Modern Digital Signal Processing

ECE 5650/4650 Lecture Notes

© 1999–2011 Mark A. Wickert

Chapter _

Course Introduction/Overview

Contents

1.1	Introduction to Modern Digital Signal Processing	1-3		
1.2	Contemporary DSP			
	1.2.1 The Technology	1-4		
	1.2.2 Key Applications Areas	1-5		
1.3	Course Perspective in Comm/DSP Area ECE	1-7		
1.4	What is this course about?	1-8		
1.5	Software Analysis/Simulation Tools 1			
1.6	The Computer Projects 1			
1.7	Course Syllabus	1-11		
1.8	Instructor Policies	1-12		

CHAPTER 1. COURSE INTRODUCTION/OVERVIEW

•

1.1 Introduction to Modern Digital Signal Processing

- Contemporary DSP
 - Theory
 - Technology
 - Applications
- Course perspective
 - Expected background
 - Where to go from here
- What is this course about?
- The role of computer analysis/simulation tools in and outside this course
- The computer simulation project
- Instructor policies

1.2 Contemporary DSP

- The theoretical foundation for Modern signal processing got it's start back in the late 1960s and early 1970s
- Two key texts which started this era are *Digital Signal Processing* by Oppenheim and Schafer and *Theory and Application of Digital Signal Processing* by Rabiner and Gold, both published in 1975
- The Oppenheim and Schafer *Discrete-Time Signal Processing* text (1989, 1999, 2010) is now in its third edition
- A good source of recent theoretical developments is the *IEEE Journal on Signal Processing* (formerly Acoustics Speech and Signal Processing) and the annual *Proceedings of the International Conference on Acoustics Speech and Signal Processing* (ICASSP)
- Other applied digital signal processing conferences exist and are usually associated with trade shows

1.2.1 The Technology

- DSP chips/architectures
 - Integer/Fixed point implementations
 - Floating point implementations
 - FPGA based implementations
- DSP software and tools

1.2.2 Key Applications Areas

- Computers/Internet
 - Broadband access
 - Voice over IP
 - MP3 and related high quality audio formats
 - Multimedia in general: data, voice, music, & video
- Wireless Communications
 - Mobile communications (over 200 million phones/yr over the world)
 - High-speed modems and xDSL
 - Real-time data compression for voice and video
 - Wireless and telecommunication infrastructure
- Industrial
 - Real-time processing of industrial and medical signals
 - PC with DSP for virtual instruments for test and analysis
- Digital Control Systems
 - DSP vs microprocessors and microcontrollers
- Audio
 - MP3 players
 - Home audio and theatre systems
 - Noise cancelling, e.g., quieting a car interior using adaptive noise cancellation

- Video Imaging
 - HDTV
 - Special purpose image processing in instrumentation and medical
- Biomedical
 - Many possibilities
 - Hearing aids
 - Diagnostic imaging
- Military/Aerospace
 - An active DSP area for over 30 years
 - Many consumer DSP applications had their start here
 - Sophisticated surveillance systems and smart weapons
 - Specialty technologies include:
 - * Frequency domain processing
 - * Parallel processing
 - * Radar signal processing
 - * Software defined radio

1.3 Course Perspective in Comm/DSP Area ECE

1.4 What is this course about?

- This course has as its focus the *nuts and bolts* of one-dimensional discrete-time signals and systems analysis
 - Developing analytical skills is of primary importance
 - Introducing specialized applications is secondary
- Most all of the theoretical developments will parallel those of a traditional continuous-time signals and systems course
 - Here at UCCS, we now introduce discrete-time signal and systems in ECE 2610 (Intro to Sig & Sys), and more DSP topics are covered in ECE 3205 (Ckts & Sys II)
 - This course pushes the math well beyond the introduction in those courses
- Unique aspects of discrete-time signals and systems include:
 - Analog-to-digital and digital-to-analog interfaces
 - Multi-rate processing systems, i.e., more than one sampling rate in the signal input/output path
 - Software reconfigurability of systems
- Discrete random signals will be introduced
 - This will allow analysis of quantization affects
 - Key to follow-on courses involving statistical signal processing

1.5 Software Analysis/Simulation Tools

- The experimental investigation of discrete-time signals and systems does not require a lab full of test equipment
- What is available from the academic perspective:
 - Basic mathematical analysis tools include
 - * MATLAB, Mathematica
 - DSP specific tools include
 - * MATLAB/Simulink/SP Block Set, LabView/MathScript
 - * Agilent ADS (advanced design system) with Ptolemy
 - Starting from scratch
 - * The C/C++ programming language
 - Real-time DSP Development
 - * For Texas Instruments DSPs Code Composer Studio Platinum Edition
 - * Verilog/VHDL hardware description languages
 - * For Analog Devices DSPs Visual DSP
 - * Other tools that have code generation capability
- Inexpensive hardware evaluation is also a reality, e.g.,
 - TI C6713 DSK \$355 with USB interface
 - Others from Analog Devices and Motorola

1.6 The Computer Projects

- Computer based exercises using MATLAB will be assigned during the semester from the Burrus, et al. text
 - These projects first familiarize you with MATLAB, then work through the many details of DSP in the time and frequency domains
- A larger computer simulation project, will be assigned during the second-half of the semester, in place of additional computer based exercises
 - Past simulation projects have focused on software defined radio concepts, e.g., IF sampling, adaptive filters, a DSP based modem
 - MATLAB is sufficient for this project
- In the Spring Semester ECE 5655, *Real-Time DSP* is offered as a complement to Modern DSP
 - In this course TI Tool set, Code Composer Studio is used to program the high performance C6x processor family (specifically the C6713 DSK)
- Another follow-on path is ECE 5615, *Statistical Signal Processing*, which builds upon the theory side of DSP and introduces random signals
 - Beyond ECE 5650, an undergraduate background in probability and random variables is required

1.7 Course Syllabus

ECE 5650/4650 Modern Digital Signal Processing

Fall Semester 2011

Instructor:	Dr. Mark Wickert mwickert@uccs.edu http://www.eas.uccs.ed	Office: EB-292 u/wickert/ece5650/	Phone: 255-3500 Fax: 255-3589		
Office Hrs:	Tue. 3:30–4:15 pm and after 7:05 pm as needed, others by appointment.				
Required Texts:	Alan V. Oppenhiem and Ronald V. Schafer, <i>Discrete-Time Signal Processing</i> , third edition, Prentice-Hall, Englewood Cliffs, New Jersey, 2009.				
Notes:	Course lecture notes will be posted on the course Web Site as password required PDF files. Students are encouraged to download and print them.				
Optional Software:	MATLAB Student Version with Simulink and signal processing tools. An in- teractive numerical analysis, data analysis, and graphics package for Windows/ Linux/Mac OSX \$99.95. Order both from www.mathworks.com/stu- dent. Note: The ECE PC Lab has the full version of MATLAB and Simulink for windows (release 2011a) with many toolboxes.				
Grading:	 Graded homework Final computer pro Two "Hour" exams 	assignments, including MAT ject worth 20%/15%. Grade at 15% each, 30% total.	LAB assignments 25% option with final.		

4)	Final	exam	worth	25%/30%
	1 mai	CAum	worun	25 101 50 10.

Topics	Text Sections
1. Introduction and course overview	1
2. Discrete-time signals and systems	2.0-2.9
3. The <i>z</i> -transform	3.0–3.4
4. Sampling of continuous-time signals and discrete-time ran- dom signals	4.0–4.6 2.10, App. A 4.7–4.9
5. Transform analysis of linear time-invariant systems	5.0-5.7
6. Structures for discrete-time systems and finite precision issues	6.0–6.9
7. The discrete Fourier transform	8.0-8.7, 8.9?
8. Computation of the discrete Fourier transform	9.0–9.6
9. Applications of the DFT	Portions of 10.0–10.6

1.8 Instructor Policies

- Homework papers are due at the start of class
- If business travel or similar activities prevent you from attending class and turning in your homework, please inform me beforehand
- Grading is done on a straight 90, 80, 70, ... scale with curving below these thresholds if needed
- Screencasts of the lectures will be made available as soon as possible after each lecture; this may be of help to those of you that travel and to others for review purposes
- Homework solutions will be posted on the course Web site as PDF documents with password protection
- Old exams will be posted on the Web site prior to the hour exams