language.

Functional. The scripting language needs to support a wide array of func-
tionality out of the box, especially for Java features.

Extensible. Since no two projects are the same, and projects use all sorts of
different technology, it would be useful if you could add functionality to
the scripting language to handle you particular needs.

Cross platform. In an enterprise environment, you usually are developing on
a Windows machine and doing testing and quality assurance on a non
Windows box. You want your build scripts to be as cross-platform as your
code.

The Apache group’s Ant build tool (http://jakarta.apache.org) combines ideas
from Java and XML to achieve these goals. Many of our clients are using Ant
successfully, and we highly recommend it.

Next Steps

With your initial vertical slice in place, you are in a position to continue your
construction efforts by developing additional slices of your system. For each
vertical slice, you effectively run through a miniature project lifecycle—flesh-
ing out its requirements, modeling it in sufficient detail, coding it, testing it,
and internally deploying it. This approach reduces your project risk because
you deliver functionality early in the project; if you can deploy your system
internally, you can easily make it available to a subset of your users to gain
their feedback. Furthermore, your development team gains significant lifecy-

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS446

cle experience early in the project, giving developers a significantly better
understanding of how everything fits together.

Summary

In this chapter, we gained greater insight into how to start our EJB projects on
the right foot. We learned about a time-tested process that has worked for
other organizations to reduce risk and lead to a win-win situation for all par-
ties involved. Armed with this knowledge, you should be able to confidently
begin work on your EJB project.

Starting Your EJB Project on the Right Foot 447

C H A P T E R 16

449

Throughout this book, we’ve explained the concepts behind EJB programming
and put the concepts to practice in concrete examples. But perhaps an even
more daunting task than learning about EJB is choosing from the legion of
container/server product vendors out there—currently more than 30 such
products. For the uninformed, this is a harrowing task. What should you be
looking for when choosing an EJB product? That is the focus of this chapter.

To best make use of this chapter, first ask which application server features are
most important to you in your deployment, including specific features that
you need (such as support for a particular database). Once you’ve listed your
requirements, assign a weight to each feature. For example, if transparent fail-
over is important in your deployment, you might rank it a 7 of 10. Once you’ve
weighted each feature, you can begin evaluating application server products
and create a scorecard for each product.

Once you’ve reduced your list of servers to two or three, we recommend that
you deploy code into those servers and test them out for yourself. You should
measure both quantitative data (how many transactions per second can the
server support?) as well as qualitative data (how easy is the server to use?). See
Chapter 15 for more details on how choosing an EJB server fits into a larger EJB
development process.

The remainder of this chapter discusses our criteria for choosing an EJB server.

Choosing an EJB Server

This chapter does not recommend a particular EJB server. Why not? Because by
the time this book fell into your hands, the information would already be out of
date. Instead, we are hosting a free section on www.wiley.com/compbooks/roman
that contains application server reviews.

J2EE 1.3 Brand

Perhaps the most important issue to think about when choosing an EJB
container/server product is compatibility. When you make your purchase
decision, you need to write code and purchase beans that are compatible with
your container/server product. If in the future you decide to switch to a dif-
ferent vendor’s product, the transition will surely not be free and it will always
involve some migration headaches. While the EJB standard defines the inter-
faces that should make products compatible, realistically, every vendor’s
product will differ from the next in some semantic ways, which will impact
your deployment. Ideally, you want to make the right choice on your first
purchase.

J2EE v1.3 ships with a compatibility test suite, which verifies that a particular
vendor’s product is indeed compatible with the J2EE 1.3 specifications, includ-
ing EJB 2.0. You can verify compatibility by looking for a J2EE seal of approval,
which Sun Microsystems stamps on J2EE-compliant products.

Pluggable JRE

Some containers are hard-coded to a specific version of the Java Runtime Envi-
ronment (JRE). Other vendors are more flexible, supporting many different
JREs. This may be important to you if you have existing applications that
depend on specific JRE versions.

Conversion Tools

Does the EJB server ship with tools to migrate old J2EE code into the latest ver-
sion? Consider that even though J2EE 1.3 sounds new today, it won’t be new
tomorrow. You may need to upgrade your application in the future to a new
version of J2EE, and your vendor’s historical support of migration tools is
most indicative of whether it will support such migration in the future.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS450

Complex Mappings

Be sure your EJB server allows you to perform any complex database map-
pings that you may need, such as mapping to stored procedures and mapping
to complex JOINs across a relational database, as well as the ability to write
custom SQL if necessary.

Third-Party JDBC Driver Support

Some servers do not allow the substitution of JDBC drivers—or if they do, they
may disable features such as connection pooling. Be sure your vendor sup-
ports your database connection needs.

Lazy-Loading

Lazy-loading means to load entity bean data on demand. This is important for
large object graphs where the user may only need access to a small portion of
the graph. Note, however, that your EJB server should allow you to tune lazy-
loading on a per-bean basis, so that you can load an entire object graph if you
know you need that entire graph.

Deferred Database Writes

A deferred database write means to defer JDBC write operations until transac-
tion commit time. This is important, because if you have a transaction involving
many EJB components and thus many database writes, it is counterproductive
to perform many network roundtrips to the database. The superior approach is
to perform one large write at transaction commit time.

Pluggable Persistence Providers

Some EJB containers provide proprietary APIs for plugging in third-party per-
sistence modules, such as a module that persists your entity beans to an object
database rather than a relational database. Other possibilities include persist-
ing to a file, persisting to a relational database using a simple object-relational

Choosing an EJB Server 451

mapping, persisting to a relational database using a complex object-relational
mapping, or persisting using user-defined persistence routine (which may
implement persistence through a legacy application).

If you’re planning on plugging in a third-party persister into your container,
be sure that you can gain transactions and connection pooling.

In-Memory Data Cache

If you are using entity beans (and many deployments will, now that they can
be accessed in a high-performance way through local interfaces), be aware that
entity bean performance is not equal between application servers.

Some application servers work in a pass-through mode, which means that any
entity bean operations are passed through to the database, resulting in a low-
level database transaction. Other vendors implement smart caching of entity
beans, allowing some operations to occur in memory rather than at the data-
base level. For example, if you’re merely reading the same data over and over
again from an underlying storage, you should not need to hit the database on
every method call. The difference between pass-through and caching applica-
tion servers is tremendous. Some vendors have reported a 30-fold or more per-
formance increase over the pass-through application server.

There is even a third-party marketplace for such caching providers. For exam-
ple, Javlin is a product that plugs into an EJB server to add caching support.

Integrated Tier Support

Throughout this book, we’ve concentrated on EJB as a server-side component
model. But for many deployments, Web components written with servlets and
JSPs need to access the EJB layer. Some EJB servers offer the ability to run
servlets and JSPs in the same JVM as your enterprise beans. If you want this
style of deployment, look for this feature.

Scalability

Your EJB server should scale linearly with the amount of resources thrown at
it. If you add extra machines with equal power (memory, processor power,
disk space, and network bandwidth), the number of concurrent users your
server-side deployment can support and the number of transactions your sys-
tem can execute per second, should increase linearly. Be sure to ask your EJB

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS452

server vendor for case studies and customer references to back up its scalabil-
ity story.

Other questions to ask include:

■■ How long does it take for the EJB server to start up or restart? This is
important for development as well as for production deployment. If the
restart cycle is long it makes it inconvenient to develop and debug with
the EJB server. In production, a slow startup cycle affects the availability
of the application to the clients.

■■ Can the EJB server recover from backend database loss and restart? For
example, if the EJB server temporarily loses connectivity to the database,
does it need to be restarted to reestablish connectivity to the database, or
can it do so automatically?

High Availability

High availability is critical for server-side deployments. You want the highest
level of confidence that your EJB server won’t come down, and you can look
for a number of things to increase your confidence. Your EJB server vendor
should have compelling numbers indicating the availability of its product,
backed up by existing customers. Realize, too, that your EJB server is only as
available as the operating system and hardware that it’s deployed on. Be sure
to ask your EJB server vendor what operating systems and hardware configu-
rations they support.

Security

A typical EJB deployment leverages predefined security lists that are already
available in existing systems. For example, an IT shop may store access control
lists of users in a Lotus Notes LDAP server; you may need to use these lists in
your EJB deployments. Many EJB products offer assistance with importing
and exporting ACLs from existing deployments, so that you won’t have to cre-
ate your own solutions from scratch, saving you time when deploying EJB
products. Some systems can even tap into existing security systems—they get
the user and authorization information from the existing security service.

Standardized support for the Java Authentication and Authorization Service
(JAAS) will enable you to plug in different security providers.

Choosing an EJB Server 453

Other questions include:

■■ Can the server integrate with LDAP in real-time for authentication and
authorization?

■■ Does the security system support SSL?

■■ Can a firewall be placed between the servlet container and the EJB con-
tainer? Between a third-party Web server and the servlet container? Can it
be an application proxy-type firewall or only a packet filtering firewall?

IDE Integration

An essential component of any development is an easy-to-use Integrated Devel-
opment Environment (IDE), such as Webgain’s VisualCafe, Inprise’s JBuilder,
iPlanet’s Forte, or IBM’s VisualAge for Java. IDEs can assist in code manage-
ment, automate programming tasks, and aid in debugging.

Some EJB container/server vendors are IDE vendors as well (IBM, Inprise,
and iPlanet). This duality allows them to seamlessly integrate their EJB server
product with their IDE. The end result is compelling: The IDE can aid in cod-
ing, debugging, and deploying your beans by working together with the
application server. Other EJB server vendors who do not have their own IDE
are forming strategic alliances with IDE vendors to gain a competitive edge in
the marketplace.

Some useful features to look for include:

■■ Automatic creation of home and remote interfaces from bean

■■ Automatic identification of business methods

■■ Creation and editing of deployment descriptors

■■ Construction of Ejb-jars, Web archives (.wars), and enterprise archives
(.ears) from within the IDE

■■ Direct deployment from the IDE to the J2EE server

■■ Debugging into the container via a Java remote debug protocol

UML Editor Integration

The diagrams in this book were drawn using the Unified Modeling Language
(UML), the de facto standard for communicating development architectures
between programmers. A number of visual UML editors are on the market,
such as Rational Software’s Rational Rose and Togethersoft’s Together/J. Many
of these UML editors enable you to visually design EJB components, and then

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS454

automatically generate and deploy those components into the EJB server of
your choice, yielding rapid application development. Be sure to ask your EJB
server vendor about which UML editors support their servers.

Intelligent Load Balancing

A common deployment scenario involves a set of machines, all working
together to provide an n-tier solution.

The variety of ways to load balance requests across a set of machines include
random, round-robin, active load-balancing, weighted load-balancing, and
custom algorithms (see Chapter 14 for more on this).

In the long run, if you have many requests hitting your servers, the particular
load-balancing algorithm that you choose will likely not matter, as long as
your server supports some algorithm. Load-balancing algorithms become par-
ticularly important in two cases: if you have a heterogeneous hardware situa-
tion and need to skew the load to one machine; or if you only have a few,
heavy-duty requests coming into your system. If you’re among these cases, be
sure that your EJB server supports the load-balancing algorithms you require.

Stateless Transparent Fail-over

When your application server crashes, there should be a transparent rerouting
of all requests to a different application server. The natural place to put this
process is in intelligent client-side proxies, which intercept all network-related
problems and retry methods on alternative application servers or in the object
request broker runtime. Transparent fail-over is fairly easy to implement if you
restrict the client to invoke only on a stateless server, and assume that all trans-
actional resource updates can be rolled back.

Clustering

A more advanced level of transparent fail-over is stateful transparent fail-over
or clustering. With clustering, your application server is replicating conversa-
tional state across servers. If an application server crashes, another server can
pick up the pieces since it has replicated state. If your application server sup-
ports clustering both for Web components (servlets, JSP scripts) as well as clus-
tering for enterprise beans, you can completely eliminate single points of
failure from your deployment, ensuring uninterrupted business processes.

Choosing an EJB Server 455

An extension of clustering is application partitioning—configuring compo-
nents to run only particular nodes within a cluster. High-end servers provide
tools for managing this complexity.

Java Management Extension (JMX)

JMX is a J2EE API for monitoring a deployment. If your EJB server supports
JMX, you can write an application that monitors your EJB server. Your appli-
cation could set properties in your EJB server as well, such as modifying the
current thread pool, redeploying an EJB component, and so on. If you wish to
write an application that performs advanced monitoring or control over your
EJB deployment, JMX is the way to go.

Administrative Support

A Web-based administrative console allows system administrators to monitor
your deployment from afar. Web-based consoles are superior to thick client
administrative consoles because you can easily access your system from any
machine, and firewalls don’t get in the way.

Command-line based administration is also important. It is necessary to allow
the automation of deployment and management. After all, your automated
testing process will need to quickly deploy beans into a server. It is inappro-
priate to require a human to click on a Web-based console to achieve this.
Common tasks that need to be automated from the command line include:

■■ Start, stop, and restart the EJB server

■■ Deploy, redeploy, and undeploy an application

Hot Deployment

Hot deployment means redeploying EJB components into a running EJB
server without shutting down the EJB server. This feature may be necessary if
you are in a 24x7 environment where even a small amount of downtime dur-
ing scheduled maintenance is unacceptable.

Instance Pooling

Instance pooling is the pooling and reuse of EJB components. Advanced EJB
servers can pool and reuse any type of component, be it a stateful/stateless

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS456

session bean, CMP/BMP entity bean, or message-driven bean. Look for flexi-
bility in configuring this pool size, including configurable rules for dynami-
cally increasing and decreasing its size under various load conditions.

Automatic EJB Generation

Some EJB servers ship with wizard-like or command-line tools to automati-
cally generate EJB components for you. For example, you could supply the
name of an entity bean, along with the names and types of its persistent fields.
From this, the tool should be able to generate your bean class, component
interfaces, home interfaces, deployment descriptor, and Ejb-jar file.

Clean Shutdown

What happens when you want to take down an application server for mainte-
nance? Perhaps you want to reboot the machine the application server is
installed on, upgrade the application server, or install software on the
machine. But if you simply kill the process, any connected clients’ work would
be lost, potentially resulting in financial errors or other catastrophes.

This leads to another area of value that EJB products can provide: a clean way
to shut the application server down without having a gross impact on clients.
For example, the EJB application server may simply have a routine that refuses
connections from new clients and allows for all existing clients to gracefully
disconnect.

Real-Time Deployment

Starting up and shutting down an EJB application server is usually a fairly
heavyweight operation. If you’re debugging an EJB application, having to
restart the EJB application server each time you regenerate your beans is a has-
sle. Having to shut down an application server to deploy new beans has an
even greater impact, because that application server cannot service clients
when it is down.

An enhanced value that some EJB products can provide above and beyond the
EJB specification is a mechanism for deploying enterprise beans in real time.
This means the ability to deploy and redeploy beans without shutting down a
running application server.

Choosing an EJB Server 457

Distributed Transactions

In Chapter 10, we examined transactions in depth and noted how multiple
processes on different physical machines could participate in one large trans-
action. This is known as a distributed transaction, and it is a fairly heavyweight
operation. It necessitates the use of the distributed two-phase commit protocol, a
reliable but cumbersome dance that transaction participants must take part in
for a distributed transaction to succeed.

If you require distributed transactions, make sure your EJB server supports
them, and also supports a clean recovery in case of transactional failure. For a
two-phase commit transaction to work, you also need to have the same trans-
action service deployed on all participant machines or to have interoperable
transaction services. Note that very few deployed EJB systems actually
employ distributed transactions today.

Superior Messaging Architecture

If you are using messaging in your system, realize that not all messaging archi-
tectures were created equal. Some messaging architectures do not allow you to
cluster your JMS destinations, which creates single points of failure. Other
messaging architectures cannot support as many messages per second as
others. Be sure to get these statistics from your EJB server vendor.

You also might want to look for additional quality of services (if you need
them) such as synchronous and asynchronous delivery, publish/subscribe
and point-to-point, acknowledgement (ACK) and negative acknowledgement
(NACK) guaranteed message delivery, certified delivery, and transactional
delivery.

Provided EJB Components

Some EJB servers ship EJB components as optional packages with their
servers. This can include personalization components, marketing components,
e-commerce components, vertical industry specific components, and many
more. Making use of any of these components may help to shorten your devel-
opment cycle.

If, on the other hand, you plan to use a third-party bean provider’s compo-
nents, you should ask if the components are certified on the EJB servers you
are choosing between. If not, you run the risk of incompatibility.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS458

J2EE Connector Architecture (JCA)

The JCA is an extremely important architecture for integrating with existing
systems. If you have existing systems, be sure to ask if your container supports
the JCA, and if so, which JCA adapters are certified on that application server.

Web Services

Web services technologies (XML/HTTP) enable you to integrate with existing
systems seamlessly and are also useful for B2B integration. The major EJB
servers will support the following up-and-coming J2EE Web services APIs:

The Java API for XML Registries (JAXR) enables you to access registries,
such as UDDI servers.

The Java API for XML Binding (JAXB) transforms Java objects to and from
XML documents.

The Java API for XML Parsing (JAXP) enables you to parse XML in a parser-
independent manner.

The Java API for XML-based RPC (JAX/RPC) enables you to send and
receive XML documents using XML-based protocols such as SOAP and
XMLP.

The Java API for XML Messaging (JAXM) is for performing messaging in
XML, such as ebXML.

The Java API for WSDL (jWSDL) enables you to manipulate WSDL
documents.

To learn more about these acronyms and how to build Web services, see the
free whitepaper by The Middleware Company on how to build J2EE Web ser-
vices, located on www.TheServerSide.com.

Workflow

Advanced EJB servers, as well as third-party independent software develop-
ers, are shipping J2EE-based workflow engines. A workflow engine enables
you to model business processes. A business process could span EJB compo-
nents, existing systems, B2B partners, and more. A workflow engine typically
has a flow of control that can change depending upon the state of the current
system. These flows are designed visually using a graphical workflow design
GUI. This is extremely useful for involving business analysts in the develop-
ment of business processes.

Choosing an EJB Server 459

Currently there is no standard J2EE API for performing workflow, so any
workflow solution you find will be proprietary. When shopping for a work-
flow engine, ask your vendor the following:

■■ Does the workflow engine integrate with J2EE?

■■ Is the workflow engine itself written in J2EE, so that you are not injecting
foreign technology into your deployment?

■■ Does the workflow engine support message-oriented middleware, such as
IBM MQSeries?

■■ Does the workflow engine allow for long-lived business processes that
may take days, weeks, or even months? One example is a workflow that
begins with purchasing a book on a Web site, then leads to fulfilling that
book, and finally handles a possible return shipment of the book. That
business process could span quite awhile.

Open Source

Some EJB servers are open source-code servers, similar to Linux, in that any-
one can contribute to their development. Examples are jBoss and OpenEJB.

If you choose an open source code EJB server, be sure you choose one for the
right reasons—you’d like more fine-grained control over the code base, you
are running a nonmission critical deployment, or you’d like to foster the open
source code community.

The wrong reason is usually price. Realize that the total cost of ownership of
your deployment includes far more than just the cost of the application server.
The total cost of ownership includes hardware costs, software costs, costs to
employ developers, costs to train developers, and opportunity costs if your
system is not ideal. Unless you are strapped for cash, we recommend you take
price out of the picture.

Specialized Services

EJB vendors provide numerous other features to differentiate their products.
Some of these features do not impact your code at all. For instance, your bean
code should always remain the same no matter what load-balancing scheme
your application server uses. Other features may require explicit coding on
your part, such as ERP integration. When choosing a product, ask yourself
how much explicit coding you would need to write to a particular vendor’s

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS460

proprietary API. The more of these APIs you use, the less portable your EJB
code becomes.

Some examples of special features offered in EJB products are:

■■ Optimized mechanisms for pooling and reusing sockets, multiplexing
many clients over a single socket

■■ Enhanced Java Virtual Machines for added performance

■■ Advanced systems management integration to professional monitoring
tools

As you can see, the emergence of these services becomes one of the chief
advantages of EJB as a competitive playing field that encourages vendors to
provide unique qualities of service.

Nontechnical Criteria

There is a host of nontechnical criteria to consider as well:

Reputable vendor. Does the vendor have a brand name and a history of dis-
tributed transaction processing systems? How large is the firm? How
many years has it been in operation?

High-quality technical support available after hours. If a crisis situation
ensues in the middle of the night, will your vendor be available to resolve
problems?

Verifiable customer success stories. Look for large, well-known (ideally For-
tune 500) companies implementing solutions with the vendor’s product.
Don’t hesitate to ask tough questions to get beyond the marketing hype.

Training and consulting services available. The company should have its
own internal training and consulting services or should have partnerships
with other firms to provide those services to you. Be sure that the vendor’s
training/consulting department is adequately staffed to provide the care
you need, and that the vendor is not overburdened with other projects.

Historical velocity to meet standards. Looking back in time, how close has
the vendor’s release cycle been to the J2EE specifications’ release cycle?
The shorter, the better.

Free evaluation copy. Any deserving vendor should let you evaluate its
product free of charge for either a limited time period or as a stripped-
down product version. Otherwise, rule that vendor out immediately.

Choosing an EJB Server 461

Summary

In this chapter, you’ve surveyed the criteria for making an EJB application
server purchase decision. The EJB specifications (as well as the products that
implement it) are evolving rapidly. The features offered in the marketplace are
likely to change over time. For the latest information about EJB products and
news, check out the following resources:

TheServerSide.com. TheServerSide.com has a section where users submit
application server reviews. There are also ECPerf benchmark results to
compare the performance of different application servers.

Online white papers. Some research firms offer whitepaper reviews they
have performed on EJB products. An example of such a site is
TechMetrix.com.

The Sun Microsystems Web site. The java.sun.com/products/ejb page has
an EJB Directory of current EJB products with links to vendor information.

Flashline.com. Flashline.com has an EJB matrix of application servers and
their associated costs.

Magazine article reviews. Some Java-based print magazines offer compar-
isons of EJB products as well. Examples here include Java Report, Java
Developer’s Journal, and JavaPro.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS462

C H A P T E R 17

463

In this chapter, we will see how to design and build a complete EJB/J2EE sys-
tem. In particular, you’ll learn how to use entity beans, session beans, and
message-driven beans together, and how to call EJB components from Java
servlets and JavaServer Pages (JSPs).

We will first motivate our deployment by describing the business problem.
We’ll then design the object model. The complete source code is available on
the book’s accompanying Web site, www.wiley.com/compbooks/roman. The
code is fully commented and ready to run.

The Business Problem

Jasmine’s Computer Parts, Inc. is a fictitious manufacturing company that
makes a wide variety of computer equipment, including motherboards,
processors, and memory. Jasmine, the company’s owner, has been selling her
products using direct mail catalogs, as well as a network of distributors and
resellers.

Jasmine wants to lower the cost of doing business by selling her computer
parts directly to the end customer through an e-commerce Web-based sales
model. Jasmine has given us a high-level description of the functionality of the

EJB-J2EE Integration: Building
a Complete Application

e-commerce solution. She’d like the following features in the system we pro-
vide for her:

User authentication. Registered users would first log in to the Web site to
access the complete catalog. Only registered users should be able to
browse and purchase from her online store.

An online catalog. Users should be able to browse her complete product line
on the Web and view details of each product.

Shopping cart functionality. While browsing the catalog, a user should be
able to choose the products he or she wants. The user should be able to
perform standard shopping cart operations, such as viewing the current
shopping cart or changing quantities of items already picked out.

Specialized pricing functionality. Users who order items in bulk should get
a percentage discount. For example, if I order five memory modules, I get a
10-percent discount on that memory. In addition, registered users who fre-
quent the store often should get additional discounts.

Order generation. Once the user is happy with his or her selections and has
committed to ordering the products, a permanent order should be gener-
ated. A separate fulfillment application (which we won’t write) would use
the data in the orders to manufacture the products and ship them. The user
would be able to return to the Web site later to view the status of current
orders.

Billing functionality. Once the user has placed the order, we should bill it to
him or her. If the user does not have enough funds to pay, the order should
be cancelled.

E-mail confirmation. After the order has been placed and the credit card
debited, a confirmation e-mail should be sent to the user.

This is definitely going to be a full-featured deployment!

A Preview of the Final Web Site

To give Jasmine an idea of what the final product should be like, our sales
team has put together a series of screenshots. The screenshots show what the
e-commerce system will look like when an end user hits the Web site.

Figure 17.1 shows a user logging into the system initially. Our authentication
will be through login names and passwords.

When the user has been recognized, he or she is presented with a Web store-
front. The Web storefront is the main page for Jasmine’s online store. This is
shown in Figure 17.2. From the Web storefront, the user can jump to the

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS464

EJB-J2EE Integration: Building a Complete Application 465

Figure 17.1 A user logging into Jasmine’s Computer Parts.

Figure 17.2 The Web storefront for our online store.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS466

Figure 17.3 Browsing the online catalog.

catalog of products that Jasmine offers, shown in Figure 17.3. A user who
wants to view details about a product can check out the product detail screen,
shown in Figure 17.4. The user can also add the product to the current shop-
ping cart—a temporary selection of products that the user has made but has
not committed to purchasing yet.

Once the user has made product choices, the user can view a cart for the cur-
rent selections (and make any last-minute changes), as shown in Figure 17.5.
When the user clicks the button to purchase the selection, he or she is billed
and a new order is generated. Finally, the user is given the order number for
future reference (see Figure 17.6).

EJB-J2EE Integration: Building a Complete Application 467

Figure 17.4 Viewing a particular product.

Figure 17.5 Viewing and modifying a cart.

Scoping the Technical Requirements

While meeting Jasmine’s requirements, we’d like to develop an extensible
infrastructure that she can add to in the future. That means making the right
abstractions to loosen the coupling between our components. Ideally, Jasmine
should be able to plug in a different implementation of any part of the system
with very few modifications.

Our deployment will be partitioned into three tiers:

The presentation tier involves one or more Web servers, each responsible for
interacting with the end user. The presentation tier displays the requested
information in HTML to the end user; it also reads in and interprets the
user’s selections and makes invocations to the business tier’s EJB compo-
nents. The implementation of the presentation tier uses servlets and
JavaServer Pages (JSPs).

The business logic tier consists of multiple EJB components running under
the hood of an EJB container/server. These are reusable components that
are independent of any user interface logic. We should be able to, for

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS468

Figure 17.6 Making a purchase.

EJB-J2EE Integration: Building a Complete Application 469

Customer
(Entity Bean)

Order Processor
(Message-Driven Bean)

Order
(Entity Bean)

Cart
(Stateful SB)

Pricer
(Stateless SB)

Cart Line Item
(class)

Product
(Entity Bean)

Order Line Item
(Entity Bean)

stores product
selections for is placed for

verifies credit card for,
sends email conf for,
and marks as permanent

can transform itself into

is composed of

computes prices of computes prices of

is composed of

represents
a permanent
order of

represents
a temporary
selection of

*

1

1

1

1

*

1 1 1 *

*

1

Arrows indicate
relationship
directionality

Figure 17.7 The major EJB compnents in our system.

example, take our business tier and port it to a different presentation tier
(such as a disconnected sales force’s laptop) with no modifications. Our
business tier is made up of session beans, entity beans, and message-
driven beans.

The data tier is where our permanent data stores reside. The databases
aggregate all persistent information related to the e-commerce site.

Object Model for the Business
Logic Tier

Let’s begin designing our EJB object model. The major beans are shown in Fig-
ure 17.7. As you can see from this diagram, we are following the design strat-
egy of wrapping entity beans with session beans, described in Chapter 13.
We’ll explain this UML diagram as we go.

We will co-locate our servlets/JSPs in the same process as our EJB compo-
nents, allowing us to exclusively use efficient local interfaces.

Products

First, we need to model the products that Jasmine is selling. A product could
be a motherboard, a monitor, or any other component. Products should be per-
sistent parts of the deployment that last forever. Our product abstractions
should represent the following data:

■■ The unique product ID

■■ The product name

■■ A description of the product

■■ The base price of the product (indicating the price of the product, with no
discounts or taxes applied)

Jasmine should be able to add and delete products from the system using a
maintenance tool. Because products are permanent, persistent parts of the sys-
tem, they are best modeled as entity beans. Our product entity bean should
have methods to get and set the above fields.

We also have a catalog session bean that wraps this entity bean, serving as a
transactional networked façade.

Rather than entity beans, we could have used Java classes to represent the entities
in our system, such as products, customers, and so on. However, many of these
nouns (especially products) are prime candidates to be cached by the container. This
means that by going with entity beans, our performance would actually improve.
Furthermore, by using local interfaces, the access time is comparable to a Java class.
And by using automatic entity bean code generators (see www.wiley.com/
compbooks/roman), we can write about the same amount of code as a Java class.

Customers

Next, we need to represent information about Jasmine’s customers. A cus-
tomer represents an end user—perhaps an individual or a corporation that
purchases goods from our Web site. Our customer abstraction contains the
following data:

■■ Customer ID

■■ The customer’s name (also used as the customer’s login name for our Web
site)

■■ The customer’s address

■■ The customer’s password (used to verify the customer’s identify)

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS470

We also have a UserManager session bean that wraps this entity bean, serving
as a transactional networked façade.

New customers, products, and so on can be added to the system in many ways. Jas-
mine could have users log in through a separate Web site and input their name, ad-
dress information, password, and other profile data. We could also develop a custom
maintenance tool (standalone or Web-based) for adding new products. To keep this
example simple, we’ll manually insert direct database data, but feel free to extend
this for your purposes.

Carts

Next, we need to keep track of the selections a customer has made while nav-
igating our catalog by modeling a shopping cart.

Each customer who has logged in should have his or her own temporary and
separate cart in which to work. Therefore, our carts need to hold client-specific
state in them. They should not be persistent, because the user can always can-
cel the cart.

This naturally lends itself to the stateful session bean paradigm. Each cart
stateful session bean holds conversational state about the user’s current cart. It
allows us to treat the entire cart as one coarse-grained object. A new cart needs
to be generated every time a user logs in. Each cart bean contains the follow-
ing information:

■■ The customer, whom we authenticated at the login screen. We need to
store customer information so that we know who to bill, what discounts
to apply, and where to ship the manufactured products.

■■ The products and quantities that the customer currently has selected. This
data is best represented in its own separate bean, called a Cart Line Item,
described later.

■■ The subtotal for the cart, taking into account all the prices of the products
the user wants as well as any discounts the user gets.

■■ The taxes charged. This is added to the subtotal for the final grand total.

In addition to this data, the cart beans will be smart and will know how to gen-
erate permanent orders from themselves. We describe orders a bit later.

When making shopping cart-like functionality, you have several choices. You can use
session beans (as we are) for temporary shopping carts. You can also use servlets or
JSPs session objects, which is appropriate if your shopping cart is primitive in func-
tionality and shouldn’t be reused for other graphical user interfaces.

EJB-J2EE Integration: Building a Complete Application 471

A final choice is to use entity beans and to keep the shopping cart data in the data-
base. The entity bean approach is appropriate for persistent shopping carts, where
you’d like the user to retrieve the shopping cart when returning later. This might be
useful if it requires complex configuration to get an item into a shopping cart, such as
custom configuring a laptop computer. The downside to the entity bean approach is
you need to write a shopping cart cleaning program that routinely sweeps abandoned
shopping carts from the database.

Cart Line Items

As the user navigates the Web site, he or she will add products to the cart. For
convenience of manipulation, we’d like to separate a cart into individual line
items, where each line item represents data pertaining to a single product the
user has currently selected. A cart has a 1:N relationship with its constituent
line items.

Cart line items contain the following data:

■■ The ID of the line item

■■ The product that the user wants to buy

■■ The quantity of that product

■■ Any discounts the customer gets from the base price of the product

The cart line item is specific to one customer and is not persistent. It is best
modeled as either a stateful session bean or a Java class that hangs off the cart.
We’ll choose to make it a Java class because there is no middleware that we
need when a cart calls a line item. Furthermore, we may need to marshal the
line item out to a servlet or JSP so that the contents can be displayed to a user.
By modeling our line items as classes to begin with, we can achieve this easily.

Pricers

Because Jasmine wants customized pricing, we need the concept of a pricer—
a component that takes a cart as input and calculates the price of that cart
based on a set of pricing rules. A pricing rule might be, “Customer X gets a 5-
percent discount,” or, “If you purchase 10 motherboards you get a 15-percent
discount.” These pricing rules could be read in from a database or set via EJB
environment properties (see Chapter 9).

Our pricer takes a cart as input and computes the subtotal (before taxes) of that
cart. It figures out the subtotal by computing a discount for each cart line item
in that bean and subtracting the discounts from the total price.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS472

Our pricer works on any cart and holds no client-specific state. Once the pricer
has computed a price on a cart, it is available to perform another computation
on a different cart. It is also not a persistent object—it would not make sense to
save a pricer because a pricer simply performs logic and holds no state. This
means our pricer fits into the EJB world best as a stateless session bean.

Orders

Next, we need to model a permanent order for goods. We’ll define an order
abstraction for this purpose. An order is a cart that has been converted into a
work request. An order represents a real business action that needs to take
place, such as the production of goods. Generating an order and billing a cus-
tomer go hand in hand.

An order contains the following information:

■■ The ID of this order (which the user can use to check on order status)

■■ The customer for which this order is generated (used for shipping address
information)

■■ The products and quantities that should be ordered (as with carts, best
represented as separate information; contained in order line items,
described later)

■■ The subtotal and taxes on the order

■■ The date the order was placed

Orders are permanent, persistent objects. You want an order’s state to be
around if your deployment crashes for any reason because an order means
money. Therefore, orders are best depicted as entity beans. In comparison,
carts are not permanent—they represent temporary interactions with the cus-
tomer. You don’t want to write a cart’s data to a database during a customer
interaction, but you do want to keep track of the user’s information—hence
the stateful session bean is best applied for carts.

Order Line Items

For convenience of manipulation, we break up our notion of an order into
individual line items, where each line item represents data pertaining to a sin-
gle product the user has ordered. An order has a 1:N relationship with its con-
stituent line items. Our order line item abstraction contains the following data:

■■ The ID of this order line item

■■ The product that this order line item represents (used by manufacturing
to reveal which product to make)

EJB-J2EE Integration: Building a Complete Application 473

■■ The quantity of the product that should be manufactured

■■ The discount that the customer received on this product

Because order line items are permanent, persistent objects, they are best repre-
sented as entity beans. At first, you might think an order line item is too small
and fine-grained to be an entity bean and might better be represented as Java
classes for performance. However, with EJB 2.0 local interfaces and by prop-
erly tweaking your EJB server, it is now possible to have both fine-grained and
large-grained entity beans. Chapter 13 has more detail about how to optimize
such entity beans for performance.

Order Processor

The last challenge we face is how to generate orders in our system. We’d like for
the user to continue browsing the Web site when he has placed the order,
rather than waiting to see if his credit card is approved. This is similar to Ama-
zon.com’s one-click functionality. We’d also like to email the user afterwards
indicating whether the order was successfully placed.

The best paradigm to achieve this is messaging. When the user wants to order
the shopping cart, we could send a JMS message containing the shopping cart
reference. Then later, the message will be processed off the queue by an order
processor message-driven bean. This order processor is responsible for query-
ing the shopping cart, checking the user’s credit card, checking inventory,
e-mailing the user a confirmation, and creating the order (entity bean).

The challenge of sending data through JMS is that we cannot marshal EJB
stubs in a JMS message. Thus, we couldn’t send a shopping cart stub as a seri-
alized bit-blob in a JMS message. This is a fundamental problem with
message-driven beans: It’s very challenging to send data into a message-
driven bean that comes from another bean.

An alternative is to use EJB object handles (described in Chapter 9), which are
serializable stubs. However, this might not work either, since the stateful ses-
sion bean cart might time-out before the JMS message was processed.

Another alternative is to create a custom, serializable representation of the
shopping cart, perhaps by using serializable Java objects. The problem here is
we’d need to create all these extra Java classes, which is very annoying.

The best solution for us is to submit the order before sending a JMS message.
We’d then mark the order status as unverified. The order processor receives the
primary key of the order, retrieves the order entity bean from the database,
checks the credit card, send the confirmation e-mail, and then changes the
order status to submitted.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS474

Our notion of an order can be easily extended to include order status, such as
Manufacturing or Shipping and other order fulfillment information. It would
also be interesting to e-mail the order status to the end user at regular intervals
using the JavaMail API. Since we do not fulfill orders, we leave this as an exer-
cise to the reader.

Object Model for the
Presentation Tier

Our next task is to design our presentation tier, which displays the graphical
user interface to the end user. For our presentation tier, we will use a few Java
servlets and JSPs to interact with a client over HTTP.

What Are Servlets?

A servlet is a module that runs within a request/response-oriented server. A
request is a call from a client, perhaps remotely located. Requests contain data
that the client wants to send to the server. A response is data that the server
wants to return to the client to answer the request. A servlet is a Java object that
takes a request as input, parses its data, performs some logic, and issues a
response back to the client. This is shown in Figure 17.8.

Servlets work on the same concept as CGI scripts. A CGI script is a program
that takes data from standard input, performs some logic, and sends data to
standard output. It doesn’t matter what language you use to write a CGI
script, as long as it follows this convention of reading data from standard input
and writing data to standard output. This is shown in Figure 17.9.

The problem with CGI is that your server must restart the CGI script every
time a new request is issued. This means every time a client communicates,
your server needs to begin a new process. Starting and stopping processes are
expensive operations.

EJB-J2EE Integration: Building a Complete Application 475

Servlet
1: receive request 3: issue response

2: perform logic

Figure 17.8 The basic servlet paradigm.

This is where servlets have an edge over CGI. Servlets are Java objects that
function the same way as CGI scripts—taking in data (a request), performing
some logic, and writing out data (a response). The difference between CGI and
servlets is that CGI scripts must be restarted for every request, where servlets
are pooled and reused over and over again to service many requests. This
means you don’t have to restart a process every time a new request comes over
the network. This greatly enhances performance. The container pools servlets
in the same way that the container pools enterprise beans.

Note that there are many different types of servlets, because the servlet con-
cept is protocol-neutral. You could theoretically develop an FTP servlet, a POP
servlet, and so on. An HTTP servlet, the most common type of servlet, works
using the HTTP protocol. This is shown in Figure 17.10.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS476

HTTP Servlet

3: perform logic

J2EE Server

Client Browser

1: send HTTP request

2: call servlet with
the request information

4: return response
information to
servlet engine

5: send HTTP response

Figure 17.10 HTTP servlets.

CGI script

1: receive data
from standard
input

3: write data
to standard
output

2: perform logic

Figure 17.9 CGI scripts.

EJB-J2EE Integration: Building a Complete Application 477

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorld extends HttpServlet {

public void service(

HttpServletRequest req, HttpServletResponse rsp)

throws ServletException, IOException

{

PrintWriter out = rsp.getWriter();

out.println("<H1>Hello World</H1>");

}

}

Source 17.1 A sample HTTP servlet.

An example of an HTTP servlet is shown in Source 17.1.

As you can see, HTTP servlets are very straightforward. They have a simple
method called service() which responds to HTTP requests. In that method, we
write some HTML back to the browser. If properly configured, the J2EE server
will pool and reuse this servlet to service many HTTP requests at once.

We can also do trickier things—respond differently to different types of HTTP
requests, maintain user sessions, read input parameters from Web forms
(using the HttpServletRequest object), and call EJB components.

The great thing about servlets is that they are written in Java and therefore can
be debugged just like any other Java code. The downside to servlets is that
they require Java knowledge. It is therefore inappropriate to use servlets to
write large amounts of HTML back to the user, because that HTML is inter-
laced with Java code, as we saw in Source 17.1. This makes it very challenging
for Web designers to get involved with your deployment.

What are JavaServer Pages?

A JavaServer Page (JSP) is a flat file that is translated at runtime into a servlet.
JSPs are generally useful for presentation-oriented tasks, such as HTML ren-
dering. You don’t need to know Java to write a JSP, which makes JSPs ideal for
Web designers. A sample JSP is shown in Source 17.2.

As you can see, this just looks like HTML and is easily maintained by a graphic
designer. You can do fancy things as well, such as interlacing Java code with

the JSP, managing user sessions, and so on. Just about anything you can do in
a servlet can be done in a JSP. The difference is that a JSP is a flat file that is
translated into a servlet later. The code in source 17.2 would be translated into
a servlet with out.println() statements for the HTML code.

How Do I Combine Servlets, JSPs,
and EJB Components?

You have several choices when architecting your Web-based system. Here are
just a few examples.

The JSP files can have embedded Java code that call EJB components. For
example, we could interlace the following code into a JSP:

<html>

<H1>About to call EJB ... </H1>

<%

javax.naming.Context ctx = new javax.naming.InitialContext();

Object obj = ctx.lookup("MyEJBHome");

...

%>

</html>

When this JSP is translated into a servlet, the Java code would be inserted
into the generated servlet. This is a bad idea, because the JSP files cannot
be easily maintained by a graphic designer due to the large amount of Java
code in the JSP.

The JSP files can communicate with EJB components via custom tags. You
can design custom JSP tags that know how to interact with EJB components,
called JSP tag libraries. Tag libraries are appealing because once you’ve
designed them, graphic designers can call EJB components by using famil-
iar tag-style editing rather than writing Java code. The tags then call Java
code that understands how to invoke EJB components.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS478

<!doctype html public "-//w3c/dtd HTML 4.0//en">

<html>

<body>

<H1>Hello World</H1>

</body>

</html>

Source 17.2 A sample JSP.

Servlets can call EJB components and then call JSPs. You can write one or
more Java servlets that understand how to call EJB components and pass
their results to JSP files. This is a model-view-controller paradigm, because
the EJB layer is the model, the JSPs are the view, and the servlet(s) are the
controller—they understand which EJB components to call and then which
JSPs to call. This is shown in Figure 17.11. The advantage of this paradigm
is that it pushes most of the Java code into servlets and EJB components.
The JSPs have almost no Java code in them at all and can be maintained by
graphic designers.

EJB-J2EE Integration: Building a Complete Application 479

J2EE Server

2: call appropriate
EJB components

Web Browser

Servlets

Business layer
(EJBs)

Login JSP

Main page JSP

Product detail
JSP

Catalog JSP

View Cart JSP

Order
Confirmation

JSP

1: HTTP request

3: Choose the
appropriate JSP.
Pass the data obtained
from the business layer
to the JSP.

4: Construct HTML
Return the HTML on the HTTP response

Figure 17.11 The EJB-JSP-Servlet Model-View-Controller Paradigm.

You can go with an off-the-shelf Web framework. Several off-the-shelf Web
frameworks aid in building Web-based systems, such as Jakarta Struts.

JSPs in Our E-Commerce Deployment

We will choose a model-view-controller paradigm for our e-commerce deploy-
ment. We will have servlets that perform the controller processing, call our EJB
components, and select the appropriate JSP based on the results of the EJB
layer processing.

To fulfill Jasmine’s requirements, we’ll define the following servlets and JSPs:

A Login Page. The login page will be the first page the user deals with when
going to Jasmine’s Web site. It is responsible for reading in the user’s name
and then retrieving the appropriate customer entity bean that matches that
name. It compares the user’s submitted password with the permanent
password stored with the customer entity bean. If the passwords match, a
new cart stateful session bean is created for this customer. The customer
information is stored in the cart so the cart contains the user’s billing and
shipping information. If the passwords don’t match, an error is displayed
and the user is given another chance to enter a password.

A Web Storefront Page. The user who gets through the login page is redi-
rected to the Web storefront, which is the main page for Jasmine’s store.
This is the main navigation page for Jasmine’s store. It links to the Catalog
page and the view cart page.

A Catalog Page. To start adding products to the cart, the user can browse the
list of available products by going to the catalog page. The user can also
view details of a particular product, in which case we direct the user to the
product detail page.

A Product Detail Page. When the user wants information about a particular
product in the catalog, the product detail page shows that information.
From this screen, the user can add the product to his or her cart.

A View Cart Page. This page allows the user to view and modify the shop-
ping cart. This means deleting items or changing quantities. Every time the
user changes something, we recalculate the price of the cart by calling the
pricer stateless session bean.

An Order Confirmation Page. Finally, when the user is happy, he or she can
convert the cart stateful session bean into an order entity bean. The user is
then shown his or her Order Number, which is extracted from the order
bean. We then send a JMS message to the OrderProcessor bean, which
asynchronously processes the order.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS480

This completes our object model design for our presentation tier. The flow of
control for our pages is depicted in Figure 17.12. Note that the JSPs do not
directly call each other: servlets receive all requests, call the appropriate EJB
components, and route the results to the appropriate JSP for the HTML to be
rendered.

Once we’ve developed the application, we need to package and deploy it. A
J2EE application is packaged this way:

An Ejb-jar file (.jar) contains EJB components.

A Web archive file (.war) contains Web components, such as servlets, JSPs,
HTML, images, and JSP tag libraries.

EJB-J2EE Integration: Building a Complete Application 481

H Login

authenticate user
by quering the Customer

entity bean

Web Storefront

Catalog

Product Detail

View Cart

Order
Confirmation

Generate the Order,
send JMS message to
process order

return user to
main page

get info on a
Product

Add Product
to user’s Cart

update Product
quantities in the

user’s Cart

show receipt

Figure 17.12 State diagram for our e-commerce site.

An enterprise archive file (.ear) is a J2EE application that contains a .jar file
and a .war file. This is the unit of deployment you care most about,
because it represents a J2EE application.

Each of these files follows the .ZIP rules for compression. The idea is that you
first create the Ejb-jar file, then the Web archive, and then zip them up together
into an enterprise archive. You deploy the enterprise archive into your appli-
cation server using its tools, or perhaps by copying it into the appropriate
folder. For code examples of how to build and deploy these archives, see the
book’s accompanying source code.

Example Code

Before concluding this chapter, let’s look at an example of a servlet calling
EJB components and then calling a JSP file, so that you can grasp how this
model-view-controller paradigm is achieved.

We’ll take the example of logging into our site. Source 17.3 shows the login JSP.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS482

<%--

This JSP displays a login screen. When the user fills out

the login screen, it will submit it to the Login Servlet,

which will verify the user's credentials by calling

EJB components.

if verification is unsuccessful, the login servlet will return

the user to this page to re-enter his credentials.

if verification is successful, Jasmine's main page will be

displayed.

--%>

<html>

<head>

<title>Jasmine's Login page </title>

</head>

<body>

<%-- Include the title, which is "Jasmine's Computer Parts"--%>

<jsp:include page="title.jsp" />

Source 17.3 The login JSP.

EJB-J2EE Integration: Building a Complete Application 483

<%-- Indicate the error page to use if an error occurs --%>

<jsp:directive.page errorPage="error.jsp" />

<%-- Display the login form --%>

<h4>Please Login<h4>

<p>

<form action="/jasmine/login" method="get">

<table>

<tr>

<td>Name:</td>

<td>

<input type="text" name="Login" value="Ed Roman" size="19">

</td>

</tr>

<tr>

<td>Password:</td>

<td>

<input type="text" name="Password" value="password" size="19">

</td>

</tr>

<tr>

<td></td>

<td>

<input type="submit" value="Submit Information">

</td>

</tr>

</table>

</form>

<%

// get whether the person logged in successfully

Boolean failed = (Boolean) request.getAttribute("loginFailed");

if (failed != null) {

if (failed.booleanValue() == true) {

%>

<p>

Could not log in! Please try again.

<p>

<%

}

}

%>

</body>

</html>

Source 17.3 The login JSP (continued).

Source 17.4 shows our login servlet.

The login servlet is self-documenting. It cracks open the request, figures out
which EJB components to call, and selects the appropriate JSP.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS484

package examples;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

/**

* This is the very first servlet the client deals with.

* It's a Login authentication servlet. It asks the user

* for his name and password, and passes it to the UserManager

* stateless session bean for verification.

* If the user authenticates properly, reference to a new

* Cart is saved in his HttpSession object, and the user can

* begin to add items to his cart and shop around.

*/

public class LoginServlet extends HttpServlet {

/*

* UserManager home object for authenticating user

*/

private UserManagerHome userManagerHome;

/*

* Cart home object for creating a new cart when

* the user logs in.

*/

private CartHome cartHome;

/**

* The servlet engine calls this method once to

* initialize a servlet instance.

*

* In the body of this method, we acquire all the

* EJB home objects we'll need later.

*/

public void init(ServletConfig config) throws ServletException {

super.init(config);

try {

Source 17.4 The login servlet.

EJB-J2EE Integration: Building a Complete Application 485

/*

* Get the JNDI initialization parameters.

* We externalize these settings to the

* servlet properties to allow end-

* users to dynamically reconfigure their

* environment without recompilation.

*/

String initCtxFactory =

getInitParameter(Context.INITIAL_CONTEXT_FACTORY);

String providerURL =

getInitParameter(Context.PROVIDER_URL);

/*

* Add the JNDI init parameters to a

* properties object.

*/

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY, initCtxFactory);

env.put(Context.PROVIDER_URL, providerURL);

/*

* Get the initial JNDI context using the above

* startup params.

*/

Context ctx = new InitialContext(env);

/*

* Look up the UserManager and Cart Home Objects

* we need via JNDI

*/

userManagerHome = (UserManagerHome)

ctx.lookup("UserManagerHome");

cartHome = (CartHome) ctx.lookup("CartHome");

}

catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

}

/**

* The servlet engine calls this method when the user's

* desktop browser sends an HTTP request.

*/

public void service(HttpServletRequest request,

Source 17.4 The login servlet (continued).

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS486

HttpServletResponse response)

throws ServletException, IOException {

/*

* Set up the user's HttpSession

*/

HttpSession session = request.getSession(true);

/*

* Retrieve the login name / password from the

* URL string.

*/

String loginName = request.getParameter("Login");

String password = request.getParameter("Password");

boolean isLogin=false;

/*

* If user has not tried to log in yet, present

* him with the login screen.

*/

if ((loginName == null) || (password == null)) {

writeForm(request, response, false);

}

/*

* Otherwise, the user has been to this screen

* already, and has entered some information.

* Verify that information.

*/

else {

/*

* Uses the UserManager Stateless Session bean to

* authenticate the user credentials.

*/

try {

UserManager userManager=userManagerHome.create();

isLogin= userManager.validateUser(loginName,password);

}

catch (Exception e) {

writeForm(request, response, true);

e.printStackTrace();

return;

}

/*

* If the passwords match, make a new Cart Session

* Bean, and add it to the user's HttpSession

* object. When the user navigates to other

Source 17.4 The login servlet (continued).

EJB-J2EE Integration: Building a Complete Application 487

* servlets, the other servlets can access the

* HttpSession to get the user's Cart.

*/

if (isLogin) {

try {

Cart cart = cartHome.create(loginName);

session.setAttribute("cart", cart);

/*

* Call the main page

*/

RequestDispatcher disp =

this.getServletContext().getRequestDispatcher("/wsf.jsp");

disp.forward(request, response);

return;

}

catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

}

}

/*

* If there was no match, the user is

* not authenticated. Present another

* login screen to him, with an error

* message indicating that he is not

* authenticated.

*/

writeForm(request, response, true);

}

/**

* Writes the Login Screen (private use only)

*

* @param showError true means show an error b/c client

* was not authenticated last time.

*/

private void writeForm(HttpServletRequest request,

HttpServletResponse response,

boolean showError)

throws ServletException, IOException {

/*

* Set a variable indicating whether or not we failed to

Source 17.4 The login servlet (continued).

If you’re curious to see how the other use-cases are implemented, see the
book’s accompanying source code. And as a reminder, this is just one of many
ways to implement a Web architecture.

As an alternative, we could have also chosen a single-servlet architecture with only
one servlet and many JSPs. This single servlet would call Java classes, and each Java
class would represent a Web use-case and understand the EJB components to call.
For example, we could have a Java class that understood how to verify login creden-
tials. The advantage of this paradigm is we could reuse these Web use-case classes
in several pages, and our servlet layer would be completely decoupled from our EJB
components.

Summary

In this chapter, we’ve painted a picture of how our e-commerce system should
behave. Now that we’ve made the proper abstractions, our components
should fall into place easily. By performing this high-level analysis, we can be
confident that our final product will be extensible and reusable for some time
to come.

A D VA N C E D E N T E R P R I S E J AVA B E A N S C O N C E P TS488

* log-in. The JSP will read this variable.

*/

request.setAttribute("loginFailed", new Boolean(showError));

/*

* Forward the request to the login JSP

*/

RequestDispatcher disp =

this.getServletContext().getRequestDispatcher("/login.jsp");

disp.forward(request, response);

}

private void log(Exception e) {

e.printStackTrace();

}

public String getServletInfo() {

return "The Login servlet verifies a user.";

}

}

Source 17.4 The login servlet (continued).

Appendixes

PA RTFOUR

The appendixes in this book include topics you might not need to learn right
away, but that are nonetheless useful, including:

Java Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI-IIOP). Appendix A kicks things off by exploring Java RMI-IIOP.
Here you’ll gain a solid foundation in RMI-IIOP, at both the conceptual
and programmatic levels, which is necessary for understanding how EJB
works behind the scenes.

The Java Naming and Directory Interface (JNDI). Appendix A continues by
investigating the JNDI, a standard Java extension package for performing
naming and directory operations. We’ll learn the concepts, how to program
with JNDI, and how JNDI relates to EJB.

CORBA interoperability. Appendix B discusses how you can integrate
CORBA and EJB systems. We’ll learn why RMI-IIOP was invented as a
bridge between CORBA and Java systems. We’ll also see code that calls an
EJB component from a CORBA client.

Reference guides. Appendix C is a quick reference guide for those building
deployment descriptors; Appendix D explains the EJB Query Language
(EJB-QL) for container managed persistent entity beans; and Appendix E is
an API and diagram reference guide. We don’t recommend you read these
appendixes until you’re programming with EJB and need a reference
guide.

A P P E N D I X E S490

A P P P E N D I X A

491

To help you to truly understand EJB, this appendix explains the technologies
that EJB depends upon—Java RMI-IIOP and the Java Naming and Directory
Interface (JNDI).

The goal of this appendix is to teach you enough about RMI-IIOP and JNDI for
you to be productive in an EJB environment. This tutorial will cover the basics,
but is by no means a complete RMI-IIOP and JNDI tutorial, and for good rea-
son—most organizations will not need to use these technologies beyond the
extent we describe in this appendix, and your reading time is valuable.

Interested readers who want to learn more about RMI-IIOP and JNDI should
consult the following references:

The RMI-IIOP and JNDI Tutorials. These are available for free on the Sun
Microsystems Web site, http://java.sun.com.

The RMI-IIOP and JNDI Specifications. The specifications define the core
of RMI-IIOP and JNDI. They are a bit more technical but should not be
tough after reading this appendix. They are also downloadable from
http://java.sun.com.

Your J2EE server implementation should ship with RMI-IIOP and JNDI implementa-
tions. It is generally a bad idea to mix and match implementations, like combining
Sun’s RMI-IIOP package with BEA’s JNDI implementation. For the easiest develop-
ment path, stick with a single-vendor solution.

RMI-IIOP and JNDI Tutorial

Java RMI-IIOP

Java RMI-IIOP (which stands for Java Remote Method Invocation over the
Internet Inter-ORB Protocol) is J2EE’s de facto mechanism for performing sim-
ple, powerful networking. RMI-IIOP allows you to write distributed objects in
Java, enabling objects to communicate in memory, across Java Virtual
Machines, and across physical devices.

RMI-IIOP is not your only choice for performing remote method invocations in Java.
You can also use Java Remote Method Invocation (RMI). RMI was the original way to
perform remote method invocations in Java and uses the java.rmi package. RMI-IIOP
is a special version of RMI that is compliant with CORBA and uses both java.rmi and
javax.rmi.

RMI has some interesting features not available in RMI-IIOP, such as distributed
garbage collection, object activation, and downloadable class files. But EJB and J2EE
mandate that you use RMI-IIOP, not RMI. Therefore we will not cover RMI.

If you wish to learn more about why RMI-IIOP was invented as an extension of RMI
and also survey the CORBA compatibility features of RMI-IIOP, read Appendix B.

Remote Method Invocations
A remote procedure call (RPC) is a procedural invocation from a process on one
machine to a process on another machine. RPCs enable traditional procedures
to reside on multiple machines, yet still remain in communication. They are a
simple way to perform cross-process or cross-machine networking.

A remote method invocation in Java takes the RPC concept one step further and
allows for distributed object communications. RMI-IIOP allows you to invoke
methods on objects remotely, not merely procedures. You can build your net-
worked code as full objects. This yields the benefits of an object-oriented
programming, such as inheritance, encapsulation, and polymorphism.

Remote method invocations are by no means simple. These are just some of
the issues that arise:

Marshalling and unmarshalling. RMIs (as well as RPCs) allow you to pass
parameters, including Java primitives and Java objects, over the network.
But what if the target machine represents data differently than the way you
represent data? For example, what happens if one machine uses a different
binary standard to represent numbers? The problem becomes even more
apparent when you start talking about objects. What happens if you send
an object reference over the wire? That pointer is not usable on the other

A P P E N D I X A492

machine because that machine’s memory layout is completely different
from yours. Marshalling and unmarshalling is the process of massaging
parameters so that they are usable on the machine being invoked on
remotely. It is the packaging and unpackaging of parameters so that they
are usable in two heterogeneous environments. As we shall see, this is
taken care of for you by Java and RMI-IIOP.

Parameter passing conventions. There are two major ways to pass parame-
ters when calling a method: pass-by-value and pass-by-reference, as shown in
Figure A.1. When you pass-by-value, you pass a copy of your data so that
the target method is using a copy, rather than the original data. Any
changes to the argument are reflected only in the copy, not the original.
Pass-by-reference, on the other hand, does not make a copy. With pass-by-
reference, any modifications to parameters made by the remote host affect
the original data. The flexibility of both the pass-by-reference and pass-by-
value models is advantageous, and RMI-IIOP supports both. We’ll see how
in the pages to come.

Network or machine instability. With a single JVM application, a crash of
the JVM brings the entire application down. But consider a distributed
object application, which has many JVMs working together to solve a busi-
ness problem. In this scenario, a crash of a single JVM should not cause the
distributed object system to grind to a halt. To enforce this, remote method
invocations need a standardized way of handling a JVM crash, a machine
crash, or network instability. When some code performs a remote invoca-
tion, the code should be informed of any problems encountered during the
operation. RMI-IIOP performs this for you, abstracting out any JVM,
machine, or network problems from your code.

As you can see, there’s a lot involved in performing RMIs. RMI-IIOP contains
measures to handle many of these nasty networking issues for you. This
reduces the total time spent dealing with the distribution of your application,
allowing you to focus on the core functionality.

J2EE 1.3-compliant servers are required to ship RMI-IIOP implementations to
enable you to perform networking. Your RMI-IIOP code is then portable to any
hardware or operating system on which these implementations execute. Con-
trast this with proprietary, platform-dependent RPC libraries, and you can see
some real value in RMI-IIOP.

The Remote Interface
We begin our exploration of RMI-IIOP by reviewing one of object-oriented
design’s great programming practices—the separation of the interface of code
from its implementation.

RMI-I IOP and JNDI Tutorial 493

The interface defines the exposed information about an object, such as the
names of its methods and what parameters those methods take. It’s what
the client works with. The interface masks the implementation from the

A P P E N D I X A494

Object A Object APass-by-Value

RMI-IIOP Client Address Space RMI-IIOP Server Address Space

Return
Object A

M
od

ify
 O

bj
ec

t A

Object A'

Object A Pass-by-
Reference

ReturnObject A'

M
od

ify
 O

bj
ec

t A

Reference back to
Object A

When performing remote
invocations with pass-by-value, a
new copy of Object A is instan-
tiated on the remote host. When
the remote host modifies Object A,
the new value, A', does not
affect the local host's data.

With pass-by-reference, the remote
host receives a remote reference to
the original Object A, rather than a
copy of Object A. Any modifica-
tions to Object A are reflected
the original data.

Reference back to
modified Object A'

Figure A.1 Pass-by-value versus pass-by-reference.

viewpoint of clients of the object, so clients deal only with the end result:
the methods the object exposes.

The implementation is the core programming logic that an object provides.
It has some very specific algorithms, logic, and data.

By separating interface from implementation, you can vary an object’s propri-
etary logic without changing any client code. For example, you can plug in a
different algorithm that performs the same task more efficiently.

RMI-IIOP makes extensive use of this concept. All networking code you write
is applied to interfaces, not implementations. In fact, you must use this para-
digm in RMI-IIOP—you do not have a choice. It is impossible to perform a
remote invocation directly on an object implementation. You can operate
solely on the interface to that object’s class.

Therefore, when using RMI-IIOP, you must build a custom interface, called a
remote interface. This remote interface should extend the interface java.rmi.
Remote. Your interface should have within it a copy of each method your
remote object exposes.

We’ll now begin to build a simple example illustrating the basics of RMI-IIOP.
In this example, a remote object exposes one method: generate(). generate()
returns a new, unique long number each time it’s called. This is useful, for
example, when generating primary keys for data, such as entity beans (dis-
cussed in Chapter 5).

Source A.1 is a valid remote interface.

Client code that wants to call methods on your remote object must operate on
IPKGenerator. Notice that each method must also throw a java.rmi.Remote
Exception. A RemoteException is thrown when there is a problem with the net-
work, such as a machine crashing or the network dying.

RMI-I IOP and JNDI Tutorial 495

import java.rmi.Remote;

import java.rmi.RemoteException;

/**

* The remote interface for the remote object. Clients use this

* remote interface to perform any operations on the remote object.

*/

public interface IPKGenerator extends Remote {

public long generate() throws RemoteException;

}

Source A.1 IPKGenerator.java.

With RMI-IIOP, you can never fully separate your application from the network. At
some point, you’ll need to deal with remote exceptions being thrown due to net-
working issues. Some may consider this a limitation of RMI-IIOP because the net-
work is not entirely seamless: Remote exceptions force you to differentiate a local
method from a remote method. But in some ways, this is an advantage of RMI-IIOP
as well. Interlacing your code with remote exceptions forces you to think about the
network and encourages distributed object developers to consider issues such as the
network failing, the size of parameters going across the network, and more.

The Remote Object Implementation
Remote objects are networked object implementations that can be called by
another JVM. They implement a remote interface and thus expose methods that
can be invoked by remote clients.

The physical locations of remote objects and the clients that invoke them are
not important. For example, it is possible for a client running in the same
address space as a remote object to invoke a method on that object. It’s also
possible for a client across the Internet to do the same thing. To the remote
object, both invocations appear to be the same.

To make your object a remote object available to be invoked on by remote
hosts, your remote class must perform one of the following steps:

Extend the class javax.rmi.PortableRemoteObject. PortableRemoteObject is a
base class from which you can derive your remote objects. When your
remote object is constructed, it automatically calls the PortableRemote
Object’s constructor, which makes the object available to be called remotely.

Don’t extend javax.rmi.PortableRemoteObject. Perhaps your remote object
class needs to inherit implementation from another custom class. In this
case, because Java does not allow for multiple implementation inheritance,
you cannot extend PortableRemoteObject. If you do this, you must manually
export your object so that it is available to be invoked on by remote hosts. To
export your object, call javax.rmi.PortableRemoteObject.exportObject().

Now let’s create the remote object class. This class implements the IPKGenera-
tor interface, and it is shown in Source A.2.

In our remote object constructor, the superclass makes our object available to
be called remotely. This makes the object available at a random port number.
Once the remote object’s constructor is complete, this object is available for-
ever for any virtual machine to invoke on; that is, until someone calls
unexportObject().

A P P E N D I X A496

This primary key generator has its own shortcoming as well: to generate a primary
key, someone needs to invoke a remote method, which could be a performance
bottleneck.

If you need to generate primary keys in production, see the companion to this book,
Floyd Marinescu’s EJB Design Patterns, published by John Wiley & Sons.

Stubs and Skeletons
Now that we’ve seen the server code, let’s look at the architecture behind how
the networking is achieved in RMI-IIOP. One of the benefits of RMI-IIOP is an

RMI-I IOP and JNDI Tutorial 497

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

/**

* The remote object which generates primary keys

*/

public class PKGenerator

extends PortableRemoteObject

implements IPKGenerator {

/*

* Our remote object’s constructor

*/

public PKGenerator() throws Exception, RemoteException {

/*

* Since we extend PortableRemoteObject, the super

* class will export our remote object here.

*/

super();

}

/*

* Generates a unique primary key

*/

public synchronized long generate() throws RemoteException {

return i++;

}

private static long i = System.currentTimeMillis();

}

Source A.2 PKGenerator.java.

almost illusionary, transparent networking. You can invoke methods on
remote objects just as you would invoke a method on any other Java object. In
fact, RMI-IIOP completely masks whether the object you’re invoking on is
local or remote. This is called local/remote transparency.

Local/remote transparency is not as easy as it sounds. To mask that you’re
invoking on an object residing on a remote host, RMI-IIOP needs to somehow
simulate a local object that you can invoke on. This local object is called a stub.
It is responsible for accepting method calls locally and delegating those method
calls to their actual object implementations, which are possibly located across
the network. This effectively makes every remote invocation appear to be a
local invocation. You can think of a stub as a placeholder for an object that
knows how to look over the network for the real object. Because you invoke on
local stubs, all the nasty networking issues are hidden.

Stubs are only half of the picture. We’d like the remote objects themselves—the
objects that are being invoked on from remote hosts—to not worry about net-
working issues as well. Just as a client invokes on a stub that is local to that
client, your remote object needs to accept calls from a skeleton that is local to
that remote object. Skeletons are responsible for receiving calls over the net-

A P P E N D I X A498

Issues with Our Primary Key Generation Algorithm

Our primary key generation algorithm is to simply increment a number each time
someone calls our server. This generator overcomes two common challenges
when writing an RMI implementation:

Threading. RMI-IIOP allows many clients to connect to a server at once. Thus,
our remote object implementation may have many threads running inside of it.
But when generating primary keys, we never want to generate a duplicate key
because our keys are not unique and thus would not be good candidates to use
in a database. Therefore, it is important to have the synchronized block around
the generate() method, so that only one client can generate a primary key
at once.

JVM crashes. We must protect against a JVM crash (or hardware failure). Thus,
we initialize our generator to the current time (the number of milliseconds that
have elapsed since 1970). This is to ensure that our primary key generator
increases monotonically (that is, primary keys are always going up in value) in
case of a JVM crash. Note that we haven’t considered daylight savings time result-
ing in duplicate keys. If we were to use this code in production, we would need
to account for that.

work (perhaps from a stub) and delegating those calls to the remote object
implementation. This is shown in Figure A.2.

Your RMI-IIOP implementation (that is, your J2EE server) should provide a
means to generate the needed stubs and skeletons, thus relieving you of the net-
working burden. Typically, this is achieved through command-line tools. For
example, Sun’s J2EE reference implementation ships with a tool called rmic
(which stands for the RMI compiler) to generate stub and skeleton classes. As
you can see from Figure A.2, you should deploy the stub on the client machine
and the skeleton on the server machine.

Object Serialization and Parameter Passing

One of the more interesting responsibilities of stubs and skeletons is to handle
your parameters. This next section discusses how parameters are passed in
Java RMI-IIOP. We also explore the power of object serialization and how it
assists in parameter passing.

RMI-I IOP and JNDI Tutorial 499

Stub

Client Remote Object

Skeleton

Remote Interface

Network

Figure A.2 Stubs and skeletons.

Passing By-Value
When invoking a method using RMI-IIOP, all parameters to the remote
method are passed by-value. This means that when a client calls a server, all
parameters are copied from one machine to the other.

Passing objects by-value is very different from the Java programming lan-
guage. When you call a method in Java and pass an object as a parameter, that
object is passed by reference. More specifically, the reference to the object is
copied, but the actual object’s data is not.

There’s a big problem with passing by-value. If you’re trying to pass an object
over the network and that object contains references to other objects, how are
those references resolved on the target machine? A memory address on one
machine does not map to the same memory address on another machine. Also,
the referenced object may not even exist on the target machine. How do we get
around this?

Object Serialization
Java introduces the concept of object serialization to handle this problem. Serial-
ization is the conversion of a Java object into a bit-blob representation of that
object. You can send bit-blobs anywhere. For example, you can use object seri-
alization as an instant file-format for your objects and save them to your hard
disk. RMI-IIOP also uses object serialization to send parameters over the net-
work. When you’re ready to use the object again, you must deserialize the bit-
blob back into a Java object. Then it’s magically usable again.

The Java language handles the low-level details of serialization. In most cases,
you don’t need to worry about any of it. To tell Java that your object is serial-
izable, your object must implement the java.lang.Serializable interface. That’s
all there is to it: Take this one simple step, and let Java handle the rest.
java.lang.Serializable defines no methods at all—it’s simply a marker interface
that identifies your object as something that can be serialized and deserialized.

You can provide your own custom serialization by implementing the
writeObject() method on your object, or provide custom deserialization by
implementing readObject(). This might be useful if you’d like to perform some
sort of compression on your data before your object is converted into a bit-blob
and decompression after the bit-blob is restored to an object.

Figure A.3 shows the serialization/deserialization process, where writeObject()
is responsible for saving the state of the class, and readObject() is responsible for
restoring the state of the class. These two methods will be called automatically
when an object instance is being serialized or deserialized. If you choose not to

A P P E N D I X A500

define these methods, then the default serialization mechanisms will be
applied. The default mechanisms are good enough for most situations.

Rules for Serialization

Java serialization has the following rules for member variables held in serial-
ized objects:

■■ Any basic primitive type (int, char, and so on) is automatically serialized
with the object and is available when deserialized.

■■ Java objects can be included with the serialized bit-blob or not; it’s your
choice. The way you make your choice is as follows:

■■ Objects marked with the transient keyword are not serialized with the
object and are not available when deserialized.

■■ Any object that is not marked with the transient keyword must imple-
ment java.lang.Serializable. These objects are converted to bit-blob
format along with the original object. If your Java objects are neither
transient nor implement java.lang.Serializable, a NotSerializable
Exception is thrown when writeObject() is called.

Thus, when you serialize an object, you also serialize all nontransient subob-
jects as well. This means you also serialize all nontransient sub-subobjects (the
objects referenced from the subobjects). This is repeated recursively for every
object until the entire reference graph of objects is serialized. This recursion is
handled automatically by Java serialization, as shown in Figure A.4. You sim-
ply need to make sure that each of your member objects implements the

RMI-I IOP and JNDI Tutorial 501

java.io.Serializable

writeObject()
readObject()

MyClass

Figure A.3 The Java serialization process.

java.lang.Serializable interface. When serializing MyClass, Object Serialization
will recurse through the dependencies shown, packaging up the entire graph
of objects as a stream. In this diagram, everything will get serialized except for
transient long b, since it is marked as transient.

What Should You Make Transient?
How do you know which member variables should be marked transient and
which should not? Here are some good reasons to mark an object as transient:

■■ The object is large. Large objects may not be suitable for serialization
because operations you do with the serialized blob may be very intensive.
Examples here include saving the blob to disk or transporting the blob
across the network.

■■ The object represents a resource that cannot be reconstructed on the target
machine. Some examples of such resources are database connections and
sockets.

■■ The object represents sensitive information that you do not want to pass
in a serialized stream.

Note that object serialization is not free—it is a heavyweight operation for
large graphs of objects. Make sure you take this into account when designing
your distributed object application.

A P P E N D I X A502

int a
transient long b
String s
Class2 c

MyClass

java.io.Serializable

Class3 c

Class2
Class3

java.lang.String

java.io.Serializable java.io.Serializable

java.io.Serializable

Figure A.4 Object serialization recursion.

Object Serialization and RMI-IIOP
Java RMI-IIOP relies on object serialization for passing parameters via remote
method invocations. Figure A.5 shows what MyObject’s object graph could
look like. Notice that every field and subfield is a valid type for Java
serialization.

Figure A.5 shows how RMI-IIOP handles pass-by-value, where an entire graph
of objects is serialized into a bit-blob, sent across the network, and then deseri-
alized on the target machine. But passing parameters by-value can lead to inef-
ficiencies. What if your referenced graph of objects is very large? What if you

RMI-I IOP and JNDI Tutorial 503

java.io.Serializable

java.io.Serializable

java.io.Serializable

java.io.Serializable
int a = 5
transient long b = 3
String s = "Hello, World!"
Class2 Obj2 = new Class2();

MyObject : MyClass

Class3 Obj3 = new Class3();

Obj2 : MyClass2

Obj3 : MyClass3

s : java.lang.String

RMI Client

1: invoke(MyObject)

Remote Object
Stub

2: Since the MyObject parameter
implements Serializable, serialize
MyObject's object graph.

Network

Remote Object
Skeleton

Remote Object
Implementation

3: Deserialize the parameter. The deserialized
parameter, MyObject2, contains the same state
as MyObject, except the field b does not have
the value 3 since b is transient.

4: invoke(MyObject2)This is the process that
occurs when MyObject is
sent over the network
through Java RMI-IIOP.

Figure A.5 Java RMI-IIOP and object serialization.

have lots of state to send across the network? The ensuing network lag from
performing the invocation may be unacceptable.

There is another way to pass arguments. RMI-IIOP simulates a pass-by-
reference convention, which means the arguments are not copied over. Rather,
the server modifies the client’s copy of the parameter.

If you want to pass a parameter by-reference, the parameter must itself be a
remote object. The parameter is thus an object that is callable remotely. When
the client calls the server, the RMI-IIOP runtime sends a stub to that remote
object to the server. The server can perform a callback on that stub, which con-
nects the server to the remote object living on the client machine. Figure A.6
shows the process that occurs when MyRemoteObject, an instance of My
RemoteClass, is sent over the network through Java RMI-IIOP.

A P P E N D I X A504

RMI-IIOP Client

1: invoke(MyRemoteObject)

Remote Object
Stub

2: Since the MyRemoteObject parameter
is a remote object, serialize a
stub to MyRemoteObject.

Network

Remote Object
Skeleton

Remote Object
Implementation

3: Deserialize the parameter. The deserialized
parameter is a stub back to the original
MyRemoteObject.

4: invoke(stub to MyRemoteObject)

MyRemoteClass

java.rmi.Remote

Figure A.6 Pass-by-reference with Java RMI-IIOP.

The best way to understand this paradigm is by analogy. In Java programming
language, when you pass an object as a parameter, the object reference is
copied. In RMI-IIOP, when you pass an object as a parameter, the stub is
copied. Both of these strategies achieve pass-by-reference because they are
cloning the thing that points to the object, rather than the object itself.

Because Java RMI-IIOP stubs are also serializable, they are passable over the
network as a bit-blob. This is why earlier we said that all parameters in Java
RMI-IIOP are passed by-value. Thus, Java RMI-IIOP only simulates pass-by-
reference by passing a serializable stub, rather than serializing the original
object. By making your parameters remote objects, you can effectively avoid
the network lag in passing large objects.

In summary, we have the following rules for passing objects using Java
RMI-IIOP:

■■ All Java basic primitives are passed by-value when calling methods
remotely. This means copies are made of the parameters. Any changes to
the data on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by-value, it must imple-
ment java.lang.Serializable. Anything referenced from within that object
must follow the rules for Java serialization. Again, any changes to the data
on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by-reference, it must be a
remote object, and it must implement java.rmi.Remote. A stub for the
remote object is serialized and passed to the remote host. The remote host
can then use that stub to invoke callbacks on your remote object. There is
only one copy of the object at any time, which means that all hosts are
calling the same object.

Now that you understand parameter passing, let’s move on. For us to com-
plete our RMI-IIOP sample application, we need some way to publish the
server and have the client locate that server. This process, called bootstrapping,
is achieved via the JNDI. Let’s put our RMI-IIOP example on hold while we
learn about JNDI. We’ll return later to complete the example.

The Java Naming and Directory
Interface (JNDI)

The JNDI is a J2EE API that provides a standard interface for locating users,
machines, networks, objects, and services. For example, you can use JNDI to
locate a printer on your corporate intranet. You can also use it to locate a Java
object or to connect with a database. JNDI is used in EJB, RMI-IIOP, JDBC, and
more. It is the standard way of looking things up over the network.

RMI-I IOP and JNDI Tutorial 505

Naming and Directory Services
To understand JNDI, we must first understand the concept of naming and
directory services.

A naming service is analogous to a telephone operator. When you want to call
someone over the phone and you don’t know that person’s phone number,
you can call your telephone company’s information service operator to look up
the person you want to talk with. You supply the telephone operator with the
name of the person. The operator then looks up the phone number of the per-
son you want to speak with and can dial the number for you, connecting you
to that person.

A naming service is an entity that performs the following tasks.

■■ It associates names with objects. We call this binding names to objects. This
is similar to a telephone company’s associating a person’s name with a
specific residence’s telephone number.

■■ It provides a facility to find an object based on a name. We call this look-
ing up or searching for an object. This is similar to a telephone operator
finding a person’s telephone number based on that person’s name and
connecting the two people.

Naming services are everywhere in computing. When you want to locate a
machine on the network, the Domain Name System (DNS) is used to translate a
machine name to an IP address. If you look up wiley.com on the Internet, the
name wiley.com is translated into the object (which happens to be a String)
199.171.201.14 by the DNS.

Another example of naming occurs in file systems. When you access a file on
your hard disk, you supply a name for the file such as c:\autoexec.bat or
/etc/fstab. How is this name translated into an actual file of data? A file sys-
tem naming service can be consulted to provide this functionality.

In general, a naming service can be used to find any kind of generic object, like
a file handle on your hard drive or a printer located across the network. But
one type of object is of particular importance: a directory object (or directory
entry). A directory object differs from a generic object because you can store
attributes with directory objects. These attributes can be used for a wide variety
of purposes.

For example, you can use a directory object to represent a user in your com-
pany. You can store information about that user, like the user’s password, as
attributes in the directory object. If you have an application that requires
authentication, you can store a user’s login name and password in directory

A P P E N D I X A506

object attributes. When a client connects to your application, the client sup-
plies a login name and password, which you can compare with the login name
and password that are stored as a directory object’s attributes. If the data
matches, the user is authenticated. If the data doesn’t match, your application
can return an error. You can store other attributes, too, besides a login name
and password, including a user’s email address, phone number, and postal
address.

A directory service is a naming service that has been extended and enhanced to
provide directory object operations for manipulating attributes. A directory is
a system of directory objects that are all connected. Some examples of direc-
tory products are Netscape Directory Server and Microsoft’s Active Directory.
Your company probably uses a directory to store internal company informa-
tion (locations of computers, current printer status, personnel data, and so on).

What does a directory look like internally? The directory’s contents—the set of
connected directory objects—usually forms a hierarchical tree-like structure.
Why would you want a tree-like structure? A tree’s form suggests the way a
real-world company is organized. For example, the root (or top node) of your
directory tree can represent your entire company. One branch off the root
could represent people in the company, while another branch could represent
network services. Each branch could have subtrees that decrease in granular-
ity more and more, until you are at individual user objects, printer objects,
machine objects, and the like. This is illustrated in Figure A.7.

All in all, directories are not very different from databases. A database can
store arbitrary data, just like a directory. Databases provide query operations
to look up items in a database, just like directories. You can think of a directory
as a scaled-down, simplified database. In fact, most directories are imple-
mented by a database behind the scenes.

Problems with Naming
and Directories

There are many popular naming and directory products out today. Directory
vendors differentiate their product lines by offering different types of services.
Unfortunately, this leads to different naming and directory standards. And
each directory standard has a different protocol for accessing the directory. For
example, directories based on the Lightweight Directory Access Protocol (LDAP)
are accessed differently than those based on the Network Information System
(NIS) or Novell’s Network Directory System (NDS).

This means that if you want to switch directory vendors, you need to rewrite
all of your client code that accesses the directory. It also means you need to

RMI-I IOP and JNDI Tutorial 507

download a new library, learn a new API, and test new code each time you use
a different directory.

Initially, LDAP was meant to resolve this problem by becoming the ubiquitous
protocol for directories. LDAP is straightforward and is being adopted quickly
by the industry—IBM’s Lotus Notes and Microsoft’s Active Directory both are
LDAP-based. However, not all directory products are LDAP-based.

Enter JNDI
JNDI is a system for Java-based clients to interact with naming and directory
systems. JNDI is a bridge over naming and directory services, a beast that pro-
vides one common interface to disparate directories. Users who need to access
an LDAP directory use the same API as users who want to access an NIS direc-

A P P E N D I X A508

My Company

People

Network
Services

Person 1

Printers

Computers

Fax Machines

Person 2

Printer 1

Computer 1

Computer 2

Fax Machine 1

Figure A.7 A hierarchical directory structure.

tory or Novell’s directory. All directory operations are done through the JNDI
interface, providing a common framework.

Benefits of JNDI
The following surveys the advantages that JNDI has to offer:

■■ You only need to learn a single API to access all sorts of directory service
information, such as security credentials, phone numbers, electronic and
postal mail addresses, application preferences, network addresses,
machine configurations, and more.

■■ JNDI insulates the application from protocol and implementation details.

■■ You can use JNDI to read and write whole Java objects from directories.

■■ You can link different types of directories, such as an LDAP directory with
an NDS directory, and have the combination appear to be one large, feder-
ated directory. The federated directory appears to the client to be one con-
tiguous directory.

In J2EE, you can use JNDI for many purposes. These include:

■■ Using JNDI to acquire a reference to the Java Transaction API (JTA) User-
Transaction interface

■■ Using JNDI to connect to resource factories, such as JDBC drivers or Java
Message Service (JMS) drivers

■■ Using JNDI for beans to look up other beans

See Chapters 9 and 10 for examples of achieving these operations.

JNDI Architecture
JNDI is made up of two halves: the client API and the Service Provider Interface
(SPI). The client API allows Java code to perform directory operations. This
API is uniform for all types of directories. You will spend the most time using
the client API.

The JNDI SPI is an interface to which naming and directory service vendors
can plug in. The SPI is the converse of the API: While the API allows clients to
code to a single, unified interface, the SPI allows naming and directory service
vendors to fit their particular proprietary protocols into the system, as shown
in Figure A.8. This allows for client code to leverage proprietary naming and
directory services in Java while maintaining a high level of code portability.

RMI-I IOP and JNDI Tutorial 509

JNDI’s architecture is somewhat like the Java Database Connectivity package
(JDBC):

■■ In JDBC, one uniform client API performs database operations. In JNDI,
naming and directory service clients invoke a unified API for performing
naming and directory operations.

■■ In JDBC, relational database vendors provide JDBC drivers to access their
particular databases. In JNDI, directory vendors provide service providers
to access their specific directories. These providers are aware of specific
directory protocols, and they plug in to the JNDI SPI.

For example, Sun Microsystems gives away an LDAP service provider for free.
The LDAP service provider knows how to map a JNDI client API operation
into an LDAP operation. It then executes the LDAP operation on an LDAP
directory, using the specific LDAP protocol.

A number of JNDI service providers are available today, including LDAP, NIS,
Novell NDS, SLP, CORBA, File System, RMI-IIOP, and many more. The JNDI
homepage (http://java.sun.com/products/jndi) has a list of service providers.

J2EE servers bundle a JNDI implementation with their product. Typically this is
a custom implementation provided by the J2EE server vendor. JNDI then just

A P P E N D I X A510

Client Code

Service Provider Interface

LDAP Service
Provider

NIS Service
Provider

File System
Service Provider

JNDI Client API

Figure A.8 JNDI architecture.

becomes another service provided by the server, along with RMI-IIOP, JMS,
and so on. Many servers ship JNDI implementations that are fault tolerant,
providing a high level of availability. These JNDI implementations are
intended to integrate with the other J2EE services, such as RMI-IIOP, JDBC,
EJB, and JMS.

JNDI Concepts
We begin our JNDI exploration with naming concepts. There are several kinds
of names in JNDI:

■■ An atomic name is a simple, basic, indivisible component of a name. For
example, in the string /etc/fstab, etc and fstab are atomic names.

■■ A compound name is zero or more atomic names put together. In the previ-
ous example, the entire string /etc/fstab is a compound name.

A binding is an association of a name with an object. For example, the filename
autoexec.bat in the Windows file system has a binding to the file data on
your hard disk. Your c:\windows folder is a name that is bound to a folder on
your hard drive. Note that a compound name such as /usr/people/ed/.cshrc con-
sists of multiple bindings, one to usr, one to people, one to ed, and one to .cshrc.

A context is an object that contains zero or more bindings. Each binding has a
distinct atomic name. So for example, in the UNIX file system, let’s consider a
folder named /etc that contains files named mtab and exports. In JNDI, the /etc
folder is a context containing bindings with atomic names mtab and exports.
Each of the mtab and exports atomic names is bound to a file on the hard disk.

To expand this further, consider a folder named /usr with subfolders /usr/
people, /usr/bin, and /usr/local. Here, the /usr folder is a context that contains the
people, bin, and local atomic names. Each of these atomic names is bound to a
subfolder. In JNDI terms, these subfolders are called subcontexts. Each subcon-
text is a full-fledged context in its own right, and it can contain more name-
object bindings, such as other files or other folders. Figure A.9 depicts the
concepts we have learned so far.

Naming Systems, Namespaces,
and Composite Names

A naming system is a connected set of contexts. For example, a branch of an
LDAP tree could be considered a naming system, as could a folder tree in a file
system. Unfortunately, naming systems each have a different syntax for
accessing contexts. For example, in an LDAP tree, a compound name is

RMI-I IOP and JNDI Tutorial 511

identified by a string such as cn�Ed Roman, ou�People, o�Middleware-
Company.com, c�us, whereas a file system compound name might look like
c:\java\lib\tools.jar.

A namespace is all the names contained within naming system. Your hard
drive’s entire collection of filenames and directories or folders is your hard
drive file system’s namespace. The set of all names in an LDAP directory’s tree
is an LDAP server’s namespace. Naming systems and namespaces are shown
in Figure A.10. This branch of a hard disk is an example of a naming system

A P P E N D I X A512

• Binding with the name
usr.

• Also a context that
contains other bindings.

• Binding with the
name people.

• Also a subcontext
that contains other
bindings.

• Binding with the
name bin.

• Also a subcontext
that contains other
bindings.

• Binding with the
name local.

• Also a subcontext
that contains other
bindings.

...

...

...

Figure A.9 JNDI naming concepts.

because it’s a connected set of contexts. Within this naming system, the name-
space is every name shown.

A composite name is a name that spans multiple naming systems. For example,
on the Web, the URL http://java.sun.com/products/ejb/index.html is com-
posed of the following namespaces:

■■ http comes from the URL scheme-id namespace. You can use other scheme-
ids, such as ftp and telnet. This namespace defines the protocol you use to
communicate.

■■ java.sun.com uses the DNS to translate machine names into IP addresses.

■■ products and ejb and index.html are from the file system namespace on the
Web server machine.

By linking multiple naming systems like the preceding URL, we can arrive at
a unified composite namespace (also called a federated namespace) containing all
the bindings of each naming system.

RMI-I IOP and JNDI Tutorial 513

Java Context

Classes Context

ASP Context

Packages Context

InetServ Context

System32 Context

WinNT Context

CertSrv Context

IISAdmin Context

Figure A.10 Naming systems and namespaces.

Initial Context Factories

Students in our training classes commonly ask, If you are to traverse a com-
posite namespace, how do you know which naming system to look into first?
For example, which namespace do you first look in when traversing the string
http://www.TheServerSide.com/events/index.jsp?

The starting point of exploring a namespace is called an initial context. An ini-
tial context simply is the first context you happen to use. An initial context is a
starting point for performing all naming and directory operations.

To acquire an initial context, you use an initial context factory. An initial context
factory is responsible for churning out initial contexts. An initial context fac-
tory basically is your JNDI driver. For example, there is an LDAP initial con-
text factory, as well as a file system initial context factory. These initial context
factories know the specific semantics of a particular directory structure. They
know how to acquire an arbitrary context that you can use as an initial starting
context for traversing a directory structure.

Initial context factories are used for bootstrapping, or jump-starting, your
naming and directory service operations. You use an initial context factory as
a bootstrapping mechanism for identifying an initial naming system.

When you acquire an initial context, you must supply the necessary informa-
tion for JNDI to acquire that initial context. For example, if you’re trying to
access a JNDI implementation that runs within a J2EE server, you might
supply:

■■ The IP address of the J2EE server

■■ The port number that the J2EE server accepts

■■ The starting location within the JNDI tree

■■ Any username/password necessary to use the J2EE server

You could use this same paradigm to access an LDAP server—just substitute
LDAP server for J2EE server in the preceding list.

Initial contexts and composite namespaces are illustrated in Figure A.11.

A quick performance tip for you: some J2EE servers take a long time to create an ini-
tial context. If this is the case, we strongly recommend caching an initial context for
future use. Create it once, and then reuse it when needed later.

A P P E N D I X A514

Programming with JNDI
Now that you’ve seen the concepts behind JNDI, let’s put our theory into con-
crete use. Source A.3 shows a simple JNDI example.

The code simply acquires an initial context, and then the program completes.
The specific JNDI driver that we use is based on the system properties passed
in at the command-line. For example, to connect to your file system, you

RMI-I IOP and JNDI Tutorial 515

File System

LDAP

Printer Service

NDS

DNS

Printers

Files

User Information

Initial context

JNDI client code

Figure A.11 A composite (federated) namespace with an initial context.

would use Sun’s file system JNDI service provider, which is a driver that con-
nects you to your own hard disk to browse the file system. You would then run
the program as follows:

java

-Djava.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory

-Djava.naming.provider.url=

file:c:\

examples.InitCtx

The java.naming.factory.initial parameter identifies the class of the JNDI driver.
Then we identify the starting point on the file system that we want to begin
navigating; specifically, the c:\ folder. This starting point is structured in the
form of a Uniform Resource Locator (URL). In JNDI, it is called the provider
URL because it is a URL that the service provider accepts for bootstrapping.

We can reuse this same code to connect to an LDAP server as follows:

java

-Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

-Djava.naming.provider.url="ldap://ldap.funet.fi:389/c=fi"

examples.InitCtx

As you can see, this data-driven mechanism of performing JNDI has its advan-
tages. It allows you to avoid recompiling your Java code. It also enables non-
Java-savvy users to customize the behavior of your programs without
modifying source code, which is important if you ship your products only as
.class files.

A P P E N D I X A516

package examples;

public class InitCtx {

public static void main(String args[]) throws Exception {

// Form an Initial Context

javax.naming.Context ctx =

new javax.naming.InitialContext(System.getProperties());

System.err.println("Success!");

}

}

Source A.3 InitCtx.java.

Integrating RMI-IIOP and JNDI

Now that you’ve seen both RMI-IIOP and JNDI, let’s see how to combine them
and complete our RMI-IIOP example. There are essentially two uses of JNDI
with RMI-IIOP:

RMI-I IOP and JNDI Tutorial 517

Other JNDI Operations

After acquiring the initial context, you could begin to execute JNDI operations,
such as reading or writing data to and from the JNDI tree by using the other API
calls available in JNDI. Here is a brief list of available operations that you can call
on the context:

list() retrieves a list of contents available at the current context. This typically
includes names of objects bound to the JNDI tree, as well as subcontexts. In a
file system, this might be a list of file names and folder names. If you’re con-
necting to a proprietary J2EE server’s JNDI implementation, you might see a list
of bound objects as well as subcontexts to which you can navigate.

lookup() moves from one context to another context, such as going from c:\ to
c:\windows. You can also use lookup() to look up objects bound to the JNDI
tree. The return type of lookup() is JNDI driver specific. For example, if you’re
looking up RMI-IIOP objects, you would receive a java.rmi.Remote object; if
you’re looking up a file in a file system, you would receive a java.io.File.

rename() gives a context a new name, such as renaming c:\temp to c:\tmp.

createSubcontext() creates a subcontext from the current context, such as creat-
ing c:\foo\bar from the folder c:\foo.

destroySubcontext() destroys a subcontext from the current context, such as
destroying c:\foo\bar from the folder c:\foo.

bind() writes something to the JNDI tree at the current context. As with lookup(),
JNDI drivers accept different parameters to bind().

rebind() is the same operation as bind, except it forces a bind even if there is
already something in the JNDI tree with the same name.

■■ An RMI-IIOP server first publishes itself to a JNDI tree using the
JNDI API.

■■ A client then uses JNDI to lookup an RMI-IIOP server.

This process is shown in Figure A.12.

Your JNDI tree implementation is typically bundled with the J2EE server run-
time. Therefore, when you startup your J2EE server, the JNDI tree runs in-
process to the J2EE server and starts up as well. J2EE servers also ship with
a JNDI driver that can connect to that JNDI tree implementation, which
clients call.

Binding an RMI-IIOP Server to JNDI
The source code for binding the RMI-IIOP server to the JNDI tree is in
Source A.4

The Startup class instantiates a remote object, acquires an initial context, binds
the remote object to the context, and then waits for a client to call. It assumes
that your J2EE server’s JNDI implementation is already up and running. Note
that you must supply your J2EE server’s JNDI driver initialization parameters

A P P E N D I X A518

Machine #1

Machine #2

Machine #3

Initial
Context

2: Lookup Object in Well-Known JNDI Tree Location

1: Store
Remote Object
in JNDI Tree

3: Return Stub

4: Call Business Method

RMI-IIOP
Remote Object

RMI-IIOP
Skeleton

RMI-IIOP
Stub

5: Delegate

6: Delegate

Client Code

Figure A.12 Bootstrapping with JNDI.

via the command line, as we showed earlier in this chapter when we ran our
JNDI initial context example. Check your server’s documentation or see the
book’s accompanying source code for this.

Looking up an RMI-IIOP
Server with JNDI

Our client code that looks up the RMI-IIOP server via JNDI is in Source A.5.

Our client code is self-explanatory, with one exception. After looking up our
remote object, we do a very strange operation: javax.rmi.PortableRemote
Object.narrow(). This is a static method on an RMI-IIOP class called Portable

RMI-I IOP and JNDI Tutorial 519

import javax.naming.*;

/**

* A helper class which starts our RMI-IIOP server

*/

public class Startup {

/**

* Our main() method starts things up

*/

public static void main(String args[]) throws Exception {

/*

* Start up our PKGenerator remote object. It will

* automatically export itself.

*/

PKGenerator generator = new PKGenerator();

/*

* Bind our PKGenerator remote object to the JNDI tree

*/

Context ctx = new InitialContext(System.getProperties());

ctx.rebind("PKGenerator", generator);

System.out.println("PKGenerator bound to JNDI tree.");

synchronized (generator) {

generator.wait();

}

}

}

Source A.4 Startup.java.

RemoteObject. This method casts the generic object that we looked up via JNDI
to our RMI-IIOP interface type. This narrow() operation is required whenever
you lookup an RMI-IIOP object via JNDI. Why do we need it, and why don’t
we just cast it using a regular Java cast? The short answer is CORBA interop-
erability. And if you’re really curious, the long answer is in Appendix B.

As with the server, to run the client, you must supply your J2EE server’s JNDI
driver initialization parameters via the command line, as we showed earlier in
this chapter when we ran our JNDI initial context example. Check your
server’s documentation or see the book’s accompanying source code for this.

Summary

In this appendix, we’ve learned how Java RMI-IIOP and JNDI are fundamen-
tal underlying technologies in an EJB deployment. We looked at RMI-IIOP’s
architecture, comparing it to traditional RPCs. We examined stubs and skele-
tons, parameter passing, and object serialization. We concluded our RMI-IIOP
discussion by introducing a sample primary key generator RMI-IIOP server.

A P P E N D I X A520

import javax.naming.*;

import java.rmi.*;

public class Client {

public static void main (String[] args) throws Exception {

// Lookup the remote object via JNDI

Context ctx = new InitialContext(System.getProperties());

Object remoteObject = ctx.lookup("PKGenerator");

// Cast the remote object, RMI-IIOP style

IPKGenerator generator = (IPKGenerator)

javax.rmi.PortableRemoteObject.narrow(

remoteObject, IPKGenerator.class);

// Generate a PK by calling the RMI-IIOP stub

System.err.println(generator.generate());

}

}

Source A.5 Client.java.

Next, we delved into JNDI. We looked at the basics of naming and directory
concepts, and saw how to acquire an initial context. We then investigated how
to bind and lookup an RMI-IIOP object using JNDI.

In the next chapter, we’ll delve into RMI-IIOP at a deeper level, by examining
how it can be used for CORBA interoperability. This topic is important for any-
one who has existing CORBA systems, or existing systems written in other lan-
guages that they’d like to bridge into their EJB system.

RMI-I IOP and JNDI Tutorial 521

A P P P E N D I X B

523

EJB would not be complete without a way to integrate with CORBA. CORBA
allows EJB applications to communicate with existing CORBA applications, as
well as to integrate with existing investments written in non-Java languages
such as C�� and COBOL. Indeed, CORBA and EJB are related—many of the
concepts in Java 2 Platform, Enterprise Edition came from CORBA.

In this appendix, we’ll learn the high-level concepts behind CORBA. We’ll
then see how J2EE can integrate with CORBA via RMI-IIOP. Finally, we’ll look
at how to use CORBA clients to access EJB systems.

What Is CORBA?

The Common Object Request Broker Architecture (CORBA) is a unifying standard
for writing distributed object systems. The standard is completely neutral with
respect to platform, language, and vendor. CORBA incorporates a host of tech-
nologies and is very broad in scope.

The Object Management Group (OMG), a consortium of companies that began
in 1989, invented CORBA. CORBA itself is simply a standard, just like EJB.
CORBA-compliant products implement the CORBA specification, just as EJB-
compliant servers implement the EJB specification.

In addition to CORBA, the OMG has defined a protocol called Internet Inter-
ORB Protocol (IIOP, pronounced “eye-op”). IIOP is the standard Internet

CORBA Interoperability

protocol for CORBA. You never see IIOP; it is used behind the scenes for dis-
tributed object communications.

CORBA as the Basis for EJB
Many of the concepts in EJB came out of CORBA. In a sense, you can think of
EJB as CORBA with a new hat. EJB and J2EE bring a Java-centric, component-
based approach to traditional middleware programming—an architecture
suitable for rapid application development. CORBA, on the other hand, offers
a much broader suite of middleware features to work with. This includes a
time service, a distributed locking service, a relationship service, and more.
The primary advantage of EJB over CORBA is that EJB has more industry
momentum; indeed, the very middleware vendors who offered CORBA
implementations in the past are now focused on their EJB implementations.

Just like EJB, a group of companies jointly developed CORBA. This prevents
CORBA from becoming a standard that’s specific to one product or architec-
ture (in the way that Microsoft.NET, for example, is specific to Windows).

Why Should I Care about CORBA?

Why would you want to use CORBA? There are several reasons.

You can use CORBA for legacy integration. If you have an existing invest-
ment (such as a legacy banking application) you can leverage that invest-
ment today using CORBA. For example, let’s say you have a banking
application written in C��. CORBA gives you the ability to preserve and
reuse it. You can wrap your existing investment as a CORBA object, allow-
ing it to be called from any application. As we’ll find out, CORBA is a
language-neutral standard and allows code written in several languages to
communicate. Thus, CORBA is an ideal platform for code written in differ-
ent languages to cooperate.

CORBA allows for advanced middleware development. Remember that
EJB is not supposed to be an end-all to every problem. But if there is a
middleware service that can be generalized, you’re likely to find it
standardized as a CORBA service. For those who need it, CORBA gives
great functionality.

CORBA and EJB have hooks connecting them. Some EJB products will
allow your enterprise beans to be called from two different kinds of clients:
clients written to use the J2EE suite of APIs and clients written to use
CORBA APIs. This means that code written in C�� or Smalltalk can call
your enterprise beans.

A P P E N D I X B524

Drawbacks of CORBA
As usual, the world isn’t perfect. Using CORBA has disadvantages as well as
advantages:

CORBA is slow-moving. All standards committees are bureaucratic and
slow to make decisions. This is because the standards committee itself is
not driven by revenues, but rather by individual interests from participat-
ing companies. CORBA experiences benefits from not being owned by one
company, but its openness is also a drawback. The cycle time for the OMG
to adopt a new CORBA feature is on the order of years.

CORBA has a steep learning curve. As CORBA has evolved over the years, it
has undergone feature creep. More and more features have been added,
which makes CORBA a robust standard but also increases the learning
curve. Indeed, the specifications that define the whole of CORBA are thou-
sands of pages long and are quite challenging to master. The nice thing
about CORBA is that you don’t have to learn it all to use it—you can learn
optional CORBA services as you need them.

Products developed under CORBA may have incompatible features. It’s
great that CORBA is a unifying standard. Because no single company con-
trols the standard, it levels the playing field for companies competing to
build CORBA products. But there remain the problems of multivendor
solutions. As with EJB products, if you mix and match CORBA products,
you will inevitably run into assumptions that vendors have made but that
are specific to their own products. This is the trade-off between a one-
vendor solution, such as Microsoft, and an open standard, such as CORBA
or EJB. The price of freedom is eternal vigilance.

Understanding How CORBA Works

Before we delve into CORBA/EJB interoperability, we’ll cover the core
CORBA fundamental concepts. This will lay the groundwork for us to discuss
how CORBA and EJB are compatible.

Object Request Brokers
An Object Request Broker (ORB) facilitates network communication. ORBs
enable disparate applications to communicate without being aware of the
underlying communications mechanism. They are responsible for finding
objects to service method calls, handling parameter passing, and returning
results. Whenever you have multiple objects interacting in a CORBA environ-
ment, ORBs facilitate the communications. This is shown in Figure B.1.

CORBA Interoperability 525

Numerous CORBA ORBs are on the market. Some examples are Iona’s
OrbixWeb, Inprise’s VisiBroker, and IBM’s ComponentBroker. Each vendor
offers various qualities of service that differentiate that vendor’s product from
those of other vendors in the marketplace.

The concept of an ORB is absolutely not specific to CORBA. Both J2EE implementa-
tions and Microsoft.NET contain ORB functionality as well because both architec-
tures facilitate network communications and hence, serve as object request brokers.
For the rest of this chapter, however, we’ll assume we’re dealing with CORBA ORBs.

OMG’s Interface Definition Language

The cornerstone of CORBA is the OMG’s interface definition language (OMG
IDL). OMG IDL is a language that CORBA uses to define the interfaces
between clients and the objects they call. When you write a CORBA object
implementation, that object implementation must have corresponding IDL

A P P E N D I X B526

Application
Code

ORB

Machine 1

Application
Code

ORB

Machine 3

Application
Code

ORB

Machine 2
IIOP

IIOP

IIOP

Figure B.1 The ORB facilitates your networking needs.

that defines the interface for that object implementation. By programming
with OMG IDL, you force a clear distinction between interface and implemen-
tation—you can vary your implementation without changing the interface
your clients use. The IDL concept is shown in Figure B.2.

Another great benefit to OMG IDL is that it is a language-neutral interface
for object implementations. You can write your IDL once and then define your
object implementations in any language that CORBA supports, such as C��

or Smalltalk. And because IDL is language-neutral, client code that calls your
object implementations can be written in any language that CORBA supports

CORBA Interoperability 527

Pricer

Pricer.idl

Pricer.java

Fulfillment

Fulfillment.idl

Fulfillment.java

Billing
Billing.idl

Billing.cpp

IDL defines the
interfaces between
components written in
different languages.

Figure B.2 The Interface Definition Language concept.

as well. Thus, IDL enables you to have a deployment mixing heterogeneous
languages.

IDL is also inherently platform-neutral, allowing clients and object implementa-
tions to be deployed in different platforms. For example, your clients can exist
on a Windows box and talk to business objects deployed on a Sun Solaris box.

You should think of IDL as a middleman language—a common ground that in
theory is independent of language change. IDL allows you to write a distrib-
uted application with the illusion that it’s all written in one language.

Here is a sample snippet of IDL:

module examples {

interface HelloWorld {

string sayHello(in string myName);

}

}

As you can see, IDL is very similar to C�� and Java.

There are many different types in IDL, including basic types (such as short and
float) and constructed types (such as struct and enumeration). You’ll find that if
you know C��, learning to use OMG IDL is pretty straightforward. If you’re
a Java programmer, you should not have too much difficulty using IDL to
define your object’s interfaces either, because Java’s syntax is similar to C��.

We only briefly describe IDL in this chapter. Most CORBA books will have a section
explaining IDL fully. And if you’re serious about CORBA, take a look at the specifica-
tions on the OMG Web site (www.omg.org), which detail OMG IDL rigorously.

OMG IDL Maps to Concrete
Languages

IDL is only a descriptive language in that it describes the interfaces to your
objects. You cannot execute IDL. Neither your CORBA object implementations
nor your CORBA clients ever see IDL. You program your clients and object
implementations in whatever language you’re using, such as Java or C��. But
how, then, do you refer to CORBA objects? The answer is the OMG IDL maps to
specific languages, such as Java or C��. If you go to the OMG Web site
(www.omg.org), you’ll see that there are specifications detailing how OMG IDL
maps to various languages. For instance, there is an IDL-to-Java mapping spec-
ification that defines how IDL maps to Java. With the IDL-to-Java mapping, the
string type in OMG IDL maps to the java.lang.String object in Java.

A P P E N D I X B528

It is important to realize that, although IDL is a language, it is more of an
abstraction because you never write client code or object implementations that
use IDL files. Rather, you use IDL to define the interfaces to your objects and
then map that IDL into your particular language using an IDL compiler. For
example, an IDL-to-Java compiler would take as input an IDL file and gener-
ate Java interfaces for your object implementations. Once this is done, you can
implement those interfaces in Java. You could then map the IDL to a different
language, such as C��, by using an IDL-to-C�� compiler. This would allow
you to write client code in C�� that calls your Java object implementations.

For the sake of brevity, we do not cover the IDL-to-Java mapping here. You can
download the complete IDL-to-Java mapping specification for free from the OMG
Web site.

CORBA Static Invocations
As we’ve said, the ORB facilitates client/server communications, simplifying
client networking needs. But how does a client invoke a method on a remote
CORBA object? The answer is via a local method call, which gets translated
into a remote method call across the network. This is quite analogous to how
networking is accomplished in Java RMI.

The conventional way to perform distributed computing in CORBA is to have
the client invoke locally on a pregenerated stub. The stub is a proxy for the real
object implementation, which exists elsewhere on the network. The stub is
responsible for going through the client-side ORB runtime, which channels the
request over the network via IIOP.

The receiving server-side ORB runtime receives the IIOP request, then calls a
skeleton to handle the request. The server-side skeleton is a pregenerated file,
just like the stub. The skeleton is responsible for delegating the invocation to
the actual server-side CORBA object (also called a servant) that will service the
request. The skeleton is also responsible for coordinating with an object adapter.
This object adapter performs many tasks, such as mapping object references to
servants, activating servants in case they don’t exist already, housekeeping of
threads, and more. Modern ORB implementations have object adapters coded
to the CORBA Portable Object Adapter (POA) specification.

The CORBA invocation process is shown in Figure B.3.

Both the stub and skeleton are pregenerated files. They are usually generated
from the IDL file that defines the server-side CORBA object’s method signa-
tures. They need to be pregenerated for two reasons.

CORBA Interoperability 529

CORBA objects are inherently cross-language. This means you need to pre-
generate the stubs and skeletons in the particular language you’re using.
You’re free to use any language to which IDL maps.

Stubs and skeletons contain specific syntax about your particular CORBA
object’s method signatures. Thus, you must generate them for each of
your CORBA objects because each object will have different method signa-
tures. By generating them, you can simulate an environment where clients
can invoke on proxies using the actual method signatures of the real object,
located elsewhere.

This invocation mechanism is called a static invocation, because you’re stati-
cally binding your client code to stubs at compile time.

A P P E N D I X B530

CORBA Stub

Client
CORBA Object
Implementation

CORBA
Skeleton

CORBA Object Interface

Network
Via IIOP

ORB ORB

Figure B.3 Calling a method in CORBA.

CORBA’s Many Services

In addition to enabling objects to communicate over the network, the OMG
has published a set of CORBA Object Services (known as CORBA Services
[COS]) that give your networked objects additional capabilities. These services
are optionally provided by CORBA vendors. Most serious CORBA products
give you one or more services to aid development. These include:

■■ The CORBA Naming Service (COS Naming) is a CORBA service that allows
you to look up CORBA objects by name, a technology similar to the Java
Naming and Directory Interface (JNDI).

■■ The CORBA Event Service allows for asynchronous communications
between CORBA objects.

■■ The CORBA Object Transaction Service (OTS) enables CORBA objects to
perform transactions.

■■ The Concurrency Control Service allows for multiple clients to concurrently
interact with a resource.

■■ The CORBA Security Service adds secure functionality to your CORBA
system.

A final specification, called CORBA Components, adds component features to
CORBA objects, allowing them to function similarly to enterprise beans. This
means that CORBA now has a proposal that allows for true components to be
developed in the CORBA world. CORBA Components is very similar to Enter-
prise JavaBeans. This was done intentionally so that CORBA Components and
enterprise beans can reside together. One goal of CORBA Components is to
integrate with enterprise beans. Thus, it should be possible to do either of the
following:

■■ Make a CORBA Component appear as though it were an enterprise bean.

■■ Make an enterprise bean appear as though it were a CORBA Component.

For now, there is very little industry momentum for CORBA Components.
This will definitely be an interesting standard to keep an eye on as EJB and
CORBA evolve.

The Need for RMI-IIOP

Now that you’ve seen the basics of CORBA theory, let’s compare Java RMI to
CORBA. We’ll first see why people use RMI and CORBA. Next, we’ll look at
the semantic differences that must be overcome to merge CORBA and RMI.

CORBA Interoperability 531

Finally, we’ll look at how the industry merged RMI and CORBA with RMI-
IIOP. This standard is the key to EJB-CORBA compatibility.

The Need for RMI-CORBA
Interoperability

RMI and CORBA are very similar technologies with slightly different goals.
One technology is not better than the other—it all depends on what kind of
development you’re doing.

CORBA is a robust distributed object standard that allows for language inter-
operability. RMI, on the other hand, was built for very simple distributed
object communications in Java. While RMI does not contain CORBA’s cross-
language support, it is well suited for pure Java development due to Java-
specific features such as distributed garbage collection, object activation, and
downloadable class files.

While both RMI and CORBA are intended for distributed object communica-
tions, neither technology contains high-end middleware services, such as per-
sistence or transactions. CORBA programmers can gain those middleware
services by leveraging CORBA’s optional services that we described earlier.
RMI programmers can gain those middleware services by leveraging the Java
2 Platform, Enterprise Edition suite.

Unfortunately, although RMI and CORBA are similar in nature, they histori-
cally have been incompatible technologies. When you program code with Java
RMI, you need to write your code to the RMI API. Similarly, when you pro-
gram code with CORBA, you need to write your code to the CORBA API. This
is terrible for code reuse: If you write code in either RMI or CORBA, you’ll
need to rewrite major pieces of your code if you want to switch networking
technologies.

Ideally, we’d like a world where we could perform the following:

Combine client-side Java RMI with server-side CORBA. We should be able
to write an object implementation to the CORBA API and write client code to
the Java RMI API that calls that CORBA object. This is shown in Figure B.4.

Combine client-side CORBA with server-side Java RMI. We should be able
to write a remote object implementation with the RMI API and have a client
written to the CORBA API call that object. This is shown in Figure B.5.

A P P E N D I X B532

Combining RMI with CORBA
What strategy should we use to combine the CORBA world with the Java RMI
world? To begin to answer this, let’s compare how CORBA and RMI work
behind the scenes:

■■ Both CORBA (except in its dynamic communications mechanism) and
RMI use pregenerated stubs and skeletons to perform network communi-
cations.

■■ Behind the scenes, CORBA uses IIOP as the protocol to perform
client/server communications. This occurs beneath the stub/skeleton
layer.

■■ Behind the scenes, Java RMI uses the Java Remote Method Protocol
(JRMP) protocol for performing client/server communications. This
occurs beneath the stub/skeleton layer as well.

CORBA Interoperability 533

RMI Stub

RMI Client
CORBA Object
Implementation

CORBA
Skeleton

RMI Remote Object Interface

Network
Via IIOP

ORB ORB

Figure B.4 An RMI client calling a CORBA object implementation.

The protocol being used is the key to interoperability of CORBA and RMI. RMI
skeletons always expect a request to come in via the JRMP protocol, and
CORBA skeletons are always expecting data to come in using the IIOP proto-
col. But this protocol layer should be totally pluggable. For example, we
should be able to switch out RMI’s JRMP protocol and switch in the IIOP pro-
tocol. If we did this, we could achieve Figures B.4 and B.5.

So why is IIOP our protocol of choice, rather than JRMP? The reason is that
IIOP is a much more robust protocol than JRMP. IIOP is supported by numer-
ous vendors in the industry and has been designed with interoperability of
heterogeneous distributed objects in mind.

The scheme we’ve just presented is the basis for the unification of CORBA and
RMI, and it is called RMI-IIOP (pronounced RMI over IIOP). RMI-IIOP allows
for CORBA clients, RMI clients, CORBA object implementations, and RMI
object implementations to be mixed and matched. This accomplishes our goal

A P P E N D I X B534

CORBA Stub

CORBA Client
RMI Remote Object

Implementation

RMI Skeleton

CORBA Object Interface

Network
Via IIOP

ORB ORB

Figure B.5 A CORBA client calling an RMI remote object implementation.

of creating a bridge between RMI and CORBA. Table B.1 shows the RMI-IIOP
combinations that are possible.

Resolving the Differences between
RMI and CORBA

Combining Java RMI with CORBA was not a straightforward task. There were
incompatibilities. For example, in RMI you can pass parameters by-value
using serialization (see Appendix A). There was no way in CORBA to marshal
parameters by-value. Thus, a new CORBA specification called Objects-by-Value
was developed to address this. The CORBA ORB you use with RMI-IIOP must
implement this specification if you wish to marshal objects by value. The curi-
ous reader can download the complete Objects-by-Value specification free
from the OMG Web site, www.omg.org.

Parameter passing conventions were not the only differences between RMI
and CORBA. There are other semantic differences as well. Let’s take a look at
the major concerns:

Distributed garbage collection. RMI gives you an automatic way of cleaning
up objects over the network with a distributed garbage collector. CORBA,
on the other hand, has no such mechanism. Why? Because not every lan-
guage that CORBA maps to has the concept of even regular in-process
garbage collection.

Narrowing. When you receive an object using Java RMI, you can simply cast
it into the desired object using a Java cast. This is possible because RMI
automatically downloads the appropriate stub for the object you’re dealing
with. CORBA, however, does not have a mechanism for automatic stub
downloading.

Java RMI programmers don’t want to learn OMG IDL. One of the niceties
of Java RMI is that it’s all Java, which means you don’t need to learn a sep-
arate interface definition language (such as OMG IDL) to handle your net-
working needs. But with RMI-IIOP, you can mix CORBA clients with RMI

CORBA Interoperability 535

CLIENT SERVER

RMI-IIOP client RMI-IIOP server

RMI-IIOP client CORBA server

CORBA client RMI-IIOP server

CORBA client CORBA server

Table B.1 Combinations Possible Using RMI-IIOP

server object implementations. Those CORBA clients are pure CORBA
clients (with pure CORBA stubs), and they need to work with some IDL.
That IDL needs to come from somewhere. Should we force Java RMI pro-
grammers to churn out an IDL file? If we make Java RMI coders learn
OMG IDL, a large benefit of RMI has been lost.

A separate OMG specification called the Java-to-IDL Mapping specification
resolves the semantic differences between RMI and CORBA. This document
details all of the subtleties of combining the RMI API with the IIOP protocol. It
addresses issues such as distributed garbage collection and inheritance, as
well as the resolution of the differences between RMI and CORBA. In essence,
the Java-to-IDL Mapping document is the complete specification for RMI-
IIOP.

Let’s take a look at how Java-to-IDL solves some of the semantic differences
between RMI and CORBA.

Distributed garbage collection (DGC). RMI-IIOP does not propose to
accomplish distributed garbage collection. And rightfully so—DGC is in
general a hard problem to solve. Instead, the Java-to-IDL specification
mandates that RMI coders cannot rely on distributed garbage collection
when using RMI-IIOP.

Narrowing. When using RMI-IIOP, you cannot simply cast an object you
receive over the network, because the stub class file may not exist on the
client machine. RMI-IIOP does not allow downloadable class files because
CORBA does not mandate support for this feature. Thus, you must per-
form a safe cast by explicitly calling the javax.rmi.PortableRemoteObject.nar-
row() method. This static method converts an object into the desired remote
interface type for you. You pass narrow() the object you desire to cast, and
the class to which you wish to cast it. The narrow() method returns the
resultant object or throws an exception if the narrow is not possible, per-
haps because the class does not exist.

Java RMI programmers don’t want to learn OMG IDL. One great benefit of
Java RMI is that you don’t need to learn a separate interface definition lan-
guage to perform remote computing. We’d like to preserve this feature.
RMI-IIOP therefore defines a mapping from RMI/IDL types to OMG IDL
types. This mapping provides a well-defined way for Java language types
used by RMI-IIOP to be automatically mapped into OMG IDL. Once we
have this, a vendor can write a tool that automatically performs this map-
ping. Such a tool is called a java-to-idl compiler. It takes in code written in
Java and spits out OMG IDL. This IDL can be used by CORBA clients
when calling your RMI remote object implementations. The IDL can also
be used by CORBA object implementations that your RMI clients call.

A P P E N D I X B536

Java-to-IDL allows you to build complete distributed applications in Java
and then use apps written in other languages to invoke on your distrib-
uted application. The Java-to-IDL Mapping simplifies your network pro-
gramming tremendously. No longer do you have to write IDL and then

CORBA Interoperability 537

The IIOP Debate

The IIOP standardization solution that the J2EE and CORBA communities reached
was not the only possible solution. In fact, this solution was heavily debated and
highly political. Here are the dirty details.

The problem here is that originally, not all J2EE server vendors based their
servers on CORBA. BEA WebLogic, for example, built its server from scratch with a
custom RMI implementation, as did many other server vendors. These vendors
did not want to standardize on IIOP, because that meant they had to rewrite their
server to use CORBA instead. This added up to increased development time and
loss of control over what happened at the network level, which could introduce
performance or functionality constraints.

To understand a possible alternative solution, you must understand the con-
cept of context propagation. Let’s say your code is involved in a transaction or
has security credentials associated with it. Most systems (including EJB) manifest
transaction and security data in contexts. These contexts are invisible to you and
are passed along transparently. Typically they are kept in Thread Local Storage,
which is a pocket of memory associated with each thread. When you perform an
invocation, you want this context information to be propagated automatically to
the receiving system so the object implementation can execute its business logic
for you within the same contexts. RMI-IIOP standardizes the way contexts are
propagated, which achieves interoperability.

But there is another solution as well. Imagine if you have two EJB servers talk-
ing to one another—say, Weblogic calling WebSphere. Weblogic is invoking on a
Websphere stub (not Weblogic stub) that has been deployed on the Weblogic
machine. That Websphere stub understands how to talk to a Websphere skeleton.
Therefore it should not be necessary to standardize on a protocol such as IIOP.
Rather, there should be a standard mechanism for a stub to retrieve transaction
and security contexts from the EJB server’s thread local storage.

In the end, a compromise was reached. J2EE server vendors are allowed to use
other protocols besides IIOP. However, they need to support IIOP in case interop-
erability is required with CORBA systems. That is the irony of the phrase RMI-IIOP
—it does not necessarily mean usage of the IIOP protocol. Rather, it means stan-
dardizing on the PortableRemoteObject.narrow() method.

translate that into Java. Java-to-IDL compilers allow you to write your Java
app as you normally would, yet they allow for CORBA interoperability by
generating IDL for you. This is a great convenience—Java RMI program-
mers gain the benefits of CORBA/IIOP interoperability, such as cross-
language support, at a very low cost.

Steps to Take for RMI and CORBA to Work
Together: An Overview

Now that you’ve seen the theory of combining RMI with CORBA, let’s see
exactly what steps you need to take for interoperability.

RMI-IIOP Client with a CORBA Object
Implementation

Our first scenario depicts an RMI-IIOP client with a CORBA object implemen-
tation. To develop such a system, perform the following steps.

1. Write your RMI-IIOP remote interface. You write the remote interface in
Java. The remote interface is RMI-IIOP’s client/server contract for distrib-
uted objects.

2. Generate the needed client-side RMI-IIOP stubs. The RMI-IIOP client
will use the stubs to invoke on the CORBA object implementation. You
can generate these stubs using your J2EE server’s RMI-IIOP
implementation.

3. Generate the OMG IDL. When you define your CORBA object imple-
mentations, you’re going to need IDL. This IDL must match your RMI-
IIOP remote interface if you want RMI-IIOP clients to be able to invoke
your CORBA object implementations. Rather than laboriously writing it
yourself, you can automatically generate it through a Java-to-IDL com-
piler. The Java-to-IDL compiler takes in your RMI-IIOP remote interface
and spits out OMG IDL. Where do you get a Java-to-IDL compiler? It typi-
cally ships with your container’s tools. For example, some J2EE servers
have a flag on their RMI-IIOP compiler (rmic) to spit out IDL.

4. Generate the needed server-side CORBA files. You’re going to need
some helper code, such as skeletons for your CORBA object implementa-
tions. And remember that this helper code can be in any CORBA-compli-
ant language in which you choose to implement your CORBA object
implementations. This is where the IDL you generated in step 3 comes
into play. When you define your CORBA object implementations, you can

A P P E N D I X B538

use any language to which IDL maps. You then use an IDL compiler to
take in your IDL and produce network management code in the language
in which you’re implementing your objects. For example, if you use Java,
you’ll need an IDL-to-Java compiler. Most major ORB vendors that sup-
port Java include an IDL-to-Java tool with their products, and J2EE
servers that bundle ORBs should do so as well.

5. Write the client and the server. You can now write your RMI-IIOP client
and your CORBA object implementations.

CORBA Client with an RMI-IIOP
Object Implementation

The second scenario depicts a CORBA client with an RMI-IIOP object imple-
mentation. To achieve this, you perform the following steps:

1. Write your RMI-IIOP remote interface. You write the remote interface in
Java. The remote interface is RMI-IIOP’s client/server contract for distrib-
uted objects.

2. Generate the needed server-side RMI-IIOP skeletons. The skeletons will
be used to receive invocations and delegate them to your RMI-IIOP
remote object implementations. You can generate these skeletons using
your J2EE server’s RMI-IIOP implementation.

3. Generate the OMG IDL. When you define your CORBA clients, you’re
going to need IDL. This IDL must match your RMI remote interface if you
want CORBA clients to call your RMI-IIOP object implementations.
Rather than laboriously writing it yourself, you can automatically gener-
ate it through a Java-to-IDL compiler. The Java-to-IDL compiler takes in
your RMI-IIOP remote interface and spits out OMG IDL, and ships with
your ORB or J2EE server.

4. Generate the needed client-side CORBA files. As in the previous section,
you need to generate helper code, such as stubs for your CORBA clients.
Thus, you need to generate these network plumbing classes from the IDL
with an IDL compiler, such as an IDL-to-Java compiler that ships with
your ORB or J2EE server.

5. Write the client and the server. You can now write your CORBA client
and your RMI-IIOP object implementations.

As you can see, mixing and matching RMI-IIOP and CORBA is not trivial. Several
tricky steps are necessary, and different J2EE servers may behave differently. Be pre-
pared to experience a few headaches if you want to get RMI-IIOP and CORBA work-
ing together.

CORBA Interoperability 539

Bootstrapping with RMI-IIOP
and CORBA

Recall from earlier in this chapter that CORBA has its own built-in naming ser-
vice, called the CORBA Naming Service (or COS Naming). COS Naming is the
standard way CORBA clients look up remote CORBA objects. But again, this is
simply looking up an arbitrary resource over the network—the resource just
happens to be CORBA objects rather than printers or RMI-IIOP objects. There-
fore, COS Naming is a perfect fit for JNDI. You can lookup CORBA objects
using JNDI by using a special CORBA-compatible JNDI driver. One such dri-
ver is the COS Naming service provider, downloadable for free from
http://java.sun.com. Note that you should check your J2EE server’s docu-
mentation for the specific driver they recommend.

What’s great about this paradigm is that our RMI-IIOP client code can access
both RMI-IIOP servers and CORBA servers without changing code, but rather
by merely plugging in a different JNDI driver.

The Big Picture: CORBA and EJB Together

CORBA and EJB have an interesting relationship. They compete with one
another in some respects (due to CORBA Components), and at the same time,
they complement each other. This is because CORBA is often the enabling
technology that resides beneath the EJB level. Many EJB server vendors layer
their EJB products on top of an existing CORBA infrastructure, and RMI-IIOP
allows just this to happen.

Although CORBA/EJB interoperability is still in its infancy, the vision is solid,
and we hope several benefits will come from it. The biggest benefit is that
CORBA clients written in any language (that OMG IDL maps to) should be
able to call your enterprise beans.

Another benefit of CORBA/EJB interoperability is at the transaction and secu-
rity level. Clients should be able to mix calls to both CORBA objects and enter-
prise beans under the hood of the same transaction. Similarly, you should be
able to construct a distributed transaction that spans heterogeneous EJB
servers. And finally, you should eventually be able to propagate security con-
texts from one EJB server to another, allowing for single sign-on between dif-
ferent EJB server vendors. The specifications are maturing slowly but surely to
make this a reality in the future.

A P P E N D I X B540

What You Don’t Get from CORBA-EJB
Interoperability

We want to make it clear that there is one benefit that you do not get from EJB-
CORBA interoperability. CORBA-EJB interoperability is for connecting a
CORBA client to an enterprise bean written in Java. You cannot write your
enterprise beans in any language but Java. If you want to write your server-
side components using another language, see Chapter 13 for legacy integra-
tion strategies.

Sample Code
Now let’s write some sample code to illustrate how to use CORBA to call an
EJB component. We’ll use the Hello, World bean developed in Chapter 3. The
key thing to notice is that we are taking a bean that we called using RMI-IIOP
in Chapter 3, and are reusing the bean without modification and accessing it
from a CORBA client.

We’ll use the following to access our bean:

■■ COS Naming to look up the home object

■■ OTS to demarcate transaction boundaries

■■ The Java language to write our CORBA client

Source B.1 shows the implementation.

CORBA Interoperability 541

import java.util.*;

import org.omg.CosNaming.*;

import org.omg.CosTransactions.*;

public class CORBAClient {

public static void main(String[] args) throws Exception {

/*

* Initialize the ORB.

*/

Properties p = new Properties();

p.put("org.omg.CORBA.ORBClass", <..Your ORB class..>);

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, p);

Source B.1 Example CORBA EJB client.

A P P E N D I X B542

/*

* Get a reference to a naming context

*/

NamingContext context = NamingContextHelper.narrow

(orb.resolve_initial_references("NameService"));

/*

* Look up the home object using COS Naming

*/

NameComponent[] names = { new NameComponent("HelloHome", "") };

HelloHome helloHome = HelloHomeHelper.narrow

(context.resolve(names));

/*

* Get the CORBA OTS Current interface for

* controlling transactions

*/

Current currentTX = CurrentHelper.narrow

(orb.resolve_initial_references("TransactionCurrent"));

/*

* Begin the transaction

*/

currentTX.begin();

/*

* Use the home object to create an EJB object

*/

Hello hello = helloHome.create();

/*

* Call a business method

*/

System.out.println(hello.hello());

/*

* Remove the EJB object

*/

hello.remove();

/*

* Commit the transaction

*/

currentTX.commit(true);

}

}

Source B.1 Example CORBA EJB client (continued).

As you can see, CORBA clients are a bit more complex than RMI-IIOP clients.
We first need to initialize the ORB before beginning any CORBA operations.
Next we get a reference to a naming context via COS Naming, which we use to
look up home objects. Once we’ve retrieved the home object, calling methods
on enterprise beans is syntactically similar to RMI-IIOP. We also get a reference
to the OTS Current interface, which is used to demarcate transactional bound-
aries, analogous to the Java Transaction API (JTA) described in Chapter 10. The
begin() and commit() calls have the same semantic meaning as their JTA equiv-
alents. See the book’s accompanying source code for vendor-specific build
scripts for this code.

Summary

In this chapter, you’ve experienced a whirlwind tour of CORBA and IIOP.
We’ve displayed CORBA’s advantages and the reasons that CORBA is a useful
technology. We then delved into the inner workings of CORBA and explored
its architecture. We also glanced at CORBA’s services and touched on the IDL-
to-Java mapping.

We then compared RMI to CORBA and reasoned why the two worlds need
cohesion. We designed the requirements for RMI-IIOP interoperability and
dived into several scenarios illustrating RMI and CORBA working in unison.
We wrapped up our discussion of RMI-IIOP by illustrating the steps necessary
for you to write RMI-IIOP code.

In the last section of this chapter, we caught a glimpse of the future—EJB and
CORBA interoperability—and showed some example code.

CORBA Interoperability 543

A P P E N D I X C

545

This appendix is a reference guide for building XML deployment descriptors.
You do not need to read this appendix front-to-back; rather, you should use
it as a reference guide when you have questions about deployment descrip-
tors. This is a handy reference when programming deployment descriptors,
because you can quickly lookup the structure in question.

How to Read a DTD

This appendix is a consolidated view of the EJB 2.0 XML deployment descrip-
tor document type definition (DTD). A DTD is a schema for an XML docu-
ment. It constrains how you can form your XML so that a computer program,
such as an EJB compiler tool, can interpret the resulting document.

The tables in this appendix use the following syntax:

Deployment Descriptor Reference

ELEMENT DESCRIPTION

element? A question mark (?) indicates this element is optional.

element* An asterisk (*) indicates zero or more of these elements may exist.

element� A plus sign (�) indicates one or more of these elements may exist.

elementA | This means you can have either have elementA or elementB,
elementB but not both.

Element No punctuation means there must be exactly one element.

Note that the ordering of elements in the tables below is important. Your
deployment descriptor will not be valid unless you follow the exact ordering
in the charts. For example, it would be invalid to define a local home interface
before defining a home interface.

Elements are also case sensitive. Be sure you use the correct capitalization.

The Header and Root Element

All XML deployment descriptors should be named ejb-jar.xml and be located
in the META-INF folder of your Ejb-jar file. The XML file is a flat text file that
begins with the following declaration:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD

Enterprise JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-

jar_2_0.dtd">

The ejb-jar element is the root element of all deployment descriptors.

A P P E N D I X C546

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this Ejb-jar
file.

display-name? A short name of this Ejb-jar file,
to be displayed by tools

small-icon? The relative path within the
Ejb-jar file that you can find a
16 � 16 icon image (either JPEG
or GIF) to be displayed by tools
when manipulating this Ejb-jar file.

large-icon? Same as small icon, except a
32 � 32 image.

enterprise-beans Defines one or more enterprise See session, entity, or
beans. message-driven later in

this appendix.

relationships? Defines CMP relationships. See relationships later in
this appendix.

assembly- Defines application assembly See assembly-descriptor
descriptor? information, such as transactions later in this appendix.

and security.

ejb-client-jar? Specifies an optional JAR file that Chapter 3
contains classes that remote
clients use to access beans, such
as stubs and interfaces. Only useful
if you have remote clients.

Here is an example of ejb-jar:

<ejb-jar>

<description>E-Commerce System</description>

<display-name>E-Commerce EJB-JAR file</display-name>

<small-icon>small.gif</small-icon>

<large-icon>large.gif</large-icon>

<enterprise-beans>

... One or more session, entity, and message-driven . . .

</enterprise-beans>

<relationships>

... Define relationships ...

</relationships>

<assembly-descriptor>

... Define application assembly information ...

</assembly-descriptor>

<ejb-client-jar>ECommerceClient.jar</ejb-client-jar>

</ejb-jar>

Defining Session Beans

The following is an example of how to set up a session bean. Descriptions
follow.

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Count</ejb-name>

<home>examples.CountHome</home>

<remote>examples.Count</remote>

<ejb-class>examples.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

�session�

The session element defines a session bean. Used in ejb-jar.

Deployment Descriptor Reference 547

A P P E N D I X C548

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean.

display-name? A short name of this bean, to be
displayed by tools.

small-icon? The relative path within the Ejb-jar
file that you can find a 16 � 16 icon
image (either JPEG or GIF) representing
this bean, to be displayed by tools.

large-icon? Same as small icon, except a
32 � 32 image.

ejb-name The nickname that you want to give Chapters 3, 4
this bean. This Ejb-name can be
referenced later in the deployment
descriptor.

home? Home interface class. Chapters 3, 4
Remember to include the package too!

remote? Remote interface class. Chapters 3, 4
Remember to include the package too!

local-home? Local home interface class. Chapters 3, 4
Remember to include the package too!

local? Local interface class. Chapters 3, 4
Remember to include the package too!

ejb-class Session bean class. Chapters 3, 4
Remember to include the package too!

session-type For a stateful session bean, set this Chapters 3, 4
to Stateful.
For a stateless session bean, set this
to Stateless.

transaction-type For declarative transactions, set this to Chapter 10
Container.
For bean-managed transactions, set this
to Bean.

env-entry* Declares environment properties for this
bean. Chapter 9

ejb-ref* Declares references to other beans. Chapter 9

ejb-local-ref* Declares local references to other beans. Chapter 9

security-role-ref* Declares security role references. Chapter 9

security-identity? Declares how to perform security Chapter 9
context propagation.

resource-ref* Declares resource factory references Chapter 9
(such as JDBC driver used in bean).

resource-env- Binds resource factories to JNDI Chapter 9
ref* nicknames.

Note that you must define home/remote or local-home/local in pairs. For
example, it would be invalid to define a home interface without a remote inter-
face. You must also define at least one pair, meaning you must use either
remote interfaces, local interfaces, or both.

Defining Entity Beans

The following is an example of how to set up an entity bean. Descriptions
follow.

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>Product</ejb-name>

<local-home>examples.ProductHome</local-home>

<local>examples.Product</local>

<ejb-class>examples.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Product</abstract-schema-name>

<cmp-field><field-name>productID</field-name></cmp-field>

<cmp-field><field-name>name</field-name></cmp-field>

<primkey-field>productID</primkey-field>

<query>

<query-method>

<method-name>findByName</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM Product AS a WHERE name 5 ?1]]>

</ejb-ql>

</query>

</entity>

</enterprise-beans>

</ejb-jar>

�entity�

The entity element defines an entity bean. Used in ejb-jar.

Deployment Descriptor Reference 549

A P P E N D I X C550

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean.

display-name? A short name of this bean, to be
displayed by tools.

small-icon? The relative path within the Ejb-jar
file that you can find a 16 � 16 icon
image (either JPEG or GIF) representing
this bean, to be displayed by tools.

large-icon? Same as small icon, except a 32 � 32 image.

ejb-name The nickname that you want to give Chapters 6, 7
this bean. This Ejb-name can be
referenced later in the deployment
descriptor.

home? Home interface class. Chapters 6, 7
Remember to include the package too!
We don’t recommend you use this,
because entity beans should always be
accessed via their local interfaces.

remote? Remote interface class. Chapters 6, 7
Remember to include the package too!
We don’t recommend you use this,
because entity beans should always be
accessed via their local interfaces.

local-home? Local home interface class. Chapters 6, 7
Remember to include the package too!

local? Local interface class. Chapters 6, 7
Remember to include the package too!

ejb-class Session bean class. Chapters 6, 7
Remember to include the package too!
For a CMP entity bean, set this to Container. Chapters 6, 7
For a BMP entity bean, set this to Bean.

prim-key-class Primary key class (if you have one). Chapters 6, 7
Remember to include the package too!

reentrant Set to True or False depending on Chapters 6, 7
whether you want to be able to call
yourself through another bean.

cmp-version? Set to 1.x or 2.x depending on whether Chapters 6, 7
you’re using the old EJB 1.1 style of
entity bean programming, or the new
EJB 2.0 style.
The book’s accompanying source code
has EJB 1.1 and EJB 2.0 style examples.

continued

�cmp-field�

The cmp-field element defines a CMP field within an entity bean definition.
Used in entity.

Deployment Descriptor Reference 551

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

abstract- Declares a nickname for this bean’s CMP Chapters 7, 11
schema- field definition. Used within EJB-QL Appendix D
name? queries.

cmp-field* Defines a container-managed persistent Chapter 7
field for a CMP entity bean.

primkey-field? If you’re not using a primary key class, Chapter 7
declares one of your CMP fields to be a
primary key.

env-entry* Declares environment properties for this Chapter 9
bean.

ejb-ref* Declares references to other beans. Chapter 9

ejb-local-ref* Declares local references to other beans. Chapter 9

security- Declares security role references. Chapter 9
role-ref*

security- Declares how to perform security context Chapter 9
identity? propagation.

resource-ref* Declares resource factory references (such Chapter 9
as JDBC driver used in bean).

resource- Binds resource factories to JNDI nicknames. Chapter 9
env-ref*

query* Defines a CMP EJB-QL query for a finder Chapters 7, 11
or select method. Appendix D

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this CMP field.

field-name The name of the get/set method Chapter 7
corresponding to this CMP field. Leave off
the get/set prefix, and make sure the first
letter is lowercase.

�query�

The query element defines an EJB-QL query for a finder or select method.
Applies only to CMP entity beans. Used in entity.

A P P E N D I X C552

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this query Chapter 7
Appendix D

query-method The finder or select method that will be Chapter 7
associated with this EJB-QL query Appendix D

See later table.

result-type- Maps the return results of the EJB-QL Chapter 7
mapping? query to either remote interfaces (set to Appendix D

Remote) or local interfaces (set to
Local). The default is Local.

ejb-ql The actual EJB-QL formatted string to Chapter 7
query the storage Appendix D

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

method- The name of this method. Leave off the Chapter 7
name get/set and make sure the first letter is Appendix D

lowercase.

method- A list of fully qualified Java types that are Chapter 7
params parameters to this method. Appendix D

See later table.

�query-method�

The query-method element declares the finder or select method that will be
associated with this EJB-QL query. Applies only to CMP entity beans. Used in
query.

�method-params�

The method-params element declares a list of fully qualified Java types that are
parameters to this method. Applies only to CMP entity beans. Used in query-
method.

Deployment Descriptor Reference 553

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

method-param* Zero or more fully qualified Java types for Chapter 7
method parameters that this query accepts. Appendix D

Defining Message-Driven Beans

The following is an example of how to set up a message-driven bean. Descrip-
tions follow. See Chapter 8 for complete documentation.

<ejb-jar>

<enterprise-beans>

<message-driven>

<ejb-name>Hello</ejb-name>

<ejb-class>examples.HelloBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<destination-type>javax.jms.Topic</destination-type>

</message-driven-destination>

</message-driven>

</enterprise-beans>

</ejb-jar>

�message-driven�

The message-driven element defines a message-driven bean. Used in ejb-jar.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean.

display-name? A short name of this bean, to be displayed
by tools.

continued

A P P E N D I X C554

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

small-icon? The relative path within the Ejb-jar file
that you can find a 16 � 16 icon image
(either JPEG or GIF) representing this
bean, to be displayed by tools.

large-icon? Same as small icon, except a 32 � 32 image.

ejb-name The nickname that you want to give this Chapter 8
bean. This Ejb-name can be referenced
later in the deployment descriptor.

ejb-class Session bean class. Chapter 8
Remember to include the package too!

transaction- For declarative transactions, set this to Chapter 10
type Container.

For bean-managed transactions, set this
to Bean.

message- Filters for messages based on a special Chapter 8
selector? JMS selector string.

acknowledge- If you perform bean-managed transactions, Chapter 8
mode? you must specify how to acknowledge

messages when your onMessage() method
is called. Set this to either Auto-acknowledge
or Dups-ok-acknowledge.

message- Specifies the destination that you wish to Chapter 8
driven- listen for messages.
destination?

env-entry* Declares environment properties for this
bean. Chapter 9

ejb-ref* Declares references to other beans. Chapter 9

ejb-local-ref* Declares local references to other beans. Chapter 9

security-role- Declares security role references. Chapter 9
ref*

security- Declares how to perform security context Chapter 9
identity? propagation.

resource-ref* Declares resource factory references Chapter 9
(such as JDBC driver used in bean).

resource- Binds resource factories to JNDI nicknames. Chapter 9
env-ref*

�message-driven-destination�

The message-driven-destination element specifies the destination that you wish
to listen for messages. Used in message-driven.

Deployment Descriptor Reference 555

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

destination- The type of destination, either Chapter 8
type javax.jms.Queue (for point-to-point)

or javax.jms.Topic (for publish/subscribe).

subscription- Indicates durability of messages, either Chapter 8
durability? Durable for durable messages, or

NonDurable for nondurable messages.

Defining Environment Properties

The following is an example of how to set up environment properties. Descrip-
tions follow. See Chapter 9 for complete documentation.

<enterprise-beans>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

<remote>examples.Pricer</remote>

<ejb-class>examples.PricerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<env-entry>

<description>

The algorithm for this pricing engine.

</description>

<env-entry-name>Pricer/algorithm</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>NoTaxes</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

�env-entry�

The env-entry element defines an environment property that the bean can
access via JNDI to customize its functionality at runtime. Used in session,
entity, and message-driven.

Defining EJB References

A P P E N D I X C556

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description for this environment Chapter 9
property.

env-entry- The JNDI name relative to java:comp/ Chapter 9
name env where the bean can lookup this

environment property.

env-entry-type The fully qualified Java type of this Chapter 9
environment property (such as java.
lang.String or java.lang.Integer).

env-entry-value? The text value of this environment Chapter 9
property.

The following is an example of how to set up references from one bean to
another. This is useful because beans can look each other up without needing
to initialize JNDI to any particular driver. Descriptions follow. See Chapter 9
for complete documentation.

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>Catalog</ejb-name>

... define a catalog session bean ...

</session>

<session>

<ejb-name>Pricer</ejb-name>

<home>examples.PricerHome</home>

<remote>examples.Pricer</remote>

<ejb-class>examples.PricerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<ejb-ref>

<description>

This reference is from the Pricer to the Catalog

</description>

<ejb-ref-name>ejb/CatalogHome</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>CatalogHome</home>

<remote>Catalog</remote>

<ejb-link>Catalog</ejb-link>

</ejb-ref>

</session>

</enterprise-beans>

</ejb-jar>

�ejb-ref�
The ejb-ref element defines a remote reference from one bean to another. This
should be used sparingly, since local interfaces are the superior way to call
from one bean to another. Used in session, entity, and message-driven.

Deployment Descriptor Reference 557

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this EJB reference. Chapter 9

ejb-ref-name The JNDI name relative to java:comp/env Chapter 9
that will be used to lookup this EJB
reference. Recommended: prefix with ejb/.

ejb-ref-type The type of the bean we have a reference Chapter 9
to. Could be either Session or Entity.
(Message-driven beans are not referred to
directly because they have no home and
are accessed via JMS.)

home The home interface class being referred to Chapter 9
Remember to include the package too!

remote The remote interface class being referred to Chapter 9
Remember to include the package too!

ejb-link? The Ejb-name of the bean we’re referring Chapter 9
to. Note: You can also refer to beans in a
different jar file, by using a syntax such
as ../products/product.jar#ProductEJB.

�ejb-local-ref�
The ejb-local-ref element defines a local reference from one bean to another. We
recommend you use these types of references, since local interfaces are the
superior way to call from one bean to another. Used in session, entity, and
message-driven.

A P P E N D I X C558

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this EJB reference. Chapter 9

ejb-ref-name The JNDI name relative to java:comp/env Chapter 9
that will be used to lookup this EJB
reference. Recommended: prefix with ejb/.

ejb-ref-type The type of the bean we have a reference Chapter 9
to. Could either be Session or Entity.
(message-driven beans are not referred
to directly because they have no home,
and are accessed via JMS.)

local-home The local home interface class being Chapter 9
referred to.
Remember to include the package too!

local The local interface class being referred to Chapter 9
Remember to include the package too!

ejb-link? The Ejb-name of the bean we’re referring Chapter 9
to. Note: You can also refer to beans in a
different jar file, by using a syntax such
as ../products/product.jar#ProductEJB.

Defining Security

Security is a bit difficult to explain without a more thorough explanation. See
Chapter 9 for complete documentation.

�security-role-ref�
The security-role-ref element defines a security role that your bean depends
upon. Used in session, entity, and message-driven.

�security-identity�

The security-identity element defines whether the caller’s security identity is to
be used when this bean executes, or whether another security identity should
be used. Used in session, entity, and message-driven.

Deployment Descriptor Reference 559

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of the security role. Chapter 9

role-name A text string for the security role that this Chapter 9
bean references and depends upon.

role-link? Maps the above role-name abstract Chapter 9
security role to a real security role
defined in the assembly descriptor.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description Chapter 9

use-caller- If you want to use the caller’s identity Chapter 9
identity | when executing, set to the empty
run-as element �use-caller-identity/�.

If you want to run as another security
identity, define the �run-as� element.

�run-as�

The run-as element allows your bean to run as a specified identity. Used in
security-identity.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description Chapter 9

role-name The name of the security role you wish Chapter 9
to run as.

Defining Resource Factories

The following is an example of how to set up resource factories, which are
drivers to external systems. Descriptions follow. See Chapter 9 for complete
documentation.

<ejb-bar>

<enterprise-beans>

<entity>

<ejb-name>Account</ejb-name>

<home>examples.AccountHome</home>

<remote>examples.Account</remote>

<local-home>examples.AccountLocalHome</local-home>

<local>examples.AccountLocal</local>

<ejb-class>examples.AccountBean</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>examples.AccountPK</prim-key-class>

<reentrant>False</reentrant>

<resource-ref>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</entity>

</enterprise-beans>

�resource-ref�
The resource-ref element defines a reference to a resource factory. Used in ses-
sion, entity, and message-driven.

A P P E N D I X C560

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 9

res-ref-name The JNDI name to which you wish to bind Chapter 9
the resource factory, referenced off of
java:comp/env.

res-type The fully qualified Java type of the Chapter 9
resource factory, such as javax.jms.
ConnectionFactory.

res-auth Set to Application if you are providing your Chapter 9
own security to access this resource factory.
Set to Container if the container is handling
security access to this resource factory.

res-sharing- Specifies whether connections obtained Chapter 9
scope? from this resource factory are shareable.

Must be either Shareable or Unshareable.

<resource-env-ref>
The resource-env-ref element defines a reference to an administered object.
Used in session, entity, and message-driven.

Deployment Descriptor Reference 561

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description. Chapter 9

resource-env- The name of the administered object. Chapter 9
ref-name

resource- The fully qualified type of the administered Chapter 9
env-ref-type object.

Defining Relationships

The following is an example of how to set up relationships. Descriptions fol-
low. See Chapter 11 for complete relationships documentation.

<ejb-jar>

<enterprise-beans>

...

</enterprise-beans>

<relationships>

<ejb-relation>

<ejb-relation-name>Order-Shipment</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>

order-spawns-shipment

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Order</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>shipment</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>

shipment-fulfills-order

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<cascade-delete/>

<relationship-role-source>

<ejb-name>Shipment</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>order</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

</ejb-relation>

</relationships>

</ejb-jar>

�relationships�

The relationships element defines CMP relationships. Used in ejb-jar.

A P P E N D I X C562

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of the relationships. Chapter 11

ejb-relation� Defines one or more relationships. Chapter 11
see next table.

�ejb-relation�

Each ejb-relation defines a single CMP relationship. Used in relationships.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this relationship. Chapter 11

ejb-relation- A unique nickname for this relationship. Chapter 11
name?

ejb-relationship- The first half of the relationship. Chapter 11
role

ejb-relationship- The second half of the relationship. Chapter 11
role

�ejb-relationship-role�

Each ejb-relationship-role defines half of a CMP relationship. Used in ejb-relation.

Deployment Descriptor Reference 563

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this half of the Chapter 11
relationship.

ejb-relationship- A unique nickname for this half of the Chapter 11
role-name? relationship.

multiplicity Relationships can be One:One, Chapter 11
One:Many, Many:One, or Many:Many.
This element declares this half of the
relationship to either be One or Many.

cascade-delete? By declaring this empty element, when Chapter 11
the other half of the relationship is
removed, so is this half. Note: The other
half of the relationship must have a
One multiplicity, because otherwise
you could get into an infinite
cascading deletion loop.

relationship- Identifies which bean is participating in Chapter 11
role-source this relationship.

cmr-field? Identifies the get/set method that will Chapter 11
be located on this bean and will access
the other half of the relationship.

�relationship-role-source�

A relationship-role-source identifies which bean is participating in a relationship.
Used in ejb-relationship-role.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this bean participating Chapter 11
in the relationship.

ejb-name The Ejb-name of the bean participating in Chapter 11
this relationship.

�cmr-field�

A cmr-field identifies the get/set method that will be associated with a bean to
access the other half of a relationship. Used in ejb-relationship-role.

A P P E N D I X C564

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this container- Chapter 11
managed relationship field.

cmr-field- The name of the get/set method Chapter 11
name associated with accessing the other half

of this relationship.
Note: Leave off the get/set prefix, and
make sure the first letter is lowercase.

cmr-field-type If the other half of the relationship has Chapter 11
a multiplicity of Many then you need to
choose either:
java.util.Collection (can contain duplicates)
java.util.Set (cannot contain duplicates)
This needs to match up to your bean’s
get/set methods.

Defining the Assembly Descriptor

The following is an example of how to set up an assembly descriptor. Descrip-
tions follow.

<ejb-jar>

...

<assembly-descriptor>

<security-role>

<description>

Personnel authorized to perform employee administration

</description>

<role-name>admins</role-name>

</security-role>

<method-permission>

<role-name>administrators</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<container-transaction>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<exclude-list>

<description>

We don’t have a 401k plan, so we

don’t support this method.

</description>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modify401kPlan</method-name>

<method-params>String</method-params>

</method>

</exclude-list>

</assembly-descriptor>

</ejb-jar>

�assembly-descriptor�
The assembly-descriptor element is the root of the assembly descriptor. Used in
ejb-jar.

Deployment Descriptor Reference 565

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

security-role* Identifies zero or more security roles that Chapter 9
the application uses. This corresponds to See later table.
the role-link element defined earlier in this
appendix.

method- Sets up permissions for specific methods Chapter 9
permission* on your bean. See later table.

container- Sets up transactions associates with Chapter 10
transaction* specific methods on your bean. See later table.

exclude-list? A list of methods that should never be Chapter 9
callable. Useful if you acquire a bean from
a third party and don’t want to make use
of all its functionality.

�security-role�

The security-role element defines a security role that the application uses. This
corresponds to the role-link element defined earlier in this appendix. Used in
assembly-descriptor.

A P P E N D I X C566

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this security role. Chapter 9

role-name The text string naming this security role. Chapter 9

�method-permission�

The method-permission element sets up permission on a specific method in your
bean. Used in assembly-descriptor.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this method permission. Chapter 9

role-name� | The names of one or more security roles Chapter 9
unchecked that can call these methods.

Or, alternatively, you can specify the
�unchecked/� empty element to disable
security checks on these methods.

method� A list of one or more methods that these Chapter 9
security permissions apply to. See later table.

<exclude-list>
The exclude-list element is a list of methods that should never be callable. This
is useful if you acquire a bean from a third party and don’t want to make use
of all its functionality. Used in assembly-descriptor.

Deployment Descriptor Reference 567

�container-transaction�

The container-transaction element associates one or more methods with a con-
tainer-managed (declarative) transaction. Used in assembly-descriptor.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of this transaction. Chapter 10

method� A list of one or more methods that this Chapter 10
transaction applies to. See later table.

trans-attribute The style of transaction you’d like, either Chapter 10
NotSupported, Supports, Required,
RequiresNew, Mandatory, or Never.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description of why we are Chapter 9
excluding these methods.

method� A list of one or more methods to exclude Chapter 9
clients from being able to call. See later table.

�method-params�

The method-params element is useful for disambiguating methods with the
same signature Used in method.

�method�

The method element specifies a method on a bean. Used in method-permission,
container-transaction, and exclude-list.

A P P E N D I X C568

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

description? A text description.

ejb-name The Ejb-name of the bean we’re interested in.

method-intf? Optionally identifies the interface name
that we’re specifying the method for,
either Home, Remote, LocalHome, or
Local. Useful if there is a naming conflict
between two interface method signatures.

method-name The name of the method, capitalized
properly. Can also use an asterisk (*) to
specify all methods.

method- An optional list of parameters. Useful for See next table.
params? disambiguating methods with the same

signature.

WHERE TO GO FOR
ELEMENT DESCRIPTION MORE INFORMATION

method- Zero or more fully qualified Java types of
param* parameters.

A P P P E N D I X D

569

This appendix will help you fully understand the syntax and semantics of the
EJB Query Language (EJB-QL), the language used to describe query methods
for container managed persistent entity beans in EJB 2.0. To understand this
appendix, you should first be familiar with the chapters on entity beans—
Chapters 5, 6, and 7. Chapter 11 will also help.

You can begin coding with EJB without fully understanding EJB-QL. We recommend
that you read this appendix if you are struggling with understanding the basics of
EJB-QL, or if you are doing EJB-QL coding and need a guide.

Overview

EJB-QL is a standard and portable language for expressing container managed
persistent entity bean query operations. These entity bean query operations
can include finder methods (used by external entity bean clients), as well as
select methods (used internally by the entity bean itself). EJB-QL is not neces-
sary for bean managed persistence because the bean provider writes the data-
base access code, which is integrated into the entity bean class itself.

EJB-QL is a new addition to EJB 2.0. Before EJB 2.0, you needed to explain to
the container how to implement your query operations in a proprietary way.
For example, you might bundle a container-specific flat-file with your bean.
This flat-file would not be portable to other containers, which is annoying for
bean providers who wish to write components that are container-agnostic.

The EJB Query Language (EJB-QL)

Throughout this appendix, we will use an e-commerce object model to illus-
trate EJB-QL, using such entity beans as orders, line items, products, and cus-
tomers. We designed that object model in Chapter 17.

A Simple Example
Let’s kick things off with a simple EJB-QL example. Take the following entity
bean remote finder method:

public java.util.Collection findAvailableProducts() throws

FinderException, RemoteException;

This finder method means to find all products that are currently in stock. The
following EJB-QL in the deployment descriptor instructs the container on how
to generate the database access code that corresponds to this finder method:

...

<entity>

<ejb-name>Product</ejb-name>

<home>examples.ProductHome</home>

<remote>examples.Product</remote>

<ejb-class>examples.ProductBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>examples.ProductPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Product</abstract-schema-name>

<cmp-field>

<field-name>inventory</field-name>

</cmp-field>

...more container-managed persistent fields...

<query>

<query-method>

<method-name>findAvailableProducts</method-name>

<method-params>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(p) FROM Product AS p WHERE p.inventory >

0]]>

</ejb-ql>

</query>

...

</ejb-jar>

A P P E N D I X D570

In the preceding code, we put together a query that resembles SQL or OQL.
See Chapter 5 for more on object query language (OQL). We can refer to entity
beans inside of the EJB-QL by using that entity bean’s abstract-schema-name
defined earlier in the deployment descriptor. We can also query its container
managed fields or container managed relationships, or other entity beans.

In fact, if we’re using a relational database, the container will translate this
EJB-QL code into SQL code in the form of JDBC statements. The following SQL
is an example of what might be generated depending on your container imple-
mentation:

SELECT DISTINCT p.PKEY

FROM PRODUCT p

WHERE p.INVENTORY > 0

This SQL returns primary keys (not rows) back to the container. The container
then wraps those primary keys in EJB objects and returns RMI-IIOP stubs to
the client who called the finder method. When the client calls business meth-
ods on those stubs, the EJB objects intercept the call, and the ejbLoad() method
is called on the entity beans. The container then loads the actual rows from the
database. Note that this process may be optimized depending on your con-
tainer implementation.

EJB-QL is useful for both home interfaces and local home interfaces. A single
EJB-QL definition will inform the container about how to implement the SQL
code for both a home object and local home object that have identically named
finder methods.

The XML parser that reads the prior deployment descriptor might get confused when
confronted with the greater-than sign (�), thinking it might be a closing tag. To re-
move this ambiguity, we use a CDATA section, which instructs the XML parser to ig-
nore that text for parsing purposes.

The Power of Relationships
The big difference between EJB-QL and SQL is that EJB-QL allows you to tra-
verse relationships between entity beans using a dot-notation. For example:

SELECT o.customer

FROM Order o

In this EJB-QL, we are returning all customers that have placed orders. We are
navigating from the order entity bean to the customer entity bean easily using
a dot-notation. This is quite seamless.

What’s exciting about this notation is that bean providers don’t need to know
about tables or columns; they merely need to understand the relationships

The EJB Query Language (EJB-QL) 571

between the entity beans that they’ve authored. The container handles the tra-
versal of relationships for us because we declare our entity beans in the same
deployment descriptor and Ejb-jar file, empowering the container to manage
all of our beans and thus understand their relationships.

In fact, you can traverse more than one relationship. That relationship can
involve container managed relationship fields and container managed persis-
tent fields. For example:

SELECT o.customer.address.homePhoneNumber

FROM Order o

The restriction on this type of recursive relationship traversal is that you are
limited by the navigatability of the relationships that you define in the deploy-
ment descriptor. For example, let’s say that in the deployment descriptor, you
declare that orders have a one-to-many relationship with line items, but you
do not define the reverse many-to-one relationship that line items have with
orders. When performing EJB-QL, you can get from orders to line items, but
not from line items to orders. Even though the database is directionally neu-
tral, the line items entity bean should have no knowledge of orders, and thus
this traversal cannot take place. For more about how to define these types of
relationships, see Chapter 11.

EJB-QL Syntax

An EJB-QL query contains three parts:

■■ A required SELECT clause

■■ A required FROM clause

■■ An optional WHERE clause

We now discuss the details of each of these clauses. We’ll do the SELECT
clause last because that indicates the return results of a query.

The FROM Clause
The FROM clause constricts the domain of a query. It indicates what part of the
data storage you are querying over—that is, what entity beans you are going
to look at. In the case of a relational database, the FROM clause typically
restricts which tables you are querying over. For example, the following
FROM clause means we are looking only at order entity beans:

SELECT OBJECT(o)

FROM Order AS o

A P P E N D I X D572

What we’re doing here is declaring a variable in the FROM clause. We are creat-
ing a variable, o, which can be used later in the query. In this case, we are
reusing that variable in the SELECT clause. You can also reuse that variable in
the WHERE clause.

Note that declaring variables will restrict your queries even if you don’t use
the variables. For example:

SELECT OBJECT(o)

FROM Order AS o, Customer AS c

The above query finds all orders if and only if there are any customers (which
do not need to be related to the Order objects). Even though we aren’t using the
variable c anywhere else, we are still excluding orders if there are no cus-
tomers. By declaring a variable, you are constraining the domain of the query.
This is similar to the following SQL statement that returns all orders so long as
there are one or more records in the Customer table:

SELECT o.*

FROM Order o, Customer c

Finally, you should note that the phrase AS is optional and is merely syntactic
sugar to help make the query look better. This query produces the same result
as the previous EJB-QL statement:

SELECT OBJECT(o)

FROM Order o, Customer c

Declaring Collection Variables

Sometimes you need to declare variables in the FROM clause that represent a
collection of values. For example, let’s say we want to find all of the line items
that are attached to orders. The following query achieves that:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

The preceding EJB-QL declares two variables:

■■ The phrase Order AS o declares a variable o, which represents any
order entity bean.

■■ The phrase IN(o.lineItems) l declares a variable l, which represents
any line item from any order bean’s collection of line items.

As you can see, since the evaluation order is left to right, you can use variables
on the right that were declared on the left.

Thus, you use the AS syntax when declaring a variable representing a single
value and the IN syntax when declaring a variable representing a collection of

The EJB Query Language (EJB-QL) 573

values. Note that both AS and IN queries can return multiple values from the
EJB-QL query—the difference is that the IN syntax is necessary when travers-
ing an underlying entity bean relationship that uses a java.util.Collection, such
as an order that points to a collection of line items.

Variables Represent Only
One Value at a Time

Next, consider the following query, which returns all line items that are
attached to orders that are attached to customers:

SELECT OBJECT(l)

FROM Customer AS c, IN(c.orders) o, IN(o.lineItems) l

Notice the phrase o.lineItems. While o is a collection variable, it represents only
one element of that collection at a time. Thus, it is perfectly legal to use the
phrase o.lineItems because in that phrase, o represents an individual order, not
a collection of orders.

The WHERE Clause
The EJB-QL WHERE clause restricts the results of a query. It is where you
choose the values you want from the declared variables in the FROM clause.
The general syntax of the WHERE clause is WHERE �conditional expression�.
For example:

SELECT OBJECT(o)

FROM Order o

WHERE o.lineItems IS NOT EMPTY

The query finds all orders that have line items.

Handling Input Parameters

When performing a query, you’ll often want to query based upon parameters
supplied by the client. For example, to implement the following finder method
that finds a product based on a description:

findProductByDescription(String s)

A WHERE clause can be used as follows:

SELECT OBJECT(p)

FROM Product p

WHERE p.description = ?1

A P P E N D I X D574

Here, ?1 represents the first parameter passed in. Additional parameters
would be numbered as ?2, ?3, and so on. Note that you don’t need to use all
variables declared in the finder/select method.

Conditional Expressions

Many conditional expressions are built-in to EJB-QL. The complete list is in
Table D.1.

Note that you can have more than one conditional expression and use paren-
theses to denote order of execution. Your container may provide proprietary
extensions to these conditional expressions as well, perhaps in a separate
deployment descriptor.

EJB-QL also contains the following built-in functions:

CONCAT(String, String) combines two strings into one and returns a String.

SUBSTRING(String, start, length) cuts a String into a smaller String, begin-
ning at start and being length long.

LOCATE(String, String [, start]) returns an int denoting where a String is
located within another String. You can use the optional start parameter to
indicate where to begin locating.

LENGTH(String) gives you a string’s length, returned as an int.

ABS(number) returns the absolute value of a number, which can be an int,
float, or double.

SQRT(double) takes the square root of a number and returns it as a double.

Dealing with Collections

Normally if you want to use collections in the WHERE clause, you should
declare those collections as variables in the FROM clause. For example, the fol-
lowing is invalid:

SELECT OBJECT(l)

FROM Order AS o

WHERE o.lineItems.product.name = 'chip'

The above is invalid because we are trying to reference a variable from a col-
lection. The following is the correct way to write this EJB-QL:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

WHERE l.product.name = 'chip'

The EJB Query Language (EJB-QL) 575

A P P E N D I X D576

C
O

N
D

IT
IO

N
A

L
EX

P
R

ES
S

IO
N

EX
A

M
P

LE
N

O
TE

S

M
at

he
m

at
ic

al
 o

pe
ra

tio
ns

:
Fi

nd
 a

ll
pr

od
uc

ts
 th

at
 a

re
 c

om
pu

te
r

ch
ip

s
an

d
■

■
Tw

o
en

tit
y

be
an

s
ar

e
eq

ua
l i

f a
nd

 o
nl

y
if

�
, -

, *
, /

w

ho
se

 p
ro

fit
 m

ar
gi

n
is

 p
os

iti
ve

:
th

ey
 s

ha
re

 th
e

sa
m

e
pr

im
ar

y
ke

y
va

lu
e.

C
om

pa
ris

on
 o

pe
ra

tio
ns

:
S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

■
■

Yo
u

ca
nn

ot
 c

om
pa

re
 tw

o
di

ffe
re

nt
 e

nt
ity

�

,�
,�

�
,�

,�
�

,�
�

F
R
O
M

P
r
o
d
u
c
t

p

be
an

 c
la

ss
es

.
(n

ot
 e

qu
al

)
W
H
E
R
E

(
p
.
d
e
s
c
r
i
p
t
i
o
n

=

'
c
h
i
p
'
)

Lo
gi

ca
l o

pe
ra

to
rs

: N
O

T,
 A

N
D

, O
R

A
N
D

(
p
.
b
a
s
e
P
r
i
c
e

-

p
.
c
o
s
t

>

0
)

B
et

w
ee

n
ex

pr
es

si
on

s
Fi

nd
 a

ll
pr

od
uc

ts
 w

ho
se

 p
ric

e
is

 a
t l

ea
st

 1
00

0
C

an
 a

ls
o

us
e

N
O

T
B

ET
W

EE
N

 to
 r

et
ur

n
al

l d
at

a
an

d
at

 m
os

t 2
00

0:

th
at

 is
 n

ot
 b

et
w

ee
n

tw
o

va
lu

es
.

S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

F
R
O
M

P
r
o
d
u
c
t

p

W
H
E
R
E

p
.
b
a
s
e
P
r
i
c
e

B
E
T
W
E
E
N

1
0
0
0

A
N
D

2
0
0
0

In
 e

xp
re

ss
io

ns
Fi

nd
 a

ll
pr

od
uc

ts
 w

ho
se

 m
an

uf
ac

tu
re

r
is

 e
ith

er

C
an

 a
ls

o
us

e
N

O
T

IN
 to

 r
et

ur
n

al
l d

at
a

th
at

 is

In
te

l o
r

Su
n:

no

t i
n

a
ra

ng
e.

S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

F
R
O
M

P
r
o
d
u
c
t

p

W
H
E
R
E

p
.
m
a
n
u
f
a
c
t
u
r
e
r

I
N

(
'
I
n
t
e
l
'
,

'
S
u
n
'
)

Li
ke

 e
xp

re
ss

io
ns

Fi
nd

 a
ll

pr
od

uc
ts

 w
ith

 id
s

th
at

 b
eg

in
 w

ith
 1

2
■

■
%

 s
ta

nd
s

fo
r

an
y

se
qu

en
ce

 o
f z

er
o

or
 m

or
e

an
d

en
d

w
ith

 3
. F

or
 e

xa
m

pl
e,

 1
23

 o
r

12
99

3
ch

ar
ac

te
rs

.
qu

al
ifi

es
, b

ut
 n

ot
 1

23
4:

■

■
_

st
an

ds
 fo

r
a

si
ng

le
 c

ha
ra

ct
er

.
S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

■
■

Yo
u

ca
n

re
pr

es
en

t t
he

 li
te

ra
l %

 o
r

_
F
R
O
M

P
r
o
d
u
c
t

p

ch
ar

ac
te

r
by

 u
si

ng
 s

pe
ci

al
 e

sc
ap

e
W
H
E
R
E

p
r
o
d
u
c
t
.
p
r
o
d
u
c
t
I
D

se
qu

en
ce

s
(s

ee
 th

e
EJ

B
 s

pe
c

fo
r

m
or

e)
.

L
I
K
E

'
1
2
%
3
'

■
■

Yo
u

ca
n

al
so

 u
se

 N
O

T
LI

KE
 t

o
ac

hi
ev

e
th

e
Fi

nd
 a

ll
pr

od
uc

ts
 w

ith
 id

s
th

at
 b

eg
in

 w
ith

 1
23

op

po
si

te
 e

ffe
ct

.
an

d
ar

e
a

to
ta

l o
f f

ou
r

ch
ar

ac
te

rs
 lo

ng
. F

or

ex
am

pl
e,

 1
23

c
qu

al
ifi

es
, b

ut
 n

ot
 1

4
no

r
12

34
5:

S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

F
R
O
M

P
r
o
d
u
c
t

p

W
H
E
R
E

p
r
o
d
u
c
t
.
p
r
o
d
u
c
t
I
D

L
I
K
E

'
1
2
3
_
'

co
nt

in
ue

d

Ta
b

le
 D

.1
EJ

B
-Q

L
C

on
di

tio
na

l E
xp

re
ss

io
ns

The EJB Query Language (EJB-QL) 577

C
O

N
D

IT
IO

N
A

L
EX

P
R

ES
S

IO
N

EX
A

M
P

LE
N

O
TE

S

N
ul

l c
om

pa
ris

on
 e

xp
re

ss
io

ns
Fi

nd
 a

ll
pr

od
uc

ts
 th

at
 h

av
e

N
U

LL
 d

es
cr

ip
tio

ns
:

Yo
u

ca
n

al
so

 u
se

 N
O

T
N

U
LL

 to
 fi

nd
 a

ll
da

ta

S
E
L
E
C
T

O
B
J
E
C
T
(
p
)

th
at

 h
as

 n
on

-N
U

LL
 v

al
ue

s.
F
R
O
M

P
r
o
d
u
c
t

p

W
H
E
R
E

p
r
o
d
u
c
t
.
d
e
s
c
r
i
p
t
i
o
n

I
S

N
U
L
L

Em
pt

y
co

lle
ct

io
n

co
m

pa
ris

on

Fi
nd

 a
ll

or
de

rs
 th

at
 h

av
e

no
 li

ne
 it

em
s:

■

■
Yo

u
ca

n
al

so
 u

se
 IS

 N
O

T
EM

PT
Y

to
 fi

nd

ex
pr

es
si

on
s

S
E
L
E
C
T

O
B
J
E
C
T
(
o
)

va
lid

 c
ol

le
ct

io
ns

.
F
R
O
M

O
r
d
e
r

o

■
■

In
 th

is
 s

pe
ci

al
 c

as
e,

 y
ou

 c
an

 d
ec

la
re

W
H
E
R
E

o
.
l
i
n
e
I
t
e
m
s

I
S

E
M
P
T
Y

co
lle

ct
io

ns
 in

 th
e

W
H

ER
E

cl
au

se
 r

at
he

r
th

an
 d

ec
la

rin
g

th
em

 a
s

va
ria

bl
es

 fi
rs

t
in

 t
he

FR
O

M
 c

la
us

e.

C
ol

le
ct

io
n

m
em

be
r

ex
pr

es
si

on
s

Fi
nd

 a
ll

lin
e

ite
m

s
th

at
 a

re
 a

tt
ac

he
d

to
 o

rd
er

s:

■
■

Th
e

w
or

d
O

F
is

 o
pt

io
na

l.
S
E
L
E
C
T

O
B
J
E
C
T
(
l
)

■
■

In
 th

is
 s

pe
ci

al
 c

as
e,

 y
ou

 c
an

 d
ec

la
re

F
R
O
M

O
r
d
e
r

o
,

L
i
n
e
I
t
e
m

l

co
lle

ct
io

ns
 in

 th
e

W
H

ER
E

cl
au

se
 r

at
he

r
th

an

W
H
E
R
E

l

M
E
M
B
E
R

O
F

o
.
l
i
n
e
I
t
e
m
s

de
cl

ar
in

g
th

em
 a

s
va

ria
bl

es
 fi

rs
t

in
 t

he

FR
O

M
 c

la
us

e.

■
■

C
an

 a
ls

o
us

e
N

O
T

M
EM

B
ER

 O
F

to
 lo

ca
te

da

ta
 w

he
re

 e
le

m
en

ts
 a

re
 n

ot
 m

em
be

rs
 o

f
co

lle
ct

io
ns

.

Ta
b

le
 D

.1
EJ

B
-Q

L
C

on
di

tio
na

l E
xp

re
ss

io
ns

 (
co

nt
in

ue
d)

The two special exceptions to this rule are when you use the EMPTY or MEM-
BER conditional expressions, shown in Table D.1. In these cases, you can use
collections in the WHERE clause.

Performing Comparisons

Sometimes you may need to declare more than one variable that represents the
same entity bean. When you are performing comparisons, this comes in very
handy. For example:

SELECT OBJECT(p1)

FROM Product p1, Product p2

WHERE p1.quantityInStock > p2.quantityInStock AND

p2.name='Pentium 866'

The preceding query finds all products that have a greater quantity in stock
than a Pentium 866 chip.

The SELECT Clause
The EJB-QL SELECT clause specifies the return results of a query. To under-
stand why we need the SELECT clause, consider the following query, which
returns all orders that contain line items:

SELECT OBJECT(o)

FROM Order AS o, IN(o.lineItems) l

In this query, we have defined two variables in the FROM clause: o and l. The
SELECT clause is necessary because it affirms that we want to return o (and
not l) to the client that called the query.

How to Traverse Relationships

The SELECT clause can traverse relationships. For example, the following
query returns all the products in all the orders that contain line items:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

As you can see, we can use the convenient dot-notation to traverse relation-
ships in the SELECT clause. Behind the scenes, a SQL JOIN statement might
occur.

If you’ve been paying careful attention, you may have noticed that in the earlier
example we wrapped a variable o with the phrase OBJECT(), but in this exam-
ple, we didn’t use the phrase OBJECT() at all. The EJB-QL rule is that you wrap
your return result with the phrase OBJECT() only if you are returning a stand-
alone variable that does not traverse a relationship using the dot-notation.

A P P E N D I X D578

How to Deal with Collections

Let’s say we want to find all line items on all orders. We are thus asking for a
collection of return results. Unfortunately, the following SELECT clause will
not work:

SELECT o.lineItems

FROM Order AS o

The reason the above doesn’t work is that SELECT clauses may only return
single variables, not collections. To get around this restriction, you need to
define a variable in the FROM clause. The following demonstrates this as a
legal way to find all line items on all orders:

SELECT OBJECT(l)

FROM Order AS o, IN(o.lineItems) l

How to Filter for Duplicates

You can control whether SELECT clauses return duplicates. For example, take
our previous EJB-QL query that finds all products in all order line items:

SELECT l.product FROM Order AS o, IN(o.lineItems) l

The above query may return duplicate products because two different people
may have ordered the same product. To get a unique list, you must apply the
DISTINCT filter, as follows:

SELECT DISTINCT l.product FROM Order AS o, IN(o.lineItems) l

Another choice is to declare your finder or select method to return a
java.util.Set, which may not contain duplicates compared to a java.util.Collec-
tion. If you use a java.util.Set, both of the preceding EJB-QL statements would
return the same unique results.

How to Control What Gets
Returned in Finders

EJB-QL queries return results differently depending on how the client initiates
the query. For example, take the following finder queries (thrown exceptions
omitted):

// declared on the home interface

public java.util.Collection findAllProducts();

// declared on the local home interface

public java.util.Collection findAllProducts();

The EJB Query Language (EJB-QL) 579

We want EJB objects to be returned for the first query and EJB local objects to
be returned for the second query. The EJB-QL code in the deployment descrip-
tor for both of these query methods could be:

<query>

<query-method>

<method-name>findAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT (p) FROM Product AS p]]>

</ejb-ql>

</>

What’s great here is that we wrote our EJB-QL once, yet we can reuse it for
both the home interface and local home interface. The container will automat-
ically wrap the return results in an EJBObject or EJBLocalObject (or collections
of EJBObjects/EJBLocalObjects). These are the only possible types you can
return from a finder query.

How to Control What Gets
Returned in Selects

With finder methods, the container knows whether the results of a finder
should be EJB objects or EJB local objects, because the container could look at
whether the query was defined on the home interface or local home interface,
respectively. But what about ejbSelect() methods (see Chapter 7)? Consider the
following ejbSelect():

public abstract java.util.Collection ejbSelectAllProducts();

Here, we define the ejbSelect() method on the entity bean class, which doesn’t
give the container any information about whether our query should return EJB
objects or EJB local objects. How does the container know what objects to wrap
around the results?

To get around this, EJB requires that you set up a special stanza in the deploy-
ment descriptor to inform the container about whether the results should be
local or remote objects:

<query>

<query-method>

<method-name>ejbSelectAllProducts</method-name>

<method-params>

</method-params>

</query-method>

<result-type-mapping>Local</result-type-mapping>

<ejb-ql>

A P P E N D I X D580

<![CDATA[SELECT OBJECT (p) FROM Product AS p]]>

</ejb-ql>

</>

The preceding code will cause the ejbSelect() method to return a collection of
EJB local objects. If you want the results to be a collection of EJB objects, change
the result-type-mapping element to have the value Remote.

Finally, note that ejbSelect() methods can also return container managed fields.
For example:

public abstract java.lang.String ejbSelectProductName();

Finder methods cannot return container managed fields because finder meth-
ods can operate remotely and at the granularity of entity beans, not parts of
entity beans.

Truth Tables
Let’s wrap up our EJB-QL lesson with a look at the truth tables for how the
operations AND, OR, and NOT evaluate (see Tables D.2, D.3, and D.4). The

The EJB Query Language (EJB-QL) 581

AND TRUE FALSE UNKNOWN

True True False Unknown

False False False False

Unknown Unknown False Unknown

Table D.2 The AND Truth Table

OR TRUE FALSE UNKNOWN

True True True True

False True False Unknown

Unknown True Unknown Unknown

Table D.3 The OR Truth Table

NOT

True False

False True

Unknown Unknown

Table D.4 The NOT Truth Table

way you read these tables is to combine the column header with the row
header using the operator in the upper left-hand corner. That should give you
the result in the cell located at the intersection of the column and row. Note
also that in the tables, the case of unknown means expressions that produce an
unknown result, such as the clause:

WHERE NULL IN ('Intel', 'Sun')

In the final section of this appendix, you can test your knowledge of EJB-QL. Here is
a list of queries that we’d like to implement. Try to figure out the EJB-QL without
looking at the description, or try to figure out the description by looking at the EJB-
QL. (Answers at the end of this appendix.)

1. Find all line items.

2. Find all customers’ home addresses.

3. Find all customers’ home addresses without duplicates.

4. Find all line items that are attached to orders.

5. Find all orders that contain line items.

6. Find all orders that do not contain line items.

7. Find all products whose descriptions are either chip or motherboard.

8. Find all products that have a zero inventory.

9. Find all products with inventory greater than a parameter passed in.

10. Find all products with inventory between 10 and 20.

11. Find all products whose remaining inventory is greater than the remaining
inventory for products manufactured by Intel.

12. Find the names of all customers whose names begin with A.

A P P E N D I X D582

Final Note

Be forewarned that while EJB-QL is a convenient layer of indirection that iso-
lates you from the database, a danger lurks under the covers. The danger is
that your generated SQL code could perform poorly because you are not hand-
tuning SQL code but rather, dealing with high-level EJB-QL code.

Standard performance best practices of optimizing SQL still apply with EJB-
QL. Check and recheck the optimization of the container-generated SQL by
examining your generated helper files or your database log. Here are some
possible ways to optimize your queries:

■■ Optimize your entity beans using specific container flags such as lazy-
loading flags (check your container documentation).

■■ If available, use your container-tools to help generate more optimal SQL
from EJB-QL.

■■ Redesign your EJB-QL.

■■ Rewrite some of your finder or select methods.

■■ Redesign/denormalize your database schema.

■■ Rethink your entity bean design.

■■ Manually write your SQL.

Summary

In this appendix, we’ve learned about EJB-QL. EJB-QL is a great advancement
in EJB because it allows bean providers to ship code that contains queries that
are portable across containers. We learned about the syntax of EJB-QL, includ-
ing the SELECT, FROM, and WHERE clauses. We then went through several
EJB-QL examples. You should now be empowered to try writing your own
EJB-QL and begin experimenting with container managed persistent entity
beans.

The EJB Query Language (EJB-QL) 583

Answers to Quiz on Previous Page

1. SELECT OBJECT(l) FROM LineItem l

2. SELECT c.homeAddress FROM Customer c

3. SELECT DISTINCT c.homeAddress FROM Customer c

4. SELECT OBJECT(l) FROM Order o, IN(o.lineItems) l

5. SELECT OBJECT(o) FROM Order o, IN(o.lineItems) l

6. SELECT OBJECT(o) FROM Order o WHERE o.lineItems IS EMPTY

7. SELECT OBJECT(p) FROM Product p WHERE p.description IN ('chip',

'motherboard')

8. SELECT OBJECT(p) FROM Product p WHERE p.inventory = 0

9. SELECT OBJECT(p) FROM Product p WHERE p.inventory > ?1

10. SELECT OBJECT(p) FROM Product p WHERE p.inventory BETWEEN 10

AND 20

11. SELECT OBJECT(p1) FROM Product p1, Product p2 WHERE

p1.inventory > p2.inventory AND p2.manufacturer = 'Intel'

12. SELECT c.name FROM Customer c WHERE c.name LIKE 'A%'

A P P E N D I X D584

A P P P E N D I X E

585

This appendix is a quick reference for programmers to use during EJB develop-
ment. In the first section, you’ll find Figures E.1 through E.13 illustrating
what’s really going on in an EJB system. These were taken directly from the
EJB specification; I’ve condensed the diagrams and commented on them to
clarify their meaning. You’ll also find summaries and explanations of each
method in the EJB architecture, as well as a transaction reference.

EJB Quick Reference Guide

Session Bean Diagrams

A P P E N D I X E586

EJB object does not exist
No client reference to EJB object

container crash or client timeout

if a client calls a method, a
NoSuchObjectException or

NoSuchObjectLocalException will be thrown

handle.getEJBObject()

client releases reference

client calls
home.create(...)

client releases reference

client calls ejbObject.remove()
client calls home.remove(...),
system exception in bean,
bean timeout,
or container crash

EJB object exists
No client reference to EJB object

EJB object exists
Client holds reference to EJB

object

EJB object does not exist
Client holds reference to EJB

object

client can call business methods

Figure E.1 The client’s view of a session bean object life cycle.

Stateless Session Bean Diagrams

EJB Quick Reference Guide 587

bean instance does not
exist

pool of equivalent
method-ready instances

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate()

ejbRemove()

Business Method

Container decided it
needs more instances
in the pool to service
clients.

Any client calls a
business method on
any EJB object.

Container decided it
doesn't need so
many instances
anymore.

Figure E.2 The life cycle of a stateless session bean. Each method call shown is an invo-
cation from the container to the bean instance.

A P P E N D I X E588

Bean InstanceContainerClient Database

home.create()

return new EJB object

Servicing a create method

ejbRemove()

Removing and instance from the pool

Servicing a business method

ejbObject.businessMethod(args)
businessMethod(args)

ejbCreate()

setSessionContext()

beanClass.newInstance()

Adding a new instance to the pool

ejbObject.remove()
or
home.remove(...)

Servicing a remove method

read or update data

register resource manager with transaction

Figure E.3 Sequence diagram for stateless session beans. For simplicity, the Container object
represents all container subsystems, including EJB objects, home objects, transaction services,
and so on.

Stateful Session Bean Diagrams

EJB Quick Reference Guide 589

bean instance does not
exist

ready

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(...)

ejbRemove()

ejbPassivate()

ejbActivate()

passive

Client times out

Business Method

Client called
create(...) on the
home interface.

Client called a
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or
client times out.

Figure E.4 The life cycle of a stateful session bean (does not implement javax.ejb.
SessionSynchronization). Each method call shown is an invocation from the container to
the bean instance.

A P P E N D I X E590

bean instance does not
exist

bean instance is ready to
service method calls

1: Class.newInstance()
2: setSessionContext()
3: ejbCreate(args)

ejbRemove()

ejbPassivate()

ejbActivate()

bean instance is in the
passive state

Client times out

Non-Transactional
Business Method

Client called
create(args) on
the home
interface.

Client called a
non-transactional
business method
on the EJB object.

Container's limit of
instantiated beans is
reached, so it must
swap your bean out.

Client called a method
on a passivated bean,
so container must
swap your bean back
in.

Client called remove() on
the EJB object or
client times out.

bean instance is within a
transaction and ready to

service method calls

Transactional
Business Method

Client called another
transactional
business method on
the EJB object.

1: beforeCompletion()
2: afterCompletion(true)

afterBegin() afterCompletion(false)

Client called a
transactional
business method
on the EJB object.

If
transaction
ended in a
commit.

If
transaction
ended in an
abort.

Figure E.5 The life cycle of a stateful session bean (implements javax.ejb.SessionSyn-
chronization). Each method call shown is an invocation from the container to the bean
instance.

EJB Quick Reference Guide 591

Bean InstanceContainerClient Database

home.create(args)

ejbCreate(args)

setSessionContext()

return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
businessMethod(args)

ejbPassivate()

ejbActivate()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

beanClass.newInstance()

serialize bean instance,
and write serialized blob

to secondary storage

read serialized blob
from secondary storage,

and deserialize bean instance

Commit transaction sequence
(only if bean class implements javax.ejb.SessionSynchronization)

ejbObject.transactionalBusinessMethod()
afterBegin()

read database data

transactionalBusinessMethod()

Begin transaction sequence
(only if bean class implements javax.ejb.SessionSynchronization)

beforeCompletion()
write database data

If commit was successful,
afterCompletion(true)
else afterCompletion(false)

prepare

commit

register resource manager with transaction

Figure E.6 Sequence diagram for stateful session beans. For simplicity, the Container
object represents all container subsystems, including EJB objects, home objects, transac-
tion services, and so on.

Entity Bean Diagrams

A P P E N D I X E592

entity bean data does not exist
No client reference to EJB object

client calls home.remove(...)
or direct database delete

if a client calls a method, a
NoSuchObjectException or

NoSuchObjectLocalException will be thrown

client calls a finder method
on home interface

client releases reference

client calls
home.create(...)

client releases reference

client calls ejbObject.remove(),
client calls home.remove(...),
or direct database delete

entity bean data exists
No client reference to EJB object

entity bean data exists
Client holds reference to EJB

object

entity bean data does not exist
Client holds reference to EJB

object

client calls business methods
on EJB object

direct database insert

The direct database inserts and deletes could occur
because other applications are running in your
deployment. For example, you might have a legacy
application that a bank administrator uses to add new
bank accounts. Or you might have a simple JDBC
application that doesn’t use entity beans at all, but
modifies the same database data your entity beans
model.

client calls business methods
on home object

Figure E.7 The client’s view of an entity bean object life cycle.

EJB Quick Reference Guide 593

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2:setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method

The lifecycle of a bean-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Container decided it
needs another entity
bean instance.

Client called create() on
the home interface (this
will create new database
data).

Container determined that
the bean is out of synch
with database. The bean
needs to load the new
database data.

Client called a
business method
on the EJB object.

Container determined
that the database is
out of synch with the
bean. The bean
needs to store its
data into the
database.

Client called
remove() on the
EJB object (this
will destroy
database data).

Client called a
finder method on
the home
interface.

Container decided it
doesn't need your
instance anymore.

Client called instance-
independent ejbHome()
business method.

Figure E.8 The life cycle of a bean managed persistent entity bean. Each method call
shown is an invocation from the container to the bean instance.

A P P E N D I X E594

does not exist

pooled

ready

ejbRemove()

ejbStore()

1: newInstance()
2:setEntityContext()

1: unsetEntityContext()
2: JVM will garbage collect
 and call finalize()

ejbFind()
or

ejbSelect()

Activate your bean:
1: ejbActivate()
2: ejbLoad()

Passivate your bean:
1: ejbStore()
2: ejbPassivate()

1: ejbCreate()
2: ejbPostCreate()

ejbLoad()

business method
or

ejbSelect()

The lifecycle of a container-
managed persistent entity
bean. Each method call
shown is an invocation from
the container to the bean
instance.

ejbHome()

Container decided it
needs another entity
bean instance

Client called create() on
the home interface (this
will create new database
data)

Container determined that
the bean is out of synch
with database. The bean
needs to load the new
database data.

Client called a
business method
on the EJB object

Container determined
that the database is
out of synch with the
bean. The bean
needs to store its
data into the
database.

Client called
remove() on the
EJB object (this
will destroy
database data)

Client called a
finder method on
the home
interface, or bean
called its own
ejbSelect()
method to locate
database data.

Container decided it
doesn’t need your
instance anymore

Client called instance-
independent ejbHome()
business method

Figure E.9 The life cycle of a container managed persistent entity bean. Each method
call shown is an invocation from the container to the bean instance.

EJB Quick Reference Guide 595

beanClass.newInstance()

Bean InstanceContainerClient Database

setEntityContext()

Adding a new instance to the pool

home.find<METHOD>(args)

Servicing a finder method

search database based on args

return one or more new EJB objects

unsetEntityContext()

Removing an instance from the pool

home.create(args)
ejbCreate(args)

create entity representation in database

ejbPostCreate(args)
return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()
remove entity representation from database

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
or

ejbHome.businessMethod(args) businessMethod(args)

ejbStore()

update entity representation in database

ejbPassivate()

ejbActivate()

read entity representation from database
ejbLoad()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

find<METHOD>(args)

return one or more primary keys

return one or more primary keys

Figure E.10 Sequence diagram for bean managed persistent entity beans. For simplicity, the
Container object represents all container subsystems, including EJB objects, home objects, transac-
tion services, and so on.

A P P E N D I X E596

Bean InstanceContainerClient Database

Adding a new instance to the pool

home.find<METHOD>(args)

Servicing a finder method

search database based on args
return one or more new EJB objects

unsetEntityContext()

Removing an instance from the pool

home.create(args)
ejbCreate(args)

create entity representation in database

ejbPostCreate(args)
return new EJB object

Servicing a create method

ejbObject.remove()
or
home.remove(...)

ejbRemove()

remove entity representation from database

Servicing a remove method

Passivating a bean instance

Servicing a business method

ejbObject.businessMethod(args)
or

ejbHome.businessMethod(args) businessMethod(args)

ejbStore()

update entity representation in database

ejbPassivate()

ejbActivate()

read entity representation from database

ejbLoad()

Activating a bean instance

ejbObject.businessMethod(args)

businessMethod(args)

beanClass.newInstance()

setEntityContext()

Figure E.11 Sequence diagram for container managed persistent entity beans. For simplicity, the
Container object represents all container subsystems, including EJB objects, home objects, transac-
tion services, and so on.

Message-Driven Bean Diagrams

EJB Quick Reference Guide 597

does not exist

pooled

1: newInstance()
2: setMessageDrivenContext()
3: ejbCreate()

1: ejbRemove()

onMessage()

The lifecycle of an message
driven bean. Each method
call shown is an invocation
from the container to the bean
instance.

Figure E.12 The life cycle of a message-driven bean. Each method call shown is an
invocation from the container to the bean instance.

EJB API Reference

The following section explains the Enterprise JavaBeans API, which is the
javax.ejb package. This API is the essence of EJB and defines the specific signa-
ture contracts between clients, enterprise beans, and containers.

A P P E N D I X E598

Bean InstanceContainerClient

ejbRemove()

Removing and instance from the pool

Servicing a business method

Send msg via JMS
onMessage(msg)

ejbCreate()

setMessageDrivenContext()

beanClass.newInstance()

Adding a new instance to the pool

Figure E.13 Sequence diagram for message-driven beans. For simplicity, the Container
object represents all container subsystems, including home objects, transaction services,
and so on.

EJBContext
An EJBContext object is a container-implemented object (see Table E.1). Your
bean can use an EJB context to perform callbacks to the container. These call-
backs help your bean determine its current transactional status, security sta-
tus, and more. Your container must make an EJB context available to your
enterprise bean at runtime. Both SessionContext, EntityContext, and Mes-
sageDrivenContext extend this interface.

public interface javax.ejb.EJBContext

{

public javax.ejb.EJBHome getEJBHome();

public javax.ejb.EJBLocalHome getEJBLocalHome();

public boolean getRollbackOnly();

public void setRollbackOnly();

public javax.transaction.UserTransaction getUserTransaction();

public boolean isCallerInRole(java.lang.String);

public java.security.Principal getCallerPrincipal();

}

EJB Quick Reference Guide 599

METHOD EXPLANATION

getEJBHome() Call this from within your bean to access your own home
object. You can use this home object to create, destroy, or find
EJB objects of your own bean class type. This method is not
used very often.

getEJBLocalHome() Same as getEJBHome() except this retrieves the local interface
version.

getRollbackOnly() Asks the container if the transaction is doomed to rollback. If
it’s doomed, you can avoid performing computer-intensive
operations (see Chapter 10).

setRollbackOnly() If something goes horribly wrong inside your bean, you can
call this method to force the current transaction to rollback
(see Chapter 10).

getUserTransaction() Retrieves the JTA UserTransaction interface to perform pro-
grammatic transactions (see Chapter 10).

isCallerInRole(String) Asks the container if the current logged-in user is in the proper
security role to perform a desired operation. Useful for pro-
grammatic security (see Chapter 9).

getCallerPrincipal() Retrieves the current logged-in user’s security principal. You
can use this principal to query a database or perform other
operations (see Chapter 9).

Table E.1 javax.ejb.EJBContext

EJBHome
Remote clients create, find, and remove EJB objects through home interfaces.
Your home interfaces extend javax.ejb.EJBHome. The container will implement
the methods in javax.ejb.EJBHome when it implements your home interface as
a concrete home object (see Table E.2).

public interface javax.ejb.EJBHome

extends java.rmi.Remote

{

public EJBMetaData getEJBMetaData()

throws java.rmi.RemoteException;

public void remove(Handle handle)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public void remove(Object primaryKey)

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.HomeHandle getHomeHandle()

throws java.rmi.RemoteException;

}

A P P E N D I X E600

METHOD EXPLANATION

getEJBMetaData() Returns metadata about the enterprise bean you’re working with.
Useful if your client code is written in a scripting language, or if
you’re writing EJB development tools.

getHomeHandle() Retrieves a serializable handle to the bean’s home object. You can
tuck this handle away somewhere (such as writing it to disk) and
then use it again later to retrieve the home without performing a
JNDI lookup.

remove() This method destroys an EJB object based upon an EJB object han-
dle or primary key you pass in.

Table E.2 javax.ejb.EJBHome

Note: These methods are called by remote clients; for entity beans, remove() also deletes the bean from
the underlying persistent store.

EJBLocalHome
Local clients create, find, and remove local EJB objects through local home
interfaces. Your local home interfaces extend javax.ejb.EJBLocalHome. The con-
tainer will implement the methods in javax.ejb.EJBLocalHome when it imple-
ments your local home interface as a concrete local home object (see Table E.3).

public interface javax.ejb.EJBLocalHome

{

public void remove(Object primaryKey)

throws javax.ejb.EJBException,

javax.ejb.RemoveException;

}

EJB Quick Reference Guide 601

METHOD EXPLANATION

remove() This method destroys an EJB local object based upon a primary key you
pass in. Applies only to entity beans. This will also delete the bean data
from the underlying persistent store.

Table E.3 javax.ejb.EJBLocalHome

Note: These methods are called by local clients.

EJBLocalObject
A local client accesses a bean through an EJB local object, which implements a
local interface. Your local interface must extend javax.ejb.EJBLocalObject. The
container will implement the methods in javax.ejb.EJBLocalObject when it
implements your local interface as a concrete EJB local object (see Table E.4).

public interface javax.ejb.EJBLocalObject

{

public javax.ejb.EJBLocalHome getEJBLocalHome()

throws javax.ejb.EJBException;

public java.lang.Object getPrimaryKey()

throws javax.ejb.EJBException;

public void remove()

throws javax.ejb.EJBException;

javax.ejb.RemoveException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

A P P E N D I X E602

METHOD EXPLANATION

getEJBLocalHome() Gets the local home object for this EJB local object.

getPrimaryKey() Returns the primary key for this EJB local object. A primary key
is only used for entity beans (see Chapter 5).

remove() Destroys this EJB local object. When your client code is done
using an EJB local object, you should call this method. The sys-
tem resources for the EJB local object can then be reclaimed.

isIdentical() Tests whether two EJB local objects are identical.

Table E.4 javax.ejb.EJBObject

Note: For entity beans, remove() also deletes the bean from the underlying persistent store.

EJBMetaData
This interface encapsulates metadata about an enterprise bean. Metadata is
not very useful for typical client code; it is more suited towards clients that
need to dynamically discover information about an enterprise bean, such as
scripting languages or EJB development tools. Your client code can retrieve
this metadata by calling homeObject.getEJBMetaData(). The client code will get
back a serializable implementation of javax.ejb.EJBMetaData.

public interface javax.ejb.EJBMetaData

{

public javax.ejb.EJBHome getEJBHome();

public java.lang.Class getHomeInterfaceClass();

public java.lang.Class getPrimaryKeyClass();

public java.lang.Class getRemoteInterfaceClass();

public boolean isSession();

public boolean isStatelessSession();

}

EJBObject
A remote client accesses a bean through an EJB object, which implements a
remote interface. Your remote interface must extend javax.ejb.EJBObject. The
container will implement the methods in javax.ejb.EJBObject when it imple-
ments your remote interface as a concrete EJB object (see Table E.5).

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

public javax.ejb.EJBHome getEJBHome()

throws java.rmi.RemoteException;

public java.lang.Object getPrimaryKey()

throws java.rmi.RemoteException;

public void remove()

throws java.rmi.RemoteException,

javax.ejb.RemoveException;

public javax.ejb.Handle getHandle()

throws java.rmi.RemoteException;

public boolean isIdentical(javax.ejb.EJBObject)

throws java.rmi.RemoteException;

}

EJB Quick Reference Guide 603

METHOD EXPLANATION

getEJBHome() Gets the home object for this EJB object.

getPrimaryKey() Returns the primary key for this EJB object. A primary key is
used only for entity beans (see Chapters 5–7).

remove() Destroys this EJB object. When your client code is done using an
EJB object, call this method. The system resources for the EJB
object can then be reclaimed.

getHandle() Acquires a handle for this EJB object. An EJB handle is a persis-
tent reference to an EJB object that the client can stow away
somewhere. Later, the client can use the handle to reacquire
the EJB object and start using it again.

isIdentical() Tests whether two EJB objects are identical. Should be used
instead of equals() or the �� operator, since those test
whether two stubs are the same—stubs are not EJB objects.

Table E.5 javax.ejb.EJBObject

Note: For entity beans, remove() also deletes the bean from the underlying persistent store.

EnterpriseBean
This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. You should not imple-
ment this interface; rather, implement either javax.ejb.EntityBean, javax.ejb.
SessionBean, or javax.ejb.MessageDrivenBean, each of which extends this
interface.

public interface javax.ejb.EnterpriseBean

extends java.io.Serializable

{

}

EntityBean
To write an entity bean class, your class must implement the javax.ejb.Entity-
Bean interface. This interface defines a few required methods that you must fill
in. These are management methods that the EJB container calls to alert your
bean to life-cycle events. Clients of your bean will never call these methods,
because these methods are not made available to clients via the EJB object (see
Table E.6). Each of the following methods can throw a java.rmi.RemoteException
or javax.ejb.EJBException.

public interface javax.ejb.EntityBean

implements javax.ejb.EnterpriseBean

{

public void setEntityContext(javax.ejb.EntityContext);

public void unsetEntityContext();

public void ejbRemove();

public void ejbActivate();

public void ejbPassivate();

public void ejbLoad();

public void ejbStore();

}

A P P E N D I X E604

EJB Quick Reference Guide 605

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

(B
EA

N
-M

A
N

A
G

E
D

(C
O

N
TA

IN
E

R
-M

A
N

A
G

E
D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

Se
tE

nt
ity

C
on

te
xt

As
so

ci
at

es
 y

ou
r

be
an

 w
ith

 a
n

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a
 m

em
be

r
(E

nt
ity

C
on

te
xt

 c
tx

)
en

tit
y

co
nt

ex
t.

Yo
u

ca
n

qu
er

y
m

em
be

r
va

ria
bl

e
so

 th
e

co
nt

ex
t

so
 th

e
co

nt
ex

t c
an

 b
e

qu
er

ie
d

la
te

r.
th

e
en

tit
y

co
nt

ex
t a

bo
ut

 y
ou

r
ca

n
be

 q
ue

rie
d

la
te

r.
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te
,

yo
ur

 c
ur

re
nt

 s
ec

ur
ity

 s
ta

te
,

an
d

m
or

e.

ej
bF

in
d

..
.(

..
.)

Fi
nd

s
an

 e
xi

st
in

g
en

tit
y

be
an

Se

ar
ch

 th
ro

ug
h

a
da

ta
 s

to
re

 u
si

ng
 a

D

o
no

t i
m

pl
em

en
t t

he
se

 m
et

ho
ds

 fo
r

N
ot

e:
 Y

ou
 o

nl
y

us
e

in
 s

to
ra

ge
. Y

ou
 c

an
 h

av
e

st
or

ag
e

AP
I s

uc
h

as
 J

D
B

C
 o

r
SQ

L/
J.

co
nt

ai
ne

r-
m

an
ag

ed
 p

er
si

st
en

t
en

tit
y

ej
bF

in
d(

)
m

et
ho

ds

m
an

y
di

ffe
re

nt
 fi

nd
er

Fo

r
ex

am
pl

e,
 y

ou
 m

ig
ht

 p
er

fo
rm

 a

be
an

s.
 T

he
 E

JB
 c

on
ta

in
er

 w
ill

 h
an

dl
e

w
ith

 b
ea

n-
m

et
ho

ds
, w

hi
ch

 a
ll

pe
rf

or
m

re

la
tio

na
l q

ue
ry

 s
uc

h
as

 S
EL

EC
T

id

al
li

ss
ue

s
re

la
tin

g
to

 fi
nd

in
g

da
ta

 fo
r

m
an

ag
ed

di
ffe

re
nt

 o
pe

ra
tio

ns
.

FR
O

M
 a

cc
ou

nt
s

W
H

ER
E

ba
la

nc
e

yo
u.

 U
se

 y
ou

r
co

nt
ai

ne
r

to
ol

s
to

pe

rs
is

te
nt

 e
nt

ity

�
0.

 R
et

ur
n

th
e

re
su

lti
ng

 p
rim

ar
y

de
sc

rib
e

yo
ur

 fi
nd

er
 m

et
ho

d
ne

ed
s.

be
an

s.
ke

y
se

t.

ej
bS

el
ec

t.
..

(
..

.)
ej

bS
el

ec
t(

)
m

et
ho

ds
 a

re

Th
er

e
ar

e
no

 e
jb

Se
le

ct
()

 m
et

ho
ds

D

ef
in

e
th

is
 m

et
ho

d
as

 a
bs

tr
ac

t.
N

ot
e:

 Y
ou

 o
nl

y
us

e
C

M
P

he
lp

er
 m

et
ho

ds
 th

at

fo
r

B
M

P
en

tit
y

be
an

s.
 Y

ou
 c

an

Th
en

 w
rit

e
EJ

B
-Q

L
in

 th
e

de
pl

oy
m

en
t

ej
bS

el
ec

t(
)

m
et

ho
ds

pe

rf
or

m
 q

ue
rie

s
in

te
rn

al
ly

 b
y

w
rit

e
yo

ur
 o

w
n

he
lp

er
 m

et
ho

ds

de
sc

rip
to

r
to

 s
et

 u
p

th
e

qu
er

y.
w

ith
 c

on
ta

in
er

-
yo

ur
 b

ea
n

bu
t t

ha
t a

re
 n

ot

an
d

na
m

e
th

em
 w

ha
te

ve
r

yo
u

m
an

ag
ed

ac
ce

ss
ib

le
 to

 c
lie

nt
s

of
 y

ou
r

w
is

h.
pe

rs
is

te
nt

 e
nt

ity

be
an

.
be

an
s.

co
nt

in
ue

d

Ta
b

le
 E

.6
Re

qu
ire

d
M

et
ho

ds
 fo

r
En

tit
y

B
ea

n
C

la
ss

es

A P P E N D I X E606

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

(B
EA

N
-M

A
N

A
G

E
D

(C
O

N
TA

IN
E

R
-M

A
N

A
G

E
D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bH

om
e

..
.(

..
.)

So
m

et
im

es
 y

ou
 n

ee
d

m
et

ho
ds

Pe

rf
or

m
 y

ou
r

gl
ob

al
 o

pe
ra

tio
ns

,
Pe

rf
or

m
 y

ou
r

gl
ob

al
 o

pe
ra

tio
ns

, s
uc

h
on

 a
n

en
tit

y
be

an
 th

at
 a

re
 n

ot

su
ch

 a
s

co
un

tin
g

th
e

ro
w

s
in

 a

as
 c

ou
nt

in
g

th
e

ro
w

s
in

 a
 d

at
ab

as
e

an
d

sp
ec

ifi
c

to
 a

ny
 g

iv
en

 d
at

a
da

ta
ba

se
 a

nd
 r

et
ur

ni
ng

 th
e

re
su

lts

re
tu

rn
in

g
th

e
re

su
lts

 to
 t

he
 c

lie
nt

.
in

st
an

ce
 (

or
 r

ow
) —

fo
r

to
 th

e
cl

ie
nt

. T
he

 fa
st

-a
nd

-e
as

y
Th

e
fa

st
-a

nd
-e

as
y

w
ay

 to
 a

ch
ie

ve
 t

hi
s

is
ex

am
pl

e,
 c

ou
nt

in
g

th
e

to
ta

l
w

ay
 to

 a
ch

ie
ve

 th
is

 is
 to

 u
se

to

 u
se

 J
D

B
C

. T
he

 c
le

an
er

 (
bu

t
lo

w
er

-
nu

m
be

r
of

 a
cc

ou
nt

s
in

 a
 ta

bl
e.

JD

B
C

. T
he

 c
le

an
er

 (
bu

t l
ow

er
-

pe
rf

or
m

in
g

w
ay

 if
 y

ou
’re

 n
ot

 c
ar

ef
ul

)
is

Yo

u
ca

n
w

rit
e

ej
bH

om
e

pe
rf

or
m

in
g

w
ay

 if
 y

ou
’re

 n
ot

to

 c
al

l e
jb

Se
le

ct
()

an
d

pe
rh

ap
s

ot
he

r
m

et
ho

ds
 to

 p
er

fo
rm

 th
es

e
ca

re
fu

l)
 is

 to
 c

al
l e

jb
Se

le
ct

()
an

d
en

tit
y

be
an

 m
et

ho
ds

.
op

er
at

io
ns

. T
he

 e
jb

H
om

e
pe

rh
ap

s
ot

he
r

en
tit

y
be

an
 m

et
ho

ds
.

m
et

ho
ds

 a
re

 s
pe

ci
al

 b
us

in
es

s
m

et
ho

ds
 b

ec
au

se
 th

ey
 a

re

ca
lle

d
fr

om
 a

 b
ea

n
in

 th
e

po
ol

be

fo
re

 th
e

be
an

 is
 a

ss
oc

ia
te

d
w

ith
 a

ny
 s

pe
ci

fic
 d

at
a.

 C
lie

nt
s

ca
ll

th
es

e
m

et
ho

ds
 fr

om
 th

e
ho

m
e

in
te

rf
ac

e
or

 lo
ca

l h
om

e
in

te
rf

ac
e.

ej
bC

re
at

e
..

.(
..

.)
In

iti
al

iz
es

 a
 b

ea
n

fo
r

a
Va

lid
at

e
th

e
cl

ie
nt

’s
 in

iti
al

iz
at

io
n

Va
lid

at
e

th
e

cl
ie

nt
’s

 in
iti

al
iz

at
io

n
pa

rt
ic

ul
ar

 c
lie

nt
 a

nd
 c

re
at

es

pa
ra

m
et

er
s.

 E
xp

lic
itl

y
cr

ea
te

 th
e

pa
ra

m
et

er
s.

 C
al

l y
ou

r
ab

st
ra

ct
 s

et
()

un

de
rly

in
g

da
ta

ba
se

 d
at

a.

da
ta

ba
se

 r
ep

re
se

nt
at

io
n

of
 th

e
m

et
ho

ds
 to

 in
iti

al
iz

e
th

e
ge

ne
ra

te
d

Ea
ch

ej
bC

re
at

e(
)

m
et

ho
d

da
ta

 v
ia

 a
 s

to
ra

ge
 A

PI
 s

uc
h

as

be
an

 s
ub

cl
as

s
to

 th
e

pa
ra

m
et

er
s

yo
u

de
fin

e
gi

ve
s

cl
ie

nt
s

a
JD

B
C

 o
r

SQ
L/

J.
pa

ss
ed

 in
. T

he
 c

on
ta

in
er

 w
ill

 t
he

n
us

e
di

ffe
re

nt
 w

ay
 to

 c
re

at
e

yo
ur

th

es
e

va
lu

es
 in

 th
e

su
bc

la
ss

 t
o

cr
ea

te

en
tit

y
be

an
s.

th
e

da
ta

ba
se

 d
at

a
fo

r
yo

u.

Ta
b

le
 E

.6
Re

qu
ire

d
M

et
ho

ds
 fo

r
En

tit
y

B
ea

n
C

la
ss

es
 (

co
nt

in
ue

d)

EJB Quick Reference Guide 607

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

(B
EA

N
-M

A
N

A
G

E
D

(C
O

N
TA

IN
E

R
-M

A
N

A
G

E
D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bP

os
t

Yo
ur

 b
ea

n
cl

as
s

m
us

t d
ef

in
e

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

u
ne

ed

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

u
ne

ed

C
re

at
e

..
.(

..
.)

ej
bP

os
tC

re
at

e(
)

fo
r

ea
ch

 o
ne

to

 th
at

 r
eq

ui
re

s
a

re
fe

re
nc

e
to

 y
ou

r
to

 th
at

 r
eq

ui
re

s
a

re
fe

re
nc

e
to

 y
ou

r
ej

bC
re

at
e(

).
Ea

ch
 p

ai
r

m
us

t
ow

n
EJ

B
 o

bj
ec

t,
su

ch
 a

s
pa

ss
in

g
ow

n
EJ

B
 o

bj
ec

t,
su

ch
 a

s
pa

ss
in

g
yo

ur

ac
ce

pt
 th

e
sa

m
e

pa
ra

m
et

er
s.

yo

ur
 b

ea
n’

s
EJ

B
 o

bj
ec

t r
ef

er
en

ce
 to

be

an
’s

 E
JB

 o
bj

ec
t r

ef
er

en
ce

 t
o

ot
he

r
Th

e
co

nt
ai

ne
r

ca
lls

ot

he
r

be
an

s.
 Y

ou
 c

an
 g

et
 y

ou
r

be
an

s.
 Y

ou
 c

an
 g

et
 y

ou
r

EJ
B

 o
bj

ec
t

vi
a

ej
bP

os
tC

re
at

e(
)

rig
ht

 a
fte

r
EJ

B
 o

bj
ec

t v
ia

 e
nt

ity
C

on
te

xt
.

en
tit

yC
on

te
xt

. g
et

EJ
B

O
bj

ec
t(

).
ej

bC
re

at
e(

).
ge

tE
JB

O
bj

ec
t(

).

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
m

ay

yo
ur

 b
ea

n
is

 p
as

si
va

te
d

m
ay

 b
e

ho
ld

in
g.

be
 h

ol
di

ng
.

(s
w

ap
pe

d
ou

t t
o

di
sk

be

ca
us

e
to

o
m

an
y

be
an

s
ar

e
in

st
an

tia
te

d)
.

ej
bS

to
re

()
C

al
le

d
w

he
n

th
e

co
nt

ai
ne

r
Ex

pl
ic

itl
y

up
da

te
 th

e
da

ta
ba

se

D
o

no
t u

pd
at

e
th

e
da

ta
ba

se
 in

 th
is

ne

ed
s

to
 u

pd
at

e
th

e
da

ta
ba

se
re

pr
es

en
ta

tio
n

of
 th

e
da

ta
 v

ia
 a

m

et
ho

d.
Ra

th
er

, t
he

 E
JB

 c
on

ta
in

er
 w

ill

w
ith

 y
ou

r
be

an
’s

 s
ta

te
. T

he

st
or

ag
e

AP
I s

uc
h

as
 J

D
B

C
.

up
da

te
 th

e
da

ta
ba

se
 fo

r
yo

u
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te
Ty

pi
ca

lly
, y

ou
’ll

 w
rit

e
a

nu
m

be
r

au
to

m
at

ic
al

ly
 r

ig
ht

 a
fte

r
ca

lli
ng

 y
ou

r
di

ct
at

es
 w

he
n

th
is

 m
et

ho
d

of
 y

ou
r

m
em

be
r

va
ria

bl
e’

s
fie

ld
s

ej
bS

to
re

()
m

et
ho

d.
 It

 d
oe

s
th

is
 in

 t
he

is

 c
al

le
d.

 T
hi

s
m

et
ho

d
is

ou

t t
o

di
sk

.
su

bc
la

ss
 b

y
ta

ki
ng

 y
ou

r
be

an
 s

ta
te

 a
nd

al

so
 c

al
le

d
du

rin
g

w
rit

in
g

it
to

 th
e

da
ta

ba
se

. T
hu

s,
 y

ou

pa
ss

iv
at

io
n,

 d
ire

ct
ly

 b
ef

or
e

sh
ou

ld
 p

re
pa

re
 y

ou
r

st
at

e
to

 b
e

w
rit

te
n

ej
bP

as
si

va
te

()
.

to
 th

e
da

ta
ba

se
, s

uc
h

as
 c

om
pr

es
si

ng
fie

ld
s,

 b
y

ca
lli

ng
 y

ou
r

ab
st

ra
ct

 g
et

/s
et

m
et

ho
ds

.

co
nt

in
ue

d

A P P E N D I X E608

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

(B
EA

N
-M

A
N

A
G

E
D

(C
O

N
TA

IN
E

R
-M

A
N

A
G

E
D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bL

oa
d(

)
C

al
le

d
w

he
n

th
e

co
nt

ai
ne

r
Fi

rs
t y

ou
r

be
an

 in
st

an
ce

 m
us

t f
ig

ur
e

D
o

no
t r

ea
d

da
ta

 fr
om

 th
e

da
ta

ba
se

 in

ne
ed

s
to

 u
pd

at
e

yo
ur

 b
ea

n
ou

t w
ha

t d
at

a
to

 lo
ad

. C
al

l t
he

th

is
 m

et
ho

d.
Th

e
EJ

B
 c

on
ta

in
er

 w
ill

 r
ea

d
w

ith
 th

e
da

ta
ba

se
’s

 s
ta

te
. T

he

ge
tP

ri
m

ar
yK

ey
()

m
et

ho
d

on
 th

e
in

 d
at

a
fr

om
 th

e
da

ta
ba

se
 fo

r
yo

u
cu

rr
en

t t
ra

ns
ac

tio
na

l s
ta

te

en
tit

y
co

nt
ex

t;
th

at
 w

ill
 te

ll
yo

ur

au
to

m
at

ic
al

ly
 r

ig
ht

 b
ef

or
e

ca
lli

ng
 y

ou
r

di
ct

at
es

 w
he

n
th

is
 m

et
ho

d
is

be

an
 w

ha
t d

at
a

it
sh

ou
ld

 lo
ad

.
ej

bL
oa

d(
)

m
et

ho
d.

 It
 d

oe
s

th
is

 in
 t

he

ca
lle

d.
 T

hi
s

m
et

ho
d

is
 a

ls
o

N
ex

t r
ea

d
da

ta
ba

se
 d

at
a

in
to

 y
ou

r
su

bc
la

ss
 b

y
qu

er
yi

ng
 th

e
da

ta
ba

se
 a

nd

ca
lle

d
du

rin
g

ac
tiv

at
io

n,

be
an

 v
ia

 a
 s

to
ra

ge
 A

PI
 s

uc
h

as

po
pu

la
tin

g
yo

ur
 b

ea
n

st
at

e.
 T

hu
s,

 y
ou

di

re
ct

ly
 b

ef
or

e
ej

bA
ct

iv
at

e(
).

JD
B

C
 o

r
SQ

L/
J.

sh
ou

ld
 p

er
fo

rm
 a

ny
 n

ec
es

sa
ry

 p
os

t-
lo

ad
op

er
at

io
ns

, s
uc

h
as

 d
ec

om
pr

es
si

ng
fie

ld
s,

 b
y

ca
lli

ng
 y

ou
r

ab
st

ra
ct

 g
et

/s
et

m
et

ho
ds

.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

 n
ee

ds
,

yo
ur

 b
ea

n
is

 a
ct

iv
at

ed

ne
ed

s,
 s

uc
h

as
 th

os
e

re
le

as
ed

su

ch
 a

s
th

os
e

re
le

as
ed

 d
ur

in
g

(s
w

ap
pe

d
in

 fr
om

 d
is

k
du

rin
g

ej
bP

as
si

va
te

()
.

ej
bP

as
si

va
te

()
.

be
ca

us
e

a
cl

ie
nt

 n
ee

ds
 y

ou
r

be
an

).

co
nt

in
ue

d

Ta
b

le
 E

.6
Re

qu
ire

d
M

et
ho

ds
 fo

r
En

tit
y

B
ea

n
C

la
ss

es
 (

co
nt

in
ue

d)

EJB Quick Reference Guide 609

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

(B
EA

N
-M

A
N

A
G

E
D

(C
O

N
TA

IN
E

R
-M

A
N

A
G

E
D

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)
P

E
R

S
IS

TE
N

T
E

N
TI

TI
ES

)

ej
bR

em
ov

e(
)

To
 d

es
tr

oy
 a

n
en

tit
y

be
an

’s

Fi
rs

t f
ig

ur
e

ou
t w

ha
t d

at
a

yo
u

D
o

no
t d

es
tr

oy
 d

at
ab

as
e

da
ta

 in
 th

is

da
ta

 in
 a

 d
at

ab
as

e,
 th

e
sh

ou
ld

 d
es

tr
oy

 v
ia

 g
et

Pr
im

ar
yK

ey
()

m
et

ho
d.

Si
m

pl
y

pe
rf

or
m

 a
ny

 o
pe

ra
tio

ns

cl
ie

nt
 m

us
t c

al
l r

em
ov

e(
)

on
 th

e
En

tit
yC

on
te

xt
. T

he
n

th
at

 m
us

t b
e

do
ne

 b
ef

or
e

th
e

da
ta

 in

on
 th

e
EJ

B
 o

bj
ec

t o
r

ho
m

e
ex

pl
ic

itl
y

de
le

te
 th

e
da

ta
ba

se

th
e

da
ta

ba
se

 is
 d

es
tr

oy
ed

. T
he

 E
JB

ob

je
ct

. T
hi

s
m

et
ho

d
ca

us
es

re

pr
es

en
ta

tio
n

of
 th

e
da

ta
 v

ia
 a

co

nt
ai

ne
r

w
ill

 d
es

tr
oy

 th
e

da
ta

 fo
r

yo
u

th
e

co
nt

ai
ne

r
to

 is
su

e
an

st
or

ag
e

AP
I s

uc
h

as
 J

D
B

C
 o

r
SQ

L/
J.

rig
ht

 a
fte

r
ej

bR
em

ov
e(

)
is

 c
al

le
d.

ej
bR

em
ov

e(
)

ca
ll

on
 th

e
be

an
.e

jb
R

em
ov

e(
)

is
 a

re

qu
ire

d
m

et
ho

d
of

 a
ll

be
an

s
an

d
ta

ke
s

no

pa
ra

m
et

er
s.

N
ot

e:
 e

jb
R

em
ov

e(
)

do
es

 n
ot

m

ea
n

th
e

in
-m

em
or

y
en

tit
y

be
an

 in
st

an
ce

 is
 g

oi
ng

 to
 b

e
de

st
ro

ye
d.

 e
jb

R
em

ov
e(

)
de

st
ro

ys
 o

nl
y

da
ta

ba
se

 d
at

a.

Th
e

be
an

 in
st

an
ce

 c
an

 b
e

re
cy

cl
ed

 to
 h

an
dl

e
di

ffe
re

nt

da
ta

ba
se

 d
at

a,
 s

uc
h

as
 a

ba

nk
 a

cc
ou

nt
 b

ea
n

re
pr

es
en

tin
g

di
ffe

re
nt

 b
an

k
ac

co
un

ts
.

un
se

tE
nt

ity
C

on
te

xt
()

C
al

le
d

rig
ht

 b
ef

or
e

yo
ur

 e
nt

ity

Re
le

as
e

an
y

re
so

ur
ce

s
yo

u
al

lo
ca

te
d

Re
le

as
e

an
y

re
so

ur
ce

s
yo

u
al

lo
ca

te
d

be
an

 in
st

an
ce

 is
 d

es
tr

oy
ed

du

rin
g

se
tE

nt
ity

C
on

te
xt

()
an

d
ge

t
du

rin
g

se
tE

nt
ity

C
on

te
xt

()
, a

nd
 g

et
 r

ea
dy

(w

he
n

th
e

co
nt

ai
ne

r
w

an
ts

re

ad
y

fo
r

ga
rb

ag
e

co
lle

ct
io

n.
fo

r
ga

rb
ag

e
co

lle
ct

io
n.

to
 r

ed
uc

e
th

e
po

ol
 s

iz
e)

.

Ta
b

le
 E

.6
Re

qu
ire

d
M

et
ho

ds
 fo

r
En

tit
y

B
ea

n
C

la
ss

es
 (

co
nt

in
ue

d)

EntityContext
An entity context is a specific EJB context used only for entity beans (see
Table E.7).

public interface javax.ejb.EntityContext implements

javax.ejb.EJBContext

{

public javax.ejb.EJBObject getEJBLocalObject()

throws IllegalStateException;

public javax.ejb.EJBObject getEJBObject()

throws IllegalStateException;

public java.lang.Object getPrimaryKey();

throws IllegalStateException;

}

Handle
An EJB object handle is a persistent reference to an EJB object. Handles allow
you to disconnect from your EJB server, shut down your application, and later
resume your application while preserving the conversational state in the beans
you’ve been working with. Home handles are also useful when your client

A P P E N D I X E610

METHOD DESCRIPTION USEFULNESS

getEJBLocalObject() Returns a reference to Useful if your bean needs to
your bean’s own local call another local bean and you
EJB object. want to pass a reference to

yourself.

getEJBObject() Returns a reference to Useful if your bean needs to
your bean’s own remote call another remote bean and
EJB object. you want to pass a reference to

yourself.

getPrimaryKey() Retrieves the primary key Call to determine what data-
that is currently associated base data your instance is
with this entity bean instance. associated with. You need to

use this in ejbLoad() to deter-
mine what database data to
load and in ejbRemove() to
determine what database data
to remove.

Table E.7 javax.ejb.EntityContext

code needs to store a reference to an EJB object in stable storage and reconnect
to that EJB object later.

public interface javax.ejb.Handle

{

public javax.ejb.EJBObject getEJBObject();

}

HomeHandle
Just as an EJB object handle is a persistent reference to an EJB object, a home
handle is a persistent reference to a home object. Home handles are useful
when your client code needs to store a reference to a home object in stable stor-
age and reconnect to that home object later. Home handles allow you to avoid
doing a JNDI lookup when reconnecting to a home object.

public interface javax.ejb.HomeHandle

{

public javax.ejb.EJBHome getEJBHome();

}

MessageDrivenBean
To write a message-driven bean class, your class must implement the javax.ejb.
MessageDrivenBean interface. This interface defines a few required methods
that you must fill in. These are management methods that the EJB container
calls to alert your bean about life-cycle events. Clients of your bean will never
call these methods because clients do not call message-driven beans directly;
rather, they send messages using the Java Message Service (JMS). Each of these
methods can throw a javax.ejb.EJBException (see Table E.8).

public interface javax.ejb.MessageDrivenBean

extends javax.ejb.EnterpriseBean

{

public void setMessageDrivenContext(MessageDrivenContext ctx);

public void ejbRemove();

}

MessageDrivenContext
A message-driven context is a specific EJB context used only for message-driven
beans. This interface serves as a marker interface. There are no specific addi-
tional methods that message-driven beans get on their context objects.

public interface javax.ejb.MessageDrivenContext

extends javax.ejb.EJBContext

{

}

EJB Quick Reference Guide 611

SessionBean
To write a session bean class, your class must implement the javax.ejb.Session-
Bean interface. This interface defines a few required methods that you must fill
in. These are management methods that the EJB container calls to alert your
bean about life-cycle events. Clients of your bean will never call these methods
because these methods are not made available to clients via the EJB object (see
Table E.9). Each of these methods can throw a java.rmi.RemoteException or
javax.ejb.EJBException.

public interface javax.ejb.SessionBean

extends javax.ejb.EnterpriseBean

{

public void setSessionContext(SessionContext ctx);

public void ejbPassivate();

public void ejbActivate();

public void ejbRemove();

}

A P P E N D I X E612

METHOD DESCRIPTION TYPICAL IMPLEMENTATION

setMessage Associates your bean with Store the context away in a
DrivenContext a message-driven context. member variable so the context
(MessageDriven Your bean can query the can be queried later.
Context ctx) context about its current

transactional state, retrieve
its own home object, and
more.

ejbCreate() Initializes your message- Perform any initialization your
driven bean. You can only bean needs, such as locating
define a single ejbCreate() external resources or looking up
method that takes no other EJB home objects to be
parameters. This is called used later.
directly after you are
associated with a context
object.

onMessage Your bean has received a Crack open the message, figure
(message) new message. out what it means to you, process

the message, and perform any logic
you desire.

ejbRemove() Called by the container Prepare your bean for destruction.
immediately before your Free all resources you may have
bean is removed from allocated.
memory.

Table E.8 Required Methods for Message-Driven Bean Classes

EJB Quick Reference Guide 613

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

M
ET

H
O

D
D

ES
C

R
IP

TI
O

N
(S

TA
TE

FU
L

S
ES

S
IO

N
 B

EA
N

S
)

(S
TA

TE
LE

S
S

 S
ES

S
IO

N
 B

EA
N

S
)

se
tS

es
si

on
C

on
te

xt
As

so
ci

at
es

 y
ou

r
be

an
 w

ith
 a

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a

St
or

e
th

e
co

nt
ex

t a
w

ay
 in

 a
 m

em
be

r
(S

es
si

on
C

on
te

xt
 c

tx
)

se
ss

io
n

co
nt

ex
t.

Yo
ur

 b
ea

n
m

em
be

r
va

ria
bl

e
so

 th
e

co
nt

ex
t

va
ria

bl
e

so
 th

e
co

nt
ex

t c
an

 b
e

qu
er

ie
d

ca
n

qu
er

y
th

e
co

nt
ex

t a
bo

ut

ca
n

be
 q

ue
rie

d
la

te
r.

la
te

r.
its

 c
ur

re
nt

 tr
an

sa
ct

io
na

l
st

at
e,

 c
ur

re
nt

 s
ec

ur
ity

 s
ta

te
,

an
d

m
or

e.

ej
bC

re
at

e
..

.(
..

.)
In

iti
al

iz
es

 y
ou

r
se

ss
io

n
be

an
.

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur
 b

ea
n

be
an

 n
ee

ds
, s

uc
h

as
 s

et
tin

g
ne

ed
s,

 s
uc

h
as

 s
et

tin
g

m
em

be
r

va
ria

bl
es

m

em
be

r
va

ria
bl

es
 to

 th
e

ar
gu

m
en

t
to

 th
e

ar
gu

m
en

t v
al

ue
s

pa
ss

ed
 in

.
va

lu
es

 p
as

se
d

in
.

N
ot

e:
 Y

ou
 c

an
 o

nl
y

de
fin

e
a

si
ng

le

N
ot

e:
 Y

ou
 c

an
 d

ef
in

e
se

ve
ra

l
em

pt
y

ej
bC

re
at

e(
)

m
et

ho
d

w
ith

 n
o

ej
bC

re
at

e
..

.(
..

.)
m

et
ho

ds
, a

nd

pa
ra

m
et

er
s.

 A
fte

r
al

l,
if

it
ha

d
ea

ch
 c

an
 ta

ke
 d

iff
er

en
t a

rg
um

en
ts

.
pa

ra
m

et
er

s
an

d
th

e
be

an
 in

iti
al

iz
ed

Yo

u
m

us
t p

ro
vi

de
 a

t l
ea

st
 o

ne

its
el

f t
o

th
os

e
pa

ra
m

et
er

s,
 t

he
 b

ea
n

ej
bC

re
at

e
..

.(
..

.)
m

et
ho

d
in

w

ou
ld

 n
ev

er
 r

em
em

be
r

w
ha

t
it

yo
ur

 s
es

si
on

 b
ea

n.
in

iti
al

iz
ed

 it
se

lf
to

 u
po

n
su

bs
eq

ue
nt

ca
lls

, s
in

ce
 it

 is
 s

ta
te

le
ss

!

ej
bP

as
si

va
te

()
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
yo

ur
 b

ea
n

is
 p

as
si

va
te

d
m

ay
 b

e
ho

ld
in

g.
co

nv
er

sa
tio

na
l s

ta
te

; l
ea

ve
 e

m
pt

y.
(s

w
ap

pe
d

ou
t t

o
di

sk

be
ca

us
e

th
er

e
ar

e
to

o
m

an
y

in
st

an
tia

te
d

be
an

s)
.

ej
bA

ct
iv

at
e(

)
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
Ac

qu
ire

 a
ny

 r
es

ou
rc

es
 y

ou
r

be
an

U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
yo

ur
 b

ea
n

is
 a

ct
iv

at
ed

ne

ed
s,

 s
uc

h
as

 th
os

e
re

le
as

ed

co
nv

er
sa

tio
na

l s
ta

te
; l

ea
ve

 e
m

pt
y.

(s
w

ap
pe

d
in

 fr
om

 d
is

k
du

rin
g

ej
bP

as
si

va
te

()
.

be
ca

us
e

a
cl

ie
nt

 n
ee

ds

yo
ur

 b
ea

n)
.

ej
bR

em
ov

e(
)

C
al

le
d

by
 th

e
co

nt
ai

ne
r

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

im
m

ed
ia

te
ly

 b
ef

or
e

yo
ur

Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
be

an
 is

 r
em

ov
ed

 fr
om

al

lo
ca

te
d.

al
lo

ca
te

d.
m

em
or

y.

Ta
b

le
 E

.9
Re

qu
ire

d
M

et
ho

ds
 fo

r
Se

ss
io

n
B

ea
n

C
la

ss
es

SessionContext
A session context is a specific EJB context used only for session beans (see Table
E.10).

public interface javax.ejb.SessionContext

extends javax.ejb.EJBContext

{

public javax.ejb.EJBLocalObject getEJBLocalObject()

throws IllegalStateException;

public javax.ejb.EJBObject getEJBObject()

throws IllegalStateException;

}

SessionSynchronization
If your stateful session bean is caching database data in memory or needs to
roll back in-memory conversational state upon a transaction abort, you should
implement this interface (see Table E.11). The container will call each of the
methods in this interface automatically at the appropriate times during trans-
actions, alerting you to important transactional events. Each of these methods
can throw a java.rmi.RemoteException or javax.ejb.EJBException.

public interface javax.ejb.SessionSynchronization

{

public void afterBegin();

public void beforeCompletion();

public void afterCompletion(boolean);

}

A P P E N D I X E614

METHOD DESCRIPTION USEFULNESS

getEJBLocalObject() Returns a reference to your Useful if your bean needs to
bean’s own local EJB object. call another local bean and you

want to pass a reference to
yourself.

getEJBObject() Returns a reference to your Useful if your bean needs to
bean’s own EJB object. call another bean, and you

want to pass a reference to
yourself.

Table E.10 javax.ejb.SessionContext

EJB Quick Reference Guide 615

METHOD DESCRIPTION

afterBegin() Called by the container directly after a transaction begins. You
should read in any database data you want to cache in your
stateful session bean during the transaction. You should also
create a backup copy of your state in case the transaction rolls
back.

beforeCompletion() Called by the container right before a transaction completes.
Write out any database data you’ve cached during the
transaction.

afterCompletion Called by the container when a transaction completes either
(boolean) in a commit or an abort. True indicates a successful commit;

false indicates an abort. If an abort happened, revert to the
backup copy of your state to preserve your session bean’s
conversation.

Table E.11 javax.ejb.SessionSynchronization

A P P E N D I X E616

EXCEPTION DESCRIPTION

AccessLocalException Indicates the client does not have permission to call this
method. Used only for local clients.

CreateException This exception type indicates failure to create an enterprise
bean. You should throw this exception in your home inter-
face’s create(. . .) methods.

DuplicateKey This exception type indicates failure to create an entity bean
Exception because an entity bean with the same primary key already

exists. This is a subclass of CreateException and is thrown in
an entity bean home interface’s create(. . .) methods.

EJBException Your enterprise bean class should throw this exception to indi-
cate an unexpected error, such as a failure to open a database
connection, or a JNDI exception. Your container treats this
exception as a serious problem and may take action such as
logging the event or paging a system administrator, depending
upon your container’s policy. The container then rethrows a
java.rmi.RemoteException if the client is remote, or a
javax.ejb.EJBException if the client is local. Since EJBException
is a RuntimeException, it does not need to be declared in
throws clauses.

FinderException This exception indicates a failure to locate an existing entity
bean. You should throw this method from your home inter-
face’s finder methods.

NoSuchEntity Your entity bean class should throw this exception to indicate
Exception that the database data corresponding to the in-memory entity

bean instance has been removed. You can throw this excep-
tion from any of your entity bean class’ business methods, and
from your ejbStore and ejbLoad methods.

NoSuchObjectLocal Thrown when a client tries to call a method on a bean that
Exception has been destroyed.

ObjectNotFound When you’re writing finder methods in your entity bean’s
Exception home interface, throw this exception to indicate that the speci-

fied EJB object was not found. You should use this exception
only when your finder method is returning a single EJB object.
If you’re returning more than one EJB object, a null collection
is returned instead.

continued

Table E.12 EJB Exception Explanations

Exception Reference

Table E.12 describes the purpose of each exception class in EJB.

EJB Quick Reference Guide 617

EXCEPTION DESCRIPTION

RemoveException Your enterprise bean should throw this exception when an
error occurrs during ejbRemove(). The container will rethrow
this exception back to the client. This is considered a normal,
run-of-the-mill application-level exception and does not indi-
cate a system-level problem. When your client code receives
this exception, you do not know for sure whether the entity
bean has been removed or not.

TransactionRequired Indicates the receiving object needed a transaction to run but
LocalException was not supplied with a transaction context.

TransactionRolledBack Indicates the request’s transaction was rolled back or marked
LocalException for rollback. Thus, the request could not be completed.

Table E.12 EJB Exception Explanations (continued)

TRANSACTION CLIENT’S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION

Required none T2
T1 T1

RequiresNew none T2
T1 T2

Supports none none
T1 T1

Mandatory none error
T1 T1

NotSupported none none
T1 none

Never none none
T1 error

Table E.13 The Effects of Transaction Attributes

Transaction Reference

The following section offers reference information on transactions as outlined
in Tables E.13 through E.18.

A P P E N D I X E618

STATEFUL

SESSION BEAN

STATELESS IMPLEMENTING MESSAGE-

TRANSACTION SESSION SESSION ENTITY DRIVEN

ATTRIBUTE BEAN SYNCHRONIZATION BEAN BEAN

Required Yes Yes Yes Yes

RequiresNew Yes Yes Yes No

Mandatory Yes Yes Yes No

Supports Yes No No No

NotSupported Yes No No Yes

Never Yes No No No

Table E.15 Permissible Transaction Attributes for Each Bean Type

CONSTANT MEANING

NotSupported Your bean cannot be involved in a transaction at all. When a bean
method is called, any existing transaction is suspended.

Never Your bean cannot be involved in a transaction at all. When a bean
method is called, if a transaction is in progress, an exception is
thrown back to the client (java.rmi.RemoteException if remote,
javax.ejb.EJBException if local).

Required Your bean must always run in a transaction. If a transaction is
already running, your bean joins that transaction. If no transaction
is running, the EJB container starts one for you.

RequiresNew Your bean must always run in a new transaction. Any current
transaction is suspended.

Supports If a transaction is already underway, your bean joins that transac-
tion. Otherwise, the bean runs with no transaction at all.

Mandatory Mandates that a transaction must be already running when
your bean method is called, or a javax.ejb.TransactionRequired
exception is thrown back to the caller.

Table E.14 Transaction Attributes

EJB Quick Reference Guide 619

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

Table E.16 Transaction Isolation Levels

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently happening and is active.

STATUS_NO_TRANSACTION No transaction is currently happening.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort because
it’s been marked for rollback. This could be because
some party called setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be committed
(during Phase One of the two-phase commit protocol).

STATUS_PREPARED The current transaction has been prepared to be com-
mitted (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of being com-
mitted right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed (Phase
Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process of rolling back.

STATUS_ROLLEDBACK The current transaction has been rolled back.

STATUS_UNKNOWN The status of the current transaction cannot be
determined.

Table E.17 The javax.transaction.Status Constants for Transactional Status

A P P E N D I X E620

METHOD DESCRIPTION

begin() Begin a new transaction. This transaction becomes associ-
ated with the current thread.

commit() Run the two-phase commit protocol on an existing trans-
action associated with the current thread. Each resource
manager will make its updates durable.

getStatus() Retrieve the status of the transaction associated with this
thread.

rollback() Force a rollback of the transaction associated with the cur-
rent thread.

setRollbackOnly() Call this to force the current transaction to roll back. This
will eventually force the transaction to abort. One interest-
ing use of this is to test out what your components will do
without having them perform any permanent resource
updates.

setTransactionTimeout(int) The transaction timeout is the maximum amount of time
that a transaction can run before it’s aborted. This is use-
ful to avoid deadlock situations, when precious resources
are being held by a transaction that is currently running.

Table E.18 The javax.transaction.UserTransaction Methods for Transactional Boundary

I N D E X

621

SYMBOLS
2PC (two-phase commit

protocol), 318
3-tier architecture, 415
4-tier architecture, 415–416

A
abort statements,

transactions, 287
abort() method, 250
aborted transactions,

282–283
abstract entities, 41
abstract methods, 171
abstract persistence, 172
abstract roles, 260–261
abstract schema

names, 173
account remote interface,

138, 143
account.java interface, 137
AccountBean.java,

143–154
AccountException.java

class, 156
AccountExceptions, 143
AccountHome.java

interface, 138
AccountLocal.java local

interface, 138
AccountLocalHome.java

interface, 138

AccountPK.java, 139
ACID (atomicity,

consistency, isolation,
and durability)
properties,
transactions, 280

acknowledgement modes,
deployment
descriptors, 293

actions, 250
activation, 88

entity bean
instances, 117

stateful session
beans, 85

administrative support,
EJB servers, 456

administrator’s role,
beans, 260

AfterBegin() method, 321
AfterCompletion()

method, 321–322
aggregation relationships,

350
aggressive loading, entity

beans, 349
alerts, session beans, 321
algorithms, caching, 426
all or nothing paradigm,

transactions, 281–283
APIs, JMS, 203, 206
application assemblers,

EJB Ecosystem, 17–18

application servers, 5, 442
application-level

exceptions, 60–61
applications

context switching, 85
dynamic discovery, 395
logic components, 109

APS (Arrivals Per
Second), 414

architecture
components, 12
JAAS, 249–250

assembly-descriptor,
entity bean
deployment
descriptor, 161

association tables, many-
to-many relationships,
336

asynchronous method
invocations, 235

asynchronous
programming,
message-driven
beans, 202

atomicity, transactions,
276, 279–281

attributes, transactions,
292, 298

declaring, 294
Mandatory, 296–297
Never, 297

attributes, transactions,
(Continued)

NotSupported, 297
Required, 294–295, 400
RequiresNew, 296
Supports, 296

audit logs, object changes,
378

auditing, 6
authentication

bean security, 246–248
security identities, 246

authorization
declarative, 262
instance level, 266
JAAS, 257
programmatic, 258

auto-component
generation, EJB
servers, 457

automatic fail-over,
stateful session
beans, 425

automatic session fail-
over, 414

avoiding stored
procedures, 373

B
back-end integration, 6
bank account client,

161–163
bank account

database, 161
bank account entity bean,

136–139, 143, 159–160
base prices, 5
basic authentication, 248
bean class, 62
bean instance pool, 397

bean providers, EJB
Ecosystem, 17

bean security,
authentication,
246–248

bean-managed persistent
entity beans, 127, 163

bean-managed state
fields, 143

bean-managed
transactions, 306

beans
activation, 88
administrator’s role,

260
calling, 69

JNDI lookups, 238
other beans, 237

conversational states,
86

counter, 89
client code, 96
client-side output, 99
deployment

descriptor, 97–98
home interface, 94
proprietary

descriptor, 96
remote interface,

91–92
running client, 99
server-side output,

100
session context

interface, 94
val member variable,

91
declarative

authorization, 262

delegating home
objects, 135

deploying in
containers, 68

enterprise, client
conversations, 82

entity, 105, 119
failure, 394
message driven,

201–202, 212
method permissions,

262
passivation, 87
programmatic

authorization, 258
security

policies, 257, 262–263
propagation, 267
roles, 258–264

session, 81–82
stateful session, 82, 85
stateless session, 83–84
threads, 210

BeforeCompletion()
method, 321

begin statements,
transactions, 287

begin() method, 291, 305
behavior, versioning, 379
best practices

hard-coded SQL, 370
object-to-relational

mapping, 370, 375
persistence, 361–365
soft-coded SQL, 370
stored procedures,

371–372
bidirectional relationships,

entity beans, 344–347

I N D E X622

BluePrints document,
J2EE, 23

BMP entity beans
bidirectional

relationships,
344–345

cascading deletes, 351
lazy loading, 349
many-to-many

relationships,
338–339

one-to-many
relationships,
333–334

one-to-one
relationships,
328–329

persistence, 366–368
referential integrity, 356
true many-to-many

relationships,
341–342

boundaries,
transactions, 304

building components,
55–56

bundling discounts, 7
business interface, 76
business logic

methods, 143
tier, Jasmine’s

Computer Parts,
467–475

C
caching, 7, 426
CallHelloWorld.java, 256
calling beans, 69
cardinality, relationships,

326

cart line items, Jasmine’s
Computer Parts, 472

cascading deletes, 351
Catalog JSP, 480
CDATA section, CMP

entity bean
deployment
descriptors, 194

centralized naming
servers, 430

certificate
authentication, 248

chained transactions, 286
circular relationships, 354
class keyword, 14
classes

AccountException.java,
156

bean, 62
enterprise bean, 37
entity bean, 112, 127
java.lang.Exception

class, 156
javax.jms.Queue

Requestor, 235
javax.jms.Topic

Requestor, 235
ProductPK, 184, 195

clean shutdowns, 6, 457
client code

counter bean, 96
transactions, 306

client-controlled
transactions, 292

client program
CMP entity beans, 196
message-driven beans,

223
client-initiated

transactions, 290

client-side components, 15
client-side output

bank account program,
163

HelloClient program,
75

client-side proxy objects,
32

client.java, 156–159,
196–198

clients
bank account, 161
CORBA, 70
counter bean, 99
RMI-IIOP, 70
stateful session bean

conversations, 85
clustering, 6, 411–413

EJBs, 419, 455
entity beans, 425–426
J2EE, naming servers,

430
message-driven beans,

429
partitions, 227, 415
stateless session beans,

421
CMP (Container-Managed

Persistence) entity
beans, 167

abstract persistence
schema, 172

bidirectional
relationships,
345–347

client program, 196
composition

relationships, 351
custom primary key

classes, 195

INDEX 623

CMP entity beans,
(Continued)

dependent value
classes, 369

deployment
descriptors, 191, 195

ejbSelect() methods,
175–176

finder methods, 173
lack of declared fields,

168–169
lazy loading, 350
life cycle, 200
many-to-many

relationships,
339–340

one-to-many
relationships, 335

one-to-one
relationships,
330–332

persistence, 176
application

server/database
independence,
367

bugs, 366
code reduction, 365
control, 367
fields, 170
learning curve, 368
performance, 366
product line

example, 180
relationship

features, 368
queries, 173–174
referential integrity, 356
subclasses, 167–170
superclass, 171

true many-to-many
relationships,
342–343

cmp-field, CMP entity
beans, 173

coding interfaces, 57–59
collections

EJB objects, 135
primary keys, 135
relationships, 357–358
returning via finder

methods, 135
commit statements,

transactions, 287
Commit() method, 250,

291, 305
committed

transactions, 282
compatibility test suite,

EJB servers, 450
complex mappings, EJB

servers, 451
component

architecture, 12
component assembly, EJB

best practices, 405
component interface, 47,

75–76
components, 5

accessing via local
interfaces, 241

application logic, 109
building, 55–56
client-side, 15
implicit location

transparency, 40
persistent data, 110
pricing, 5
reusable, 9, 406
server-side, 16

composition
relationships, 351

concurrency control,
308, 316

connection pooling,
147, 242

ConnectionFactory,
206, 430

connections, JMS, 206
constants,

transactions, 302
consumers, JMS, 206–207
container-managed

transactions, 292, 306
container providers, EJB

Ecosystem, 19
container-specific

deployment
descriptors, 195

container-specific
deployment
descriptors, 161

containers
bean management, 41
EJB clustering, 419
glue-code tools, 41
implicit monitoring, 40
instance pooling, 43
request interception, 38
swapping out stateful

session beans, 85
context objects, 64–65
context switching, 85
contexts, transactions, 319
conversational states,

86, 320
conversations

enterprise beans and
clients, 82

stateful session beans
and clients, 85

I N D E X624

transactions, 320
conversion tools, J2EE, 450
CORBA

clients, 70
interoperability,

523–531, 534, 539,
543

OTS, 70, 300
COS Naming (CORBA

Naming Service), 70
CosTransactions interface,

OTS, 301
CosTSPortability interface,

OTS, 301
Count() method, 91, 322
counter beans, 89

client code, 96
client-side output, 99
deployment descriptor,

97–98
home interface, 94
proprietary

descriptor, 96
remote interface, 91–92
running client, 99
server-side output, 100
session context

interface, 94
val member variable, 91

Create() method, 58, 62,
162, 165

CreateExceptions, 184
cross-platform

compatibility, 14
CurrentVersion

column, 378
custom exception

classes, 156
custom primary key

classes, CMP entity
beans, 195

customer abstractions, 470
customizing beans,

environment
properties, 244

D
data denormalization , 374
data design process, 375
data normalization,

373–374
data transfers, entity

beans, 113
database updates, 377
databases

bank account, 161
dirty reads, 311
locks, 309
objects, 109
phantoms, 313–314
schema mapping,

directionality,
344, 347

directionality
unrepeatable reads,

312–313
DataSource objects, 430
DDL (Data Definition

Language), 161
deadlock,

transactions, 310
debugged libraries, 14
debugging, EJB best

practices, 402–403
declarative

authorization, 262
declarative middleware.

See implicit
middleware.

declarative transactions,
288–289

advantages, 292

deployment
descriptors, 289

writing, 304
declared fields, CMP

entity beans, 168–169
declaring environment

properties, 245
default initial contexts,

JNDI, 238
deferred database writes,

EJB servers, 451
delegating home objects to

beans, 135
demarcating transactional

boundaries
declarative

transactions,
288–289

programmatic
transactions, 287

denormalization of
data, 374

dependent value classes,
CMB entity beans, 369

deployment descriptors,
50, 53, 66, 545, 549,
553, 558, 562, 565

acknowledgement
modes, 293

bank account entity
bean, 159–160

bean requirement specs,
50

CMP entity beans,
172–173, 191, 195

container-specific, 161
counter bean, 97–98
declarative

transactions, 289
entity beans, 156

INDEX 625

deployment descriptors,
(Continued)

message-driven beans,
219–220

transactions, declaring
attributes, 294

Deposit() method, 304
Destination objects, 430
destinations, JMS, 206
destroying entity

beans, 120
development

components, 17
development tools, project

design, 445
digest authentication, 248
directory services, 70
dirty reads, 311
distributed application

advantages of EJB, 4
distributed application

deployment, 277–278
distributed objects, 32–36
distributed shared object

caches
consistency, 427
lock managers, 428

distributed
transactions, 317

coordinator, 318
EJB servers, 458

distributed two-phase
commit protocol, 458

DoAs() method, 250
does not exist state,

163, 215
domains, messaging, 204
dooming transactions, 305
Double parameter, 191

double values, select()
methods, 176

drivers, JMS, 206
duplicate consumption,

message-driven beans,
224–225

durability, transactions,
282, 317

durable subscriptions,
message-driven
beans, 214

dynamic discovery of
applications, 395

dynamic redeployment, 6

E
Ear files, 482
EffectiveEnd column, 378
EffectiveStart column, 378
EJB (Enterprise Java

Beans), 3, 23
abstract entities, 41
advanced concepts,

272, 275
agreed-upon standards,

13
bean class, 62
beans

calling, 69
deploying in

containers, 68
business interface, 76
business solutions, 14
component interface,

47, 75–76
components, 55
containers

bean management,
41

instance pooling, 43

request interception,
38

context objects, 64–65
deployment

descriptors, 50,
53, 66

distributed application
advantages, 4

distributed objects,
32–36

Ejb-jar files, 54
enterprise bean class, 37
enterprise beans, 13, 53,

29–30
entity beans, 30, 110,

120
exceptions, 60
glue-code tools, 41
home handles, 269
home interface, 45, 53,

58
home objects, 44, 48,

53, 70
implicit monitoring, 40
implicit persistence, 39
implicit remote

accessibility, 39
isolation, 315
javax.ejb.EJBContext

interface, 64
JMS integration, 211
local home interface,

47, 53, 59
local home objects,

47, 53
local interface, 58
local interfaces,

46–49, 53
local objects, 53

I N D E X626

location transparency,
45, 70

message-driven
beans, 31

objects, 38–40, 53
factories, 44
handles, 268–269, 474

persistence manager, 21
portability, 13
quick reference guide,

585–614
rapid application

development, 13
remote exceptions, 44
remote interface, 42,

53, 57
remote method

invocations, 44
roles, 20
servers, hosting Ejb-jar

files, 56
session beans, 30, 66, 81
startup class, 211
thick clients, 15
transactional

conversations, 320
vendor specific files,

51–53, 67
EJB best practices

component assembly,
405

debugging, 402–403
guaranteeing response

time via capacity
planning, 397

legacy interaction,
408–410

limiting thread pool,
397

local or remote
interfaces, 401–402

messaging or RMI-IIOP,
393–396

performance tuning
entity beans,
400–401

resource partitioning,
404

reusable components,
406

singletons, 398
using stateful or

stateless, 391–393
XML usage, 407–408

EJB clustering, 419
EJB components, 379
EJB Ecosystem, 16

application assemblers,
17–18

bean providers, 17
container providers, 19
deployers, 18
IDEs, 20
server providers, 20
system administrators,

19
EJB object model, 375
EJB objects

collections, 135
versioning, 377–378

EJB projects
additional vertical

slices, 446
application servers, 442
business and

presentation logic
separation, 436

EJB appropriateness,
434–435

EJB server costs, 436
horizontal team

organization, 443
initial vertical slices,

439–441
J2EE appropriateness,

434
object model

design, 439
reasons to use EJB, 437
resource pooling, 436
staffing, 438
standard build

process, 446
EJB-QL (EJB Query

Language), 174, 352,
569, 573–575, 579–583

EJB references, 239–240
EJB servers, 449

administrative
support, 456

auto-component
generation, 457

clean shutdowns, 457
clustering, 455
compatibility test

suite, 450
complex mappings, 451
conversion tools, 450
deferred database

writes, 451
distributed

transactions, 458
high availability, 453
hot deployment, 456
IDE integration, 454
in-memory data

cache, 452
instance pooling, 456

INDEX 627

EJB servers, (Continued)
integrated tier

support, 452
intelligent load

balancing, 455
JCA, 459
JMX, 456
lazy loading, 451
messaging, 458
open sourcecode, 460
pass-through mode, 452
pluggable persistence

providers, 451
provided

components, 458
realtime deployment,

457
reputable vendors, 461
scalability, 452
security, 453
specialized services, 460
state replication,

423–424
stateless transparent

fail-over, 455
sustituting JDBC

drivers, 451
UML editors, 454
Web services, 459
workflow engines, 459

Ejb-client jar files, 69
Ejb-jar files, 51, 54, 67

deploying in
containers, 68

folder structure, 67
ejb-jar.xml file, 68,

192–194, 220
EJB-required methods, 143
EJB/J2EE application,

463–464

ejbActivate() method, 64,
88, 117, 166, 404

ejbCreate() method, 64,
119–120, 147, 163–165,
190, 215, 219, 404, 422

ejbFind() method, 129, 147
ejbHome() method, 138,

147, 165, 426
ejbHomeGetTotalBank

Value() method, 175
ejbLoad() method, 113,

125, 147, 163–166, 291,
330, 334, 349–350, 366,
426

ejbPassivate() method, 64,
88, 117, 166, 404

ejbRemove() method, 64,
103, 119–120, 125, 147,
165, 215, 219, 404

ejbSelect() methods,
175–176

ejbStore() method, 113,
147, 163–166, 291, 330,
334, 426

Enterprise bean class, 37
Enterprise beans, 13,

29–30
conversations, 82
instances, 53
transactions, 286

entity bean classes,
112, 127

entity beans, 30, 110, 120
aggressive loading, 349
bank account, 136–139
bean-managed

persistent, 127
bean-managed

persistent, 118

caching, 426
clustering, 425
CMP, 168–171
container-managed

persistence, 119
creating, 119–120
data transfers, 113
deployment

descriptors, 156
destroying, 120
directionality, 347
EntityContext field, 143
failure survival, 112
finding, 121
granularity, 368
instances, 111–113, 117
Java classes, 369
multi-client data access,

114–115
performance tuning,

400–401
persistence, 82, 105, 118,

362–365
persistence best

practices, 362
pooling instances, 116
primary key class, 112
read-mostly caches, 428
read-only caches, 427
retrieving current

associated object,
124

reusing, 399
Session

Synchronization,
299

synchronizing instances
with underlying
storage, 115

transactions, 291

I N D E X628

wrapping with session
beans, 398–399

entity contexts, 124
EntityContext field, 143
environment properties,

244–245
Equals() method, 143
exceptions, 60–61, 276
exclusive locks, 309
explicit middleware, 34

F
fail-over, 414

clustering, 426
message-driven

beans, 429
method invocations,

422
stateful session beans,

423–425
stateless session

beans, 422
failed requests, 420
failure, beans, 394
failure survival, entity

beans, 112
false parameter, JMS

sessions, 208
fat key pattern, 366
files

ejb-client jar, 69
ejb-jar, 51, 67
ejb-jar.xml, 68, 192–194
MANIFEST.MF, 68

Finally() clause, 196
findBigAccounts() home

method, 174
findByOwnerName()

method, 138
findByPrimaryKey()

method, 138, 184

finder methods, 129, 165
CMP entity beans, 173
idempotency, 426
returning collections,

135
rules, 134

findExpensiveProducts()
method, 191

finding entity beans, 121
flat transactions, 282–283
folder structure, Ejb-jar

files, 67
foreign key relationships,

328
form-based

authentication, 248

G
generalists, team

organization, 443
get() accessor methods,

idempotency, 425
get() methods,

idempotency, 426
getAccountBalance()

method, 110
getBankAccountNumber()

method, 110
getCallerPrincipal()

method, 259
getConnection()

method, 147
getEJBLocalObject()

method, 94, 124
getEJBObject() method,

94, 124
getPrimaryKey() method,

125, 330
getRollbackOnly()

method, 305

getShipment()
method, 330

getStatus() method, 305
getSubtotal() method, 171
getTaxes() method, 171
getTotal() method, 171
getTotalBankValue()

method, 138
glue-code tools, EJB, 41
granularity, entity

beans, 368
guaranteed message

delivery, 203–204

H
halting problem, 293
handles

home, 269
objects, 268–269

handling large result sets,
390

HashCode() method, 143
Hello() method, 57
HelloClient program,

73–75
HelloClient.java, 251
high availability, EJB

servers, 453
high availability

systems, 414
historical tables, 378
home handles, 269
home interface, 45, 53

bank account entity
bean, 138

coding, 58
counter bean, 94

home objects, 48, 53
delegating to beans, 135
EJB, 44

INDEX 629

home objects, (Continued)
locating via JNDI, 71
lookups, 70

home stubs, EJB
clustering, 419

horizontal team
organization, project
design, 443

hot deployment, EJB
servers, 456

HttpSession object, 393

I
IDE, EJB servers, 454
idempotency, 420, 425
IDEs (Integrated

Development
Environments), 20

IIOP (Internet Inter-ORB
Protocol), 319

immutable object design
model, 378

impedance mismatch, 370
implementation classes,

143, 148–154
implicit component

location transparency,
40

implicit distributed
transaction
management, 39

implicit middleware,
35–36

implicit persistence, 39
implicit remote

accessibility, 39
implicit security, 39
implicit thread support, 39
in-memory data cache,

EJB servers, 452

infinite block problem, 293
initial vertical slice, project

design, 439–441
initial vertical slices,

project design, 442
InitialContext requests,

430–431
initialization parameters,

JNDI, 238
instance level

authorization, 266
instance pooling, 43, 456
Instanceof operator, 213
instances, entity beans,

111–113, 116
integrated tier support,

EJB servers, 452
intelligent load balancing,

EJB servers, 455
intercepting exceptions, 61
interface keyword, 14
interfaces

AccountHome.java, 138
AccountLocal.java, 138
AccountLocalHome.

java, 138
component, 75–76
java.rmi.Remote, 44
javax.ejb.EntityBean,

127
javax.ejb.EJBContext,

64–124
javax.ejb.EJBObject, 42
javax.ejb.Enterprise

Bean, 38, 127
javax.ejb.EntityBean,

128
javax.ejb.Session

Synchronization,
321

javax.transaction.User
Transaction, 302

message-driven beans,
214

UserTransaction, 302
interoperability, CORBA,

523–543
invalidation strategies,

read-only entity
beans, 427

invoking stored
procedures, 371

IPS (Invocations Per
Second), 415

IsCallerInRole() method,
259–260

isolation
EJB, 315
portability, 315
transactions, 281,

307–310

J
J2EE (Java 2 Platform,

Enterprise Edition),
2, 22

BluePrints document,
23

clustering, 415, 430
conversion tools, 450
EJB, 23
JAAS, 26
Java IDL, 25
JavaMail, 25
JAXP, 26
JCA, 26
JDBC, 24
JMS, 25
JNDI, 24
JSPs, 25

I N D E X630

JTA, 25
packages, 481
reference

implementation, 23
RMI, 23
RMI-IIOP, 23
servlets, 25
specifications, 22
technologies, 23
test suite, 23

J2ME (Java 2 Platform,
Micro Edition), 22

J2SE (Java 2 Platform,
Standard Edition), 22

JAAS (Java Authentication
and Authorization
Service), 26, 246

architecture, 249–250
authorization, 257
“Hello, World” bean,

251
Jad decompiler, 404
Jakarta Struts, 480
jar files, 481
jar utility, 56
Jasmine’s Computer Parts

application, 468–476,
482

Java, 14
Java classes, 369
Java IDL, 25
Java servlets, 15, 25
java.lang.Exception

class, 156
java.lang.Security

Exceptions, 264
java.rmi.Remote

interface, 44
java.rmi.Remote

Exceptions, 44

java.util.Collection, 184
java.util.Iterator.remove()

method, 358
JavaBeans, 17
JavaMail, 25
javax.ejb.Create

Exceptions, 138, 184
javax.ejb.EJBContext

interface, 64, 124
javax.ejb.EJBObject

interface, 42
javax.ejb.EnterpriseBean

interface, 38, 127
javax.ejb.EntityBean

interface, 127–128
javax.ejb.Finder

exceptions, 138
javax.ejb.MessageDriven

Bean interface, 214,
217

javax.ejb.Session
Synchronization
interface, 321

javax.jms.MessageListener
interface, 214, 217

javax.jms.QueueRequestor
class, 235

javax.jms.Topic
ConnectionFactory,
208

javax.jms.TopicRequestor
class, 235

javax.transaction.User
Transaction interface,
302

Javlin, 452
JAXP (Java API for XML

Parsing), 26
JCA (J2EE Connector

Architecture), 15, 26,
459

JDBC (Java Database
Connectivity), 24, 128

JDBC API, 15
JMS (Java Message

Service), 25, 203
API, 203, 206
consumers, 207
Messages, 213
producers, 207
sessions, 208
SPI, 203
TextMessages, 208

JMX (Java Management
Extension), 19, 456

JNDI (Java Naming and
Directory Interface)

client code
transactions, 306

default initial
contexts, 238

drivers, 419
locating home objects,

71
lookups, 238
running system, 74

JSPs (JavaServer Pages),
15, 25, 477

calling EJB components
via Java code, 478

Jasmine’s Computer
Parts, 468, 480

login, 483
JTA (Java Transaction

API), 25, 301
JTS (Java Transaction

Service), 301
just-in-time algorithm, 86

K
keepgenerated option,

WebLogic, 404

INDEX 631

keywords
class, 14
interface, 14
synchronized, 310
this, 94

L
large result sets, 390
large-scale systems,

411–413
lazy loading, 349–350, 451
legacy database designs,

380, 387
legacy interaction,

408–410
levels of transaction

isolation, 309–310
libraries, debugged, 14
life cycles

alerts, 321
BMP entity beans, 163
CMP entity beans, 200
message-driven

beans, 215
session beans, 100–101

limiting thread times, EJB
best practices, 397

load balancing, 6, 414
EJB servers, 455
entity bean

clustering, 425
message-driven

beans, 224
stateful session

beans, 424
stateless session

beans, 421
local home interface, 47,

53, 59, 138
local home objects, 47, 53

local interface, 46–49, 53,
58, 138, 347, 401–402

local objects, 53
local/remote

transparency, 33
locale discounts, 7
locating home objects, 71
location transparency,

45, 70
lock managers,

distributed shared
object cache, 428

locks, 309–310
LogBean.java, 218
logging, 6
login JSP, 480, 483
login servlet, 484–487
Login() method, 250
look ups, home objects, 70
lost updates, 308–309
LRU (Least Recently

Used) passivation, 86

M
M1() method, 420
main transactions, 285
Mandatory attribute,

transactions, 296–297
MANIFEST.MF file, 68
many-to-many

relationships, 327,
336–343, 350

mapping abstract roles to
actual roles, 260–261

market interface, 38
marketplace for

components, 11
message consumers, 202
message-driven beans,

201–202, 212, 217

asynchronous
programming, 202

characteristics, 213
client program, 223
deployment

descriptors, 219–220
duplicate consumption,

224–225
durable subscriptions,

214
instanceof operator, 213
interfaces, 214
life cycle, 215
load balancing, 224
message logging, 215
message order, 225
message responses,

230–234
methods, 215–216
multiple senders/

receivers, 203
performance, 202
poison messages,

228–230
reliability, 203
security, 224
semantics, 214
transactions, 223, 293

message order, message
driven beans, 225

message producers, 202
message-oriented

middleware, 6
messageDrivenContext.set

RollbackOnly()
method, 229

messaging, 213
domains, 204
EJB best practices,

393–396

I N D E X632

EJB servers, 458
PTP domains, 205

method invocations,
fail-over, 422

method permissions,
beans, 262

method signatures,
preserving compile
time checks, 76–77

methods
findByOwnerName(),

138
abort(), 250
abstract, 171
afterBegin(), 321
afterCompletion(),

321–322
beforeCompletion(),

321
begin(), 291, 305
commit(), 250, 291, 305
count(), 91, 322
create(), 58, 162, 165
deposit(), 304
doAs(), 250
ejbActivate(), 64, 88,

117, 166
ejbCreate(), 64, 119–120,

147, 163–165, 190,
215, 219, 422

ejbFind(), 129, 147
ejbHome(), 138,

147, 165
ejbHomeGetTotalBank

Value(), 175
ejbLoad(), 113, 125, 147,

163–166, 291, 330,
334, 349–350, 366

ejbPassivate(), 64, 88,
117, 166

ejbRemove(), 64, 103,
119–120, 125, 165,
215, 219

ejbRemove(), 147
ejbSelect(), 175–176
ejbStore(), 113, 147,

163–166, 291,
330, 334

equals(), 143
findBigAccounts(), 174
findByPrimaryKey(),

138–184
finder, 134, 165
findExpensive

Products(), 191
getAccountBalance(),

110
getBankAccount

Number(), 110
getCallerPrincipal(),

259
getConnection(), 147
getEJBLocalObject(),

94–124
getEJBObject(), 94–124
getPrimaryKey(),

125, 330
getRollbackOnly(), 305
getShipment(), 350
getStatus(), 305
getSubtotal(), 171
getTaxes(), 171
getTotal(), 171
getTotalBankValue(),

138
hashCode(), 143
hello(), 57
idempotent, 420
isCallerInRole(),

259–260

java.util.Iterator.
remove(), 358

login(), 250
m1(), 420
message-driven beans,

215–216
MessageDrivenContext.

setRollbackOnly(),
229

newInstance(), 162–164
onMessage(), 213, 219
outprintin(), 478
PortableRemoteObject.

narrow(), 402
remove(), 165
rollback(), 305
run(), 250
service(), 476
SessionSynchronization,

321–322
setEntityContext(), 162,

165, 404
setEntityContext(Entity

Context ctx), 164
setMessageDriven

Context(), 217
setRollbackOnly(), 305
setSessionContext(),

64, 94
toString(), 142
unsetEntityContext(),

165, 404
middleware, 7, 34–36
migrating older J2EE

implementations, 450
minimum variable, 174
missed ejbRemove() calls,

227
model-view-controller

paradigm, 479

INDEX 633

modifying entity bean
data, 123

MOM (Message-Oriented
Middleware), 203

multi-client data access,
114–115

multithreaded beans, 210
multiuser data sharing,

278

N
n-tier architecture, 416
naming and directory

services, 70
naming servers, 430
natural keys, 376
navigatability of

relationships, 353
NDI (Java Naming and

Directory Interface),
71

nested transactions,
284–285

network failures,
distributed
application
deployments, 277

Never attribute,
transactions, 297, 427

NewInstance() method,
162–164

nodes, 414
nonpersistence, session

beans, 82
normalization of data,

373–374
NotSupported

transactional attribute,
297, 427

NullPointer exceptions, 61

O
object databases, 109
object factories, 44
object handles, 268–269,

474
object model design, 439
object serialization, 106
object-to-relational

mapping, 370, 375
objects, 40, 53

collections, 135
ConnectionFactory, 430
context, 64–65
Destination, 430
distributed, 32
EJB, 38
HttpSession, 393
life cycles, 6
relational mapping,

106–107
relationships, 109
remote interface, 42
transactional, 280
versioning, 377–378

ODBMS, 109
oldVal conversational

state, 322
one-to-many

relationships, 326,
332–335

one-to-one relationships,
326–332

onMessage() method,
213, 219

open source code, EJB
servers, 460

operators, instanceof, 213
optimistic concurrency

control, 316

OQL (object query
language), 109

order abstractions, 473
order confirmation

JSP, 480
order line items, 473–474
order processors, 474
OTS (Object Transaction

Service), CORBA, 70,
300–301

outprintln() method, 478
overhead costs, 7

P
packages, 481
parameters, double, 191
partitioning resources, EJB

best practices, 404
partitions, clusters, 415
pass-through mode, EJB

servers, 452
passivation

alerts, 321
beans, 87
entity bean

instances, 117
stateful session

beans, 85
PasswordConfig.java, 252
PasswordLoginModule.

java, 254–255
performance

entity beans, 400–401
message-driven beans,

202
persistence

best practices, 361–365
bugs, 366
entity beans, 82, 105,

118–119, 176, 180,
366–368

I N D E X634

JDBC control, 367
persistence manager,

EJB, 21
persistence-type

element, 160
persistent data

components, 110
persistent fields, CMP

entity beans, 170
pessimistic concurrency

control, 316
phantoms, databases,

313–314
phases, transaction two-

phase commit,
317–318

pluggable persistence
providers, EJB
servers, 451

PoisonBean.java, 229
poison messages, 228–230
pooling

entity bean
instances, 116

message-driven
beans, 215

stateful session
beans, 85

portability
EJB, 13
isolation, 315

PortableRemoteObject.
narrow() method, 402

preferred customer
discounts, 7

Presentation tier, 475–476,
480–482

preserving compile time
checks, method
signatures, 76–77

pricing components, 5
pricing rules, 5–7
Prim-key-class element,

entity bean
deployment
descriptor, 160

Primary key class, 112, 139
processing queues, 414
producers, JMS, 206–207
product abstractions, 470
product detail JSP, 480
product IDs,

ProductPK.java, 184
product line example,

CMP entity bean
persistence, 180

Product.java, 181
ProductBean.java, 187–189
ProductHome.java,

182–183
ProductLocal.java, 182
ProductLocalHome.java,

184–185
ProductPK class, 184, 195
ProductPK.java, 184, 186
programmatic

authorization, 258
programmatic

invalidation, 427
programmatic

transactions, 287, 300
advantages, 291
writing, 304

programming model,
JMS, 206

programs, HelloClient,
73–75

projects
additional vertical

slices, 446

application servers, 442
business and

presentation logic
separation, 436

business requirements,
433–434

development tools, 445
EJB appropriateness,

434–435
EJB server costs, 436
horizontal team

organization, 443
initial vertical slices,

439–441
object model design,

439
reasons to use EJB, 437
resource pooling, 436
staffing, 438
standard build

process, 446
vertical team

organization, 443
proprietary descriptors,

counter bean, 96
provided components, EJB

servers, 458
PTP domains,

messaging, 205
Pub domains,

messaging, 204
pull model, messages, 224
push model, client

requests, 224

Q
quantity discounts, 5
queries, CMP entity beans,

173–174

INDEX 635

quick reference guide,
EJB, 585–614

R
rapid application

development, EJB, 13
RAS (Reliability,

Availability,
Serviceability), 412

Rational Rose, 454
read locks,

transactions, 310
read-mostly caches, entity

beans, 428
read-only caches, 427
READ COMMITTED

mode, 309, 312
READ UNCOMMITTED

mode, 309–311
recursive

relationships, 353
reentrant element, 160
references

EJB, 239–240
resource factories, 243

referential integrity,
355–356

relational mapping of
objects, 106–107

relationships
aggregation, 350
BMP entity beans, 326
cardinality, 326
circular, 354
CMP entity beans, 326
collections, 357–358
composition, 351
directionality, 344
EJB-QL, 352
local interfaces, 347

many-to-many, 336–337
navigatability, 353
objects, 109
one-to-many, 332
one-to-one, 328
recursive, 353
session beans, 327
traversing, 352

reliability
large-scale systems, 412
message-driven

beans, 203
remote exceptions, 44
remote home stubs,

automatic
fail-over, 422

remote interface, 42, 33, 53
bank account entity

bean, 137
coding, 57
counter bean, 91–92
entity beans, 401–402

remote stubs
automatic fail-over, 422
EJB clustering, 419
failed requests, 421

RemoteExceptions,
182, 402

remove() method, 62, 165
REPEATABLE READ

mode, 310, 313
request interception, 38
request-level fail-over, 414
requests, servlets, 475
Required attribute,

294–295, 400
RequiresNew

attribute, 296
res-auth entry, JDBC

connections, 242

resource factories, 241–243
resource managers, 280
resource partitioning, 404
resource pooling, 7
resource-ref element, 161
resources,

transactions, 280
responses

message-driven beans,
230–234

servlets, 475
returning collections via

finder methods, 135
reusable components,

9, 406
reusing entity beans, 399
RMI (Remote Method

Invocation), 23
RMI-IIOP (Remote

Method Invocation
over the Internet
Inter-ORB Protocol),
23, 44, 393–396, 491,
495, 499, 503, 507,
511, 515, 518–520

roll backs, 283–284
rollback() method, 305
root transactions, 285
RPS (Requests Per

Second), 414
run() method, 250

S
sagas, 286
security, 7

4-tier architecture, 416
EJB servers, 453
Java, 14
message-driven

beans, 224

I N D E X636

security contexts, 266
security identities, 246
security policies, 257,

262–263
security propagation,

266–267
security roles, 258,

260–264
semantics, message driven

beans, 214
serializability,

transactions, 310
SERIALIZABLE mode,

310, 314
serializing objects, 106
server providers, EJB

Ecosystem, 20
server-side

components, 16
Server-side output

bank account
program, 162

HelloClient
program, 75

server-side proxy
objects, 33

servers
counter bean, 100
EJB, 449

administrative
support, 456

auto-component
generation, 457

clean shutdowns, 457
clustering, 455
compatibility test

suite, 450
complex mappings,

451
conversion tools, 450

deferred database
writes, 451

distributed
transactions, 458

high availability, 453
hot deployment, 456
IDE integration, 454
in-memory data

cache, 452
instance pooling, 456
integrated tier

support, 452
intelligent load

balancing, 455
JCA, 459
JMX, 456
lazy loading, 451
messaging, 458
open sourcecode, 460
pass-through

mode, 452
pluggable

persistence
providers, 451

provided
components, 458

realtime
deployment, 457

reputable vendors,
461

scalability, 452
security, 453
specialized services,

460
stateless transparent

fail-over, 455
substituting JDBC

drivers, 451
UML editors, 454
Web services, 459

workflow engines,
459

hosting Ejb-jar files, 56
Service() method, 476
services, naming and

directory, 70
servlets, 15, 25

calling EJB components
and passing results
to JSPs, 479

Jasmine’s Computer
Parts, 468

login, 484–487
requests, 475
responses, 475

session beans, 30, 81–85
alerts, 321
descriptors, 66
life cycles, 100–101
relationships, 327

session context
interface, 94

sessions, JMS, 206
SessionSynchronization,

entity beans, 299
SessionSynchronization

methods, 321–322
SetEntityContext()

method, 162–165, 404
SetMessageDrivenContext

() method, 217
SetRollbackOnly()

method, 305
SetSessionContext()

method, 64, 94
single access point

simplicity, 414
single-threaded beans, 210
singletons, 398
skeletons, stubs, 32

INDEX 637

specialists, team
organization, 443

SPI (Service Provider
Interface), 203

staffing project, 438
standard build process,

project design, 446
starting JNDI, 74
startup classes, 211
state replication, 423–424
stateful session beans, 82

activation, 85
automatic fail-over, 425
client conversations, 85
conversational

state, 320
counter beans, 89

client code, 96
client-side output, 99
deployment

descriptor, 97–98
home interface, 94
proprietary

descriptor, 96
remote interface,

91–92
running client, 99
server-side

output, 100
session context

interface, 94
val member

variable, 91
fail-over, 423–425
failure, 394
load balancing, 424
passivation, 85
pooling, 85
swapping out, 85

stateless session beans,
83–84

clustering, 421

fail-over, 422
life cycles, 100
load balancing, 421

stateless transparent fail-
over, 455

static data delivery, 416
stored procedures,

371–373
storing objects, 106–107
stubs, skeletons, 32
sub domains,

messaging, 204
subclasses, 167–170
subtransactions, 285
superclass, CMP entity

beans, 171
Supports attribute, 296
surrogate keys, 376–377
swapping out stateful

session beans, 85
switching context,

applications, 85
synchronization protocols,

transactions, 281
synchronized

keyword, 310
synchronizing entity

beans, 115
system abstraction, 287
system administrators,

EJB Ecosystem, 19
system wide invalidation

notification, 427
system-level

exceptions, 60
systems management, 6

T
tables, versioning

columns, 378
tag-libraries, JSP, 478

TextMessage, 208, 219
thick clients, 15
this keyword, 94
threads, 6, 397

beans, 210
implicit support, 39

throughput, 414
timeouts, read only

caches, 427
Togethersoft Together/J,

454
TopicClient.java, 209
TopicConnectionFactory,

208
toString() method, 142
TPS (Transactions Per

Second), 414
transaction contexts, 319
transaction managers, 280
transactional alerts, 321
transactional

communications
protocol, 318

transactional
conversations, 320

transactional models,
282–285

transactional objects, 280
transactions, 6, 275

aborted, 282, 287
ACID properties, 280
all or nothing

paradigm, 281–283
atomic operations,

276, 279
atomicity, 281
attributes, 298
bean managed, 306
begin statements, 287
boundaries, 304
client code, 306
client-controlled, 292

I N D E X638

client-initiated, 290
commit statements, 287
committed, 282
consistency, 281
constants, 302
container managed,

292, 306
deadlock, 310
declarative, 288–289,

292, 304
demarcating

boundaries,
287–289

deployment
descriptors, 294

distributed, 317
dooming, 305
durability, 282, 317
enterprise beans, 286
entity beans, 291
flat, 282–284
isolation, 281, 307–310
locks, 310
lost updates, 308–309
Mandatory attribute,

296–297
message-driven beans,

223, 293
nested, 284–285
Never attribute, 297
NotSupported

attribute, 297
programmatic, 287, 291,

300
READ COMMITTED

mode, 312
read locks, 310
READ UNCOMMITTED

mode, 311

REPEATABLE READ
mode, 313

Required attribute,
294–295

RequiresNew
attribute, 296

roll backs, 283
selecting style, 291
serializability, 310
SERIALIZABLE

mode, 314
Supports attribute, 296
synchronization

protocols, 281
system abstraction, 287
two-phase commit, 317
write locks, 310

transferring data, entity
beans, 113

transparent fail-over, 6,
61, 414

traversing
relationships, 352

tree of transactions, 285
trip planning problem,

nested
transactions, 285

two-phase commit,
transactions, 317

U
UML (Unified Modeling

Language), 20, 454
unchecked exceptions, 61
units of work, flat

transactions, 282
unrepeatable reads,

312–313
UnsetEntityContext()

method, 165, 404
unverified order

status, 474

UserTransaction
interface, 302

utilities, jar, 56

V
val conversational

state, 322
val member variable, 91
variables, 174
vendor-specific files,

51–53, 67
versioning behavior,

377–379
vertical slices, project

design, 440
vertical team organization,

project design, 443
view cart JSP, 480

W
War files, 481
Web services,

EJB servers, 459
Web storefront JSP, 480
WebLogic, keepgenerated

option, 404
workflow engines, EJB

servers, 459
workflow solutions, 8
write locks,

transactions, 310

X
XML

deployment
descriptors, 545,
549, 553, 558, 562,
565

EJB best practices,
407–408

INDEX 639

