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Plan of the Two-Volume Edition
Fortran, long the epitome of stability, is once again a language in flux. Fortran 90

is not just the long-awaited updating of traditional Fortran 77 to modern computing
practices, but also demonstrates Fortran’s decisive bid to be the language of choice
for parallel programming on multiprocessor computers.

At the same time, Fortran 90 is completely backwards-compatible with all
Fortran 77 code. So, users with legacy code, or who choose to use only older
language constructs, will still get the benefit of updated and actively maintained
compilers.

As we, the authors ofNumerical Recipes, watched the gestation and birth of
Fortran 90 by its governing standards committee (an interesting process described
by a leading Committee member, Michael Metcalf, in the Foreword to our Volume
2), it became clear to us that the right moment for moving Numerical Recipes from
Fortran 77 to Fortran 90 was sooner, rather than later.

On the other hand, it was equally clear that Fortran-77-style programming —
no matter whether with Fortran 77 or Fortran 90 compilers — is, and will continue
for a long time to be, the “mother tongue” of a large population of active scientists,
engineers, and other users of numerical computation. This is not a user base that
we would willingly or knowingly abandon.

The solution was immediately clear: a two-volume edition of the Fortran
Numerical Recipes consisting of Volume 1 (this one, a corrected reprinting of the
previous one-volume edition), now retitledNumerical Recipes in Fortran 77, and a
completely new Volume 2, titledNumerical Recipes in Fortran 90: The Art of Parallel
Scientific Computing. Volume 2 begins with three chapters (21, 22, and 23) that
extend the narrative of the first volume to the new subjects of Fortran 90 language
features, parallel programming methodology, and the implementation of certain
useful utility functions in Fortran 90. Then, in exact correspondence with Volume
1’s Chapters 1–20, are new chapters B1–B20, devoted principally to the listing and
explanation of new Fortran 90 routines. With a few exceptions, each Fortran 77
routine in Volume 1 has a corresponding new Fortran 90 version in Volume 2. (The
exceptions are a few new capabilities, notably in random number generation and in
multigrid PDE solvers, that are unique to Volume 2’s Fortran 90.) Otherwise, there
is no duplication between the volumes. The detailed explanation of the algorithms
in this Volume 1 is intended to apply to, and be essential for, both volumes.

In other words:You can use this Volume 1 without having Volume 2, but you
can’t use Volume 2 without Volume 1. We think that there is much to be gained by
having and usingboth volumes: Fortran 90’s parallel language constructions are not
only useful for present and future multiprocessor machines; they also allow for the
elegant and concise formulation of many algorithms on ordinary single-processor
computers. We think that essentiallyall Fortran programmers will want gradually
to migrate into Fortran 90 and into a mode of “thinking parallel.” We have written
Volume 2 specifically to help with this important transition.

Volume 2’s discussion of parallel programming is focused on those issues of
direct relevance to the Fortran 90 programmer. Some more general aspects of parallel
programming, such as communication costs, synchronization of multiple processers,
etc., are touched on only briefly. We provide references to the extensive literature
on these more specialized topics.

xiii
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A special note to C programmers: Right now, there is no effort at producing
a parallel version of C that is comparable to Fortran 90 in maturity, acceptance,
and stability. We think, therefore, that C programmers will be well served by
using Volume 2, either in conjuction with this Volume 1 or else in conjunction with
the sister volumeNumerical Recipes in C: The Art of Scientific Computing, for an
educational excursion into Fortran 90, its parallel programming constructions, and
the numerical algorithms that capitalize on them. C and C++ programming have
not been far from our minds as we have written this two-volume version. We
think you will find that time spent in absorbing the principal lessons of Volume
2’s Chapters 21–23 will be amply repaid in the future, as C and C++ eventually
develop standard parallel extensions.
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Preface to the Second Edition

Our aim in writing the original edition ofNumerical Recipes was to provide a
book that combined general discussion, analytical mathematics, algorithmics, and
actual working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book
that is informal, fearlessly editorial, unesoteric, and above all useful. There is a
danger that, if we are not careful, we might produce a second edition that is weighty,
balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then,
we were making educated guesses, based on existing literature and our own research,
about which numerical techniques were the most important and robust. Now, we have
the benefit of direct feedback from a large reader community. Letters to our alter-ego
enterprise, Numerical Recipes Software, are in the thousands per year. (Please,don’t
telephone us.) Our post office box has become a magnet for letters pointing out
that we have omitted some particular technique, well known to be important in a
particular field of science or engineering. We value such letters, and digest them
carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this Second Edition ofNumerical
Recipes is substantially larger than its predecessor, in fact about 50% larger both in
words and number of included programs (the latter now numbering well over 300).
“Don’t let the book grow in size,” is the advice that we received from several wise
colleagues. We have tried to follow the intended spirit of that advice, even as we
violate the letter of it. We have not lengthened, or increased in difficulty, the book’s
principal discussions of mainstream topics. Many new topics are presented at this
same accessible level. Some topics, both from the earlier edition and new to this
one, are now set in smaller type that labels them as being “advanced.” The reader
who ignores such advanced sections completely will not, we think, find any lack of
continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:
• a new chapter on integral equations and inverse methods
• a detailed treatment of multigrid methods for solving elliptic partial

differential equations
• routines for band diagonal linear systems
• improved routines for linear algebra on sparse matrices
• Cholesky and QR decomposition
• orthogonal polynomials and Gaussian quadratures for arbitrary weight

functions
• methods for calculating numerical derivatives
• Pad́e approximants, and rational Chebyshev approximation
• Bessel functions, and modified Bessel functions, of fractional order; and

several other new special functions
• improved random number routines
• quasi-random sequences
• routines for adaptive and recursive Monte Carlo integration in high-

dimensional spaces
• globally convergent methods for sets of nonlinear equations

xv
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• simulated annealing minimization for continuous control spaces
• fast Fourier transform (FFT) for real data in two and three dimensions
• fast Fourier transform (FFT) using external storage
• improved fast cosine transform routines
• wavelet transforms
• Fourier integrals with upper and lower limits
• spectral analysis on unevenly sampled data
• Savitzky-Golay smoothing filters
• fitting straight line data with errors in both coordinates
• a two-dimensional Kolmogorov-Smirnoff test
• the statistical bootstrap method
• embedded Runge-Kutta-Fehlberg methods for differential equations
• high-order methods for stiff differential equations
• a new chapter on “less-numerical” algorithms, including Huffman and

arithmetic coding, arbitrary precision arithmetic, and several other topics.
Consult the Preface to the First Edition, following, or the Table of Contents, for a
list of the more “basic” subjects treated.
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who influenced many of the routines in this book, and wrote or rewrote many more
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Preface to the First Edition

We call this bookNumerical Recipes for several reasons. In one sense, this book
is indeed a “cookbook” on numerical computation. However there is an important
distinction between a cookbook and a restaurant menu. The latter presents choices
among complete dishes in each of which the individual flavors are blended and
disguised. The former — and this book — reveals the individual ingredients and
explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational
techniques. This book is unique, we think, in offering, for each topic considered,
a certain amount of general discussion, a certain amount of analytical mathematics,
a certain amount of discussion of algorithmics, and (most important) actual imple-
mentations of these ideas in the form of working computer routines. Our task has
been to find the right balance among these ingredients for each topic. You will
find that for some topics we have tilted quite far to the analytic side; this where we
have felt there to be gaps in the “standard” mathematical training. For other topics,
where the mathematical prerequisites are universally held, we have tilted towards
more in-depth discussion of the nature of the computational algorithms, or towards
practical questions of implementation.

We admit, therefore, to some unevenness in the “level” of this book. About half
of it is suitable for an advanced undergraduate course on numerical computation for
science or engineering majors. The other half ranges from the level of a graduate
course to that of a professional reference. Most cookbooks have, after all, recipes at
varying levels of complexity. An attractive feature of this approach, we think, is that
the reader can use the book at increasing levels of sophistication as his/her experience
grows. Even inexperienced readers should be able to use our most advanced routines
as black boxes. Having done so, we hope that these readers will subsequently go
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods
of numerical computation can be simultaneously efficient, clever, and — important
— clear. The alternative viewpoint, that efficient computational methods must
necessarily be so arcane and complex as to be useful only in “black box” form,
we firmly reject.

Our purpose in this book is thus to open up a large number of computational
black boxes to your scrutiny. We want to teach you to take apart these black boxes
and to put them back together again, modifying them to suit your specific needs.
We assume that you are mathematically literate, i.e., that you have the normal
mathematical preparation associated with an undergraduate degree in a physical
science, or engineering, or economics, or a quantitative social science. We assume
that you know how to program a computer. We do not assume that you have any
prior formal knowledge of numerical analysis or numerical methods.

The scope ofNumerical Recipes is supposed to be “everything up to, but
not including, partial differential equations.” We honor this in the breach: First,
we do have one introductory chapter on methods for partial differential equations
(Chapter 19). Second, we obviously cannot includeeverything else. All the so-called
“standard” topics of a numerical analysis course have been included in this book:

xviii
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linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration
(Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and
ordinary differential equations (Chapter 16). Most of these topics have been taken
beyond their standard treatments into some advanced material which we have felt
to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard
numerical analysis texts. These include the evaluation of functions and of particular
special functions of higher mathematics (Chapters 5 and 6); random numbers and
Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including
multidimensional methods (Chapter 10); Fourier transform methods, including FFT
methods and other spectral methods (Chapters 12 and 13); two chapters on the
statistical description and modeling of data (Chapters 14 and 15); and two-point
boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standardFORTRAN-77. Versions
of the book inC, Pascal, andBASIC are available separately. We have more to
say about theFORTRAN language, and the computational environment assumed by
our routines, in§1.1 (Introduction).

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical
and computational experience, in providing us with programs, in commenting on
the manuscript, or in general encouragement. We particularly wish to thank George
Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce
Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard
Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman
Acton, whose 1970 textbookNumerical Methods that Work (New York: Harper and
Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series
of books onThe Art of Computer Programming (Reading, MA: Addison-Wesley),
and for TEX, the computer typesetting language which immensely aided production
of this book.
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the U.S. National Science Foundation.
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S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

License Information

Read this section if you want to use the programs in this book on a computer.
You’ll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without this license,
which can be the free “immediate license” under terms described below, the book is
intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

• You can type the programs from this book directly into your computer. In
this case, theonly kind of license available to you is the free “immediate
license” (see below). You are not authorized to transfer or distribute a
machine-readable copy to any other person, nor to have any other person
type the programs into a computer on your behalf. We do not want to hear
bug reports from you if you choose this option, because experience has
shown thatvirtually all reported bugs in such cases are typing errors!

• You can download the Numerical Recipes programs electronically from
the Numerical Recipes On-Line Software Store, located at our Web site
(http://www.nr.com). They are packaged as a password-protected
file, and you’ll need to purchase a license to unpack them. You can
get a single-screen license and password immediately, on-line, from the
On-Line Store, with fees ranging from$50 (PC, Macintosh, educational
institutions’ UNIX) to $140 (general UNIX). Downloading the packaged
software from the On-Line Store is also the way to start if you want to
acquire a more general (multiscreen, site, or corporate) license.

xx
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• You can purchase media containing the programs from Cambridge Uni-
versity Press. Diskette versions are available in IBM-compatible format
for machines running Windows 3.1, 95, or NT. CDROM versions in ISO-
9660 format for PC, Macintosh, and UNIX systems are also available;
these include both Fortran and C versions (as well as versions in Pascal
and BASIC from the first edition) on a single CDROM. Diskettes pur-
chased from Cambridge University Press include a single-screen license
for PC or Macintosh only. The CDROM is available with a single-
screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a
slightly higher price) with a single-screen license for UNIX workstations
(order ISBN 0 521 576075). Orders for media from Cambridge Univer-
sity Press can be placed at 800 872-7423 (North America only) or by
email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest
of world). Or, visit the Web siteshttp://www.cup.org (North America)
or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses require that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web sitehttp://www.nr.com has additional information.

• [“Immediate License”] If you are the individual owner of a copy of this
book and you type one or more of its routines into your computer, we
authorize you to use them on that computer for your own personal and
noncommercial purposes. You are not authorized to transfer or distribute
machine-readable copies to any other person, or to use the routines on
more than one machine, or to distribute executable programs containing
our routines. This is the only free license.

• [“Single-Screen License”] This is the most common type of low-cost
license, with terms governed by our Single Screen (Shrinkwrap) License
document (complete terms available through our Web site). Basically, this
license lets you use Numerical Recipes routines on any one screen (PC,
workstation, X-terminal, etc.). You may also, under this license, transfer
pre-compiled, executable programs incorporating our routines to other,
unlicensed, screens or computers, providing that (i) your application is
noncommercial (i.e., does not involve the selling of your program for a
fee), (ii) the programs were first developed, compiled, and successfully
run on a licensed screen, and (iii) our routines are bound into the programs
in such a manner that they cannot be accessed as individual routines and
cannot practicably be unbound and used in other programs. That is, under
this license, your program user must not be able to use our programs as
part of a program library or “mix-and-match” workbench. Conditions for
other types of commercial or noncommercial distribution may be found
on our Web site (http://www.nr.com).
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• [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of
the Single Screen License can be extended to designated groups of
machines, defined by number of screens, number of machines, locations,
or ownership. Significant discounts from the corresponding single-screen
prices are available when the estimated number of screens exceeds 40.
Contact Numerical Recipes Software (email: orders@nr.com or fax: 781
863-1739) for details.

• [“Course Right-to-Copy License”] Instructors at accredited educational
institutions who have adopted this book for a course, and who have already
purchased a Single Screen License (either acquired with the purchase
of media, or from the Numerical Recipes On-Line Software Store), may
license the programs for use in that course as follows: Mail your name, title,
and address; the course name, number, dates, and estimated enrollment;
and advance payment of$5 per (estimated) student to Numerical Recipes
Software, at this address: P.O. Box 243, Cambridge, MA 02238 (USA).
You will receive by return mail a license authorizing you to make copies
of the programs for use by your students, and/or to transfer the programs
to a machine accessible to your students (but only for the duration of
the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generally it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is also not a friendly thing to do, since it
deprives the program’s author of compensation for his or her creative effort.) Under
copyright law, all “derivative works” (modified versions, or translations into another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied in it), its derived object
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those
ideas in your own completely different implementation, then that new program
implementation belongs to you. That is what we have done for those programs in
this book that are not entirely of our own devising. When programs in this book are
said to be “based” on programs published in copyright sources, we mean that the
ideas are the same. The expression of these ideas as source code is our own. We
believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks
of SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and
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ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademarks
of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open
Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobe Illustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt
least, Numerical Recipes (when identifying products) is a trademark of Numerical
Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.
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Computer Programs
by Chapter and Section

1.0 flmoon calculate phases of the moon by date
1.1 julday Julian Day number from calendar date
1.1 badluk Friday the 13th when the moon is full
1.1 caldat calendar date from Julian day number

2.1 gaussj Gauss-Jordan matrix inversion and linear equation
solution

2.3 ludcmp linear equation solution, LU decomposition
2.3 lubksb linear equation solution, backsubstitution
2.4 tridag solution of tridiagonal systems
2.4 banmul multiply vector by band diagonal matrix
2.4 bandec band diagonal systems, decomposition
2.4 banbks band diagonal systems, backsubstitution
2.5 mprove linear equation solution, iterative improvement
2.6 svbksb singular value backsubstitution
2.6 svdcmp singular value decomposition of a matrix
2.6 pythag calculate (a2 + b2)1/2 without overflow
2.7 cyclic solution of cyclic tridiagonal systems
2.7 sprsin convert matrix to sparse format
2.7 sprsax product of sparse matrix and vector
2.7 sprstx product of transpose sparse matrix and vector
2.7 sprstp transpose of sparse matrix
2.7 sprspm pattern multiply two sparse matrices
2.7 sprstm threshold multiply two sparse matrices
2.7 linbcg biconjugate gradient solution of sparse systems
2.7 snrm used by linbcg for vector norm
2.7 atimes used by linbcg for sparse multiplication
2.7 asolve used by linbcg for preconditioner
2.8 vander solve Vandermonde systems
2.8 toeplz solve Toeplitz systems
2.9 choldc Cholesky decomposition
2.9 cholsl Cholesky backsubstitution
2.10 qrdcmp QR decomposition
2.10 qrsolv QR backsubstitution
2.10 rsolv right triangular backsubstitution
2.10 qrupdt update a QR decomposition
2.10 rotate Jacobi rotation used by qrupdt

3.1 polint polynomial interpolation
3.2 ratint rational function interpolation
3.3 spline construct a cubic spline
3.3 splint cubic spline interpolation
3.4 locate search an ordered table by bisection

xxiv
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3.4 hunt search a table when calls are correlated
3.5 polcoe polynomial coefficients from table of values
3.5 polcof polynomial coefficients from table of values
3.6 polin2 two-dimensional polynomial interpolation
3.6 bcucof construct two-dimensional bicubic
3.6 bcuint two-dimensional bicubic interpolation
3.6 splie2 construct two-dimensional spline
3.6 splin2 two-dimensional spline interpolation

4.2 trapzd trapezoidal rule
4.2 qtrap integrate using trapezoidal rule
4.2 qsimp integrate using Simpson’s rule
4.3 qromb integrate using Romberg adaptive method
4.4 midpnt extended midpoint rule
4.4 qromo integrate using open Romberg adaptive method
4.4 midinf integrate a function on a semi-infinite interval
4.4 midsql integrate a function with lower square-root singularity
4.4 midsqu integrate a function with upper square-root singularity
4.4 midexp integrate a function that decreases exponentially
4.5 qgaus integrate a function by Gaussian quadratures
4.5 gauleg Gauss-Legendre weights and abscissas
4.5 gaulag Gauss-Laguerre weights and abscissas
4.5 gauher Gauss-Hermite weights and abscissas
4.5 gaujac Gauss-Jacobi weights and abscissas
4.5 gaucof quadrature weights from orthogonal polynomials
4.5 orthog construct nonclassical orthogonal polynomials
4.6 quad3d integrate a function over a three-dimensional space

5.1 eulsum sum a series by Euler–van Wijngaarden algorithm
5.3 ddpoly evaluate a polynomial and its derivatives
5.3 poldiv divide one polynomial by another
5.3 ratval evaluate a rational function
5.7 dfridr numerical derivative by Ridders’ method
5.8 chebft fit a Chebyshev polynomial to a function
5.8 chebev Chebyshev polynomial evaluation
5.9 chder derivative of a function already Chebyshev fitted
5.9 chint integrate a function already Chebyshev fitted
5.10 chebpc polynomial coefficients from a Chebyshev fit
5.10 pcshft polynomial coefficients of a shifted polynomial
5.11 pccheb inverse of chebpc; use to economize power series
5.12 pade Padé approximant from power series coefficients
5.13 ratlsq rational fit by least-squares method

6.1 gammln logarithm of gamma function
6.1 factrl factorial function
6.1 bico binomial coefficients function
6.1 factln logarithm of factorial function
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6.1 beta beta function
6.2 gammp incomplete gamma function
6.2 gammq complement of incomplete gamma function
6.2 gser series used by gammp and gammq
6.2 gcf continued fraction used by gammp and gammq
6.2 erf error function
6.2 erfc complementary error function
6.2 erfcc complementary error function, concise routine
6.3 expint exponential integral En

6.3 ei exponential integral Ei
6.4 betai incomplete beta function
6.4 betacf continued fraction used by betai
6.5 bessj0 Bessel function J0

6.5 bessy0 Bessel function Y0

6.5 bessj1 Bessel function J1

6.5 bessy1 Bessel function Y1

6.5 bessy Bessel function Y of general integer order
6.5 bessj Bessel function J of general integer order
6.6 bessi0 modified Bessel function I0

6.6 bessk0 modified Bessel function K0

6.6 bessi1 modified Bessel function I1

6.6 bessk1 modified Bessel function K1

6.6 bessk modified Bessel function K of integer order
6.6 bessi modified Bessel function I of integer order
6.7 bessjy Bessel functions of fractional order
6.7 beschb Chebyshev expansion used by bessjy
6.7 bessik modified Bessel functions of fractional order
6.7 airy Airy functions
6.7 sphbes spherical Bessel functions jn and yn

6.8 plgndr Legendre polynomials, associated (spherical harmonics)
6.9 frenel Fresnel integrals S(x) and C(x)
6.9 cisi cosine and sine integrals Ci and Si
6.10 dawson Dawson’s integral
6.11 rf Carlson’s elliptic integral of the first kind
6.11 rd Carlson’s elliptic integral of the second kind
6.11 rj Carlson’s elliptic integral of the third kind
6.11 rc Carlson’s degenerate elliptic integral
6.11 ellf Legendre elliptic integral of the first kind
6.11 elle Legendre elliptic integral of the second kind
6.11 ellpi Legendre elliptic integral of the third kind
6.11 sncndn Jacobian elliptic functions
6.12 hypgeo complex hypergeometric function
6.12 hypser complex hypergeometric function, series evaluation
6.12 hypdrv complex hypergeometric function, derivative of

7.1 ran0 random deviate by Park and Miller minimal standard
7.1 ran1 random deviate, minimal standard plus shuffle
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7.1 ran2 random deviate by L’Ecuyer long period plus shuffle
7.1 ran3 random deviate by Knuth subtractive method
7.2 expdev exponential random deviates
7.2 gasdev normally distributed random deviates
7.3 gamdev gamma-law distribution random deviates
7.3 poidev Poisson distributed random deviates
7.3 bnldev binomial distributed random deviates
7.4 irbit1 random bit sequence
7.4 irbit2 random bit sequence
7.5 psdes “pseudo-DES” hashing of 64 bits
7.5 ran4 random deviates from DES-like hashing
7.7 sobseq Sobol’s quasi-random sequence
7.8 vegas adaptive multidimensional Monte Carlo integration
7.8 rebin sample rebinning used by vegas
7.8 miser recursive multidimensional Monte Carlo integration
7.8 ranpt get random point, used by miser

8.1 piksrt sort an array by straight insertion
8.1 piksr2 sort two arrays by straight insertion
8.1 shell sort an array by Shell’s method
8.2 sort sort an array by quicksort method
8.2 sort2 sort two arrays by quicksort method
8.3 hpsort sort an array by heapsort method
8.4 indexx construct an index for an array
8.4 sort3 sort, use an index to sort 3 or more arrays
8.4 rank construct a rank table for an array
8.5 select find the N th largest in an array
8.5 selip find the N th largest, without altering an array
8.5 hpsel find M largest values, without altering an array
8.6 eclass determine equivalence classes from list
8.6 eclazz determine equivalence classes from procedure

9.0 scrsho graph a function to search for roots
9.1 zbrac outward search for brackets on roots
9.1 zbrak inward search for brackets on roots
9.1 rtbis find root of a function by bisection
9.2 rtflsp find root of a function by false-position
9.2 rtsec find root of a function by secant method
9.2 zriddr find root of a function by Ridders’ method
9.3 zbrent find root of a function by Brent’s method
9.4 rtnewt find root of a function by Newton-Raphson
9.4 rtsafe find root of a function by Newton-Raphson and bisection
9.5 laguer find a root of a polynomial by Laguerre’s method
9.5 zroots roots of a polynomial by Laguerre’s method with

deflation
9.5 zrhqr roots of a polynomial by eigenvalue methods
9.5 qroot complex or double root of a polynomial, Bairstow
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9.6 mnewt Newton’s method for systems of equations
9.7 lnsrch search along a line, used by newt
9.7 newt globally convergent multi-dimensional Newton’s method
9.7 fdjac finite-difference Jacobian, used by newt
9.7 fmin norm of a vector function, used by newt
9.7 broydn secant method for systems of equations

10.1 mnbrak bracket the minimum of a function
10.1 golden find minimum of a function by golden section search
10.2 brent find minimum of a function by Brent’s method
10.3 dbrent find minimum of a function using derivative information
10.4 amoeba minimize in N -dimensions by downhill simplex method
10.4 amotry evaluate a trial point, used by amoeba
10.5 powell minimize in N -dimensions by Powell’s method
10.5 linmin minimum of a function along a ray in N -dimensions
10.5 f1dim function used by linmin
10.6 frprmn minimize in N -dimensions by conjugate gradient
10.6 df1dim alternative function used by linmin
10.7 dfpmin minimize in N -dimensions by variable metric method
10.8 simplx linear programming maximization of a linear function
10.8 simp1 linear programming, used by simplx
10.8 simp2 linear programming, used by simplx
10.8 simp3 linear programming, used by simplx
10.9 anneal traveling salesman problem by simulated annealing
10.9 revcst cost of a reversal, used by anneal
10.9 revers do a reversal, used by anneal
10.9 trncst cost of a transposition, used by anneal
10.9 trnspt do a transposition, used by anneal
10.9 metrop Metropolis algorithm, used by anneal
10.9 amebsa simulated annealing in continuous spaces
10.9 amotsa evaluate a trial point, used by amebsa

11.1 jacobi eigenvalues and eigenvectors of a symmetric matrix
11.1 eigsrt eigenvectors, sorts into order by eigenvalue
11.2 tred2 Householder reduction of a real, symmetric matrix
11.3 tqli eigensolution of a symmetric tridiagonal matrix
11.5 balanc balance a nonsymmetric matrix
11.5 elmhes reduce a general matrix to Hessenberg form
11.6 hqr eigenvalues of a Hessenberg matrix

12.2 four1 fast Fourier transform (FFT) in one dimension
12.3 twofft fast Fourier transform of two real functions
12.3 realft fast Fourier transform of a single real function
12.3 sinft fast sine transform
12.3 cosft1 fast cosine transform with endpoints
12.3 cosft2 “staggered” fast cosine transform
12.4 fourn fast Fourier transform in multidimensions
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12.5 rlft3 FFT of real data in two or three dimensions
12.6 fourfs FFT for huge data sets on external media
12.6 fourew rewind and permute files, used by fourfs

13.1 convlv convolution or deconvolution of data using FFT
13.2 correl correlation or autocorrelation of data using FFT
13.4 spctrm power spectrum estimation using FFT
13.6 memcof evaluate maximum entropy (MEM) coefficients
13.6 fixrts reflect roots of a polynomial into unit circle
13.6 predic linear prediction using MEM coefficients
13.7 evlmem power spectral estimation from MEM coefficients
13.8 period power spectrum of unevenly sampled data
13.8 fasper power spectrum of unevenly sampled larger data sets
13.8 spread extirpolate value into array, used by fasper
13.9 dftcor compute endpoint corrections for Fourier integrals
13.9 dftint high-accuracy Fourier integrals
13.10 wt1 one-dimensional discrete wavelet transform
13.10 daub4 Daubechies 4-coefficient wavelet filter
13.10 pwtset initialize coefficients for pwt
13.10 pwt partial wavelet transform
13.10 wtn multidimensional discrete wavelet transform

14.1 moment calculate moments of a data set
14.2 ttest Student’s t-test for difference of means
14.2 avevar calculate mean and variance of a data set
14.2 tutest Student’s t-test for means, case of unequal variances
14.2 tptest Student’s t-test for means, case of paired data
14.2 ftest F -test for difference of variances
14.3 chsone chi-square test for difference between data and model
14.3 chstwo chi-square test for difference between two data sets
14.3 ksone Kolmogorov-Smirnov test of data against model
14.3 kstwo Kolmogorov-Smirnov test between two data sets
14.3 probks Kolmogorov-Smirnov probability function
14.4 cntab1 contingency table analysis using chi-square
14.4 cntab2 contingency table analysis using entropy measure
14.5 pearsn Pearson’s correlation between two data sets
14.6 spear Spearman’s rank correlation between two data sets
14.6 crank replaces array elements by their rank
14.6 kendl1 correlation between two data sets, Kendall’s tau
14.6 kendl2 contingency table analysis using Kendall’s tau
14.7 ks2d1s K–S test in two dimensions, data vs. model
14.7 quadct count points by quadrants, used by ks2d1s
14.7 quadvl quadrant probabilities, used by ks2d1s
14.7 ks2d2s K–S test in two dimensions, data vs. data
14.8 savgol Savitzky-Golay smoothing coefficients

15.2 fit least-squares fit data to a straight line
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15.3 fitexy fit data to a straight line, errors in both x and y
15.3 chixy used by fitexy to calculate a χ2

15.4 lfit general linear least-squares fit by normal equations
15.4 covsrt rearrange covariance matrix, used by lfit
15.4 svdfit linear least-squares fit by singular value decomposition
15.4 svdvar variances from singular value decomposition
15.4 fpoly fit a polynomial using lfit or svdfit
15.4 fleg fit a Legendre polynomial using lfit or svdfit
15.5 mrqmin nonlinear least-squares fit, Marquardt’s method
15.5 mrqcof used by mrqmin to evaluate coefficients
15.5 fgauss fit a sum of Gaussians using mrqmin
15.7 medfit fit data to a straight line robustly, least absolute deviation
15.7 rofunc fit data robustly, used by medfit

16.1 rk4 integrate one step of ODEs, fourth-order Runge-Kutta
16.1 rkdumb integrate ODEs by fourth-order Runge-Kutta
16.2 rkqs integrate one step of ODEs with accuracy monitoring
16.2 rkck Cash-Karp-Runge-Kutta step used by rkqs
16.2 odeint integrate ODEs with accuracy monitoring
16.3 mmid integrate ODEs by modified midpoint method
16.4 bsstep integrate ODEs, Bulirsch-Stoer step
16.4 pzextr polynomial extrapolation, used by bsstep
16.4 rzextr rational function extrapolation, used by bsstep
16.5 stoerm integrate conservative second-order ODEs
16.6 stiff integrate stiff ODEs by fourth-order Rosenbrock
16.6 jacobn sample Jacobian routine for stiff
16.6 derivs sample derivatives routine for stiff
16.6 simpr integrate stiff ODEs by semi-implicit midpoint rule
16.6 stifbs integrate stiff ODEs, Bulirsch-Stoer step

17.1 shoot solve two point boundary value problem by shooting
17.2 shootf ditto, by shooting to a fitting point
17.3 solvde two point boundary value problem, solve by relaxation
17.3 bksub backsubstitution, used by solvde
17.3 pinvs diagonalize a sub-block, used by solvde
17.3 red reduce columns of a matrix, used by solvde
17.4 sfroid spheroidal functions by method of solvde
17.4 difeq spheroidal matrix coefficients, used by sfroid
17.4 sphoot spheroidal functions by method of shoot
17.4 sphfpt spheroidal functions by method of shootf

18.1 fred2 solve linear Fredholm equations of the second kind
18.1 fredin interpolate solutions obtained with fred2
18.2 voltra linear Volterra equations of the second kind
18.3 wwghts quadrature weights for an arbitrarily singular kernel
18.3 kermom sample routine for moments of a singular kernel
18.3 quadmx sample routine for a quadrature matrix
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18.3 fredex example of solving a singular Fredholm equation

19.5 sor elliptic PDE solved by successive overrelaxation method
19.6 mglin linear elliptic PDE solved by multigrid method
19.6 rstrct half-weighting restriction, used by mglin, mgfas
19.6 interp bilinear prolongation, used by mglin, mgfas
19.6 addint interpolate and add, used by mglin
19.6 slvsml solve on coarsest grid, used by mglin
19.6 relax Gauss-Seidel relaxation, used by mglin
19.6 resid calculate residual, used by mglin
19.6 copy utility used by mglin, mgfas
19.6 fill0 utility used by mglin
19.6 maloc memory allocation utility used by mglin, mgfas
19.6 mgfas nonlinear elliptic PDE solved by multigrid method
19.6 relax2 Gauss-Seidel relaxation, used by mgfas
19.6 slvsm2 solve on coarsest grid, used by mgfas
19.6 lop applies nonlinear operator, used by mgfas
19.6 matadd utility used by mgfas
19.6 matsub utility used by mgfas
19.6 anorm2 utility used by mgfas

20.1 machar diagnose computer’s floating arithmetic
20.2 igray Gray code and its inverse
20.3 icrc1 cyclic redundancy checksum, used by icrc
20.3 icrc cyclic redundancy checksum
20.3 decchk decimal check digit calculation or verification
20.4 hufmak construct a Huffman code
20.4 hufapp append bits to a Huffman code, used by hufmak
20.4 hufenc use Huffman code to encode and compress a character
20.4 hufdec use Huffman code to decode and decompress a character
20.5 arcmak construct an arithmetic code
20.5 arcode encode or decode a character using arithmetic coding
20.5 arcsum add integer to byte string, used by arcode
20.6 mpops multiple precision arithmetic, simpler operations
20.6 mpmul multiple precision multiply, using FFT methods
20.6 mpinv multiple precision reciprocal
20.6 mpdiv multiple precision divide and remainder
20.6 mpsqrt multiple precision square root
20.6 mp2dfr multiple precision conversion to decimal base
20.6 mppi multiple precision example, compute many digits of π
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Chapter 1. Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particular tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infallible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering a practical judgment on relative merit. We
do, therefore, offer you our practical judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our advice is.

We presume that you are able to read computer programs in FORTRAN, that
being the language of this version of Numerical Recipes (Second Edition). The
book Numerical Recipes in C (Second Edition) is separately available, if you prefer
to program in that language. Earlier editions of Numerical Recipes in Pascal and
Numerical Recipes Routines and Examples in BASIC are also available; while not
containing the additional material of the Second Edition versions in C and FORTRAN,
these versions are perfectly serviceable if Pascal or BASIC is your language of
choice.

When we include programs in the text, they look like this:

SUBROUTINE flmoon(n,nph,jd,frac)
INTEGER jd,n,nph
REAL frac,RAD
PARAMETER (RAD=3.14159265/180.)

Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

INTEGER i
REAL am,as,c,t,t2,xtra
c=n+nph/4. This is how we comment an individual line.
t=c/1236.85
t2=t**2

1
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as=359.2242+29.105356*c You aren’t really intended to understand this al-
gorithm, but it does work!am=306.0253+385.816918*c+0.010730*t2

jd=2415020+28*n+7*nph
xtra=0.75933+1.53058868*c+(1.178e-4-1.55e-7*t)*t2
if(nph.eq.0.or.nph.eq.2)then

xtra=xtra+(0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin(RAD*am)
else if(nph.eq.1.or.nph.eq.3)then

xtra=xtra+(0.1721-4.e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am)
else

pause ’nph is unknown in flmoon’ This is how we will indicate error conditions.
endif
if(xtra.ge.0.)then

i=int(xtra)
else

i=int(xtra-1.)
endif
jd=jd+i
frac=xtra-i
return
END

A few remarks about our typographical conventions and programming style
are in order at this point:

• It is good programming practice to declare all variables and identifiers in
explicit “type” statements (REAL, INTEGER, etc.), even though the implicit
declaration rules of FORTRAN do not require this. We will always do
so. (As an aside to non-FORTRAN programmers, the implicit declaration
rules are that variables which begin with the letters i,j,k,l,m,n are
implicitly declared to be type INTEGER, while all other variables are
implicitly declared to be type REAL. Explicit declarations override these
conventions.)

• In sympathy with modular and object-oriented programming practice,
we separate, typographically, a routine’s “public” or “interface” section
from its “private” or “implementation” section. We do this even though
FORTRAN is by no means a modular or object-oriented language: the
separation makes sense simply as good programming style.

• The public section contains the calling interface and declarations of its
variables. We find it useful to consider PARAMETER statements, and their
associated declarations, as also being in the public section, since a user
may want to modify parameter values to suit a particular purpose. COMMON
blocks are likewise usually part of the public section, since they involve
communication between routines.

• As the last entry in the public section, we will, where applicable, put a
standardized comment line with the word USES (not a FORTRAN keyword),
followed by a list of all external subroutines and functions that the routine
references, excluding built-in FORTRAN functions. (For examples, see the
routines in §6.1.)

• An introductory comment, set in type as an indented paragraph, separates
the public section from the private or implementation section.

• Within the introductory comments, as well as in the text, we will frequently
use the notation a(1:m) to mean “the array elements a(1), a(2), . . . ,
a(m).” Likewise, notations like b(2:7) or c(1:m,1:n) are to be
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interpreted as ranges of array indices. (This use of colon to denote ranges
comes from FORTRAN-77’s syntax for array declarators and character
substrings.)

• The implementation section contains the declarations of variables that are
used only internally in the routine, any necessary SAVE statements for static
variables (variables that must be preserved between calls to the routine),
and of course the routine’s actual executable code.

• Case is not significant in FORTRAN, so it can be used to promote readability.
Our convention is to use upper case for two different, nonconflicting,
purposes. First, nonexecutable compiler keywords are in upper case (e.g.,
SUBROUTINE, REAL, COMMON); second, parameter identifiers are in upper
case. The reason for capitalizing parameters is that, because their values
are liable to be modified, the user often needs to scan the implementation
section of code to see exactly how the parameters are used.

• For simplicity, we adopt the convention of handling all errors and excep-
tional cases by the pause statement. In general, we do not intend that you
continue program execution after a pause occurs, but FORTRAN allows you
to do so — if you want to see what kind of wrong answer or catastrophic
error results. In many applications, you will want to modify our programs
to do more sophisticated error handling, for example to return with an
error flag set, or call an error-handling routine.

• In the printed form of this book, we take some special typographical
liberties regarding statement labels, and do . . . continue constructions.
These are described in §1.1. Note that no such liberties are taken in the
machine-readable Numerical Recipes diskettes, where all routines are in
standard ANSI FORTRAN-77.

Computational Environment and Program Validation

Our goal is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across different FORTRAN compilers. As surrogates for the large number of possible
combinations, we have tested all the programs in this book on the combinations
of machines, operating systems, and compilers shown on the accompanying table.
More generally, the programs should run without modification on any compiler that
implements the ANSI FORTRAN-77 standard. At the time of writing, there are not
enough installed implementations of the successor FORTRAN-90 standard to justify
our using any of its more advanced features. Since FORTRAN-90 is backwards-
compatible with FORTRAN-77, there should be no difficulty in using the programs in
this book on FORTRAN-90 compilers, as they become available.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance of
propagating typographical errors. “Driver” or demonstration programs that we used
as part of our validations are available separately as the Numerical Recipes Example
Book (FORTRAN), as well as in machine-readable form. If you plan to use more
than a few of the programs in this book, or if you plan to use programs in this book
on more than one different computer, then you may find it useful to obtain a copy
of these demonstration programs.
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Tested Machines and Compilers

Hardware O/S Version Compiler Version

IBM PC compatible 486/33 MS-DOS 5.0 Microsoft Fortran 5.1

IBM RS6000 AIX 3.0 IBM AIX XL FORTRAN Compiler/6000

IBM PC-RT BSD UNIX 4.3 “UNIX Fortran 77”

DEC VAX 4000 VMS 5.4 VAX Fortran 5.4

DEC VAXstation 2000 BSD UNIX 4.3 Berkeley f77 2.0 (4.3 bsd, SCCS lev. 6)

DECstation 5000/200 ULTRIX 4.2 DEC Fortran for ULTRIX RISC 3.1

DECsystem 5400 ULTRIX 4.1 MIPS f77 2.10

Sun SPARCstation 2 SunOS 4.1 Sun Fortran 1.4 (SC 1.0)

Apple Macintosh System 6.0.7 / MPW 3.2 Absoft Fortran 77 Compiler 3.1.2

Of course we would be foolish to claim that there are no bugs in our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to the Numerical Recipes routines of the First Edition, rest
assured: almost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should also be aware that some routines common to both
editions have alterations in their calling interfaces, so are not directly “plug compat-
ible.” A fairly complete list is: chsone, chstwo, covsrt, dfpmin, laguer, lfit,
memcof, mrqcof, mrqmin, pzextr, ran4, realft, rzextr, shoot, shootf. There
may be others (depending in part on which printing of the First Edition is taken
for the comparison). If you have written software of any appreciable complexity
that is dependent on First Edition routines, we do not recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this [1].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”
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Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now uses psdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is now hpsort)

RKQC rkqs better method

SMOOFT use convlv with coefficients from savgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listing cited references in the order cited, and listing suggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
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Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now uses psdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is now hpsort)

RKQC rkqs better method

SMOOFT use convlv with coefficients from savgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listing cited references in the order cited, and listing suggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
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different, namely a process that unfolds in time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

In all three cases, the target of the communication, in its visual form, is a human
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of this book, are in quite a different
situation. You need, or want, to know not just what a program does, but also how
it does it, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainableor reusablecode, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — all three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equally hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels [1-3].
At a low level is the ascii character set. Then, constants, identifiers, operands,
operators. Then program statements, like a(j+1)=b+c/3.0. Here, the best pro-
gramming advice is simply be clear, or (correspondingly) don’t be too tricky. You
might momentarily be proud of yourself at writing the single line

k=(2-j)*(1+3*j)/2

if you want to permute cyclically one of the values j = (0, 1, 2) into respectively
k = (1, 2, 0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1
if (k.eq.3) k=0

Many programming stylists would even argue for the ploddingly literal

if (j.eq.0) then
k=1

else if (j.eq.1) then
k=2
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else if (j.eq.2) then
k=0

else
pause ’never get here’

endif

on the grounds that it is both clear and additionally safeguarded from wrong assump-
tions about the possible values of j. Our preference among the implementations
is for the middle one.

In this simple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups” or “blocks” which make sense only taken
as a whole. The middle fragment above is one example. Another is

swap=a(j)
a(j)=b(j)
b(j)=swap

which makes immediate sense to any programmer as the exchange of two variables,
while

sum=0.0
ans=0.0
n=1

is very likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in a program is usually evident to the eye. It is good programming
practice to put in comments at this level, e.g., “initialize” or “exchange variables.”

The next level is that of control structures. These are things like the
if. . .then. . .else clauses in the example above, do loops, and so on. This
level is sufficiently important, and relevant to the hierarchical level of the routines
in this book, that we will come back to it just below.

At still higher levels in the hierarchy, we have (in FORTRAN) subroutines,
functions, and the whole “global” organization of the computational task to be
done. In the musical analogy, we are now at the level of movements and complete
works. At these levels, modularizationand encapsulationbecome important
programming concepts, the general idea being that program units should interact
with one another only through clearly defined and narrowly circumscribed interfaces.
Good modularization practice is an essential prerequisite to the success of large,
complicated software projects, especially those employing the efforts of more than
one programmer. It is also good practice (if not quite as essential) in the less massive
programming tasks that an individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 and C++, promote good modular-
ization with higher-level language constructs, absent in FORTRAN-77. In Modula-2,
for example, subroutines, type definitions, and data structures can be encapsulated
into “modules” that communicate through declared public interfaces and whose
internal workings are hidden from the rest of the program [4]. In the C++ language,
the key concept is “class,” a user-definable generalization of data type that provides
for data hiding, automatic initialization of data, memory management, dynamic
typing, and operator overloading (i.e., the user-definable extension of operators like
+ and * so as to be appropriate to operands in any particular class) [5]. Properly
used in defining the data structures that are passed between program units, classes
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can clarify and circumscribe these units’ public interfaces, reducing the chances of
programming error and also allowing a considerable degree of compile-time and
run-time error checking.

Beyond modularization, though depending on it, lie the concepts of object-
oriented programming. Here a programming language, such as C++ or Turbo Pascal
5.5 [6], allows a module’s public interface to accept redefinitions of types or actions,
and these redefinitions become shared all the way down through the module’s
hierarchy (so-called polymorphism). For example, a routine written to invert a matrix
of real numbers could — dynamically, at run time — be made able to handle complex
numbers by overloading complex data types and corresponding definitions of the
arithmetic operations. Additional concepts of inheritance(the ability to define a data
type that “inherits” all the structure of another type, plus additional structure of its
own), and object extensibility(the ability to add functionality to a module without
access to its source code, e.g., at run time), also come into play.

We have not attempted to modularize, or make objects out of, the routines in
this book, for at least two reasons. First, the chosen language, FORTRAN-77, does
not really make this possible. Second, we envision that you, the reader, might want
to incorporate the algorithms in this book, a few at a time, into modules or objects
with a structure of your own choosing. There does not exist, at present, a standard or
accepted set of “classes” for scientific object-oriented computing. While we might
have tried to invent such a set, doing so would have inevitably tied the algorithmic
content of the book (which is its raison d’être) to some rather specific, and perhaps
haphazard, set of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits of FORTRAN, we have therefore tried to
structure our programs to be “object friendly,” principally via the clear delineation of
interface vs. implementation (§1.0) and the explicit declaration of variables. Within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order in which
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statements that they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goal of structured programming is. It is to make
program control manifestly apparent in the visual presentation of the program. You
see that this goal has nothing at all to do with how the computer sees the program.
As already remarked, computers don’t care whether you use structured programming
or not. Human readers, however, do care. You yourself will also care, once you
discover how much easier it is to perfect and debug a well-structured program than
one whose control structure is obscure.
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You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essential control
structures that occur over and over again in programming, and that are therefore
given convenient representations in most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structures in consistent, conventional ways.

“Doesn’t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart’s creativity was inhibited by the sonata form, or Shakespeare’s by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, does well under the inhibitions of appropriate restrictions on format.

Second, you avoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at a glance. This means, in practice, that
you must try to avoid statement labels andgoto’s. It is not the goto’s that are
dangerous (although they do interrupt one’s reading of a program); the statement
labels are the hazard. In fact, whenever you encounter a statement label while
reading a program, you will soon become conditioned to get a sinking feeling in
the pit of your stomach. Why? Because the following questions will, by habit,
immediately spring to mind: Where did control come from in a branch to this label?
It could be anywhere in the routine! What circumstances resulted in a branch to
this label? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some older languages, notably 1966 FORTRAN and to a lesser extent FORTRAN-
77, requirestatement labels in the construction of certain standard control structures.
We will see this in more detail below. This is a demerit for these languages. In
such cases, you must use labels as required. But you should never branch to them
independently of the standard control structure. If you must branch, let it be to an
additional label, one that is not masquerading as part of a standard control structure.

We call labels that are part of a standard construction and never otherwise
branched to tame labels. They do not interfere with structured programming in any
way, except possibly typographically as distractions to the eye.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.1).

Catalog of Standard Structures

Iteration. In FORTRAN, simple iteration is performed with a do loop, for
example

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

10 continue

Notice how we always indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. The statement label 10 in this
example is a tame label. The majority of modern implementations of FORTRAN-77
provide a nonstandard language extension that obviates the tame label. Originally
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yes 

no

DO iteration
(a)

false

true

DO WHILE iteration
(b)

true

false

BREAK iteration
(d)

false

true

DO UNTIL iteration
(c)

iteration
complete?

block

increment
index

while
condition

until
condition

block

break
condition

block

block

block

Figure 1.1.1. Standard control structures used in structured programming: (a) DO iteration; (b) DO
WHILE iteration; (c) DO UNTIL iteration; (d) BREAK iteration; (e) IF structure; (f) obsolete form of
DO iteration found in FORTRAN-66, where the block is executed once even if the iteration condition
is initially not satisfied.



1.1 Program Organization and Control Structures 11

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

if
condition

block

true

else if
condition

block

false

true

. . .

. . .

false

else block

else if
condition

block

false

true

IF structure
(e)

iteration
complete?

increment
index

no

block

FORTRAN-66 DO (obsolete)
(f )

yes

Figure 1.1.1. Standard control structures used in structured programming (see caption on previous page).
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introduced in Digital Equipment Corporations’s VAX-11 FORTRAN, the “enddo”
statement is used as

do j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo

In fact, it was a terrible mistake that the American National Standard for FORTRAN-77
(ANSI X3.9–1978) failed to provide an enddo or equivalent construction. This
mistake by the people who write standards, whoever they are, presents us now,
more than 15 years later, with a painful quandary: Do we stick to the standard, and
clutter our programs with tame labels? Or do we adopt a nonstandard (albeit widely
implemented) FORTRAN construction like enddo?

We have adopted a compromise position. Standards, even imperfect standards,
are terribly important and highly necessary in a time of rapid evolution in computers
and their applications. Therefore, all machine-readable forms of our programs (e.g.,
the diskettes that you can order from the publisher — see back of this book) are
strictly FORTRAN-77 compliant. (Well, almoststrictly: there is a minor anomaly
regarding bit manipulation functions, see below.) In particular, do blocks always end
with labeled continue statements, as in the first example above.

In the printed version of this book, however, we make use of typography to
mitigate the standard’s deficiencies. The statement label that follows the do is printed
in small type — as a signal that it is a tame label that you can safely ignore. And,
the word “continue” is printed as “enddo”, which you may regard as a verypeculiar
change of font! The example above, in our adopted typographical format, is

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo 10

(Notice that we also take the typographical liberty of writing the tame label after the
“continue” statement, rather than before.)

A nested do loop looks like this:

do 12 j=1,20
s(j)=0.
do 11 k=5,10

s(j)=s(j)+a(j,k)
enddo 11

enddo 12

Generally, the numerical values of the tame labels are chosen to put the enddo’s
(labeled continue’s on the diskette) into ascending numerical order, hence the do 12

before the do 11 in the above example.

IF structure. In this structure the FORTRAN-77 standard is exemplary. Here
is a working program that consists dominantly of if control statements:
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FUNCTION julday(mm,id,iyyy)
INTEGER julday,id,iyyy,mm,IGREG
PARAMETER (IGREG=15+31*(10+12*1582)) Gregorian Calendar adopted Oct. 15, 1582.

In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER ja,jm,jy
jy=iyyy
if (jy.eq.0) pause ’julday: there is no year zero’
if (jy.lt.0) jy=jy+1
if (mm.gt.2) then Here is an example of a block IF-structure.

jm=mm+1
else

jy=jy-1
jm=mm+13

endif
julday=365*jy+int(0.25d0*jy+2000.d0)+int(30.6001d0*jm)+id+1718995
if (id+31*(mm+12*iyyy).ge.IGREG) then Test whether to change to Gregorian Calen-

dar.ja=int(0.01d0*jy)
julday=julday+2-ja+int(0.25d0*ja)

endif
return
END

(Astronomers number each 24-hour period, starting and ending at noon, with
a unique integer, the Julian Day Number [7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given calendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, . . . , 6 to Saturday.)

Do-While iteration. Most good languages, except FORTRAN, provide for
structures like the following C example:

while (n<1000) {
n=2*n;
j++; In C this has the meaning j=j+1.

}

In fact, many FORTRAN implementations have the nonstandard extension

do while (n.lt.1000)
n=2*n
j=j+1

enddo

Within the FORTRAN-77 standard, however, the structure requires a tame label:

17if (n.lt.1000) then
n=2*n
j=j+1

goto 17

endif
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There are other ways of constructing a Do-While in FORTRAN, but we try to use
the above format consistently. You will quickly get used to a statement like 17if as
signaling this structure. Notice that the two final statements are not indented, since
they are part of the control structure, not of the inside block.

Do-Until iteration. In Pascal, for example, this is rendered as

REPEAT
n:=n DIV 2; Pascal’s integer divide is DIV.
k:=k+1;

UNTIL (n=1);

In FORTRAN we write

19 continue
n=n/2
k=k+1

if (n.ne.1) goto 19

Break. In this case, you have a loop that is repeated indefinitely until some
condition tested somewhere in the middle of the loop(and possibly tested in more
than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. Standard FORTRAN does not make this structure accessible
without labels. We will try to avoid using the structure when we can. Sometimes,
however, it is plainly necessary. We do not have the patience to argue with the
designers of computer languages over this point. In FORTRAN we write

13 continue
[statements before the test]
if (· · ·) goto 14

[statements after the test]
goto 13

14 continue

Here is a program that uses several different iteration structures. One of us was
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. This is a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

PROGRAM badluk
INTEGER ic,icon,idwk,ifrac,im,iybeg,iyend,iyyy,jd,jday,n,

* julday
REAL TIMZON,frac
PARAMETER (TIMZON=-5./24.) Time zone −5 is Eastern Standard Time.
DATA iybeg,iyend /1900,2000/ The range of dates to be searched.

C USES flmoon,julday
write (*,’(1x,a,i5,a,i5)’) ’Full moons on Friday the 13th from’,

* iybeg,’ to’,iyend
do 12 iyyy=iybeg,iyend Loop over each year,

do 11 im=1,12 and each month.
jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)
if(idwk.eq.5) then

n=12.37*(iyyy-1900+(im-0.5)/12.)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until
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we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.

icon=0
1 call flmoon(n,2,jd,frac) Get date of full moon n.

ifrac=nint(24.*(frac+TIMZON)) Convert to hours in correct time zone.
if(ifrac.lt.0)then Convert from Julian Days beginning at noon

to civil days beginning at midnight.jd=jd-1
ifrac=ifrac+24

endif
if(ifrac.gt.12)then

jd=jd+1
ifrac=ifrac-12

else
ifrac=ifrac+12

endif
if(jd.eq.jday)then Did we hit our target day?

write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,

* ’ hrs after midnight (EST).’
Don’t worry if you are unfamiliar with FORTRAN’s esoteric input/output
statements; very few programs in this book do any input/output.

goto 2 Part of the break-structure, case of a match.
else Didn’t hit it.

ic=isign(1,jday-jd)
if(ic.eq.-icon) goto 2 Another break, case of no match.
icon=ic
n=n+ic

endif
goto 1

2 continue
endif

enddo 11

enddo 12

END

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT−5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every pro-
gramming language has some number of “goodies” that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don’t stand the testof time! Your program becomes difficult to translate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can almost always accomplish the supposed conveniences of these
structures in other ways. Try to do so with the above standard structures, which
really are standard. If you can’t, then use straightforward, unstructured, tests and
goto’s. This will introduce real (not tame) statement labels, whose very existence
will warn the reader to give special thought to the program’s control flow.

In FORTRAN we consider the ill-advised control structures to be
• assigned goto and assign statements
• computed goto statement
• arithmetic if statement
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About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may have noticed that, by its looping over the months and years, the program badluk
avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just this is not very interesting structurally, but it is occasionally useful:

SUBROUTINE caldat(julian,mm,id,iyyy)
INTEGER id,iyyy,julian,mm,IGREG
PARAMETER (IGREG=2299161)

Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER ja,jalpha,jb,jc,jd,je
if(julian.ge.IGREG)then Cross-over to Gregorian Calendar produces

this correction.jalpha=int(((julian-1867216)-0.25d0)/36524.25d0)
ja=julian+1+jalpha-int(0.25d0*jalpha)

else if(julian.lt.0)then Make day number positive by adding in-
teger number of Julian centuries, then
subtract them off at the end.

ja=julian+36525*(1-julian/36525)
else

ja=julian
endif
jb=ja+1524
jc=int(6680.0d0+((jb-2439870)-122.1d0)/365.25d0)
jd=365*jc+int(0.25d0*jc)
je=int((jb-jd)/30.6001d0)
id=jb-jd-int(30.6001d0*je)
mm=je-1
if(mm.gt.12)mm=mm-12
iyyy=jc-4715
if(mm.gt.2)iyyy=iyyy-1
if(iyyy.le.0)iyyy=iyyy-1
if(julian.lt.0)iyyy=iyyy-100*(1-julian/36525)
return
END

(For additional calendrical algorithms, applicable to various historical calendars, see [8].)

Some Habits and Assumed ANSI Extensions

Mentioning a few of our programming habits here will make it easier for you
to read the programs in this book.

• We habitually use m and n to refer to the logical dimensions of a matrix,
mp and np to refer to the physical dimensions. (These important concepts
are detailed in §2.0 and Figure 2.0.1.)

• Often, when a subroutine or procedure is to be passed some integer n, it
needs an internally preset value for the largest possible value that will be
passed. We habitually call this NMAX, and set it in a PARAMETER statement.
When we say in a comment, “largest value of n,” we do not mean to imply
that the program will fail algorithmically for larger values, but only that
NMAX must be altered.

• A number represented by TINY, usually a parameter, is supposed to be
much smaller than any number of interest to you, but not so small that it
underflows. Its use is usually prosaic, to prevent divide checks in some
circumstances.
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As a matter of typography, the printed FORTRAN programs in this book, if typed
into a computer exactly as written, would violate the FORTRAN-77 standard in a few
trivial ways. The anomalies, which are notpresent in the machine-readable program
distributions, are as follows:

• As already discussed, we use enddo followed by the statement label
instead of continue preceded by the label.

• Standard FORTRAN reads no more than 72 characters on a line and ignores
input from column 73 onward. Longer statements are broken up onto
“continuation lines.” In the printed programs in this book, some lines
contain more than 72 characters. When the break to a continuation line
is not shown explicitly, it should be inserted when you type the program
into a computer.

• In standard FORTRAN, columns 1 through 6 on each line are used variously
for (i) statement labels, (ii) signaling a comment line, and (iii) signaling
a continuation line. We simplify the format slightly: To the left of the
“program left margin,” an integer is a statement label (not a “tame label”
as described above), an asterisk (*) indicates a continuation line, and a “C”
indicates a comment line. Comment lines shown in this way are generally
either USES statements (see §1.0), or else “commented-out program lines”
that are separately explained in each instance.

A small number of routines in this book require the use of functions that act
bitwise on integers, e.g., bitwise “and” or “exclusive or”. Unfortunately, although
these functions are available in virtually all modern FORTRAN implementations, they
are not a part of the FORTRAN-77 standard. Even more unfortunate is the fact that
there are two different naming conventions in widespread use. We use the names
iand(i,j), ior(i,j), not(i), ieor(i,j), and ishft(i,j), for and, or, not,
exclusive-or, and left-shift, respectively, as well as the subroutines ibset(i,j),
ibclr(i,j), and the logical function btest(i,j) for bit-set, bit-clear, and bit-test.
Some (mainly UNIX) FORTRAN compilers use a different set of names, with the
following correspondences:

Us. . . Them. . .

iand(i,j) = and(i,j)
ior(i,j) = or(i,j)
not(i) = not(i)
ieor(i,j) = xor(i,j)
ishft(i,j) = lshft(i,j)
ibset(i,j) = bis(j,i) Note reversed arguments!
ibclr(i,j) = bic(j,i) Ditto!
btest(i,j) = bit(j,i) Ditto!

If you are one of “Them,” you can either modify the small number of programs
affected (e.g., by inserting FORTRAN statement function definitions at the beginning
of the routines), or else link to an object file into which you have compiled the
trivial functions that define “our” names in terms of “yours,” as in the above table.
Standards really are important!

Hexadecimal constants, for which there is no standard notation in FORTRAN
compilers, occur at three places in Chapter 7: a program fragment at the end of §7.1,
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and routines psdes and ran4 in §7.5. We use a notation like Z’3F800000’, which
is consistent with the new FORTRAN-90 standard, but you may need to change this
to, e.g., x’3f800000’, ’3F800000’X, or even 16#3F800000. In extremis, you can
convert the hex values to decimal integers; but note that most compilers will require
a negativedecimal integer as the value of a hex constant with its high-order bit set.

As already mentioned in §1.0, the notationa(1:m), in program comments and in
the text, denotes the array element range a(1), a(2), . . . , a(m). Likewise, notations
like b(2:7) or c(1:m,1:n) are to be interpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Error, Accuracy, and Stability

Although we assume no prior training of the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number of bits (binary digits) or bytes
(groups of 8 bits). Almost all computers allow the programmer a choice among
several different such representationsor data types. Data types can differ in the
number of bits utilized (the wordlength), but also in the more fundamental respect
of whether the stored number is represented in fixed-point(also called integer) or
floating-point(also called real) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.
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and routines psdes and ran4 in §7.5. We use a notation like Z’3F800000’, which
is consistent with the new FORTRAN-90 standard, but you may need to change this
to, e.g., x’3f800000’, ’3F800000’X, or even 16#3F800000. In extremis, you can
convert the hex values to decimal integers; but note that most compilers will require
a negative decimal integer as the value of a hex constant with its high-order bit set.

As already mentioned in §1.0, the notationa(1:m), in program comments and in
the text, denotes the array element range a(1), a(2), . . . , a(m). Likewise, notations
like b(2:7) or c(1:m,1:n) are to be interpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Error, Accuracy, and Stability

Although we assume no prior training of the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number of bits (binary digits) or bytes
(groups of 8 bits). Almost all computers allow the programmer a choice among
several different such representations or data types. Data types can differ in the
number of bits utilized (the wordlength), but also in the more fundamental respect
of whether the stored number is represented in fixed-point (also called integer) or
floating-point (also called real) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.
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Figure 1.2.1. Floating point representations of numbers in a typical 32-bit (4-byte) format. (a) The
number 1/2 (note the bias in the exponent); (b) the number 3; (c) the number 1/4; (d) the number
10−7, represented to machine accuracy; (e) the same number 10−7, but shifted so as to have the same
exponent as the number 3; with this shifting, all significance is lost and 10−7 becomes zero; shifting to
a common exponent must occur before two numbers can be added; (f) sum of the numbers 3 + 10−7,
which equals 3 to machine accuracy. Even though 10−7 can be represented accurately by itself, it cannot
accurately be added to a much larger number.

In floating-point representation, a number is represented internally by a sign bit
s (interpreted as plus or minus), an exact integer exponent e, and an exact positive
integer mantissa M . Taken together these represent the number

s × M × Be−E (1.2.1)

where B is the base of the representation (usually B = 2, but sometimes B = 16),
and E is the bias of the exponent, a fixed integer constant for any given machine
and representation. An example is shown in Figure 1.2.1.

Several floating-point bit patterns can represent the same number. If B = 2,
for example, a mantissa with leading (high-order) zero bits can be left-shifted, i.e.,
multiplied by a power of 2, if the exponent is decreased by a compensating amount.
Bit patterns that are “as left-shifted as they can be” are termed normalized. Most
computers always produce normalized results, since these don’t waste any bits of
the mantissa and thus allow a greater accuracy of the representation. Since the
high-order bit of a properly normalized mantissa (when B = 2) is always one, some
computers don’t store this bit at all, giving one extra bit of significance.

Arithmetic among numbers in floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact values in the form of
equation 1.2.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one, simultaneously
increasing its exponent, until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively
replaced by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number which, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is
termed the machine accuracy εm. A typical computer with B = 2 and a 32-bit
wordlength has εm around 3 × 10−8. (A more detailed discussion of machine
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characteristics, and a program to determine them, is given in §20.1.) Roughly
speaking, the machine accuracy εm is the fractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant
bit of the mantissa. Pretty much any arithmetic operation among floating numbers
should be thought of as introducing an additional fractional error of at least ε m. This
type of error is called roundoff error.

It is important to understand that εm is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bits there
are in the exponent, while εm depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of

√
Nεm, if

the roundoff errors come in randomly up or down. (The square root comes from a
random-walk.) However, this estimate can be very badly off the mark for two reasons:

(i) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errors to accumulate preferentially
in one direction. In this case the total will be of order Nεm.

(ii) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those
(few) low-order ones in which the operands differed. You might think that such a
“coincidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, in the
familiar formula for the solution of a quadratic equation,

x =
−b +

√
b2 − 4ac

2a
(1.2.2)

the addition becomes delicate and roundoff-prone whenever ac � b 2. (In §5.6 we
will learn how to avoid the problem in this particular case.)

Roundoff error is a characteristic of computer hardware. There is another,
different, kind of error that is a characteristic of the program or algorithm used,
independent of the hardware on which the program is executed. Many numerical
algorithms compute “discrete” approximations to some desired “continuous” quan-
tity. For example, an integral is evaluated numerically by computing a function
at a discrete set of points, rather than at “every” point. Or, a function may be
evaluated by summing a finite number of leading terms in its infinite series, rather
than all infinity terms. In cases like this, there is an adjustable parameter, e.g., the
number of points or of terms, such that the “true” answer is obtained only when
that parameter goes to infinity. Any practical calculation is done with a finite, but
sufficiently large, choice of that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “perfect” computer that had an infinitely accurate representation and no
roundoff error. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a slight exaggeration to say
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that clever minimization of truncation error is practically the entire content of the
field of numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can be imagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus” the roundoff error
associated with the number of operations performed.

Sometimes, however, an otherwise attractive method can be unstable. This
means that any roundoff error that becomes “mixed into” the calculation at an early
stage is successively magnified until it comes to swamp the true answer. An unstable
method would be useful on a hypothetical, perfect computer; but in this imperfect
world it is necessary for us to require that algorithms be stable — or if unstable
that we use them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm:
Suppose that it is desired to calculate all integer powers of the so-called “Golden
Mean,” the number given by

φ ≡
√

5 − 1
2

≈ 0.61803398 (1.2.3)

It turns out (you can easily verify) that the powers φn satisfy a simple recursion
relation,

φn+1 = φn−1 − φn (1.2.4)

Thus, knowing the first two values φ0 = 1 and φ1 = 0.61803398, we can successively
apply (1.2.4) performing only a single subtraction, rather than a slower multiplication
by φ, at each stage.

Unfortunately, the recurrence (1.2.4) also has another solution, namely the value
− 1

2 (
√

5 + 1). Since the recurrence is linear, and since this undesired solution has
magnitude greater than unity, any small admixture of it introduced by roundoff errors
will grow exponentially. On a typical machine with 32-bit wordlength, (1.2.4) starts
to give completely wrong answers by about n = 16, at which point φn is down to only
10−4. The recurrence (1.2.4) is unstable, and cannot be used for the purpose stated.

We will encounter the question of stability in many more sophisticated guises,
later in this book.
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Chapter 2. Solution of Linear

Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a11x1 + a12x2 + a13x3 + · · · + a1NxN = b1

a21x1 + a22x2 + a23x3 + · · · + a2NxN = b2

a31x1 + a32x2 + a33x3 + · · · + a3NxN = b3

· · · · · ·
aM1x1 + aM2x2 + aM3x3 + · · · + aMNxN = bM

(2.0.1)

Here the N unknowns xj , j = 1, 2, . . . , N are related by M equations. The
coefficients aij with i = 1, 2, . . . , M and j = 1, 2, . . . , N are known numbers, as
are the right-hand side quantities bi, i = 1, 2, . . . , M .

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of x j ’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if all equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa.) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:
• While not exact linear combinations of each other, some of the equations

may be so close to linearly dependent that roundoff errors in the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

22
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• Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of x’s that are wrong, as can be discovered by direct substitution back
into the original equations. The closer a set of equations is to being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to N as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices

Equation (2.0.1) can be written in matrix form as

A · x = b (2.0.2)

Here the raised dot denotes matrix multiplication, A is the matrix of coefficients, and
b is the right-hand side written as a column vector,

A =




a11 a12 . . . a1N

a21 a22 . . . a2N

· · ·
aM1 aM2 . . . aMN


 b =




b1

b2

· · ·
bM


 (2.0.3)

By convention, the first index on an element a ij denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

a11, a21, . . . , aM1, a12, a22, . . . , aM2, . . . , a1N , a2N , . . . aMN
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Figure 2.0.1. A matrix of logical dimension m by n is stored in an array of physical dimension mp by np.
Locations marked by “x” contain extraneous information which may be left over from some previous use of
the physical array. Circled numbers show the actual ordering of the array in computer memory, not usually
relevant to the programmer. Note, however, that the logical array does not occupy consecutive memory
locations. To locate an (i,j) element correctly, a subroutine must be told mp and np, not just i and j.

or else stored by rows in the order

a11, a12, . . . , a1N , a21, a22, . . . , a2N , . . . , aM1, aM2, . . . aMN

FORTRAN always stores by columns, and user programs are generally allowed
to exploit this fact to their advantage. By contrast, C, Pascal, and other languages
generally store by rows. Note one confusing point in the terminology, that a matrix
which is stored by columns (as in FORTRAN) has its row (i.e., first) index changing
most rapidly as one goes linearly through memory, the opposite of a car’s odometer!

For most purposes you don’t need to know what the order of storage is, since
you reference an element by its two-dimensional address: a 34 = a(3,4). It is,
however, essential that you understand the difference between an array’s physical
dimensions and its logical dimensions. When you pass an array to a subroutine,
you must, in general, tell the subroutine both of these dimensions. The distinction
between them is this: It may happen that you have a 4 × 4 matrix stored in an array
dimensioned as 10 × 10. This occurs most frequently in practice when you have
dimensioned to the largest expected value of N , but are at the moment considering
a value of N smaller than that largest possible one. In the example posed, the 16
elements of the matrix do not occupy 16 consecutive memory locations. Rather they
are spread out among the 100 dimensioned locations of the array as if the whole
10 × 10 matrix were filled. Figure 2.0.1 shows an additional example.

If you have a subroutine to invert a matrix, its call might typically look like this:

call matinv(a,ai,n,np)
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Here the subroutine has to be told both the logical size of the matrix that
you want to invert (here n = 4), and the physical size of the array in which it is
stored (here np = 10).

This seems like a trivial point, and we are sorry to belabor it. But it turns out that
most reported failures of standard linear equation and matrix manipulation packages
are due to user errors in passing inappropriate logical or physical dimensions!

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

• Solution of the matrix equation A ·x = b for an unknown vector x, where A
is a square matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1–§2.10).

• Solution of more than one matrix equation A · x j = bj , for a set of vectors
xj , j = 1, 2, . . . , each corresponding to a different, known right-hand side
vector bj . In this task the key simplification is that the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1–§2.10).

• Calculation of the matrix A−1 which is the matrix inverse of a square matrix
A, i.e., A · A−1 = A−1 · A = 1, where 1 is the identity matrix (all zeros
except for ones on the diagonal). This task is equivalent, for an N × N
matrix A, to the previous task with N different bj’s (j = 1, 2, . . . , N),
namely the unit vectors (bj = all zero elements except for 1 in the jth
component). The corresponding x’s are then the columns of the matrix
inverse of A (§2.1 and §2.3).

• Calculation of the determinant of a square matrix A (§2.3).

If M < N , or if M = N but the equations are degenerate, then there
are effectively fewer equations than unknowns. In this case there can be either no
solution, or else more than one solution vector x. In the latter event, the solution space
consists of a particular solution xp added to any linear combination of (typically)
N − M vectors (which are said to be in the nullspace of the matrix A). The task
of finding the solution space of A involves

• Singular value decomposition of a matrix A.

This subject is treated in §2.6.
In the opposite case there are more equations than unknowns, M > N . When

this occurs there is, in general, no solution vector x to equation (2.0.1), and the
set of equations is said to be overdetermined. It happens frequently, however, that
the best “compromise” solution is sought, the one that comes closest to satisfying
all equations simultaneously. If closeness is defined in the least-squares sense, i.e.,
that the sum of the squares of the differences between the left- and right-hand sides
of equation (2.0.1) be minimized, then the overdetermined linear problem reduces to a



26 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

(usually) solvable linear problem, called the

• Linear least-squares problem.

The reduced set of equations to be solved can be written as the N×N set of equations

(AT · A) · x = (AT · b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection
between singular value decomposition and the linear least-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

• Iterative improvement of a solution (§2.5)
• Various special forms: symmetric positive-definite (§2.9), tridiagonal

(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(§2.7)

• Strassen’s “fast matrix inversion” (§2.11).

Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything there is
to know about the tasks that have been defined above. In many cases you will have
no alternative but to use sophisticated black-box program packages. Several good
ones are available. LINPACK was developed at Argonne National Laboratories and
deserves particular mention because it is published, documented, and available for
free use. A successor to LINPACK, LAPACK, is now becoming available. Packages
available commercially include those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systems in mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significance is in danger
of being lost, either due to large N or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (§2.5).
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2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear equations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A−1. However, its principal weaknesses are (i) that it
requires all the right-hand sides to be stored and manipulated at the same time, and
(ii) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative technique for solving a single linear set (§2.3). The method’s
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but one that is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methods in §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routines in the next two sections.
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2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear equations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A−1. However, its principal weaknesses are (i) that it
requires all the right-hand sides to be stored and manipulated at the same time, and
(ii) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative technique for solving a single linear set (§2.3). The method’s
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but one that is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methods in §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routines in the next two sections.
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For clarity, and to avoid writing endless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below is,
of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 ·





x11

x21

x31

x41


 �




x12

x22

x32

x42


 �




x13

x23

x33

x43


 �




y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44






=






b11
b21
b31
b41


 �




b12
b22
b32
b42


 �




b13
b23
b33
b43


 �




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are b ij , i = 1, 2, 3, 4; and
that the matrix of unknown coefficients y ij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A · Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s

and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).
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• Interchanging any two columns of A gives the same solution set only
if we simultaneously interchange corresponding rows of the x’s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their original order.

Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the element a11 (this being a
trivial linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of the first row is subtracted from each other
row to make all the remaining ai1’s zero. The first column of A now agrees with
the identity matrix. We move to the second column and divide the second row by
a22, then subtract the right amount of the second row from rows 1, 3, and 4, so as to
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operations to A, we of course also do the corresponding operations to the b’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, is the fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third procedures in the above list) is numerically unstable in the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination, see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of the identity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section, partial pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot is a very good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend on the original scaling of the equations. If we take
the third linear equation in our original set and multiply it by a factor of a million, it
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is almost guaranteed that it will contribute the first pivot; yet the underlying solution
of the equations is not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. This is called implicit pivoting. There is some extra bookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routines in
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is
predictably a one or zero (if it is already in a part of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as 1 is predictably a one or zero (if its mate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise,
the solution vectors x can gradually replace the right-hand side vectors b and share
the same storage, since after each column in A is reduced, the corresponding row
entry in the b’s is never again used.

Here is the routine for Gauss-Jordan elimination with full pivoting:

SUBROUTINE gaussj(a,n,np,b,m,mp)
INTEGER m,mp,n,np,NMAX
REAL a(np,np),b(np,mp)
PARAMETER (NMAX=50)

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a(1:n,1:n)
is an input matrix stored in an array of physical dimensions np by np. b(1:n,1:m) is an in-
put matrix containing the m right-hand side vectors, stored in an array of physical dimensions
np by mp. On output, a(1:n,1:n) is replaced by its matrix inverse, and b(1:n,1:m) is
replaced by the corresponding set of solution vectors.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,icol,irow,j,k,l,ll,indxc(NMAX),indxr(NMAX),
* ipiv(NMAX) The integer arrays ipiv, indxr, and indxc are used

for bookkeeping on the pivoting.REAL big,dum,pivinv
do 11 j=1,n

ipiv(j)=0
enddo 11

do 22 i=1,n This is the main loop over the columns to be re-
duced.big=0.

do 13 j=1,n This is the outer loop of the search for a pivot ele-
ment.if(ipiv(j).ne.1)then

do 12 k=1,n
if (ipiv(k).eq.0) then

if (abs(a(j,k)).ge.big)then
big=abs(a(j,k))
irow=j
icol=k

endif
endif

enddo 12

endif
enddo 13

ipiv(icol)=ipiv(icol)+1
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
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indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
indxr(i) is the row in which that pivot element was originally located. If indxr(i) �=
indxc(i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.

if (irow.ne.icol) then
do 14 l=1,n

dum=a(irow,l)
a(irow,l)=a(icol,l)
a(icol,l)=dum

enddo 14

do 15 l=1,m
dum=b(irow,l)
b(irow,l)=b(icol,l)
b(icol,l)=dum

enddo 15

endif
indxr(i)=irow We are now ready to divide the pivot row by the pivot

element, located at irow and icol.indxc(i)=icol
if (a(icol,icol).eq.0.) pause ’singular matrix in gaussj’
pivinv=1./a(icol,icol)
a(icol,icol)=1.
do 16 l=1,n

a(icol,l)=a(icol,l)*pivinv
enddo 16

do 17 l=1,m
b(icol,l)=b(icol,l)*pivinv

enddo 17

do 21 ll=1,n Next, we reduce the rows...
if(ll.ne.icol)then ...except for the pivot one, of course.

dum=a(ll,icol)
a(ll,icol)=0.
do 18 l=1,n

a(ll,l)=a(ll,l)-a(icol,l)*dum
enddo 18

do 19 l=1,m
b(ll,l)=b(ll,l)-b(icol,l)*dum

enddo 19

endif
enddo 21

enddo 22 This is the end of the main loop over columns of the reduction.
do 24 l=n,1,-1 It only remains to unscramble the solution in view

of the column interchanges. We do this by in-
terchanging pairs of columns in the reverse order
that the permutation was built up.

if(indxr(l).ne.indxc(l))then
do 23 k=1,n

dum=a(k,indxr(l))
a(k,indxr(l))=a(k,indxc(l))
a(k,indxc(l))=dum

enddo 23

endif
enddo 24

return And we are done.
END

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrix A correspond to pre- (that is, left-) multiplication by some simple
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matrix R. For example, the matrix R with components

Rij =




1 if i = j and i �= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange A’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(1) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(2.1.7)

which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.



2.2 Gaussian Elimination with Backsubstitution 33

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a 22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):




a′
11 a′

12 a′
13 a′

14

0 a′
22 a′

23 a′
24

0 0 a′
33 a′

34

0 0 0 a′
44


 ·




x1

x2

x3

x4


 =




b′1
b′2
b′3
b′4


 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b′4/a′
44 (2.2.2)

With the last x known we can move to the penultimate x,

x3 =
1

a′
33

[b′3 − x4a
′
34] (2.2.3)

and then proceed with the x before that one. The typical step is

xi =
1
a′

ii


b′i −

N∑
j=i+1

a′
ijxj


 (2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a 22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):




a′
11 a′

12 a′
13 a′

14

0 a′
22 a′

23 a′
24

0 0 a′
33 a′

34

0 0 0 a′
44


 ·




x1

x2

x3

x4


 =




b′1
b′2
b′3
b′4


 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b′4/a′
44 (2.2.2)

With the last x known we can move to the penultimate x,

x3 =
1

a′
33

[b′3 − x4a
′
34] (2.2.3)

and then proceed with the x before that one. The typical step is

xi =
1
a′

ii


b′i −

N∑
j=i+1

a′
ijxj


 (2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N 3 and N 2M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3N3 times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and 1

2N2M times, respectively.
Each backsubstitution of a right-hand side is 1

2N2 executions of a similar loop (one
multiplication plus one subtraction). For M � N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require 1

3N3 (matrix
reduction) + 1

2N3 (right-hand side manipulations) + 1
2N3 (N backsubstitutions)

= 4
3N3 loop executions, which is more than the N 3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only 1

6N3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L · U = A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of
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The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N 3 and N 2M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3N3 times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and 1

2N2M times, respectively.
Each backsubstitution of a right-hand side is 1

2N2 executions of a similar loop (one
multiplication plus one subtraction). For M � N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require 1

3N3 (matrix
reduction) + 1

2N3 (right-hand side manipulations) + 1
2N3 (N backsubstitutions)

= 4
3N3 loop executions, which is more than the N 3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only 1

6N3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L · U = A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of
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a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:




α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44


 ·



β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44


 =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)
and then solving

U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1

α11

yi =
1

αii


bi −

i−1∑
j=1

αijyj


 i = 2, 3, . . . , N

(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN

βNN

xi =
1

βii


yi −

N∑
j=i+1

βijxj


 i = N − 1, N − 2, . . . , 1

(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2N3 to 1
6N3, while (2.3.7) is unchanged at 1

2N3.
Notice that, once we have the LU decomposition of A, we can solve with as

many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.
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Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) total N 2 equations for the N 2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specify N of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set of N 2 + N equations (2.3.8)–(2.3.11) for all the α’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . . , j, use (2.3.8), (2.3.9), and (2.3.11) to solve for β ij , namely

βij = aij −
i−1∑
k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken to mean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij , namely

αij =
1

βjj

(
aij −

j−1∑
k=1

αikβkj

)
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a ij

is used only once and never again. This means that the corresponding α ij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,




β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44


 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).
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j

diagonal elements

subdiagonal elements
etc.

etc.

x

x

a

e

Figure 2.3.1. Crout’s algorithm for LU decomposition of a matrix. Elements of the original matrix are
modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of i = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of the sum is k = j − 1 (= i − 1). This means that we don’t have to
commit ourselves as to whether the diagonal element β jj is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) α ij’s
below it in the column, i = j +1, . . . , N , is to be “promoted” to become the diagonal
β. This can be decided after all the candidates in the column are in hand. As you
should be able to guess by now, we will choose the largest one as the diagonal β
(pivot element), then do all the divisions by that element en masse. This is Crout’s
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method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison as if we had initially scaled all
the equations to make their maximum coefficient equal to unity; this is the implicit
pivoting mentioned in §2.1.

SUBROUTINE ludcmp(a,n,np,indx,d)
INTEGER n,np,indx(n),NMAX
REAL d,a(np,np),TINY
PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.

Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by
the LU decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the
row permutation effected by the partial pivoting; d is output as ±1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with lubksb to solve linear equations or invert a matrix.

INTEGER i,imax,j,k
REAL aamax,dum,sum,vv(NMAX) vv stores the implicit scaling of each row.
d=1. No row interchanges yet.
do 12 i=1,n Loop over rows to get the implicit scaling informa-

tion.aamax=0.
do 11 j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
enddo 11

if (aamax.eq.0.) pause ’singular matrix in ludcmp’ No nonzero largest element.
vv(i)=1./aamax Save the scaling.

enddo 12

do 19 j=1,n This is the loop over columns of Crout’s method.
do 14 i=1,j-1 This is equation (2.3.12) except for i = j.

sum=a(i,j)
do 13 k=1,i-1

sum=sum-a(i,k)*a(k,j)
enddo 13

a(i,j)=sum
enddo 14

aamax=0. Initialize for the search for largest pivot element.
do 16 i=j,n This is i = j of equation (2.3.12) and i = j +1 . . . N

of equation (2.3.13).sum=a(i,j)
do 15 k=1,j-1

sum=sum-a(i,k)*a(k,j)
enddo 15

a(i,j)=sum
dum=vv(i)*abs(sum) Figure of merit for the pivot.
if (dum.ge.aamax) then Is it better than the best so far?

imax=i
aamax=dum

endif
enddo 16

if (j.ne.imax)then Do we need to interchange rows?
do 17 k=1,n Yes, do so...

dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum

enddo 17

d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

endif
indx(j)=imax
if(a(j,j).eq.0.)a(j,j)=TINY
If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.
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if(j.ne.n)then Now, finally, divide by the pivot element.
dum=1./a(j,j)
do 18 i=j+1,n

a(i,j)=a(i,j)*dum
enddo 18

endif
enddo 19 Go back for the next column in the reduction.
return
END

Here is the routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER n,np,indx(n)
REAL a(np,np),b(n)

Solves the set of n linear equations A · X = B. Here a is input, not as the matrix A but
rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
permutation vector returned by ludcmp. b(1:n) is input as the right-hand side vector B,
and returns with the solution vector X. a, n, np, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient
for use in matrix inversion.

INTEGER i,ii,j,ll
REAL sum
ii=0 When ii is set to a positive value, it will become the in-

dex of the first nonvanishing element of b. We now do
the forward substitution, equation (2.3.6). The only new
wrinkle is to unscramble the permutation as we go.

do 12 i=1,n
ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.0)then

do 11 j=ii,i-1
sum=sum-a(i,j)*b(j)

enddo 11

else if (sum.ne.0.) then
ii=i A nonzero element was encountered, so from now on we will

have to do the sums in the loop above.endif
b(i)=sum

enddo 12

do 14 i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).
sum=b(i)
do 13 j=i+1,n

sum=sum-a(i,j)*b(j)
enddo 13

b(i)=sum/a(i,i) Store a component of the solution vector X.
enddo 14

return All done!
END

The LU decomposition in ludcmp requires about 1
3N3 executions of the inner

loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is ( 1

3 + 1
6 + 1

2 )N3 = N3, the same
as gaussj.
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To summarize, this is the preferred way to solve the linear set of equations
A · x = b:

call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)

The answer x will be returned in b. Your original matrix A will have been
destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

call lubksb(a,n,np,indx,b)

not, of course, with the original matrix A, but with a and indx as were already
returned from ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

INTEGER np,indx(np)
REAL a(np,np),y(np,np)
...
do 12 i=1,n Set up identity matrix.

do 11 j=1,n
y(i,j)=0.

enddo 11

y(i,i)=1.
enddo 12

call ludcmp(a,n,np,indx,d) Decompose the matrix just once.
do 13 j=1,n Find inverse by columns.

call lubksb(a,n,np,indx,y(1,j))
Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
address of the jth column of y.

enddo 13

The matrix y will now contain the inverse of the original matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.

Incidentally, if you ever have the need to compute A−1 · B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.
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Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

det =
N∏

j=1

βjj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subse-
quent backsubstitutions by lubksb.

INTEGER np,indx(np)
REAL a(np,np)
...
call ludcmp(a,n,np,indx,d) This returns d as ±1.
do 11 j=1,n

d=d*a(j,j)
enddo 11

The variable d now contains the determinant of the original matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A + iC) · (x + iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and lubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x − C · y = b

C · x + A · y = d
(2.3.17)

which can be written as a 2N × 2N set of real equations,
(

A −C
C A

)
·
(

x
y

)
=

(
b
d

)
(2.3.18)
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and then solved with ludcmp and lubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of a 2N × 2N problem involves 8 times the work of
an N × N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N) operations, and the whole solution can be encoded
very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N × N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is




b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN


 ·




u1

u2

· · ·
uN−1

uN


 =




r1

r2

· · ·
rN−1

rN


 (2.4.1)

Notice that a1 and cN are undefined and are not referenced by the routine that follows.
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2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of a 2N × 2N problem involves 8 times the work of
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N) operations, and the whole solution can be encoded
very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N × N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is




b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN


 ·




u1

u2

· · ·
uN−1

uN


 =




r1

r2

· · ·
rN−1

rN


 (2.4.1)

Notice that a1 and cN are undefined and are not referenced by the routine that follows.
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SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(n),c(n),r(n),u(n)
PARAMETER (NMAX=500)

Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(1:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.

INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’

If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
bet=b(1)
u(1)=r(1)/bet
do 11 j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(j)-a(j)*u(j-1))/bet

enddo 11

do 12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return
END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, this is not something to lose
sleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

|bj| > |aj | + |cj | j = 1, . . . , N (2.4.2)

(called diagonal dominance) then it can be shown that the algorithm cannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causes numerical instability. In practice, however, such instability is almost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systems are slightly more general and have (say) m1 ≥ 0 nonzero elements
immediately to the left of (below) the diagonal and m2 ≥ 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification if m1 and m2 are both � N .
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N × N case.
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The precise definition of a band diagonal matrix with elements aij is that

aij = 0 when j > i + m2 or i > j + m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns and N rows. This is best illustrated by an example:
The band diagonal matrix




3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4




(2.4.4)

which has N = 7, m1 = 2, and m2 = 1, is stored compactly as the 7 × 4 matrix,




x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x




(2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements aij out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to pass N , m1,
m2, and the physical dimensions np≥ N and mp≥ m1 + 1 + m2.

SUBROUTINE banmul(a,n,m1,m2,np,mp,x,b)
INTEGER m1,m2,mp,n,np
REAL a(np,mp),b(n),x(n)

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector x and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:j,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k
do 12 i=1,n

b(i)=0.
k=i-m1-1
do 11 j=max(1,1-k),min(m1+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)
enddo 11

enddo 12

return
END
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It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout’s
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U ) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N × m1. The
diagonal elements of U (whose product, times d= ±1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of ludcmp in §2.3:

SUBROUTINE bandec(a,n,m1,m2,np,mp,al,mpl,indx,d)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)

Given an n × n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
in al(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.

INTEGER i,j,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
l=m1
do 13 i=1,m1 Rearrange the storage a bit.

do 11 j=m1+2-i,mm
a(i,j-l)=a(i,j)

enddo 11

l=l-1
do 12 j=mm-l,mm

a(i,j)=0.
enddo 12

enddo 13

d=1.
l=m1
do 18 k=1,n For each row...

dum=a(k,1)
i=k
if(l.lt.n)l=l+1
do 14 j=k+1,l Find the pivot element.

if(abs(a(j,1)).gt.abs(dum))then
dum=a(j,1)
i=j

endif
enddo 14

indx(k)=i
if(dum.eq.0.) a(k,1)=TINY

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).

if(i.ne.k)then Interchange rows.
d=-d
do 15 j=1,mm

dum=a(k,j)
a(k,j)=a(i,j)
a(i,j)=dum

enddo 15

endif
do 17 i=k+1,l Do the elimination.

dum=a(i,1)/a(k,1)
al(k,i-k)=dum
do 16 j=2,mm
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a(i,j-1)=a(i,j)-dum*a(k,j)
enddo 16

a(i,mm)=0.
enddo 17

enddo 18

return
END

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U , then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail algorithmically even for nonsingular matrices; bandec is thus also useful (with
m1 = m2 = 1) for some ill-behaved tridiagonal systems.

Once the matrix A has been decomposed, any number of right-hand sides can be solved in
turn by repeated calls to banbks, the backsubstitution routine whose analog in §2.3 is lubksb.

SUBROUTINE banbks(a,n,m1,m2,np,mp,al,mpl,indx,b)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)

Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A · x = b. The solution vector x
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.

INTEGER i,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
l=m1
do 12 k=1,n Forward substitution, unscrambling the permuted rows as we

go.i=indx(k)
if(i.ne.k)then

dum=b(k)
b(k)=b(i)
b(i)=dum

endif
if(l.lt.n)l=l+1
do 11 i=k+1,l

b(i)=b(i)-al(k,i-k)*b(k)
enddo 11

enddo 12

l=1
do 14 i=n,1,-1 Backsubstitution.

dum=b(i)
do 13 k=2,l

dum=dum-a(i,k)*b(k+i-1)
enddo 13

b(i)=dum/a(i,1)
if(l.lt.mm) l=l+1

enddo 14

return
END

The routines bandec and banbks are based on the Handbook routines bandet1 and
bansol1 in [1].
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McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multiplied by the matrix A, your slightly wrong
solution gives a product slightly discrepant from the desired right-hand side b, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x + δx) − b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:
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Example 5.4.3, p. 166.
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2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) werefar from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
callediterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vectorx is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, knowx. You only know some slightly wrong solutionx + δx,
whereδx is the unknown error. When multiplied by the matrixA, your slightly wrong
solution gives a product slightly discrepant from the desired right-handsideb, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, forδb. Substituting this into (2.5.3) gives

A · δx = A · (x + δx) − b (2.5.4)

In this equation, the whole right-hand side is known, sincex + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction ofb.
Then, we need only solve (2.5.4) for the errorδx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution byLU
decomposition. In this case we already have theLU decomposed form ofA, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:
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A

A−1

δx

x +
 δx

x b
b + δb

δb

Figure 2.5.1. Iterative improvement of the solution to A · x = b. The first guess x + δx is multiplied by
A to produce b + δb. The known vector b is subtracted, giving δb. The linear set with this right-hand
side is inverted, giving δx. This is subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)
INTEGER n,np,indx(n),NMAX
REAL a(np,np),alud(np,np),b(n),x(n)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES lubksb
Improves a solution vector x(1:n) of the linear set of equations A · X = B. The matrix
a(1:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also
returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i,j
REAL r(NMAX)
DOUBLE PRECISION sdp
do 12 i=1,n Calculate the right-hand side, accumulating the resid-

ual in double precision.sdp=-b(i)
do 11 j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))
enddo 11

r(i)=sdp
enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,
do 13 i=1,n and subtract it from the old solution.

x(i)=x(i)-r(i)
enddo 13

return
END

You should note that the routine ludcmp in §2.3 destroys the input matrix as
it LU decomposes it. Since iterative improvement requires both the original matrix
and its LU decomposition, you will need to copy A before calling ludcmp. Likewise
lubksb destroys b in obtaining x, so make a copy of b also. If you don’ t mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N 2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N 3 operations.
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You can call mprove several times in succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

More on Iterative Improvement

It is illuminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector x + δx has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B0 that is assumed to be an
approximate inverse of the matrix A, so that B0 · A is approximately the identity matrix 1.
Define the residual matrix R of B0 as

R ≡ 1 − B0 · A (2.5.5)

which is supposed to be “small” (we will be more precise below). Note that therefore

B0 · A = 1 − R (2.5.6)

Next consider the following formal manipulation:

A−1 = A−1 · (B−1
0 · B0) = (A−1 · B−1

0 ) · B0 = (B0 · A)−1 · B0

= (1 − R)−1 · B0 = (1 + R + R2 + R3 + · · ·) · B0

(2.5.7)

We can define the nth partial sum of the last expression by

Bn ≡ (1 + R + · · · + Rn) · B0 (2.5.8)

so that B∞ → A−1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting

recurrence relations. As regards solving A · x = b, where x and b are vectors, define

xn ≡ Bn · b (2.5.9)

Then it is easy to show that

xn+1 = xn + B0 · (b − A · xn) (2.5.10)

This is immediately recognizable as equation (2.5.4), with −δx = xn+1 − xn, and with B0

taking the role of A−1. We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residual R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from x0 ≡ B0 ·b to x1) the first neglected term,
of order R2, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, since it uses only B0, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) is one that more
than doubles the order n at each stage:

B2n+1 = 2Bn − Bn · A · Bn n = 0, 1, 3, 7, . . . (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix B0, converges
quadratically to the unknown inverse matrix A−1 (see §9.4 for the definition of “quadrati-
cally” ). Equation (2.5.11) goes by various names, including Schultz’s Method and Hotelling’s
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N3 adds and multiplies. But we already saw in §§2.1–2.3 that direct inversion of A requires
only N3 adds and N3 multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.
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In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess B0 (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

‖R‖ ≡ max
v �=0

|R · v|
|v| (2.5.12)

If we let equation (2.5.7) act on some arbitrary right-hand side b, as one wants a matrix inverse
to do, it is obvious that a sufficient condition for convergence is

‖R‖ < 1 (2.5.13)

Pan and Reif [1] point out that a suitable initial guess for B0 is any sufficiently small constant
ε times the matrix transpose of A, that is,

B0 = εAT or R = 1 − εAT · A (2.5.14)

To see why this is so involves concepts from Chapter 11; we give here only the briefest sketch:
AT · A is a symmetric, positive definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R = diag(1 − ελ1, 1 − ελ2, . . . , 1 − ελN) (2.5.15)

where all the λi’s are positive. Evidently any ε satisfying 0 < ε < 2/(maxi λi) will give
‖R‖ < 1. It is not difficult to show that the optimal choice for ε, giving the most rapid
convergence for equation (2.5.11), is

ε = 2/(max
i

λi + min
i

λi) (2.5.16)

Rarely does one know the eigenvalues of AT · A in equation (2.5.16). Pan and Reif
derive several interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of Bn as n → ∞,

ε ≤ 1

/∑
j,k

a2
jk or ε ≤ 1

/(
max

i

∑
j

|aij | × max
j

∑
i

|aij |
)

(2.5.17)

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L2 norm, but can instead be either
the L∞ (max) norm, or the L1 (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating si ≡ |A · vi|2 for several unit vector vi’s with randomly
chosen directions in N -space. The largest eigenvalue λ can then be bounded by the maximum
of 2max si and 2NVar(si)/µ(si), where Var and µ denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “ the” answer
that you thought you should get.

SVD is also the method of choice for solving most linear least-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: Any M ×N matrix A whose number of rows M is greater than
or equal to its number of columns N , can be written as the product of an M × N
column-orthogonal matrix U, an N × N diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an N ×N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:




A




=




U




·




w1

w2

· · ·
· · ·

wN


 ·


 VT




(2.6.1)

The matrices U and V are each orthogonal in the sense that their columns are
orthonormal,

M∑
i=1

UikUin = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.2)

N∑
j=1

VjkVjn = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.3)
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2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In many
cases where Gaussian elimination andLU decomposition fail to give satisfactory
results, this set of techniques, known assingular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD is also the method of choice for solving mostlinear least-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: AnyM ×N matrixA whose number of rowsM is greater than
or equal to its number of columnsN , can be written as the product of anM × N
column-orthogonal matrixU, anN × N diagonal matrixW with positive or zero
elements (thesingular values), and the transpose of anN ×N orthogonal matrixV.
The various shapes of these matrices will be made clearer by the following tableau:




A




=




U




·




w1

w2

· · ·
· · ·

wN


 ·


 VT




(2.6.1)

The matricesU and V are each orthogonal in the sense that their columns are
orthonormal,

M∑
i=1

UikUin = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.2)

N∑
j=1

VjkVjn = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.3)
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or as a tableau,


 UT




·




U




=


 VT




·


 V




=


 1




(2.6.4)

SinceV is square, it is also row-orthonormal,V · VT = 1.
The SVD decomposition can also be carried out whenM < N . In this case

the singular valueswj for j = M + 1, . . . , N are all zero, and the corresponding
columns ofU are also zero. Equation (2.6.2) then holds only fork, n ≤ M .

The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns ofU, elements ofW, and columns ofV (or
rows ofVT ), or (ii) forming linear combinations of any columns ofU andV whose
corresponding elements ofW happen to be exactly equal. An important consequence
of the permutation freedom is that for the caseM < N , a numerical algorithm for
the decomposition need not return zerowj ’s for j = M + 1, . . . , N ; the N − M
zero singular values can be scattered among all positionsj = 1, 2, . . . , N .

At the end of this section, we give a routine,svdcmp, that performs SVD on
an arbitrary matrixA, replacing it byU (they are the same shape) and returning
W and V separately. The routinesvdcmp is based on a routine by Forsythe et
al. [1], which is in turn based on the original routine of Golub and Reinsch, found, in
various forms, in[2-4] and elsewhere. These references include extensive discussion
of the algorithm used. As much as we dislike the use of black-box routines, we are
going to ask you to accept this one, since it would take us too far afield to cover
its necessary background material here. Suffice it to say that the algorithm is very
stable, and that it is very unusual for it ever to misbehave. Most of the concepts that
enter the algorithm (Householder reduction to bidiagonal form, diagonalization by
QR procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself
thatsvdcmp does what we say it does. That is very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosenA) a complete end-to-end check.

Now let us find out what SVD is good for.
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SVD of a Square Matrix

If the matrixA is square,N × N say, thenU, V, andW are all square matrices
of the same size. Their inverses are also trivial to compute:U andV are orthogonal,
so their inverses are equal to their transposes;W is diagonal, so its inverse is the
diagonal matrix whose elements are the reciprocals of the elementsw j . From (2.6.1)
it now follows immediately that the inverse ofA is

A−1 = V · [diag(1/wj)] · UT (2.6.5)

The only thing that can go wrong with this construction is for one of thew j ’s
to be zero, or (numerically) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one of thew j ’s have this
problem, then the matrix is even more singular. So, first of all, SVD gives you a
clear diagnosis of the situation.

Formally, thecondition number of a matrix is defined as the ratio of the largest
(in magnitude) of thewj ’s to the smallest of thewj ’s. A matrix is singular if its
condition number is infinite, and it isill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less than10−6 for single precision or10−12 for double).

For singular matrices, the concepts ofnullspace and range are important.
Consider the familiar set of simultaneous equations

A · x = b (2.6.6)

whereA is a square matrix,b andx are vectors. Equation (2.6.6) definesA as a
linear mapping from the vector spacex to the vector spaceb. If A is singular, then
there is some subspace ofx, called the nullspace, that is mapped to zero,A · x = 0.
The dimension of the nullspace (the number of linearly independent vectorsx that
can be found in it) is called thenullity of A.

Now, there is also some subspace ofb that can be “reached” byA, in the sense
that there exists somex which is mapped there. This subspace ofb is called the range
of A. The dimension of the range is called therank of A. If A is nonsingular, then its
range will be all of the vector spaceb, so its rank isN . If A is singular, then the rank
will be less thanN . In fact, the relevant theorem is “rank plus nullity equalsN .”

What has this to do with SVD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns ofU whose
same-numbered elementswj arenonzero are an orthonormal set of basis vectors that
span the range; the columns ofV whose same-numbered elementsw j arezero are
an orthonormal basis for the nullspace.

Now let’s have another look at solving the set of simultaneous linear equations
(2.6.6) in the case thatA is singular. First, the set ofhomogeneous equations, where
b = 0, is solved immediately by SVD: Any column ofV whose correspondingw j

is zero yields a solution.
When the vectorb on the right-hand side is not zero, the important question is

whether it lies in the range ofA or not. If it does, then the singular set of equations
does have a solutionx; in fact it has more than one solution, since any vector in
the nullspace (any column ofV with a corresponding zerow j) can be added tox
in any linear combination.
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If we want to single out one particular member of this solution-set of vectors as
a representative, we might want to pick the one with the smallest length|x| 2. Here is
how to find that vector using SVD: Simplyreplace 1/wj by zero if wj = 0. (It is not
very often that one gets to set∞ = 0 !) Then compute (working from right to left)

x = V · [diag(1/wj)] · (UT · b) (2.6.7)

This will be the solution vector of smallest length; the columns ofV that are in the
nullspace complete the specification of the solution set.

Proof: Consider|x + x′|, wherex′ lies in the nullspace. Then, ifW−1 denotes
the modified inverse ofW with some elements zeroed,

|x + x′| =
∣∣V · W−1 · UT · b + x′∣∣

=
∣∣V · (W−1 · UT · b + VT · x′)

∣∣

=
∣∣W−1 · UT · b + VT · x′

∣∣
(2.6.8)

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that the first one has nonzeroj components only where
wj �= 0, while the second one, sincex′ is in the nullspace, has nonzeroj components
only wherewj = 0. Therefore the minimum length obtains forx ′ = 0, q.e.d.

If b is not in the range of the singular matrixA, then the set of equations (2.6.6)
has no solution. But here is some good news: Ifb is not in the range ofA, then
equation (2.6.7) can still be used to construct a “solution” vectorx. This vectorx
will not exactly solveA · x = b. But, among all possible vectorsx, it will do the
closest possible job in the least squares sense. In other words (2.6.7) finds

x which minimizes r ≡ |A · x − b| (2.6.9)

The numberr is called theresidual of the solution.
The proof is similar to (2.6.8): Suppose we modifyx by adding some arbitrary

x′. ThenA · x − b is modified by adding someb ′ ≡ A · x′. Obviouslyb′ is in
the range ofA. We then have

∣∣A · x − b + b′∣∣ =
∣∣(U · W · VT ) · (V · W−1 · UT · b) − b + b′∣∣

=
∣∣(U · W · W−1 · UT − 1) · b + b′∣∣

=
∣∣U · [(W · W−1 − 1) · UT · b + UT · b′]∣∣

=
∣∣(W · W−1 − 1) · UT · b + UT · b′∣∣

(2.6.10)

Now, (W · W−1 − 1) is a diagonal matrix which has nonzeroj components only for
wj = 0, while UT b′ has nonzeroj components only forwj �= 0, sinceb′ lies in the
range ofA. Therefore the minimum obtains forb ′ = 0, q.e.d.

Figure 2.6.1 summarizes our discussion of SVD thus far.
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A ⋅ x = b

SVD “solution”
of A ⋅ x = c

solutions of
A ⋅ x = c′solutions of

A ⋅ x = d

null
space
of A

SVD solution of
A ⋅ x = d

range of A

d
c

(b)

(a)

A

x b

c′

Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The
vector x is mapped into b, so that x satisfies the equation A · x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “ range” of A. The
“nullspace” of A is mapped to zero. The solutions of A · x = d consist of any one particular solution plus
any vector in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A · x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A · x = c′, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn’ t. That is of course true analytically. Numerically,
however, the far more common situation is that some of the w j ’s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give a formal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroing the
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small wj ’s and then using equation (2.6.7) is very often better (in the sense of the
residual |A · x − b| being smaller) than both the direct-method solution and the SVD
solution where the small wj ’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equations that is so corrupted by roundoff error as to be at
best useless; usually it is worse than useless since it “pulls” the solution vector way
off towards infinity along some direction that is almost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residual |A · x − b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small wj ’s, and/or you have to have some idea
what size of computed residual |A · x − b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of a matrix A has already been calculated by a call to svdcmp. Note
that this routine presumes that you have already zeroed the small w j ’s. It does not
do this for you. If you haven’t zeroed the small w j ’s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp),u(mp,np),v(np,np),w(np),x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

Solves A · X = B for a vector X, where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b’s.

INTEGER i,j,jj
REAL s,tmp(NMAX)
do 12 j=1,n Calculate UT B.

s=0.
if(w(j).ne.0.)then Nonzero result only if wj is nonzero.

do 11 i=1,m
s=s+u(i,j)*b(i)

enddo 11

s=s/w(j) This is the divide by wj .
endif
tmp(j)=s

enddo 12

do 14 j=1,n Matrix multiply by V to get answer.
s=0.
do 13 jj=1,n

s=s+v(j,jj)*tmp(jj)
enddo 13

x(j)=s
enddo 14

return
END

Note that a typical use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucial difference is the “editing” of the singular
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values before svbksb is called:

REAL a(np,np),u(np,np),w(np),v(np,np),b(np),x(np)
...
do 12 i=1,n Copy a into u if you don’t want it to be destroyed.

do 11 j=1,n
u(i,j)=a(i,j)

enddo 11

enddo 12

call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do 13 j=1,n

if(w(j).gt.wmax)wmax=w(j)
enddo 13

wmin=wmax*1.0e-6 This is where we set the threshold for singular values
allowed to be nonzero. The constant is typical,
but not universal. You have to experiment with
your own application.

do 14 j=1,n
if(w(j).lt.wmin)w(j)=0.

enddo 14

call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N , then you are not
expecting a unique solution. Usually there will be an N − M dimensional family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N − M zero or negligible wj ’s, since
M < N . There may be additional zero wj ’s from any degeneracies in your M
equations. Be sure that you find this many small wj ’s, and zero them before calling
svbksb, which will give you the particular solution vector x. As before, the columns
of V corresponding to zeroed wj ’s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are




A




·


x


 =




b




(2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The least-squares solution vector x is
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given by (2.6.7), which, with nonsquare matrices, looks like this,


x


 =


 V


 ·


diag(1/wj)


 ·


 UT


 ·




b




(2.6.12)

In general, the matrix W will not be singular, and no w j ’s will need to be
set to zero. Occasionally, however, there might be column degeneracies in A. In
this case you will need to zero some small wj values after all. The corresponding
column in V gives the linear combination of x’s that is then ill-determined even by
the supposedly overdetermined set.

Sometimes, although you do not need to zero any w j ’s for computational
reasons, you may nevertheless want to take note of any that are unusually small:
Their correspondingcolumns in V are linear combinations of x’s which are insensitive
to your data. In fact, you may then wish to zero these w j ’s, to reduce the number of
free parameters in the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M -dimensional vector space, with
N ≤ M . Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of N vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M × N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output wj ’s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero wj ’s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, also constructs an orthonormal basis,
see [5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A ij as a sum
of outer products of columns of U and rows of V T , with the “weighting factors”
being the singular values wj ,

Aij =
N∑

k=1

wk UikVjk (2.6.13)
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If you ever encounter a situation where most of the singular values w j of a
matrix A are very small, then A will be well-approximated by only a few terms in the
sum (2.6.13). This means that you have to store only a few columns of U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector x: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding wk, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small number K of singular
values, then this computation of A · x takes only about K(M + N) multiplications,
instead of MN for the full matrix.

SVD Algorithm

Here is the algorithm for constructing the singular value decomposition of any
matrix. See §11.2–§11.3, and also [4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES pythag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U · W · V T . The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V T ) is output as v(1:n,1:n).

INTEGER i,its,j,jj,k,l,nm
REAL anorm,c,f,g,h,s,scale,x,y,z,rv1(NMAX),pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do 25 i=1,n

l=i+1
rv1(i)=scale*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then

do 11 k=i,m
scale=scale+abs(a(k,i))

enddo 11

if(scale.ne.0.0)then
do 12 k=i,m

a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)

enddo 12

f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
do 15 j=l,n

s=0.0
do 13 k=i,m

s=s+a(k,i)*a(k,j)
enddo 13

f=s/h
do 14 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 14
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enddo 15

do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16

endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and.(i.ne.n))then

do 17 k=l,n
scale=scale+abs(a(i,k))

enddo 17

if(scale.ne.0.0)then
do 18 k=l,n

a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)

enddo 18

f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
do 19 k=l,n

rv1(k)=a(i,k)/h
enddo 19

do 23 j=l,m
s=0.0
do 21 k=l,n

s=s+a(j,k)*a(i,k)
enddo 21

do 22 k=l,n
a(j,k)=a(j,k)+s*rv1(k)

enddo 22

enddo 23

do 24 k=l,n
a(i,k)=scale*a(i,k)

enddo 24

endif
endif
anorm=max(anorm,(abs(w(i))+abs(rv1(i))))

enddo 25

do 32 i=n,1,-1 Accumulation of right-hand transformations.
if(i.lt.n)then

if(g.ne.0.0)then
do 26 j=l,n Double division to avoid possible underflow.

v(j,i)=(a(i,j)/a(i,l))/g
enddo 26

do 29 j=l,n
s=0.0
do 27 k=l,n

s=s+a(i,k)*v(k,j)
enddo 27

do 28 k=l,n
v(k,j)=v(k,j)+s*v(k,i)

enddo 28

enddo 29

endif
do 31 j=l,n

v(i,j)=0.0
v(j,i)=0.0

enddo 31

endif
v(i,i)=1.0
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g=rv1(i)
l=i

enddo 32

do 39 i=min(m,n),1,-1 Accumulation of left-hand transformations.
l=i+1
g=w(i)
do 33 j=l,n

a(i,j)=0.0
enddo 33

if(g.ne.0.0)then
g=1.0/g
do 36 j=l,n

s=0.0
do 34 k=l,m

s=s+a(k,i)*a(k,j)
enddo 34

f=(s/a(i,i))*g
do 35 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 35

enddo 36

do 37 j=i,m
a(j,i)=a(j,i)*g

enddo 37

else
do 38 j= i,m

a(j,i)=0.0
enddo 38

endif
a(i,i)=a(i,i)+1.0

enddo 39

do 49 k=n,1,-1 Diagonalization of the bidiagonal form: Loop over
singular values, and over allowed iterations.do 48 its=1,30

do 41 l=k,1,-1 Test for splitting.
nm=l-1 Note that rv1(1) is always zero.
if((abs(rv1(l))+anorm).eq.anorm) goto 2
if((abs(w(nm))+anorm).eq.anorm) goto 1

enddo 41

1 c=0.0 Cancellation of rv1(l), if l > 1.
s=1.0
do 43 i=l,k

f=s*rv1(i)
rv1(i)=c*rv1(i)
if((abs(f)+anorm).eq.anorm) goto 2
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do 42 j=1,m

y=a(j,nm)
z=a(j,i)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)

enddo 42

enddo 43

2 z=w(k)
if(l.eq.k)then Convergence.

if(z.lt.0.0)then Singular value is made nonnegative.
w(k)=-z
do 44 j=1,n

v(j,k)=-v(j,k)
enddo 44
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endif
goto 3

endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(l) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
g=pythag(f,1.0)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0 Next QR transformation:
s=1.0
do 47 j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
do 45 jj=1,n

x=v(jj,j)
z=v(jj,i)
v(jj,j)= (x*c)+(z*s)
v(jj,i)=-(x*s)+(z*c)

enddo 45

z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then

z=1.0/z
c=f*z
s=h*z

endif
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
do 46 jj=1,m

y=a(jj,j)
z=a(jj,i)
a(jj,j)= (y*c)+(z*s)
a(jj,i)=-(y*s)+(z*c)

enddo 46

enddo 47

rv1(l)=0.0
rv1(k)=f
w(k)=x

enddo 48

3 continue
enddo 49

return
END

FUNCTION pythag(a,b)
REAL a,b,pythag

Computes (a2 + b2)1/2 without destructive underflow or overflow.



2.7 Sparse Linear Systems 63

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

REAL absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)
else

if(absb.eq.0.)then
pythag=0.

else
pythag=absb*sqrt(1.+(absa/absb)**2)

endif
endif
return
END

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from the Numerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equations is called sparse if only a relatively small number
of its matrix elements aij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N 3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in §2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save
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REAL absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)
else

if(absb.eq.0.)then
pythag=0.

else
pythag=absb*sqrt(1.+(absa/absb)**2)

endif
endif
return
END

(Double precision versions ofsvdcmp, svbksb, and pythag, nameddsvdcmp,
dsvbksb, anddpythag, are used by the routineratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from theNumerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equations is calledsparse if only a relatively small number
of its matrix elementsaij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of theO(N 3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in§2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save
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both time (orderN instead ofN 3) and space (orderN instead ofN 2). The
method of solution was not different in principle from the general method ofLU
decomposition; it was just applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-calledfill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, already have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

• tridiagonal
• band diagonal (or banded) with bandwidthM
• band triangular
• block diagonal
• block tridiagonal
• block triangular
• cyclic banded
• singly (or doubly) bordered block diagonal
• singly (or doubly) bordered block triangular
• singly (or doubly) bordered band diagonal
• singly (or doubly) bordered band triangular
• other (!)

You should also be aware of some of the special sparse forms that occur in the
solution of partial differential equations in two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try ananalyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. Theanalyze stage is done once only for each
pattern of sparsity. Thefactorize stage is done once for each particular matrix that
fits the pattern. Theoperate stage is performed once for each right-hand side to
be used with the particular matrix. Consult[2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL[5] as theYale
Sparse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regularLU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.
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(a) (b) (c)

(d) (e) (f ) 

(g) (h) (i)

( j) (k)

zeros

zeros

zeros

Figure 2.7.1. Some standard forms for sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagonal; (j)
and (k) other! (after Tewarson) [1].

Sherman-Morrison Formula

Suppose that you have already obtained, by herculean effort, the inverse matrix
A−1 of a square matrix A. Now you want to make a “small” change in A, for
example change one element aij , or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A−1 without repeating



66 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

your difficult labors? Yes, if your change is of the form

A → (A + u ⊗ v) (2.7.1)

for some vectors u and v. If u is a unit vector e i, then (2.7.1) adds the components
of v to the ith row. (Recall that u ⊗ v is a matrix whose i, jth element is the product
of the ith component of u and the jth component of v.) If v is a unit vector e j , then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors ei and ej respectively, then a term is added only to the element a ij .

The Sherman-Morrison formula gives the inverse (A + u⊗ v)−1, and is derived
briefly as follows:

(A + u ⊗ v)−1 = (1 + A−1 · u ⊗ v)−1 · A−1

= (1 − A−1 · u ⊗ v + A−1 · u ⊗ v · A−1 · u ⊗ v − . . .) · A−1

= A−1 − A−1 · u ⊗ v · A−1 (1 − λ + λ2 − . . .)

= A−1 − (A−1 · u) ⊗ (v · A−1)
1 + λ

(2.7.2)
where

λ ≡ v · A−1 · u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars λ.

The use of (2.7.2) is this: Given A−1 and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z ≡ A−1 · u w ≡ (A−1)T · v λ = v · z (2.7.4)

to get the desired change in the inverse

A−1 → A−1 − z ⊗ w
1 + λ

(2.7.5)

The whole procedure requires only 3N 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (e.g., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)–(2.7.5) allow
you to build up to your related but more complicated form, adding for example a
row or column at a time. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A−1

(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N 3 method. The constant in front of the N 3 is only a few times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A −1
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is not feasible. If you want to add only a single correction of the form u ⊗ v,
and solve the linear system

(A + u ⊗ v) · x = b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A · y = b A · z = u (2.7.7)

for the vectors y and z. In terms of these,

x = y −
[

v · y
1 + (v · z)

]
z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.

Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form




b1 c1 0 · · · β
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

α · · · 0 aN bN


 ·




x1

x2

· · ·
xN−1

xN


 =




r1

r2

· · ·
rN−1

rN


 (2.7.9)

This is a tridiagonal system, except for the matrix elements α and β in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectors u and v to be

u =




γ
0
...
0
α




v =




1
0
...
0

β/γ




(2.7.10)

Here γ is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b′1 = b1 − γ, b′N = bN − αβ/γ (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

The routine cyclic below implements this algorithm. We choose the arbitrary
parameter γ = −b1 to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.
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SUBROUTINE cyclic(a,b,c,alpha,beta,r,x,n)
INTEGER n,NMAX
REAL alpha,beta,a(n),b(n),c(n),r(n),x(n)
PARAMETER (NMAX=500)

C USES tridag
Solves for a vector x(1:n) the “cyclic” set of linear equations given by equation (2.7.9).
a, b, c, and r are input vectors, while alpha and beta are the corner entries in the matrix.
The input is not modified.

INTEGER i
REAL fact,gamma,bb(NMAX),u(NMAX),z(NMAX)
if(n.le.2)pause ’n too small in cyclic’
if(n.gt.NMAX)pause ’NMAX too small in cyclic’
gamma=-b(1) Avoid subtraction error in forming bb(1).
bb(1)=b(1)-gamma Set up the diagonal of the modified tridiagonal system.
bb(n)=b(n)-alpha*beta/gamma
do 11 i=2,n-1

bb(i)=b(i)
enddo 11

call tridag(a,bb,c,r,x,n) Solve A · x = r.
u(1)=gamma Set up the vector u.
u(n)=alpha
do 12 i=2,n-1

u(i)=0.
enddo 12

call tridag(a,bb,c,u,z,n) Solve A · z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.+z(1)+beta*z(n)/gamma) Form v · x/(1 + v · z).
do 13 i=1,n Now get the solution vector x.

x(i)=x(i)-fact*z(i)
enddo 13

return
END

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A−1 you will not be able to solve the auxiliary
problems (2.7.7) efficiently after the first step. Instead, you need the Woodbury formula, which
is the block-matrix version of the Sherman-Morrison formula,

(A + U · VT )−1

= A−1 −
[
A−1 · U · (1 + VT · A−1 · U)−1 · VT · A−1

] (2.7.12)

Here A is, as usual, an N × N matrix, while U and V are N × P matrices with P < N
and usually P � N . The inner piece of the correction term may become clearer if written
as the tableau,




U




·


1 + VT · A−1 · U




−1

·


 VT


 (2.7.13)

where you can see that the matrix whose inverse is needed is only P × P rather than N ×N .
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The relation between the Woodbury formula and successive applications of the Sherman-
Morrison formula is now clarified by noting that, if U is the matrix formed by columns out of the
P vectors u1, . . . , uP , and V is the matrix formed by columns out of the P vectors v1, . . . , vP ,

U ≡


u1


 · · ·


uP


 V ≡


v1


 · · ·


vP


 (2.7.14)

then two ways of expressing the same correction to A are
(

A +
P∑

k=1

uk ⊗ vk

)
= (A + U · VT ) (2.7.15)

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A−1 in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P × P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’ t have storage for A−1, then you must use (2.7.12) in the following way:
To solve the linear equation

(
A +

P∑
k=1

uk ⊗ vk

)
· x = b (2.7.16)

first solve the P auxiliary problems

A · z1 = u1

A · z2 = u2

· · ·
A · zP = uP

(2.7.17)

and construct the matrix Z by columns from the z’s obtained,

Z ≡


z1


 · · ·


zP


 (2.7.18)

Next, do the P × P matrix inversion

H ≡ (1 + VT · Z)−1 (2.7.19)

Finally, solve the one further auxiliary problem

A · y = b (2.7.20)

In terms of these quantities, the solution is given by

x = y − Z ·
[
H · (VT · y)

]
(2.7.21)
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Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N × N matrix
A is partitioned into

A =
[

P Q
R S

]
(2.7.22)

where P and S are square matrices of size p× p and s× s respectively (p + s = N ).
The matrices Q and R are not necessarily square, and have sizes p × s and s × p,
respectively.

If the inverse of A is partitioned in the same manner,

A−1 =

[
P̃ Q̃

R̃ S̃

]
(2.7.23)

then P̃, Q̃, R̃, S̃, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P̃ = (P − Q · S−1 · R)−1

Q̃ = −(P − Q · S−1 · R)−1 · (Q · S−1)

R̃ = −(S−1 · R) · (P − Q · S−1 · R)−1

S̃ = S−1 + (S−1 · R) · (P − Q · S−1 · R)−1 · (Q · S−1)

(2.7.24)

or else by the equivalent formulas

P̃ = P−1 + (P−1 · Q) · (S − R · P−1 · Q)−1 · (R · P−1)

Q̃ = −(P−1 · Q) · (S − R · P−1 · Q)−1

R̃ = −(S − R · P−1 · Q)−1 · (R · P−1)

S̃ = (S − R · P−1 · Q)−1

(2.7.25)

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P̃ or S̃ to have the
simpler formula; or on whether the repeated expression (S−R ·P−1 ·Q)−1 is easier
to calculate than the expression (P − Q · S−1 · R)−1; or on the relative sizes of P
and S; or on whether P−1 or S−1 is already known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = det P det(S − R · P−1 · Q) = det S det(P − Q · S−1 · R) (2.7.26)
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Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in a compact
format that allocates storage only to elements which can be nonzero, plus perhaps a few wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of logical size N × N contains only a few times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N2 elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth [7] describes
one method. The Yale Sparse Matrix Package [6] and ITPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
is almost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, is that it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of logical size N × N , the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. The first of these stores matrix element values
in single or double precision as desired; the second stores integer values. The storage rules are:

• The first N locations of sa store A’s diagonal matrix elements, in order. (Note that
diagonal elements are stored even if they are zero; this is at most a slight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

• Each of the first N locations of ija stores the index of the array sa that contains
the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

• Location 1 of ija is always equal to N + 2. (It can be read to determine N .)
• Location N + 1 of ija is one greater than the index in sa of the last off-diagonal

element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the logical length of the arrays sa and ija.) Location
N + 1 of sa is not used and can be set arbitrarily.

• Entries in sa at locations ≥ N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

• Entries in ija at locations≥ N+2 contain the column number of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage
scheme. As an example, consider the matrix




3. 0. 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5. 9. 0.
0. 0. 0. 0. 2.
0. 0. 0. 6. 5.


 (2.7.27)

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 10 11

ija(k) 7 8 8 10 11 12 3 2 4 5 4

sa(k) 3. 4. 5. 0. 5. x 1. 7. 9. 2. 6.
(2.7.28)

Here x is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ija(1)-2, and the length of each array is ija(ija(1)-1)-1, namely 11.
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The diagonal element in row i is sa(i), and the off-diagonal elements in that row are in
sa(k) where k loops from ija(i) to ija(i+1)-1, if the upper limit is greater or equal to
the lower one (as in FORTRAN do loops).

Here is a routine, sprsin, that converts a matrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won’t fit into your machine at all; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

SUBROUTINE sprsin(a,n,np,thresh,nmax,sa,ija)
INTEGER n,nmax,np,ija(nmax)
REAL thresh,a(np,np),sa(nmax)

Converts a square matrix a(1:n,1:n) with physical dimension np into row-indexed sparse
storage mode. Only elements of a with magnitude ≥thresh are retained. Output is in
two linear arrays with physical dimension nmax (an input parameter): sa(1:) contains
array values, indexed by ija(1:). The logical sizes of sa and ija on output are both
ija(ija(1)-1)-1 (see text).

INTEGER i,j,k
do 11 j=1,n Store diagonal elements.

sa(j)=a(j,j)
enddo 11

ija(1)=n+2 Index to 1st row off-diagonal element, if any.
k=n+1
do 13 i=1,n Loop over rows.

do 12 j=1,n Loop over columns.
if(abs(a(i,j)).ge.thresh)then

if(i.ne.j)then Store off-diagonal elements and their columns.
k=k+1
if(k.gt.nmax)pause ’nmax too small in sprsin’
sa(k)=a(i,j)
ija(k)=j

endif
endif

enddo 12

ija(i+1)=k+1 As each row is completed, store index to next.
enddo 13

return
END

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

SUBROUTINE sprsax(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x(1:n), giving
a vector b(1:n).

INTEGER i,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprsax’
do 12 i=1,n

b(i)=sa(i)*x(i) Start with diagonal term.
do 11 k=ija(i),ija(i+1)-1 Loop over off-diagonal terms.

b(i)=b(i)+sa(k)*x(ija(k))
enddo 11

enddo 12

return
END
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It is also simple to multiply the transpose of a matrix by a vector to its right. (We will use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

SUBROUTINE sprstx(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a
vector x(1:n), giving a vector b(1:n).

INTEGER i,j,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprstx’
do 11 i=1,n Start with diagonal terms.

b(i)=sa(i)*x(i)
enddo 11

do 13 i=1,n Loop over off-diagonal terms.
do 12 k=ija(i),ija(i+1)-1

j=ija(k)
b(j)=b(j)+sa(k)*x(i)

enddo 12

enddo 13

return
END

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided, it
is done as follows: An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finally, the elements in each column
are sorted by row.

SUBROUTINE sprstp(sa,ija,sb,ijb)
INTEGER ija(*),ijb(*)
REAL sa(*),sb(*)

C USES iindexx Version of indexx with all REAL variables changed to INTEGER.
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa
and ija into arrays sb and ijb.

INTEGER j,jl,jm,jp,ju,k,m,n2,noff,inc,iv
REAL v
n2=ija(1) Linear size of matrix plus 2.
do 11 j=1,n2-2 Diagonal elements.

sb(j)=sa(j)
enddo 11

call iindexx(ija(n2-1)-ija(1),ija(n2),ijb(n2))
Index all off-diagonal elements by their columns.

jp=0
do 13 k=ija(1),ija(n2-1)-1 Loop over output off-diagonal elements.

m=ijb(k)+n2-1 Use index table to store by (former) columns.
sb(k)=sa(m)
do 12 j=jp+1,ija(m) Fill in the index to any omitted rows.

ijb(j)=k
enddo 12

jp=ija(m) Use bisection to find which row element m is in and put that
into ijb(k).jl=1

ju=n2-1
5 if (ju-jl.gt.1) then

jm=(ju+jl)/2
if(ija(jm).gt.m)then

ju=jm
else
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jl=jm
endif
goto 5

endif
ijb(k)=jl

enddo 13

do 14 j=jp+1,n2-1
ijb(j)=ija(n2-1)

enddo 14 Make a final pass to sort each row by Shell sort algorithm.
do 16 j=1,n2-2

jl=ijb(j+1)-ijb(j)
noff=ijb(j)-1
inc=1

1 inc=3*inc+1
if(inc.le.jl)goto 1

2 continue
inc=inc/3
do 15 k=noff+inc+1,noff+jl

iv=ijb(k)
v=sb(k)
m=k

3 if(ijb(m-inc).gt.iv)then
ijb(m)=ijb(m-inc)
sb(m)=sb(m-inc)
m=m-inc
if(m-noff.le.inc)goto 4

goto 3
endif

4 ijb(m)=iv
sb(m)=v

enddo 15

if(inc.gt.1)goto 2
enddo 16

return
END

The above routine embeds internally a sorting algorithm from §8.1, but calls the external
routine iindexx to construct the initial column index. This routine is identical to indexx, as
listed in §8.4, except that the latter’s two REAL declarations should be changed to integer.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. These are useful for techniques to be described in §13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns. Our routines therefore calculate A · BT , rather than A · B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.

The two implementing routines, sprspm for “pattern multiply” and sprstm for “ threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various
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combinations of diagonal or off-diagonal elements for the two input streams and output stream.

SUBROUTINE sprspm(sa,ija,sb,ijb,sc,ijc)
INTEGER ija(*),ijb(*),ijc(*)
REAL sa(*),sb(*),sc(*)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes only those components of the matrix product that are pre-
specified by the input index array ijc, which is not modified. On output, the arrays sc and
ijc give the product matrix in row-index storage mode. For sparse matrix multiplication,
this routine will often be preceded by a call to sprstp, so as to construct the transpose
of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,m,ma,mb,mbb,mn
REAL sum
if (ija(1).ne.ijb(1).or.ija(1).ne.ijc(1))

* pause ’sprspm sizes do not match’
do 13 i=1,ijc(1)-2 Loop over rows.

j=i Set up so that first pass through loop does the diag-
onal component.m=i

mn=ijc(i)
sum=sa(i)*sb(i)

1 continue Main loop over each component to be output.
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

sc(m)=sum
sum=0.e0 Reset indices for next pass through loop.
if(mn.ge.ijc(i+1))goto 3
m=mn
mn=mn+1
j=ijc(m)

goto 1
3 continue

enddo 13

return
END
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SUBROUTINE sprstm(sa,ija,sb,ijb,thresh,nmax,sc,ijc)
INTEGER nmax,ija(*),ijb(*),ijc(nmax)
REAL thresh,sa(*),sb(*),sc(nmax)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes all components of the matrix product (which may be non-
sparse!), but stores only those whose magnitude exceeds thresh. On output, the arrays
sc and ijc (whose maximum size is input as nmax) give the product matrix in row-index
storage mode. For sparse matrix multiplication, this routine will often be preceded by a call
to sprstp, so as to construct the transpose of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,k,ma,mb,mbb
REAL sum
if (ija(1).ne.ijb(1)) pause ’sprstm sizes do not match’
k=ija(1)
ijc(1)=k
do 14 i=1,ija(1)-2 Loop over rows of A,

do 13 j=1,ijb(1)-2 and rows of B.
if(i.eq.j)then

sum=sa(i)*sb(j)
else

sum=0.e0
endif
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

if(i.eq.j)then Where to put the answer...
sc(i)=sum

else if(abs(sum).gt.thresh)then
if(k.gt.nmax)pause ’sprstm: nmax to small’
sc(k)=sum
ijc(k)=j
k=k+1

endif
enddo 13

ijc(i+1)=k
enddo 14

return
END
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Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N × N linear system

A · x = b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide subroutines that perform these sparse
matrix multiplications as efficiently as possible. We, the “grand strategists” supply the general
routine, linbcg below, that solves the set of linear equations, (2.7.29), using your subroutines.

The simplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
case that A is symmetric and positive definite. It is based on the idea of minimizing the function

f(x) =
1

2
x · A · x − b · x (2.7.30)

This function is minimized when its gradient

∇f = A · x − b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions pk and improved minimizers xk. At each stage a quantity αk

is found that minimizes f(xk + αkpk), and xk+1 is set equal to the new point xk + αkpk.
The pk and xk are built up in such a way that xk+1 is also the minimizer of f over the whole
vector space of directions already taken, {p1, p2, . . . , pk}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, rk, rk, pk,
pk, k = 1, 2, . . . . You supply the initial vectors r1 and r1, and set p1 = r1, p1 = r1. Then
you carry out the following recurrence:

αk =
rk · rk

pk · A · pk

rk+1 = rk − αkA · pk

rk+1 = rk − αkAT · pk

βk =
rk+1 · rk+1

rk · rk

pk+1 = rk+1 + βkpk

pk+1 = rk+1 + βkpk

(2.7.32)

This sequence of vectors satisfies the biorthogonality condition

ri · rj = ri · rj = 0, j < i (2.7.33)

and the biconjugacy condition

pi · A · pj = pi · AT · pj = 0, j < i (2.7.34)

There is also a mutual orthogonality,

ri · pj = ri · pj = 0, j < i (2.7.35)

The proof of these properties proceeds by straightforward induction [14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must
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terminate after m ≤ N steps with rm+1 = rm+1 = 0. This is basically because after at most
N steps you run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x1 for the
solution. Choose r1 to be the residual

r1 = b − A · x1 (2.7.36)

and choose r1 = r1. Then form the sequence of improved estimates

xk+1 = xk + αkpk (2.7.37)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that rk+1 from the
recurrence is in fact the residual b − A · xk+1 corresponding to xk+1. Since rm+1 = 0,
xm+1 is the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice this is rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we choose r1 = r1. Then rk = rk and pk = pk for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routine linbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choice r1 = A · r1 instead of r1 = r1. In this case rk = A · rk and
pk = A · pk for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot products a ·b replaced by a ·A ·b. It is called the minimum residual
algorithm, because it corresponds to successive minimizations of the function

Φ(x) =
1

2
r · r =

1

2
|A · x − b|2 (2.7.38)

where the successive iterates xk minimize Φ over the same set of search directions pk generated
in the conjugate gradient method. This algorithm has been generalized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see [9,15]) is
probably the most robust of these methods.

Note that equation (2.7.38) gives

∇Φ(x) = AT · (A · x − b) (2.7.39)

For any nonsingular matrix A, AT ·A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT · A) · x = AT · b (2.7.40)

Don’t! The condition number of the matrix AT · A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

(Ã
−1 · A) · x = Ã

−1 · b (2.7.41)

The idea is that you might already be able to solve your linear system easily for some Ã close
to A, in which case Ã−1 · A ≈ 1, allowing the algorithm to converge in fewer steps. The
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matrix Ã is called a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
zk and zk defined by

Ã · zk = rk and Ã
T · zk = rk (2.7.42)

and modifies the definitions of αk, βk, pk, and pk in equation (2.7.32):

αk =
rk · zk

pk · A · pk

βk =
rk+1 · zk+1

rk · zk

pk+1 = zk+1 + βkpk

pk+1 = zk+1 + βkpk

(2.7.43)

For linbcg, below, we will ask you to supply routines that solve the auxiliary linear systems
(2.7.42). If you have no idea what to use for the preconditioner Ã, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

The routine linbcg, below, is based on a program originally written by Anne Greenbaum.
(See [13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A · x − b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

|Ã−1 · (A · x − b)|/|Ã−1 · b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in x, and requires its magnitude,
divided by the magnitude of x, to be less than tol. The setting itol=4 is the same as itol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L∞ norm instead of the L2 norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave all returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that linbcg is furnished in double precision, since it will be usually be
used when N is quite large.

SUBROUTINE linbcg(n,b,x,itol,tol,itmax,iter,err)
INTEGER iter,itmax,itol,n,NMAX
DOUBLE PRECISION err,tol,b(*),x(*),EPS Double precision is a good idea in this rou-

tine.PARAMETER (NMAX=1024,EPS=1.d-14)
C USES atimes,asolve,snrm

Solves A · x = b for x(1:n), given b(1:n), by the iterative biconjugate gradient method.
On input x(1:n) should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output,
x(1:n) is reset to the improved solution, iter is the number of iterations actually taken,
and err is the estimated error. The matrix A is referenced only through the user-supplied
routines atimes, which computes the product of either A or its transpose on a vector; and

asolve, which solves Ã · x = b or Ã
T · x = b for some preconditioner matrix Ã (possibly

the trivial diagonal part of A).
INTEGER j
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DOUBLE PRECISION ak,akden,bk,bkden,bknum,bnrm,dxnrm,
* xnrm,zm1nrm,znrm,p(NMAX),pp(NMAX),r(NMAX),rr(NMAX),
* z(NMAX),zz(NMAX),snrm

iter=0 Calculate initial residual.
call atimes(n,x,r,0) Input to atimes is x(1:n), output is r(1:n);

the final 0 indicates that the matrix (not
its transpose) is to be used.

do 11 j=1,n
r(j)=b(j)-r(j)
rr(j)=r(j)

enddo 11

C call atimes(n,r,rr,0) Uncomment this line to get the “minimum
residual” variant of the algorithm.if(itol.eq.1) then

bnrm=snrm(n,b,itol)
call asolve(n,r,z,0) Input to asolve is r(1:n), output is z(1:n);

the final 0 indicates that the matrix Ã
(not its transpose) is to be used.

else if (itol.eq.2) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)

else if (itol.eq.3.or.itol.eq.4) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
znrm=snrm(n,z,itol)

else
pause ’illegal itol in linbcg’

endif
100 if (iter.le.itmax) then Main loop.

iter=iter+1

call asolve(n,rr,zz,1) Final 1 indicates use of transpose matrix Ã
T
.

bknum=0.d0
do 12 j=1,n Calculate coefficient bk and direction vectors

p and pp.bknum=bknum+z(j)*rr(j)
enddo 12

if(iter.eq.1) then
do 13 j=1,n

p(j)=z(j)
pp(j)=zz(j)

enddo 13

else
bk=bknum/bkden
do 14 j=1,n

p(j)=bk*p(j)+z(j)
pp(j)=bk*pp(j)+zz(j)

enddo 14

endif
bkden=bknum Calculate coefficient ak, new iterate x, and

new residuals r and rr.call atimes(n,p,z,0)
akden=0.d0
do 15 j=1,n

akden=akden+z(j)*pp(j)
enddo 15

ak=bknum/akden
call atimes(n,pp,zz,1)
do 16 j=1,n

x(j)=x(j)+ak*p(j)
r(j)=r(j)-ak*z(j)
rr(j)=rr(j)-ak*zz(j)

enddo 16

call asolve(n,r,z,0) Solve Ã ·z = r and check stopping criterion.
if(itol.eq.1)then

err=snrm(n,r,itol)/bnrm
else if(itol.eq.2)then

err=snrm(n,z,itol)/bnrm
else if(itol.eq.3.or.itol.eq.4)then

zm1nrm=znrm
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znrm=snrm(n,z,itol)
if(abs(zm1nrm-znrm).gt.EPS*znrm) then

dxnrm=abs(ak)*snrm(n,p,itol)
err=znrm/abs(zm1nrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
xnrm=snrm(n,x,itol)
if(err.le.0.5d0*xnrm) then

err=err/xnrm
else

err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
endif
write (*,*) ’ iter=’,iter,’ err=’,err

if(err.gt.tol) goto 100
endif
return
END

The routine linbcg uses this short utility for computing vector norms:

FUNCTION snrm(n,sx,itol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm

Compute one of two norms for a vector sx(1:n), as signaled by itol. Used by linbcg.
if (itol.le.3)then

snrm=0.
do 11 i=1,n Vector magnitude norm.

snrm=snrm+sx(i)**2
enddo 11

snrm=sqrt(snrm)
else

isamax=1
do 12 i=1,n Largest component norm.

if(abs(sx(i)).gt.abs(sx(isamax))) isamax=i
enddo 12

snrm=abs(sx(isamax))
endif
return
END

So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

SUBROUTINE atimes(n,x,r,itrnsp)
INTEGER n,itrnsp,ija,NMAX
DOUBLE PRECISION x(n),r(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.

C USES dsprsax,dsprstx DOUBLE PRECISION versions of sprsax and sprstx.
if (itrnsp.eq.0) then

call dsprsax(sa,ija,x,r,n)
else

call dsprstx(sa,ija,x,r,n)
endif
return
END
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SUBROUTINE asolve(n,b,x,itrnsp)
INTEGER n,itrnsp,ija,NMAX,i
DOUBLE PRECISION x(n),b(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
do 11 i=1,n

x(i)=b(i)/sa(i) The matrix Ã is the diagonal part of A, stored in
the first n elements of sa. Since the transpose
matrix has the same diagonal, the flag itrnsp is
not used.

enddo 11

return
END

CITED REFERENCES AND FURTHER READING:
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George, A., and Liu, J.W.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]
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2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order N 3 for the general linear problem. When such particular types
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SUBROUTINE asolve(n,b,x,itrnsp)
INTEGER n,itrnsp,ija,NMAX,i
DOUBLE PRECISION x(n),b(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
do 11 i=1,n

x(i)=b(i)/sa(i) The matrix Ã is the diagonal part of A, stored in
the first n elements of sa. Since the transpose
matrix has the same diagonal, the flag itrnsp is
not used.

enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter I.3 (by J.K. Reid). [2]

George, A., and Liu, J.W.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302–322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]

Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
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Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73–89. [14]
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pp. 856–869. [15]
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Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.I.A.M.).

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order N 3 for the general linear problem. When such particular types
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exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form a ij = 1/(i + j − 1), i, j =
1, . . . , N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N × N is completely determined by N arbitrary
numbers x1, x2, . . . , xN , in terms of which its N2 components are the integer powers
xj−1

i , i, j = 1, . . . , N . Evidently there are two possible such forms, depending on whether
we view the i’s as rows, j’s as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,




1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

...
...

...
...

1 xN x2
N · · · xN−1

N



·




c1

c2

...
cN




=




y1

y2

...
yN




(2.8.1)

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ci which fit a polynomial to the N pairs of abscissas and ordinates (xj , yj).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations



1 1 · · · 1
x1 x2 · · · xN

x2
1 x2

2 · · · x2
N

· · ·
xN−1

1 xN−1
2 · · · xN−1

N


 ·




w1

w2

w3

· · ·
wN


 =




q1

q2

q3

· · ·
qN


 (2.8.2)

Write this out and you will see that it relates to the problem of moments: Given the values
of N points xi, find the unknown weights wi, assigned so as to match the given values
qj of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).
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The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let Pj(x) be the polynomial of degree N − 1 defined by

Pj(x) =

N∏
n=1

(n �=j)

x − xn

xj − xn
=

N∑
k=1

Ajkxk−1 (2.8.3)

Here the meaning of the last equality is to define the components of the matrix Aij as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial Pj(x) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all xi with i �= j, and has a value
of unity at x = xj . In other words,

Pj(xi) = δij =

N∑
k=1

Ajkxk−1
i (2.8.4)

But (2.8.4) says that Ajk is exactly the inverse of the matrix of components xk−1
i , which

appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

wj =

N∑
k=1

Ajkqk (2.8.5)

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

cj =
N∑

k=1

Akjyk (2.8.6)

The routine in §3.5 implements this.
It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order

to get the components of Ajk. This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a master P (x) by

P (x) ≡
N∏

n=1

(x − xn) (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific Pj ’s
via synthetic division by the one supernumerary term. (See §5.3 for more on synthetic division.)
Since each such division is only a process of order N , the total procedure is of order N2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision.

The routine for (2.8.2) which follows is due to G.B. Rybicki.

SUBROUTINE vander(x,w,q,n)
INTEGER n,NMAX
DOUBLE PRECISION q(n),w(n),x(n)
PARAMETER (NMAX=100)

Solves the Vandermonde linear system
∑N

i=1 xk−1
i wi = qk (k = 1, . . . , N). Input consists

of the vectors x(1:n) and q(1:n); the vector w(1:n) is output.
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Parameters: NMAX is the maximum expected value of n.
INTEGER i,j,k
DOUBLE PRECISION b,s,t,xx,c(NMAX)
if(n.eq.1)then

w(1)=q(1)
else

do 11 i=1,n Initialize array.
c(i)=0.d0

enddo 11

c(n)=-x(1) Coefficients of the master polynomial are found by recur-
sion.do 13 i=2,n

xx=-x(i)
do 12 j=n+1-i,n-1

c(j)=c(j)+xx*c(j+1)
enddo 12

c(n)=c(n)+xx
enddo 13

do 15 i=1,n Each subfactor in turn
xx=x(i)
t=1.d0
b=1.d0
s=q(n)
do 14 k=n,2,-1 is synthetically divided,

b=c(k)+xx*b
s=s+q(k-1)*b matrix-multiplied by the right-hand side,
t=xx*t+b

enddo 14

w(i)=s/t and supplied with a denominator.
enddo 15

endif
return
END

Toeplitz Matrices

An N × N Toeplitz matrix is specified by giving 2N − 1 numbers Rk, k = −N +
1, . . . ,−1, 0, 1, . . . , N − 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:




R0 R−1 R−2 · · · R−(N−2) R−(N−1)

R1 R0 R−1 · · · R−(N−3) R−(N−2)

R2 R1 R0 · · · R−(N−4) R−(N−3)

· · · · · ·
RN−2 RN−3 RN−4 · · · R0 R−1

RN−1 RN−2 RN−3 · · · R1 R0




(2.8.8)

The linear Toeplitz problem can thus be written as

N∑
j=1

Ri−jxj = yi (i = 1, . . . , N) (2.8.9)

where the xj’s, j = 1, . . . , N , are the unknowns to be solved for.
The Toeplitz matrix is symmetric if Rk = R−k for all k. Levinson [4] developed an

algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
a recursive procedure that solves the M -dimensional Toeplitz problem

M∑
j=1

Ri−jx
(M)
j = yi (i = 1, . . . , M) (2.8.10)
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in turn for M = 1, 2, . . . until M = N , the desired result, is finally reached. The vector x
(M)
j

is the result at the M th stage, and becomes the desired answer only when N is reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that

the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from step M to step M +1 we find that our developing solution
x(M) changes in this way:

M∑
j=1

Ri−jx
(M)
j = yi i = 1, . . . , M (2.8.11)

becomes

M∑
j=1

Ri−jx
(M+1)
j + Ri−(M+1)x

(M+1)
M+1 = yi i = 1, . . . , M + 1 (2.8.12)

By eliminating yi we find

M∑
j=1

Ri−j

(
x

(M)
j − x

(M+1)
j

x
(M+1)
M+1

)
= Ri−(M+1) i = 1, . . . , M (2.8.13)

or by letting i → M + 1 − i and j → M + 1 − j,

M∑
j=1

Rj−iG
(M)
j = R−i (2.8.14)

where

G
(M)
j ≡ x

(M)
M+1−j − x

(M+1)
M+1−j

x
(M+1)
M+1

(2.8.15)

To put this another way,

x
(M+1)
M+1−j = x

(M)
M+1−j − x

(M+1)
M+1 G

(M)
j j = 1, . . . , M (2.8.16)

Thus, if we can use recursion to find the order M quantities x(M) and G(M) and the single
order M + 1 quantity x

(M+1)
M+1 , then all of the other x

(M+1)
j will follow. Fortunately, the

quantity x
(M+1)
M+1 follows from equation (2.8.12) with i = M + 1,

M∑
j=1

RM+1−jx
(M+1)
j + R0x

(M+1)
M+1 = yM+1 (2.8.17)

For the unknown order M + 1 quantities x
(M+1)
j we can substitute the previous order

quantities in G since

G
(M)
M+1−j =

x
(M)
j − x

(M+1)
j

x
(M+1)
M+1

(2.8.18)

The result of this operation is

x
(M+1)
M+1 =

∑M
j=1 RM+1−jx

(M)
j − yM+1∑M

j=1 RM+1−jG
(M)
M+1−j − R0

(2.8.19)

The only remaining problem is to develop a recursion relation for G. Before we do
that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we
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have been discussing) and left-hand solutions zi. The formalism for the left-hand solutions
differs only in that we deal with the equations

M∑
j=1

Rj−iz
(M)
j = yi i = 1, . . . , M (2.8.20)

Then, the same sequence of operations on this set leads to

M∑
j=1

Ri−jH
(M)
j = Ri (2.8.21)

where

H
(M)
j ≡ z

(M)
M+1−j − z

(M+1)
M+1−j

z
(M+1)
M+1

(2.8.22)

(compare with 2.8.14 – 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the Hj satisfy exactly the same equation as the xj except for
the substitution yi → Ri on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

H
(M+1)
M+1 =

∑M
j=1 RM+1−jH

(M)
j − RM+1∑M

j=1 RM+1−jG
(M)
M+1−j − R0

(2.8.23)

By the same token, G satisfies the same equation as z, except for the substitution yi → R−i.
This gives

G
(M+1)
M+1 =

∑M
j=1 Rj−M−1G

(M)
j − R−M−1∑M

j=1 Rj−M−1H
(M)
M+1−j − R0

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner for z, into the final equations

G
(M+1)
j = G

(M)
j − G

(M+1)
M+1 H

(M)
M+1−j

H
(M+1)
j = H

(M)
j − H

(M+1)
M+1 G

(M)
M+1−j

(2.8.25)

Now, starting with the initial values

x
(1)
1 = y1/R0 G

(1)
1 = R−1/R0 H

(1)
1 = R1/R0 (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find
H

(M+1)
M+1 , G

(M+1)
M+1 , and then equation (2.8.25) to find the other components of H(M+1) , G(M+1).

From there the vectors x(M+1) and/or z(M+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

H
(M+1)
M+1−j = H

(M)
M+1−j − H

(M+1)
M+1 G

(M)
j (2.8.27)

so that the computation can be done “in place.”
Notice that the above algorithm fails if R0 = 0. In fact, because the bordering method

does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)–(2.8.27) is also due to Rybicki. Note
that the routine’s r(n+j) is equal to Rj above, so that subscripts on the r array vary from
1 to 2N − 1.
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SUBROUTINE toeplz(r,x,y,n)
INTEGER n,NMAX
REAL r(2*n-1),x(n),y(n)
PARAMETER (NMAX=100)

Solves the Toeplitz system
∑N

j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix

need not be symmetric. y and r are input arrays of length n and 2*n-1, respectively. x
is the output array, of length n.
Parameter: NMAX is the maximum anticipated value of n.

INTEGER j,k,m,m1,m2
REAL pp,pt1,pt2,qq,qt1,qt2,sd,sgd,sgn,shn,sxn,

* g(NMAX),h(NMAX)
if(r(n).eq.0.) goto 99
x(1)=y(1)/r(n) Initialize for the recursion.
if(n.eq.1)return
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do 15 m=1,n Main loop over the recursion.

m1=m+1
sxn=-y(m1) Compute numerator and denominator for x,
sd=-r(n)
do 11 j=1,m

sxn=sxn+r(n+m1-j)*x(j)
sd=sd+r(n+m1-j)*g(m-j+1)

enddo 11

if(sd.eq.0.)goto 99
x(m1)=sxn/sd whence x.
do 12 j=1,m

x(j)=x(j)-x(m1)*g(m-j+1)
enddo 12

if(m1.eq.n)return
sgn=-r(n-m1) Compute numerator and denominator for G and H,
shn=-r(n+m1)
sgd=-r(n)
do 13 j=1,m

sgn=sgn+r(n+j-m1)*g(j)
shn=shn+r(n+m1-j)*h(j)
sgd=sgd+r(n+j-m1)*h(m-j+1)

enddo 13

if(sd.eq.0..or.sgd.eq.0.)goto 99
g(m1)=sgn/sgd whence G and H.
h(m1)=shn/sd
k=m
m2=(m+1)/2
pp=g(m1)
qq=h(m1)
do 14 j=1,m2

pt1=g(j)
pt2=g(k)
qt1=h(j)
qt2=h(k)
g(j)=pt1-pp*qt2
g(k)=pt2-pp*qt1
h(j)=qt1-qq*pt2
h(k)=qt2-qq*pt1
k=k-1

enddo 14

enddo 15 Back for another recurrence.
pause ’never get here in toeplz’

99 pause ’singular principal minor in toeplz’
END

If you are in the business of solving very large Toeplitz systems, you should find out about
so-called “new, fast” algorithms, which require only on the order of N(log N)2 operations,
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compared to N2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch [6] and de Hoog [7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349–364. [6]

de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123–138. [7]

2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that aij = aji for
i, j = 1, . . . , N , while positive definite means that

v · A · v > 0 for all vectors v (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs a lower triangular matrix L whose transpose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

LT
ij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑
k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

)
j = i + 1, i + 2, . . . , N (2.9.5)
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compared toN2 for Levinson’s method. These methods are too complicated to include here.
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2.9 Cholesky Decomposition

If a square matrixA happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition.Symmetric means thataij = aji for
i, j = 1, . . . , N , while positive definite means that

v · A · v > 0 for all vectorsv (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation thatA has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, calledCholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factorsL and U, Cholesky
decomposition constructs a lower triangular matrixL whose transposeLT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrixA. The
components ofLT are of course related to those ofL by

LT
ij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑
k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

)
j = i + 1, i + 2, . . . , N (2.9.5)
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If you apply equations (2.9.4) and (2.9.5) in the orderi = 1, 2, . . . , N , you will see
that theL’s that occur on the right-hand side are already determined by the time they are
needed. Also, only componentsaij with j ≥ i are referenced. (SinceA is symmetric,
these have complete information.) It is convenient, then, to have the factorL overwrite the
subdiagonal (lower triangular but not including the diagonal) part ofA, preserving the input
upper triangular values ofA. Only one extra vector of lengthN is needed to store the diagonal
part of L. The operations count isN3/6 executions of the inner loop (consisting of one
multiply and one subtract), with alsoN square roots. As already mentioned, this is about a
factor 2 better thanLU decomposition ofA (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)

Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L·LT . On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).

INTEGER i,j,k
REAL sum
do 13 i=1,n

do 12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*a(j,k)
enddo 11

if(i.eq.j)then
if(sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not

positive definite.p(i)=sqrt(sum)
else

a(j,i)=sum/p(i)
endif

enddo 12

enddo 13

return
END

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failure ofcholdc
simply indicates that the matrixA (or, with roundoff error, another very nearby matrix) is
not positive definite. In fact,choldc is an efficient way to testwhether a symmetric matrix
is positive definite. (In this application, you will want to replace thepause with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)
INTEGER n,np
REAL a(np,np),b(n),p(n),x(n)

Solves the set of n linear equations A · x = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k
REAL sum
do 12 i=1,n Solve L · y = b, storing y in x.

sum=b(i)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*x(k)
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enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT · x = y.
sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use ofcholdc andcholsl is in the inversion of covariance matrices describing
the fit of data to a model; see, e.g.,§15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output ofcholdc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-calledQR
decomposition,

A = Q · R (2.10.1)

Here R is upper triangular, whileQ is orthogonal, that is,

QT · Q = 1 (2.10.2)

whereQT is the transpose matrix ofQ. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN × N .
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enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT · x = y.
sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use of choldc and cholsl is in the inversion of covariance matrices describing
the fit of data to a model; see, e.g., §15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output of choldc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called QR
decomposition,

A = Q · R (2.10.1)

Here R is upper triangular, while Q is orthogonal, that is,

QT · Q = 1 (2.10.2)

where QT is the transpose matrix of Q. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensions N × N .
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Like the other matrix factorizations we have met (LU , SVD, Cholesky), QR decompo-
sition can be used to solve systems of linear equations. To solve

A · x = b (2.10.3)

first form QT · b and then solve

R · x = QT · b (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in §11.2). We write a Householder matrix in the form
1 − u ⊗ u/c where c = 1

2
u · u. An appropriate Householder matrix applied to a given matrix

can zero all elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q1 to zero all elements in the first column of A below
the first element. Similarly Q2 zeroes all elements in the second column below the second
element, and so on up to Qn−1. Thus

R = Qn−1 · · ·Q1 · A (2.10.5)

Since the Householder matrices are orthogonal,

Q = (Qn−1 · · ·Q1)
−1 = Q1 · · ·Qn−1 (2.10.6)

In most applications we don’t need to form Q explicitly; we instead store it in the factored
form (2.10.6). Pivoting is not usually necessary unless the matrix A is very close to singular.
A general QR algorithm for rectangular matrices including pivoting is given in [1]. For square
matrices, an implementation is the following:

SUBROUTINE qrdcmp(a,n,np,c,d,sing)
INTEGER n,np
REAL a(np,np),c(n),d(n)
LOGICAL sing

Constructs the QR decomposition of a(1:n,1:n), with physical dimension np. The upper
triangular matrix R is returned in the upper triangle of a, except for the diagonal elements
of R which are returned in d(1:n). The orthogonal matrix Q is represented as a product of
n− 1 Householder matrices Q1 . . . Qn−1, where Qj = 1 − uj ⊗ uj/cj . The ith component

of uj is zero for i = 1, . . . , j − 1 while the nonzero components are returned in a(i,j) for
i = j, . . . , n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER i,j,k
REAL scale,sigma,sum,tau
sing=.false.
do 17 k=1,n-1

scale=0.
do 11 i=k,n

scale=max(scale,abs(a(i,k)))
enddo 11

if(scale.eq.0.)then Singular case.
sing=.true.
c(k)=0.
d(k)=0.

else Form Qk and Qk · A.
do 12 i=k,n

a(i,k)=a(i,k)/scale
enddo 12

sum=0.
do 13 i=k,n

sum=sum+a(i,k)**2
enddo 13

sigma=sign(sqrt(sum),a(k,k))
a(k,k)=a(k,k)+sigma
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c(k)=sigma*a(k,k)
d(k)=-scale*sigma
do 16 j=k+1,n

sum=0.
do 14 i=k,n

sum=sum+a(i,k)*a(i,j)
enddo 14

tau=sum/c(k)
do 15 i=k,n

a(i,j)=a(i,j)-tau*a(i,k)
enddo 15

enddo 16

endif
enddo 17

d(n)=a(n,n)
if(d(n).eq.0.)sing=.true.
return
END

The next routine, qrsolv, is used to solve linear systems. In many applications only the
part (2.10.4) of the algorithm is needed, so we separate it off into its own routine rsolv.

SUBROUTINE qrsolv(a,n,np,c,d,b)
INTEGER n,np
REAL a(np,np),b(n),c(n),d(n)

C USES rsolv
Solves the set of n linear equations A·x = b, where a is a matrix with physical dimension np.
a, c, and d are input as the output of the routine qrdcmp and are not modified. b(1:n)
is input as the right-hand side vector, and is overwritten with the solution vector on output.

INTEGER i,j
REAL sum,tau
do 13 j=1,n-1 Form QT · b.

sum=0.
do 11 i=j,n

sum=sum+a(i,j)*b(i)
enddo 11

tau=sum/c(j)
do 12 i=j,n

b(i)=b(i)-tau*a(i,j)
enddo 12

enddo 13

call rsolv(a,n,np,d,b) Solve R · x = QT · b.
return
END

SUBROUTINE rsolv(a,n,np,d,b)
INTEGER n,np
REAL a(np,np),b(n),d(n)

Solves the set of n linear equations R · x = b, where R is an upper triangular matrix stored
in a and d. a and d are input as the output of the routine qrdcmp and are not modified.
b(1:n) is input as the right-hand side vector, and is overwritten with the solution vector
on output.

INTEGER i,j
REAL sum
b(n)=b(n)/d(n)
do 12 i=n-1,1,-1

sum=0.
do 11 j=i+1,n

sum=sum+a(i,j)*b(j)
enddo 11

b(i)=(b(i)-sum)/d(i)
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enddo 12

return
END

See [2] for details on how to use QR decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, §2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

Updating a QR decomposition

Some numerical algorithms involve solving a succession of linear systems each of which
differs only slightly from its predecessor. Instead of doing O(N3) operations each time
to solve the equations from scratch, one can often update a matrix factorization in O(N2)
operations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite simple for a very common kind of update,

A → A + s ⊗ t (2.10.7)

(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form

A = Q · R → A′ = Q′ · R′ = Q · (R + u ⊗ v) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q
is orthogonal, giving

t = v and either s = Q · u or u = QT · s (2.10.9)

The algorithm [2] has two phases. In the first we apply N − 1 Jacobi rotations (§11.1) to
reduce R + u ⊗ v to upper Hessenberg form. Another N − 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R′. The matrix Q′ is simply the
product of Q with the 2(N − 1) Jacobi rotations. In applications we usually want QT , and
the algorithm can easily be rearranged to work with this matrix instead of with Q.

SUBROUTINE qrupdt(r,qt,n,np,u,v)
INTEGER n,np
REAL r(np,np),qt(np,np),u(np),v(np)

C USES rotate
Given the QR decomposition of some n × n matrix, calculates the QR decomposition of
the matrix Q · (R + u ⊗ v). The matrices r and qt have physical dimension np. Note that
QT is input and returned in qt.

INTEGER i,j,k
do 11 k=n,1,-1 Find largest k such that u(k) �= 0.

if(u(k).ne.0.)goto 1
enddo 11

k=1
1 do 12 i=k-1,1,-1 Transform R + u ⊗ v to upper Hes-

senberg.call rotate(r,qt,n,np,i,u(i),-u(i+1))
if(u(i).eq.0.)then

u(i)=abs(u(i+1))
else if(abs(u(i)).gt.abs(u(i+1)))then

u(i)=abs(u(i))*sqrt(1.+(u(i+1)/u(i))**2)
else

u(i)=abs(u(i+1))*sqrt(1.+(u(i)/u(i+1))**2)
endif

enddo 12

do 13 j=1,n
r(1,j)=r(1,j)+u(1)*v(j)

enddo 13

do 14 i=1,k-1 Transform upper Hessenberg matrix
to upper triangular.call rotate(r,qt,n,np,i,r(i,i),-r(i+1,i))

enddo 14
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return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)

Given n×n matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i

and i+1 of each matrix. a and b are the parameters of the rotation: cos θ = a/
√

a2 + b2,

sin θ = b/
√

a2 + b2.
INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.

c=0.
s=sign(1.,b)

else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s

endif
do 11 j=i,n Premultiply r by Jacobi rotation.

y=r(i,j)
w=r(i+1,j)
r(i,j)=c*y-s*w
r(i+1,j)=s*y+c*w

enddo 11

do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt(i+1,j)
qt(i,j)=c*y-s*w
qt(i+1,j)=s*y+c*w

enddo 12

return
END

We will make use of QR decomposition, and its updating, in §9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:
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return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)

Given n×n matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i

and i+1 of each matrix. a and b are the parameters of the rotation: cos θ = a/
√

a2 + b2,

sin θ = b/
√

a2 + b2.
INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.

c=0.
s=sign(1.,b)

else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s

endif
do 11 j=i,n Premultiply r by Jacobi rotation.

y=r(i,j)
w=r(i+1,j)
r(i,j)=c*y-s*w
r(i+1,j)=s*y+c*w

enddo 11

do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt(i+1,j)
qt(i,j)=c*y-s*w
qt(i+1,j)=s*y+c*w

enddo 12

return
END

We will make use ofQR decomposition, and its updating, in§9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:
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How many individual multiplications does it take to perform the matrix mul-
tiplication of two 2 × 2 matrices,

(
a11 a12

a21 a22

)
·
(

b11 b12

b21 b22

)
=
(

c11 c12

c21 c22

)
(2.11.1)

Eight, right? Here they are written explicitly:

c11 = a11 × b11 + a12 × b21

c12 = a11 × b12 + a12 × b22

c21 = a21 × b11 + a22 × b21

c22 = a21 × b12 + a22 × b22

(2.11.2)

Do you think that one can write formulas for thec’s that involve onlyseven
multiplications? (Try it yourself, before reading on.)

Such a set of formulas was, in fact, discovered by Strassen[1]. The formulas are:

Q1 ≡ (a11 + a22) × (b11 + b22)

Q2 ≡ (a21 + a22) × b11

Q3 ≡ a11 × (b12 − b22)

Q4 ≡ a22 × (−b11 + b21)

Q5 ≡ (a11 + a12) × b22

Q6 ≡ (−a11 + a21) × (b11 + b12)

Q7 ≡ (a12 − a22) × (b21 + b22)

(2.11.3)

in terms of which

c11 = Q1 + Q4 − Q5 + Q7

c21 = Q2 + Q4

c12 = Q3 + Q5

c22 = Q1 + Q3 − Q2 + Q6

(2.11.4)

What’s the use of this? There is one fewer multiplication than in equation
(2.11.2), butmany more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) thea’s andb’s are never commuted.
Therefore (2.11.3)and (2.11.4)are valid when thea’s andb’s are themselves matrices.
The problem of multiplying two very large matrices (of orderN = 2 m for some
integerm) can now be broken down recursively by partitioning the matrices into
quarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8”; it is that factor ateach hierarchical level of the recursion. In total it reduces
the process of matrix multiplication to orderN log2 7 instead ofN 3.
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What about all the extra additions in (2.11.3)–(2.11.4)? Don’t they outweigh
the advantage of the fewer multiplications? For largeN , it turns out that there are
six times as many additions as multiplications implied by (2.11.3)–(2.11.4). But,
if N is very large, this constant factor is no match for the change in theexponent
from N 3 to N log2 7.

With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversion[1]. Suppose that the matrices

(
a11 a12

a21 a22

)
and

(
c11 c12

c21 c22

)
(2.11.5)

are inverses of each other. Then thec’s can be obtained from thea’s by the following
operations (compare equations 2.7.22 and 2.7.25):

R1 = Inverse(a11)

R2 = a21 × R1

R3 = R1 × a12

R4 = a21 × R3

R5 = R4 − a22

R6 = Inverse(R5)

c12 = R3 × R6

c21 = R6 × R2

R7 = R3 × c21

c11 = R1 − R7

c22 = −R6

(2.11.6)

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if thea’s andc’s are scalars, but as matrix inversion if thea’s andc’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of order
N = 2m, recursively by partitions in half. At each step, halving the orderdoubles
the number of inverse operations. But this means that there are onlyN divisions in
all! So divisions don’t dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by anN log2 7

algorithm, so can the matrix inversion!
This is fun, but let’s look at practicalities: If you estimate how largeN has to be

before the difference between exponent 3 and exponentlog 2 7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find thatLU decomposition is in no
immediate danger of becoming obsolete.

If, on the other hand, you like this kind of fun, then try these: (1) Can you
multiply the complex numbers(a+ib) and(c+id) in only three real multiplications?
[Answer: see§5.4.] (2) Can you evaluate a general fourth-degree polynomial in
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x for many different values ofx with only three multiplications per evaluation?
[Answer: see§5.3.]

CITED REFERENCES AND FURTHER READING:

Strassen, V. 1969, Numerische Mathematik, vol. 13, pp. 354–356. [1]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).

Winograd, S. 1971, Linear Algebra and Its Applications, vol. 4, pp. 381–388.

Pan, V. Ya. 1980, SIAM Journal on Computing, vol. 9, pp. 321–342.

Pan, V. 1984, How to Multiply Matrices Faster, Lecture Notes in Computer Science, vol. 179
(New York: Springer-Verlag)

Pan, V. 1984, SIAM Review, vol. 26, pp. 393–415. [More recent results that show that an exponent
of 2.496 can be achieved — theoretically!]
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Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a functionf(x) at a set of pointsx1, x2, . . . , xN

(say, withx1 < . . . < xN ), but we don’t have an analytic expression forf(x) that lets
us calculate its value at an arbitrary point. For example, thef(x i)’s might result from
some physical measurement or from long numerical calculation that cannot be cast
into a simple functional form. Often thexi’s are equally spaced, but not necessarily.

The task now is to estimatef(x) for arbitraryx by, in some sense, drawing a
smooth curve through (and perhaps beyond) thex i. If the desiredx is in between the
largest and smallest of thexi’s, the problem is calledinterpolation; if x is outside
that range, it is calledextrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should
be sufficiently general so as to be able to approximate large classes of functions
which might arise in practice. By far most common among the functional forms
used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know
enough about our function to apply a theorem of any power, we are usually not in
the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from,function approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of a more complicated one. In the case of interpolation, you are given the functionf
at pointsnot of your own choosing. For the case of function approximation, you are
allowed to compute the functionf atany desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-
lation scheme. Consider, for example, the function

f(x) = 3x2 +
1
π4

ln
[
(π − x)2

]
+ 1 (3.0.1)

99
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which is well-behaved everywhere except atx = π, very mildly singular atx = π,
and otherwise takes on all positive and negative values. Any interpolation based on
the valuesx = 3.13, 3.14, 3.15, 3.16, will assuredly get a very wrong answer for
the valuex = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should return an estimate of its own error. Such an
error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between
two tabulated points. Interpolation always presumes some degree of smoothness
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating
function to the data points provided. (2) Evaluate that interpolating function at
the target pointx.

However, this two-stage method is generally not the best way to proceed in
practice. Typically it is computationally less efficient, and more susceptible to
roundoff error, than methods which construct a functional estimatef(x) directly
from theN tabulated values every time one is desired. Most practical schemes start
at a nearby pointf(xi), then add a sequence of (hopefully) decreasing corrections,
as information from otherf(xi)’s is incorporated. The procedure typically takes
O(N2) operations. If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error.

In the case of polynomial interpolation, it sometimes does happen that the
coefficients of the interpolating polynomial are of interest, even though their use
in evaluating the interpolating function should be frowned on. We deal with this
eventuality in §3.5.

Local interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated valuesf(x) that do not, in general, have continuous first or higher
derivatives. That happens because, asx crosses the tabulated valuesx i, the
interpolation scheme switches which tabulated points are the “local” ones. (If such
a switch is allowed to occur anywhereelse, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-calledspline function. A spline is
a polynomial between each pair of table points, but one whose coefficients are
determined “slightly” nonlocally. The nonlocality is designed to guarantee global
smoothness in the interpolated function up to some order of derivative. Cubic splines
(§3.3) are the most popular. They produce an interpolated function that is continuous
through the second derivative. Splines tend to be stabler than polynomials, with less
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interestx, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding pointsclose to the desired point usually does help,
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(a)

(b)

Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not always available.
Unless there is solid evidence that the interpolating function is close in form to

the true function f , it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolations with 3 or 4 points, we are perhaps tolerant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpolation with a search for the right “ local”
place in the table. While not strictly a part of the subject of interpolation, this task is
important enough (and often enough botched) that we devote §3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable care is taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typically go
berserk when the argument x is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
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f(x, y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss this in §3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N − 1 through
the N points y1 = f(x1), y2 = f(x2), . . . , yN = f(xN ) is given explicitly by
Lagrange’s classical formula,

P (x) =
(x − x2)(x − x3)...(x − xN )

(x1 − x2)(x1 − x3)...(x1 − xN )
y1 +

(x − x1)(x − x3)...(x − xN )
(x2 − x1)(x2 − x3)...(x2 − xN )

y2

+ · · · + (x − x1)(x − x2)...(x − xN−1)
(xN − x1)(xN − x2)...(xN − xN−1)

yN

(3.1.1)
There are N terms, each a polynomial of degree N − 1 and each constructed to be
zero at all of the xi except one, at which it is constructed to be yi.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville’s algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsolete.

Let P1 be the value at x of the unique polynomial of degree zero (i.e.,
a constant) passing through the point (x1, y1); so P1 = y1. Likewise define
P2, P3, . . . , PN . Now let P12 be the value at x of the unique polynomial of
degree one passing through both (x1, y1) and (x2, y2). Likewise P23, P34, . . . ,
P(N−1)N . Similarly, for higher-order polynomials, up to P 123...N , which is the value
of the unique interpolating polynomial through all N points, i.e., the desired answer.
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f(x, y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss this in§3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degreeN − 1 through
the N points y1 = f(x1), y2 = f(x2), . . . , yN = f(xN ) is given explicitly by
Lagrange’s classical formula,

P (x) =
(x − x2)(x − x3)...(x − xN )

(x1 − x2)(x1 − x3)...(x1 − xN )
y1 +

(x − x1)(x − x3)...(x − xN )
(x2 − x1)(x2 − x3)...(x2 − xN )

y2

+ · · · + (x − x1)(x − x2)...(x − xN−1)
(xN − x1)(xN − x2)...(xN − xN−1)

yN

(3.1.1)
There areN terms, each a polynomial of degreeN − 1 and each constructed to be
zero at all of thexi except one, at which it is constructed to beyi.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) isNeville’s algorithm, closely related to
and sometimes confused withAitken’s algorithm, the latter now considered obsolete.

Let P1 be the value atx of the unique polynomial of degree zero (i.e.,
a constant) passing through the point(x1, y1); so P1 = y1. Likewise define
P2, P3, . . . , PN . Now let P12 be the value atx of the unique polynomial of
degree one passing through both(x1, y1) and (x2, y2). Likewise P23, P34, . . . ,
P(N−1)N . Similarly, for higher-order polynomials, up toP 123...N , which is the value
of the unique interpolating polynomial through allN points, i.e., the desired answer.
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The variousP ’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, withN = 4,

x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4 : y4 = P4

(3.1.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

Pi(i+1)...(i+m) =
(x − xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

(3.1.3)

This recurrence works because the two parents already agree at pointsx i+1 . . .
xi+m−1.

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (form = 1, 2, . . . ,
N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1)

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.1.4)

Then one can easily derive from (3.1.3) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 − Dm,i)

xi − xi+m+1

Cm+1,i =
(xi − x)(Cm,i+1 − Dm,i)

xi − xi+m+1

(3.1.5)

At each levelm, theC ’s andD’s are the corrections that make the interpolation one
order higher. The final answerP1...N is equal to the sum ofany yi plus a set ofC ’s
and/orD’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation:

SUBROUTINE polint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n)
PARAMETER (NMAX=10) Largest anticipated value of n.

Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that
P (xai) = yai, i = 1, . . . , n, then the returned value y = P (x).

INTEGER i,m,ns
REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
ns=1
dif=abs(x-xa(1))
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do 11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift

endif
c(i)=ya(i) and initialize the tableau of c’s and d’s.
d(i)=ya(i)

enddo 11

y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,

do 12 i=1,n-m we loop over the current c’s and d’s and update them.
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa’s are (to within roundoff) identical.

den=w/den
d(i)=hp*den Here the c’s and d’s are updated.
c(i)=ho*den

enddo 12

if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

Quite often you will want to callpolint with the dummy argumentsxa
and ya replaced by actual arrayswith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesxx(15:18), yy(15:18). For more on this, see the end of§3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, butare well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through them + 1 points
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do 11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift

endif
c(i)=ya(i) and initialize the tableau of c’s and d’s.
d(i)=ya(i)

enddo 11

y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,

do 12 i=1,n-m we loop over the current c’s and d’s and update them.
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’

This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den
d(i)=hp*den Here the c’s and d’s are updated.
c(i)=ho*den

enddo 12

if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

Quite often you will want to callpolint with the dummy argumentsxa
and ya replaced by actual arrayswith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesxx(15:18), yy(15:18). For more on this, see the end of§3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, butare well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through them + 1 points
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(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)
Qν(x)

=
p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(3.2.1)

Since there areµ + ν + 1 unknownp’s andq’s (q0 being arbitrary), we must have

m + 1 = µ + ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values ofx, if the function
to be interpolated itself has poles. More often, the functionf(x) is finite for all
finite real x, but has an analytic continuation with poles in the complexx-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values ofx, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around yourm tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers ofx in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the firstm + 1 terms of the power series expansion of the desired
functionf(x). This is calledPadé approximation, and is discussed in§5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-calleddiagonal rational function, with
the degrees of numerator and denominator equal (ifm is even) or with the degree
of the denominator larger by one (ifm is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to[1]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)(

x−xi

x−xi+m

)(
1 − R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

)
− 1
(3.2.3)

This recurrence generates the rational functions throughm + 1 points from the
ones throughm and (the termR(i+1)...(i+m−1) in equation 3.2.3)m − 1 points.
It is started with

Ri = yi (3.2.4)
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and with
R ≡ [Ri(i+1)...(i+m) with m = −1] = 0 (3.2.5)

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cm,i ≡ Ri...(i+m) − Ri...(i+m−1)

Dm,i ≡ Ri...(i+m) − R(i+1)...(i+m)

(3.2.6)

Note that these satisfy the relation

Cm+1,i − Dm+1,i = Cm,i+1 − Dm,i (3.2.7)

which is useful in proving the recurrences

Dm+1,i =
Cm,i+1(Cm,i+1 − Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

Cm+1,i =

(
x−xi

x−xi+m+1

)
Dm,i(Cm,i+1 − Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

(3.2.8)

This recurrence is implemented in the following subroutine, whose use is analogous
in every way topolint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.

Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (xai,yai), i = 1...n.

INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX),d(NMAX)
ns=1
hh=abs(x-xa(1))
do 11 i=1,n

h=abs(x-xa(i))
if (h.eq.0.)then

y=ya(i)
dy=0.0
return

else if (h.lt.hh) then
ns=i
hh=h

endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-

zero condition.enddo 11

y=ya(ns)
ns=ns-1
do 13 m=1,n-1

do 12 i=1,n-m
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w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated functionyi = y(xi), i = 1...N , focus attention on one
particular interval, betweenxj andxj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡ xj+1 − x

xj+1 − xj
B ≡ 1 − A =

x − xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissasxj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values ofy i, we
also have tabulated values for the function’s second derivatives,y ′′, that is, a set
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w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function yi = y(xi), i = 1...N , focus attention on one
particular interval, between xj and xj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡ xj+1 − x

xj+1 − xj
B ≡ 1 − A =

x − xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas xj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y i, we
also have tabulated values for the function’s second derivatives, y ′′, that is, a set
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of numbers y ′′
i . Then, within each interval, we can add to the right-hand side of

equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y′′

j on the left to a value y ′′
j+1 on the right. Doing so, we will have the desired

continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 + Cy′′
j + Dy′′

j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1
6
(A3 − A)(xj+1 − xj)2 D ≡ 1

6
(B3 − B)(xj+1 − xj)2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y ′′ is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect to x,
using the definitions of A, B, C, D to compute dA/dx, dB/dx, dC/dx, and dD/dx.
The result is

dy

dx
=

yj+1 − yj

xj+1 − xj
− 3A2 − 1

6
(xj+1 − xj)y′′

j +
3B2 − 1

6
(xj+1 − xj)y′′

j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay′′

j + By′′
j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y ′′ is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj , xj+1).

The only problem now is that we supposed the y ′′
i ’s to be known, when, actually,

they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y ′′

i .
The required equations are obtained by setting equation (3.3.5) evaluated for

x = xj in the interval (xj−1, xj) equal to the same equation evaluated for x = xj but
in the interval (xj , xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y′′

j−1 +
xj+1 − xj−1

3
y′′

j +
xj+1 − xj

6
y′′

j+1 =
yj+1 − yj

xj+1 − xj
− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y ′′
i , i = 1, . . . , N . Therefore

there is a two-parameter family of possible solutions.
For a unique solution, we need to specify two further conditions, typically taken

as boundary conditions at x1 and xN . The most common ways of doing this are either
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• set one or both of y ′′
1 and y′′

N equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

• set either of y′′
1 and y′′

N to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y ′′

j is coupled only to its nearest neighbors at j±1. Therefore,
the equations can be solved in O(N) operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
so we encourage you to study it carefully, comparing with tridag (§2.4).

SUBROUTINE spline(x,y,n,yp1,ypn,y2)
INTEGER n,NMAX
REAL yp1,ypn,x(n),y(n),y2(n)
PARAMETER (NMAX=500)

Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., yi = f(xi), with
x1 < x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k
REAL p,qn,sig,un,u(NMAX)
if (yp1.gt..99e30) then The lower boundary condition is set either to be

“natural”y2(1)=0.
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

endif
do 11 i=2,n-1 This is the decomposition loop of the tridiagonal

algorithm. y2 and u are used for temporary
storage of the decomposed factors.

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
p=sig*y2(i-1)+2.
y2(i)=(sig-1.)/p
u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))

* /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p
enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
“natural”qn=0.

un=0.
else or else to have a specified first derivative.

qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

endif
y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-

nal algorithm.y2(k)=y2(k)*y2(k+1)+u(k)
enddo 12

return
END

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays x i and yi. Once this has been done,
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values of the interpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated xi’s and fi’s. Then you will need a fast way of finding your place
in the table of xi’s, given some particular value x at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx(j), j=1, 2, . . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx(j) and xx(j+1). For
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values of the interpolated function for any value ofx are obtained by calls (as many
as desired) to a separate routinesplint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a functionf(x) from a
set of tabulatedxi’s andfi’s. Then you will need a fast way of finding your place
in the table ofxi’s, given some particular valuex at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissasxx(j), j=1, 2,. . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a numberx, find an integerj such thatx lies betweenxx(j) andxx(j+1). For
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this task, let us define fictitious array elementsxx(0) andxx(n+1) equal to plus or
minus infinity (in whichever order is consistent with the monotonicity of the table).
Thenj will always be between 0 andn, inclusive; a returned value of 0 indicates
“off-scale” at one end of the table,n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better thanbisection,
which will find the right place in the table in aboutlog2n tries. We already did use
bisection in the spline evaluation routinesplint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

SUBROUTINE locate(xx,n,x,j)
INTEGER j,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER jl,jm,ju
jl=0 Initialize lower
ju=n+1 and upper limits.

10 if(ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if((xx(n).ge.xx(1)).eqv.(x.ge.xx(jm)))then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
endif

goto 10 Repeat until
endif the test condition 10 is satisfied.
if(x.eq.xx(1))then Then set the output

j=1
else if(x.eq.xx(n))then

j=n-1
else

j=jl
endif
return and return.
END

Note the use of the logical equality relation.eqv., which is true when its
two logical operands are either both true or both false. This relation allows the
routine to work for both monotonically increasing and monotonically decreasing
orders ofxx(1:n).

Search with Correlated Values
Sometimes you will be in the situation of searching a large table many times,

and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call
for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection,ab initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisects in the bracketed interval. At worst, this routine is
about a factor of 2 slower thanlocate above (if the hunt phase expands to include
the whole table). At best, it can be a factor oflog2n faster thanlocate, if the desired
point is usually quite close to the input guess. Figure 3.4.1 compares the two routines.
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hunt phase

bisection phase

1 7 10

8

14 22

32

38

321
(a)

(b)

51

64

Figure 3.4.1. (a) The routine locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops.”

SUBROUTINE hunt(xx,n,x,jlo)
INTEGER jlo,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm
LOGICAL ascnd
ascnd=xx(n).ge.xx(1) True if ascending order of table, false otherwise.
if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.

jlo=0
jhi=n+1
goto 3

endif
inc=1 Set the hunting increment.
if(x.ge.xx(jlo).eqv.ascnd)then Hunt up:

1 jhi=jlo+inc
if(jhi.gt.n)then Done hunting, since off end of table.

jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,

jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.

endif Done hunting, value bracketed.
else Hunt down:

jhi=jlo
2 jlo=jhi-inc

if(jlo.lt.1)then Done hunting, since off end of table.
jlo=0

else if(x.lt.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.

endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

3 if(jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1
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return
endif
jm=(jhi+jlo)/2
if(x.ge.xx(jm).eqv.ascnd)then

jlo=jm
else

jhi=jm
endif
goto 3
END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx(j) and xx(j+1), where xx(1:n) is the
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of length m. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1),n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, e.g.,

call polint(xx(k),yy(k),m, . . . )

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values computed
by the routines in §3.1–§3.3 will pass exactly through such points.



3.5 Coefficients of the Interpolating Polynomial 113

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

return
endif
jm=(jhi+jlo)/2
if(x.ge.xx(jm).eqv.ascnd)then

jlo=jm
else

jhi=jm
endif
goto 3
END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx(j) and xx(j+1), where xx(1:n) is the
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of length m. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1),n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, e.g.,

call polint(xx(k),yy(k),m, . . . )

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values computed
by the routines in §3.1–§3.3 will pass exactly through such points.
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Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
points are equal, takes the tabulated values as perfect. If they in fact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to be y i ≡ y(xi). If the interpolating
polynomial is written as

y = c1 + c2x + c3x
2 + · · · + cNxN−1 (3.5.1)

then the ci’s are required to satisfy the linear equation




1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2
...

...
...

...
1 xN x2

N · · · xN−1
N



·




c1

c2

...
cN




=




y1

y2

...
yN




(3.5.2)

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); however
the special method that was derived in §2.8 is more efficient by a large factor, of
order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki.

SUBROUTINE polcoe(x,y,n,cof)
INTEGER n,NMAX
REAL cof(n),x(n),y(n)
PARAMETER (NMAX=15) Largest anticipated value of n.
Given arrays x(1:n) and y(1:n) containing a tabulated function yi = f(xi), this routine

returns an array of coefficients cof(1:n), such that yi =
∑

j cofjx
j−1
i .

INTEGER i,j,k
REAL b,ff,phi,s(NMAX)
do 11 i=1,n

s(i)=0.
cof(i)=0.

enddo 11

s(n)=-x(1)
do 13 i=2,n Coefficients si of the master polynomial P (x) are found

by recurrence.do 12 j=n+1-i,n-1
s(j)=s(j)-x(i)*s(j+1)

enddo 12

s(n)=s(n)-x(i)
enddo 13

do 16 j=1,n
phi=n
do 14 k=n-1,1,-1 The quantity phi =

∏
j �=k(xj −xk) is found as a deriva-

tive of P (xj).
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phi=k*s(k+1)+x(j)*phi
enddo 14

ff=y(j)/phi
b=1. Coefficients of polynomials in each term of the Lagrange

formula are found by synthetic division of P (x) by
(x − xj). The solution ck is accumulated.

do 15 k=n,1,-1
cof(k)=cof(k)+b*ff
b=s(k)+x(j)*b

enddo 15

enddo 16

return
END

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x = 0, then this value will evidently be c 1. Now
we can subtract c1 from the yi’s and divide each by its corresponding x i. Throwing
out one point (the one with smallest xi is a good candidate), we can repeat the
procedure to find c2, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N 3, while the preceding one was of order N 2. You will
find, however, that neither works very well for large N , because of the intrinsic
ill-condition of the Vandermonde problem. In single precision, N up to 8 or 10 is
satisfactory; about double this in double precision.

SUBROUTINE polcof(xa,ya,n,cof)
INTEGER n,NMAX
REAL cof(n),xa(n),ya(n)
PARAMETER (NMAX=15) Largest anticipated value of n.

C USES polint
Given arrays xa(1:n) and ya(1:n) of length n containing a tabulated function yai =
f(xai), this routine returns an array of coefficients cof(1:n), also of length n, such that

yai =
∑

j cofjxa
j−1
i .

INTEGER i,j,k
REAL dy,xmin,x(NMAX),y(NMAX)
do 11 j=1,n

x(j)=xa(j)
y(j)=ya(j)

enddo 11

do 14 j=1,n
call polint(x,y,n+1-j,0.,cof(j),dy) This is the polynomial interpolation rou-

tine of §3.1. We extrapolate to x =
0.

xmin=1.e38
k=0
do 12 i=1,n+1-j Find the remaining xi of smallest abso-

lute value,if (abs(x(i)).lt.xmin)then
xmin=abs(x(i))
k=i

endif
if(x(i).ne.0.)y(i)=(y(i)-cof(j))/x(i) (meanwhile reducing all the terms)

enddo 12

do 13 i=k+1,n+1-j and eliminate it.
y(i-1)=y(i)
x(i-1)=x(i)

enddo 13

enddo 14

return
END
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If the point x = 0 is not in (or at least close to) the range of the tabulated x i’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to put x = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate of y(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated values y and n one-dimensional vec-
tors giving the tabulated values of each of the independent variables x 1, x2, . . . ,
xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points in n-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya(j,k), where j varies from 1 to m, and k varies from 1 to n. We are also given
an array x1a of length m, and an array x2a of length n. The relation of these input
quantities to an underlying function y(x1, x2) is

ya(j,k) = y(x1a(j), x2a(k)) (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
(x1, x2).

An important concept is that of the grid square in which the point (x 1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a(j) ≤ x1 ≤ x1a(j+1)

x2a(k) ≤ x2 ≤ x2a(k+1)
(3.6.2)
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If the pointx = 0 is not in (or at least close to) the range of the tabulatedx i’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to putx = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routinespolcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using thecoefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate ofy(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated valuesy and n one-dimensional vec-
tors giving the tabulated values of each of the independent variablesx 1, x2, . . . ,
xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points inn-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya(j,k), wherej varies from 1 tom, andk varies from 1 ton. We are also given
an arrayx1a of lengthm, and an arrayx2a of lengthn. The relation of these input
quantities to an underlying functiony(x1, x2) is

ya(j,k) = y(x1a(j), x2a(k)) (3.6.1)

We want to estimate, by interpolation, the functiony at some untabulated point
(x1, x2).

An important concept is that of thegrid square in which the point(x 1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a(j) ≤ x1 ≤ x1a(j+1)

x2a(k) ≤ x2 ≤ x2a(k+1)
(3.6.2)
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Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

defines j and k, then

y1 ≡ ya(j,k)

y2 ≡ ya(j+1,k)

y3 ≡ ya(j+1,k+1)

y4 ≡ ya(j,k+1)

(3.6.3)

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are:

t ≡ (x1 − x1a(j))/(x1a(j+1)− x1a(j))

u ≡ (x2 − x2a(k))/(x2a(k+1)− x2a(k))
(3.6.4)

(so that t and u each lie between 0 and 1), and

y(x1, x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated
function value changes continuously. However, the gradient of the interpolated
function changes discontinuously at the boundaries of each grid square.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher
derivatives. Or, one can make use of higher order to enforce smoothness of some of
these derivatives as the interpolating point crosses grid-square boundaries. We will
now consider each of these two directions in turn.
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Higher Order for Accuracy

The basic idea is to break up the problem into a succession of one-dimensional
interpolations. If we want to do m-1 order interpolation in the x 1 direction, and n-1
order in the x2 direction, we first locate an m× n sub-block of the tabulated function
matrix that contains our desired point (x1, x2). We then do m one-dimensional
interpolations in the x2 direction, i.e., on the rows of the sub-block, to get function
values at the points (x1a(j), x2), j = 1, . . . , m. Finally, we do a last interpolation
in the x1 direction to get the answer. If we use the polynomial interpolation routine
polint of §3.1, and a sub-block which is presumed to be already located (and copied
into an m by n array ya), the procedure looks like this:

SUBROUTINE polin2(x1a,x2a,ya,m,n,x1,x2,y,dy)
INTEGER m,n,NMAX,MMAX
REAL dy,x1,x2,y,x1a(m),x2a(n),ya(m,n)
PARAMETER (NMAX=20,MMAX=20) Maximum expected values of n and m.

C USES polint
Given arrays x1a(1:m) and x2a(1:n) of independent variables, and an m by n array of
function values ya(1:m,1:n), tabulated at the grid points defined by x1a and x2a; and
given values x1 and x2 of the independent variables; this routine returns an interpolated
function value y, and an accuracy indication dy (based only on the interpolation in the x1
direction, however).

INTEGER j,k
REAL ymtmp(MMAX),yntmp(NMAX)
do 12 j=1,m Loop over rows.

do 11 k=1,n Copy the row into temporary storage.
yntmp(k)=ya(j,k)

enddo 11

call polint(x2a,yntmp,n,x2,ymtmp(j),dy) Interpolate answer into temporary stor-
age.enddo 12

call polint(x1a,ymtmp,m,x1,y,dy) Do the final interpolation.
return
END

Higher Order for Smoothness: Bicubic Interpolation

We will give two methods that are in common use, and which are themselves
not unrelated. The first is usually called bicubic interpolation.

Bicubic interpolation requires the user to specify at each grid point not just
the function y(x1, x2), but also the gradients ∂y/∂x1 ≡ y,1, ∂y/∂x2 ≡ y,2 and
the cross derivative ∂2y/∂x1∂x2 ≡ y,12. Then an interpolating function that is
cubic in the scaled coordinates t and u (equation 3.6.4) can be found, with the
following properties: (i) The values of the function and the specified derivatives
are reproduced exactly on the grid points, and (ii) the values of the function and
the specified derivatives change continuously as the interpolating point crosses from
one grid square to another.

It is important to understand that nothing in the equations of bicubic interpolation
requires you to specify the extra derivatives correctly! The smoothness properties are
tautologically “ forced,” and have nothing to do with the “accuracy” of the specified
derivatives. It is a separate problem for you to decide how to obtain the values that
are specified. The better you do, the more accurate the interpolation will be. But
it will be smooth no matter what you do.
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Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):

y1a(j,k)=(ya(j+1,k)-ya(j-1,k))/(x1a(j+1)-x1a(j-1))
y2a(j,k)=(ya(j,k+1)-ya(j,k-1))/(x2a(k+1)-x2a(k-1))
y12a(j,k)=(ya(j+1,k+1)-ya(j+1,k-1)-ya(j-1,k+1)+ya(j-1,k-1))

/((x1a(j+1)-x1a(j-1))*(x2a(k+1)-x2a(k-1)))

To do a bicubic interpolation within a grid square, given the function y and the
derivatives y1, y2, y12 at each of the four corners of the square, there are two steps:
First obtain the sixteen quantities cij , i, j = 1, . . . , 4 using the routine bcucof
below. (The formulas that obtain the c’s from the function and derivative values
are just a complicated linear transformation, with coefficients which, having been
determined once in the mists of numerical history, can be tabulated and forgotten.)
Next, substitute the c’s into any or all of the following bicubic formulas for function
and derivatives, as desired:

y(x1, x2) =
4∑

i=1

4∑
j=1

cijt
i−1uj−1

y,1(x1, x2) =
4∑

i=1

4∑
j=1

(i − 1)cijt
i−2uj−1(dt/dx1)

y,2(x1, x2) =
4∑

i=1

4∑
j=1

(j − 1)cijt
i−1uj−2(du/dx2)

y,12(x1, x2) =
4∑

i=1

4∑
j=1

(i − 1)(j − 1)cijt
i−2uj−2(dt/dx1)(du/dx2)

(3.6.6)

where t and u are again given by equation (3.6.4).

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
REAL d1,d2,c(4,4),y(4),y1(4),y12(4),y2(4)

Given arrays y,y1,y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the table c(1:4,1:4) that is used by routine bcuint for
bicubic interpolation.

INTEGER i,j,k,l
REAL d1d2,xx,cl(16),wt(16,16),x(16)
SAVE wt
DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4

* ,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4
* ,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2
* ,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2
* ,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2
* ,10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2
* ,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1
* ,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

d1d2=d1*d2
do 11 i=1,4 Pack a temporary vector x.

x(i)=y(i)
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x(i+4)=y1(i)*d1
x(i+8)=y2(i)*d2
x(i+12)=y12(i)*d1d2

enddo 11

do 13 i=1,16 Matrix multiply by the stored table.
xx=0.
do 12 k=1,16

xx=xx+wt(i,k)*x(k)
enddo 12

cl(i)=xx
enddo 13

l=0
do 15 i=1,4 Unpack the result into the output table.

do 14 j=1,4
l=l+1
c(i,j)=cl(l)

enddo 14

enddo 15

return
END

The implementation of equation (3.6.6), which performs a bicubic interpolation,
returns the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,
* ansy1,ansy2)

REAL ansy,ansy1,ansy2,x1,x1l,x1u,x2,x2l,x2u,y(4),y1(4),
* y12(4),y2(4)
C USES bcucof

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER i
REAL t,u,c(4,4)
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if(x1u.eq.x1l.or.x2u.eq.x2l)pause ’bad input in bcuint’
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.
ansy2=0.
ansy1=0.
do 11 i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.*c(i,4)*u+2.*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.*c(4,i)*t+2.*c(3,i))*t+c(2,i)

enddo 11

ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
return
END

Higher Order for Smoothness: Bicubic Spline

The other common technique for obtaining smoothness in two-dimensional
interpolation is the bicubic spline. Actually, this is equivalent to a special case
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of bicubic interpolation: The interpolating function is of the same functional
form as equation (3.6.6); the values of the derivatives at the grid points are,
however, determined “globally” by one-dimensional splines. However, bicubic
splines are usually implemented in a form that looks rather different from the
above bicubic interpolation routines, instead looking much closer in form to the
routine polin2 above: To interpolate one functional value, one performs m one-
dimensional splines across the rows of the table, followed by one additional
one-dimensional spline down the newly created column. It is a matter of taste
(and trade-off between time and memory) as to how much of this process one
wants to precompute and store. Instead of precomputing and storing all the
derivative information (as in bicubic interpolation), spline users typically precom-
pute and store only one auxiliary table, of second derivatives in one direction
only. Then one need only do spline evaluations (not constructions) for the m
row splines; one must still do a construction and an evaluation for the final col-
umn spline. (Recall that a spline construction is a process of order N , while a
spline evaluation is only of order log N — and that is just to find the place in
the table!)

Here is a routine to precompute the auxiliary second-derivative table:

SUBROUTINE splie2(x1a,x2a,ya,m,n,y2a)
INTEGER m,n,NN
REAL x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline
Given an m by n tabulated function ya(1:m,1:n), and tabulated independent variables
x2a(1:n), this routine constructs one-dimensional natural cubic splines of the rows of ya
and returns the second-derivatives in the array y2a(1:m,1:n). (The array x1a is included
in the argument list merely for consistency with routine splin2.)

INTEGER j,k
REAL y2tmp(NN),ytmp(NN)
do 13 j=1,m

do 11 k=1,n
ytmp(k)=ya(j,k)

enddo 11

call spline(x2a,ytmp,n,1.e30,1.e30,y2tmp) Values 1×1030 signal a natural spline.
do 12 k=1,n

y2a(j,k)=y2tmp(k)
enddo 12

enddo 13

return
END

After the above routine has been executed once, any number of bicubic spline
interpolations can be performed by successive calls of the following routine:

SUBROUTINE splin2(x1a,x2a,ya,y2a,m,n,x1,x2,y)
INTEGER m,n,NN
REAL x1,x2,y,x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline,splint
Given x1a, x2a, ya, m, n as described in splie2 and y2a as produced by that routine;
and given a desired interpolating point x1,x2; this routine returns an interpolated function
value y by bicubic spline interpolation.

INTEGER j,k
REAL y2tmp(NN),ytmp(NN),yytmp(NN)
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do 12 j=1,m Perform m evaluations of the row splines
constructed by splie2, using the one-
dimensional spline evaluator splint.

do 11 k=1,n
ytmp(k)=ya(j,k)
y2tmp(k)=y2a(j,k)

enddo 11

call splint(x2a,ytmp,y2tmp,n,x2,yytmp(j))
enddo 12

call spline(x1a,yytmp,m,1.e30,1.e30,y2tmp) Construct the one-dimensional column spline
and evaluate it.call splint(x1a,yytmp,y2tmp,m,x1,y)

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Kinahan, B.F., and Harm, R. 1975, Astrophysical Journal, vol. 200, pp. 330–335.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §5.2.7.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.7.
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Chapter 4. Integration of Functions

4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could
be, served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitive sort involving desk calculators and rooms full of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

I =
∫ b

a

f(x)dx (4.0.1)

is precisely equivalent to solving for the value I ≡ y(b) the differential equation

dy

dx
= f(x) (4.0.2)

with the boundary condition

y(a) = 0 (4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable” or
“adaptive” choices of stepsize. We will not, therefore, develop that material here.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)–(4.0.3) and use
the methods of Chapter 16.

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods

123
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of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which is discussed in §4.3, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) in §5.9. Although not explicitly
discussed here, you ought to be able to figure out how to do cubic spline quadrature
using the output of the routine spline in §3.3. (Hint: Integrate equation 3.3.3
over x analytically. See [1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in §13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which is discussed in§4.3, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) in§5.9. Although not explicitly
discussed here, you ought to be able to figure out how to docubic spline quadrature
using the output of the routinespline in §3.3. (Hint: Integrate equation 3.3.3
over x analytically. See[1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in§13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, timesdo change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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x0 xN xN + 1

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN+1. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted x0, x1, . . . , xN ,
xN+1 which are spaced apart by a constant step h,

xi = x0 + ih i = 0, 1, . . . , N + 1 (4.1.1)

A function f(x) has known values at the xi’s,

f(xi) ≡ fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit
b, where a and b are each equal to one or the other of the x i’s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), is called
a closed formula. Occasionally, we want to integrate a function whose value at one
or both endpoints is difficult to compute (e.g., the computation of f goes to a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only x i’s strictly
between a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:

∫ x2

x1

f(x)dx = h

[
1
2
f1 +

1
2
f2

]
+ O(h3f ′′) (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h 3 times the value
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of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.

Equation (4.1.3) is a two-point formula (x1 and x2). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f(x) = x 3:

Simpson’s rule:

∫ x3

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

1
3
f3

]
+ O(h5f (4)) (4.1.4)

Here f (4) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 3
8 rule:

∫ x4

x1

f(x)dx = h

[
3
8
f1 +

9
8
f2 +

9
8
f3 +

3
8
f4

]
+ O(h5f (4)) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:

∫ x5

x1

f(x)dx = h

[
14
45

f1 +
64
45

f2 +
24
45

f3 +
64
45

f4 +
14
45

f5

]
+O(h7f (6)) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we

will not go any further. Consult [1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts
would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

∫ x5

x0

f(x)dx = h

[
55
24

f1 +
5
24

f2 +
5
24

f3 +
55
24

f4

]
+ O(h5f (4))
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Notice that the integral from a = x0 to b = x5 is estimated, using only the interior
points x1, x2, x3, x4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introduce in §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from x0 to x1, using values of the
function f at x1, x2, . . . . These will be useful building blocks for the “extended”
open formulas.

∫ x1

x0

f(x)dx = h[f1] + O(h2f ′) (4.1.7)

∫ x1

x0

f(x)dx = h

[
3
2
f1 − 1

2
f2

]
+ O(h3f ′′) (4.1.8)

∫ x1

x0

f(x)dx = h

[
23
12

f1 − 16
12

f2 +
5
12

f3

]
+ O(h4f (3)) (4.1.9)

∫ x1

x0

f(x)dx = h

[
55
24

f1 − 59
24

f2 +
37
24

f3 − 9
24

f4

]
+ O(h5f (4))(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p, q, r, s. Without loss of generality take x0 = 0 and x1 = 1, so h = 1. Substitute in
turn for f(x) (and for f1, f2, f3, f4) the functions f(x) = 1, f(x) = x, f(x) = x2,
and f(x) = x3. Doing the integral in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, q, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N − 1 times, to do the integration in the intervals
(x1, x2), (x2, x3), . . . , (xN−1, xN ), and then add the results, we obtain an “extended”
or “composite” formula for the integral from x1 to xN .

Extended trapezoidal rule:

∫ xN

x1

f(x)dx = h

[
1
2
f1 + f2 + f3+

· · · + fN−1 +
1
2
fN

]
+ O

(
(b − a)3f ′′

N2

) (4.1.11)

Here we have written the error estimate in terms of the interval b− a and the number
of points N instead of in terms of h. This is clearer, since one is usually holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased
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by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.

The extended formula of order 1/N 3 is:

∫ xN

x1

f(x)dx = h

[
5
12

f1 +
13
12

f2 + f3 + f4+

· · · + fN−2 +
13
12

fN−1 +
5
12

fN

]
+ O

(
1

N3

) (4.1.12)

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,

we get the extended Simpson’s rule:

∫ xN

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

2
3
f3 +

4
3
f4+

· · · + 2
3
fN−2 +

4
3
fN−1 +

1
3
fN

]
+ O

(
1

N4

) (4.1.13)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

∫ xN

x1

f(x)dx = h

[
3
8
f1 +

7
6
f2 +

23
24

f3 + f4 + f5+

· · · + fN−4 + fN−3 +
23
24

fN−2 +
7
6
fN−1 +

3
8
fN

]

+ O

(
1

N4

)
(4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which the first and last step are done with the trapezoidal rule (4.1.3). The
trapezoidal step is two orders lower than Simpson’s rule; however, its contribution to
the integral goes down as an additional power of N (since it is used only twice, not
N times). This makes the resulting formula of degree one less than Simpson.
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Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)–(4.1.14), evaluated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)–(4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at
both ends are as follows:

Equations (4.1.7) and (4.1.11) give
∫ xN

x1

f(x)dx = h

[
3
2
f2+f3 +f4+ · · ·+fN−2+

3
2
fN−1

]
+O

(
1

N2

)
(4.1.15)

Equations (4.1.8) and (4.1.12) give
∫ xN

x1

f(x)dx = h

[
23
12

f2 +
7
12

f3 + f4 + f5+

· · · + fN−3 +
7
12

fN−2 +
23
12

fN−1

]

+ O

(
1

N3

)
(4.1.16)

Equations (4.1.9) and (4.1.13) give
∫ xN

x1

f(x)dx = h

[
27
12

f2 + 0 +
13
12

f4 +
4
3
f5+

· · · + 4
3
fN−4 +

13
12

fN−3 + 0 +
27
12

fN−1

]

+ O

(
1

N4

)
(4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

∫ xN

x1

f(x)dx = h

[
55
24

f2 − 1
6
f3 +

11
8

f4 + f5 + f6 + f7+

· · · + fN−5 + fN−4 +
11
8

fN−3 − 1
6
fN−2 +

55
24

fN−1

]

+ O

(
1

N4

)

(4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule, and is accurate to the same order as (4.1.15):

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2+

· · · + fN−3/2 + fN−1/2] + O

(
1

N2

) (4.1.19)
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N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routine trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)–
(4.1.14) with (4.1.15)–(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formula with error term
decreasing as 1/N 3 which is closed on the right and open on the left:
∫ xN

x1

f(x)dx = h

[
23
12

f2 +
7
12

f3 + f4 + f5+

· · · + fN−2 +
13
12

fN−1 +
5
12

fN

]
+ O

(
1

N3

) (4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f(x) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints a and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:
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N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routine trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)–
(4.1.14) with (4.1.15)–(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formula with error term
decreasing as 1/N 3 which is closed on the right and open on the left:
∫ xN

x1

f(x)dx = h

[
23
12

f2 +
7
12

f3 + f4 + f5+

· · · + fN−2 +
13
12

fN−1 +
5
12

fN

]
+ O

(
1

N3

) (4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f(x) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints a and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:
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SUBROUTINE trapzd(func,a,b,s,n)
INTEGER n
REAL a,b,s,func
EXTERNAL func

This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫ b
a

f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding 2n-2

additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL del,sum,tnm,x
if (n.eq.1) then

s=0.5*(b-a)*(func(a)+func(b))
else

it=2**(n-2)
tnm=it
del=(b-a)/tnm This is the spacing of the points to be added.
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+del

enddo 11

s=0.5*(s+(b-a)*sum/tnm) This replaces s by its refined value.
endif
return
END

The above routine (trapzd) is a workhorse that can be harnessed in several
ways. The simplest and crudest is to integrate a function by the extended trapezoidal
rule where you know in advance (we can’t imagine how!) the number of steps you
want. If you want 2M + 1, you can accomplish this by the fragment

do 11 j=1,m+1
call trapzd(func,a,b,s,j)

enddo 11

with the answer returned as s.
Much better, of course, is to refine the trapezoidal rule until some specified

degree of accuracy has been achieved:

SUBROUTINE qtrap(func,a,b,s)
INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)

C USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

INTEGER j
REAL olds
olds=-1.e30 Any number that is unlikely to be the average of the function

at its endpoints will do here.do 11 j=1,JMAX
call trapzd(func,a,b,s,j)
if (j.gt.5) then Avoid spurious early convergence.

if (abs(s-olds).lt.EPS*abs(olds).or.
* (s.eq.0..and.olds.eq.0.)) return

endif
olds=s

enddo 11

pause ’too many steps in qtrap’
END
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Unsophisticated as it is, routine qtrap is in fact a fairly robust way of doing
integrals of functions that are not very smooth. Increased sophistication will usually
translate into a higher-order method whose efficiency will be greater only for
sufficiently smooth integrands. qtrap is the method of choice, e.g., for an integrand
which is a function of a variable that is linearly interpolated between measured data
points. Be sure that you do not require too stringent an EPS, however: If qtrap takes
too many steps in trying to achieve your required accuracy, accumulated roundoff
errors may start increasing, and the routine may never converge. A value 10 −6

is just on the edge of trouble for most 32-bit machines; it is achievable when the
convergence is moderately rapid, but not otherwise.

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order 1/N 2, is in fact entirely even when expressed in powers of 1/N . This follows
directly from the Euler-Maclaurin Summation Formula,

∫ xN

x1

f(x)dx = h

[
1
2
f1 + f2 + f3 + · · · + fN−1 +

1
2
fN

]

− B2h
2

2!
(f ′

N − f ′
1) − · · · − B2kh2k

(2k)!
(f (2k−1)

N − f
(2k−1)
1 ) − · · ·

(4.2.1)

Here B2k is a Bernoulli number, defined by the generating function

t

et − 1
=

∞∑
n=0

Bn
tn

n!
(4.2.2)

with the first few even values (odd values vanish except for B1 = −1/2)

B0 = 1 B2 =
1
6

B4 = − 1
30

B6 =
1
42

B8 = − 1
30

B10 =
5
66

B12 = − 691
2730

(4.2.3)

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic
expansion whose error when truncated at any point is always less than twice the
magnitude of the first neglected term. The reason that it is not convergent is that
the Bernoulli numbers become very large, e.g.,

B50 =
495057205241079648212477525

66

The key point is that only even powers of h occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in §4.1.
For example, equation (4.1.12) has an error series beginning with O(1/N 3), but
continuing with all subsequent powers of N : 1/N 4, 1/N5, etc.

Suppose we evaluate (4.1.11) with N steps, getting a result SN , and then again
with 2N steps, getting a result S2N . (This is done by any two consecutive calls of
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trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S =
4
3
S2N − 1

3
SN (4.2.4)

will cancel out the leading order error term. But there is no error term of order 1/N 3,
by (4.2.1). The surviving error is of order 1/N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

SUBROUTINE qsimp(func,a,b,s)
INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)

C USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

INTEGER j
REAL os,ost,st
ost=-1.e30
os= -1.e30
do 11 j=1,JMAX

call trapzd(func,a,b,st,j)
s=(4.*st-ost)/3. Compare equation (4.2.4), above.
if (j.gt.5) then Avoid spurious early convergence.

if (abs(s-os).lt.EPS*abs(os).or.
* (s.eq.0..and.os.eq.0.)) return

endif
os=s
ost=st

enddo 11

pause ’too many steps in qsimp’
END

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a continuous 3rd derivative). The combination of qsimp and its
necessary workhorse trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.3.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.
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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than
Simpson’s rule. The basic idea is to use the results from k successive refinements
of the extended trapezoidal rule (implemented in trapzd) to remove all terms in
the error series up to but not including O(1/N 2k). The routine qsimp is the case
of k = 2. This is one example of a very general idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical algorithm for
various values of a parameter h, and then extrapolate the result to the continuum
limit h = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see §3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call to polint, already given in §3.1.

SUBROUTINE qromb(func,a,b,ss)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint,trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations

and their relative stepsizes.h(1)=1.
do 11 j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=0.25*h(j) This is a key step: The factor is 0.25 even though

the stepsize is decreased by only 0.5. This makes
the extrapolation a polynomial in h2 as allowed
by equation (4.2.1), not just a polynomial in h.

enddo 11

pause ’too many steps in qromb’
END

The routine qromb, along with its required trapzd and polint, is quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpoints are also nonsingular. qromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral

∫ 2

0

x4 log(x +
√

x2 + 1)dx
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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than
Simpson’s rule. The basic idea is to use the results fromk successive refinements
of the extended trapezoidal rule (implemented intrapzd) to remove all terms in
the error series up to but not includingO(1/N 2k). The routineqsimp is the case
of k = 2. This is one example of a very general idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical algorithm for
various values of a parameterh, and then extrapolate the result to the continuum
limit h = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see§3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call topolint, already given in§3.1.

SUBROUTINE qromb(func,a,b,ss)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint,trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations

and their relative stepsizes.h(1)=1.
do 11 j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=0.25*h(j) This is a key step: The factor is 0.25 even though

the stepsize is decreased by only 0.5. This makes
the extrapolation a polynomial in h2 as allowed
by equation (4.2.1), not just a polynomial in h.

enddo 11

pause ’too many steps in qromb’
END

The routineqromb, along with its requiredtrapzd and polint, is quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpoints are also nonsingular.qromb,
in such circumstances, takes many,many fewer function evaluations than either of
the routines in§4.2. For example, the integral

∫ 2

0

x4 log(x +
√

x2 + 1)dx
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converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls totrapzd, whileqsimp requires 8 calls (8 times as many evaluations of
the integrand) andqtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§3.4–3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

• its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluatedright on one of those limits (e.g.,sin x/x atx = 0)

• its upper limit is∞ , or its lower limit is−∞
• it has an integrable singularity at either limit (e.g.,x−1/2 at x = 0)
• it has an integrable singularity at a known place between its upper and

lower limits
• it has an integrable singularity at an unknown place between its upper

and lower limits
If an integral is infinite (e.g.,

∫∞
1 x−1dx), or does not exist in a limiting sense

(e.g.,
∫∞
−∞ cosxdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably§18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is anopen formula in the sense of§4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even inh. Indeed there is a formula, not as well
known as it ought to be, called theSecond Euler-Maclaurin summation formula,

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2 + · · · + fN−3/2 + fN−1/2]

+
B2h

2

4
(f ′

N − f ′
1) + · · ·

+
B2kh2k

(2k)!
(1 − 2−2k+1)(f (2k−1)

N − f
(2k−1)
1 ) + · · ·

(4.4.1)
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converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls to trapzd, while qsimp requires 8 calls (8 times as many evaluations of
the integrand) and qtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§3.4–3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

• its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluated right on one of those limits (e.g., sin x/x at x = 0)

• its upper limit is ∞ , or its lower limit is −∞
• it has an integrable singularity at either limit (e.g., x−1/2 at x = 0)
• it has an integrable singularity at a known place between its upper and

lower limits
• it has an integrable singularity at an unknown place between its upper

and lower limits
If an integral is infinite (e.g.,

∫∞
1 x−1dx), or does not exist in a limiting sense

(e.g.,
∫∞
−∞ cosxdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is an open formula in the sense of §4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even in h. Indeed there is a formula, not as well
known as it ought to be, called the Second Euler-Maclaurin summation formula,

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2 + · · · + fN−3/2 + fN−1/2]

+
B2h

2

4
(f ′

N − f ′
1) + · · ·

+
B2kh2k

(2k)!
(1 − 2−2k+1)(f (2k−1)

N − f
(2k−1)
1 ) + · · ·

(4.4.1)
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This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h/2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor

√
3 of unnecessary work,

since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only

√
2, but we lose an extra factor of 2 in being unable to use all the previous

evaluations. Since 1.732 < 2 × 1.414, it is better to triple.
Here is the resulting routine, which is directly comparable to trapzd.

SUBROUTINE midpnt(func,a,b,s,n)
INTEGER n
REAL a,b,s,func
EXTERNAL func

This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3) × 3n-1 additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL ddel,del,sum,tnm,x
if (n.eq.1) then

s=(b-a)*func(0.5*(a+b))
else

it=3**(n-2)
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del The added points alternate in spacing between del and ddel.
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+ddel
sum=sum+func(x)
x=x+del

enddo 11

s=(s+(b-a)*sum/tnm)/3. The new sum is combined with the old integral to give a
refined integral.endif

return
END

The routine midpnt can exactly replace trapzd in a driver routine like qtrap
(§4.2); one simply changes call trapzd to call midpnt, and perhaps also
decreases the parameter JMAX since 3JMAX−1 (from step tripling) is a much larger
number than 2JMAX−1 (step doubling).

The open formula implementation analogous to Simpson’s rule (qsimp in §4.2)
substitutes midpnt for trapzd and decreases JMAX as above, but now also changes
the extrapolation step to be

s=(9.*st-ost)/8.
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since, when the number of steps is tripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem
on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

SUBROUTINE qromo(func,a,b,ss,choose)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func,choose
PARAMETER (EPS=1.e-6, JMAX=14, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint
Romberg integration on an open interval. Returns as ss the integral of the function func
from a to b, using any specified integrating subroutine choose and Romberg’s method.
Normally choose will be an open formula, not evaluating the function at the endpoints. It
is assumed that choose triples the number of steps on each call, and that its error series
contains only even powers of the number of steps. The routines midpnt, midinf, midsql,
midsqu, are possible choices for choose. The parameters have the same meaning as in
qromb.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP)
h(1)=1.
do 11 j=1,JMAX

call choose(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=h(j)/9. This is where the assumption of step tripling and an even

error series is used.enddo 11

pause ’too many steps in qromo’
END

The differences between qromo and qromb (§4.3) are so slight that it is perhaps
gratuitous to list qromo in full. It, however, is an excellent driver routine for solving
all the other problems of improper integrals in our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

∫ b

a

f(x)dx =
∫ 1/a

1/b

1
t2

f

(
1
t

)
dt ab > 0 (4.4.2)

can be used with either b → ∞ and a positive, or with a → −∞ and b negative, and
works for any function which decreases towards infinity faster than 1/x 2.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e.g.) qromo and midpnt to do the numerical evaluation, or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version of midpnt, called midinf, which allows b to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 × 1030), or a to be negative and infinite.
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SUBROUTINE midinf(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

INTEGER it,j
REAL a,b,ddel,del,sum,tnm,func,x
func(x)=funk(1./x)/x**2 This statement function effects the change of variable.
b=1./aa These two statements change the limits of integration ac-

cordingly.a=1./bb
if (n.eq.1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*func(0.5*(a+b))
else

it=3**(n-2)
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+ddel
sum=sum+func(x)
x=x+del

enddo 11

s=(s+(b-a)*sum/tnm)/3.
endif
return
END

If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some positive value, for example,

call qromo(funk,-5.,2.,s1,midpnt)
call qromo(funk,2.,1.e30,s2,midinf)
answer=s1+s2

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1/x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as (x − a)−γ ,
0 ≤ γ < 1, near x = a, use the identity

∫ b

a

f(x)dx =
1

1 − γ

∫ (b−a)1−γ

0

t
γ

1−γ f(t
1

1−γ + a)dt (b > a) (4.4.3)

If the singularity is at the upper limit, use the identity

∫ b

a

f(x)dx =
1

1 − γ

∫ (b−a)1−γ

0

t
γ

1−γ f(b − t
1

1−γ )dt (b > a) (4.4.4)
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If there is a singularity at both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse
square-root singularities, a case that occurs frequently in practice:

∫ b

a

f(x)dx =
∫ √

b−a

0

2tf(a + t2)dt (b > a) (4.4.5)

for a singularity at a, and

∫ b

a

f(x)dx =
∫ √

b−a

0

2tf(b − t2)dt (b > a) (4.4.6)

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for midpnt which make the
change of variable automatically:

SUBROUTINE midsql(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the lower limit aa.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk(aa+x**2)
b=sqrt(bb-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

Similarly,

SUBROUTINE midsqu(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the upper limit bb.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk(bb-x**2)
b=sqrt(bb-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite, and the integrand falls off
exponentially. Then we want a change of variable that maps e−xdx into (±)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t = e−x or x = − log t (4.4.7)
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so that

∫ x=∞

x=a

f(x)dx =
∫ t=e−a

t=0

f(− log t)
dt

t
(4.4.8)

The user-transparent implementation would be

SUBROUTINE midexp(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=funk(-log(x))/x
b=exp(-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”
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so that

∫ x=∞

x=a

f(x)dx =
∫ t=e−a

t=0

f(− log t)
dt

t
(4.4.8)

The user-transparent implementation would be

SUBROUTINE midexp(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=funk(-log(x))/x
b=exp(-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”
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There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W (x)” rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to remove integrable singularities from the desired integral.
Given W (x), in other words, and given an integer N , we can find a set of weights
wj and abscissas xj such that the approximation

∫ b

a

W (x)f(x)dx ≈
N∑

j=1

wjf(xj) (4.5.1)

is exact if f(x) is a polynomial. For example, to do the integral

∫ 1

−1

exp(− cos2 x)√
1 − x2

dx (4.5.2)

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W (x) =
1√

1 − x2
(4.5.3)

in the interval (−1, 1). (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.5.1) can also be written with the weight
function W (x) not overtly visible: Define g(x) ≡ W (x)f(x) and vj ≡ wj/W (xj).
Then (4.5.1) becomes

∫ b

a

g(x)dx ≈
N∑

j=1

vjg(xj) (4.5.4)

Where did the function W (x) go? It is lurking there, ready to give high-order
accuracy to integrands of the form polynomials times W (x), and ready to deny high-
order accuracy to integrands that are otherwise perfectly smooth and well-behaved.
When you find tabulations of the weights and abscissas for a given W (x), you have
to determine carefully whether they are to be used with a formula in the form of
(4.5.1), or like (4.5.4).

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W (x) = 1 and N = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there
are actually only five distinct values of each:

SUBROUTINE qgaus(func,a,b,ss)
REAL a,b,ss,func
EXTERNAL func

Returns as ss the integral of the function func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the
range of integration.

INTEGER j
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REAL dx,xm,xr,w(5),x(5) The abscissas and weights.
SAVE w,x
DATA w/.2955242247,.2692667193,.2190863625,.1494513491,.0666713443/
DATA x/.1488743389,.4333953941,.6794095682,.8650633666,.9739065285/
xm=0.5*(b+a)
xr=0.5*(b-a)
ss=0 Will be twice the average value of the function, since the ten

weights (five numbers above each used twice) sum to 2.do 11 j=1,5
dx=xr*x(j)
ss=ss+w(j)*(func(xm+dx)+func(xm-dx))

enddo 11

ss=xr*ss Scale the answer to the range of integration.
return
END

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it
will come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice of W (x). We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W (x) does not change sign inside (a, b), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who
used continued fractions to develop the subject. In 1826 Jacobi rederived Gauss’s
results by means of orthogonal polynomials. The systematic treatment of arbitrary
weight functions W (x) using orthogonal polynomials is largely due to Christoffel in
1877. To introduce these orthogonal polynomials, let us fix the interval of interest
to be (a, b). We can define the “scalar product of two functions f and g over a
weight function W ” as

〈f |g〉 ≡
∫ b

a

W (x)f(x)g(x)dx (4.5.5)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j, called pj(x), for each j = 0, 1, 2, . . . , and (ii) all of which are mutually
orthogonal over the specified weight function W (x). A constructive procedure for
finding such a set is the recurrence relation

p−1(x) ≡ 0

p0(x) ≡ 1

pj+1(x) = (x − aj)pj(x) − bjpj−1(x) j = 0, 1, 2, . . .

(4.5.6)

where

aj =
〈xpj |pj〉
〈pj |pj〉 j = 0, 1, . . .

bj =
〈pj|pj〉

〈pj−1|pj−1〉 j = 1, 2, . . .

(4.5.7)
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The coefficient b0 is arbitrary; we can take it to be zero.
The polynomials defined by (4.5.6) are monic, i.e., the coefficient of their

leading term [xj for pj(x)] is unity. If we divide each pj(x) by the constant
[〈pj |pj〉]1/2 we can render the set of polynomials orthonormal. One also encounters
orthogonal polynomials with various other normalizations. You can convert from
a given normalization to monic polynomials if you know that the coefficient of
xj in pj is λj , say; then the monic polynomials are obtained by dividing each p j

by λj . Note that the coefficients in the recurrence relation (4.5.6) depend on the
adopted normalization.

The polynomial pj(x) can be shown to have exactly j distinct roots in the
interval (a, b). Moreover, it can be shown that the roots of p j(x) “interleave” the
j − 1 roots of pj−1(x), i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
roots: You can start with the one root of p1(x) and then, in turn, bracket the roots
of each higher j, pinning them down at each stage more precisely by Newton’s rule
or some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
pj(x)? Because the abscissas of the N -point Gaussian quadrature formulas (4.5.1)
and (4.5.4) with weighting function W (x) in the interval (a, b) are precisely the roots
of the orthogonal polynomial pN(x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and lets you find the
abscissas for any particular case.

Once you know the abscissas x1, . . . , xN , you need to find the weights wj ,
j = 1, . . . , N . One way to do this (not the most efficient) is to solve the set of
linear equations




p0(x1) . . . p0(xN )
p1(x1) . . . p1(xN )

...
...

pN−1(x1) . . . pN−1(xN )







w1

w2
...

wN


 =




∫ b

a W (x)p0(x)dx
0
...
0


 (4.5.8)

Equation (4.5.8) simply solves for those weights such that the quadrature (4.5.1)
gives the correct answer for the integral of the first N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.5.8) appear because p 1(x), . . . , pN−1(x)
are all orthogonal to p0(x), which is a constant. It can be shown that, with those
weights, the integral of the next N−1 polynomials is also exact, so that the quadrature
is exact for all polynomials of degree 2N − 1 or less. Another way to evaluate the
weights (though one whose proof is beyond our scope) is by the formula

wj =
〈pN−1|pN−1〉

pN−1(xj)p′N (xj)
(4.5.9)

where p′N (xj) is the derivative of the orthogonal polynomial at its zero x j .
The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p 0, . . . , pN , i.e., the computation of
the coefficients aj , bj in (4.5.6); (ii) the determination of the zeros of pN (x), and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficients aj and bj are explicitly known (equations 4.5.10 –
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4.5.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W (x), and you don’t know the coefficients a j and
bj , the construction of the associated set of orthogonal polynomials is not trivial.
We discuss it at the end of this section.

Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known,
including good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in §9.4) to converge very rapidly.
Newton’s method requires the derivative p ′

N (x), which is evaluated by standard
relations in terms of pN and pN−1. The weights are then conveniently evaluated by
equation (4.5.9). For the following named cases, this direct root-finding is faster,
by a factor of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:

W (x) = 1 − 1 < x < 1

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1 (4.5.10)

Gauss-Chebyshev:

W (x) = (1 − x2)−1/2 − 1 < x < 1

Tj+1 = 2xTj − Tj−1 (4.5.11)

Gauss-Laguerre:

W (x) = xαe−x 0 < x < ∞

(j + 1)Lα
j+1 = (−x + 2j + α + 1)Lα

j − (j + α)Lα
j−1 (4.5.12)

Gauss-Hermite:

W (x) = e−x2 −∞ < x < ∞

Hj+1 = 2xHj − 2jHj−1 (4.5.13)

Gauss-Jacobi:

W (x) = (1 − x)α(1 + x)β − 1 < x < 1



4.5 Gaussian Quadratures and Orthogonal Polynomials 145

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

cjP
(α,β)
j+1 = (dj + ejx)P (α,β)

j − fjP
(α,β)
j−1 (4.5.14)

where the coefficients cj , dj , ej , and fj are given by

cj = 2(j + 1)(j + α + β + 1)(2j + α + β)

dj = (2j + α + β + 1)(α2 − β2)

ej = (2j + α + β)(2j + α + β + 1)(2j + α + β + 2)

fj = 2(j + α)(j + β)(2j + α + β + 2)

(4.5.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.5.9) in the
special form for the Gauss-Legendre case,

wj =
2

(1 − x2
j )[P

′
N (xj)]2

(4.5.16)

The routine also scales the range of integration from (x1, x2) to (−1, 1), and provides
abscissas xj and weights wj for the Gaussian formula

∫ x2

x1

f(x)dx =
N∑

j=1

wjf(xj) (4.5.17)

SUBROUTINE gauleg(x1,x2,x,w,n)
INTEGER n
REAL x1,x2,x(n),w(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.d-14) EPS is the relative precision.

Given the lower and upper limits of integration x1 and x2, and given n, this routine returns
arrays x(1:n) and w(1:n) of length n, containing the abscissas and weights of the Gauss-
Legendre n-point quadrature formula.

INTEGER i,j,m
DOUBLE PRECISION p1,p2,p3,pp,xl,xm,z,z1

High precision is a good idea for this routine.
m=(n+1)/2 The roots are symmetric in the interval, so we

only have to find half of them.xm=0.5d0*(x2+x1)
xl=0.5d0*(x2-x1)
do 12 i=1,m Loop over the desired roots.

z=cos(3.141592654d0*(i-.25d0)/(n+.5d0))
Starting with the above approximation to the ith root, we enter the main loop of re-
finement by Newton’s method.

1 continue
p1=1.d0
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Leg-

endre polynomial evaluated at z.p3=p2
p2=p1
p1=((2.d0*j-1.d0)*z*p2-(j-1.d0)*p3)/j

enddo 11

p1 is now the desired Legendre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.

pp=n*(z*p1-p2)/(z*z-1.d0)
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z1=z
z=z1-p1/pp Newton’s method.

if(abs(z-z1).gt.EPS)goto 1
x(i)=xm-xl*z Scale the root to the desired interval,
x(n+1-i)=xm+xl*z and put in its symmetric counterpart.
w(i)=2.d0*xl/((1.d0-z*z)*pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.

enddo 12

return
END

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formula

∫ ∞

0

xαe−xf(x)dx =
N∑

j=1

wjf(xj) (4.5.18)

SUBROUTINE gaulag(x,w,n,alf)
INTEGER n,MAXIT
REAL alf,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don’t have this precision.

C USES gammln
Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x(1:n)
and w(1:n) containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x(1), the largest in x(n).

INTEGER i,its,j
REAL ai,gammln
DOUBLE PRECISION p1,p2,p3,pp,z,z1
High precision is a good idea for this routine.

do 13 i=1,n Loop over the desired roots.
if(i.eq.1)then Initial guess for the smallest root.

z=(1.+alf)*(3.+.92*alf)/(1.+2.4*n+1.8*alf)
else if(i.eq.2)then Initial guess for the second root.

z=z+(15.+6.25*alf)/(1.+.9*alf+2.5*n)
else Initial guess for the other roots.

ai=i-2
z=z+((1.+2.55*ai)/(1.9*ai)+1.26*ai*alf/

* (1.+3.5*ai))*(z-x(i-2))/(1.+.3*alf)
endif
do 12 its=1,MAXIT Refinement by Newton’s method.

p1=1.d0
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Laguerre

polynomial evaluated at z.p3=p2
p2=p1
p1=((2*j-1+alf-z)*p2-(j-1+alf)*p3)/j

enddo 11

p1 is now the desired Laguerre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.

pp=(n*p1-(n+alf)*p2)/z
z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gaulag’
1 x(i)=z Store the root and the weight.
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w(i)=-exp(gammln(alf+n)-gammln(float(n)))/(pp*n*p2)
enddo 13

return
END

Next is a routine for Gauss-Hermite abscissas and weights. If we use the
“standard” normalization of these functions, as given in equation (4.5.13), we find
that the computations overflow for large N because of various factorials that occur.
We can avoid this by using instead the orthonormal set of polynomials H̃j . They
are generated by the recurrence

H̃−1 = 0, H̃0 =
1

π1/4
, H̃j+1 = x

√
2

j + 1
H̃j −

√
j

j + 1
H̃j−1 (4.5.19)

The formula for the weights becomes

wj =
2

[H̃ ′
N (xj)]2

(4.5.20)

while the formula for the derivative with this normalization is

H̃ ′
j =

√
2jH̃j−1 (4.5.21)

The abscissas and weights returned by gauher are used with the integration formula

∫ ∞

−∞
e−x2

f(x)dx =
N∑

j=1

wjf(xj) (4.5.22)

SUBROUTINE gauher(x,w,n)
INTEGER n,MAXIT
REAL w(n),x(n)
DOUBLE PRECISION EPS,PIM4
PARAMETER (EPS=3.D-14,PIM4=.7511255444649425D0,MAXIT=10)

Given n, this routine returns arrays x(1:n) and w(1:n) containing the abscissas and
weights of the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned
in x(1), the most negative in x(n).
Parameters: EPS is the relative precision, PIM4 = 1/π1/4, MAXIT = maximum iterations.

INTEGER i,its,j,m
DOUBLE PRECISION p1,p2,p3,pp,z,z1
High precision is a good idea for this routine.

m=(n+1)/2
The roots are symmetric about the origin, so we have to find only half of them.

do 13 i=1,m Loop over the desired roots.
if(i.eq.1)then Initial guess for the largest root.

z=sqrt(float(2*n+1))-1.85575*(2*n+1)**(-.16667)
else if(i.eq.2)then Initial guess for the second largest root.

z=z-1.14*n**.426/z
else if (i.eq.3)then Initial guess for the third largest root.

z=1.86*z-.86*x(1)
else if (i.eq.4)then Initial guess for the fourth largest root.

z=1.91*z-.91*x(2)
else Initial guess for the other roots.

z=2.*z-x(i-2)
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endif
do 12 its=1,MAXIT Refinement by Newton’s method.

p1=PIM4
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Hermite poly-

nomial evaluated at z.p3=p2
p2=p1
p1=z*sqrt(2.d0/j)*p2-sqrt(dble(j-1)/dble(j))*p3

enddo 11

p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.5.21) using p2, the polynomial of one lower order.

pp=sqrt(2.d0*n)*p2
z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gauher’
1 x(i)=z Store the root

x(n+1-i)=-z and its symmetric counterpart.
w(i)=2.d0/(pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.

enddo 13

return
END

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which
implement the integration formula

∫ 1

−1

(1 − x)α(1 + x)βf(x)dx =
N∑

j=1

wjf(xj) (4.5.23)

SUBROUTINE gaujac(x,w,n,alf,bet)
INTEGER n,MAXIT
REAL alf,bet,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don’t have this precision.

C USES gammln
Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x(1:n) and w(1:n) containing the abscissas and weights of the n-point Gauss-Jacobi
quadrature formula. The largest abscissa is returned in x(1), the smallest in x(n).

INTEGER i,its,j
REAL alfbet,an,bn,r1,r2,r3,gammln
DOUBLE PRECISION a,b,c,p1,p2,p3,pp,temp,z,z1
High precision is a good idea for this routine.

do 13 i=1,n Loop over the desired roots.
if(i.eq.1)then Initial guess for the largest root.

an=alf/n
bn=bet/n
r1=(1.+alf)*(2.78/(4.+n*n)+.768*an/n)
r2=1.+1.48*an+.96*bn+.452*an*an+.83*an*bn
z=1.-r1/r2

else if(i.eq.2)then Initial guess for the second largest root.
r1=(4.1+alf)/((1.+alf)*(1.+.156*alf))
r2=1.+.06*(n-8.)*(1.+.12*alf)/n
r3=1.+.012*bet*(1.+.25*abs(alf))/n
z=z-(1.-z)*r1*r2*r3

else if(i.eq.3)then Initial guess for the third largest root.
r1=(1.67+.28*alf)/(1.+.37*alf)
r2=1.+.22*(n-8.)/n
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r3=1.+8.*bet/((6.28+bet)*n*n)
z=z-(x(1)-z)*r1*r2*r3

else if(i.eq.n-1)then Initial guess for the second smallest root.
r1=(1.+.235*bet)/(.766+.119*bet)
r2=1./(1.+.639*(n-4.)/(1.+.71*(n-4.)))
r3=1./(1.+20.*alf/((7.5+alf)*n*n))
z=z+(z-x(n-3))*r1*r2*r3

else if(i.eq.n)then Initial guess for the smallest root.
r1=(1.+.37*bet)/(1.67+.28*bet)
r2=1./(1.+.22*(n-8.)/n)
r3=1./(1.+8.*alf/((6.28+alf)*n*n))
z=z+(z-x(n-2))*r1*r2*r3

else Initial guess for the other roots.
z=3.*x(i-1)-3.*x(i-2)+x(i-3)

endif
alfbet=alf+bet
do 12 its=1,MAXIT Refinement by Newton’s method.

temp=2.d0+alfbet Start the recurrence with P0 and P1 to avoid a divi-
sion by zero when α + β = 0 or −1.p1=(alf-bet+temp*z)/2.d0

p2=1.d0
do 11 j=2,n Loop up the recurrence relation to get the Jacobi

polynomial evaluated at z.p3=p2
p2=p1
temp=2*j+alfbet
a=2*j*(j+alfbet)*(temp-2.d0)
b=(temp-1.d0)*(alf*alf-bet*bet+temp*

* (temp-2.d0)*z)
c=2.d0*(j-1+alf)*(j-1+bet)*temp
p1=(b*p2-c*p3)/a

enddo 11

pp=(n*(alf-bet-temp*z)*p1+2.d0*(n+alf)*
* (n+bet)*p2)/(temp*(1.d0-z*z))

p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by a
standard relation involving also p2, the polynomial of one lower order.

z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gaujac’
1 x(i)=z Store the root and the weight.

w(i)=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.)-
* gammln(n+alfbet+1.))*temp*2.**alfbet/(pp*p2)

enddo 13

return
END

Legendre polynomials are special cases of Jacobi polynomials with α = β = 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond to α = β = −1/2 (see §5.8). They have analytic abscissas
and weights:

xj = cos
(

π(j − 1
2 )

N

)

wj =
π

N

(4.5.24)
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Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros of your
orthogonal polynomials, but you do have available the coefficients aj and bj that generate
them. As we have seen, the zeros of pN(x) are the abscissas for the N -point Gaussian
quadrature formula. The most useful computational formula for the weights is equation
(4.5.9) above, since the derivative p′N can be efficiently computed by the derivative of (4.5.6)
in the general case, or by special relations for the classical polynomials. Note that (4.5.9) is
valid as written only for monic polynomials; for other normalizations, there is an extra factor
of λN/λN−1, where λN is the coefficient of xN in pN .

Except in those special cases already discussed, the best way to find the abscissas is not
to use a root-finding method like Newton’s method on pN(x). Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xpj to the left-hand side of (4.5.6) and the term pj+1 to the
right-hand side, the recurrence relation can be written in matrix form as

x




p0

p1

...
pN−2

pN−1




=




a0 1
b1 a1 1

...
...

bN−2 aN−2 1
bN−1 aN−1



·




p0

p1

...
pN−2

pN−1




+




0
0
...
0

pN




or

xp = T · p + pN eN−1 (4.5.25)

Here T is a tridiagonal matrix, p is a column vector of p0, p1, . . . , pN−1, and eN−1 is a unit
vector with a 1 in the (N − 1)st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

J = DTD−1 =




a0

√
b1√

b1 a1

√
b2

...
...√

bN−2 aN−2

√
bN−1√

bN−1 aN−1




(4.5.26)

The matrix J is called the Jacobi matrix (not to be confused with other matrices named
after Jacobi that arise in completely different problems!). Now we see from (4.5.25) that
pN(xj) = 0 is equivalent to xj being an eigenvalue of T. Since eigenvalues are preserved
by a similarity transformation, xj is an eigenvalue of the symmetric tridiagonal matrix J.
Moreover, Wilf [4] shows that if vj is the eigenvector corresponding to the eigenvalue xj ,
normalized so that v · v = 1, then

wj = µ0v
2
j,1 (4.5.27)

where

µ0 =

∫ b

a

W (x)dx (4.5.28)

and where vj,1 is the first component of v. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients aj and bj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily convert
it to monic form by means of the quantities λj .
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SUBROUTINE gaucof(n,a,b,amu0,x,w)
INTEGER n,NMAX
REAL amu0,a(n),b(n),w(n),x(n)
PARAMETER (NMAX=64)

C USES eigsrt,tqli
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a(1:n) and b(1:n) are the coefficients of the recurrence relation for

the set of monic orthogonal polynomials. The quantity µ0 ≡ ∫ b
a W (x)dx is input as amu0.

The abscissas x(1:n) are returned in descending order, with the corresponding weights
in w(1:n). The arrays a and b are modified. Execution can be speeded up by modifying
tqli and eigsrt to compute only the first component of each eigenvector.

INTEGER i,j
REAL z(NMAX,NMAX)
do 12 i=1,n

if(i.ne.1)b(i)=sqrt(b(i)) Set up superdiagonal of Jacobi matrix.
do 11 j=1,n Set up identity matrix for tqli to compute eigenvectors.

if(i.eq.j)then
z(i,j)=1.

else
z(i,j)=0.

endif
enddo 11

enddo 12

call tqli(a,b,n,NMAX,z)
call eigsrt(a,z,n,NMAX) Sort eigenvalues into descending order.
do 13 i=1,n

x(i)=a(i)
w(i)=amu0*z(1,i)**2 Equation (4.5.12).

enddo 13

return
END

Orthogonal Polynomials with Nonclassical Weights

This somewhat specialized subsection will tell you what to do if your weight function
is not one of the classical ones dealt with above and you do not know the aj’s and bj ’s
of the recurrence relation (4.5.6) to use in gaucof. Then, a method of finding the aj ’s
and bj ’s is needed.

The procedure of Stieltjes is to compute a0 from (4.5.7), then p1(x) from (4.5.6).
Knowing p0 and p1, we can compute a1 and b1 from (4.5.7), and so on. But how are we
to compute the inner products in (4.5.7)?

The textbook approach is to represent each pj(x) explicitly as a polynomial in x and
to compute the inner products by multiplying out term by term. This will be feasible if we
know the first 2N moments of the weight function,

µj =

∫ b

a

xjW (x)dx j = 0, 1, . . . , 2N − 1 (4.5.29)

However, the solution of the resulting set of algebraic equations for the coefficients aj and bj

in terms of the moments µj is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N = 12. We thus reject any procedure
based on the moments (4.5.29).

Sack and Donovan [5] discovered that the numerical stability is greatly improved if,
instead of using powers of x as a set of basis functions to represent the pj’s, one uses some
other known set of orthogonal polynomials πj(x), say. Roughly speaking, the improved
stability occurs because the polynomial basis “samples” the interval (a, b) better than the
power basis when the inner product integrals are evaluated, especially if its weight function
resembles W (x).
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So assume that we know the modified moments

νj =

∫ b

a

πj(x)W (x)dx j = 0, 1, . . . , 2N − 1 (4.5.30)

where the πj ’s satisfy a recurrence relation analogous to (4.5.6),

π−1(x) ≡ 0

π0(x) ≡ 1

πj+1(x) = (x − αj)πj(x) − βjπj−1(x) j = 0, 1, 2, . . .

(4.5.31)

and the coefficients αj , βj are known explicitly. Then Wheeler [6] has given an efficient
O(N2) algorithm equivalent to that of Sack and Donovan for finding aj and bj via a set
of intermediate quantities

σk,l = 〈pk|πl〉 k, l ≥ −1 (4.5.32)

Initialize

σ−1,l = 0 l = 1, 2, . . . , 2N − 2

σ0,l = νl l = 0, 1, . . . , 2N − 1

a0 = α0 +
ν1

ν0

b0 = 0

(4.5.33)

Then, for k = 1, 2, . . . , N − 1, compute

σk,l = σk−1,l+1 − (ak−1 − αl)σk−1,l − bk−1σk−2,l + βlσk−1,l−1

l = k, k + 1, . . . , 2N − k − 1

ak = αk − σk−1,k

σk−1,k−1
+

σk,k+1

σk,k

bk =
σk,k

σk−1,k−1

(4.5.34)

Note that the normalization factors can also easily be computed if needed:

〈p0|p0〉 = ν0

〈pj |pj〉 = bj 〈pj−1|pj−1〉 j = 1, 2, . . .
(4.5.35)

You can find a derivation of the above algorithm in Ref. [7].
Wheeler’s algorithm requires that the modified moments (4.5.30) be accurately computed.

In practical cases there is often a closed form, or else recurrence relations can be used. The
algorithm is extremely successful for finite intervals (a, b). For infinite intervals, the algorithm
does not completely remove the ill-conditioning. In this case, Gautschi [8,9] recommends
reducing the interval to a finite interval by a change of variable, and then using a suitable
discretization procedure to compute the inner products. You will have to consult the
references for details.

We give the routine orthog for generating the coefficients aj and bj by Wheeler’s
algorithm, given the coefficients αj and βj , and the modified moments νj . To conform to
the usual FORTRAN convention for dimensioning subscripts, the indices of the σ matrix are
increased by 2, i.e., sig(k,l) = σk−2,l−2, while the indices of the vectors α, β, a and
b are increased by 1.
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SUBROUTINE orthog(n,anu,alpha,beta,a,b)
INTEGER n,NMAX
REAL a(n),alpha(2*n-1),anu(2*n),b(n),beta(2*n-1)
PARAMETER (NMAX=64)

Computes the coefficients aj and bj , j = 0, . . . N − 1, of the recurrence relation for
monic orthogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input,
alpha(1:2*n-1) and beta(1:2*n-1) are the coefficients αj and βj , j = 0, . . . 2N − 2,
of the recurrence relation for the chosen basis of orthogonal polynomials. The modified
moments νj are input in anu(1:2*n). The first n coefficients are returned in a(1:n) and
b(1:n).

INTEGER k,l
REAL sig(2*NMAX+1,2*NMAX+1)
do 11 l=3,2*n Initialization, Equation (4.5.33).

sig(1,l)=0.
enddo 11

do 12 l=2,2*n+1
sig(2,l)=anu(l-1)

enddo 12

a(1)=alpha(1)+anu(2)/anu(1)
b(1)=0.
do 14 k=3,n+1 Equation (4.5.34).

do 13 l=k,2*n-k+3
sig(k,l)=sig(k-1,l+1)+(alpha(l-1)-a(k-2))*sig(k-1,l)-

* b(k-2)*sig(k-2,l)+beta(l-1)*sig(k-1,l-1)
enddo 13

a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

enddo 14

return
END

As an example of the use of orthog, consider the problem [7] of generating orthogonal
polynomials with the weight function W (x) = − log x on the interval (0, 1). A suitable set
of πj ’s is the shifted Legendre polynomials

πj =
(j!)2

(2j)!
Pj(2x − 1) (4.5.36)

The factor in front of Pj makes the polynomials monic. The coefficients in the recurrence
relation (4.5.31) are

αj =
1

2
j = 0, 1, . . .

βj =
1

4(4 − j−2)
j = 1, 2, . . .

(4.5.37)

while the modified moments are

νj =




1 j = 0
(−1)j(j!)2

j(j + 1)(2j)!
j ≥ 1

(4.5.38)

A call to orthog with this input allows one to generate the required polynomials to machine
accuracy for very large N , and hence do Gaussian quadrature with this weight function. Before
Sack and Donovan’s observation, this seemingly simple problem was essentially intractable.

Extensions of Gaussian Quadrature

There are many different ways in which the ideas of Gaussian quadrature have
been extended. One important extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose
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the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both a and b are nodes. Golub [10] has given an algorithm similar
to gaucof for these cases.

The second important extension is the Gauss-Kronrod formulas. For ordinary
Gaussian quadrature formulas, as N increases the sets of abscissas have no points
in common. This means that if you compare results with increasing N as a way of
estimating the quadrature error, you cannot reuse the previous function evaluations.
Kronrod [11] posed the problem of searching for optimal sequences of rules, each
of which reuses all abscissas of its predecessor. If one starts with N = m, say,
and then adds n new points, one has 2n + m free parameters: the n new abscissas
and weights, and m new weights for the fixed previous abscissas. The maximum
degree of exactness one would expect to achieve would therefore be 2n + m − 1.
The question is whether this maximum degree of exactness can actually be achieved
in practice, when the abscissas are required to all lie inside (a, b). The answer to
this question is not known in general.

Kronrod showed that if you choose n = m + 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [12] showed how to compute
continued extensions of this kind. Sequences such as N = 10, 21, 43, 87, . . . are
popular in automatic quadrature routines [13] that attempt to integrate a function until
some specified accuracy has been achieved.
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4.6 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the N th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-called iterated integrals of a function of one variable f(t) can be reduced to
one-dimensional integrals by the formula

∫ x

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t3

0

dt2

∫ t2

0

f(t1)dt1

=
1

(n − 1)!

∫ x

0

(x − t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand is not
strongly peaked in very small regions, and relatively low accuracy is tolerable, then
your problem is a good candidate for Monte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries that includes the complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function at a random sample of
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Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
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evaluations to do a one-dimensional integral crudely, then you will likely need on
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integral. Second, the region of integration in N -dimensional space is defined by
an N − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-called iterated integrals of a function of one variable f(t) can be reduced to
one-dimensional integrals by the formula
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=
1

(n − 1)!
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(x − t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand is not
strongly peaked in very small regions, and relatively low accuracy is tolerable, then
your problem is a good candidate for Monte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries that includes the complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function at a random sample of
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points, and estimates its integral based on that random sample. We will discuss it in
more detail, and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integration or multidimensional
Gaussian quadratures when the integrand is slowly varying and smooth in the region
of integration, Monte Carlo when the integrand is oscillatory or discontinuous, but
not strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a huge N -dimensional space. (But see §7.8.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in x, y, z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denote x1 and x2; (ii) its lower and upper limits in y at
a specified value of x, denoted y1(x) and y2(x); and (iii) its lower and upper limits
in z at specified x and y, denoted z1(x, y) and z2(x, y). In other words, find the
numbers x1 and x2, and the functions y1(x), y2(x), z1(x, y), and z2(x, y) such that

I ≡
∫ ∫ ∫

dx dy dzf(x, y, z)

=
∫ x2

x1

dx

∫ y2(x)

y1(x)

dy

∫ z2(x,y)

z1(x,y)

dz f(x, y, z)
(4.6.2)

For example, a two-dimensional integral over a circle of radius one centered on
the origin becomes

∫ 1

−1

dx

∫ √
1−x2

−√
1−x2

dy f(x, y) (4.6.3)

Now we can define a function G(x, y) that does the innermost integral,

G(x, y) ≡
∫ z2(x,y)

z1(x,y)

f(x, y, z)dz (4.6.4)

and a function H(x) that does the integral of G(x, y),

H(x) ≡
∫ y2(x)

y1(x)

G(x, y)dy (4.6.5)
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Figure 4.6.1. Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y axis of its own choosing. The inner integration routine then evaluates the function at
x locations suitable to it. This is more accurate in general than, e.g., evaluating the function on a
Cartesian mesh of points.

and finally our answer as an integral over H(x)

I =
∫ x2

x1

H(x)dx (4.6.6)

To implement equations (4.6.4)–(4.6.6) in a program, one needs three separate
copies of a basic one-dimensional integration routine (and of any subroutines called
by it), one each for the x, y, and z integrations. If you try to make do with only
one copy, then it will call itself recursively, since (e.g.) the function evaluations
of H for the x integration will themselves call the integration routine to do the y
integration (see Figure 4.6.1). In our example, let us suppose that we plan to use the
one-dimensional integrator qgaus of §4.5. Then we make three identical copies and
call them qgausx, qgausy, and qgausz. The basic program for three-dimensional
integration then is as follows:

SUBROUTINE quad3d(x1,x2,ss)
REAL ss,x1,x2,h
EXTERNAL h

C USES h,qgausx
Returns as ss the integral of a user-supplied function func over a three-dimensional region
specified by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as
defined in (4.6.2).

call qgausx(h,x1,x2,ss)
return
END

FUNCTION f(zz)
REAL f,zz,func,x,y,z
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COMMON /xyz/ x,y,z
C USES func

Called by qgausz. Calls func.
z=zz
f=func(x,y,z)
return
END

FUNCTION g(yy)
REAL g,yy,f,z1,z2,x,y,z
EXTERNAL f
COMMON /xyz/ x,y,z

C USES f,qgausz,z1,z2
Called by qgausy. Calls qgausz.

REAL ss
y=yy
call qgausz(f,z1(x,y),z2(x,y),ss)
g=ss
return
END

FUNCTION h(xx)
REAL h,xx,g,y1,y2,x,y,z
EXTERNAL g
COMMON /xyz/ x,y,z

C USES g,qgausy,y1,y2
Called by qgausx. Calls qgausy.

REAL ss
x=xx
call qgausy(g,y1(x),y2(x),ss)
h=ss
return
END

The necessary user-supplied functions have the following calling sequences:

FUNCTION func(x,y,z) The 3-dimensional function to be integrated
FUNCTION y1(x)
FUNCTION y2(x)
FUNCTION z1(x,y)
FUNCTION z2(x,y)

CITED REFERENCES AND FURTHER READING:
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Hall). [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
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Chapter 5. Evaluation of Functions

5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest and most
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular special function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so special as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighborhood
of a point x0 in a power series,

f(x) =
∞∑

k=0

ak(x − x0)k (5.1.1)

Such series are straightforward to evaluate. You don’t, of course, evaluate the kth
power of x−x0 ab initio for each term; rather you keep the k−1st power and update
it with a multiply. Similarly, the form of the coefficients a is often such as to make
use of previous work: Terms like k! or (2k)! can be updated in a multiply or two.

159
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illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest and most
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular special function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so special as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighborhood
of a point x0 in a power series,

f(x) =
∞∑

k=0

ak(x − x0)k (5.1.1)

Such series are straightforward to evaluate. You don’t, of course, evaluate the kth
power of x−x0 ab initio for each term; rather you keep the k−1st power and update
it with a multiply. Similarly, the form of the coefficients a is often such as to make
use of previous work: Terms like k! or (2k)! can be updated in a multiply or two.
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How do you know when you have summed enough terms? In practice, the
terms had better be getting small fast, otherwise the series is not a good technique
to use in the first place. While not mathematically rigorous in all cases, standard
practice is to quit when the term you have just added is smaller in magnitude than
some small ε times the magnitude of the sum thus far accumulated. (But watch out
if isolated instances of ak = 0 are possible!).

A weakness of a power series representation is that it is guaranteed not to
converge farther than that distance from x0 at which a singularity is encountered
in the complex plane. This catastrophe is not usually unexpected: When you find
a power series in a book (or when you work one out yourself), you will generally
also know the radius of convergence. An insidious problem occurs with series that
converge everywhere (in the mathematical sense), but almost nowhere fast enough
to be useful in a numerical method. Two familiar examples are the sine function
and the Bessel function of the first kind,

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 (5.1.2)

Jn(x) =
(x

2

)n ∞∑
k=0

(− 1
4x2)k

k!(k + n)!
(5.1.3)

Both of these series converge for all x. But both don’t even start to converge
until k � |x|; before this, their terms are increasing. This makes these series
useless for large x.

Accelerating the Convergence of Series

There are several tricks for accelerating the rate of convergence of a series (or,
equivalently, of a sequence of partial sums). These tricks will not generally help in
cases like (5.1.2) or (5.1.3) while the size of the terms is still increasing. For series
with terms of decreasing magnitude, however, some accelerating methods can be
startlingly good. Aitken’s δ2-process is simply a formula for extrapolating the partial
sums of a series whose convergence is approximately geometric. If Sn−1, Sn, Sn+1

are three successive partial sums, then an improved estimate is

S′
n ≡ Sn+1 − (Sn+1 − Sn)2

Sn+1 − 2Sn + Sn−1
(5.1.4)

You can also use (5.1.4) with n + 1 and n − 1 replaced by n + p and n − p
respectively, for any integer p. If you form the sequence of S ′

i’s, you can apply
(5.1.4) a second time to that sequence, and so on. (In practice, this iteration will
only rarely do much for you after the first stage.) Note that equation (5.1.4) should
be computed as written; there exist algebraically equivalent forms that are much
more susceptible to roundoff error.

For alternating series (where the terms in the sum alternate in sign), Euler’s
transformation can be a powerful tool. Generally it is advisable to do a small number
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of terms directly, through term n− 1 say, then apply the transformation to the rest of
the series beginning with term n. The formula (for n even) is

∞∑
s=0

(−1)sus = u0 − u1 + u2 . . . − un−1 +
∞∑

s=0

(−1)s

2s+1
[∆sun] (5.1.5)

Here ∆ is the forward difference operator, i.e.,

∆un ≡ un+1 − un

∆2un ≡ un+2 − 2un+1 + un

∆3un ≡ un+3 − 3un+2 + 3un+1 − un etc.

(5.1.6)

Of course you don’t actually do the infinite sum on the right-hand side of (5.1.5),
but only the first, say, p terms, thus requiring the first p differences (5.1.6) obtained
from the terms starting at un.

Euler’s transformation can be applied not only to convergent series. In some
cases it will produce accurate answers from the first terms of a series that is formally
divergent. It is widely used in the summation of asymptotic series. In this case
it is generally wise not to sum farther than where the terms start increasing in
magnitude; and you should devise some independent numerical check that the results
are meaningful.

There is an elegant and subtle implementation of Euler’s transformation due
to van Wijngaarden [1]: It incorporates the terms of the original alternating series
one at a time, in order. For each incorporation it either increases p by 1, equivalent
to computing one further difference (5.1.6), or else retroactively increases n by 1,
without having to redo all the difference calculations based on the old n value! The
decision as to which to increase, n or p, is taken in such a way as to make the
convergence most rapid. Van Wijngaarden’s technique requires only one vector of
saved partial differences. Here is the algorithm:

SUBROUTINE eulsum(sum,term,jterm,wksp)
INTEGER jterm
REAL sum,term,wksp(jterm) Workspace, provided by the calling program.

Incorporates into sum the jterm’th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

INTEGER j,nterm
REAL dum,tmp
SAVE nterm
if(jterm.eq.1)then Initialize:

nterm=1 Number of saved differences in wksp.
wksp(1)=term
sum=0.5*term Return first estimate.

else
tmp=wksp(1)
wksp(1)=term
do 11 j=1,nterm-1 Update saved quantities by van Wijngaarden’s algo-

rithm.dum=wksp(j+1)
wksp(j+1)=0.5*(wksp(j)+tmp)
tmp=dum
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enddo 11

wksp(nterm+1)=0.5*(wksp(nterm)+tmp)
if(abs(wksp(nterm+1)).le.abs(wksp(nterm)))then Favorable to increase p,

sum=sum+0.5*wksp(nterm+1)
nterm=nterm+1 and the table becomes longer.

else Favorable to increase n,
sum=sum+wksp(nterm+1) the table doesn’t become longer.

endif
endif
return
END

The powerful Euler technique is not directly applicable to a series of positive
terms. Occasionally it is useful to convert a series of positive terms into an alternating
series, just so that the Euler transformation can be used! Van Wijngaarden has given
a transformation for accomplishing this [1]:

∞∑
r=1

vr =
∞∑

r=1

(−1)r−1wr (5.1.7)

where
wr ≡ vr + 2v2r + 4v4r + 8v8r + · · · (5.1.8)

Equations (5.1.7) and (5.1.8) replace a simple sum by a two-dimensional sum, each
term in (5.1.7) being itself an infinite sum (5.1.8). This may seem a strange way to
save on work! Since, however, the indices in (5.1.8) increase tremendously rapidly,
as powers of 2, it often requires only a few terms to converge (5.1.8) to extraordinary
accuracy. You do, however, need to be able to compute the v r’s efficiently for
“random” values r. The standard “updating” tricks for sequential r’s, mentioned
above following equation (5.1.1), can’t be used.

Actually, Euler’s transformation is a special case of a more general transforma-
tion of power series. Suppose that some known function g(z) has the series

g(z) =
∞∑

n=0

bnzn (5.1.9)

and that you want to sum the new, unknown, series

f(z) =
∞∑

n=0

cnbnzn (5.1.10)

Then it is not hard to show (see [2]) that equation (5.1.10) can be written as

f(z) =
∞∑

n=0

[∆(n)c0]
g(n)

n!
zn (5.1.11)

which often converges much more rapidly. Here ∆ (n)c0 is the nth finite-difference
operator (equation 5.1.6), with ∆(0)c0 ≡ c0, and g(n) is the nth derivative of g(z).
The usual Euler transformation (equation 5.1.5 with n = 0) can be obtained, for
example, by substituting

g(z) =
1

1 + z
= 1 − z + z2 − z3 + · · · (5.1.12)
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into equation (5.1.11), and then setting z = 1.
Sometimes you will want to compute a function from a series representation

even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

f(x) = b0 +
a1

b1 + a2

b2+
a3

b3+
a4

b4+
a5

b5+···

(5.2.1)

Printers prefer to write this as

f(x) = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
a5

b5 +
· · · (5.2.2)

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

tan x =
x

1 −
x2

3 −
x2

5 −
x2

7 − · · · (5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, although this is not
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into equation (5.1.11), and then setting z = 1.
Sometimes you will want to compute a function from a series representation

even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

f(x) = b0 +
a1

b1 + a2

b2+
a3

b3+
a4

b4+
a5

b5+···

(5.2.1)

Printers prefer to write this as

f(x) = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
a5

b5 +
· · · (5.2.2)

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

tan x =
x

1 −
x2

3 −
x2

5 −
x2

7 − · · · (5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, although this is not
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a general rule. Blanch [1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the important quotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton [2] for
an introduction to this subject, and Fike [3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let fn denote the result of evaluating (5.2.2) with coefficients through
an and bn. Then

fn =
An

Bn
(5.2.4)

where An and Bn are given by the following recurrence:

A−1 ≡ 1 B−1 ≡ 0

A0 ≡ b0 B0 ≡ 1

Aj = bjAj−1 + ajAj−2 Bj = bjBj−1 + ajBj−2 j = 1, 2, . . . , n

(5.2.5)

This method was invented by J. Wallis in 1655 (!), and is discussed in his Arithmetica
Infinitorum [4]. You can easily prove it by induction.

In practice, this algorithm has some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators Aj and Bj . There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in the A’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divide Aj , Bj , Aj−1, and Bj−1 all by Bj . This incidentally makes Aj = fj

and is convenient for testing whether you have gone far enough: See if f j and fj−1

from the last iteration are as close as you would like them to be. (If B j happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not use Aj and Bj explicitly, but only the ratio Dj = Bj−1/Bj .
One calculates Dj and ∆fj = fj − fj−1 recursively using

Dj = 1/(bj + ajDj−1) (5.2.6)

∆fj = (bjDj − 1)∆fj−1 (5.2.7)

Steed’s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run into a situation
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where the denominator in (5.2.6) approaches zero, so that D j and ∆fj are very
large. The next ∆fj+1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of the f j’s. It is awkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a special purpose in
the routine bessik (§6.7).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj = Aj/Aj−1, Dj = Bj−1/Bj (5.2.8)

and calculating fj by

fj = fj−1CjDj (5.2.9)

From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations

Dj = 1/(bj + ajDj−1), Cj = bj + aj/Cj−1 (5.2.10)

In this algorithm there is the danger that the denominator in the expression for D j ,
or the quantity Cj itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g., 10−30. If you
work through a cycle of the algorithm with this prescription, you will see that f j+1

is accurately calculated.
In detail, the modified Lentz’s algorithm is this:

• Set f0 = b0; if b0 = 0 set f0 = tiny.
• Set C0 = f0.
• Set D0 = 0.
• For j = 1, 2, . . .

Set Dj = bj + ajDj−1.
If Dj = 0, set Dj = tiny.
Set Cj = bj + aj/Cj−1.
If Cj = 0 set Cj = tiny.
Set Dj = 1/Dj .
Set ∆j = CjDj .
Set fj = fj−1∆j .
If |∆j − 1| < eps then exit.

Here eps is your floating-point precision, say 10−7 or 10−15. The parameter tiny
should be less than typical values of eps|bj|, say 10−30.

The above algorithm assumes that you can terminate the evaluation of the
continued fraction when |fj − fj−1| is sufficiently small. This is usually the case,
but by no means guaranteed. Jones [7] gives a list of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

There is at present no rigorous analysis of error propagation in Lentz’s algorithm.
However, empirical tests suggest that it is at least as good as other methods.
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Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in forms that can speed up numerical computation. An equivalence transformation

an → λan, bn → λbn, an+1 → λan+1 (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor λ you can often simplify the form of the a’s and the b’s. Of course, you
can carry out successive equivalence transformations, possibly with different λ’s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are f2n and f2n+1, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be a big savings in
computation. The formula for the even part of (5.2.2) is

feven = d0 +
c1

d1 +
c2

d2 +
· · · (5.2.12)

where in terms of intermediate variables

α1 =
a1

b1

αn =
an

bnbn−1
, n ≥ 2

(5.2.13)

we have
d0 = b0, c1 = α1, d1 = 1 + α2

cn = −α2n−1α2n−2, dn = 1 + α2n−1 + α2n, n ≥ 2
(5.2.14)

You can find the similar formula for the odd part in the review by Blanch [1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.
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Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N − 1 is represented numerically as a stored array
of coefficients, c(j) with j= 1, . . . , N . We will always take c(1) to be the
constant term in the polynomial, c(N) the coefficient of xN−1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numerical manipulations (such as evaluation), where you are
given the numerical value of its argument, or algebraic manipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c(1)+c(2)*x+c(3)*x**2+c(4)*x**3+c(5)*x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or

p=(((c(5)*x+c(4))*x+c(3))*x+c(2))*x+c(1)

If the number of coefficients is a large number n, one writes

p=c(n)
do 11 j=n-1,1,-1

p=p*x+c(j)
enddo 11

Another useful trick is for evaluating a polynomial P (x) and its derivative
dP (x)/dx simultaneously:

p=c(n)
dp=0.
do 11 j=n-1,1,-1

dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1,2], generalizes to the

evaluation of the polynomial and nd-1 of its derivatives simultaneously:
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Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
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5.3 Polynomials and Rational Functions

A polynomial of degree N − 1 is represented numerically as a stored array
of coefficients, c(j) with j= 1, . . . , N . We will always take c(1) to be the
constant term in the polynomial, c(N) the coefficient of xN−1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numerical manipulations (such as evaluation), where you are
given the numerical value of its argument, or algebraic manipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c(1)+c(2)*x+c(3)*x**2+c(4)*x**3+c(5)*x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or

p=(((c(5)*x+c(4))*x+c(3))*x+c(2))*x+c(1)

If the number of coefficients is a large number n, one writes

p=c(n)
do 11 j=n-1,1,-1

p=p*x+c(j)
enddo 11

Another useful trick is for evaluating a polynomial P (x) and its derivative
dP (x)/dx simultaneously:

p=c(n)
dp=0.
do 11 j=n-1,1,-1

dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1,2], generalizes to the

evaluation of the polynomial and nd-1 of its derivatives simultaneously:
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SUBROUTINE ddpoly(c,nc,x,pd,nd)
INTEGER nc,nd
REAL x,c(nc),pd(nd)

Given the coefficients of a polynomial of degree nc-1 as an array c(1:nc) with c(1) being
the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd(1) and nd-1 derivatives as pd(2:nd).

INTEGER i,j,nnd
REAL const
pd(1)=c(nc)
do 11 j=2,nd

pd(j)=0.
enddo 11

do 13 i=nc-1,1,-1
nnd=min(nd,nc+1-i)
do 12 j=nnd,2,-1

pd(j)=pd(j)*x+pd(j-1)
enddo 12

pd(1)=pd(1)*x+c(i)
enddo 13

const=2. After the first derivative, factorial constants come in.
do 14 i=3,nd

pd(i)=const*pd(i)
const=const*i

enddo 14

return
END

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 (5.3.1)

where a4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P (x) = [(Ax + B)2 + Ax + C][(Ax + B)2 + D] + E (5.3.2)

where A, B, C, D, and E are to be precomputed by

A = (a4)1/4

B =
a3 − A3

4A3

D = 3B2 + 8B3 +
a1A − 2a2B

A2

C =
a2

A2
− 2B − 6B2 − D

E = a0 − B4 − B2(C + D) − CD

(5.3.3)

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.
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Turn now to algebraic manipulations. You multiply a polynomial of degree n−1
(array of length n) by a monomial factor x − a by a bit of code like the following,

c(n+1)=c(n)
do 11 j=n,2,-1

c(j)=c(j-1)-c(j)*a
enddo 11

c(1)=-c(1)*a

Likewise, you divide a polynomial of degree n− 1 by a monomial factor x− a
(synthetic division again) using

rem=c(n)
c(n)=0.
do 11 i=n-1,1,-1

swap=c(i)
c(i)=rem
rem=swap+rem*a

enddo 11

which leaves you with a new polynomial array and a numerical remainder rem.
Multiplication of two general polynomials involves straightforward summing

of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptible to a good deal of streamlining. Witness the following
routine based on the algorithm in [3].

SUBROUTINE poldiv(u,n,v,nv,q,r)
INTEGER n,nv
REAL q(n),r(n),u(n),v(nv)

Given the n coefficients of a polynomial in u(1:n), and the nv coefficients of another
polynomial in v(1:nv), divide the polynomial u by the polynomial v (“u”/“v”) giving
a quotient polynomial whose coefficients are returned in q(1:n-nv+1), and a remainder
polynomial whose coefficients are returned in r(1:nv-1). The arrays q and r are dimen-
sioned with lengths n, but the elements r(nv) . . . r(n) and q(n-nv+2) . . .q(n) will be
returned as zero.

INTEGER j,k
do 11 j=1,n

r(j)=u(j)
q(j)=0.

enddo 11

do 13 k=n-nv,0,-1
q(k+1)=r(nv+k)/v(nv)
do 12 j=nv+k-1,k+1,-1

r(j)=r(j)-q(k+1)*v(j-k)
enddo 12

enddo 13

do 14 j=nv,n
r(j)=0.

enddo 14

return
END
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Rational Functions

You evaluate a rational function like

R(x) =
Pµ(x)
Qν(x)

=
p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As
a matter of convention one usually chooses q0 = 1, obtained by dividing numerator
and denominator by any other q0. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard subroutine available
for doing the evaluation:

FUNCTION ratval(x,cof,mm,kk)
INTEGER kk,mm
DOUBLE PRECISION ratval,x,cof(mm+kk+1) Note precision! Change to REAL if desired.

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x + · · · + cof(mm+1)xmm)/(1 + cof(mm+2)x + · · · + cof(mm+kk+1)xkk).
INTEGER j
DOUBLE PRECISION sumd,sumn
sumn=cof(mm+1)
do 11 j=mm,1,-1

sumn=sumn*x+cof(j)
enddo 11

sumd=0.d0
do 12 j=mm+kk+1,mm+2,-1

sumd=(sumd+cof(j))*x
enddo 12

ratval=sumn/(1.d0+sumd)
return
END
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5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac − bd) + i(bc + ad) (5.4.1)

(the addition before the i doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac − bd) + i[(a + b)(c + d) − ac − bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 10 19 as compared to 1038). The right
way to do the calculation is

|a + ib| =
{ |a|√1 + (b/a)2 |a| ≥ |b|
|b|√1 + (a/b)2 |a| < |b| (5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=





[a + b(d/c)] + i[b − a(d/c)]
c + d(d/c)

|c| ≥ |d|
[a(c/d) + b] + i[b(c/d) − a]

c(c/d) + d
|c| < |d|

(5.4.5)
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5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac − bd) + i(bc + ad) (5.4.1)

(the addition before the i doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac − bd) + i[(a + b)(c + d) − ac − bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 10 19 as compared to 1038). The right
way to do the calculation is

|a + ib| =
{ |a|√1 + (b/a)2 |a| ≥ |b|
|b|√1 + (a/b)2 |a| < |b| (5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=





[a + b(d/c)] + i[b − a(d/c)]
c + d(d/c)

|c| ≥ |d|
[a(c/d) + b] + i[b(c/d) − a]

c(c/d) + d
|c| < |d|

(5.4.5)
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Of course you should calculate repeated subexpressions, like c/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of c + id, first compute

w ≡





0 c = d = 0
√
|c|
√

1 +
√

1 + (d/c)2

2
|c| ≥ |d|

√
|d|
√

|c/d| +√1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c + id =




0 w = 0

w + i

(
d

2w

)
w �= 0, c ≥ 0

|d|
2w

+ iw w �= 0, c < 0, d ≥ 0

|d|
2w

− iw w �= 0, c < 0, d < 0

(5.4.7)

CITED REFERENCES AND FURTHER READING:

Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n − 2)θ (5.5.4)

sin nθ = 2 cos θ sin(n − 1)θ − sin(n − 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations



172 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Of course you should calculate repeated subexpressions, like c/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of c + id, first compute

w ≡





0 c = d = 0
√
|c|
√

1 +
√

1 + (d/c)2

2
|c| ≥ |d|

√
|d|
√

|c/d| +√1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c+ id =




0 w = 0

w + i
(
d

2w

)
w �= 0, c ≥ 0

|d|
2w

+ iw w �= 0, c < 0, d ≥ 0

|d|
2w

− iw w �= 0, c < 0, d < 0

(5.4.7)

CITED REFERENCES AND FURTHER READING:

Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n
x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n− 1)θ − cos(n− 2)θ (5.5.4)

sinnθ = 2 cos θ sin(n− 1)θ − sin(n− 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
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are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.5.4) and (5.5.5) motivate us to say a few words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functions whose arguments
form a linear sequence θ = θ0 + nδ, n = 0, 1, 2, . . . , are efficiently calculated by
the following recurrence,

cos(θ + δ) = cos θ − [α cos θ + β sin θ]

sin(θ + δ) = sin θ − [α sin θ − β cos θ]
(5.5.6)

where α and β are the precomputed coefficients

α ≡ 2 sin2

(
δ

2

)
β ≡ sin δ (5.5.7)

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that here α and β do not lose significance if the
incremental δ is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin θ and cos θ can be
calculated via a single call to tan:

t ≡ tan
(
θ

2

)
cos θ =

1 − t2
1 + t2

sin θ =
2t

1 + t2
(5.5.8)

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings. However, note that special treatment is required if θ → ±π. And also
note that many modern machines have very fast trig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable
against roundoff error in the direction that you propose to go (either increasing n or
decreasing n). A three-term linear recurrence relation

yn+1 + anyn + bnyn−1 = 0, n = 1, 2, . . . (5.5.9)

has two linearly independent solutions, fn and gn say. Only one of these corresponds
to the sequence of functions fn that you are trying to generate. The other one gn

may be exponentially growing in the direction that you want to go, or exponentially
damped, or exponentially neutral (growing or dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
use in that direction. This is the case, e.g., for (5.5.2) in the direction of increasing
n, when x < n. You cannot generate Bessel functions of high n by forward
recurrence on (5.5.2).
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To state things a bit more formally, if

fn/gn → 0 as n→ ∞ (5.5.10)

then fn is called the minimal solution of the recurrence relation (5.5.9). Nonminimal
solutions like gn are called dominant solutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of f n to
a given gn. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction) [1] give a list of recurrences that
are stable in the increasing or decreasing directions. That list does not contain all
possible formulas, of course. Given a recurrence relation for some function f n(x)
you can test it yourself with about five minutes of (human) labor: For a fixed x
in your range of interest, start the recurrence not with true values of f j(x) and
fj+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing from j), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, then the recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically, then
there is an exponentially growing solution of the recurrence. If you know that the
function that you want actually corresponds to the growing solution, then you can
keep the recurrence formula anyway e.g., the case of the Bessel function Y n(x) for
increasing n, see §6.5; if you don’t know which solution your function corresponds
to, you must at this point reject the recurrence formula. Notice that you can do this
test before you go to the trouble of finding a numerical method for computing the
two starting functions fj(x) and fj+1(x): stability is a property of the recurrence,
not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.5.2) becomes

yn+1 − 2γyn + yn−1 = 0 (5.5.11)

where γ ≡ n/x is treated as a constant. You solve such recurrence relations
by trying solutions of the form yn = an. Substituting into the above recur-
rence gives

a2 − 2γa+ 1 = 0 or a = γ ±
√
γ2 − 1 (5.5.12)

The recurrence is stable if |a| ≤ 1 for all solutions a. This holds (as you can verify)
if |γ| ≤ 1 or n ≤ x. The recurrence (5.5.2) thus cannot be used, starting with J 0(x)
and J1(x), to compute Jn(x) for large n.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron [2]:

Theorem A. If in (5.5.9) an ∼ anα, bn ∼ bnβ as n→ ∞, and β < 2α, then

gn+1/gn ∼ −anα, fn+1/fn ∼ −(b/a)nβ−α (5.5.13)
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and fn is the minimal solution to (5.5.9).
Theorem B. Under the same conditions as Theorem A, but with β = 2α,

consider the characteristic polynomial

t2 + at+ b = 0 (5.5.14)

If the roots t1 and t2 of (5.5.14) have distinct moduli, |t1| > |t2| say, then

gn+1/gn ∼ t1nα, fn+1/fn ∼ t2nα (5.5.15)

and fn is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, see [3].)

How do you proceed if the solution that you desire is the minimal solution? The
answer lies in that old aphorism, that every cloud has a silver lining: If a recurrence
relation is catastrophically unstable in one direction, then that (undesired) solution
will decrease very rapidly in the reverse direction. This means that you can start
with any seed values for the consecutive fj and fj+1 and (when you have gone
enough steps in the stable direction) you will converge to the sequence of functions
that you want, times an unknown normalization factor. If there is some other way
to normalize the sequence (e.g., by a formula for the sum of the f n’s), then this
can be a practical means of function evaluation. The method is called Miller’s
algorithm. An example often given [1,4] uses equation (5.5.2) in just this way, along
with the normalization formula

1 = J0(x) + 2J2(x) + 2J4(x) + 2J6(x) + · · · (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations and continued fractions. Rewrite the recurrence relation (5.5.9) as

yn

yn−1
= − bn

an + yn+1/yn
(5.5.17)

Iterating this equation, starting with n, gives

yn

yn−1
= − bn

an −
bn+1

an+1 − · · · (5.5.18)

Pincherle’s Theorem [2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minimal solution fn, in which case it converges to fn/fn−1. This result, usually for
the case n = 1 and combined with some way to determine f0, underlies many of the
practical methods for computing special functions that we give in the next chapter.
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Clenshaw’s Recurrence Formula

Clenshaw’s recurrence formula [5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

f(θ) =
N∑

k=0

ck cos kθ or f(x) =
N∑

k=0

ckPk(x)

Here is how it works: Suppose that the desired sum is

f(x) =
N∑

k=0

ckFk(x) (5.5.19)

and that Fk obeys the recurrence relation

Fn+1(x) = α(n, x)Fn(x) + β(n, x)Fn−1(x) (5.5.20)

for some functions α(n, x) and β(n, x). Now define the quantities yk (k =
N,N − 1, . . . , 1) by the following recurrence:

yN+2 = yN+1 = 0

yk = α(k, x)yk+1 + β(k + 1, x)yk+2 + ck (k = N,N − 1, . . . , 1)
(5.5.21)

If you solve equation (5.5.21) for ck on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

f(x) = · · ·
+ [y8 − α(8, x)y9 − β(9, x)y10]F8(x)

+ [y7 − α(7, x)y8 − β(8, x)y9]F7(x)

+ [y6 − α(6, x)y7 − β(7, x)y8]F6(x)

+ [y5 − α(5, x)y6 − β(6, x)y7]F5(x)

+ · · ·
+ [y2 − α(2, x)y3 − β(3, x)y4]F2(x)

+ [y1 − α(1, x)y2 − β(2, x)y3]F1(x)

+ [c0 + β(1, x)y2 − β(1, x)y2]F0(x)

(5.5.22)

Notice that we have added and subtracted β(1, x)y2 in the last line. If you examine
the terms containing a factor of y8 in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the other y k’s down
through y2. The only surviving terms in (5.5.22) are

f(x) = β(1, x)F0(x)y2 + F1(x)y1 + F0(x)c0 (5.5.23)
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Equations (5.5.21) and (5.5.23) are Clenshaw’s recurrence formula for doing the
sum (5.5.19): You make one pass down through the y k’s using (5.5.21); when you
have reached y2 and y1 you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ck in a
downward order, with k decreasing. At each stage, the effect of all previous c k’s
is “remembered” as two coefficients which multiply the functions Fk+1 and Fk

(ultimately F0 and F1). If the functions Fk are small when k is large, and if the
coefficients ck are small when k is small, then the sum can be dominated by small
Fk’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

J15(1) = 0 × J0(1) + 0 × J1(1) + . . .+ 0 × J14(1) + 1 × J15(1) (5.5.24)

Here J15, which is tiny, ends up represented as a canceling linear combination of
J0 and J1, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates ck’s in an upward direction. The relevant equations are

y−2 = y−1 = 0 (5.5.25)

yk =
1

β(k + 1, x)
[yk−2 − α(k, x)yk−1 − ck],

(k = 0, 1, . . . , N − 1) (5.5.26)

f(x) = cNFN (x) − β(N, x)FN−1(x)yN−1 − FN (x)yN−2 (5.5.27)

The rare case where equations (5.5.25)–(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions F k is stable in the upward
or downward direction.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), pp. xiii, 697. [1]

Gautschi, W. 1967, SIAM Review, vol. 9, pp. 24–82. [2]

Lakshmikantham, V., and Trigiante, D. 1988, Theory of Difference Equations: Numerical Methods
and Applications (San Diego: Academic Press). [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 20ff. [4]

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory (London: H.M.
Stationery Office). [5]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§4.4.3, p. 111.

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), p. 76.
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5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation

ax2 + bx+ c = 0 (5.6.1)

with real coefficients a, b, c, namely

x =
−b±√

b2 − 4ac
2a

(5.6.2)

and

x =
2c

−b±√
b2 − 4ac

(5.6.3)

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble:
If either a or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q ≡ −1
2

[
b+ sgn(b)

√
b2 − 4ac

]
(5.6.4)

Then the two roots are

x1 =
q

a
and x2 =

c

q
(5.6.5)

If the coefficients a, b, c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*
√
b2 − 4ac) ≥ 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh−1 and cosh−1 are in fact just logarithms of
solutions to such equations,

sinh−1(x) = ln
(
x+

√
x2 + 1

)
(5.6.7)

cosh−1(x) = ± ln
(
x+

√
x2 − 1

)
(5.6.8)

Equation (5.6.7) is numerically robust for x ≥ 0. For negative x, use the symmetry
sinh−1(−x) = − sinh−1(x). Equation (5.6.8) is of course valid only for x ≥ 1.
Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.
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5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of thequadratic equation

ax2 + bx + c = 0 (5.6.1)

with real coefficientsa, b, c, namely

x =
−b ±√

b2 − 4ac

2a
(5.6.2)

and

x =
2c

−b ±√
b2 − 4ac

(5.6.3)

If you useeither (5.6.2)or (5.6.3) to get the two roots, you are asking for trouble:
If eithera or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q ≡ −1
2

[
b + sgn(b)

√
b2 − 4ac

]
(5.6.4)

Then the two roots are

x1 =
q

a
and x2 =

c

q
(5.6.5)

If the coefficientsa, b, c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*
√

b2 − 4ac) ≥ 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functionssinh−1 andcosh−1 are in fact just logarithms of
solutions to such equations,

sinh−1(x) = ln
(
x +

√
x2 + 1

)
(5.6.7)

cosh−1(x) = ± ln
(
x +

√
x2 − 1

)
(5.6.8)

Equation (5.6.7) is numerically robust forx ≥ 0. For negativex, use the symmetry
sinh−1(−x) = − sinh−1(x). Equation (5.6.8) is of course valid only forx ≥ 1.
SinceFORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.
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For the cubic equation

x3 + ax2 + bx + c = 0 (5.6.9)

with real or complex coefficientsa, b, c, first compute

Q ≡ a2 − 3b

9
and R ≡ 2a3 − 9ab + 27c

54
(5.6.10)

If Q andR are real (always true whena, b, c are real)and R 2 < Q3, then the cubic
equation has three real roots. Find them by computing

θ = arccos(R/
√

Q3) (5.6.11)

in terms of which the three roots are

x1 = −2
√

Q cos
(

θ

3

)
− a

3

x2 = −2
√

Q cos
(

θ + 2π

3

)
− a

3

x3 = −2
√

Q cos
(

θ − 2π

3

)
− a

3

(5.6.12)

(This equation first appears in Chapter VI of Fran¸cois Viète’s treatise “De emen-
datione,” published in 1615!)

Otherwise, compute

A = −
[
R +

√
R2 − Q3

]1/3

(5.6.13)

where the sign of the square root is chosen to make

Re(R*
√

R2 − Q3) ≥ 0 (5.6.14)

(asterisk again denoting complex conjugation). IfQ andR are both real, equations
(5.6.13)–(5.6.14) are equivalent to

A = −sgn(R)
[
|R| +

√
R2 − Q3

]1/3

(5.6.15)

where the positive square root is assumed. Next compute

B =
{

Q/A (A �= 0)
0 (A = 0) (5.6.16)

in terms of which the three roots are

x1 = (A + B) − a

3
(5.6.17)
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(the single real root whena, b, c are real) and

x2 = −1
2
(A + B) − a

3
+ i

√
3

2
(A − B)

x3 = −1
2
(A + B) − a

3
− i

√
3

2
(A − B)

(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53, p. 775,
and vol. 55, pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a functionf(x), and now
you want to compute its derivativef ′(x). Easy, right? The definition of the
derivative, the limit ash → 0 of

f ′(x) ≈ f(x + h) − f(x)
h

(5.7.1)

practically suggests the program: Pick a small valueh; evaluatef(x + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the functionf is fiercely expensive to compute,
when you already have invested in computingf(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to chooseh properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f(x + h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) +

1
6
h3f ′′′(x) + · · · (5.7.2)

whence

f(x + h) − f(x)
h

= f ′ +
1
2
hf ′′ + · · · (5.7.3)
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(the single real root whena, b, c are real) and

x2 = −1
2
(A + B) − a

3
+ i

√
3

2
(A − B)

x3 = −1
2
(A + B) − a

3
− i

√
3

2
(A − B)

(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53, p. 775,
and vol. 55, pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a functionf(x), and now
you want to compute its derivativef ′(x). Easy, right? The definition of the
derivative, the limit ash → 0 of

f ′(x) ≈ f(x + h) − f(x)
h

(5.7.1)

practically suggests the program: Pick a small valueh; evaluatef(x + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the functionf is fiercely expensive to compute,
when you already have invested in computingf(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to chooseh properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f(x + h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) +

1
6
h3f ′′′(x) + · · · (5.7.2)

whence

f(x + h) − f(x)
h

= f ′ +
1
2
hf ′′ + · · · (5.7.3)
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The roundoff error has various contributions. First there is roundoff error inh:
Suppose, by way of an example, that you are at a pointx = 10.3 and you blindly
chooseh = 0.0001. Neitherx = 10.3 nor x + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine’s floating-point format,εm, whose value in single
precision may be∼ 10−7. The error in theeffective value ofh, namely the difference
betweenx + h andx as represented in the machine, is therefore on the order ofε mx,
which implies a fractional error inh of order∼ εmx/h ∼ 10−2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.

We arrive at Lesson 1: Always chooseh so thatx+h andx differ by an exactly
representable number. This can usually be accomplished by the program steps

temp = x + h

h = temp− x
(5.7.4)

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is usually
enough to call a dummy subroutinedonothing(temp) between the two equations
(5.7.4). This forcestemp into and out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) ise r ∼
εf |f(x)/h|. Hereεf is the fractional accuracy with whichf is computed; for a
simple function this may be comparable to the machine accuracy,ε f ≈ εm, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order ofe t ∼ |hf ′′(x)|. Varyingh to
minimize the sumer + et gives the optimal choice ofh,

h ∼
√

εff

f ′′ ≈ √
εfxc (5.7.5)

wherexc ≡ (f/f ′′)1/2 is the “curvature scale” of the functionf , or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumesxc = x (except nearx = 0 where some other estimate of the typicalx
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er + et)/|f ′| ∼ √
εf (ff ′′/f ′2)1/2 ∼ √

εf (5.7.6)

Here the last order-of-magnitude equality assumes thatf , f ′, and f ′′ all share
the same characteristic length scale, usually the case. One sees that the simple
finite-difference equation (5.7.1) givesat best only the square root of the machine
accuracyεm.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

f ′(x) ≈ f(x + h) − f(x − h)
2h

(5.7.7)
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In this case, by equation (5.7.2), the truncation error ise t ∼ h2f ′′′. The roundoff
errorer is about the same as before. The optimal choice ofh, by a short calculation
analogous to the one above, is now

h ∼
(

εff

f ′′′

)1/3

∼ (εf )1/3xc (5.7.8)

and the fractional error is

(er + et)/|f ′| ∼ (εf )2/3f2/3(f ′′′)1/3/f ′ ∼ (εf )2/3 (5.7.9)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision)better than equation (5.7.6). We have arrived at Lesson
2: Chooseh to bethe correct power ofεf or εm times a characteristic scalexc.

You can easily derive the correct powers for other cases[1]. For a function of
two dimensions, for example, and the mixed derivative formula

∂2f

∂x∂y
=

[f(x + h, y + h) − f(x + h, y − h)] − [f(x − h, y + h) − f(x − h, y − h)]
4h2

(5.7.10)
the correct scaling ish ∼ ε

1/4
f xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracyε m,
or even the lower accuracy to whichf is evaluated,εf . Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable toxc, plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the functionf , so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see§4.3). For derivatives, one seeks to extrapolate, toh → 0, the result
of finite-difference calculations with smaller and smaller finite values ofh. By the
use of Neville’s algorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scalesh. Ridders[2] has given a nice implementation
of this idea; the following program,dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a functionf (calledfunc),
a positionx, and alargest stepsizeh (more analogous to what we have calledx c

above than to what we have calledh). Output is the returned value of the derivative,
and an estimate of its error,err.

FUNCTION dfridr(func,x,h,err)
INTEGER NTAB
REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
EXTERNAL func

C USES func
Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
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but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER i,j
REAL errt,fac,hh,a(NTAB,NTAB)
if(h.eq.0.) pause ’h must be nonzero in dfridr’
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0*hh)
err=BIG
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0*hh) Try new, smaller stepsize.
fac=CON2
do 11 j=2,i Compute extrapolations of various orders, requiring no new

function evaluations.a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.)
fac=CON2*fac
errt=max(abs(a(j,i)-a(j-1,i)),abs(a(j,i)-a(j-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at
the present stepsize and the previous one.

if (errt.le.err) then If error is decreased, save the improved answer.
err=errt
dfridr=a(j,i)

endif
enddo 11

if(abs(a(i,i)-a(i-1,i-1)).ge.SAFE*err)return
If higher order is worse by a significant factor SAFE, then quit early.

enddo 12

return
END

In dfridr, the number of evaluations offunc is typically 6 to 12, but is allowed
to be as great as 2×NTAB. As a function of inputh, it is typical for the accuracy
to getbetter ash is made larger, until a sudden point is reached where nonsensical
extrapolation produces early return with a large error. You should therefore choose
a fairly large value forh, but monitor the returned valueerr, decreasingh if it is
not small. For functions whose characteristicx scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximation to the function in that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in§§5.8–5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervals, and perhaps also noisy. One might then want, at each
point, to least-squaresfit a polynomial of some degreeM , using an additional
numbernL of points to the left and some numbernR of points to the right of each
desiredx value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in§14.8. There we will give a
routine for getting filter coefficients that not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine given,savgol, has an argumentld that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the



184 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

appropriate setting isld=1, and the value of the derivative is the accumulated sum
divided by the sampling intervalh.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4–5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75–76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degreen is denotedTn(x), and is given by
the explicit formula

Tn(x) = cos(n arccosx) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn(x) (see Figure 5.8.1),

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

· · ·
Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1.

(5.8.2)

(There also exist inverse formulas for the powers ofx in terms of theT n’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval[−1, 1] over a weight
(1 − x2)−1/2. In particular,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

{0 i �= j
π/2 i = j �= 0
π i = j = 0

(5.8.3)

The polynomialTn(x) hasn zeros in the interval[−1, 1], and they are located
at the points

x = cos
(

π(k − 1
2 )

n

)
k = 1, 2, . . . , n (5.8.4)
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appropriate setting is ld=1, and the value of the derivative is the accumulated sum
divided by the sampling interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4–5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75–76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted Tn(x), and is given by
the explicit formula

Tn(x) = cos(n arccos x) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn(x) (see Figure 5.8.1),

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

· · ·
Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1.

(5.8.2)

(There also exist inverse formulas for the powers of x in terms of the T n’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval [−1, 1] over a weight
(1 − x2)−1/2. In particular,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

{0 i �= j
π/2 i = j �= 0
π i = j = 0

(5.8.3)

The polynomial Tn(x) has n zeros in the interval [−1, 1], and they are located
at the points

x = cos
(

π(k − 1
2 )

n

)
k = 1, 2, . . . , n (5.8.4)



5.8 Chebyshev Approximation 185

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

C
he

by
sh

ev
 p

ol
yn

om
ia

ls

1

.5

0

−.5

−1

−.8 −.6 −.4 −.2 0
x

.2 .4 .6 .8 1−1

T1

T0

T2

T3

T6

T5

T4

Figure 5.8.1. Chebyshev polynomials T0(x) through T6(x). Note that Tj has j roots in the interval
(−1, 1) and that all the polynomials are bounded between ±1.

In this same interval there are n + 1 extrema (maxima and minima), located at

x = cos
(

πk

n

)
k = 0, 1, . . . , n (5.8.5)

At all of the maxima Tn(x) = 1, while at all of the minima Tn(x) = −1;
it is precisely this property that makes the Chebyshev polynomials so useful in
polynomial approximation of functions.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If xk (k = 1, . . . , m) are the m zeros of Tm(x) given
by (5.8.4), and if i, j < m, then

m∑
k=1

Ti(xk)Tj(xk) =

{0 i �= j
m/2 i = j �= 0
m i = j = 0

(5.8.6)

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f(x) is an arbitrary function in the interval [−1, 1], and if
N coefficients cj , j = 1, . . . , N , are defined by

cj =
2
N

N∑
k=1

f(xk)Tj−1(xk)

=
2
N

N∑
k=1

f

[
cos
(

π(k − 1
2 )

N

)]
cos
(

π(j − 1)(k − 1
2 )

N

) (5.8.7)
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then the approximation formula

f(x) ≈
[

N∑
k=1

ckTk−1(x)

]
− 1

2
c1 (5.8.8)

is exact for x equal to all of the N zeros of TN(x).
For a fixed N , equation (5.8.8) is a polynomial in x which approximates the

function f(x) in the interval [−1, 1] (where all the zeros of TN (x) are located). Why
is this particular approximating polynomial better than any other one, exact on some
other set of N points? The answer is not that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same order N (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degree m � N in a very graceful way, one that does yield the “most accurate”
approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(x). Now consider
the truncated approximation

f(x) ≈
[

m∑
k=1

ckTk−1(x)

]
− 1

2
c1 (5.8.9)

with the same cj’s, computed from (5.8.7). Since the Tk(x)’s are all bounded
between ±1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglected ck’s (k = m + 1, . . . , N ). In fact, if the ck’s are rapidly
decreasing (which is the typical case), then the error is dominated by c m+1Tm(x),
an oscillatory function with m + 1 equal extrema distributed smoothly over the
interval [−1, 1]. This smooth spreading out of the error is a very important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomials the minimax polynomial, which (among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(x). The minimax polynomial is very difficult to find; the Chebyshev
approximating polynomial is almost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f(x), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
ck’s and choice of a truncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f(x) for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limits a and b, instead of just−1 to 1. This is effected by a change of variable

y ≡ x − 1
2 (b + a)

1
2 (b − a)

(5.8.10)

and by the approximation of f(x) by a Chebyshev polynomial in y.

SUBROUTINE chebft(a,b,c,n,func)
INTEGER n,NMAX
REAL a,b,c(n),func
DOUBLE PRECISION PI
EXTERNAL func
PARAMETER (NMAX=50, PI=3.141592653589793d0)

Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree n, this routine computes the n coefficients ck such that func(x) ≈
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[
∑n

k=1 ckTk−1(y)] − c1/2, where y and x are related by (5.8.10). This routine is to be
used with moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated
at the smaller value m such that cm+1 and subsequent elements are negligible.
Parameters: Maximum expected value of n, and π.

INTEGER j,k
REAL bma,bpa,fac,y,f(NMAX)
DOUBLE PRECISION sum
bma=0.5*(b-a)
bpa=0.5*(b+a)
do 11 k=1,n We evaluate the function at the n points required by (5.8.7).

y=cos(PI*(k-0.5d0)/n)
f(k)=func(y*bma+bpa)

enddo 11

fac=2./n
do 13 j=1,n

sum=0.d0 We will accumulate the sum in double precision, a nicety that
you can ignore.do 12 k=1,n

sum=sum+f(k)*cos((PI*(j-1))*((k-0.5d0)/n))
enddo 12

c(j)=fac*sum
enddo 13

return
END

(If you find that the execution time of chebft is dominated by the calculation of
N2 cosines, rather than by the N evaluations of your function, then you should look
ahead to §12.3, especially equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Tk(x) from T0 = 1, T1 = x, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is

dm+2 ≡ dm+1 ≡ 0

dj = 2xdj+1 − dj+2 + cj j = m, m − 1, . . . , 2

f(x) ≡ d0 = xd2 − d3 +
1
2
c1

(5.8.11)

FUNCTION chebev(a,b,c,m,x)
INTEGER m
REAL chebev,a,b,x,c(m)

Chebyshev evaluation: All arguments are input. c(1:m) is an array of Chebyshev coeffi-
cients, the first m elements of c output from chebft (which must have been called with

the same a and b). The Chebyshev polynomial
∑m

k=1 ckTk−1(y) − c1/2 is evaluated at a
point y = [x− (b + a)/2]/[(b − a)/2], and the result is returned as the function value.

INTEGER j
REAL d,dd,sv,y,y2
if ((x-a)*(x-b).gt.0.) pause ’x not in range in chebev’
d=0.
dd=0.
y=(2.*x-a-b)/(b-a) Change of variable.
y2=2.*y
do 11 j=m,2,-1 Clenshaw’s recurrence.

sv=d
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d=y2*d-dd+c(j)
dd=sv

enddo 11

chebev=y*d-dd+0.5*c(1) Last step is different.
return
END

If we are approximating an even function on the interval [−1, 1], its expansion
will involve only even Chebyshev polynomials. It is wasteful to call chebev with
all the odd coefficients zero [1]. Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

T2n(x) = Tn(2x2 − 1) (5.8.12)

Thus we can evaluate a series of even Chebyshev polynomials by calling chebev
with the even coefficients stored consecutively in the array c, but with the argument
x replaced by 2x2 − 1.

An odd function will have an expansion involving only odd Chebyshev poly-
nomials. It is best to rewrite it as an expansion for the function f(x)/x, which
involves only even Chebyshev polynomials. This will give accurate values for
f(x)/x near x = 0. The coefficients c′n for f(x)/x can be found from those for
f(x) by recurrence:

c′N+1 = 0

c′n−1 = 2cn − c′n+1, n = N, N − 2, . . .
(5.8.13)

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).
If you insist on evaluating an odd Chebyshev series, the efficient way is to once

again use chebev with x replaced by y = 2x2 − 1, and with the odd coefficients
stored consecutively in the array c. Now, however, you must also change the last
formula in equation (5.8.11) to be

f(x) = x[(2y − 1)d2 − d3 + c1] (5.8.14)

and change the corresponding line in chebev.

CITED REFERENCES AND FURTHER READING:

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory, (London: H.M.
Stationery Office). [1]

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 8.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§4.4.1, p. 104.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.2, p. 334.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §1.10, p. 39.
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5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ci, i = 1, . . . , m are the coefficients that
approximate a function f in equation (5.8.9), C i are the coefficients that approximate
the indefinite integral of f , and c′i are the coefficients that approximate the derivative
of f , then

Ci =
ci−1 − ci+1

2(i − 1)
(i > 1) (5.9.1)

c′i−1 = c′i+1 + 2(i − 1)ci (i = m, m − 1, . . . , 2) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice of C 1, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values c′m = c′m+1 = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f .

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)
INTEGER n
REAL a,b,c(n),cder(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j
REAL con
cder(n)=0. n and n-1 are special cases.
cder(n-1)=2*(n-1)*c(n)
do 11 j=n-2,1,-1

cder(j)=cder(j+2)+2*j*c(j+1) Equation (5.9.2).
enddo 11

con=2./(b-a)
do 12 j=1,n Normalize to the interval b-a.

cder(j)=cder(j)*con
enddo 12

return
END

SUBROUTINE chint(a,b,c,cint,n)
INTEGER n
REAL a,b,c(n),cint(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j
REAL con,fac,sum
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5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ci, i = 1, . . . , m are the coefficients that
approximate a function f in equation (5.8.9), C i are the coefficients that approximate
the indefinite integral of f , and c′i are the coefficients that approximate the derivative
of f , then

Ci =
ci−1 − ci+1

2(i − 1)
(i > 1) (5.9.1)

c′i−1 = c′i+1 + 2(i − 1)ci (i = m, m − 1, . . . , 2) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice of C 1, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values c′m = c′m+1 = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f .

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)
INTEGER n
REAL a,b,c(n),cder(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j
REAL con
cder(n)=0. n and n-1 are special cases.
cder(n-1)=2*(n-1)*c(n)
do 11 j=n-2,1,-1

cder(j)=cder(j+2)+2*j*c(j+1) Equation (5.9.2).
enddo 11

con=2./(b-a)
do 12 j=1,n Normalize to the interval b-a.

cder(j)=cder(j)*con
enddo 12

return
END

SUBROUTINE chint(a,b,c,cint,n)
INTEGER n
REAL a,b,c(n),cint(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j
REAL con,fac,sum
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con=0.25*(b-a) Factor that normalizes to the interval b-a.
sum=0. Accumulates the constant of integration.
fac=1. Will equal ±1.
do 11 j=2,n-1

cint(j)=con*(c(j-1)-c(j+1))/(j-1) Equation (5.9.1).
sum=sum+fac*cint(j)
fac=-fac

enddo 11

cint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
sum=sum+fac*cint(n)
cint(1)=2.*sum Set the constant of integration.
return
END

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ci decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routines chebft and chint, used in that order, can be followed by repeated calls to chebev
if
∫ x

a
f(x)dx is required for many different values of x in the range a ≤ x ≤ b.

If only the single definite integral
∫ b

a
f(x)dx is required, then chint and chebev are

replaced by the simpler formula, derived from equation (5.9.1),

∫ b

a

f(x)dx = (b − a)

[
1

2
c1 − 1

3
c3 − 1

15
c5 − · · · − 1

(2k + 1)(2k − 1)
c2k+1 − · · ·

]

(5.9.3)
where the ci’s are as returned by chebft. The series can be truncated when c2k+1 becomes

negligible, and the first neglected term gives an error estimate.
This scheme is known as Clenshaw-Curtis quadrature [1]. It is often combined with an

adaptive choice of N , the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f(x). If a modest choice of N does
not give a sufficiently small c2k+1 in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or
Gauss-Lobatto (§4.5) variant,

cj =
2

N

N∑′′

k=0

f

[
cos

(
πk

N

)]
cos

(
π(j − 1)k

N

)
j = 1, . . . , N (5.9.4)

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points are identical to the old ones, allowing the previous function evaluations to be
reused. This feature, plus the analytic weights and abscissas (cosine functions in 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. §4.5),
which the method otherwise resembles.

If your problem forces you to large values of N , you should be aware that equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values of j, by a fast cosine transform.
(See §12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78–79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197–205. [1]
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5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t I convert the ck’s into actual polynomial coefficients
in the original variable x and have an approximation of the following form?”

f(x) ≈
m∑

k=1

gkxk−1 (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient g’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient of Tn(x), for example, is 2n−1; other coefficients of Tn(x) are
even bigger; yet they all manage to combine into a polynomial that lies between ±1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’s in equation (5.10.1) from the c’s output from chebft (suitably
truncated at a modest value of m) by calling in sequence the following two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.

Chebyshev polynomial coefficients. Given a coefficient array c(1:n) of length n, this routine
generates a coefficient array d(1:n) such that

∑n
k=1 dkyk−1 =

∑n
k=1 ckTk−1(y)−c1/2.

The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.

INTEGER j,k
REAL sv,dd(NMAX)
do 11 j=1,n

d(j)=0.
dd(j)=0.

enddo 11

d(1)=c(n)
do 13 j=n-1,2,-1

do 12 k=n-j+1,2,-1
sv=d(k)
d(k)=2.*d(k-1)-dd(k)
dd(k)=sv

enddo 12

sv=d(1)
d(1)=-dd(1)+c(j)
dd(1)=sv

enddo 13

do 14 j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5*c(1)
return
END
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5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variabley? Can’t I convert theck ’s into actual polynomial coefficients
in the original variablex and have an approximation of the following form?”

f(x) ≈
m∑

k=1

gkxk−1 (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficientg’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as bychebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient ofTn(x), for example, is2n−1; other coefficients ofTn(x) are
even bigger; yet they all manage to combine into a polynomial that lies between±1.
Only whenm is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get theg’s in equation (5.10.1) from thec’s output fromchebft (suitably
truncated at a modest value ofm) by calling in sequence the following two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.

Chebyshev polynomial coefficients. Given a coefficient array c(1:n) of length n, this routine
generates a coefficient array d(1:n) such that

∑n
k=1 dkyk−1 =

∑n
k=1 ckTk−1(y)−c1/2.

The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.

INTEGER j,k
REAL sv,dd(NMAX)
do 11 j=1,n

d(j)=0.
dd(j)=0.

enddo 11

d(1)=c(n)
do 13 j=n-1,2,-1

do 12 k=n-j+1,2,-1
sv=d(k)
d(k)=2.*d(k-1)-dd(k)
dd(k)=sv

enddo 12

sv=d(1)
d(1)=-dd(1)+c(j)
dd(1)=sv

enddo 13

do 14 j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5*c(1)
return
END
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SUBROUTINE pcshft(a,b,d,n)
INTEGER n
REAL a,b,d(n)

Polynomial coefficient shift. Given a coefficient array d(1:n), this routine generates a
coefficient array g(1:n) such that

∑n
k=1 dkyk−1 =

∑n
k=1 gkxk−1, where x and y are

related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval a < x < b.
The array g is returned in d.

INTEGER j,k
REAL const,fac
const=2./(b-a)
fac=const
do 11 j=2,n First we rescale by the factor const...

d(j)=d(j)*fac
fac=fac*const

enddo 11

const=0.5*(a+b) ...which is then redefined as the desired shift.
do 13 j=1,n-1 We accomplish the shift by synthetic division. Synthetic

division is a miracle of high-school algebra. If you
never learned it, go do so. You won’t be sorry.

do 12 k=n-1,j,-1
d(k)=d(k)-const*d(k+1)

enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, theeconomization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

f(x) ≡ 1 − x

3!
+

x2

5!
− x3

7!
+ · · · (5.11.1)

(This function is actuallysin(
√

x)/
√

x, but pretend you don’t know that.) You might be
doing a problem that requires evaluating the series many times in some particular interval, say
[0, (2π)2]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2π)2, the first term smaller than10−7 is x13/(27!). This then approximates the error
of the finite series whose last term isx12/(25!).

Notice that because of the large exponent inx13, the error ismuch smaller than10−7

everywhere in the interval except at the very largest values ofx. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:
1. Change variables fromx to y, as in equation (5.8.10), to map thex interval into

−1 ≤ y ≤ 1.
2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your

truncated power series (the one with enough terms for accuracy).
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SUBROUTINE pcshft(a,b,d,n)
INTEGER n
REAL a,b,d(n)

Polynomial coefficient shift. Given a coefficient array d(1:n), this routine generates a
coefficient array g(1:n) such that

∑n
k=1 dkyk−1 =

∑n
k=1 gkxk−1, where x and y are

related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval a < x < b.
The array g is returned in d.

INTEGER j,k
REAL const,fac
const=2./(b-a)
fac=const
do 11 j=2,n First we rescale by the factor const...

d(j)=d(j)*fac
fac=fac*const

enddo 11

const=0.5*(a+b) ...which is then redefined as the desired shift.
do 13 j=1,n-1 We accomplish the shift by synthetic division. Synthetic

division is a miracle of high-school algebra. If you
never learned it, go do so. You won’t be sorry.

do 12 k=n-1,j,-1
d(k)=d(k)-const*d(k+1)

enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

f(x) ≡ 1 − x

3!
+

x2

5!
− x3

7!
+ · · · (5.11.1)

(This function is actually sin(
√

x)/
√

x, but pretend you don’t know that.) You might be
doing a problem that requires evaluating the series many times in some particular interval, say
[0, (2π)2]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2π)2, the first term smaller than 10−7 is x13/(27!). This then approximates the error
of the finite series whose last term is x12/(25!).

Notice that because of the large exponent in x13, the error is much smaller than 10−7

everywhere in the interval except at the very largest values of x. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:
1. Change variables from x to y, as in equation (5.8.10), to map the x interval into

−1 ≤ y ≤ 1.
2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your

truncated power series (the one with enough terms for accuracy).
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3. Truncate this Chebyshev series to a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.

4. Convert back to a polynomial in y.
5. Change variables back to x.

All of these steps can be done numerically, given the coefficients of the original power
series expansion. The first step is exactly the inverse of the routine pcshft (§5.10), which
mapped a polynomial from y (in the interval [−1, 1]) to x (in the interval [a, b]). But since
equation (5.8.10) is a linear relation between x and y, one can also use pcshft for the
inverse. The inverse of

pcshft(a,b,d,n)

turns out to be (you can check this)

pcshft

(
−2 − b − a

b − a
,
2 − b − a

b − a
,d,n

)

The second step requires the inverse operation to that done by the routine chebpc (which
took Chebyshev coefficients into polynomial coefficients). The following routine, pccheb,
accomplishes this, using the formula [1]

xk =
1

2k−1

[
Tk(x) +

(
k

1

)
Tk−2(x) +

(
k

2

)
Tk−4(x) + · · ·

]
(5.11.2)

where the last term depends on whether k is even or odd,

· · · +
(

k

(k − 1)/2

)
T1(x) (k odd), · · · + 1

2

(
k

k/2

)
T0(x) (k even). (5.11.3)

SUBROUTINE pccheb(d,c,n)
INTEGER n
REAL c(n),d(n)

Inverse of routine chebpc: given an array of polynomial coefficients d(1:n), returns an
equivalent array of Chebyshev coefficients c(1:n).

INTEGER j,jm,jp,k
REAL fac,pow
pow=1. Will be powers of 2.
c(1)=2.*d(1)
do 12 k=2,n Loop over orders of x in the polynomial.

c(k)=0. Zero corresponding order of Chebyshev.
fac=d(k)/pow
jm=k-1
jp=1
do 11 j=k,1,-2 Increment this and lower orders of Chebyshev with the com-

binatorial coefficent times d(k); see text for formula.c(j)=c(j)+fac
fac=fac*float(jm)/float(jp)
jm=jm-1
jp=jp+1

enddo 11

pow=2.*pow
enddo 12

return
END

The fourth and fifth steps are accomplished by the routines chebpc and pcshft,
respectively. Here is how the procedure looks all together:
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INTEGER NMANY,NFEW
REAL e(NMANY),d(NFEW),c(NMANY),a,b

Economize NMANY power series coefficients e(1:NMANY) in the range (a, b) into NFEW
coefficients d(1:NFEW).

call pcshft((-2.-b-a)/(b-a),(2.-b-a)/(b-a),e,NMANY)
call pccheb(e,c,NMANY)
...

Here one would normally examine the Chebyshev coefficients c(1:NMANY) to decide how
small NFEW can be.

call chebpc(c,d,NFEW)
call pcshft(a,b,d,NFEW)

In our example, by the way, the 8th through 10th Chebyshev coefficients turn out to
be on the order of −7 × 10−6, 3 × 10−7, and −9 × 10−9, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with 8 –
10 terms instead of the original 13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a function f(x). Equivalent to
economizing the series, we could instead have evaluated f(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of §5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is the former that dictates the number of terms needed in a
polynomial approximation. A function might have a divergent power series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of §5.8, but not by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

R(x) ≡

M∑
k=0

akxk

1 +

N∑
k=1

bkxk

(5.12.1)

then R(x) is said to be a Padé approximant to the series

f(x) ≡
∞∑

k=0

ckxk (5.12.2)

if
R(0) = f(0) (5.12.3)
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INTEGER NMANY,NFEW
REAL e(NMANY),d(NFEW),c(NMANY),a,b

Economize NMANY power series coefficients e(1:NMANY) in the range (a, b) into NFEW
coefficients d(1:NFEW).

call pcshft((-2.-b-a)/(b-a),(2.-b-a)/(b-a),e,NMANY)
call pccheb(e,c,NMANY)
...

Here one would normally examine the Chebyshev coefficients c(1:NMANY) to decide how
small NFEW can be.

call chebpc(c,d,NFEW)
call pcshft(a,b,d,NFEW)

In our example, by the way, the 8th through 10th Chebyshev coefficients turn out to
be on the order of −7 × 10−6, 3 × 10−7, and −9 × 10−9, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with 8 –
10 terms instead of the original 13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a function f(x). Equivalent to
economizing the series, we could instead have evaluated f(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of §5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is the former that dictates the number of terms needed in a
polynomial approximation. A function might have a divergent power series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of §5.8, but not by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

R(x) ≡

M∑
k=0

akxk

1 +

N∑
k=1

bkxk

(5.12.1)

then R(x) is said to be a Padé approximant to the series

f(x) ≡
∞∑

k=0

ckxk (5.12.2)

if
R(0) = f(0) (5.12.3)
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and also

dk

dxk
R(x)

∣∣∣∣
x=0

=
dk

dxk
f(x)

∣∣∣∣
x=0

, k = 1, 2, . . . , M + N (5.12.4)

Equations (5.12.3) and (5.12.4) furnish M + N + 1 equations for the unknowns a0, . . . , aM

and b1, . . . , bN . The easiest way to see what these equations are is to equate (5.12.1) and
(5.12.2), multiply both by the denominator of equation (5.12.1), and equate all powers of
x that have either a’s or b’s in their coefficients. If we consider only the special case of
a diagonal rational approximation, M = N (cf. §3.2), then we have a0 = c0, with the
remaining a’s and b’s satisfying

N∑
m=1

bmcN−m+k = −cN+k, k = 1, . . . , N (5.12.5)

k∑
m=0

bmck−m = ak, k = 1, . . . , N (5.12.6)

(note, in equation 5.12.1, that b0 = 1). To solve these, start with equations (5.12.5), which
are a set of linear equations for all the unknown b’s. Although the set is in the form of a
Toeplitz matrix (compare equation 2.8.8), experience shows that the equations are frequently
close to singular, so that one should not solve them by the methods of §2.8, but rather by
full LU decomposition. Additionally, it is a good idea to refine the solution by iterative
improvement (routine mprove in §2.5) [1].

Once the b’s are known, then equation (5.12.6) gives an explicit formula for the unknown
a’s, completing the solution.

Padé approximants are typically used when there is some unknown underlying function
f(x). We suppose that you are able somehow to compute, perhaps by laborious analytic
expansions, the values of f(x) and a few of its derivatives at x = 0: f(0), f′(0), f ′′(0),
and so on. These are of course the first few coefficients in the power series expansion of
f(x); but they are not necessarily getting small, and you have no idea where (or whether)
the power series is convergent.

By contrast with techniques like Chebyshev approximation (§5.8) or economization
of power series (§5.11) that only condense the information that you already know about a
function, Padé approximants can give you genuinely new information about your function’s
values. It is sometimes quite mysterious how well this can work. (Like other mysteries in
mathematics, it relates to analyticity.) An example will illustrate.

Imagine that, by extraordinary labors, you have ground out the first five terms in the
power series expansion of an unknown function f(x),

f(x) ≈ 2 +
1

9
x +

1

81
x2 − 49

8748
x3 +

175

78732
x4 + · · · (5.12.7)

(It is not really necessary that you know the coefficients in exact rational form — numerical
values are just as good. We here write them as rationals to give you the impression that
they derive from some side analytic calculation.) Equation (5.12.7) is plotted as the curve
labeled “power series” in Figure 5.12.1. One sees that for x >∼ 4 it is dominated by its
largest, quartic, term.

We now take the five coefficients in equation (5.12.7) and run them through the routine
pade listed below. It returns five rational coefficients, three a’s and two b’s, for use in equation
(5.12.1) with M = N = 2. The curve in the figure labeled “Padé” plots the resulting rational
function. Note that both solid curves derive from the same five original coefficient values.

To evaluate the results, we need Deus ex machina (a useful fellow, when he is available)
to tell us that equation (5.12.7) is in fact the power series expansion of the function

f(x) = [7 + (1 + x)4/3]1/3 (5.12.8)

which is plotted as the dotted curve in the figure. This function has a branch point at x = −1,
so its power series is convergent only in the range −1 < x < 1. In most of the range
shown in the figure, the series is divergent, and the value of its truncation to five terms is
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f(
x)

x

Padé (5 coefficients)

exact

power series (5 terms)

f(x) = [7 + (1 + x)4/3]1/3

Figure 5.12.1. The five-term power series expansion and the derived five-coefficient Pad́e approximant
for a sample function f(x). The full power series converges only for x < 1. Note that the Pad́e
approximant maintains accuracy far outside the radius of convergence of the series.

rather meaningless. Nevertheless, those five terms, converted to a Padé approximant, give a
remarkably good representation of the function up to at least x ∼ 10.

Why does this work? Are there not other functions with the same first five terms in
their power series, but completely different behavior in the range (say) 2 < x < 10? Indeed
there are. Padé approximation has the uncanny knack of picking the function you had in
mind from among all the possibilities. Except when it doesn’t! That is the downside of
Padé approximation: it is uncontrolled. There is, in general, no way to tell how accurate
it is, or how far out in x it can usefully be extended. It is a powerful, but in the end still
mysterious, technique.

Here is the routine that gets a’s and b’s from your c’s. Note that the routine is specialized
to the case M = N , and also that, on output, the rational coefficients are arranged in a format
for use with the evaluation routine ratval (§5.3). (Also for consistency with that routine,
the array of c’s is passed in double precision.)

SUBROUTINE pade(cof,n,resid)
INTEGER n,NMAX
REAL resid,BIG
DOUBLE PRECISION cof(2*n+1) For consistency with ratval.
PARAMETER (NMAX=20,BIG=1.E30) Max expected value of n, and a big number.

C USES lubksb,ludcmp,mprove
Given cof(1:2*n+1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approx-
imation to the same function, namely (cof(1) + cof(2)x + · · · + cof(n+1)xN )/(1 +
cof(n+2)x+ · · ·+cof(2*n+1)xN ). The value resid is the norm of the residual vector;
a small value indicates a well-converged solution.

INTEGER j,k,indx(NMAX)
REAL d,rr,rrold,sum,q(NMAX,NMAX),qlu(NMAX,NMAX),x(NMAX),

* y(NMAX),z(NMAX)
do 12 j=1,n Set up matrix for solving.

x(j)=cof(n+j+1)



5.13 Rational Chebyshev Approximation 197

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

y(j)=x(j)
do 11 k=1,n

q(j,k)=cof(j-k+n+1)
qlu(j,k)=q(j,k)

enddo 11

enddo 12

call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG

1 continue Important to use iterative improvement, since the
Padé equations tend to be ill-conditioned.rrold=rr

do 13 j=1,n
z(j)=x(j)

enddo 13

call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
do 14 j=1,n Calculate residual.

rr=rr+(z(j)-x(j))**2
enddo 14

if(rr.lt.rrold)goto 1 If it is no longer improving, call it quits.
resid=sqrt(rrold)
do 16 k=1,n Calculate the remaining coefficients.

sum=cof(k+1)
do 15 j=1,k

sum=sum-z(j)*cof(k-j+1)
enddo 15

y(k)=sum
enddo 16 Copy answers to output.
do 17 j=1,n

cof(j+1)=y(j)
cof(j+n+1)=-z(j)

enddo 17

return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and §5.10 we learned how to find good polynomial approximations to a given
function f(x) in a given interval a ≤ x ≤ b. Here, we want to generalize the task to find
good approximations that are rational functions (see §5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.
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y(j)=x(j)
do 11 k=1,n

q(j,k)=cof(j-k+n+1)
qlu(j,k)=q(j,k)

enddo 11

enddo 12

call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG

1 continue Important to use iterative improvement, since the
Padé equations tend to be ill-conditioned.rrold=rr

do 13 j=1,n
z(j)=x(j)

enddo 13

call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
do 14 j=1,n Calculate residual.

rr=rr+(z(j)-x(j))**2
enddo 14

if(rr.lt.rrold)goto 1 If it is no longer improving, call it quits.
resid=sqrt(rrold)
do 16 k=1,n Calculate the remaining coefficients.

sum=cof(k+1)
do 15 j=1,k

sum=sum-z(j)*cof(k-j+1)
enddo 15

y(k)=sum
enddo 16 Copy answers to output.
do 17 j=1,n

cof(j+1)=y(j)
cof(j+n+1)=-z(j)

enddo 17

return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and §5.10 we learned how to find good polynomial approximations to a given
function f(x) in a given interval a ≤ x ≤ b. Here, we want to generalize the task to find
good approximations that are rational functions (see §5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.
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Let the desired rational function R(x) have numerator of degree m and denominator
of degree k. Then we have

R(x) ≡ p0 + p1x + · · · + pmxm

1 + q1x + · · · + qkxk
≈ f(x) for a ≤ x ≤ b (5.13.1)

The unknown quantities that we need to find are p0, . . . , pm and q1, . . . , qk , that is, m+k +1
quantities in all. Let r(x) denote the deviation of R(x) from f(x), and let r denote its
maximum absolute value,

r(x) ≡ R(x) − f(x) r ≡ max
a≤x≤b

|r(x)| (5.13.2)

The ideal minimax solution would be that choice of p’s and q’s that minimizes r. Obviously
there is some minimax solution, since r is bounded below by zero. How can we find it, or
a reasonable approximation to it?

A first hint is furnished by the following fundamental theorem: If R(x) is nondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice of p’s and q’s that minimizes r; for this choice, r(x) has m + k + 2 extrema in
a ≤ x ≤ b, all of magnitude r and with alternating sign. (We have omitted some technical
assumptions in this theorem. See Ralston [1] for a precise statement.) We thus learn that the
situation with rational functions is quite analogous to that for minimax polynomials: In §5.8
we saw that the error term of an nth order approximation, with n + 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namely Tn+1, which itself
has n + 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients, m + k + 1, plays the same role of the number of polynomial coefficients, n + 1.

A different way to see why r(x) should have m + k + 2 extrema is to note that R(x)
can be made exactly equal to f(x) at any m + k + 1 points xi. Multiplying equation (5.13.1)
by its denominator gives the equations

p0 + p1xi + · · · + pmxm
i = f(xi)(1 + q1xi + · · · + qkxk

i )

i = 1, 2, . . . , m + k + 1
(5.13.3)

This is a set of m + k + 1 linear equations for the unknown p’s and q’s, which can be
solved by standard methods (e.g., LU decomposition). If we choose the xi’s to all be in
the interval (a, b), then there will generically be an extremum between each chosen xi and
xi+1, plus also extrema where the function goes out of the interval at a and b, for a total
of m + k + 2 extrema. For arbitrary xi’s, the extrema will not have the same magnitude.
The theorem says that, for one particular choice of xi’s, the magnitudes can be beaten down
to the identical, minimal, value of r.

Instead of making f(xi) and R(xi) equal at the points xi, one can instead force the
residual r(xi) to any desired values yi by solving the linear equations

p0 + p1xi + · · · + pmxm
i = [f(xi) − yi](1 + q1xi + · · · + qkxk

i )

i = 1, 2, . . . , m + k + 1
(5.13.4)

In fact, if the xi’s are chosen to be the extrema (not the zeros) of the minimax solution,
then the equations satisfied will be

p0 + p1xi + · · · + pmxm
i = [f(xi) ± r](1 + q1xi + · · · + qkxk

i )

i = 1, 2, . . . , m + k + 2
(5.13.5)

where the ± alternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
m + k + 2 extrema, while equation (5.13.4) was satisfied only at m + k + 1 arbitrary points.
How can this be? The answer is that r in equation (5.13.5) is an additional unknown, so that
the number of both equations and unknowns is m + k + 2. True, the set is mildly nonlinear
(in r), but in general it is still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only the locations of the extrema of the minimax rational
function, we can solve for its coefficients and maximum deviation. Additional theorems,
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R
(x

) 
−  

f(
x)

2 × 10−6

10−6

0

−1 × 10−6

−2 × 10−6

0 .5 1 1.5 2 2.5 3
x

m = k = 4
f (x) = cos(x)/(1 + e x)
0 < x < π

Figure 5.13.1. Solid curves show deviations r(x) for five successive iterations of the routine ratlsq
for an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown
as the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant
bit of accuracy.

leading up to the so-called Remes algorithms [1], tell how to converge to these locations by
an iterative process. For example, here is a (slightly simplified) statement of Remes’ Second
Algorithm: (1) Find an initial rational function with m + k + 2 extrema xi (not having equal
deviation). (2) Solve equation (5.13.5) for new rational coefficients and r. (3) Evaluate the
resulting R(x) to find its actual extrema (which will not be the same as the guessed values).
(4) Replace each guessed value with the nearest actual extremum of the same sign. (5) Go
back to step 2 and iterate to convergence. Under a broad set of assumptions, this method will
converge. Ralston [1] fills in the necessary details, including how to find the initial set of xi’s.

Up to this point, our discussion has been textbook-standard. We now reveal ourselves
as heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on
r in the nonlinear set 5.13.5, and on the new sets of xi’s) are finicky and require a lot of
special logic for degenerate cases. Even more heretical, we doubt that compulsive searching
for the exactly best, equal deviation, approximation is worth the effort — except perhaps for
those few people in the world whose business it is to find optimal approximations that get
built into compilers and microchips.

When we use rational function approximation, the goal is usually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to
speed up its evaluation. Almost never do we need this function to the last bit of machine
accuracy. Suppose (heresy!) we use an approximation whose error has m + k + 2 extrema
whose deviations differ by a factor of 2. The theorems on which the Remes algorithms
are based guarantee that the perfect minimax solution will have extrema somewhere within
this factor of 2 range – forcing down the higher extrema will cause the lower ones to rise,
until all are equal. So our “sloppy” approximation is in fact within a fraction of a least
significant bit of the minimax one.

That is good enough for us, especially when we have available a very robust method
for finding the so-called “sloppy” approximation. Such a method is the least-squares solution
of overdetermined linear equations by singular value decomposition (§2.6 and §15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m + k + 1 values of xi, but for a significantly larger number of xi’s, spaced approximately
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like the zeros of a high-order Chebyshev polynomial. This gives an initial guess for R(x).
Second, tabulate the resulting deviations, find the mean absolute deviation, call it r, and then
solve (again in the least-squares sense) equation (5.13.5) with r fixed and the ± chosen to be
the sign of the observed deviation at each point xi. Third, repeat the second step a few times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema; and we solve only linear
equations at each stage. One additional trick is to solve a weighted least-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Here is a program implementing these ideas. Notice that the only calls to the function
fn occur in the initial filling of the table fs. You could easily modify the code to do this filling
outside of the routine. It is not even necessary that your abscissas xs be exactly the ones that we
use, though the quality of the fit will deteriorate if you do not have several abscissas between
each extremum of the (underlying) minimax solution. Notice that the rational coefficients are
output in a format suitable for evaluation by the routine ratval in §5.3.

SUBROUTINE ratlsq(fn,a,b,mm,kk,cof,dev)
INTEGER kk,mm,NPFAC,MAXC,MAXP,MAXIT
DOUBLE PRECISION a,b,dev,cof(mm+kk+1),fn,PIO2,BIG
PARAMETER (NPFAC=8,MAXC=20,MAXP=NPFAC*MAXC+1,

* MAXIT=5,PIO2=3.141592653589793D0/2.D0,BIG=1.D30)
EXTERNAL fn

C USES fn,ratval,dsvbksb,dsvdcmp DOUBLE PRECISION versions of svdcmp, svbksb.
Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the
function fn in the interval (a, b). Input quantities mm and kk specify the order of the numer-
ator and denominator, respectively. The maximum absolute deviation of the approximation
(insofar as is known) is returned as dev.

INTEGER i,it,j,ncof,npt
DOUBLE PRECISION devmax,e,hth,pow,sum,bb(MAXP),coff(MAXC),ee(MAXP),

* fs(MAXP),u(MAXP,MAXC),v(MAXC,MAXC),w(MAXC),wt(MAXP),xs(MAXP),
* ratval

ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated, i.e., fineness

of the mesh.dev=BIG
do 11 i=1,npt Fill arrays with mesh abscissas and function values.

if (i.lt.npt/2) then At each end, use formula that minimizes roundoff sensitivity.
hth=PIO2*(i-1)/(npt-1.d0)
xs(i)=a+(b-a)*sin(hth)**2

else
hth=PIO2*(npt-i)/(npt-1.d0)
xs(i)=b-(b-a)*sin(hth)**2

endif
fs(i)=fn(xs(i))
wt(i)=1.d0 In later iterations we will adjust these weights to combat the

largest deviations.ee(i)=1.d0
enddo 11

e=0.d0
do 17 it=1,MAXIT Loop over iterations.

do 14 i=1,npt Set up the “design matrix” for the least-squares fit.
pow=wt(i)
bb(i)=pow*(fs(i)+sign(e,ee(i))) Key idea here: Fit to fn(x) + e where

the deviation is positive, to fn(x)−e
where it is negative. Then e is sup-
posed to become an approximation
to the equal-ripple deviation.

do 12 j=1,mm+1
u(i,j)=pow
pow=pow*xs(i)

enddo 12

pow=-bb(i)
do 13 j=mm+2,ncof

pow=pow*xs(i)
u(i,j)=pow

enddo 13

enddo 14

call dsvdcmp(u,npt,ncof,MAXP,MAXC,w,v) Singular Value Decomposition.
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In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.

call dsvbksb(u,w,v,npt,ncof,MAXP,MAXC,bb,coff)
devmax=0.d0
sum=0.d0
do 15 j=1,npt Tabulate the deviations and revise the weights.

ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt(j)=abs(ee(j)) Use weighting to emphasize most deviant points.
sum=sum+wt(j)
if(wt(j).gt.devmax)devmax=wt(j)

enddo 15

e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.

do 16 j=1,ncof
cof(j)=coff(j)

enddo 16

dev=devmax
endif
write (*,10) it,devmax

enddo 17

return
10 FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pe10.3)

END

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m = k = 4 rational fit to the function f(x) = cos x/(1 + ex) in the
interval (0, π). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation – an ab initio integration for each desired
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In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.

call dsvbksb(u,w,v,npt,ncof,MAXP,MAXC,bb,coff)
devmax=0.d0
sum=0.d0
do 15 j=1,npt Tabulate the deviations and revise the weights.

ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt(j)=abs(ee(j)) Use weighting to emphasize most deviant points.
sum=sum+wt(j)
if(wt(j).gt.devmax)devmax=wt(j)

enddo 15

e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.

do 16 j=1,ncof
cof(j)=coff(j)

enddo 16

dev=devmax
endif
write (*,10) it,devmax

enddo 17

return
10 FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pe10.3)

END

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m = k = 4 rational fit to the function f(x) = cos x/(1 + ex) in the
interval (0, π). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation – an ab initio integration for each desired
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function value — along a path in the complex plane if necessary. While this may at
first seem like swatting a fly with a golden brick, it turns out that when you already
have the brick, and the fly is asleep right under it, all you have to do is let it fall!

As a specific example, let us consider the complex hypergeometric func-
tion 2F1(a, b, c; z), which is defined as the analytic continuation of the so-called
hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b + 1) . . . (b + j − 1)

c(c + 1) . . . (c + j − 1)
zj

j!
+ · · ·
(5.14.1)

The series converges only within the unit circle |z| < 1 (see [1]), but one’s interest
in the function is often not confined to this region.

The hypergeometric function 2F1 is a solution (in fact the solution that is regular
at the origin) of the hypergeometric differential equation, which we can write as

z(1 − z)F ′′ = abF − [c − (a + b + 1)z]F ′ (5.14.2)

Here prime denotes d/dz. One can see that the equation has regular singular points
at z = 0, 1, and ∞. Since the desired solution is regular at z = 0, the values 1 and
∞ will in general be branch points. If we want 2F1 to be a single valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from 1 to ∞, though we may wish to keep
open the possibility of altering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
16. For now, we need only a high-level, “black-box” routine that integrates such
a set from initial conditions at one value of a (real) independent variable to final
conditions at some other value of the independent variable, while automatically
adjusting its internal stepsize to maintain some specified accuracy. That routine is
called odeint and, in one particular invocation, calculates its individual steps with
a sophisticated Bulirsch-Stoer technique.

Suppose that we know values for F and its derivative F ′ at some value z0, and
that we want to find F at some other point z1 in the complex plane. The straight-line
path connecting these two points is parametrized by

z(s) = z0 + s(z1 − z0) (5.14.3)

with s a real parameter. The differential equation (5.14.2) can now be written as
a set of two first-order equations,

dF

ds
= (z1 − z0)F ′

dF ′

ds
= (z1 − z0)

(
abF − [c − (a + b + 1)z]F ′

z(1 − z)

) (5.14.4)

to be integrated from s = 0 to s = 1. Here F and F ′ are to be viewed as two
independent complex variables. The fact that prime means d/dz can be ignored; it
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use power series
branch cut

Im

0 1 Re

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch
cut, and some integration paths from the circle |z| = 1/2 (where the power series converges rapidly)
to other points in the plane.

will emerge as a consequence of the first equation in (5.14.4). Moreover, the real and
imaginary parts of equation (5.14.4) define a set of four real differential equations,
with independent variable s. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisely this point of view that gets passed to the routine odeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary point z. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For |z| ≤ 1/2, the series in equation (5.14.1) will in general converge
rapidly, and it makes sense to use it directly. Otherwise, we integrate along a straight
line path from one of the starting points (±1/2, 0) or (0,±1/2). The former choices
are natural for 0 < Re(z) < 1 and Re(z) < 0, respectively. The latter choices are
used for Re(z) > 1, above and below the branch cut; the purpose of starting away
from the real axis in these cases is to avoid passing too close to the singularity at
z = 1 (see Figure 5.14.1). The location of the branch cut is defined by the fact that
our adopted strategy never integrates across the real axis for Re (z) > 1.

An implementation of this algorithm is given in §6.12 as the routine hypgeo.
A number of variants on the procedure described thus far are possible, and easy

to program. If successively called values of z are close together (with identical values
of a, b, and c), then you can save the state vector (F, F ′) and the corresponding value
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of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: the function value will be “correct,” but not the one you want.

Alternatively, you may wish to integrate to some position z by a dog-leg path
that does cross the real axis Re z > 1, as a means of moving the branch cut. For
example, in some cases you might want to integrate from (0, 1/2) to (3/2, 1/2),
and go from there to any point with Re z > 1 — with either sign of Im z. (If
you are, for example, finding roots of a function by an iterative method, you do
not want the integration for nearby values to take different paths around a branch
point. If it does, your root-finder will see discontinuous function values, and will
likely not converge correctly!)

In any case, be aware that a loss of numerical accuracy can result if you integrate
through a region of large function value on your way to a final answer where the
function value is small. (For the hypergeometric function, a particular case of this is
when a and b are both large and positive, with c and x >∼ 1.) In such cases, you’ll
need to find a better dog-leg path.

The general technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For
example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are all special cases of the confluent hypergeometric function, with a
differential equation similar to the one used above (see, e.g., [1] §13.6, for a table of
special cases). The confluent hypergeometric function has no singularities at finite z:
That makes it easy to integrate. However, its essential singularity at infinity means
that it can have, along some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case by
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]
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Chapter 6. Special Functions

6.0 Introduction

There is nothing particularly special about a special function, except that
some person in authority or textbook writer (not the same thing!) has decided to
bestow the moniker. Special functions are sometimes called higher transcendental
functions (higher than what?) or functions of mathematical physics (but they occur in
other fields also) or functions that satisfy certain frequently occurring second-order
differential equations (but not all special functions do). One might simply call them
“useful functions” and let it go at that; it is surely only a matter of taste which
functions we have chosen to include in this chapter.

Good commercially available program libraries, such as NAG or IMSL, contain
routines for a number of special functions. These routines are intended for users who
will have no idea what goes on inside them. Such state of the art “black boxes” are
often very messy things, full of branches to completely different methods depending
on the value of the calling arguments. Black boxes have, or should have, careful
control of accuracy, to some stated uniform precision in all regimes.

We will not be quite so fastidious in our examples, in part because we want
to illustrate techniques from Chapter 5, and in part because we want you to
understand what goes on in the routines presented. Some of our routines have an
accuracy parameter that can be made as small as desired, while others (especially
those involving polynomial fits) give only a certain accuracy, one that we believe
serviceable (typically six significant figures or more). We do not certify that the
routines are perfect black boxes. We do hope that, if you ever encounter trouble
in a routine, you will be able to diagnose and correct the problem on the basis of
the information that we have given.

In short, the special function routines of this chapter are meant to be used —
we use them all the time — but we also want you to be prepared to understand
their inner workings.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York) [full of useful numerical approximations to a great variety
of functions].

IMSL Sfun/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042).

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter S.
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Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley).

Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).

Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

Γ(z) =
∫ ∞

0

tz−1e−tdt (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n! = Γ(n + 1) (6.1.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z) (6.1.3)

If the function is known for arguments z > 1 or, more generally, in the half complex
plane Re(z) > 1 it can be obtained for z < 1 or Re (z) < 1 by the reflection formula

Γ(1 − z) =
π

Γ(z) sin(πz)
=

πz

Γ(1 + z) sin(πz)
(6.1.4)

Notice that Γ(z) has a pole at z = 0, and at all negative integer values of z.
There are a variety of methods in use for calculating the function Γ(z)

numerically, but none is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices of γ and N , and for certain coefficients
c1, c2, . . . , cN , the gamma function is given by

Γ(z + 1) = (z + γ + 1
2 )z+ 1

2 e−(z+γ+ 1
2 )

×√
2π

[
c0 +

c1

z + 1
+

c2

z + 2
+ · · · + cN

z + N
+ ε

]
(z > 0)

(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant c0 is very nearly equal to 1. The error term is parametrized by ε.
For γ = 5, N = 6, and a certain set of c’s, the error is smaller than |ε| < 2 × 10−10.
Impressed? If not, then perhaps you will be impressed by the fact that (with these
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Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley).

Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).

Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

Γ(z) =
∫ ∞

0

tz−1e−tdt (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n! = Γ(n + 1) (6.1.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z) (6.1.3)

If the function is known for arguments z > 1 or, more generally, in the half complex
plane Re(z) > 1 it can be obtained for z < 1 or Re (z) < 1 by the reflection formula

Γ(1 − z) =
π

Γ(z) sin(πz)
=

πz

Γ(1 + z) sin(πz)
(6.1.4)

Notice that Γ(z) has a pole at z = 0, and at all negative integer values of z.
There are a variety of methods in use for calculating the function Γ(z)

numerically, but none is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices of γ and N , and for certain coefficients
c1, c2, . . . , cN , the gamma function is given by

Γ(z + 1) = (z + γ + 1
2 )z+ 1

2 e−(z+γ+ 1
2 )

×√
2π

[
c0 +

c1

z + 1
+

c2

z + 2
+ · · · + cN

z + N
+ ε

]
(z > 0)

(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant c0 is very nearly equal to 1. The error term is parametrized by ε.
For γ = 5, N = 6, and a certain set of c’s, the error is smaller than |ε| < 2 × 10−10.
Impressed? If not, then perhaps you will be impressed by the fact that (with these
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same parameters) the formula (6.1.5) and bound on ε apply for the complex gamma
function, everywhere in the half complex plane Re z > 0.

It is better to implement ln Γ(x) than Γ(x), since the latter will overflow many
computers’ floating-point representation at quite modest values of x. Often the
gamma function is used in calculations where the large values of Γ(x) are divided by
other large numbers, with the result being a perfectly ordinary value. Such operations
would normally be coded as subtraction of logarithms. With (6.1.5) in hand, we can
compute the logarithm of the gamma function with two calls to a logarithm and 25
or so arithmetic operations. This makes it not much more difficult than other built-in
functions that we take for granted, such as sinx or ex:

FUNCTION gammln(xx)
REAL gammln,xx

Returns the value ln[Γ(xx)] for xx > 0.
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)

Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.

SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,

* 24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,
* -.5395239384953d-5,2.5066282746310005d0/

x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
do 11 j=1,6

y=y+1.d0
ser=ser+cof(j)/y

enddo 11

gammln=tmp+log(stp*ser/x)
return
END

How shall we write a routine for the factorial function n!? Generally the
factorial function will be called for small integer values (for large values it will
overflow anyway!), and in most applications the same integer value will be called for
many times. It is a profligate waste of computer time to call exp(gammln(n+1.0))
for each required factorial. Better to go back to basics, holding gammln in reserve
for unlikely calls:

FUNCTION factrl(n)
INTEGER n
REAL factrl

C USES gammln
Returns the value n! as a floating-point number.

INTEGER j,ntop
REAL a(33),gammln Table to be filled in only as required.
SAVE ntop,a
DATA ntop,a(1)/0,1./ Table initialized with 0! only.
if (n.lt.0) then

pause ’negative factorial in factrl’
else if (n.le.ntop) then Already in table.

factrl=a(n+1)
else if (n.le.32) then Fill in table up to desired value.

do 11 j=ntop+1,n
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a(j+1)=j*a(j)
enddo 11

ntop=n
factrl=a(n+1)

else Larger value than size of table is required. Actually, this big
a value is going to overflow on many computers, but no
harm in trying.

factrl=exp(gammln(n+1.))
endif
return
END

A useful point is that factrl will be exact for the smaller values of n, since
floating-point multiplies on small integers are exact on all computers. This exactness
will not hold if we turn to the logarithm of the factorials. For binomial coefficients,
however, we must do exactly this, since the individual factorials in a binomial
coefficient will overflow long before the coefficient itself will.

The binomial coefficient is defined by

(
n

k

)
=

n!
k!(n − k)!

0 ≤ k ≤ n (6.1.6)

FUNCTION bico(n,k)
INTEGER k,n
REAL bico

C USES factln
Returns the binomial coefficient

(n
k

)
as a floating-point number.

REAL factln
bico=nint(exp(factln(n)-factln(k)-factln(n-k)))
return The nearest-integer function cleans up roundoff error for smaller values of n and k.
END

which uses

FUNCTION factln(n)
INTEGER n
REAL factln

C USES gammln
Returns ln(n!).

REAL a(100),gammln
SAVE a
DATA a/100*-1./ Initialize the table to negative values.
if (n.lt.0) pause ’negative factorial in factln’
if (n.le.99) then In range of the table.

if (a(n+1).lt.0.) a(n+1)=gammln(n+1.) If not already in the table, put it in.
factln=a(n+1)

else
factln=gammln(n+1.) Out of range of the table.

endif
return
END
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If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

(
n + 1

k

)
=

n + 1
n − k + 1

(
n

k

)
=
(

n

k

)
+
(

n

k − 1

)

(
n

k + 1

)
=

n − k

k + 1

(
n

k

) (6.1.7)

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

B(z, w) = B(w, z) =
∫ 1

0

tz−1(1 − t)w−1dt (6.1.8)

which is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)
Γ(z + w)

(6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z

C USES gammln
Returns the value of the beta function B(z, w).

REAL gammln
beta=exp(gammln(z)+gammln(w)-gammln(z+w))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 6.

Lanczos, C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1, pp. 86–96. [1]

6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

P (a, x) ≡ γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ x

0

e−tta−1dt (a > 0) (6.2.1)
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If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

(
n + 1

k

)
=

n + 1
n − k + 1

(
n

k

)
=
(

n

k

)
+
(

n

k − 1

)

(
n

k + 1

)
=

n − k

k + 1

(
n

k

) (6.1.7)

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

B(z, w) = B(w, z) =
∫ 1

0

tz−1(1 − t)w−1dt (6.1.8)

which is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)
Γ(z + w)

(6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z

C USES gammln
Returns the value of the beta function B(z, w).

REAL gammln
beta=exp(gammln(z)+gammln(w)-gammln(z+w))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 6.

Lanczos, C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1, pp. 86–96. [1]

6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

P (a, x) ≡ γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ x

0

e−tta−1dt (a > 0) (6.2.1)
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Figure 6.2.1. The incomplete gamma function P (a, x) for four values of a.

It has the limiting values

P (a, 0) = 0 and P (a,∞) = 1 (6.2.2)

The incomplete gamma function P (a, x) is monotonic and (for a greater than one or
so) rises from “near-zero” to “near-unity” in a range of x centered on about a − 1,
and of width about

√
a (see Figure 6.2.1).

The complement of P (a, x) is also confusingly called an incomplete gamma
function,

Q(a, x) ≡ 1 − P (a, x) ≡ Γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ ∞

x

e−tta−1dt (a > 0) (6.2.3)

It has the limiting values

Q(a, 0) = 1 and Q(a,∞) = 0 (6.2.4)

The notations P (a, x), γ(a, x), and Γ(a, x) are standard; the notation Q(a, x) is
specific to this book.

There is a series development for γ(a, x) as follows:

γ(a, x) = e−xxa
∞∑

n=0

Γ(a)
Γ(a + 1 + n)

xn (6.2.5)

One does not actually need to compute a new Γ(a + 1 + n) for each n; one rather
uses equation (6.1.3) and the previous coefficient.
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A continued fraction development for Γ(a, x) is

Γ(a, x) = e−xxa

(
1

x +
1 − a

1 +
1

x +
2 − a

1 +
2

x +
· · ·
)

(x > 0) (6.2.6)

It is computationally better to use the even part of (6.2.6), which converges twice
as fast (see §5.2):

Γ(a, x) = e−xxa

(
1

x + 1 − a −
1 · (1 − a)

x + 3 − a −
2 · (2 − a)

x + 5 − a − · · ·
)

(x > 0)

(6.2.7)

It turns out that (6.2.5) converges rapidly for x less than about a + 1, while
(6.2.6) or (6.2.7) converges rapidly for x greater than about a+1. In these respective
regimes each requires at most a few times

√
a terms to converge, and this many

only near x = a, where the incomplete gamma functions are varying most rapidly.
Thus (6.2.5) and (6.2.7) together allow evaluation of the function for all positive
a and x. An extra dividend is that we never need compute a function value near
zero by subtracting two nearly equal numbers. The higher-level functions that return
P (a, x) and Q(a, x) are

FUNCTION gammp(a,x)
REAL a,gammp,x

C USES gcf,gser
Returns the incomplete gamma function P (a, x).

REAL gammcf,gamser,gln
if(x.lt.0..or.a.le.0.)pause ’bad arguments in gammp’
if(x.lt.a+1.)then Use the series representation.

call gser(gamser,a,x,gln)
gammp=gamser

else Use the continued fraction representation
call gcf(gammcf,a,x,gln)
gammp=1.-gammcf and take its complement.

endif
return
END

FUNCTION gammq(a,x)
REAL a,gammq,x

C USES gcf,gser
Returns the incomplete gamma function Q(a, x) ≡ 1 − P (a, x).

REAL gammcf,gamser,gln
if(x.lt.0..or.a.le.0.)pause ’bad arguments in gammq’
if(x.lt.a+1.)then Use the series representation

call gser(gamser,a,x,gln)
gammq=1.-gamser and take its complement.

else Use the continued fraction representation.
call gcf(gammcf,a,x,gln)
gammq=gammcf

endif
return
END
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The argument gln is returned by both the series and continued fraction
procedures containing the value ln Γ(a); the reason for this is so that it is available
to you if you want to modify the above two procedures to give γ(a, x) and Γ(a, x),
in addition to P (a, x) and Q(a, x) (cf. equations 6.2.1 and 6.2.3).

The procedures gser and gcf which implement (6.2.5) and (6.2.7) are

SUBROUTINE gser(gamser,a,x,gln)
INTEGER ITMAX
REAL a,gamser,gln,x,EPS
PARAMETER (ITMAX=100,EPS=3.e-7)

C USES gammln
Returns the incomplete gamma function P (a, x) evaluated by its series representation as
gamser. Also returns lnΓ(a) as gln.

INTEGER n
REAL ap,del,sum,gammln
gln=gammln(a)
if(x.le.0.)then

if(x.lt.0.)pause ’x < 0 in gser’
gamser=0.
return

endif
ap=a
sum=1./a
del=sum
do 11 n=1,ITMAX

ap=ap+1.
del=del*x/ap
sum=sum+del
if(abs(del).lt.abs(sum)*EPS)goto 1

enddo 11

pause ’a too large, ITMAX too small in gser’
1 gamser=sum*exp(-x+a*log(x)-gln)

return
END

SUBROUTINE gcf(gammcf,a,x,gln)
INTEGER ITMAX
REAL a,gammcf,gln,x,EPS,FPMIN
PARAMETER (ITMAX=100,EPS=3.e-7,FPMIN=1.e-30)

C USES gammln
Returns the incomplete gamma function Q(a, x) evaluated by its continued fraction repre-
sentation as gammcf. Also returns ln Γ(a) as gln.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accu-
racy; FPMIN is a number near the smallest representable floating-point number.

INTEGER i
REAL an,b,c,d,del,h,gammln
gln=gammln(a)
b=x+1.-a Set up for evaluating continued fraction by modified

Lentz’s method (§5.2) with b0 = 0.c=1./FPMIN
d=1./b
h=d
do 11 i=1,ITMAX Iterate to convergence.

an=-i*(i-a)
b=b+2.
d=an*d+b
if(abs(d).lt.FPMIN)d=FPMIN
c=b+an/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
del=d*c
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h=h*del
if(abs(del-1.).lt.EPS)goto 1

enddo 11

pause ’a too large, ITMAX too small in gcf’
1 gammcf=exp(-x+a*log(x)-gln)*h Put factors in front.

return
END

Error Function

The error function and complementary error function are special cases of the
incomplete gamma function, and are obtained moderately efficiently by the above
procedures. Their definitions are

erf(x) =
2√
π

∫ x

0

e−t2dt (6.2.8)

and

erfc(x) ≡ 1 − erf(x) =
2√
π

∫ ∞

x

e−t2dt (6.2.9)

The functions have the following limiting values and symmetries:

erf(0) = 0 erf(∞) = 1 erf(−x) = −erf(x) (6.2.10)

erfc(0) = 1 erfc(∞) = 0 erfc(−x) = 2 − erfc(x) (6.2.11)

They are related to the incomplete gamma functions by

erf(x) = P

(
1
2
, x2

)
(x ≥ 0) (6.2.12)

and

erfc(x) = Q

(
1
2
, x2

)
(x ≥ 0) (6.2.13)

Hence we have

FUNCTION erf(x)
REAL erf,x

C USES gammp
Returns the error function erf(x).

REAL gammp
if(x.lt.0.)then

erf=-gammp(.5,x**2)
else

erf=gammp(.5,x**2)
endif
return
END
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FUNCTION erfc(x)
REAL erfc,x

C USES gammp,gammq
Returns the complementary error function erfc(x).

REAL gammp,gammq
if(x.lt.0.)then

erfc=1.+gammp(.5,x**2)
else

erfc=gammq(.5,x**2)
endif
return
END

If you care to do so, you can easily remedy the minor inefficiency in erf and
erfc, namely that Γ(0.5) =

√
π is computed unnecessarily when gammp or gammq

is called. Before you do that, however, you might wish to consider the following
routine, based on Chebyshev fitting to an inspired guess as to the functional form:

FUNCTION erfcc(x)
REAL erfcc,x

Returns the complementary error function erfc(x) with fractional error everywhere less than
1.2 × 10−7.

REAL t,z
z=abs(x)
t=1./(1.+0.5*z)
erfcc=t*exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+

* t*(.09678418+t*(-.18628806+t*(.27886807+t*(-1.13520398+
* t*(1.48851587+t*(-.82215223+t*.17087277)))))))))

if (x.lt.0.) erfcc=2.-erfcc
return
END

There are also some functions of two variables that are special cases of the
incomplete gamma function:

Cumulative Poisson Probability Function

Px(< k), for positive x and integer k ≥ 1, denotes the cumulative Poisson
probability function. It is defined as the probability that the number of Poisson
random events occurring will be between 0 and k− 1 inclusive, if the expected mean
number is x. It has the limiting values

Px(< 1) = e−x Px(< ∞) = 1 (6.2.14)

Its relation to the incomplete gamma function is simply

Px(< k) = Q(k, x) = gammq (k, x) (6.2.15)
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Chi-Square Probability Function

P (χ2|ν) is defined as the probability that the observed chi-square for a correct
model should be less than a value χ2. (We will discuss the use of this function in
Chapter 15.) Its complement Q(χ2|ν) is the probability that the observed chi-square
will exceed the value χ2 by chance even for a correct model. In both cases ν is an
integer, the number of degrees of freedom. The functions have the limiting values

P (0|ν) = 0 P (∞|ν) = 1 (6.2.16)
Q(0|ν) = 1 Q(∞|ν) = 0 (6.2.17)

and the following relation to the incomplete gamma functions,

P (χ2|ν) = P

(
ν

2
,
χ2

2

)
= gammp

(
ν

2
,
χ2

2

)
(6.2.18)

Q(χ2|ν) = Q

(
ν

2
,
χ2

2

)
= gammq

(
ν

2
,
χ2

2

)
(6.2.19)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6, 7, and 26.

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponential integral is

En(x) =
∫ ∞

1

e−xt

tn
dt, x > 0, n = 0, 1, . . . (6.3.1)

The function defined by the principal value of the integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt, x > 0 (6.3.2)

is also called an exponential integral. Note that Ei(−x) is related to −E1(x) by
analytic continuation.

The function En(x) is a special case of the incomplete gamma function

En(x) = xn−1Γ(1 − n, x) (6.3.3)
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Chi-Square Probability Function

P (χ2|ν) is defined as the probability that the observed chi-square for a correct
model should be less than a value χ2. (We will discuss the use of this function in
Chapter 15.) Its complement Q(χ2|ν) is the probability that the observed chi-square
will exceed the value χ2 by chance even for a correct model. In both cases ν is an
integer, the number of degrees of freedom. The functions have the limiting values

P (0|ν) = 0 P (∞|ν) = 1 (6.2.16)
Q(0|ν) = 1 Q(∞|ν) = 0 (6.2.17)

and the following relation to the incomplete gamma functions,

P (χ2|ν) = P

(
ν

2
,
χ2

2

)
= gammp

(
ν

2
,
χ2

2

)
(6.2.18)

Q(χ2|ν) = Q

(
ν

2
,
χ2

2

)
= gammq

(
ν

2
,
χ2

2

)
(6.2.19)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6, 7, and 26.

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponential integral is

En(x) =
∫ ∞

1

e−xt

tn
dt, x > 0, n = 0, 1, . . . (6.3.1)

The function defined by the principal value of the integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt, x > 0 (6.3.2)

is also called an exponential integral. Note that Ei(−x) is related to −E1(x) by
analytic continuation.

The function En(x) is a special case of the incomplete gamma function

En(x) = xn−1Γ(1 − n, x) (6.3.3)
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We can therefore use a similar strategy for evaluating it. The continued fraction —
just equation (6.2.6) rewritten — converges for all x > 0:

En(x) = e−x

(
1

x +
n

1 +
1

x +
n + 1
1 +

2
x +

· · ·
)

(6.3.4)

We use it in its more rapidly converging even form,

En(x) = e−x

(
1

x + n −
1 · n

x + n + 2 −
2(n + 1)

x + n + 4 − · · ·
)

(6.3.5)

The continued fraction only really converges fast enough to be useful for x >∼ 1.
For 0 < x <∼ 1, we can use the series representation

En(x) =
(−x)n−1

(n − 1)!
[− lnx + ψ(n)] −

∞∑
m=0

m �=n−1

(−x)m

(m − n + 1)m!
(6.3.6)

The quantity ψ(n) here is the digamma function, given for integer arguments by

ψ(1) = −γ, ψ(n) = −γ +
n−1∑
m=1

1
m

(6.3.7)

where γ = 0.5772156649 . . . is Euler’s constant. We evaluate the expression (6.3.6)
in order of ascending powers of x:

En(x) = −
[

1
(1 − n)

− x

(2 − n) · 1 +
x2

(3 − n)(1 · 2)
− · · · + (−x)n−2

(−1)(n − 2)!

]

+
(−x)n−1

(n − 1)!
[− lnx + ψ(n)] −

[
(−x)n

1 · n!
+

(−x)n+1

2 · (n + 1)!
+ · · ·

]

(6.3.8)

The first square bracket is omitted when n = 1. This method of evaluation has the
advantage that for large n the series converges before reaching the term containing
ψ(n). Accordingly, one needs an algorithm for evaluating ψ(n) only for small n,
n <∼ 20 – 40. We use equation (6.3.7), although a table look-up would improve
efficiency slightly.

Amos [1] presents a careful discussion of the truncation error in evaluating
equation (6.3.8), and gives a fairly elaborate termination criterion. We have found
that simply stopping when the last term added is smaller than the required tolerance
works about as well.

Two special cases have to be handled separately:

E0(x) =
e−x

x

En(0) =
1

n − 1
, n > 1

(6.3.9)
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The routine expint allows fast evaluation of En(x) to any accuracy EPS
within the reach of your machine’s word length for floating-point numbers. The
only modification required for increased accuracy is to supply Euler’s constant with
enough significant digits. Wrench [2] can provide you with the first 328 digits if
necessary!

FUNCTION expint(n,x)
INTEGER n,MAXIT
REAL expint,x,EPS,FPMIN,EULER
PARAMETER (MAXIT=100,EPS=1.e-7,FPMIN=1.e-30,EULER=.5772156649)

Evaluates the exponential integral En(x).
Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired rel-
ative error, not smaller than the machine precision; FPMIN is a number near the smallest
representable floating-point number; EULER is Euler’s constant γ.

INTEGER i,ii,nm1
REAL a,b,c,d,del,fact,h,psi
nm1=n-1
if(n.lt.0.or.x.lt.0..or.(x.eq.0..and.(n.eq.0.or.n.eq.1)))then

pause ’bad arguments in expint’
else if(n.eq.0)then Special case.

expint=exp(-x)/x
else if(x.eq.0.)then Another special case.

expint=1./nm1
else if(x.gt.1.)then Lentz’s algorithm (§5.2).

b=x+n
c=1./FPMIN
d=1./b
h=d
do 11 i=1,MAXIT

a=-i*(nm1+i)
b=b+2.
d=1./(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if(abs(del-1.).lt.EPS)then

expint=h*exp(-x)
return

endif
enddo 11

pause ’continued fraction failed in expint’
else Evaluate series.

if(nm1.ne.0)then Set first term.
expint=1./nm1

else
expint=-log(x)-EULER

endif
fact=1.
do 13 i=1,MAXIT

fact=-fact*x/i
if(i.ne.nm1)then

del=-fact/(i-nm1)
else

psi=-EULER Compute ψ(n).
do 12 ii=1,nm1

psi=psi+1./ii
enddo 12

del=fact*(-log(x)+psi)
endif
expint=expint+del
if(abs(del).lt.abs(expint)*EPS) return

enddo 13
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pause ’series failed in expint’
endif
return
END

A good algorithm for evaluating Ei is to use the power series for small x and
the asymptotic series for large x. The power series is

Ei(x) = γ + lnx +
x

1 · 1!
+

x2

2 · 2!
+ · · · (6.3.10)

where γ is Euler’s constant. The asymptotic expansion is

Ei(x) ∼ ex

x

(
1 +

1!
x

+
2!
x2

+ · · ·
)

(6.3.11)

The lower limit for the use of the asymptotic expansion is approximately | ln EPS|,
where EPS is the required relative error.

FUNCTION ei(x)
INTEGER MAXIT
REAL ei,x,EPS,EULER,FPMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,FPMIN=1.e-30)

Computes the exponential integral Ei(x) for x > 0.
Parameters: EPS is the relative error, or absolute error near the zero of Ei at x = 0.3725;
EULER is Euler’s constant γ; MAXIT is the maximum number of iterations allowed; FPMIN
is a number near the smallest representable floating-point number.

INTEGER k
REAL fact,prev,sum,term
if(x.le.0.) pause ’bad argument in ei’
if(x.lt.FPMIN)then Special case: avoid failure of convergence test be-

cause of underflow.ei=log(x)+EULER
else if(x.le.-log(EPS))then Use power series.

sum=0.
fact=1.
do 11 k=1,MAXIT

fact=fact*x/k
term=fact/k
sum=sum+term
if(term.lt.EPS*sum)goto 1

enddo 11

pause ’series failed in ei’
1 ei=sum+log(x)+EULER

else Use asymptotic series.
sum=0. Start with second term.
term=1.
do 12 k=1,MAXIT

prev=term
term=term*k/x
if(term.lt.EPS)goto 2 Since final sum is greater than one, term itself ap-

proximates the relative error.if(term.lt.prev)then
sum=sum+term Still converging: add new term.

else
sum=sum-prev Diverging: subtract previous term and exit.
goto 2

endif
enddo 12

2 ei=exp(x)*(1.+sum)/x
endif
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return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1974, Journal of Research of the National Bureau of Standards,
vol. 78B, pp. 199–216; 1976, op. cit., vol. 80B, pp. 291–311.

Amos D.E. 1980, ACM Transactions on Mathematical Software, vol. 6, pp. 365–377 [1]; also
vol. 6, pp. 420–428.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 5.

Wrench J.W. 1952, Mathematical Tables and Other Aids to Computation, vol. 6, p. 255. [2]

6.4 Incomplete Beta Function, Student’s
Distribution, F-Distribution, Cumulative
Binomial Distribution

The incomplete beta function is defined by

Ix(a, b) ≡ Bx(a, b)
B(a, b)

≡ 1
B(a, b)

∫ x

0

ta−1(1 − t)b−1dt (a, b > 0) (6.4.1)

It has the limiting values

I0(a, b) = 0 I1(a, b) = 1 (6.4.2)

and the symmetry relation

Ix(a, b) = 1 − I1−x(b, a) (6.4.3)

If a and b are both rather greater than one, then Ix(a, b) rises from “near-zero” to
“near-unity” quite sharply at about x = a/(a + b). Figure 6.4.1 plots the function
for several pairs (a, b).

The incomplete beta function has a series expansion

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[
1 +

∞∑
n=0

B(a + 1, n + 1)
B(a + b, n + 1)

xn+1

]
, (6.4.4)

but this does not prove to be very useful in its numerical evaluation. (Note, however,
that the beta functions in the coefficients can be evaluated for each value of n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful,

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[
1

1+
d1

1+
d2

1+
· · ·
]

(6.4.5)
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return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1974, Journal of Research of the National Bureau of Standards,
vol. 78B, pp. 199–216; 1976, op. cit., vol. 80B, pp. 291–311.

Amos D.E. 1980, ACM Transactions on Mathematical Software, vol. 6, pp. 365–377 [1]; also
vol. 6, pp. 420–428.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 5.

Wrench J.W. 1952, Mathematical Tables and Other Aids to Computation, vol. 6, p. 255. [2]

6.4 Incomplete Beta Function, Student’s
Distribution, F-Distribution, Cumulative
Binomial Distribution

The incomplete beta function is defined by

Ix(a, b) ≡ Bx(a, b)
B(a, b)

≡ 1
B(a, b)

∫ x

0

ta−1(1 − t)b−1dt (a, b > 0) (6.4.1)

It has the limiting values

I0(a, b) = 0 I1(a, b) = 1 (6.4.2)

and the symmetry relation

Ix(a, b) = 1 − I1−x(b, a) (6.4.3)

If a and b are both rather greater than one, then Ix(a, b) rises from “near-zero” to
“near-unity” quite sharply at about x = a/(a + b). Figure 6.4.1 plots the function
for several pairs (a, b).

The incomplete beta function has a series expansion

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[
1 +

∞∑
n=0

B(a + 1, n + 1)
B(a + b, n + 1)

xn+1

]
, (6.4.4)

but this does not prove to be very useful in its numerical evaluation. (Note, however,
that the beta functions in the coefficients can be evaluated for each value of n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful,

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[
1

1+
d1

1+
d2

1+
· · ·
]

(6.4.5)
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Figure 6.4.1. The incomplete beta function Ix(a, b) for five different pairs of (a, b). Notice that the
pairs (0.5, 5.0) and (5.0, 0.5) are symmetrically related as indicated in equation (6.4.3).

where

d2m+1 = − (a + m)(a + b + m)x
(a + 2m)(a + 2m + 1)

d2m =
m(b − m)x

(a + 2m − 1)(a + 2m)

(6.4.6)

This continued fraction converges rapidly for x < (a + 1)/(a + b + 2), taking in
the worst case O(

√
max(a, b)) iterations. But for x > (a + 1)/(a + b + 2) we can

just use the symmetry relation (6.4.3) to obtain an equivalent computation where the
continued fraction will also converge rapidly. Hence we have

FUNCTION betai(a,b,x)
REAL betai,a,b,x

C USES betacf,gammln
Returns the incomplete beta function Ix(a, b).

REAL bt,betacf,gammln
if(x.lt.0..or.x.gt.1.)pause ’bad argument x in betai’
if(x.eq.0..or.x.eq.1.)then

bt=0.
else Factors in front of the continued fraction.

bt=exp(gammln(a+b)-gammln(a)-gammln(b)
* +a*log(x)+b*log(1.-x))

endif
if(x.lt.(a+1.)/(a+b+2.))then Use continued fraction directly.
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betai=bt*betacf(a,b,x)/a
return

else
betai=1.-bt*betacf(b,a,1.-x)/b Use continued fraction after making the symme-

try transformation.return
endif
END

which utilizes the continued fraction evaluation routine

FUNCTION betacf(a,b,x)
INTEGER MAXIT
REAL betacf,a,b,x,EPS,FPMIN
PARAMETER (MAXIT=100,EPS=3.e-7,FPMIN=1.e-30)

Used by betai: Evaluates continued fraction for incomplete beta function by modified
Lentz’s method (§5.2).

INTEGER m,m2
REAL aa,c,d,del,h,qab,qam,qap
qab=a+b These q’s will be used in factors that occur in the

coefficients (6.4.6).qap=a+1.
qam=a-1.
c=1. First step of Lentz’s method.
d=1.-qab*x/qap
if(abs(d).lt.FPMIN)d=FPMIN
d=1./d
h=d
do 11 m=1,MAXIT

m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.+aa*d One step (the even one) of the recurrence.
if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.+aa*d Next step of the recurrence (the odd one).
if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
del=d*c
h=h*del
if(abs(del-1.).lt.EPS)goto 1 Are we done?

enddo 11

pause ’a or b too big, or MAXIT too small in betacf’
1 betacf=h

return
END

Student’s Distribution Probability Function

Student’s distribution, denoted A(t|ν), is useful in several statistical contexts,
notably in the test of whether two observed distributions have the same mean. A(t|ν)
is the probability, for ν degrees of freedom, that a certain statistic t (measuring
the observed difference of means) would be smaller than the observed value if the
means were in fact the same. (See Chapter 14 for further details.) Two means are
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significantly different if, e.g., A(t|ν) > 0.99. In other words, 1 − A(t|ν) is the
significance level at which the hypothesis that the means are equal is disproved.

The mathematical definition of the function is

A(t|ν) =
1

ν1/2B(1
2 , ν

2 )

∫ t

−t

(
1 +

x2

ν

)− ν+1
2

dx (6.4.7)

Limiting values are

A(0|ν) = 0 A(∞|ν) = 1 (6.4.8)

A(t|ν) is related to the incomplete beta function Ix(a, b) by

A(t|ν) = 1 − I ν

ν+t2

(
ν

2
,
1
2

)
(6.4.9)

So, you can use (6.4.9) and the above routine betai to evaluate the function.

F-Distribution Probability Function

This function occurs in the statistical test of whether two observed samples
have the same variance. A certain statistic F , essentially the ratio of the observed
dispersion of the first sample to that of the second one, is calculated. (For further
details, see Chapter 14.) The probability that F would be as large as it is if the first
sample’s underlying distribution actually has smaller variance than the second’s is
denoted Q(F |ν1, ν2), where ν1 and ν2 are the number of degrees of freedom in the
first and second samples, respectively. In other words, Q(F |ν1, ν2) is the significance
level at which the hypothesis “1 has smaller variance than 2” can be rejected. A
small numerical value implies a very significant rejection, in turn implying high
confidence in the hypothesis “1 has variance greater or equal to 2.”

Q(F |ν1, ν2) has the limiting values

Q(0|ν1, ν2) = 1 Q(∞|ν1, ν2) = 0 (6.4.10)

Its relation to the incomplete beta function Ix(a, b) as evaluated by betai above is

Q(F |ν1, ν2) = I ν2
ν2+ν1F

(
ν2

2
,
ν1

2

)
(6.4.11)

Cumulative Binomial Probability Distribution

Suppose an event occurs with probability p per trial. Then the probability P of
its occurring k or more times in n trials is termed a cumulative binomial probability,
and is related to the incomplete beta function Ix(a, b) as follows:

P ≡
n∑

j=k

(
n

j

)
pj(1 − p)n−j = Ip(k, n − k + 1) (6.4.12)



6.5 Bessel Functions of Integer Order 223

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

For n larger than a dozen or so, betai is a much better way to evaluate the sum in
(6.4.12) than would be the straightforward sum with concurrent computation of the
binomial coefficients. (For n smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge: Cam-
bridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithms for computing various
kinds of Bessel functions of integer order. In §6.7 we deal with fractional order. In
fact, the more complicated routines for fractional order work fine for integer order
too. For integer order, however, the routines in this section (and §6.6) are simpler
and faster. Their only drawback is that they are limited by the precision of the
underlying rational approximations. For full double precision, it is best to work with
the routines for fractional order in §6.7.

For any real ν, the Bessel function Jν(x) can be defined by the series
representation

Jν(x) =
(

1
2
x

)ν ∞∑
k=0

(− 1
4x2)k

k!Γ(ν + k + 1)
(6.5.1)

The series converges for all x, but it is not computationally very useful for x � 1.
For ν not an integer the Bessel function Yν(x) is given by

Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
(6.5.2)

The right-hand side goes to the correct limiting value Yn(x) as ν goes to some integer
n, but this is also not computationally useful.

For arguments x < ν, both Bessel functions look qualitatively like simple
power laws, with the asymptotic forms for 0 < x � ν

Jν(x) ∼ 1
Γ(ν + 1)

(
1
2
x

)ν

ν ≥ 0

Y0(x) ∼ 2
π

ln(x)

Yν(x) ∼ −Γ(ν)
π

(
1
2
x

)−ν

ν > 0

(6.5.3)
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For n larger than a dozen or so, betai is a much better way to evaluate the sum in
(6.4.12) than would be the straightforward sum with concurrent computation of the
binomial coefficients. (For n smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge: Cam-
bridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithms for computing various
kinds of Bessel functions of integer order. In §6.7 we deal with fractional order. In
fact, the more complicated routines for fractional order work fine for integer order
too. For integer order, however, the routines in this section (and §6.6) are simpler
and faster. Their only drawback is that they are limited by the precision of the
underlying rational approximations. For full double precision, it is best to work with
the routines for fractional order in §6.7.

For any real ν, the Bessel function Jν(x) can be defined by the series
representation

Jν(x) =
(

1
2
x

)ν ∞∑
k=0

(− 1
4x2)k

k!Γ(ν + k + 1)
(6.5.1)

The series converges for all x, but it is not computationally very useful for x � 1.
For ν not an integer the Bessel function Yν(x) is given by

Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
(6.5.2)

The right-hand side goes to the correct limiting value Yn(x) as ν goes to some integer
n, but this is also not computationally useful.

For arguments x < ν, both Bessel functions look qualitatively like simple
power laws, with the asymptotic forms for 0 < x � ν

Jν(x) ∼ 1
Γ(ν + 1)

(
1
2
x

)ν

ν ≥ 0

Y0(x) ∼ 2
π

ln(x)

Yν(x) ∼ −Γ(ν)
π

(
1
2
x

)−ν

ν > 0

(6.5.3)
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Figure 6.5.1. Bessel functions J0(x) through J3(x) and Y0(x) through Y2(x).

For x > ν, both Bessel functions look qualitatively like sine or cosine waves whose
amplitude decays as x−1/2. The asymptotic forms for x � ν are

Jν(x) ∼
√

2
πx

cos
(

x − 1
2
νπ − 1

4
π

)

Yν(x) ∼
√

2
πx

sin
(

x − 1
2
νπ − 1

4
π

) (6.5.4)

In the transition region where x ∼ ν, the typical amplitudes of the Bessel functions
are on the order

Jν(ν) ∼ 21/3

32/3Γ(2
3 )

1
ν1/3

∼ 0.4473
ν1/3

Yν(ν) ∼ − 21/3

31/6Γ(2
3 )

1
ν1/3

∼ −0.7748
ν1/3

(6.5.5)

which holds asymptotically for large ν. Figure 6.5.1 plots the first few Bessel
functions of each kind.

The Bessel functions satisfy the recurrence relations

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (6.5.6)

and

Yn+1(x) =
2n

x
Yn(x) − Yn−1(x) (6.5.7)

As already mentioned in §5.5, only the second of these (6.5.7) is stable in the
direction of increasing n for x < n. The reason that (6.5.6) is unstable in the
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direction of increasing n is simply that it is the same recurrence as (6.5.7): A small
amount of “polluting” Yn introduced by roundoff error will quickly come to swamp
the desired Jn, according to equation (6.5.3).

A practical strategy for computing the Bessel functions of integer order divides
into two tasks: first, how to compute J0, J1, Y0, and Y1, and second, how to use the
recurrence relations stably to find other J’s and Y ’s. We treat the first task first:

For x between zero and some arbitrary value (we will use the value 8),
approximate J0(x) and J1(x) by rational functions in x. Likewise approximate by
rational functions the “regular part” of Y0(x) and Y1(x), defined as

Y0(x) − 2
π

J0(x) ln(x) and Y1(x) − 2
π

[
J1(x) ln(x) − 1

x

]
(6.5.8)

For 8 < x < ∞, use the approximating forms (n = 0, 1)

Jn(x) =

√
2

πx

[
Pn

(
8
x

)
cos(Xn) − Qn

(
8
x

)
sin(Xn)

]
(6.5.9)

Yn(x) =

√
2

πx

[
Pn

(
8
x

)
sin(Xn) + Qn

(
8
x

)
cos(Xn)

]
(6.5.10)

where

Xn ≡ x − 2n + 1
4

π (6.5.11)

and where P0, P1, Q0, and Q1 are each polynomials in their arguments, for 0 <
8/x < 1. The P ’s are even polynomials, the Q’s odd.

Coefficients of the various rational functions and polynomials are given by
Hart [1], for various levels of desired accuracy. A straightforward implementation is

FUNCTION bessj0(x)
REAL bessj0,x

Returns the Bessel function J0(x) for any real x.
REAL ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

* s1,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,

* -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
* .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/

DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,651619640.7d0,
* -11214424.18d0,77392.33017d0,-184.9052456d0/,
* s1,s2,s3,s4,s5,s6/57568490411.d0,1029532985.d0,
* 9494680.718d0,59272.64853d0,267.8532712d0,1.d0/

if(abs(x).lt.8.)then Direct rational function fit.
y=x**2
bessj0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))

* /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else Fitting function (6.5.9).

ax=abs(x)
z=8./ax
y=z**2
xx=ax-.785398164
bessj0=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
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* *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

FUNCTION bessy0(x)
REAL bessy0,x

C USES bessj0
Returns the Bessel function Y0(x) for positive x.

REAL xx,z,bessj0
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,

* q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6

DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,
* -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
* .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/

DATA r1,r2,r3,r4,r5,r6/-2957821389.d0,7062834065.d0,-512359803.6d0,
* 10879881.29d0,-86327.92757d0,228.4622733d0/,
* s1,s2,s3,s4,s5,s6/40076544269.d0,745249964.8d0,
* 7189466.438d0,47447.26470d0,226.1030244d0,1.d0/

if(x.lt.8.)then Rational function approximation of (6.5.8).
y=x**2
bessy0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y

* *(s3+y*(s4+y*(s5+y*s6)))))+.636619772*bessj0(x)*log(x)
else Fitting function (6.5.10).

z=8./x
y=z**2
xx=x-.785398164
bessy0=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y*

* p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

FUNCTION bessj1(x)
REAL bessj1,x

Returns the Bessel function J1(x) for any real x.
REAL ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

* s1,s2,s3,s4,s5,s6
DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,242396853.1d0,

* -2972611.439d0,15704.48260d0,-30.16036606d0/,
* s1,s2,s3,s4,s5,s6/144725228442.d0,2300535178.d0,
* 18583304.74d0,99447.43394d0,376.9991397d0,1.d0/

DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,
* -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
* .8449199096d-5,-.88228987d-6,.105787412d-6/

if(abs(x).lt.8.)then Direct rational approximation.
y=x**2
bessj1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))

* /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else Fitting function (6.5.9).

ax=abs(x)
z=8./ax
y=z**2
xx=ax-2.356194491
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bessj1=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
* *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
* *sign(1.,x)

endif
return
END

FUNCTION bessy1(x)
REAL bessy1,x

C USES bessj1
Returns the Bessel function Y1(x) for positive x.

REAL xx,z,bessj1
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,s7,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,s7
DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,

* -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
* .8449199096d-5,-.88228987d-6,.105787412d-6/

DATA r1,r2,r3,r4,r5,r6/-.4900604943d13,.1275274390d13,-.5153438139d11,
* .7349264551d9,-.4237922726d7,.8511937935d4/,
* s1,s2,s3,s4,s5,s6,s7/.2499580570d14,.4244419664d12,
* .3733650367d10,.2245904002d8,.1020426050d6,.3549632885d3,1.d0/

if(x.lt.8.)then Rational function approximation of (6.5.8).
y=x**2
bessy1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*

* (s3+y*(s4+y*(s5+y*(s6+y*s7))))))+.636619772
* *(bessj1(x)*log(x)-1./x)

else Fitting function (6.5.10).
z=8./x
y=z**2
xx=x-2.356194491
bessy1=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y

* *p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

We now turn to the second task, namely how to use the recurrence formulas
(6.5.6) and (6.5.7) to get the Bessel functions Jn(x) and Yn(x) for n ≥ 2. The latter
of these is straightforward, since its upward recurrence is always stable:

FUNCTION bessy(n,x)
INTEGER n
REAL bessy,x

C USES bessy0,bessy1
Returns the Bessel function Yn(x) for positive x and n ≥ 2.

INTEGER j
REAL by,bym,byp,tox,bessy0,bessy1
if(n.lt.2)pause ’bad argument n in bessy’
tox=2./x
by=bessy1(x) Starting values for the recurrence.
bym=bessy0(x)
do 11 j=1,n-1 Recurrence (6.5.7).

byp=j*tox*by-bym
bym=by
by=byp

enddo 11

bessy=by
return
END
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The cost of this algorithm is the call to bessy1 and bessy0 (which generate a
call to each of bessj1 and bessj0), plus O(n) operations in the recurrence.

As for Jn(x), things are a bit more complicated. We can start the recurrence
upward on n from J0 and J1, but it will remain stable only while n does not exceed
x. This is, however, just fine for calls with large x and small n, a case which
occurs frequently in practice.

The harder case to provide for is that with x < n. The best thing to do here
is to use Miller’s algorithm (see discussion preceding equation 5.5.16), applying
the recurrence downward from some arbitrary starting value and making use of the
upward-unstable nature of the recurrence to put us onto the correct solution. When
we finally arrive at J0 or J1 we are able to normalize the solution with the sum
(5.5.16) accumulated along the way.

The only subtlety is in deciding at how large an n we need start the downward
recurrence so as to obtain a desired accuracy by the time we reach the n that we
really want. If you play with the asymptotic forms (6.5.3) and (6.5.5), you should
be able to convince yourself that the answer is to start larger than the desired n by
an additive amount of order [constant × n]1/2, where the square root of the constant
is, very roughly, the number of significant figures of accuracy.

The above considerations lead to the following function.

FUNCTION bessj(n,x)
INTEGER n,IACC
REAL bessj,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.e10,BIGNI=1.e-10)

C USES bessj0,bessj1
Returns the Bessel function Jn(x) for any real x and n ≥ 2.

INTEGER j,jsum,m
REAL ax,bj,bjm,bjp,sum,tox,bessj0,bessj1
if(n.lt.2)pause ’bad argument n in bessj’
ax=abs(x)
if(ax.eq.0.)then

bessj=0.
else if(ax.gt.float(n))then Upwards recurrence from J0 and J1.

tox=2./ax
bjm=bessj0(ax)
bj=bessj1(ax)
do 11 j=1,n-1

bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

enddo 11

bessj=bj
else Downwards recurrence from an even m here com-

puted. Make IACC larger to increase accuracy.tox=2./ax
m=2*((n+int(sqrt(float(IACC*n))))/2)
bessj=0.
jsum=0 jsum will alternate between 0 and 1; when it is 1, we

accumulate in sum the even terms in (5.5.16).sum=0.
bjp=0.
bj=1.
do 12 j=m,1,-1 The downward recurrence.

bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if(abs(bj).gt.BIGNO)then Renormalize to prevent overflows.

bj=bj*BIGNI
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bjp=bjp*BIGNI
bessj=bessj*BIGNI
sum=sum*BIGNI

endif
if(jsum.ne.0)sum=sum+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if(j.eq.n)bessj=bjp Save the unnormalized answer.

enddo 12

sum=2.*sum-bj Compute (5.5.16)
bessj=bessj/sum and use it to normalize the answer.

endif
if(x.lt.0..and.mod(n,2).eq.1)bessj=-bessj
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 9.

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functions In(x) and Kn(x) are equivalent to the usual
Bessel functions Jn and Yn evaluated for purely imaginary arguments. In detail,
the relationship is

In(x) = (−i)nJn(ix)

Kn(x) =
π

2
in+1[Jn(ix) + iYn(ix)]

(6.6.1)

The particular choice of prefactor and of the linear combination of J n and Yn to form
Kn are simply choices that make the functions real-valued for real arguments x.

For small arguments x � n, both In(x) and Kn(x) become, asymptotically,
simple powers of their argument

In(x) ≈ 1
n!

(x

2

)n

n ≥ 0

K0(x) ≈ − ln(x)

Kn(x) ≈ (n − 1)!
2

(x

2

)−n

n > 0

(6.6.2)

These expressions are virtually identical to those for Jn(x) and Yn(x) in this region,
except for the factor of −2/π difference between Yn(x) and Kn(x). In the region
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bjp=bjp*BIGNI
bessj=bessj*BIGNI
sum=sum*BIGNI

endif
if(jsum.ne.0)sum=sum+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if(j.eq.n)bessj=bjp Save the unnormalized answer.

enddo 12

sum=2.*sum-bj Compute (5.5.16)
bessj=bessj/sum and use it to normalize the answer.

endif
if(x.lt.0..and.mod(n,2).eq.1)bessj=-bessj
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 9.

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functions In(x) and Kn(x) are equivalent to the usual
Bessel functions Jn and Yn evaluated for purely imaginary arguments. In detail,
the relationship is

In(x) = (−i)nJn(ix)

Kn(x) =
π

2
in+1[Jn(ix) + iYn(ix)]

(6.6.1)

The particular choice of prefactor and of the linear combination of J n and Yn to form
Kn are simply choices that make the functions real-valued for real arguments x.

For small arguments x � n, both In(x) and Kn(x) become, asymptotically,
simple powers of their argument

In(x) ≈ 1
n!

(x

2

)n

n ≥ 0

K0(x) ≈ − ln(x)

Kn(x) ≈ (n − 1)!
2

(x

2

)−n

n > 0

(6.6.2)

These expressions are virtually identical to those for Jn(x) and Yn(x) in this region,
except for the factor of −2/π difference between Yn(x) and Kn(x). In the region
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Figure 6.6.1. Modified Bessel functions I0(x) through I3(x), K0(x) through K2(x).

x � n, however, the modified functions have quite different behavior than the
Bessel functions,

In(x) ≈ 1√
2πx

exp(x)

Kn(x) ≈ π√
2πx

exp(−x)
(6.6.3)

The modified functions evidently have exponential rather than sinusoidal be-
havior for large arguments (see Figure 6.6.1). The smoothness of the modified
Bessel functions, once the exponential factor is removed, makes a simple polynomial
approximation of a few terms quite suitable for the functions I 0, I1, K0, and K1.
The following routines, based on polynomial coefficients given by Abramowitz and
Stegun [1], evaluate these four functions, and will provide the basis for upward
recursion for n > 1 when x > n.

FUNCTION bessi0(x)
REAL bessi0,x

Returns the modified Bessel function I0(x) for any real x.
REAL ax
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,

* q8,q9,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,1.2067492d0,

* 0.2659732d0,0.360768d-1,0.45813d-2/
DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,0.1328592d-1,

* 0.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1,
* 0.2635537d-1,-0.1647633d-1,0.392377d-2/
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if (abs(x).lt.3.75) then
y=(x/3.75)**2
bessi0=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))

else
ax=abs(x)
y=3.75/ax
bessi0=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4

* +y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))))
endif
return
END

FUNCTION bessk0(x)
REAL bessk0,x

C USES bessi0
Returns the modified Bessel function K0(x) for positive real x.

REAL bessi0
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,

* q2,q3,q4,q5,q6,q7,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7
DATA p1,p2,p3,p4,p5,p6,p7/-0.57721566d0,0.42278420d0,0.23069756d0,

* 0.3488590d-1,0.262698d-2,0.10750d-3,0.74d-5/
DATA q1,q2,q3,q4,q5,q6,q7/1.25331414d0,-0.7832358d-1,0.2189568d-1,

* -0.1062446d-1,0.587872d-2,-0.251540d-2,0.53208d-3/
if (x.le.2.0) then Polynomial fit.

y=x*x/4.0
bessk0=(-log(x/2.0)*bessi0(x))+(p1+y*(p2+y*(p3+

* y*(p4+y*(p5+y*(p6+y*p7))))))
else

y=(2.0/x)
bessk0=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+

* y*(q4+y*(q5+y*(q6+y*q7))))))
endif
return
END

FUNCTION bessi1(x)
REAL bessi1,x

Returns the modified Bessel function I1(x) for any real x.
REAL ax
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,

* q8,q9,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9
DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.51498869d0,

* 0.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/
DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,-0.3988024d-1,

* -0.362018d-2,0.163801d-2,-0.1031555d-1,0.2282967d-1,
* -0.2895312d-1,0.1787654d-1,-0.420059d-2/

if (abs(x).lt.3.75) then Polynomial fit.
y=(x/3.75)**2
bessi1=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))))

else
ax=abs(x)
y=3.75/ax
bessi1=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+

* y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))))
if(x.lt.0.)bessi1=-bessi1

endif
return
END
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FUNCTION bessk1(x)
REAL bessk1,x

C USES bessi1
Returns the modified Bessel function K1(x) for positive real x.

REAL bessi1
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,

* q2,q3,q4,q5,q6,q7,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,0.15443144d0,-0.67278579d0,

* -0.18156897d0,-0.1919402d-1,-0.110404d-2,-0.4686d-4/
DATA q1,q2,q3,q4,q5,q6,q7/1.25331414d0,0.23498619d0,-0.3655620d-1,

* 0.1504268d-1,-0.780353d-2,0.325614d-2,-0.68245d-3/
if (x.le.2.0) then Polynomial fit.

y=x*x/4.0
bessk1=(log(x/2.0)*bessi1(x))+(1.0/x)*(p1+y*(p2+

* y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))))
else

y=2.0/x
bessk1=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+

* y*(q4+y*(q5+y*(q6+y*q7))))))
endif
return
END

The recurrence relation for In(x) and Kn(x) is the same as that for Jn(x)
and Yn(x) provided that ix is substituted for x. This has the effect of changing
a sign in the relation,

In+1(x) = −
(

2n

x

)
In(x) + In−1(x)

Kn+1(x) = +
(

2n

x

)
Kn(x) + Kn−1(x)

(6.6.4)

These relations are always unstable for upward recurrence. For K n, itself growing,
this presents no problem. For In, however, the strategy of downward recursion is
therefore required once again, and the starting point for the recursion may be chosen
in the same manner as for the routine bessj. The only fundamental difference is
that the normalization formula for In(x) has an alternating minus sign in successive
terms, which again arises from the substitution of ix for x in the formula used
previously for Jn

1 = I0(x) − 2I2(x) + 2I4(x) − 2I6(x) + · · · (6.6.5)

In fact, we prefer simply to normalize with a call to bessi0.
With this simple modification, the recursion routines bessj and bessy become

the new routines bessi and bessk:

FUNCTION bessk(n,x)
INTEGER n
REAL bessk,x

C USES bessk0,bessk1
Returns the modified Bessel function Kn(x) for positive x and n ≥ 2.

INTEGER j
REAL bk,bkm,bkp,tox,bessk0,bessk1
if (n.lt.2) pause ’bad argument n in bessk’
tox=2.0/x
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bkm=bessk0(x) Upward recurrence for all x...
bk=bessk1(x)
do 11 j=1,n-1 ...and here it is.

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

enddo 11

bessk=bk
return
END

FUNCTION bessi(n,x)
INTEGER n,IACC
REAL bessi,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.0e10,BIGNI=1.0e-10)

C USES bessi0
Returns the modified Bessel function In(x) for any real x and n ≥ 2.

INTEGER j,m
REAL bi,bim,bip,tox,bessi0
if (n.lt.2) pause ’bad argument n in bessi’
if (x.eq.0.) then

bessi=0.
else

tox=2.0/abs(x)
bip=0.0
bi=1.0
bessi=0.
m=2*((n+int(sqrt(float(IACC*n))))) Downward recurrence from even m.
do 11 j=m,1,-1 Make IACC larger to increase accuracy.

bim=bip+float(j)*tox*bi The downward recurrence.
bip=bi
bi=bim
if (abs(bi).gt.BIGNO) then Renormalize to prevent overflows.

bessi=bessi*BIGNI
bi=bi*BIGNI
bip=bip*BIGNI

endif
if (j.eq.n) bessi=bip

enddo 11

bessi=bessi*bessi0(x)/bi Normalize with bessi0.
if (x.lt.0..and.mod(n,2).eq.1) bessi=-bessi

endif
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §9.8. [1]

Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Functions of a Complex Variable (New York:
McGraw-Hill), pp. 220ff.
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6.7 Bessel Functions of Fractional Order, Airy
Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order
numerically. Most of them are, in fact, not very good in practice. The routines given here are
rather complicated, but they can be recommended wholeheartedly.

Ordinary Bessel Functions

The basic idea is Steed’s method, which was originally developed [1] for Coulomb wave
functions. The method calculates Jν , J ′

ν , Yν , and Y ′
ν simultaneously, and so involves four

relations among these functions. Three of the relations come from two continued fractions,
one of which is complex. The fourth is provided by the Wronskian relation

W ≡ JνY
′
ν − YνJ

′
ν =

2

πx
(6.7.1)

The first continued fraction, CF1, is defined by

fν ≡ J ′
ν

Jν
=
ν

x
− Jν+1

Jν

=
ν

x
− 1

2(ν + 1)/x−
1

2(ν + 2)/x − · · ·
(6.7.2)

You can easily derive it from the three-term recurrence relation for Bessel functions: Start with
equation (6.5.6) and use equation (5.5.18). Forward evaluation of the continued fraction by
one of the methods of §5.2 is essentially equivalent to backward recurrence of the recurrence
relation. The rate of convergence of CF1 is determined by the position of the turning point
xtp =

√
ν(ν + 1) ≈ ν, beyond which the Bessel functions become oscillatory. If x<∼ xtp,

convergence is very rapid. If x>∼ xtp, then each iteration of the continued fraction effectively
increases ν by one until x <∼ xtp; thereafter rapid convergence sets in. Thus the number
of iterations of CF1 is of order x for large x. In the routine bessjy we set the maximum
allowed number of iterations to 10,000. For larger x, you can use the usual asymptotic
expressions for Bessel functions.

One can show that the sign of Jν is the same as the sign of the denominator of CF1
once it has converged.

The complex continued fraction CF2 is defined by

p+ iq ≡ J ′
ν + iY ′

ν

Jν + iYν
= − 1

2x
+ i+

i

x

(1/2)2 − ν2

2(x+ i) +

(3/2)2 − ν2

2(x+ 2i) +
· · · (6.7.3)

(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the
next subsection.) This continued fraction converges rapidly for x>∼ xtp, while convergence
fails as x→ 0. We have to adopt a special method for small x, which we describe below. For
x not too small, we can ensure that x >∼ xtp by a stable recurrence of Jν and J ′

ν downwards
to a value ν = µ <∼ x, thus yielding the ratio fµ at this lower value of ν. This is the stable
direction for the recurrence relation. The initial values for the recurrence are

Jν = arbitrary, J ′
ν = fνJν , (6.7.4)

with the sign of the arbitrary initial value of Jν chosen to be the sign of the denominator of
CF1. Choosing the initial value of Jν very small minimizes the possibility of overflow during
the recurrence. The recurrence relations are

Jν−1 =
ν

x
Jν + J ′

ν

J ′
ν−1 =

ν − 1

x
Jν−1 − Jν

(6.7.5)
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Once CF2 has been evaluated at ν = µ, then with the Wronskian (6.7.1) we have enough
relations to solve for all four quantities. The formulas are simplified by introducing the quantity

γ ≡ p− fµ

q
(6.7.6)

Then

Jµ = ±
(

W

q + γ(p− fµ)

)1/2

(6.7.7)

J ′
µ = fµJµ (6.7.8)

Yµ = γJµ (6.7.9)

Y ′
µ = Yµ

(
p+

q

γ

)
(6.7.10)

The sign of Jµ in (6.7.7) is chosen to be the same as the sign of the initial Jν in (6.7.4).
Once all four functions have been determined at the value ν = µ, we can find them at the

original value of ν. For Jν and J ′
ν , simply scale the values in (6.7.4) by the ratio of (6.7.7) to

the value found after applying the recurrence (6.7.5). The quantities Yν and Y ′
ν can be found

by starting with the values in (6.7.9) and (6.7.10) and using the stable upwards recurrence

Yν+1 =
2ν

x
Yν − Yν−1 (6.7.11)

together with the relation

Y ′
ν =

ν

x
Yν − Yν+1 (6.7.12)

Now turn to the case of small x, when CF2 is not suitable. Temme [2] has given a
good method of evaluating Yν and Yν+1, and hence Y ′

ν from (6.7.12), by series expansions
that accurately handle the singularity as x → 0. The expansions work only for |ν| ≤ 1/2,
and so now the recurrence (6.7.5) is used to evaluate fν at a value ν = µ in this interval.
Then one calculates Jµ from

Jµ =
W

Y ′
µ − Yµfµ

(6.7.13)

and J ′
µ from (6.7.8). The values at the original value of ν are determined by scaling as before,

and the Y ’s are recurred up as before.
Temme’s series are

Yν = −
∞∑

k=0

ckgk Yν+1 = − 2

x

∞∑
k=0

ckhk (6.7.14)

Here

ck =
(−x2/4)k

k!
(6.7.15)

while the coefficients gk and hk are defined in terms of quantities pk, qk , and fk that can
be found by recursion:

gk = fk +
2

ν
sin2

(νπ
2

)
qk

hk = −kgk + pk

pk =
pk−1

k − ν
qk =

qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.16)
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The initial values for the recurrences are

p0 =
1

π

(x
2

)−ν

Γ(1 + ν)

q0 =
1

π

(x
2

)ν

Γ(1 − ν)

f0 =
2

π

νπ

sin νπ

[
cosh σΓ1(ν) +

sinhσ

σ
ln

(
2

x

)
Γ2(ν)

]
(6.7.17)

with

σ = ν ln

(
2

x

)

Γ1(ν) =
1

2ν

[
1

Γ(1 − ν) − 1

Γ(1 + ν)

]

Γ2(ν) =
1

2

[
1

Γ(1 − ν) +
1

Γ(1 + ν)

]
(6.7.18)

The whole point of writing the formulas in this way is that the potential problems as ν → 0
can be controlled by evaluating νπ/ sin νπ, sinh σ/σ, and Γ1 carefully. In particular, Temme
gives Chebyshev expansions for Γ1(ν) and Γ2(ν). We have rearranged his expansion for Γ1

to be explicitly an even series in ν so that we can use our routine chebev as explained in §5.8.
The routine assumes ν ≥ 0. For negative ν you can use the reflection formulas

J−ν = cos νπ Jν − sin νπ Yν

Y−ν = sin νπ Jν + cos νπ Yν

(6.7.19)

The routine also assumes x > 0. For x < 0 the functions are in general complex, but
expressible in terms of functions with x > 0. For x = 0, Yν is singular.

Internal arithmetic in the routine is carried out in double precision. To maintain
portability, complex arithmetic has been recoded with real variables.

SUBROUTINE bessjy(x,xnu,rj,ry,rjp,ryp)
INTEGER MAXIT
REAL rj,rjp,ry,ryp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,

* PI=3.141592653589793d0)
C USES beschb

Returns the Bessel functions rj = Jν , ry = Yν and their derivatives rjp = J ′
ν , ryp = Y ′

ν ,
for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
accuracy. FPMIN is a number close to the machine’s smallest floating-point number. All
internal arithmetic is in double precision. To convert the entire routine to double precision,
change the REAL declaration above and decrease EPS to 10−16. Also convert the subroutine
beschb.

INTEGER i,isign,l,nl
DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,del1,den,di,dlr,dli,

* dr,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,gammi,gampl,h,
* p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,ry1,
* rymu,rymup,rytemp,sum,sum1,temp,w,x2,xi,xi2,xmu,xmu2

if(x.le.0..or.xnu.lt.0.) pause ’bad arguments in bessjy’
if(x.lt.XMIN)then nl is the number of downward recurrences of the J ’s and

upward recurrences of Y ’s. xmu lies between −1/2 and
1/2 for x < XMIN, while it is chosen so that x is greater
than the turning point for x ≥ XMIN.

nl=int(xnu+.5d0)
else

nl=max(0,int(xnu-x+1.5d0))
endif
xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
w=xi2/PI The Wronskian.
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isign=1 Evaluate CF1 by modified Lentz’s method (§5.2). isign keeps
track of sign changes in the denominator.h=xnu*xi

if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT

b=b+xi2
d=b-d
if(abs(d).lt.FPMIN)d=FPMIN
c=b-1.d0/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1.d0/d
del=c*d
h=del*h
if(d.lt.0.d0)isign=-isign
if(abs(del-1.d0).lt.EPS)goto 1

enddo 11

pause ’x too large in bessjy; try asymptotic expansion’
1 continue

rjl=isign*FPMIN Initialize Jν and J ′
ν for downward recurrence.

rjpl=h*rjl
rjl1=rjl Store values for later rescaling.
rjp1=rjpl
fact=xnu*xi
do 12 l=nl,1,-1

rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl
rjl=rjtemp

enddo 12

if(rjl.eq.0.d0)rjl=EPS
f=rjpl/rjl Now have unnormalized Jµ and J ′

µ.
if(x.lt.XMIN) then Use series.

x2=.5d0*x
pimu=PI*xmu
if(abs(pimu).lt.EPS)then

fact=1.d0
else

fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*d
if(abs(e).lt.EPS)then

fact2=1.d0
else

fact2=sinh(e)/e
endif
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=2.d0/PI*fact*(gam1*cosh(e)+gam2*fact2*d) f0.
e=exp(e)
p=e/(gampl*PI) p0.
q=1.d0/(e*PI*gammi) q0.
pimu2=0.5d0*pimu
if(abs(pimu2).lt.EPS)then

fact3=1.d0
else

fact3=sin(pimu2)/pimu2
endif
r=PI*pimu2*fact3*fact3
c=1.d0
d=-x2*x2
sum=ff+r*q
sum1=p
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do 13 i=1,MAXIT
ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*(ff+r*q)
sum=sum+del
del1=c*p-i*del
sum1=sum1+del1
if(abs(del).lt.(1.d0+abs(sum))*EPS)goto 2

enddo 13

pause ’bessy series failed to converge’
2 continue

rymu=-sum
ry1=-sum1*xi2
rymup=xmu*xi*rymu-ry1
rjmu=w/(rymup-f*rymu) Equation (6.7.13).

else Evaluate CF2 by modified Lentz’s method
(§5.2).a=.25d0-xmu2

p=-.5d0*xi
q=1.d0
br=2.d0*x
bi=2.d0
fact=a*xi/(p*p+q*q)
cr=br+q*fact
ci=bi+p*fact
den=br*br+bi*bi
dr=br/den
di=-bi/den
dlr=cr*dr-ci*di
dli=cr*di+ci*dr
temp=p*dlr-q*dli
q=p*dli+q*dlr
p=temp
do 14 i=2,MAXIT

a=a+2*(i-1)
bi=bi+2.d0
dr=a*dr+br
di=a*di+bi
if(abs(dr)+abs(di).lt.FPMIN)dr=FPMIN
fact=a/(cr*cr+ci*ci)
cr=br+cr*fact
ci=bi-ci*fact
if(abs(cr)+abs(ci).lt.FPMIN)cr=FPMIN
den=dr*dr+di*di
dr=dr/den
di=-di/den
dlr=cr*dr-ci*di
dli=cr*di+ci*dr
temp=p*dlr-q*dli
q=p*dli+q*dlr
p=temp
if(abs(dlr-1.d0)+abs(dli).lt.EPS)goto 3

enddo 14

pause ’cf2 failed in bessjy’
3 continue

gam=(p-f)/q Equations (6.7.6) – (6.7.10).
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup

endif
fact=rjmu/rjl
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rj=rjl1*fact Scale original Jν and J ′
ν .

rjp=rjp1*fact
do 15 i=1,nl Upward recurrence of Yν .

rytemp=(xmu+i)*xi2*ry1-rymu
rymu=ry1
ry1=rytemp

enddo 15

ry=rymu
ryp=xnu*xi*rymu-ry1
return
END

SUBROUTINE beschb(x,gam1,gam2,gampl,gammi)
INTEGER NUSE1,NUSE2
DOUBLE PRECISION gam1,gam2,gammi,gampl,x
PARAMETER (NUSE1=5,NUSE2=5)

C USES chebev
Evaluates Γ1 and Γ2 by Chebyshev expansion for |x| ≤ 1/2. Also returns 1/Γ(1 + x) and
1/Γ(1 − x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.

REAL xx,c1(7),c2(8),chebev
SAVE c1,c2
DATA c1/-1.142022680371168d0,6.5165112670737d-3,

* 3.087090173086d-4,-3.4706269649d-6,6.9437664d-9,
* 3.67795d-11,-1.356d-13/

DATA c2/1.843740587300905d0,-7.68528408447867d-2,
* 1.2719271366546d-3,-4.9717367042d-6,-3.31261198d-8,
* 2.423096d-10,-1.702d-13,-1.49d-15/

xx=8.d0*x*x-1.d0 Multiply x by 2 to make range be −1 to 1, and then
apply transformation for evaluating even Cheby-
shev series.

gam1=chebev(-1.,1.,c1,NUSE1,xx)
gam2=chebev(-1.,1.,c2,NUSE2,xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
return
END

Modified Bessel Functions

Steed’s method does not work for modified Bessel functions because in this case CF2 is
purely imaginary and we have only three relations among the four functions. Temme [3] has
given a normalization condition that provides the fourth relation.

The Wronskian relation is

W ≡ IνK′
ν −KνI

′
ν = − 1

x
(6.7.20)

The continued fraction CF1 becomes

fν ≡ I ′ν
Iν

=
ν

x
+

1

2(ν + 1)/x+

1

2(ν + 2)/x+
· · · (6.7.21)

To get CF2 and the normalization condition in a convenient form, consider the sequence
of confluent hypergeometric functions

zn(x) = U(ν + 1/2 + n, 2ν + 1, 2x) (6.7.22)

for fixed ν. Then

Kν(x) = π1/2(2x)νe−xz0(x) (6.7.23)

Kν+1(x)

Kν(x)
=

1

x

[
ν +

1

2
+ x+

(
ν2 − 1

4

)
z1
z0

]
(6.7.24)
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Equation (6.7.23) is the standard expression for Kν in terms of a confluent hypergeometric
function, while equation (6.7.24) follows from relations between contiguous confluent hy-
pergeometric functions (equations 13.4.16 and 13.4.18 in Abramowitz and Stegun). Now
the functions zn satisfy the three-term recurrence relation (equation 13.4.15 in Abramowitz
and Stegun)

zn−1(x) = bnzn(x) + an+1zn+1 (6.7.25)
with

bn = 2(n+ x)

an+1 = −[(n+ 1/2)2 − ν2]
(6.7.26)

Following the steps leading to equation (5.5.18), we get the continued fraction CF2

z1
z0

=
1

b1 +

a2
b2 +

· · · (6.7.27)

from which (6.7.24) gives Kν+1/Kν and thus K′
ν/Kν .

Temme’s normalization condition is that
∞∑

n=0

Cnzn =

(
1

2x

)ν+1/2

(6.7.28)

where

Cn =
(−1)n

n!

Γ(ν + 1/2 + n)

Γ(ν + 1/2 − n) (6.7.29)

Note that the Cn’s can be determined by recursion:

C0 = 1, Cn+1 = − an+1

n+ 1
Cn (6.7.30)

We use the condition (6.7.28) by finding

S =
∞∑

n=1

Cn
zn
z0

(6.7.31)

Then

z0 =

(
1

2x

)ν+1/2
1

1 + S
(6.7.32)

and (6.7.23) gives Kν .
Thompson and Barnett [4] have given a clever method of doing the sum (6.7.31)

simultaneously with the forward evaluation of the continued fraction CF2. Suppose the
continued fraction is being evaluated as

z1
z0

=
∞∑

n=0

∆hn (6.7.33)

where the increments ∆hn are being found by, e.g., Steed’s algorithm or the modified Lentz’s
algorithm of §5.2. Then the approximation to S keeping the first N terms can be found as

SN =
N∑

n=1

Qn∆hn (6.7.34)

Here

Qn =
n∑

k=1

Ckqk (6.7.35)

and qk is found by recursion from

qk+1 = (qk−1 − bkqk)/ak+1 (6.7.36)

starting with q0 = 0, q1 = 1. For the case at hand, approximately three times as many terms
are needed to get S to converge as are needed simply for CF2 to converge.
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To find Kν and Kν+1 for small x we use series analogous to (6.7.14):

Kν =
∞∑

k=0

ckfk Kν+1 =
2

x

∞∑
k=0

ckhk (6.7.37)

Here

ck =
(x2/4)k

k!
hk = −kfk + pk

pk =
pk−1

k − ν
qk =

qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.38)

The initial values for the recurrences are

p0 =
1

2

(x
2

)−ν

Γ(1 + ν)

q0 =
1

2

(x
2

)ν

Γ(1 − ν)

f0 =
νπ

sin νπ

[
cosh σΓ1(ν) +

sinh σ

σ
ln

(
2

x

)
Γ2(ν)

]
(6.7.39)

Both the series for small x, and CF2 and the normalization relation (6.7.28) require
|ν| ≤ 1/2. In both cases, therefore, we recurse Iν down to a value ν = µ in this interval, find
Kµ there, and recurse Kν back up to the original value of ν.

The routine assumes ν ≥ 0. For negative ν use the reflection formulas

I−ν = Iν +
2

π
sin(νπ)Kν

K−ν = Kν

(6.7.40)

Note that for large x, Iν ∼ ex, Kν ∼ e−x, and so these functions will overflow or
underflow. It is often desirable to be able to compute the scaled quantities e−xIν and exKν .
Simply omitting the factor e−x in equation (6.7.23) will ensure that all four quantities will
have the appropriate scaling. If you also want to scale the four quantities for small x when
the series in equation (6.7.37) are used, you must multiply each series by ex.

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
INTEGER MAXIT
REAL ri,rip,rk,rkp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,

* PI=3.141592653589793d0)
C USES beschb

Returns the modified Bessel functions ri = Iν , rk = Kν and their derivatives rip = I ′ν ,
rkp = K ′

ν , for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or
two significant digits of EPS. FPMIN is a number close to the machine’s smallest floating-
point number. All internal arithmetic is in double precision. To convert the entire routine
to double precision, change the REAL declaration above and decrease EPS to 10−16. Also
convert the subroutine beschb.

INTEGER i,l,nl
DOUBLE PRECISION a,a1,b,c,d,del,del1,delh,dels,e,f,fact,

* fact2,ff,gam1,gam2,gammi,gampl,h,p,pimu,q,q1,q2,
* qnew,ril,ril1,rimu,rip1,ripl,ritemp,rk1,rkmu,rkmup,
* rktemp,s,sum,sum1,x2,xi,xi2,xmu,xmu2

if(x.le.0..or.xnu.lt.0.) pause ’bad arguments in bessik’
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nl=int(xnu+.5d0) nl is the number of downward recurrences
of the I’s and upward recurrences
of K’s. xmu lies between −1/2 and
1/2.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
h=xnu*xi Evaluate CF1 by modified Lentz’s method

(§5.2).if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT

b=b+xi2
d=1.d0/(b+d) Denominators cannot be zero here, so no

need for special precautions.c=b+1.d0/c
del=c*d
h=del*h
if(abs(del-1.d0).lt.EPS)goto 1

enddo 11

pause ’x too large in bessik; try asymptotic expansion’
1 continue

ril=FPMIN Initialize Iν and I′ν for downward recur-
rence.ripl=h*ril

ril1=ril Store values for later rescaling.
rip1=ripl
fact=xnu*xi
do 12 l=nl,1,-1

ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp

enddo 12

f=ripl/ril Now have unnormalized Iµ and I′µ.
if(x.lt.XMIN) then Use series.

x2=.5d0*x
pimu=PI*xmu
if(abs(pimu).lt.EPS)then

fact=1.d0
else

fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*d
if(abs(e).lt.EPS)then

fact2=1.d0
else

fact2=sinh(e)/e
endif
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=fact*(gam1*cosh(e)+gam2*fact2*d) f0.
sum=ff
e=exp(e)
p=0.5d0*e/gampl p0.
q=0.5d0/(e*gammi) q0.
c=1.d0
d=x2*x2
sum1=p
do 13 i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*ff
sum=sum+del
del1=c*(p-i*ff)
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sum1=sum1+del1
if(abs(del).lt.abs(sum)*EPS)goto 2

enddo 13

pause ’bessk series failed to converge’
2 continue

rkmu=sum
rk1=sum1*xi2

else Evaluate CF2 by Steed’s algorithm (§5.2),
which is OK because there can be no
zero denominators.

b=2.d0*(1.d0+x)
d=1.d0/b
delh=d
h=delh
q1=0.d0 Initializations for recurrence (6.7.35).
q2=1.d0
a1=.25d0-xmu2
c=a1
q=c First term in equation (6.7.34).
a=-a1
s=1.d0+q*delh
do 14 i=2,MAXIT

a=a-2*(i-1)
c=-a*c/i
qnew=(q1-b*q2)/a
q1=q2
q2=qnew
q=q+c*qnew
b=b+2.d0
d=1.d0/(b+a*d)
delh=(b*d-1.d0)*delh
h=h+delh
dels=q*delh
s=s+dels
if(abs(dels/s).lt.EPS)goto 3 Need only test convergence of sum since

CF2 itself converges more quickly.enddo 14

pause ’bessik: failure to converge in cf2’
3 continue

h=a1*h
rkmu=sqrt(PI/(2.d0*x))*exp(-x)/s Omit the factor exp(−x) to scale all the

returned functions by exp(x) for x ≥
XMIN.

rk1=rkmu*(xmu+x+.5d0-h)*xi
endif
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup) Get Iµ from Wronskian.
ri=(rimu*ril1)/ril Scale original Iν and I′ν .
rip=(rimu*rip1)/ril
do 15 i=1,nl Upward recurrence of Kν .

rktemp=(xmu+i)*xi2*rk1+rkmu
rkmu=rk1
rk1=rktemp

enddo 15

rk=rkmu
rkp=xnu*xi*rkmu-rk1
return
END

Airy Functions

For positive x, the Airy functions are defined by

Ai(x) =
1

π

√
x

3
K1/3(z) (6.7.41)
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Bi(x) =

√
x

3
[I1/3(z) + I−1/3(z)] (6.7.42)

where

z =
2

3
x3/2 (6.7.43)

By using the reflection formula (6.7.40), we can convert (6.7.42) into the computationally
more useful form

Bi(x) =
√
x

[
2√
3
I1/3(z) +

1

π
K1/3(z)

]
(6.7.44)

so that Ai and Bi can be evaluated with a single call to bessik.
The derivatives should not be evaluated by simply differentiating the above expressions

because of possible subtraction errors near x = 0. Instead, use the equivalent expressions

Ai′(x) = − x

π
√

3
K2/3(z)

Bi′(x) = x

[
2√
3
I2/3(z) +

1

π
K2/3(z)

] (6.7.45)

The corresponding formulas for negative arguments are

Ai(−x) =

√
x

2

[
J1/3(z) − 1√

3
Y1/3(z)

]

Bi(−x) = −
√
x

2

[
1√
3
J1/3(z) + Y1/3(z)

]

Ai′(−x) =
x

2

[
J2/3(z) +

1√
3
Y2/3(z)

]

Bi′(−x) =
x

2

[
1√
3
J2/3(z) − Y2/3(z)

]

(6.7.46)

SUBROUTINE airy(x,ai,bi,aip,bip)
REAL ai,aip,bi,bip,x

C USES bessik,bessjy
Returns Airy functions Ai(x), Bi(x), and their derivatives Ai′(x), Bi′(x).

REAL absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z,
* PI,THIRD,TWOTHR,ONOVRT

PARAMETER (PI=3.1415927,THIRD=1./3.,TWOTHR=2.*THIRD,
* ONOVRT=.57735027)

absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if(x.gt.0.)then

call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*ONOVRT*rk/PI
bi=rootx*(rk/PI+2.*ONOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip=-x*ONOVRT*rk/PI
bip=x*(rk/PI+2.*ONOVRT*ri)

else if(x.lt.0.)then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=.5*rootx*(rj-ONOVRT*ry)
bi=-.5*rootx*(ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip=.5*absx*(ONOVRT*ry+rj)
bip=.5*absx*(ONOVRT*rj-ry)

else Case x = 0.
ai=.35502805
bi=ai/ONOVRT
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aip=-.25881940
bip=-aip/ONOVRT

endif
return
END

Spherical Bessel Functions

For integer n, spherical Bessel functions are defined by

jn(x) =

√
π

2x
Jn+(1/2)(x)

yn(x) =

√
π

2x
Yn+(1/2)(x)

(6.7.47)

They can be evaluated by a call to bessjy, and the derivatives can safely be found from
the derivatives of equation (6.7.47).

Note that in the continued fraction CF2 in (6.7.3) just the first term survives for ν = 1/2.
Thus one can make a very simple algorithm for spherical Bessel functions along the lines of
bessjy by always recursing jn down to n = 0, setting p and q from the first term in CF2, and
then recursing yn up. No special series is required near x = 0. However, bessjy is already
so efficient that we have not bothered to provide an independent routine for spherical Bessels.

SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)
INTEGER n
REAL sj,sjp,sy,syp,x

C USES bessjy
Returns spherical Bessel functions jn(x), yn(x), and their derivatives j′n(x), y′

n(x) for
integer n.

REAL factor,order,rj,rjp,ry,ryp,RTPIO2
PARAMETER (RTPIO2=1.2533141)
if(n.lt.0.or.x.le.0.)pause ’bad arguments in sphbes’
order=n+0.5
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.*x)
syp=factor*ryp-sy/(2.*x)
return
END

CITED REFERENCES AND FURTHER READING:

Barnett, A.R., Feng, D.H., Steed, J.W., and Goldfarb, L.J.B. 1974, Computer Physics Commu-
nications, vol. 8, pp. 377–395. [1]

Temme, N.M. 1976, Journal of Computational Physics, vol. 21, pp. 343–350 [2]; 1975, op. cit.,
vol. 19, pp. 324–337. [3]

Thompson, I.J., and Barnett, A.R. 1987, Computer Physics Communications, vol. 47, pp. 245–
257. [4]

Barnett, A.R. 1981, Computer Physics Communications, vol. 21, pp. 297–314.

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 10.
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6.8 Spherical Harmonics

Spherical harmonics occur in a large variety of physical problems, for ex-
ample, whenever a wave equation, or Laplace’s equation, is solved by separa-
tion of variables in spherical coordinates. The spherical harmonicY lm(θ, φ),
−l ≤ m ≤ l, is a function of the two coordinatesθ, φ on the surface of a sphere.

The spherical harmonics are orthogonal for differentl and m, and they are
normalized so that their integrated square over the sphere is unity:

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)Yl′m′*(θ, φ)Ylm(θ, φ) = δl′lδm′m (6.8.1)

Here asterisk denotes complex conjugation.
Mathematically, the spherical harmonics are related toassociated Legendre

polynomials by the equation

Ylm(θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos θ)eimφ (6.8.2)

By using the relation

Yl,−m(θ, φ) = (−1)mYlm*(θ, φ) (6.8.3)

we can always relate a spherical harmonic to an associated Legendre polynomial
with m ≥ 0. With x ≡ cos θ, these are defined in terms of the ordinary Legendre
polynomials (cf.§4.5 and§5.5) by

Pm
l (x) = (−1)m(1 − x2)m/2 dm

dxm
Pl(x) (6.8.4)

The first few associated Legendre polynomials, and their corresponding nor-
malized spherical harmonics, are

P 0
0 (x) = 1 Y00 =

√
1
4π

P 1
1 (x) = − (1 − x2)1/2 Y11 = −

√
3
8π sin θeiφ

P 0
1 (x) = x Y10 =

√
3
4π cos θ

P 2
2 (x) = 3 (1 − x2) Y22 = 1

4

√
15
2π sin2 θe2iφ

P 1
2 (x) = −3 (1 − x2)1/2x Y21 = −

√
15
8π sin θ cos θeiφ

P 0
2 (x) = 1

2 (3x2 − 1) Y20 =
√

5
4π (3

2 cos2 θ − 1
2 )

(6.8.5)

There are many bad ways to evaluate associated Legendre polynomials numer-
ically. For example, there are explicit expressions, such as

Pm
l (x) =

(−1)m(l + m)!
2mm!(l − m)!

(1 − x2)m/2

[
1 − (l − m)(m + l + 1)

1!(m + 1)

(
1 − x

2

)

+
(l − m)(l − m − 1)(m + l + 1)(m + l + 2)

2!(m + 1)(m + 2)

(
1 − x

2

)2

− · · ·
]

(6.8.6)
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where the polynomial continues up through the term in(1 − x) l−m. (See[1] for
this and related formulas.) This is not a satisfactory method because evaluation
of the polynomial involves delicate cancellations between successive terms, which
alternate in sign. For largel, the individual terms in the polynomial become very
much larger than their sum, and all accuracy is lost.

In practice, (6.8.6) can be used only in single precision (32-bit) forl up
to 6 or 8, and in double precision (64-bit) forl up to 15 or 18, depending on
the precision required for the answer. A more robust computational procedure is
therefore desirable, as follows:

The associated Legendre functions satisfy numerous recurrence relations, tab-
ulated in[1-2]. These are recurrences onl alone, onm alone, and on bothl
andm simultaneously. Most of the recurrences involvingm are unstable, and so
dangerous for numerical work. The following recurrence onl is, however, stable
(compare 5.5.1):

(l − m)Pm
l = x(2l − 1)P m

l−1 − (l + m − 1)P m
l−2 (6.8.7)

It is useful because there is a closed-form expression for the starting value,

Pm
m = (−1)m(2m − 1)!!(1 − x2)m/2 (6.8.8)

(The notationn!! denotes the product of allodd integers less than or equal ton.)
Using (6.8.7) withl = m + 1, and settingP m

m−1 = 0, we find

Pm
m+1 = x(2m + 1)P m

m (6.8.9)

Equations (6.8.8) and (6.8.9) provide the two starting values required for (6.8.7)
for generall.

The function that implements this is

FUNCTION plgndr(l,m,x)
INTEGER l,m
REAL plgndr,x

Computes the associated Legendre polynomial P m
l (x). Here m and l are integers satisfying

0 ≤ m ≤ l, while x lies in the range −1 ≤ x ≤ 1.
INTEGER i,ll
REAL fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.abs(x).gt.1.)pause ’bad arguments in plgndr’
pmm=1. Compute P m

m .
if(m.gt.0) then

somx2=sqrt((1.-x)*(1.+x))
fact=1.
do 11 i=1,m

pmm=-pmm*fact*somx2
fact=fact+2.

enddo 11

endif
if(l.eq.m) then

plgndr=pmm
else

pmmp1=x*(2*m+1)*pmm Compute P m
m+1.

if(l.eq.m+1) then
plgndr=pmmp1

else Compute P m
l , l > m + 1.

do 12 ll=m+2,l
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pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

enddo 12

plgndr=pll
endif

endif
return
END

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff. [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

C(x) =
∫ x

0

cos
(π

2
t2
)

dt, S(x) =
∫ x

0

sin
(π

2
t2
)

dt (6.9.1)

The most convenient way of evaluating these functions to arbitrary precision is
to use power series for smallx and a continued fraction for largex. The series are

C(x) = x −
(π

2

)2 x5

5 · 2!
+
(π

2

)4 x9

9 · 4!
− · · ·

S(x) =
(π

2

) x3

3 · 1!
−
(π

2

)3 x7

7 · 3!
+
(π

2

)5 x11

11 · 5!
− · · ·

(6.9.2)

There is a complex continued fraction that yields bothS(x) andC(x) simul-
taneously:

C(x) + iS(x) =
1 + i

2
erf z, z =

√
π

2
(1 − i)x (6.9.3)

where

ez2
erfc z =

1√
π

(
1

z +
1/2
z +

1
z +

3/2
z +

2
z +

· · ·
)

=
2z√
π

(
1

2z2 + 1 −
1 · 2

2z2 + 5 −
3 · 4

2z2 + 9 − · · ·
) (6.9.4)
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pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

enddo 12

plgndr=pll
endif

endif
return
END

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff. [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

C(x) =
∫ x

0

cos
(π

2
t2
)

dt, S(x) =
∫ x

0

sin
(π

2
t2
)

dt (6.9.1)

The most convenient way of evaluating these functions to arbitrary precision is
to use power series for small x and a continued fraction for large x. The series are

C(x) = x −
(π

2

)2 x5

5 · 2!
+
(π

2

)4 x9

9 · 4!
− · · ·

S(x) =
(π

2

) x3

3 · 1!
−
(π

2

)3 x7

7 · 3!
+
(π

2

)5 x11

11 · 5!
− · · ·

(6.9.2)

There is a complex continued fraction that yields both S(x) and C(x) simul-
taneously:

C(x) + iS(x) =
1 + i

2
erf z, z =

√
π

2
(1 − i)x (6.9.3)

where

ez2
erfc z =

1√
π

(
1

z +
1/2
z +

1
z +

3/2
z +

2
z +

· · ·
)

=
2z√
π

(
1

2z2 + 1 −
1 · 2

2z2 + 5 −
3 · 4

2z2 + 9 − · · ·
) (6.9.4)
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In the last line we have converted the “standard” form of the continued fraction to
its “even” form (see §5.2), which converges twice as fast. We must be careful not
to evaluate the alternating series (6.9.2) at too large a value of x; inspection of the
terms shows that x = 1.5 is a good point to switch over to the continued fraction.

Note that for large x

C(x) ∼ 1
2

+
1

πx
sin
(π

2
x2
)

, S(x) ∼ 1
2
− 1

πx
cos
(π

2
x2
)

(6.9.5)

Thus the precision of the routine frenel may be limited by the precision of the
library routines for sine and cosine for large x.

SUBROUTINE frenel(x,s,c)
INTEGER MAXIT
REAL c,s,x,EPS,FPMIN,PI,PIBY2,XMIN
PARAMETER (EPS=6.e-8,MAXIT=100,FPMIN=1.e-30,XMIN=1.5,

* PI=3.1415927,PIBY2=1.5707963)
Computes the Fresnel integrals S(x) and C(x) for all real x.
Parameters: EPS is the relative error; MAXIT is the maximum number of iterations allowed;
FPMIN is a number near the smallest representable floating-point number; XMIN is the
dividing line between using the series and continued fraction; PI = π; PIBY2 = π/2.

INTEGER k,n
REAL a,absc,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX b,cc,d,h,del,cs
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
ax=abs(x)
if(ax.lt.sqrt(FPMIN))then Special case: avoid failure of convergence test

because of underflow.s=0.
c=ax

else if(ax.le.XMIN)then Evaluate both series simultaneously.
sum=0.
sums=0.
sumc=ax
sign=1.
fact=PIBY2*ax*ax
odd=.true.
term=ax
n=3
do 11 k=1,MAXIT

term=term*fact/k
sum=sum+sign*term/n
test=abs(sum)*EPS
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(term.lt.test)goto 1
odd=.not.odd
n=n+2

enddo 11

pause ’series failed in frenel’
1 s=sums

c=sumc
else Evaluate continued fraction by modified Lentz’s

method (§5.2).pix2=PI*ax*ax
b=cmplx(1.,-pix2)
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cc=1./FPMIN
d=1./b
h=d
n=-1
do 12 k=2,MAXIT

n=n+2
a=-n*(n+1)
b=b+4.
d=1./(a*d+b) Denominators cannot be zero.
cc=b+a/cc
del=cc*d
h=h*del
if(absc(del-1.).lt.EPS)goto 2

enddo 12

pause ’cf failed in frenel’
2 h=h*cmplx(ax,-ax)

cs=cmplx(.5,.5)*(1.-cmplx(cos(.5*pix2),sin(.5*pix2))*h)
c=real(cs)
s=aimag(cs)

endif
if(x.lt.0.)then Use antisymmetry.

c=-c
s=-s

endif
return
END

Cosine and Sine Integrals

The cosine and sine integrals are defined by

Ci(x) = γ + lnx +
∫ x

0

cos t − 1
t

dt

Si(x) =
∫ x

0

sin t

t
dt

(6.9.6)

Here γ ≈ 0.5772 . . . is Euler’s constant. We only need a way to calculate the
functions for x > 0, because

Si(−x) = − Si(x), Ci(−x) = Ci(x) − iπ (6.9.7)

Once again we can evaluate these functions by a judicious combination of power
series and complex continued fraction. The series are

Si(x) = x − x3

3 · 3!
+

x5

5 · 5!
− · · ·

Ci(x) = γ + lnx +
(
− x2

2 · 2!
+

x4

4 · 4!
− · · ·

) (6.9.8)

The continued fraction for the exponential integral E 1(ix) is

E1(ix) = −Ci(x) + i[Si(x) − π/2]

= e−ix

(
1

ix +
1

1 +
1

ix +
2

1 +
2

ix +
· · ·
)

= e−ix

(
1

1 + ix −
12

3 + ix −
22

5 + ix − · · ·
)

(6.9.9)
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The “even” form of the continued fraction is given in the last line and converges
twice as fast for about the same amount of computation. A good crossover point
from the alternating series to the continued fraction is x = 2 in this case. As for
the Fresnel integrals, for large x the precision may be limited by the precision of
the sine and cosine routines.

SUBROUTINE cisi(x,ci,si)
INTEGER MAXIT
REAL ci,si,x,EPS,EULER,PIBY2,FPMIN,TMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,PIBY2=1.5707963,

* FPMIN=1.e-30,TMIN=2.)
Computes the cosine and sine integrals Ci(x) and Si(x). Ci(0) is returned as a large negative
number and no error message is generated. For x < 0 the routine returns Ci(−x) and you
must supply the −iπ yourself.
Parameters: EPS is the relative error, or absolute error near a zero of Ci(x); EULER = γ;
MAXIT is the maximum number of iterations allowed; PIBY2 = π/2; FPMIN is a number
near the smallest representable floating-point number; TMIN is the dividing line between
using the series and continued fraction.

INTEGER i,k
REAL a,err,fact,sign,sum,sumc,sums,t,term,absc
COMPLEX h,b,c,d,del
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
t=abs(x)
if(t.eq.0.)then Special case.

si=0.
ci=-1./FPMIN
return

endif
if(t.gt.TMIN)then Evaluate continued fraction by modified Lentz’s

method (§5.2).b=cmplx(1.,t)
c=1./FPMIN
d=1./b
h=d
do 11 i=2,MAXIT

a=-(i-1)**2
b=b+2.
d=1./(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if(absc(del-1.).lt.EPS)goto 1

enddo 11

pause ’cf failed in cisi’
1 continue

h=cmplx(cos(t),-sin(t))*h
ci=-real(h)
si=PIBY2+aimag(h)

else Evaluate both series simultaneously.
if(t.lt.sqrt(FPMIN))then Special case: avoid failure of convergence test

because of underflow.sumc=0.
sums=t

else
sum=0.
sums=0.
sumc=0.
sign=1.
fact=1.
odd=.true.
do 12 k=1,MAXIT

fact=fact*t/k
term=fact/k
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sum=sum+sign*term
err=term/abs(sum)
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(err.lt.EPS)goto 2
odd=.not.odd

enddo 12

pause ’maxits exceeded in cisi’
endif

2 si=sums
ci=sumc+log(t)+EULER

endif
if(x.lt.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,
vol. 80B, pp. 291–311; 1981, op. cit., vol. 86, pp. 661–686.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral

Dawson’s Integral F (x) is defined by

F (x) = e−x2
∫ x

0

et2 dt (6.10.1)

The function can also be related to the complex error function by

F (z) =
i
√

π

2
e−z2

[1 − erfc(−iz)] . (6.10.2)

A remarkable approximation for F (z), due to Rybicki [1], is

F (z) = lim
h→0

1√
π

∑
n odd

e−(z−nh)2

n
(6.10.3)

What makes equation (6.10.3) unusual is that its accuracy increases exponentially
as h gets small, so that quite moderate values of h (and correspondingly quite rapid
convergence of the series) give very accurate approximations.
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sum=sum+sign*term
err=term/abs(sum)
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(err.lt.EPS)goto 2
odd=.not.odd

enddo 12

pause ’maxits exceeded in cisi’
endif

2 si=sums
ci=sumc+log(t)+EULER

endif
if(x.lt.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,
vol. 80B, pp. 291–311; 1981, op. cit., vol. 86, pp. 661–686.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral

Dawson’s Integral F (x) is defined by

F (x) = e−x2
∫ x

0

et2 dt (6.10.1)

The function can also be related to the complex error function by

F (z) =
i
√

π

2
e−z2

[1 − erfc(−iz)] . (6.10.2)

A remarkable approximation for F (z), due to Rybicki [1], is

F (z) = lim
h→0

1√
π

∑
n odd

e−(z−nh)2

n
(6.10.3)

What makes equation (6.10.3) unusual is that its accuracy increases exponentially
as h gets small, so that quite moderate values of h (and correspondingly quite rapid
convergence of the series) give very accurate approximations.
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We will discuss the theory that leads to equation (6.10.3) later, in §13.11, as
an interesting application of Fourier methods. Here we simply implement a routine
for real values of x based on the formula.

It is first convenient to shift the summation index to center it approximately on
the maximum of the exponential term. Define n0 to be the even integer nearest to
x/h, and x0 ≡ n0h, x′ ≡ x − x0, and n′ ≡ n − n0, so that

F (x) ≈ 1√
π

N∑
n′=−N

n′ odd

e−(x′−n′h)2

n′ + n0
, (6.10.4)

where the approximate equality is accurate when h is sufficiently small and N is
sufficiently large. The computation of this formula can be greatly speeded up if
we note that

e−(x′−n′h)2 = e−x′2
e−(n′h)2

(
e2x′h

)n′

. (6.10.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentials need be
evaluated. Advantage is also taken of the symmetry of the coefficients e−(n′h)2 by
breaking the summation up into positive and negative values of n ′ separately.

In the following routine, the choices h = 0.4 and N = 11 are made. Because
of the symmetry of the summations and the restriction to odd values of n, the limits
on the do loops are 1 to 6. The accuracy of the result in this REAL version is about
2 × 10−7. In order to maintain relative accuracy near x = 0, where F (x) vanishes,
the program branches to the evaluation of the power series [2] for F (x), for |x| < 0.2.

FUNCTION dawson(x)
INTEGER NMAX
REAL dawson,x,H,A1,A2,A3
PARAMETER (NMAX=6,H=0.4,A1=2./3.,A2=0.4,A3=2./7.)

Returns Dawson’s integral F (x) = exp(−x2)
∫ x
0 exp(t2)dt for any real x.

INTEGER i,init,n0
REAL d1,d2,e1,e2,sum,x2,xp,xx,c(NMAX)
SAVE init,c
DATA init/0/ Flag is 0 if we need to initialize, else 1.
if(init.eq.0)then

init=1
do 11 i=1,NMAX

c(i)=exp(-((2.*float(i)-1.)*H)**2)
enddo 11

endif
if(abs(x).lt.0.2)then Use series expansion.

x2=x**2
dawson=x*(1.-A1*x2*(1.-A2*x2*(1.-A3*x2)))

else Use sampling theorem representation.
xx=abs(x)
n0=2*nint(0.5*xx/H)
xp=xx-float(n0)*H
e1=exp(2.*xp*H)
e2=e1**2
d1=float(n0+1)
d2=d1-2.
sum=0.
do 12 i=1,NMAX
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sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1

enddo 12

dawson=0.5641895835*sign(exp(-xp**2),x)*sum Constant is 1/
√

π.
endif
return
END

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171–178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811–816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form

∫
R(t, s) dt (6.11.1)

where R is a rational function of t and s, and s is the square root of a cubic or
quartic polynomial in t, can be evaluated in terms of elliptic integrals. Standard
references [1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I1 =
∫ x

y

dt√
(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)

(6.11.2)

where we have written the quartic s2 in factored form. In standard integral tables [2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluate I1, we simply break the interval [y, x] into subintervals, each of which either
begins or ends on a singularity. The tables, therefore, need only distinguish the eight
cases in which each of the four zeros (ordered according to size) appears as the upper
or lower limit of integration. In addition, when one of the b’s in (6.11.2) tends to
zero, the quartic reduces to a cubic, with the largest or smallest singularity moving
to ±∞; this leads to eight more cases (actually just special cases of the first eight).
The sixteen cases in total are then usually tabulated in terms of Legendre’s standard
elliptic integral of the 1st kind, which we will define below. By a change of the
variable of integration t, the zeros of the quartic are mapped to standard locations
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sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1

enddo 12

dawson=0.5641895835*sign(exp(-xp**2),x)*sum Constant is 1/
√

π.
endif
return
END

Other methods for computing Dawson’s integral are also known[2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171–178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811–816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form

∫
R(t, s) dt (6.11.1)

whereR is a rational function oft ands, ands is the square root of a cubic or
quartic polynomial int, can be evaluated in terms of elliptic integrals. Standard
references[1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I1 =
∫ x

y

dt√
(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)

(6.11.2)

where we have written the quartics2 in factored form. In standard integral tables[2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluateI1, we simply break the interval[y, x] into subintervals, each of which either
begins or ends on a singularity. The tables, therefore, need only distinguish the eight
cases in which each of the four zeros (ordered according to size) appears as the upper
or lower limit of integration. In addition, when one of theb’s in (6.11.2) tends to
zero, the quartic reduces to a cubic, with the largest or smallest singularity moving
to ±∞; this leads to eight more cases (actually just special cases of the first eight).
The sixteen cases in total are then usually tabulated in terms of Legendre’s standard
elliptic integral of the 1st kind, which we will define below. By a change of the
variable of integrationt, the zeros of the quartic are mapped to standard locations



6.11 Elliptic Integrals and Jacobian Elliptic Functions 255

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre’s integral. However, the symmetry of the original integral (6.11.2) under
permutation of the roots is concealed in Legendre’s notation. We will get back to
Legendre’s notation below. But first, here is a better way:

Carlson[3] has given a new definition of a standard elliptic integral of the first kind,

RF (x, y, z) =
1

2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)

(6.11.3)

wherex, y, andz are nonnegative and at most one is zero. By standardizing the range of
integration, he retains permutation symmetry for the zeros. (Weierstrass’ canonical form
also has this property.) Carlson first shows that whenx or y is a zero of the quartic in
(6.11.2), the integralI1 can be written in terms ofRF in a form that is symmetric under
permutation of theremaining three zeros. In the general case when neitherx nor y is a
zero, two suchRF functions can be combined into a single one by anaddition theorem,
leading to the fundamental formula

I1 = 2RF (U2
12, U

2
13, U

2
14) (6.11.4)

where
Uij = (XiXjYkYm + YiYjXkXm)/(x − y) (6.11.5)

Xi = (ai + bix)1/2, Yi = (ai + biy)1/2 (6.11.6)

andi, j, k, m is any permutation of1, 2, 3, 4. A short-cut in evaluating these expressions is

U2
13 = U2

12 − (a1b4 − a4b1)(a2b3 − a3b2)

U2
14 = U2

12 − (a1b3 − a3b1)(a2b4 − a4b2)
(6.11.7)

The U ’s correspond to the three ways of pairing the four zeros, andI1 is thus manifestly
symmetric under permutation of the zeros. Equation (6.11.4) therefore reproduces all sixteen
cases when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of
the branch points of the integrand relative to the interval of integration. To handle elliptic
integrals of the second and third kind, Carlson defines the standard integral of the third kind as

RJ (x, y, z, p) =
3

2

∫ ∞

0

dt

(t + p)
√

(t + x)(t + y)(t + z)
(6.11.8)

which is symmetric inx, y, and z. The degenerate case when two arguments are equal
is denoted

RD(x, y, z) = RJ (x, y, z, z) (6.11.9)

and is symmetric inx andy. The functionRD replaces Legendre’s integral of the second
kind. The degenerate form ofRF is denoted

RC(x, y) = RF (x, y, y) (6.11.10)

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.
Carlson[4-7] gives integral tables in terms of the exponents of the linear factors of

the quartic in (6.11.1). For example, the integral where the exponents are (1
2
,1
2
,− 1

2
,− 3

2
)

can be expressed as a single integral in terms ofRD ; it accounts for 144 separate cases in
Gradshteyn and Ryzhik[2]!

Refer to Carlson’s papers[3-7] for some of the practical details in reducing elliptic
integrals to his standard forms, such as handling complex conjugate zeros.
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Turn now to the numerical evaluation of elliptic integrals. The traditional methods[8]
are Gauss or Landen transformations.Descending transformations decrease the modulus
k of the Legendre integrals towards zero,increasing transformations increase it towards
unity. In these limits the functions have simple analytic expressions. While these methods
converge quadratically and are quite satisfactory for integrals of the first and second kinds,
they generally lead to loss of significant figures in certain regimes for integrals of the third
kind. Carlson’s algorithms[9,10], by contrast, provide a unified method for all three kinds
with no significant cancellations.

The key ingredient in these algorithms is theduplication theorem:

RF (x, y, z) = 2RF (x + λ, y + λ, z + λ)

= RF

(
x + λ

4
,
y + λ

4
,
z + λ

4

) (6.11.11)

where
λ = (xy)1/2 + (xz)1/2 + (yz)1/2 (6.11.12)

This theorem can be proved by a simple change of variable of integration[11]. Equation
(6.11.11) is iterated until the arguments ofRF are nearly equal. For equal arguments we have

RF (x, x, x) = x−1/2 (6.11.13)

When the arguments are close enough, the function is evaluated from a fixed Taylor expansion
about (6.11.13) through fifth-order terms. While the iterative part of the algorithm is only
linearly convergent, the error ultimately decreases by a factor of46 = 4096 for each iteration.
Typically only two or three iterations are required, perhaps six or seven if the initial values
of the arguments have huge ratios. We list the algorithm forRF here, and refer you to
Carlson’s paper[9] for the other cases.

Stage 1: Forn = 0, 1, 2, . . . compute

µn = (xn + yn + zn)/3

Xn = 1 − (xn/µn), Yn = 1 − (yn/µn), Zn = 1 − (zn/µn)

εn = max(|Xn|, |Yn|, |Zn|)
If εn < tol go to Stage 2; else compute

λn = (xnyn)1/2 + (xnzn)1/2 + (ynzn)1/2

xn+1 = (xn + λn)/4, yn+1 = (yn + λn)/4, zn+1 = (zn + λn)/4

and repeat this stage.

Stage 2: Compute

E2 = XnYn − Z2
n, E3 = XnYnZn

RF = (1 − 1
10

E2 + 1
14

E3 + 1
24

E2
2 − 3

44
E2E3)/(µn)1/2

In some applications the argumentp in RJ or the argumenty in RC is negative, and the
Cauchy principal value of the integral is required. This is easily handled by using the formulas

RJ (x, y,z, p) =

[(γ − y)RJ(x, y, z, γ) − 3RF (x, y, z) + 3RC(xz/y, pγ/y)] /(y − p)

(6.11.14)
where

γ ≡ y +
(z − y)(y − x)

y − p
(6.11.15)
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is positive if p is negative, and

RC(x, y) =

(
x

x − y

)1/2

RC(x − y,−y) (6.11.16)

The Cauchy principal value ofRJ has a zero at some value ofp < 0, so (6.11.14) will give
some loss of significant figures near the zero.

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4
PARAMETER (ERRTOL=.08,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,

* C1=1./24.,C2=.1,C3=3./44.,C4=1./14.)
Computes Carlson’s elliptic integral of the first kind, RF (x, y, z). x, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one fifth the machine overflow limit.

REAL alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rf’
xt=x
yt=y
zt=z

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(1.+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

A value of 0.08 for the error tolerance parameter is adequate for single precision (7
significant digits). Since the error scales asε6n, we see that 0.0025 will yield double precision
(16 significant digits) and require at most two or three more iterations. Since the coefficients
of the sixth-order truncation error are different for the other elliptic functions, these values for
the error tolerance should be changed to 0.04 and 0.0012 in the algorithm forRC , and 0.05 and
0.0015 forRJ andRD . As well as being an algorithm in its own right for certain combinations
of elementary functions, the algorithm forRC is used repeatedly in the computation ofRJ .

The Fortran implementations test the input arguments against two machine-dependent
constants,TINY andBIG, to ensure that there will be no underflow or overflow during the
computation. We have chosen conservative values, corresponding to a machine minimum of
3 × 10−39 and a machine maximum of1.7 × 1038. You can always extend the range of
admissible argument values by using the homogeneity relations (6.11.22), below.

FUNCTION rd(x,y,z)
REAL rd,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6
PARAMETER (ERRTOL=.05,TINY=1.e-25,BIG=4.5E21,C1=3./14.,C2=1./6.,

* C3=9./22.,C4=3./26.,C5=.25*C3,C6=1.5*C4)
Computes Carlson’s elliptic integral of the second kind, RD(x, y, z). x and y must be
nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1× ERRTOL
times the negative 2/3 power of the machine underflow limit.

REAL alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,
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* sqrtz,sum,xt,yt,zt
if(min(x,y).lt.0..or.min(x+y,z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rd’
xt=x
yt=y
zt=z
sum=0.
fac=1.

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ec+ec
rd=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*delz*ee)

* +delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
return
END

FUNCTION rj(x,y,z,p)
REAL rj,p,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6,C7,C8
PARAMETER (ERRTOL=.05,TINY=2.5e-13,BIG=9.E11,C1=3./14.,C2=1./3.,

* C3=3./22.,C4=3./26.,C5=.75*C3,C6=1.5*C4,C7=.5*C2,C8=C3+C3)
C USES rc,rf

Computes Carlson’s elliptic integral of the third kind, RJ (x, y, z, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy
principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one fifth the cube root of the machine overflow limit.

REAL a,alamb,alpha,ave,b,beta,delp,delx,dely,delz,ea,eb,ec,
* ed,ee,fac,pt,rcx,rho,sqrtx,sqrty,sqrtz,sum,tau,xt,
* yt,zt,rc,rf

if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z,abs(p)).lt.TINY.or.
* max(x,y,z,abs(p)).gt.BIG)pause ’invalid arguments in rj’

sum=0.
fac=1.
if(p.gt.0.)then

xt=x
yt=y
zt=z
pt=p

else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1./(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
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tau=p*pt/yt
rcx=rc(rho,tau)

endif
1 continue

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
beta=pt*(pt+alamb)**2
sum=sum+fac*rc(alpha,beta)
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
pt=.25*(pt+alamb)
ave=.2*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave

if(max(abs(delx),abs(dely),abs(delz),abs(delp)).gt.ERRTOL)goto 1
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.*ec
ee=eb+2.*delp*(ea-ec)
rj=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8+delp*C4))

* +delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p.le.0.) rj=a*(b*rj+3.*(rcx-rf(xt,yt,zt)))
return
END

FUNCTION rc(x,y)
REAL rc,x,y,ERRTOL,TINY,SQRTNY,BIG,TNBG,COMP1,COMP2,THIRD,

* C1,C2,C3,C4
PARAMETER (ERRTOL=.04,TINY=1.69e-38,SQRTNY=1.3e-19,BIG=3.E37,

* TNBG=TINY*BIG,COMP1=2.236/SQRTNY,COMP2=TNBG*TNBG/25.,
* THIRD=1./3.,C1=.3,C2=1./7.,C3=.375,C4=9./22.)

Computes Carlson’s degenerate elliptic integral, RC(x, y). x must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one fifth the machine maximum overflow
limit.

REAL alamb,ave,s,w,xt,yt
if(x.lt.0..or.y.eq.0..or.(x+abs(y)).lt.TINY.or.(x+abs(y)).gt.BIG

* .or.(y.lt.-COMP1.and.x.gt.0..and.x.lt.COMP2))
* pause ’invalid arguments in rc’

if(y.gt.0.)then
xt=x
yt=y
w=1.

else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

endif
1 continue

alamb=2.*sqrt(xt)*sqrt(yt)+yt
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
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if(abs(s).gt.ERRTOL)goto 1
rc=w*(1.+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
return
END

At times you may want to express your answer in Legendre’s notation. Alter-
natively, you may be given results in that notation and need to compute their values
with the programs given above. It is a simple matter to transform back and forth.
The Legendre elliptic integral of the 1st kind is defined as

F (φ, k) ≡
∫ φ

0

dθ√
1 − k2 sin2 θ

(6.11.17)

The complete elliptic integral of the 1st kind is given by

K(k) ≡ F (π/2, k) (6.11.18)
In terms of RF ,

F (φ, k) = sinφRF (cos2 φ, 1 − k2 sin2 φ, 1)

K(k) = RF (0, 1 − k2, 1)
(6.11.19)

The Legendre elliptic integral of the 2nd kind and thecomplete elliptic integral of
the 2nd kind are given by

E(φ, k) ≡
∫ φ

0

√
1 − k2 sin2 θ dθ

= sin φRF (cos2 φ, 1 − k2 sin2 φ, 1)

− 1
3k2 sin3 φRD(cos2 φ, 1 − k2 sin2 φ, 1)

E(k) ≡ E(π/2, k) = RF (0, 1 − k2, 1) − 1
3k2RD(0, 1 − k2, 1)

(6.11.20)

Finally, theLegendre elliptic integral of the 3rd kind is

Π(φ, n, k) ≡
∫ φ

0

dθ

(1 + n sin2 θ)
√

1 − k2 sin2 θ

= sin φRF (cos2 φ, 1 − k2 sin2 φ, 1)

− 1
3n sin3 φRJ (cos2 φ, 1 − k2 sin2 φ, 1, 1 + n sin2 φ)

(6.11.21)

(Note that this sign convention forn is opposite that of Abramowitz and Stegun[12],
and that theirsinα is our k.)

FUNCTION ellf(phi,ak)
REAL ellf,ak,phi

C USES rf
Legendre elliptic integral of the 1st kind F (φ, k), evaluated using Carlson’s function RF .
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sin φ ≤ 1.

REAL s,rf
s=sin(phi)
ellf=s*rf(cos(phi)**2,(1.-s*ak)*(1.+s*ak),1.)
return
END
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FUNCTION elle(phi,ak)
REAL elle,ak,phi

C USES rd,rf
Legendre elliptic integral of the 2nd kind E(φ, k), evaluated using Carlson’s functions RD

and RF . The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.
REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1.)-((s*ak)**2)*rd(cc,q,1.)/3.)
return
END

FUNCTION ellpi(phi,en,ak)
REAL ellpi,ak,en,phi

C USES rf,rj
Legendre elliptic integral of the 3rd kind Π(φ, n, k), evaluated using Carlson’s functions RJ

and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of φ and k are 0 ≤ φ ≤ π/2, 0 ≤ k sin φ ≤ 1.

REAL cc,enss,q,s,rf,rj
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
ellpi=s*(rf(cc,q,1.)-enss*rj(cc,q,1.,1.+enss)/3.)
return
END

Carlson’s functions are homogeneous of degree− 1
2 and− 3

2 , so

RF (λx, λy, λz) = λ−1/2RF (x, y, z)

RJ (λx, λy, λz, λp) = λ−3/2RJ (x, y, z, p)
(6.11.22)

Thus to express a Carlson function in Legendre’s notation, permute the first three
arguments into ascending order, use homogeneity to scale the third argument to be
1, and then use equations (6.11.19)–(6.11.21).

Jacobian Elliptic Functions

The Jacobian elliptic function sn is defined as follows: instead of considering
the elliptic integral

u(y, k) ≡ u = F (φ, k) (6.11.23)

consider theinverse function

y = sinφ = sn(u, k) (6.11.24)

Equivalently,

u =
∫ sn

0

dy√
(1 − y2)(1 − k2y2)

(6.11.25)

Whenk = 0, sn is just sin. The functions cn and dn are defined by the relations

sn2 + cn2 = 1, k2sn2 + dn2 = 1 (6.11.26)

The routine given below actually takesmc ≡ k2
c = 1 − k2 as an input parameter.

It also computes all three functions sn, cn, and dn since computing all three is no
harder than computing any one of them. For a description of the method, see[8].
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SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
REAL cn,dn,emmc,sn,uu,CA
PARAMETER (CA=.0003) The accuracy is the square of CA.

Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2

c .
INTEGER i,ii,l
REAL a,b,c,d,emc,u,em(13),en(13)
LOGICAL bo
emc=emmc
u=uu
if(emc.ne.0.)then

bo=(emc.lt.0.)
if(bo)then

d=1.-emc
emc=-emc/d
d=sqrt(d)
u=d*u

endif
a=1.
dn=1.
do 11 i=1,13

l=i
em(i)=a
emc=sqrt(emc)
en(i)=emc
c=0.5*(a+emc)
if(abs(a-emc).le.CA*a)goto 1
emc=a*emc
a=c

enddo 11

1 u=c*u
sn=sin(u)
cn=cos(u)
if(sn.eq.0.)goto 2
a=cn/sn
c=a*c
do 12 ii=l,1,-1

b=em(ii)
a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b

enddo 12

a=1./sqrt(c**2+1.)
if(sn.lt.0.)then

sn=-a
else

sn=a
endif
cn=c*sn

2 if(bo)then
a=dn
dn=cn
cn=a
sn=sn/d

endif
else

cn=1./cosh(u)
dn=cn
sn=tanh(u)

endif
return
END



6.12 Hypergeometric Functions 263

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:
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6.12 Hypergeometric Functions

As was discussed in§5.14, a fast, general routine for the the complex hyperge-
ometric function2F1(a, b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b + 1) . . . (b + j − 1)

c(c + 1) . . . (c + j − 1)
zj

j!
+ · · ·
(6.12.1)

This series converges only within the unit circle|z| < 1 (see[1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the functionhypgeo is straightforward, and is described
by comments in the program. The machinery associated with Chapter 16’s routine
for integrating differential equations,odeint, is only minimally intrusive, and need
not even be completely understood: use ofodeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutinehypgeo will fail, of course, for values ofz too close to the
singularity at1. (If you need to approach this singularity, or the one at∞, use the
“linear transformation formulas” in§15.3 of [1].) Away fromz = 1, and for moderate
values ofa, b, c, it is often remarkable how few steps are required to integrate the
equations. A half-dozen is typical.
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As was discussed in §5.14, a fast, general routine for the the complex hyperge-
ometric function 2F1(a, b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

2F1(a, b, c; z) = 1 +
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c(c + 1)
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c(c + 1) . . . (c + j − 1)
zj

j!
+ · · ·
(6.12.1)

This series converges only within the unit circle |z| < 1 (see [1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the function hypgeo is straightforward, and is described
by comments in the program. The machinery associated with Chapter 16’s routine
for integrating differential equations, odeint, is only minimally intrusive, and need
not even be completely understood: use of odeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutine hypgeo will fail, of course, for values of z too close to the
singularity at 1. (If you need to approach this singularity, or the one at ∞, use the
“linear transformation formulas” in §15.3 of [1].) Away from z = 1, and for moderate
values of a, b, c, it is often remarkable how few steps are required to integrate the
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FUNCTION hypgeo(a,b,c,z)
COMPLEX hypgeo,a,b,c,z
REAL EPS
PARAMETER (EPS=1.e-6) Accuracy parameter.

C USES bsstep,hypdrv,hypser,odeint
Complex hypergeometric function 2F1 for complex a, b, c, and z, by direct integration of
the hypergeometric equation in the complex plane. The branch cut is taken to lie along
the real axis, Re z > 1.

INTEGER kmax,nbad,nok
EXTERNAL bsstep,hypdrv
COMPLEX z0,dz,aa,bb,cc,y(2)
COMMON /hypg/ aa,bb,cc,z0,dz
COMMON /path/ kmax Used by odeint.
kmax=0
if (real(z)**2+aimag(z)**2.le.0.25) then Use series...

call hypser(a,b,c,z,hypgeo,y(2))
return

else if (real(z).lt.0.) then ...or pick a starting point for the path inte-
gration.z0=cmplx(-0.5,0.)

else if (real(z).le.1.0) then
z0=cmplx(0.5,0.)

else
z0=cmplx(0.,sign(0.5,aimag(z)))

endif
aa=a Load the common block, used to pass pa-

rameters “over the head” of odeint to
hypdrv.

bb=b
cc=c
dz=z-z0
call hypser(aa,bb,cc,z0,y(1),y(2)) Get starting function and derivative.
call odeint(y,4,0.,1.,EPS,.1,.0001,nok,nbad,hypdrv,bsstep)

The arguments to odeint are the vector of independent variables, its length, the starting and
ending values of the dependent variable, the accuracy parameter, an initial guess for stepsize,
a minimum stepsize, the (returned) number of good and bad steps taken, and the names of
the derivative routine and the (here Bulirsch-Stoer) stepping routine.

hypgeo=y(1)
return
END

SUBROUTINE hypser(a,b,c,z,series,deriv)
INTEGER n
COMPLEX a,b,c,z,series,deriv,aa,bb,cc,fac,temp

Returns the hypergeometric series 2F1 and its derivative, iterating to machine accuracy.
For cabs(z) ≤ 1/2 convergence is quite rapid.

deriv=cmplx(0.,0.)
fac=cmplx(1.,0.)
temp=fac
aa=a
bb=b
cc=c
do 11 n=1,1000

fac=((aa*bb)/cc)*fac
deriv=deriv+fac
fac=fac*z/n
series=temp+fac
if (series.eq.temp) return
temp=series
aa=aa+1.
bb=bb+1.
cc=cc+1.

enddo 11

pause ’convergence failure in hypser’
END
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SUBROUTINE hypdrv(s,y,dyds)
REAL s
COMPLEX y(2),dyds(2),aa,bb,cc,z0,dz,z

Derivative subroutine for the hypergeometric equation, see text equation (5.14.4).
COMMON /hypg/ aa,bb,cc,z0,dz
z=z0+s*dz
dyds(1)=y(2)*dz
dyds(2)=((aa*bb)*y(1)-(cc-((aa+bb)+1.)*z)*y(2))*dz/(z*(1.-z))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]
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Chapter 7. Random Numbers

7.0 Introduction

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

Nevertheless, practical computer “random number generators” are in common
use. We will leave it to philosophers of the computer age to resolve the paradox in
a deep way (see, e.g., Knuth[1] §3.5 for discussion and references). One sometimes
hears computer-generatedsequences termedpseudo-random, while the wordrandom
is reserved for the output of an intrinsically random physical process, like the elapsed
time between clicks of a Geiger counter placed next to a sample of some radioactive
element. We will not try to make such fine distinctions.

A working, though imprecise, definition of randomness in the context of
computer-generated sequences, is to say that the deterministic program that produces
a random sequence should be different from, and — in all measurable respects —
statistically uncorrelated with, the computer program thatuses its output. In other
words, any two different random number generators ought to produce statistically
the same results when coupled to your particular applications program. If they don’t,
then at least one of them is not (from your point of view) a good generator.

The above definition may seem circular, comparing, as it does, one generator to
another. However, there exists a body of random number generators which mutually
do satisfy the definition over a very, very broad class of applications programs.
And it is also found empirically that statistically identical results are obtained from
random numbers produced by physical processes. So, because such generators are
known to exist, we can leave to the philosophers the problem of defining them.

A pragmatic point of view, then, is that randomness is in the eye of the beholder
(or programmer). What is random enough for one application may not be random
enough for another. Still, one is not entirely adrift in a sea of incommensurable
applications programs: There is a certain list of statistical tests, some sensible and
some merely enshrined by history, which on the whole will do a very good job
of ferreting out any correlations that are likely to be detected by an applications
program (in this case, yours). Good random number generators ought to pass all of
these tests; or at least the user had better be aware of any that they fail, so that he or
she will be able to judge whether they are relevant to the case at hand.

266
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As for references on this subject, the one to turn to first is Knuth[1]. Then
try [2]. Only a few of the standard books on numerical methods[3-4] treat topics
relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 11. [3]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range
(typically 0 to 1), with any one number in the range just as likely as any other. They
are, in other words, what you probably think “random numbers” are. However,
we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean
and standard deviation. These other sorts of deviates are almost always generated by
performing appropriate operations on one or more uniform deviates, as we will see
in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling or
Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called
a “random number generator.” That routine typically has an unforgettable name like
“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call toran.
Each initializing value will typically return a different subsequent random sequence,
or at least a different subsequence of some one enormously long sequence. Thesame
initializing value ofiseed will always return thesame random sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Bevery,
very suspicious of a system-suppliedran that resembles the one just described. If all
scientific papers whose results are in doubt because of badrans were to disappear
from library shelves, there would be a gap on each shelf about as big as your
fist. System-suppliedrans are almost alwayslinear congruential generators, which
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As for references on this subject, the one to turn to first is Knuth [1]. Then
try [2]. Only a few of the standard books on numerical methods [3-4] treat topics
relating to random numbers.
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7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range
(typically 0 to 1), with any one number in the range just as likely as any other. They
are, in other words, what you probably think “random numbers” are. However,
we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean
and standard deviation. These other sorts of deviates are almost always generated by
performing appropriate operations on one or more uniform deviates, as we will see
in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling or
Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called
a “random number generator.” That routine typically has an unforgettable name like
“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call to ran.
Each initializing value will typically return a different subsequent random sequence,
or at least a different subsequence of some one enormously long sequence. The same
initializing value of iseed will always return the same random sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Be very,
very suspicious of a system-supplied ran that resembles the one just described. If all
scientific papers whose results are in doubt because of bad rans were to disappear
from library shelves, there would be a gap on each shelf about as big as your
fist. System-supplied rans are almost always linear congruential generators, which
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generate a sequence of integers I1, I2, I3, . . . , each between 0 and m − 1 (a large
number) by the recurrence relation

Ij+1 = aIj + c (mod m) (7.1.1)

Here m is called the modulus, and a and c are positive integers called the multiplier
and the increment, respectively. The recurrence (7.1.1) will eventually repeat itself,
with a period that is obviously no greater than m. If m, a, and c are properly chosen,
then the period will be of maximal length, i.e., of length m. In that case, all possible
integers between 0 and m− 1 occur at some point, so any initial “seed” choice of I 0

is as good as any other: The sequence just takes off from that point. The real number
between 0 and 1 which is returned is generally Ij+1/m, so that it is strictly less than
1, but occasionally (once in m calls) exactly equal to zero. iseed is set to I j+1 (or
some encoding of it), so that it can be used on the next call to generate I j+2, and so on.

The linear congruential method has the advantage of being very fast, requiring
only a few operations per call, hence its almost universal use. It has the disadvantage
that it is not free of sequential correlation on successive calls. If k random numbers at
a time are used to plot points in k dimensional space (with each coordinate between
0 and 1), then the points will not tend to “fill up” the k-dimensional space, but
rather will lie on (k − 1)-dimensional “planes.” There will be at most about m 1/k

such planes. If the constants m, a, and c are not very carefully chosen, there will
be many fewer than that. The number m is usually close to the machine’s largest
representable integer, e.g., ∼ 232. So, for example, the number of planes on which
triples of points lie in three-dimensional space is usually no greater than about the
cube root of 232, about 1600. You might well be focusing attention on a physical
process that occurs in a small fraction of the total volume, so that the discreteness
of the planes can be very pronounced.

Even worse, you might be using a ran whose choices of m, a, and c have
been botched. One infamous such routine, RANDU, with a = 65539 and m = 2 31,
was widespread on IBM mainframe computers for many years, and widely copied
onto other systems [1]. One of us recalls producing a “random” plot with only 11
planes, and being told by his computer center’s programming consultant that he
had misused the random number generator: “We guarantee that each number is
random individually, but we don’t guarantee that more than one of them is random.”
Figure that out.

Correlation in k-space is not the only weakness of linear congruential generators.
Such generators often have their low-order (least significant) bits much less random
than their high-order bits. If you want to generate a random integer between 1 and
10, you should always do it using high-order bits, as in

j=1+int(10.*ran(iseed))

and never by anything resembling

j=1+mod(int(1000000.*ran(iseed)),10)
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(which uses lower-order bits). Similarly you should never try to take apart a
“ran” number into several supposedly random pieces. Instead use separate calls
for every piece.

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators
that have been used over the last 30 years or more. Along with a good theoretical
review, they present an anecdotal sampling of a number of inadequate generators that
have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multi-
plicative congruential algorithm

Ij+1 = aIj (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have
c �= 0 (equation 7.1.1) — if the multiplier a and modulus m are chosen exquisitely
carefully. Park and Miller propose a “Minimal Standard” generator based on the
choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in
subsequent years passed all new theoretical tests, and (perhaps more importantly)
has accumulated a large amount of successful use. Park and Miller do not claim that
the generator is “perfect” (we will see below that it is not), but only that it is a good
minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a
high-level language, since the product of a and m − 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product
register is straightforward, but not portable from machine to machine. A trick
due to Schrage [2,3] for multiplying two 32-bit integers modulo a 32-bit constant,
without using any intermediates larger than 32 bits (including a sign bit) is therefore
extremely interesting: It allows the Minimal Standard generator to be implemented
in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on an approximate factorization of m,

m = aq + r, i.e., q = [m/a], r = m mod a (7.1.4)

with square brackets denoting integer part. If r is small, specifically r < q, and
0 < z < m − 1, it can be shown that both a(z mod q) and r[z/q] lie in the range
0, . . . , m − 1, and that

az mod m =
{

a(z mod q) − r[z/q] if it is ≥ 0,
a(z mod q) − r[z/q] + m otherwise

(7.1.5)

The application of Schrage’s algorithm to the constants (7.1.3) uses the values
q = 127773 and r = 2836.

Here is an implementation of the Minimal Standard generator:
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FUNCTION ran0(idum)
INTEGER idum,IA,IM,IQ,IR,MASK
REAL ran0,AM
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,

* IQ=127773,IR=2836,MASK=123459876)
“Minimal” random number generator of Park and Miller. Returns a uniform random deviate
between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
to initialize the sequence; idum must not be altered between calls for successive deviates
in a sequence.

INTEGER k
idum=ieor(idum,MASK) XORing with MASK allows use of zero and other simple

bit patterns for idum.k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
ran0=AM*idum Convert idum to a floating result.
idum=ieor(idum,MASK) Unmask before return.
return
END

The period of ran0 is 231 − 2 ≈ 2.1 × 109. A peculiarity of generators of
the form (7.1.2) is that the value 0 must never be allowed as the initial seed — it
perpetuates itself — and it never occurs for any nonzero initial seed. Experience
has shown that users always manage to call random number generators with the seed
idum=0. That is why ran0 performs its exclusive-or with an arbitrary constant both
on entry and exit. If you are the first user in history to be proof against human error,
you can remove the two lines with the ieor function.

Park and Miller discuss two other multipliers a that can be used with the same
m = 231 − 1. These are a = 48271 (with q = 44488 and r = 3399) and a = 69621
(with q = 30845 and r = 23902). These can be substituted in the routine ran0
if desired; they may be slightly superior to Lewis et al.’s longer-tested values. No
values other than these should be used.

The routine ran0 is a Minimal Standard, satisfactory for the majority of appli-
cations, but we do not recommend it as the final word on random number generators.
Our reason is precisely the simplicity of the Minimal Standard. It is not hard to think
of situations where successive random numbers might be used in a way that acciden-
tally conflicts with the generation algorithm. For example, since successive numbers
differ by a multiple of only 1.6×104 out of a modulus of more than 2×109, very small
random numbers will tend to be followed by smaller than average values. One time
in 106, for example, there will be a value < 10−6 returned (as there should be), but
this will always be followed by a value less than about 0.0168. One can easily think
of applications involving rare events where this property would lead to wrong results.

There are other, more subtle, serial correlations present in ran0. For example,
if successive points (Ii, Ii+1) are binned into a two-dimensional plane for i =
1, 2, . . . , N , then the resulting distribution fails the χ2 test when N is greater than a
few ×107, much less than the period m− 2. Since low-order serial correlations have
historically been such a bugaboo, and since there is a very simple way to remove
them, we think that it is prudent to do so.

The following routine, ran1, uses the Minimal Standard for its random value,
but it shuffles the output to remove low-order serial correlations. A random deviate
derived from the jth value in the sequence, Ij , is output not on the jth call, but rather
on a randomized later call, j +32 on average. The shuffling algorithm is due to Bays
and Durham as described in Knuth [4], and is illustrated in Figure 7.1.1.
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FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,

* NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
“Minimal” random number generator of Park and Miller with Bays-Durham shuffle and
added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
if (idum.le.0.or.iy.eq.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ Start here when not initializing.
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j) Output previously stored value and refill the shuffle ta-

ble.iv(j)=idum
ran1=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

The routine ran1 passes those statistical tests that ran0 is known to fail. In
fact, we do not know of any statistical test that ran1 fails to pass, except when the
number of calls starts to become on the order of the period m, say > 10 8 ≈ m/20.

For situations when even longer random sequences are needed, L’Ecuyer [6] has
given a good way of combining two different sequences with different periods so
as to obtain a new sequence whose period is the least common multiple of the two
periods. The basic idea is simply to add the two sequences, modulo the modulus of
either of them (call it m). A trick to avoid an intermediate value that overflows the
integer wordsize is to subtract rather than add, and then add back the constant m− 1
if the result is ≤ 0, so as to wrap around into the desired interval 0, . . . , m − 1.

Notice that it is not necessary that this wrapped subtraction be able to reach
all values 0, . . . , m − 1 from every value of the first sequence. Consider the absurd
extreme case where the value subtracted was only between 1 and 10: The resulting
sequence would still be no less random than the first sequence by itself. As a
practical matter it is only necessary that the second sequence have a range covering
substantially all of the range of the first. L’Ecuyer recommends the use of the two
generators m1 = 2147483563 (with a1 = 40014, q1 = 53668, r1 = 12211) and
m2 = 2147483399 (with a2 = 40692, q2 = 52774, r2 = 3791). Both moduli
are slightly less than 231. The periods m1 − 1 = 2 × 3 × 7 × 631 × 81031 and
m2 − 1 = 2 × 19 × 31 × 1019 × 1789 share only the factor 2, so the period of
the combined generator is ≈ 2.3 × 1018. For present computers, period exhaustion
is a practical impossibility.
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OUTPUT

RAN

1

3 2

iy

iv1

iv32

Figure 7.1.1. Shuffling procedure used in ran1 to break up sequential correlations in the Minimal
Standard generator. Circled numbers indicate the sequence of events: On each call, the random number
in iy is used to choose a random element in the array iv. That element becomes the output random
number, and also is the next iy. Its spot in iv is refilled from the Minimal Standard routine.

Combining the two generators breaks up serial correlations to a considerable
extent. We nevertheless recommend the additional shuffle that is implemented in
the following routine, ran2. We think that, within the limits of its floating-point
precision, ran2 provides perfect random numbers; a practical definition of “perfect”
is that we will pay $1000 to the first reader who convinces us otherwise (by finding a
statistical test that ran2 fails in a nontrivial way, excluding the ordinary limitations
of a machine’s floating-point representation).

FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

* IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,
* IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

Long period (> 2× 1018) random number generator of L’Ecuyer with Bays-Durham shuffle
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
idum2=idum
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ1



7.1 Uniform Deviates 273

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

idum=IA1*(idum-k*IQ1)-k*IR1
if (idum.lt.0) idum=idum+IM1
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ1 Start here when not initializing.
idum=IA1*(idum-k*IQ1)-k*IR1 Compute idum=mod(IA1*idum,IM1) without over-

flows by Schrage’s method.if (idum.lt.0) idum=idum+IM1
k=idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2 Compute idum2=mod(IA2*idum2,IM2) likewise.
if (idum2.lt.0) idum2=idum2+IM2
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j)-idum2 Here idum is shuffled, idum and idum2 are com-

bined to generate output.iv(j)=idum
if(iy.lt.1)iy=iy+IMM1
ran2=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

L’Ecuyer [6] lists additional short generators that can be combined into longer
ones, including generators that can be implemented in 16-bit integer arithmetic.

Finally, we give you Knuth’s suggestion [4] for a portable routine, which we
have translated to the present conventions as ran3. This is not based on the linear
congruential method at all, but rather on a subtractive method (see also [5]). One
might hope that its weaknesses, if any, are therefore of a highly different character
from the weaknesses, if any, of ran1 above. If you ever suspect trouble with one
routine, it is a good idea to try the other in the same application. ran3 has one
nice feature: if your machine is poor on integer arithmetic (i.e., is limited to 16-bit
integers), substitution of the three “commented” lines for the ones directly preceding
them will render the routine entirely floating-point.

FUNCTION ran3(idum)
Returns a uniform random deviate between 0.0 and 1.0. Set idum to any negative value
to initialize or reinitialize the sequence.

INTEGER idum
INTEGER MBIG,MSEED,MZ

C REAL MBIG,MSEED,MZ
REAL ran3,FAC
PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)

C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=1./MBIG)
According to Knuth, any large mbig, and any smaller (but still large) mseed can be sub-
stituted for the above values.

INTEGER i,iff,ii,inext,inextp,k
INTEGER mj,mk,ma(55) The value 55 is special and should not be modified; see

Knuth.C REAL mj,mk,ma(55)
SAVE iff,inext,inextp,ma
DATA iff /0/
if(idum.lt.0.or.iff.eq.0)then Initialization.

iff=1
mj=abs(MSEED-abs(idum)) Initialize ma(55) using the seed idum and the large num-

ber mseed.mj=mod(mj,MBIG)
ma(55)=mj
mk=1
do 11 i=1,54 Now initialize the rest of the table,

ii=mod(21*i,55) in a slightly random order,
ma(ii)=mk with numbers that are not especially random.
mk=mj-mk
if(mk.lt.MZ)mk=mk+MBIG
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mj=ma(ii)
enddo 11

do 13 k=1,4 We randomize them by “warming up the generator.”
do 12 i=1,55

ma(i)=ma(i)-ma(1+mod(i+30,55))
if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG

enddo 12

enddo 13

inext=0 Prepare indices for our first generated number.
inextp=31 The constant 31 is special; see Knuth.
idum=1

endif
inext=inext+1 Here is where we start, except on initialization. Increment

inext, wrapping around 56 to 1.if(inext.eq.56)inext=1
inextp=inextp+1 Ditto for inextp.
if(inextp.eq.56)inextp=1
mj=ma(inext)-ma(inextp) Now generate a new random number subtractively.
if(mj.lt.MZ)mj=mj+MBIG Be sure that it is in range.
ma(inext)=mj Store it,
ran3=mj*FAC and output the derived uniform deviate.
return
END

Quick and Dirty Generators

One sometimes would like a “quick and dirty” generator to embed in a program, perhaps
taking only one or two lines of code, just to somewhat randomize things. One might wish to
process data from an experiment not always in exactly the same order, for example, so that
the first output is more “typical” than might otherwise be the case.

For this kind of application, all we really need is a list of “good” choices for m, a, and
c in equation (7.1.1). If we don’t need a period longer than 104 to 106, say, we can keep the
value of (m − 1)a + c small enough to avoid overflows that would otherwise mandate the
extra complexity of Schrage’s method (above). We can thus easily embed in our programs

jran=mod(jran*ia+ic,im)
ran=float(jran)/float(im)

whenever we want a quick and dirty uniform deviate, or

jran=mod(jran*ia+ic,im)
j=jlo+((jhi-jlo+1)*jran)/im

whenever we want an integer between jlo and jhi, inclusive. (In both cases jran was once
initialized to any seed value between 0 and im-1.)

Be sure to remember, however, that when im is small, the kth root of it, which is the
number of planes in k-space, is even smaller! So a quick and dirty generator should never
be used to select points in k-space with k > 1.

With these caveats, some “good” choices for the constants are given in the accompanying
table. These constants (i) give a period of maximal length im, and, more important, (ii) pass
Knuth’s “spectral test” for dimensions 2, 3, 4, 5, and 6. The increment ic is a prime, close to
the value (1

2
− 1

6

√
3)im; actually almost any value of ic that is relatively prime to im will do

just as well, but there is some “lore” favoring this choice (see [4], p. 84).
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Constants for Quick and Dirty Random Number Generators

overflow at im ia ic

6075 106 1283
220

7875 211 1663
221

7875 421 1663
222

6075 1366 1283
6655 936 1399

11979 430 2531
223

14406 967 3041
29282 419 6173
53125 171 11213

224

12960 1741 2731
14000 1541 2957
21870 1291 4621
31104 625 6571

139968 205 29573
225

29282 1255 6173
81000 421 17117

134456 281 28411
226

overflow at im ia ic

86436 1093 18257
121500 1021 25673
259200 421 54773

227

117128 1277 24749
121500 2041 25673
312500 741 66037

228

145800 3661 30809
175000 2661 36979
233280 1861 49297
244944 1597 51749

229

139968 3877 29573
214326 3613 45289
714025 1366 150889

230

134456 8121 28411
259200 7141 54773

231

233280 9301 49297
714025 4096 150889

232

An Even Quicker and Dirtier Generator

Many FORTRAN compilers can be abused in such a way that they will multiply two 32-bit
integers ignoring any resulting overflow. In such cases, on many machines, the value returned
is predictably the low-order 32 bits of the true 64-bit product. (C compilers, incidentally,
can do this without the requirement of abuse — it is guaranteed behavior for so-called
unsigned long int integers. On VMS VAXes, the necessary FORTRAN command is
FORTRAN/CHECK=NOOVERFLOW.) If we now choose m = 232, the “mod” in equation (7.1.1)
is free, and we have simply

Ij+1 = aIj + c (7.1.6)

Knuth suggests a = 1664525 as a suitable multiplier for this value of m. H.W. Lewis
has conducted extensive tests of this value of a with c = 1013904223, which is a prime close
to (

√
5 − 2)m. The resulting in-line generator (we will call it ranqd1) is simply

idum=1664525*idum+1013904223

This is about as good as any 32-bit linear congruential generator, entirely adequate for many
uses. And, with only a single multiply and add, it is very fast.

To check whether your compiler and machine have the desired overflow proper-
ties, see if you can generate the following sequence of 32-bit values (given here in
hex): 00000000, 3C6EF35F, 47502932, D1CCF6E9, AAF95334, 6252E503, 9F2EC686,
57FE6C2D, A3D95FA8, 81FDBEE7, 94F0AF1A, CBF633B1.

If you need floating-point values instead of 32-bit integers, and want to avoid a divide by
floating-point 232, a dirty trick is to mask in an exponent that makes the value lie between 1 and
2, then subtract 1.0. The resulting in-line generator (call it ranqd2) will look something like
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INTEGER idum,itemp,jflone,jflmsk
REAL ftemp
EQUIVALENCE (itemp,ftemp)
DATA jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/
...
idum=1664525*idum+1013904223
itemp=ior(jflone,iand(jflmsk,idum))
ran=ftemp-1.0

The hex constants 3F800000 and 007FFFFF are the appropriate ones for computers using
the IEEE representation for 32-bit floating-point numbers (e.g., IBM PCs and most UNIX
workstations). For DEC VAXes, the correct hex constants are, respectively, 00004080 and
FFFF007F. Notice that the IEEE mask results in the floating-point number being constructed
out of the 23 low-order bits of the integer, which is not ideal. Also notice that your compiler
may require a different notation for hex constants, e.g., x’3f800000’, ’3F800000’X, or even
16#3F800000. (Your authors have tried very hard to make almost all of the material in this
book machine and compiler independent — indeed, even programming language independent.
This subsection is a rare aberration. Forgive us. Once in a great while the temptation to
be really dirty is just irresistible.)

Relative Timings and Recommendations

Timings are inevitably machine dependent. Nevertheless the following table
is indicative of the relative timings, for typical machines, of the various uniform
generators discussed in this section, plus ran4 from §7.5. Smaller values in the table
indicate faster generators. The generators ranqd1 and ranqd2 refer to the “quick
and dirty” generators immediately above.

Generator Relative Execution Time

ran0 ≡ 1.0
ran1 ≈ 1.3
ran2 ≈ 2.0
ran3 ≈ 0.6

ranqd1 ≈ 0.10
ranqd2 ≈ 0.25
ran4 ≈ 4.0

On balance, we recommend ran1 for general use. It is portable, based on
Park and Miller’s Minimal Standard generator with an additional shuffle, and has no
known (to us) flaws other than period exhaustion.

If you are generating more than 100,000,000 random numbers in a single
calculation (that is, more than about 5% of ran1’s period), we recommend the use
of ran2, with its much longer period.

Knuth’s subtractive routine ran3 seems to be the timing winner among portable
routines. Unfortunately the subtractive method is not so well studied, and not a
standard. We like to keep ran3 in reserve for a “second opinion,” substituting it when
we suspect another generator of introducing unwanted correlations into a calculation.

The routine ran4 generates extremely good random deviates, and has some
other nice properties, but it is slow. See §7.5 for discussion.
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Finally, the quick and dirty in-line generators ranqd1 and ranqd2 are very
fast, but they are machine dependent, nonportable, and at best only as good as a
32-bit linear congruential generator ever is — in our view not good enough in many
situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:

Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. [1]

Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138. [2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §§3.2–3.3. [4]

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]

L’Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742–774. [6]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
between x and x + dx, denoted p(x)dx, is given by

p(x)dx =
{

dx 0 < x < 1
0 otherwise

(7.2.1)

The probability distribution p(x) is of course normalized, so that

∫ ∞

−∞
p(x)dx = 1 (7.2.2)

Now suppose that we generate a uniform deviate x and then take some prescribed
function of it, y(x). The probability distribution of y, denoted p(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

|p(y)dy| = |p(x)dx| (7.2.3)
or

p(y) = p(x)
∣∣∣∣
dx

dy

∣∣∣∣ (7.2.4)
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Finally, the quick and dirty in-line generatorsranqd1 andranqd2 are very
fast, but they are machine dependent, nonportable, and at best only as good as a
32-bit linear congruential generator ever is — in our view not good enough in many
situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:

Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. [1]

Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138. [2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §§3.2–3.3. [4]

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]

L’Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742–774. [6]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
betweenx andx + dx, denotedp(x)dx, is given by

p(x)dx =
{

dx 0 < x < 1
0 otherwise

(7.2.1)

The probability distributionp(x) is of course normalized, so that

∫ ∞

−∞
p(x)dx = 1 (7.2.2)

Now suppose that we generate a uniformdeviatex and then take some prescribed
function of it,y(x). The probability distribution ofy, denotedp(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

|p(y)dy| = |p(x)dx| (7.2.3)
or

p(y) = p(x)
∣∣∣∣
dx

dy

∣∣∣∣ (7.2.4)
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uniform
deviate in

0

1

y

x

F(y) =  0 p(y)dy
y

p(y)

⌠
⌡

transformed
deviate out

Figure 7.2.1. Transformation method for generating a random deviate y from a known probability
distribution p(y). The indefinite integral of p(y) must be known and invertible. A uniform deviate x is
chosen between 0 and 1. Its corresponding y on the definite-integral curve is the desired deviate.

Exponential Deviates

As an example, suppose that y(x) ≡ − ln(x), and that p(x) is as given by
equation (7.2.1) for a uniform deviate. Then

p(y)dy =
∣∣∣∣
dx

dy

∣∣∣∣ dy = e−ydy (7.2.5)

which is distributed exponentially. This exponential distribution occurs frequently
in real problems, usually as the distribution of waiting times between independent
Poisson-random events, for example the radioactive decay of nuclei. You can also
easily see (from 7.2.4) that the quantity y/λ has the probability distribution λe−λy .

So we have

FUNCTION expdev(idum)
INTEGER idum
REAL expdev

C USES ran1
Returns an exponentially distributed, positive, random deviate of unit mean, using
ran1(idum) as the source of uniform deviates.

REAL dum,ran1
1 dum=ran1(idum)

if(dum.eq.0.)goto 1
expdev=-log(dum)
return
END

Let’s see what is involved in using the above transformation method to generate
some arbitrary desired distribution of y’s, say one with p(y) = f(y) for some positive
function f whose integral is 1. (See Figure 7.2.1.) According to (7.2.4), we need
to solve the differential equation

dx

dy
= f(y) (7.2.6)
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But the solution of this is just x = F (y), where F (y) is the indefinite integral of
f(y). The desired transformation which takes a uniform deviate into one distributed
as f(y) is therefore

y(x) = F−1(x) (7.2.7)

where F−1 is the inverse function to F . Whether (7.2.7) is feasible to implement
depends on whether the inverse function of the integral of f(y) is itself feasible to
compute, either analytically or numerically. Sometimes it is, and sometimes it isn’ t.

Incidentally, (7.2.7) has an immediate geometric interpretation: Since F (y) is
the area under the probability curve to the left of y, (7.2.7) is just the prescription:
choose a uniform random x, then find the value y that has that fraction x of
probability area to its left, and return the value y.

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. If x 1, x2,
. . . are random deviates with a joint probability distribution p(x1, x2, . . .)
dx1dx2 . . . , and if y1, y2, . . . are each functions of all the x’s (same number of
y’s as x’s), then the joint probability distribution of the y’s is

p(y1, y2, . . .)dy1dy2 . . . = p(x1, x2, . . .)
∣∣∣∣
∂(x1, x2, . . .)
∂(y1, y2, . . .)

∣∣∣∣ dy1dy2 . . . (7.2.8)

where |∂( )/∂( )| is the Jacobian determinant of the x’s with respect to the y’s
(or reciprocal of the Jacobian determinant of the y’s with respect to the x’s).

An important example of the use of (7.2.8) is the Box-Muller method for
generating random deviates with a normal (Gaussian) distribution,

p(y)dy =
1√
2π

e−y2/2dy (7.2.9)

Consider the transformation between two uniform deviates on (0,1), x 1, x2, and
two quantities y1, y2,

y1 =
√
−2 lnx1 cos 2πx2

y2 =
√
−2 lnx1 sin 2πx2

(7.2.10)

Equivalently we can write

x1 = exp
[
−1

2
(y2

1 + y2
2)
]

x2 =
1
2π

arctan
y2

y1

(7.2.11)

Now the Jacobian determinant can readily be calculated (try it!):

∂(x1, x2)
∂(y1, y2)

=

∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣ = −
[

1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]
(7.2.12)
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Since this is the product of a function of y2 alone and a function of y1 alone, we see
that each y is independently distributed according to the normal distribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of picking
uniform deviates x1 and x2 in the unit square, we instead pick v1 and v2 as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R2 ≡ v2

1 +v2
2 is a uniform deviate, which can be used for x1,

while the angle that (v1, v2) defines with respect to the v1 axis can serve as the random
angle 2πx2. What’s the advantage? It’s that the cosine and sine in (7.2.10) can now
be written as v1/

√
R2 and v2/

√
R2, obviating the trigonometric function calls!

We thus have

FUNCTION gasdev(idum)
INTEGER idum
REAL gasdev

C USES ran1
Returns a normally distributed deviate with zero mean and unit variance, using ran1(idum)
as the source of uniform deviates.

INTEGER iset
REAL fac,gset,rsq,v1,v2,ran1
SAVE iset,gset
DATA iset/0/
if (idum.lt.0) iset=0 Reinitialize.
if (iset.eq.0) then We don’t have an extra deviate handy, so

1 v1=2.*ran1(idum)-1. pick two uniform numbers in the square extend-
ing from -1 to +1 in each direction,v2=2.*ran1(idum)-1.

rsq=v1**2+v2**2 see if they are in the unit circle,
if(rsq.ge.1..or.rsq.eq.0.)goto 1 and if they are not, try again.
fac=sqrt(-2.*log(rsq)/rsq) Now make the Box-Muller transformation to get

two normal deviates. Return one and save
the other for next time.

gset=v1*fac
gasdev=v2*fac
iset=1 Set flag.

else We have an extra deviate handy,
gasdev=gset so return it,
iset=0 and unset the flag.

endif
return
END

See Devroye [1] and Bratley [2] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §9.1.
[1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 116ff.
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7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection method is a powerful, general technique for generating random
deviates whose distribution function p(x)dx (probability of a value occurring between
x and x + dx) is known and computable. The rejection method does not require
that the cumulative distribution function [indefinite integral of p(x)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument:
Draw a graph of the probability distribution p(x) that you wish to generate, so

that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) which has finite (not
infinite) area and lies everywhere above your original probability distribution. (This
is always possible, because your original curve encloses only unit area, by definition
of probability.) We will call this f(x) the comparison function. Imagine now that you
have some way of choosing a random point in two dimensions that is uniform in the
area under the comparison function. Whenever that point lies outside the area under
the original probability distribution, we will reject it and choose another random
point. Whenever it lies inside the area under the original probability distribution,
we will accept it. It should be obvious that the accepted points are uniform in the
accepted area, so that their x values have the desired distribution. It should also be
obvious that the fraction of points rejected just depends on the ratio of the area of
the comparison function to the area of the probability distribution function, not on
the details of shape of either function. For example, a comparison function whose
area is less than 2 will reject fewer than half the points, even if it approximates the
probability function very badly at some values of x, e.g., remains finite in some
region where p(x) is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison function f(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also analytically invertible to give x
as a function of “area under the comparison function to the left of x.” Now pick a
uniform deviate between 0 and A, where A is the total area under f(x), and use it
to get a corresponding x. Then pick a uniform deviate between 0 and f(x) as the y
value for the two-dimensional point. You should be able to convince yourself that the
point (x, y) is uniformly distributed in the area under the comparison function f(x).

An equivalent procedure is to pick the second uniform deviate between zero
and one, and accept or reject according to whether it is respectively less than or
greater than the ratio p(x)/f(x).

So, to summarize, the rejection method for some given p(x) requires that one
find, once and for all, some reasonably good comparison function f(x). Thereafter,
each deviate generated requires two uniform random deviates, one evaluation of f (to
get the coordinate y), and one evaluation of p (to decide whether to accept or reject
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7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection method is a powerful, general technique for generating random
deviates whose distribution function p(x)dx (probability of a value occurring between
x and x + dx) is known and computable. The rejection method does not require
that the cumulative distribution function [indefinite integral of p(x)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument:
Draw a graph of the probability distribution p(x) that you wish to generate, so

that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) which has finite (not
infinite) area and lies everywhere above your original probability distribution. (This
is always possible, because your original curve encloses only unit area, by definition
of probability.) We will call this f(x) the comparison function. Imagine now that you
have some way of choosing a random point in two dimensions that is uniform in the
area under the comparison function. Whenever that point lies outside the area under
the original probability distribution, we will reject it and choose another random
point. Whenever it lies inside the area under the original probability distribution,
we will accept it. It should be obvious that the accepted points are uniform in the
accepted area, so that their x values have the desired distribution. It should also be
obvious that the fraction of points rejected just depends on the ratio of the area of
the comparison function to the area of the probability distribution function, not on
the details of shape of either function. For example, a comparison function whose
area is less than 2 will reject fewer than half the points, even if it approximates the
probability function very badly at some values of x, e.g., remains finite in some
region where p(x) is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison function f(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also analytically invertible to give x
as a function of “area under the comparison function to the left of x.” Now pick a
uniform deviate between 0 and A, where A is the total area under f(x), and use it
to get a corresponding x. Then pick a uniform deviate between 0 and f(x) as the y
value for the two-dimensional point. You should be able to convince yourself that the
point (x, y) is uniformly distributed in the area under the comparison function f(x).

An equivalent procedure is to pick the second uniform deviate between zero
and one, and accept or reject according to whether it is respectively less than or
greater than the ratio p(x)/f(x).

So, to summarize, the rejection method for some given p(x) requires that one
find, once and for all, some reasonably good comparison function f(x). Thereafter,
each deviate generated requires two uniform random deviates, one evaluation of f (to
get the coordinate y), and one evaluation of p (to decide whether to accept or reject
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⌠
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Figure 7.3.1. Rejection method for generating a random deviate x from a known probability distribution
p(x) that is everywhere less than some other function f(x). The transformation method is first used to
generate a random deviate x of the distribution f (compare Figure 7.2.1). A second uniform deviate is
used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found; and so on.
The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f .

the point x, y). Figure 7.3.1 illustrates the procedure. Then, of course, this procedure
must be repeated, on the average, A times before the final deviate is obtained.

Gamma Distribution

The gamma distribution of integer order a > 0 is the waiting time to the ath
event in a Poisson random process of unit mean. For example, when a = 1, it is just
the exponential distribution of §7.2, the waiting time to the first event.

A gamma deviate has probability pa(x)dx of occurring with a value between
x and x + dx, where

pa(x)dx =
xa−1e−x

Γ(a)
dx x > 0 (7.3.1)

To generate deviates of (7.3.1) for small values of a, it is best to add up a
exponentially distributed waiting times, i.e., logarithms of uniform deviates. Since
the sum of logarithms is the logarithm of the product, one really has only to generate
the product of a uniform deviates, then take the log.

For larger values of a, the distribution (7.3.1) has a typically “bell-shaped”
form, with a peak at x = a and a half-width of about

√
a.

We will be interested in several probability distributions with this same qual-
itative form. A useful comparison function in such cases is derived from the
Lorentzian distribution

p(y)dy =
1
π

(
1

1 + y2

)
dy (7.3.2)

whose inverse indefinite integral is just the tangent function. It follows that the
x-coordinate of an area-uniform random point under the comparison function

f(x) =
c0

1 + (x − x0)2/a2
0

(7.3.3)



7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 283

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

for any constants a0, c0, and x0, can be generated by the prescription

x = a0 tan(πU) + x0 (7.3.4)

where U is a uniform deviate between 0 and 1. Thus, for some specific “bell-shaped”
p(x) probability distribution, we need only find constants a0, c0, x0, with the product
a0c0 (which determines the area) as small as possible, such that (7.3.3) is everywhere
greater than p(x).

Ahrens has done this for the gamma distribution, yielding the following
algorithm (as described in Knuth [1]):

FUNCTION gamdev(ia,idum)
INTEGER ia,idum
REAL gamdev

C USES ran1
Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1(idum) as the source
of uniform deviates.

INTEGER j
REAL am,e,s,v1,v2,x,y,ran1
if(ia.lt.1)pause ’bad argument in gamdev’
if(ia.lt.6)then Use direct method, adding waiting times.

x=1.
do 11 j=1,ia

x=x*ran1(idum)
enddo 11

x=-log(x)
else Use rejection method.

1 v1=ran1(idum) These four lines generate the tangent of a random angle, i.e.,
are equivalent to y = tan(3.14159265 * ran1(idum)).v2=2.*ran1(idum)-1.

if(v1**2+v2**2.gt.1.)goto 1
y=v2/v1
am=ia-1
s=sqrt(2.*am+1.)
x=s*y+am We decide whether to reject x:

if(x.le.0.)goto 1 Reject in region of zero probability.
e=(1.+y**2)*exp(am*log(x/am)-s*y) Ratio of prob. fn. to comparison fn.

if(ran1(idum).gt.e)goto 1 Reject on basis of a second uniform de-
viate.endif

gamdev=x
return
END

Poisson Deviates

The Poisson distribution is conceptually related to the gamma distribution. It
gives the probability of a certain integer number m of unit rate Poisson random
events occurring in a given interval of time x, while the gamma distribution was the
probability of waiting time between x and x+dx to the mth event. Note that m takes
on only integer values ≥ 0, so that the Poisson distribution, viewed as a continuous
distribution function px(m)dm, is zero everywhere except where m is an integer
≥ 0. At such places, it is infinite, such that the integrated probability over a region
containing the integer is some finite number. The total probability at an integer j is

Prob(j) =
∫ j+ε

j−ε

px(m)dm =
xje−x

j!
(7.3.5)
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0
1 2 3 4 5

accept

reject

in

1

Figure 7.3.2. Rejection method as applied to an integer-valued distribution. The method is performed
on the step function shown as a dashed line, yielding a real-valued deviate. This deviate is rounded down
to the next lower integer, which is output.

At first sight this might seem an unlikely candidate distribution for the rejection
method, since no continuous comparison function can be larger than the infinitely
tall, but infinitely narrow, Dirac delta functions in px(m). However, there is a trick
that we can do: Spread the finite area in the spike at j uniformly into the interval
between j and j + 1. This defines a continuous distribution qx(m)dm given by

qx(m)dm =
x[m]e−x

[m]!
dm (7.3.6)

where [m] represents the largest integer less than m. If we now use the rejection
method to generate a (noninteger) deviate from (7.3.6), and then take the integer
part of that deviate, it will be as if drawn from the desired distribution (7.3.5). (See
Figure 7.3.2.) This trick is general for any integer-valued probability distribution.

For x large enough, the distribution (7.3.6) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps), and we can use the same kind of
Lorentzian comparison function as was already used above. For small x, we can
generate independent exponential deviates (waiting times between events); when the
sum of these first exceeds x, then the number of events that would have occurred in
waiting time x becomes known and is one less than the number of terms in the sum.

These ideas produce the following routine:

FUNCTION poidev(xm,idum)
INTEGER idum
REAL poidev,xm,PI
PARAMETER (PI=3.141592654)

C USES gammln,ran1
Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1(idum) as a source of uniform random deviates.
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REAL alxm,em,g,oldm,sq,t,y,gammln,ran1
SAVE alxm,g,oldm,sq
DATA oldm /-1./ Flag for whether xm has changed since last call.
if (xm.lt.12.)then Use direct method.

if (xm.ne.oldm) then
oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

endif
em=-1
t=1.

2 em=em+1. Instead of adding exponential deviates it is equivalent to mul-
tiply uniform deviates. We never actually have to take the
log, merely compare to the pre-computed exponential.

t=t*ran1(idum)
if (t.gt.g) goto 2

else Use rejection method.
if (xm.ne.oldm) then If xm has changed since the last call, then precompute some

functions that occur below.oldm=xm
sq=sqrt(2.*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.) The function gammln is the natural log of the gamma

function, as given in §6.1.endif
1 y=tan(PI*ran1(idum)) y is a deviate from a Lorentzian comparison function.

em=sq*y+xm em is y, shifted and scaled.
if (em.lt.0.) goto 1 Reject if in regime of zero probability.
em=int(em) The trick for integer-valued distributions.
t=0.9*(1.+y**2)*exp(em*alxm-gammln(em+1.)-g) The ratio of the desired distribu-

tion to the comparison function; we accept or re-
ject by comparing it to another uniform deviate.
The factor 0.9 is chosen so that t never exceeds
1.

if (ran1(idum).gt.t) goto 1
endif
poidev=em
return
END

Binomial Deviates

If an event occurs with probability q, and we make n trials, then the number
of times m that it occurs has the binomial distribution,

∫ j+ε

j−ε

pn,q(m)dm =
(

n

j

)
qj(1 − q)n−j (7.3.7)

The binomial distribution is integer valued, with m taking on possible values
from 0 to n. It depends on two parameters, n and q, so is correspondingly a
bit harder to implement than our previous examples. Nevertheless, the techniques
already illustrated are sufficiently powerful to do the job:

FUNCTION bnldev(pp,n,idum)
INTEGER idum,n
REAL bnldev,pp,PI

C USES gammln,ran1
PARAMETER (PI=3.141592654)

Returns as a floating-point number an integer value that is a random deviate drawn from
a binomial distribution of n trials each of probability pp, using ran1(idum) as a source
of uniform random deviates.

INTEGER j,nold
REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1
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SAVE nold,pold,pc,plog,pclog,en,oldg
DATA nold /-1/, pold /-1./ Arguments from previous calls.
if(pp.le.0.5)then The binomial distribution is invariant under changing pp to

1.-pp, if we also change the answer to n minus itself;
we’ll remember to do this below.

p=pp
else

p=1.-pp
endif
am=n*p This is the mean of the deviate to be produced.
if (n.lt.25)then Use the direct method while n is not too large. This can

require up to 25 calls to ran1.bnldev=0.
do 11 j=1,n

if(ran1(idum).lt.p)bnldev=bnldev+1.
enddo 11

else if (am.lt.1.) then If fewer than one event is expected out of 25 or more tri-
als, then the distribution is quite accurately Poisson. Use
direct Poisson method.

g=exp(-am)
t=1.
do 12 j=0,n

t=t*ran1(idum)
if (t.lt.g) goto 1

enddo 12

j=n
1 bnldev=j

else Use the rejection method.
if (n.ne.nold) then If n has changed, then compute useful quantities.

en=n
oldg=gammln(en+1.)
nold=n

endif
if (p.ne.pold) then If p has changed, then compute useful quantities.

pc=1.-p
plog=log(p)
pclog=log(pc)
pold=p

endif
sq=sqrt(2.*am*pc) The following code should by now seem familiar: rejection

method with a Lorentzian comparison function.2 y=tan(PI*ran1(idum))
em=sq*y+am
if (em.lt.0..or.em.ge.en+1.) goto 2 Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)

* -gammln(en-em+1.)+em*plog+(en-em)*pclog)
if (ran1(idum).gt.t) goto 2 Reject. This happens about 1.5 times per deviate, on

average.bnldev=em
endif
if (p.ne.pp) bnldev=n-bnldev Remember to undo the symmetry transformation.
return
END

See Devroye [2] and Bratley [3] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 120ff. [1]

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §X.4.
[2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3].
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7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x18 + x5 + x2 + x1 + x0 (7.4.1)

which we can abbreviate by just writing the nonzero powers of x, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of ordern (=18 above) defines a recurrence
relation for obtaining a new random bit from the n preceding ones. The recurrence
relation is guaranteed to produce a sequence of maximal length, i.e., cycle through
all possible sequences of n bits (except all zeros) before it repeats. Therefore one
can seed the sequence with any initial bit pattern (except all zeros), and get 2 n − 1
random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) through n (generated
n steps ago), and denoted a1, a2, . . . , an. We want to give a formula for a new bit
a0. After generating a0 we will shift all the bits by one, so that the old an is finally
lost, and the new a0 becomes a1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
register n bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always be an for a primitive polynomial of degree n,
while the last term might or might not be a1, depending on whether the primitive
polynomial has a term in x1.

It is rather cumbersome to illustrate the method in FORTRAN. Assume that iand
is a bitwise AND function, not is bitwise complement, ishft( ,1) is leftshift by
one bit, ior is bitwise OR. (These are available in many FORTRAN implementations.)
Then we have the following routine.
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7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although§7.7 and§20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x18 + x5 + x2 + x1 + x0 (7.4.1)

which we can abbreviate by just writing the nonzero powers ofx, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of ordern (=18 above) defines a recurrence
relation for obtaining a new random bit from then preceding ones. The recurrence
relation is guaranteed to produce a sequence of maximal length, i.e., cycle through
all possible sequences ofn bits (except all zeros) before it repeats. Therefore one
can seed the sequence with any initial bit pattern (except all zeros), and get2 n − 1
random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throughn (generated
n steps ago), and denoteda1, a2, . . . , an. We want to give a formula for a new bit
a0. After generatinga0 we will shift all the bits by one, so that the oldan is finally
lost, and the newa0 becomesa1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
registern bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always bean for a primitive polynomial of degreen,
while the last term might or might not bea1, depending on whether the primitive
polynomial has a term inx1.

It is rather cumbersome to illustrate the method inFORTRAN. Assume thatiand
is a bitwise AND function,not is bitwise complement,ishft( ,1) is leftshift by
one bit,ior is bitwise OR. (These are available in manyFORTRAN implementations.)
Then we have the following routine.
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18 17 5 4 3 2 1 0
shift left

(a)

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive
polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo
2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b)
Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right.
This method is easiest to implement in software.

FUNCTION irbit1(iseed)
INTEGER irbit1,iseed,IB1,IB2,IB5,IB18
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072) Powers of 2.

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

LOGICAL newbit The accumulated XOR’s.
newbit=iand(iseed,IB18).ne.0 Get bit 18.
if(iand(iseed,IB5).ne.0)newbit=.not.newbit XOR with bit 5.
if(iand(iseed,IB2).ne.0)newbit=.not.newbit XOR with bit 2.
if(iand(iseed,IB1).ne.0)newbit=.not.newbit XOR with bit 1.
irbit1=0
iseed=iand(ishft(iseed,1),not(IB1)) Leftshift the seed and put a zero in its bit 1.
if(newbit)then But if the XOR calculation gave a 1,

irbit1=1
iseed=ior(iseed,IB1) then put that in bit 1 instead.

endif
return
END

“Method II” is less suited to direct hardware implementation (though still
possible), but is more suited to machine-language implementation. It modifies more
than one bit among the saved n bits as each new bit is generated (Figure 7.4.1). It
generates the maximal length sequence, but not in the same order as Method I. The
prescription for the primitive polynomial (7.4.1) is:

a0 = a18

a5 = a5 XOR a0

a2 = a2 XOR a0

a1 = a1 XOR a0

(7.4.3)
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Some Primitive Polynomials Modulo 2 (after Watson)

(1, 0) (51, 6, 3, 1, 0)
(2, 1, 0) (52, 3, 0)
(3, 1, 0) (53, 6, 2, 1, 0)
(4, 1, 0) (54, 6, 5, 4, 3, 2, 0)
(5, 2, 0) (55, 6, 2, 1, 0)
(6, 1, 0) (56, 7, 4, 2, 0)
(7, 1, 0) (57, 5, 3, 2, 0)
(8, 4, 3, 2, 0) (58, 6, 5, 1, 0)
(9, 4, 0) (59, 6, 5, 4, 3, 1, 0)
(10, 3, 0) (60, 1, 0)
(11, 2, 0) (61, 5, 2, 1, 0)
(12, 6, 4, 1, 0) (62, 6, 5, 3, 0)
(13, 4, 3, 1, 0) (63, 1, 0)
(14, 5, 3, 1, 0) (64, 4, 3, 1, 0)
(15, 1, 0) (65, 4, 3, 1, 0)
(16, 5, 3, 2, 0) (66, 8, 6, 5, 3, 2, 0)
(17, 3, 0) (67, 5, 2, 1, 0)
(18, 5, 2, 1, 0) (68, 7, 5, 1, 0)
(19, 5, 2, 1, 0) (69, 6, 5, 2, 0)
(20, 3, 0) (70, 5, 3, 1, 0)
(21, 2, 0) (71, 5, 3, 1, 0)
(22, 1, 0) (72, 6, 4, 3, 2, 1, 0)
(23, 5, 0) (73, 4, 3, 2, 0)
(24, 4, 3, 1, 0) (74, 7, 4, 3, 0)
(25, 3, 0) (75, 6, 3, 1, 0)
(26, 6, 2, 1, 0) (76, 5, 4, 2, 0)
(27, 5, 2, 1, 0) (77, 6, 5, 2, 0)
(28, 3, 0) (78, 7, 2, 1, 0)
(29, 2, 0) (79, 4, 3, 2, 0)
(30, 6, 4, 1, 0) (80, 7, 5, 3, 2, 1, 0)
(31, 3, 0) (81, 4 0)
(32, 7, 5, 3, 2, 1, 0) (82, 8, 7, 6, 4, 1, 0)
(33, 6, 4, 1, 0) (83, 7, 4, 2, 0)
(34, 7, 6, 5, 2, 1, 0) (84, 8, 7, 5, 3, 1, 0)
(35, 2, 0) (85, 8, 2, 1, 0)
(36, 6, 5, 4, 2, 1, 0) (86, 6, 5, 2, 0)
(37, 5, 4, 3, 2, 1, 0) (87, 7, 5, 1, 0)
(38, 6, 5, 1, 0) (88, 8, 5, 4, 3, 1, 0)
(39, 4, 0) (89, 6, 5, 3, 0)
(40, 5, 4 3, 0) (90, 5, 3, 2, 0)
(41, 3, 0) (91, 7, 6, 5, 3, 2, 0)
(42, 5, 4, 3, 2, 1, 0) (92, 6, 5, 2, 0)
(43, 6, 4, 3, 0) (93, 2, 0)
(44, 6, 5, 2, 0) (94, 6, 5, 1, 0)
(45, 4, 3, 1, 0) (95, 6, 5, 4, 2, 1, 0)
(46, 8, 5, 3, 2, 1, 0) (96, 7, 6, 4, 3, 2, 0)
(47, 5, 0) (97, 6, 0)
(48, 7, 5, 4, 2, 1, 0) (98, 7, 4, 3, 2, 1, 0)
(49, 6, 5, 4, 0) (99, 7, 5, 4, 0)
(50, 4, 3, 2, 0) (100, 8, 7, 2, 0)

In general there will be an exclusive-or for each nonzero term in the primitive
polynomial except 0 and n. The nice feature about Method II is that all the
exclusive-or’s can usually be done as a single masked word XOR (here assumed
to be the FORTRAN function ieor):
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FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))
irbit2=0

endif
return
END

A word of caution is: Don’ t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by ±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because 218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table [2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition, we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
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FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))
irbit2=0

endif
return
END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table[2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see§7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’ first edition, we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language likeFORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
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32-bit XOR

right 32-bit wordleft 32-bit word

right 32-bit wordleft 32-bit word

g

32-bit XOR

right 32-bit wordleft 32-bit word

g

Figure 7.5.1. The Data Encryption Standard (DES) iterates a nonlinear function g on two 32-bit words,
in the manner shown here (after Meyer and Matyas [4]).

nonlinear bit-mixing function. Figure 7.5.1 shows the flow of information in DES during
this mixing. The function g, which takes 32-bits into 32-bits, is called the “cipher function.”
Meyer and Matyas [4] discuss the importance of the cipher function being nonlinear, as well
as other design criteria.

DES constructs its cipher function g from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. Apparently, this function was chosen
to be particularly strong cryptographically (or conceivably as some critics contend, to have
an exquisitely subtle cryptographic flaw!). For our purposes, a different function g that can
be rapidly computed in a high-level computer language is preferable. Such a function may
weaken the algorithm cryptographically. Our purposes are not, however, cryptographic: We
want to find the fastest g, and smallest number of iterations of the mixing procedure in Figure
7.5.1, such that our output random sequence passes the standard tests that are customarily
applied to random number generators. The resulting algorithm will not be DES, but rather a
kind of “pseudo-DES,” better suited to the purpose at hand.

Following the criterion, mentioned above, that g should be nonlinear, we must give the
integer multiply operation a prominent place in g. Because 64-bit registers are not generally
accessible in high-level languages, we must confine ourselves to multiplying 16-bit operands
into a 32-bit result. So, the general idea of g, almost forced, is to calculate the three
distinct 32-bit products of the high and low 16-bit input half-words, and then to combine
these, and perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or)
into a single 32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation, and tests of the randomness of
the output, lead to the sequence of operations shown in Figure 7.5.2. The few new elements
in the figure need explanation: The values C1 and C2 are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants



292 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

lo2hi2

XORC1

XORC2

NOT

+

hi • lo

reverse
half-words

+

Figure 7.5.2. The nonlinear function g used by the routine psdes.

via exclusive-or ensures that the overall g has no bias towards 0 or 1 bits.
The “ reverse half-words” operation in Figure 7.5.2 turns out to be essential; otherwise,

the very lowest and very highest bits are not properly mixed by the three multiplications.
The nonobvious choices in g are therefore: where along the vertical “pipeline” to do the
reverse; in what order to combine the three products and C2; and with which operation (add
or exclusive-or) should each combining be done? We tested these choices exhaustively before
settling on the algorithm shown in the figure.

It remains to determine the smallest number of iterations Nit that we can get away with.
The minimum meaningful Nit is evidently two, since a single iteration simply moves one
32-bit word without altering it. One can use the constants C1 and C2 to help determine an
appropriate Nit: When Nit = 2 and C1 = C2 = 0 (an intentionally very poor choice), the
generator fails several tests of randomness by easily measurable, though not overwhelming,
amounts. When Nit = 4, on the other hand, or with Nit = 2 but with the constants
C1, C2 nonsparse, we have been unable to find any statistical deviation from randomness in
sequences of up to 109 floating numbers ri derived from this scheme. The combined strength
of Nit = 4 and nonsparse C1, C2 should therefore give sequences that are random to tests
even far beyond those that we have actually tried. These are our recommended conservative
parameter values, notwithstanding the fact that Nit = 2 (which is, of course, twice as fast)
has no nonrandomness discernible (by us).

We turn now to implementation. The nonlinear function shown in Figure 7.5.2 is not
implementable in strictly portable FORTRAN, for at least three reasons: (1) The addition of two
32-bit integers may overflow, and the multiplication of two 16-bit integers may not produce
the correct 32-bit product because of sign-bit conventions. We intend that the overflow be
ignored, and that the 16-bit integers be multiplied as if they are positive. It is possible
to force this behavior on most machines. (2) We assume 32-bit integers; however, there
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is no reason to believe that longer integers would be in any way inferior (with suitable
extensions of the constants C1, C2). (3) Your compiler may require a different notation for
hex constants (see below).

We have been able to run the following routine, psdes, successfully on machines ranging
from PCs to VAXes and both “big-endian” and “ little-endian” UNIX workstations. (Big- and
little-endian refer to the order in which the bytes are stored in a word.) A strictly portable
implementation is possible in C. If all else fails, you can make a FORTRAN-callable version
of the C routine, found in Numerical Recipes in C.

SUBROUTINE psdes(lword,irword)
INTEGER irword,lword,NITER
PARAMETER (NITER=4)

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. NOTE: This routine assumes that arbitrary 32-bit integers can
be added without overflow. To accomplish this, you may need to compile with a special
directive (e.g., /check=nooverflow for VMS). In other languages, such as C, one can
instead type the integers as “unsigned.”

INTEGER i,ia,ib,iswap,itmph,itmpl,c1(4),c2(4)
SAVE c1,c2
DATA c1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’, Your compiler may use a differ-

ent notation for hex constants!* Z’0F33D1B2’/, c2 /Z’4B0F3B58’,Z’E874F0C3’,
* Z’6955C5A6’, Z’55A7CA46’/

do 11 i=1,NITER Perform niter iterations of DES logic, using a simpler (non-
cryptographic) nonlinear function instead of DES’s.iswap=irword

ia=ieor(irword,c1(i)) The bit-rich constants c1 and (below) c2 guarantee lots of
nonlinear mixing.itmpl=iand(ia,65535)

itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
irword=ieor(lword,ieor(c2(i),ia)+itmpl*itmph)
lword=iswap

enddo 11

return
END

The routine ran4, listed below, uses psdes to generate uniform random deviates. We
adopt the convention that a negative value of the argument idum sets the left 32-bit word, while
a positive value i sets the right 32-bit word, returns the ith random deviate, and increments
idum to i + 1. This is no more than a convenient way of defining many different sequences
(negative values of idum), but still with random access to each sequence (positive values
of idum). For getting a floating-point number from the 32-bit integer, we like to do it by
the masking trick described at the end of §7.1, above. The hex constants 3F800000 and
007FFFFF are the appropriate ones for computers using the IEEE representation for 32-bit
floating-point numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the
correct hex constants are, respectively, 00004080 and FFFF007F. Note that your compiler
may require a different notation for hex constants, e.g., x’3f800000’, ’3F800000’X, or even
16#3F800000. For greater portability, you can instead construct a floating number by making
the (signed) 32-bit integer nonnegative (typically, you add exactly 231 if it is negative) and
then multiplying it by a floating constant (typically 2.−31).

An interesting, and sometimes useful, feature of the routine ran4, below, is that it allows
random access to the nth random value in a sequence, without the necessity of first generating
values 1 · · ·n− 1. This property is shared by any random number generator based on hashing
(the technique of mapping data keys, which may be highly clustered in value, approximately
uniformly into a storage address space) [5,6]. One might have a simulation problem in which
some certain rare situation becomes recognizable by its consequences only considerably after
it has occurred. One may wish to restart the simulation back at that occurrence, using identical
random values but, say, varying some other control parameters. The relevant question might
then be something like “what random numbers were used in cycle number 337098901?” It
might already be cycle number 395100273 before the question comes up. Random generators
based on recursion, rather than hashing, cannot easily answer such a question.
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Values for Verifying the Implementation of psdes

idum before psdes call after psdes call (hex) ran4(idum)

lword irword lword irword VAX PC

–1 1 1 604D1DCE 509C0C23 0.275898 0.219120

99 1 99 D97F8571 A66CB41A 0.208204 0.849246

–99 99 1 7822309D 64300984 0.034307 0.375290

99 99 99 D7F376F0 59BA89EB 0.838676 0.457334

Successive calls to ran4 with arguments −1, 99, −99, and 99 should produce exactly the
lword and irword values shown. Masking conversion to a returned floating random value
is allowed to be machine dependent; values for VAX and PC are shown.

FUNCTION ran4(idum)
INTEGER idum
REAL ran4

C USES psdes
Returns a uniform random deviate in the range 0.0 to 1.0, generated by pseudo-DES (DES-
like) hashing of the 64-bit word (idums,idum), where idums was set by a previous call with
negative idum. Also increments idum. Routine can be used to generate a random sequence
by successive calls, leaving idum unaltered between calls; or it can randomly access the nth
deviate in a sequence by calling with idum = n. Different sequences are initialized by calls
with differing negative values of idum.

INTEGER idums,irword,itemp,jflmsk,jflone,lword
REAL ftemp
EQUIVALENCE (itemp,ftemp)
SAVE idums,jflone,jflmsk
DATA idums /0/, jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/
The hexadecimal constants jflone and jflmsk are used to produce a floating number between
1. and 2. by bitwise masking. They are machine-dependent. See text.

if(idum.lt.0)then Reset idums and prepare to return the first devi-
ate in its sequence.idums=-idum

idum=1
endif
irword=idum
lword=idums
call psdes(lword,irword) “Pseudo-DES” encode the words.
itemp=ior(jflone,iand(jflmsk,irword)) Mask to a floating number between 1 and 2.
ran4=ftemp-1.0 Subtraction moves range to 0. to 1.
idum=idum+1
return
END

The accompanying table gives data for verifying that ran4 and psdes work correctly
on your machine. We do not advise the use of ran4 unless you are able to reproduce the
hex values shown. Typically, ran4 is about 4 times slower than ran0 (§7.1), or about 3
times slower than ran1.
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7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in §10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pick N random points, uniformly distributed in a multidimen-
sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

∫
f dV ≈ V 〈f〉 ± V

√
〈f2〉 − 〈f〉2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over the N sample points,

〈f〉 ≡ 1
N

N∑
i=1

f(xi)
〈
f2
〉 ≡ 1

N

N∑
i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error is
distributed as a Gaussian, so the error term should be taken only as a rough indication
of probable error.

Suppose that you want to integrate a function g over a region W that is not
easy to sample randomly. For example, W might have a very complicated shape.
No problem. Just find a region V that includes W and that can easily be sampled
(Figure 7.6.1), and then define f to be equal to g for points in W and equal to zero
for points outside of W (but still inside the sampled V ). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an
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7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in§10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pickN random points, uniformly distributed in a multidimen-
sional volumeV . Call themx1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a functionf over the multidimensional volume,

∫
f dV ≈ V 〈f〉 ± V

√
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N
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Here the angle brackets denote taking the arithmetic mean over theN sample points,

〈f〉 ≡ 1
N
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f(xi)
〈
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〉 ≡ 1
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f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error is
distributed as a Gaussian, so the error term should be taken only as a rough indication
of probable error.

Suppose that you want to integrate a functiong over a regionW that is not
easy to sample randomly. For example,W might have a very complicated shape.
No problem. Just find a regionV that includes W and thatcan easily be sampled
(Figure 7.6.1), and then definef to be equal tog for points inW and equal to zero
for points outside ofW (but still inside the sampledV ). You want to try to make
V encloseW as closely as possible, because the zero values off will increase the
error estimate term of (7.6.1). And well they should: points chosen outside ofW
have no information content, so the effective value ofN , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see§7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an
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area A

∫fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the area A. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.

0 2 4

2

4

y

x 
1

Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.
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object of complicated shape, namely the intersection of a torus with the edge of a
large box. In particular let the object be defined by the three simultaneous conditions

z2 +
(√

x2 + y2 − 3
)2

≤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ≥ 1 y ≥ −3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object
has a constant density ρ.

We want to estimate the following integrals over the interior of the complicated
object:

∫
ρ dx dy dz

∫
xρ dx dy dz

∫
yρ dx dy dz

∫
zρ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals
(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torus W , is the
rectangular box extending from 1 to 4 in x, −3 to 4 in y, and −1 to 1 in z.

n= Set to the number of sample points desired.
den= Set to the constant value of the density.
sw=0. Zero the various sums to be accumulated.
swx=0.
swy=0.
swz=0.
varw=0.
varx=0.
vary=0.
varz=0.
vol=3.*7.*2. Volume of the sampled region.
do 11 j=1,n

x=1.+3.*ran2(idum) Pick a point randomly in the sampled region.
y=-3.+7.*ran2(idum)
z=-1.+2.*ran2(idum)
if (z**2+(sqrt(x**2+y**2)-3.)**2.le.1.)then Is it in the torus?

sw=sw+den If so, add to the various cumulants.
swx=swx+x*den
swy=swy+y*den
swz=swz+z*den
varw=varw+den**2
varx=varx+(x*den)**2
vary=vary+(y*den)**2
varz=varz+(z*den)**2

endif
enddo 11

w=vol*sw/n The values of the integrals (7.6.5),
x=vol*swx/n
y=vol*swy/n
z=vol*swz/n
dw=vol*sqrt((varw/n-(sw/n)**2)/n) and their corresponding error estimates.
dx=vol*sqrt((varx/n-(swx/n)**2)/n)
dy=vol*sqrt((vary/n-(swy/n)**2)/n)
dz=vol*sqrt((varz/n-(swz/n)**2)/n)
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A change of variable can often be extremely worthwhile in Monte Carlo
integration. Suppose, for example, that we want to evaluate the same integrals,
but for a piece-of-torus whose density is a strong function of z, in fact varying
according to

ρ(x, y, z) = e5z (7.6.6)

One way to do this is to put the statement

den=exp(5.*z)

inside the if...then block, just before den is first used. This will work, but it is
a poor way to proceed. Since (7.6.6) falls so rapidly to zero as z decreases (down
to its lower limit −1), most sampled points contribute almost nothing to the sum
of the weight or moments. These points are effectively wasted, almost as badly as
those that fall outside of the region W . A change of variable, exactly as in the
transformation methods of §7.2, solves this problem. Let

ds = e5zdz so that s =
1
5
e5z, z =

1
5

ln(5s) (7.6.7)

Then ρdz = ds, and the limits −1 < z < 1 become .00135 < s < 29.682. The
program fragment now looks like this

n= Set to the number of sample points desired.
sw=0.
swx=0.
swy=0.
swz=0.
varw=0.
varx=0.
vary=0.
varz=0.
ss=(0.2*(exp(5.)-exp(-5.))) Interval of s to be random sampled.
vol=3.*7.*ss Volume in x,y,s-space.
do 11 j=1,n

x=1.+3.*ran2(idum)
y=-3.+7.*ran2(idum)
s=.00135+ss*ran2(idum) Pick a point in s.
z=0.2*log(5.*s) Equation (7.6.7).
if (z**2+(sqrt(x**2+y**2)-3.)**2.lt.1.)then

sw=sw+1. Density is 1, since absorbed into definition of s.
swx=swx+x
swy=swy+y
swz=swz+z
varw=varw+1.
varx=varx+x**2
vary=vary+y**2
varz=varz+z**2

endif
enddo 11

w=vol*sw/n The values of the integrals (7.6.5),
x=vol*swx/n
y=vol*swy/n
z=vol*swz/n
dw=vol*sqrt((varw/n-(sw/n)**2)/n) and their corresponding error estimates.
dx=vol*sqrt((varx/n-(swx/n)**2)/n)
dy=vol*sqrt((vary/n-(swy/n)**2)/n)
dz=vol*sqrt((varz/n-(swz/n)**2)/n)
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If you think for a minute, you will realize that equation (7.6.7) was useful only
because the part of the integrand that we wanted to eliminate (e 5z) was both integrable
analytically, and had an integral that could be analytically inverted. (Compare §7.2.)
In general these properties will not hold. Question: What then? Answer: Pull out
of the integrand the “best” factor that can be integrated and inverted. The criterion
for “best” is to try to reduce the remaining integrand to a function that is as close
as possible to constant.

The limiting case is instructive: If you manage to make the integrand f exactly
constant, and if the region V , of known volume, exactly encloses the desired region
W , then the average of f that you compute will be exactly its constant value, and the
error estimate in equation (7.6.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case, to the extent that you are able to make f
approximately constant by change of variable, and to the extent that you can sample a
region only slightly larger than W , you will increase the accuracy of the Monte Carlo
integral. This technique is generically called reduction of variance in the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its
accuracy increases only as the square root of N , the number of sampled points. If
your accuracy requirements are modest, or if your computer budget is large, then
the technique is highly recommended as one of great generality. In the next two
sections we will see that there are techniques available for “breaking the square root
of N barrier” and achieving, at least in some cases, higher accuracy with fewer
function evaluations.

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosing N points uniformly randomly in an n-
dimensional space leads to an error term in Monte Carlo integration that decreases
as 1/

√
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulated sum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the power N −1/2.

Just because this square root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast as N −1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).
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If you think for a minute, you will realize that equation (7.6.7) was useful only
because the part of the integrand that we wanted to eliminate (e 5z) was both integrable
analytically, and had an integral that could be analytically inverted. (Compare§7.2.)
In general these properties will not hold. Question: What then? Answer: Pull out
of the integrand the “best” factor thatcan be integrated and inverted. The criterion
for “best” is to try to reduce the remaining integrand to a function that is as close
as possible to constant.

The limiting case is instructive: If you manage to make the integrandf exactly
constant, and if the regionV , of known volume,exactly encloses the desired region
W , then the average off that you compute will be exactly its constant value, and the
error estimate in equation (7.6.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case,to the extent that you are able to makef
approximately constant by change of variable, andto the extent that you can sample a
region only slightly larger thanW , you will increase the accuracy of the Monte Carlo
integral. This technique is generically calledreduction of variance in the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its
accuracy increases only as the square root ofN , the number of sampled points. If
your accuracy requirements are modest, or if your computer budget is large, then
the technique is highly recommended as one of great generality. In the next two
sections we will see that there are techniques available for “breaking the square root
of N barrier” and achieving, at least in some cases, higher accuracy with fewer
function evaluations.

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosingN points uniformly randomly in ann-
dimensional space leads to an error term in Monte Carlo integration that decreases
as1/

√
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulated sum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the powerN −1/2.

Just because this square root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast asN −1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).
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The trouble with a grid is that one has to decidein advance how fine it should
be. One is then committed to completing all of its sample points. With a grid, it is
not convenient to “sampleuntil” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arises for tasks other than Monte Carlo integration. We might
want to search ann-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finiten-
dimensional neighborhood. We may not knowa priori how large that neighborhood
is, however. We want to “sampleuntil” the desired point is found, moving smoothly
to finer scales with increasing samples. Is there any way to do this that is better
than uncorrelated, random samples?

The answer to the above question is “yes.” Sequences ofn-tuples that fill
n-space more uniformly than uncorrelated random points are calledquasi-random
sequences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences: They are cleverly crafted to be, in fact,sub-random.
The sample points in a quasi-random sequence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example isHalton’s sequence [1]. In one dimension, the
jth numberHj in the sequence is obtained by the following steps: (i) Writej as a
number in baseb, whereb is some prime. (For examplej = 17 in baseb = 3 is 122.)
(ii) Reverse the digits and put a radix point (i.e., a decimal point baseb) in front of
the sequence. (In the example, we get0.221 base 3.) The result isH j . To get a
sequence ofn-tuples inn-space, you make each component a Halton sequence with
a different prime baseb. Typically, the firstn primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of
digits in j increases by one place,j’s digit-reversed fraction becomes a factor of
b finer-meshed. Thus the process is one of filling in all the points on a sequence
of finer and finer Cartesian grids — and in a kind of maximally spread-out order
on each grid (since, e.g., the most rapidly changing digit inj controls themost
significant digit of the fraction).

Other ways of generating quasi-random sequences have been suggested by
Faure, Sobol’, Niederreiter, and others. Bratley and Fox[2] provide a good review
and references, and discuss a particularly efficient variant of the Sobol’[3] sequence
suggested by Antonov and Saleev[4]. It is this Antonov-Saleev variant whose
implementation we now discuss.

The Sobol’ sequence generates numbers between zero and one directly as binary fractions
of lengthw bits, from a set ofw special binary fractions,Vi, i = 1, 2, . . . , w, calleddirection
numbers. In Sobol’s original method, thejth numberXj is generated by XORing (bitwise
exclusive or) together the set ofVi’s satisfying the criterion oni, “the ith bit of j is nonzero.”
As j increments, in other words, different ones of theVi’s flash in and out ofXj on different
time scales.V1 alternates between being present and absent most quickly, whileVk goes from
present to absent (or vice versa) only every2k−1 steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the
integerj to select direction numbers, one could just as well use the bits of theGray code of
j, G(j). (For a quick review of Gray codes, look at§20.2.)

Now G(j) andG(j + 1) differ in exactly one bit position, namely in the position of the
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Figure 7.7.1. First 1024 points of a two-dimensional Sobol’ sequence. The sequence is generated
number-theoretically, rather than randomly, so successive points at any stage “know” how to fill in the
gaps in the previously generated distribution.

rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary). A
consequence is that the j + 1st Sobol’ -Antonov-Saleev number can be obtained from the jth
by XORing it with a single Vi, namely with i the position of the rightmost zero bit in j. This
makes the calculation of the sequence very efficient, as we shall see.

Figure 7.7.1 plots the first 1024 points generated by a two-dimensional Sobol’ sequence.
One sees that successive points do “know” about the gaps left previously, and keep filling
them in, hierarchically.

We have deferred to this point a discussion of how the direction numbers Vi are generated.
Some nontrivial mathematics is involved in that, so we will content ourself with a cookbook
summary only: Each different Sobol’ sequence (or component of an n-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a polynomial
whose coefficients are either 0 or 1, and which generates a maximal length shift register
sequence. (Primitive polynomials modulo 2 were used in §7.4, and are further discussed in
§20.3.) Suppose P is such a polynomial, of degree q,

P = xq + a1x
q−1 + a2x

q−2 + · · · + aq−1x + 1 (7.7.1)
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Degree Primitive Polynomials Modulo 2*

1 0 (i.e., x + 1)

2 1 (i.e., x2 + x + 1)

3 1, 2 (i.e., x3 + x + 1 and x3 + x2 + 1)

4 1, 4 (i.e., x4 + x + 1 and x4 + x3 + 1)

5 2, 4, 7, 11, 13, 14

6 1, 13, 16, 19, 22, 25

7 1, 4, 7, 8, 14, 19, 21, 28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,

124, 137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218, 220,

227, 229, 230, 234, 236, 241, 244, 253

10 4, 13, 19, 22, 50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,

181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,

319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,

454, 457, 472, 493, 505, 508

*Expressed as a decimal integer representing the interior bits (that is, omitting the
high-order bit and the unit bit).

Define a sequence of integers Mi by the q-term recurrence relation,

Mi = 2a1Mi−1 ⊕ 22a2Mi−2 ⊕ · · · ⊕ 2q−1Mi−q+1aq−1 ⊕ (2qMi−q ⊕ Mi−q) (7.7.2)

Here bitwise XOR is denoted by⊕. The starting values for this recurrence are that M1, . . . , Mq

can be arbitrary odd integers less than 2, . . . , 2q , respectively. Then, the direction numbers
Vi are given by

Vi = Mi/2
i i = 1, . . . , w (7.7.3)

The accompanying table lists all primitive polynomials modulo 2 with degree q ≤ 10.
Since the coefficients are either 0 or 1, and since the coefficients of xq and of 1 are predictably
1, it is convenient to denote a polynomial by its middle coefficients taken as the bits of a binary
number (higher powers of x being more significant bits). The table uses this convention.

Turn now to the implementation of the Sobol’ sequence. Successive calls to the function
sobseq (after a preliminary initializing call) return successive points in an n-dimensional
Sobol’ sequence based on the first n primitive polynomials in the table. As given, the routine
is initialized for maximum n of 6 dimensions, and for a word length w of 30 bits. These
parameters can be altered by changing MAXBIT (≡ w) and MAXDIM, and by adding more
initializing data to the arrays ip (the primitive polynomials from the table), mdeg (their
degrees), and iv (the starting values for the recurrence, equation 7.7.2). A second table,
below, elucidates the initializing data in the routine.

SUBROUTINE sobseq(n,x)
INTEGER n,MAXBIT,MAXDIM
REAL x(*)
PARAMETER (MAXBIT=30,MAXDIM=6)

When n is negative, internally initializes a set of MAXBIT direction numbers for each of
MAXDIM different Sobol’ sequences. When n is positive (but ≤MAXDIM), returns as the
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Initializing Values Used in sobseq

Degree Polynomial Starting Values

1 0 1 (3) (5) (15) . . .

2 1 1 1 (7) (11) . . .

3 1 1 3 7 (5) . . .

3 2 1 3 3 (15) . . .

4 1 1 1 3 13 . . .

4 4 1 1 5 9 . . .

Parenthesized values are not freely specifiable, but are forced by the required recurrence
for this degree.

vector x(1..n) the next values from n of these sequences. (nmust not be changed between
initializations.)

INTEGER i,im,in,ipp,j,k,l,ip(MAXDIM),iu(MAXDIM,MAXBIT),
* iv(MAXBIT*MAXDIM),ix(MAXDIM),mdeg(MAXDIM)

REAL fac
SAVE ip,mdeg,ix,iv,in,fac
EQUIVALENCE (iv,iu) To allow both 1D and 2D addressing.
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (n.lt.0) then Initialize, don’t return a vector.

do 11 k=1,MAXDIM
ix(k)=0

enddo 11

in=0
if(iv(1).ne.1)return
fac=1./2.**MAXBIT
do 15 k=1,MAXDIM

do 12 j=1,mdeg(k) Stored values only require normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

enddo 12

do 14 j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.
ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do 13 l=mdeg(k)-1,1,-1

if(iand(ipp,1).ne.0)i=ieor(i,iu(k,j-l))
ipp=ipp/2

enddo 13

iu(k,j)=i
enddo 14

enddo 15

else Calculate the next vector in the sequence.
im=in
do 16 j=1,MAXBIT Find the rightmost zero bit.

if(iand(im,1).eq.0)goto 1
im=im/2

enddo 16

pause ’MAXBIT too small in sobseq’
1 im=(j-1)*MAXDIM

do 17 k=1,min(n,MAXDIM) XOR the appropriate direction number into each com-
ponent of the vector and convert to a floating
number.

ix(k)=ieor(ix(k),iv(im+k))
x(k)=ix(k)*fac

enddo 17

in=in+1 Increment the counter.
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endif
return
END

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function in n dimensions, the answer is that the fractional error will decrease with N , the
number of samples, as (lnN)n/N , i.e., almost as fast as 1/N . As an example, let us integrate
a function that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus is R0, the minor radial coordinate r is defined by

r =
(
[(x2 + y2)1/2 − R0]

2 + z2
)1/2

(7.7.4)

Let us try the function

f(x, y, z) =




1 + cos

(
πr2

a2

)
r < r0

0 r ≥ r0

(7.7.5)

which can be integrated analytically in cylindrical coordinates, giving
∫ ∫ ∫

dx dy dz f(x, y, z) = 2π2a2R0 (7.7.6)

With parameters R0 = 0.6, r0 = 0.3, we did 100 successive Monte Carlo integrations of
equation (7.7.4), sampling uniformly in the region −1 < x, y, z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routine sobseq. Figure
7.7.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For any single integration, the error of course wanders
from positive to negative, or vice versa, so a logarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiar N−1/2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
sequence. The logarithmic term in the expected (ln N)3/N is readily apparent as curvature
in the curve, but the asymptotic N−1 is unmistakable.

To understand the importance of Figure 7.7.2, suppose that a Monte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achieves this accuracy in a few thousand
samples, while pseudorandom sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus, zero outside,

f(x, y, z) =
{

1 r < r0

0 r ≥ r0
(7.7.7)

where r is defined in equation (7.7.4). Not by coincidence, this function has the same analytic
integral as the function of equation (7.7.5), namely 2π2a2R0.

The carefully hierarchical Sobol’ sequence is based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to those grids. The result is that it is essentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order of N2/3 points, come out to be inside, or outside, the torus. The square root law, applied
to this thin layer, gives N1/3 fluctuations in the sum, or N−2/3 fractional error in the Monte
Carlo integral. One sees this behavior verified in Figure 7.7.2 by the thicker gray curve. The
thicker dashed curve in Figure 7.7.2 is the result of integrating the function of equation (7.7.7)
using independent random points. While the advantage of the Sobol’ sequence is not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (∼5)
even at modest accuracies like 1%, and greater at higher accuracies.

Note that we have not provided the routine sobseq with a means of starting the
sequence at a point other than the beginning, but this feature would be easy to add. Once
the initialization of the direction numbers iv has been done, the jth point can be obtained
directly by XORing together those direction numbers corresponding to nonzero bits in the
Gray code of j, as described above.
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Figure 7.7.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary” ) than when it has step
discontinuities (“hard boundary” ). The curves shown are the r.m.s. average of 100 trials.

The Latin Hypercube

We might here give passing mention the unrelated technique of Latin square or
Latin hypercube sampling, which is useful when you must sample an N -dimensional
space exceedingly sparsely, at M points. For example, you may want to test the
crashworthiness of cars as a simultaneous function of 4 different design parameters,
but with a budget of only three expendable cars. (The issue is not whether this is a
good plan — it isn’ t — but rather how to make the best of the situation!)

The idea is to partition each design parameter (dimension) into M segments, so
that the whole space is partitioned into M N cells. (You can choose the segments in
each dimension to be equal or unequal, according to taste.) With 4 parameters and 3
cars, for example, you end up with 3 × 3 × 3 × 3 = 81 cells.

Next, choose M cells to contain the sample points by the following algorithm:
Randomly choose one of the M N cells for the first point. Now eliminate all cells
that agree with this point on any of its parameters (that is, cross out all cells in the
same row, column, etc.), leaving (M − 1)N candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until there is only
one cell left, which then contains the final sample point.

The result of this construction is that each design parameter will have been
tested in every one of its subranges. If the response of the system under test is
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dominated by one of the design parameters, that parameter will be found with this
sampling technique. On the other hand, if there is an important interaction among
different design parameters, then the Latin hypercube gives no particular advantage.
Use with care.

CITED REFERENCES AND FURTHER READING:

Halton, J.H. 1960, Numerische Mathematik, vol. 2, pp. 84–90. [1]

Bratley P., and Fox, B.L. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 88–
100. [2]

Lambert, J.P. 1988, in Numerical Mathematics – Singapore 1988, ISNM vol. 86, R.P. Agarwal,
Y.M. Chow, and S.J. Wilson, eds. (Basel: Birkhaüser), pp. 273–284.

Niederreiter, H. 1988, in Numerical Integration III, ISNM vol. 85, H. Brass and G. Hämmerlin,
eds. (Basel: Birkhaüser), pp. 157–171.

Sobol’, I.M. 1967, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,
pp. 86–112. [3]

Antonov, I.A., and Saleev, V.M 1979, USSR Computational Mathematics and Mathematical
Physics, vol. 19, no. 1, pp. 252–256. [4]

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York, Wiley) [discusses Latin Square].

7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [3]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.6), but are otherwise
quite distinct.

Importance Sampling

The use of importance sampling was already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function h that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V is∫

f dV =

∫
(f/g) gdV =

∫
h gdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral of g. That made gdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integrate f by instead sampling h — not,
however, with uniform probability density dV , but rather with nonuniform density gdV . In
this second interpretation, the first interpretation follows as the special case, where the means
of generating the nonuniform sampling of gdV is via the transformation method, using the
indefinite integral G (see §7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that points xi are chosen within the volume V with a
probability density p satisfying ∫

p dV = 1 (7.8.2)
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dominated by one of the design parameters, that parameter will be found with this
sampling technique. On the other hand, if there is an important interaction among
different design parameters, then the Latin hypercube gives no particular advantage.
Use with care.
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7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [3]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.6), but are otherwise
quite distinct.

Importance Sampling

The use of importance sampling was already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function h that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V is∫

f dV =

∫
(f/g) gdV =

∫
h gdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral of g. That made gdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integrate f by instead sampling h — not,
however, with uniform probability density dV , but rather with nonuniform density gdV . In
this second interpretation, the first interpretation follows as the special case, where the means
of generating the nonuniform sampling of gdV is via the transformation method, using the
indefinite integral G (see §7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that points xi are chosen within the volume V with a
probability density p satisfying ∫

p dV = 1 (7.8.2)
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The generalized fundamental theorem is that the integral of any function f is estimated, using
N sample points x1, . . . , xN , by

I ≡
∫

f dV =

∫
f

p
pdV ≈

〈
f

p

〉
±
√

〈f2/p2〉 − 〈f/p〉2
N

(7.8.3)

where angle brackets denote arithmetic means over the N points, exactly as in equation
(7.6.2). As in equation (7.6.1), the “plus-or-minus” term is a one standard deviation error
estimate. Notice that equation (7.6.1) is in fact the special case of equation (7.8.3), with
p = constant = 1/V .

What is the best choice for the sampling density p? Intuitively, we have already seen
that the idea is to make h = f/p as close to constant as possible. We can be more rigorous
by focusing on the numerator inside the square root in equation (7.8.3), which is the variance
per sample point. Both angle brackets are themselves Monte Carlo estimators of integrals,
so we can write

S ≡
〈

f2

p2

〉
−
〈

f

p

〉2

≈
∫

f2

p2
pdV −

[∫
f

p
pdV

]2
=

∫
f2

p
dV −

[∫
f dV

]2
(7.8.4)

We now find the optimal p subject to the constraint equation (7.8.2) by the functional variation

0 =
δ

δp

(∫
f2

p
dV −

[∫
f dV

]2
+ λ

∫
p dV

)
(7.8.5)

with λ a Lagrange multiplier. Note that the middle term does not depend on p. The variation
(which comes inside the integrals) gives 0 = −f2/p2 + λ or

p =
|f |√

λ
=

|f |∫ |f | dV
(7.8.6)

where λ has been chosen to enforce the constraint (7.8.2).
If f has one sign in the region of integration, then we get the obvious result that the

optimal choice of p — if one can figure out a practical way of effecting the sampling — is
that it be proportional to |f |. Then the variance is reduced to zero. Not so obvious, but seen
to be true, is the fact that p ∝ |f | is optimal even if f takes on both signs. In that case the
variance per sample point (from equations 7.8.4 and 7.8.6) is

S = Soptimal =

(∫
|f | dV

)2

−
(∫

f dV

)2

(7.8.7)

One curiosity is that one can add a constant to the integrand to make it all of one sign,
since this changes the integral by a known amount, constant × V . Then, the optimal choice
of p always gives zero variance, that is, a perfectly accurate integral! The resolution of
this seeming paradox (already mentioned at the end of §7.6) is that perfect knowledge of p
in equation (7.8.6) requires perfect knowledge of

∫ |f |dV , which is tantamount to already
knowing the integral you are trying to compute!

If your function f takes on a known constant value in most of the volume V , it is
certainly a good idea to add a constant so as to make that value zero. Having done that, the
accuracy attainable by importance sampling depends in practice not on how small equation
(7.8.7) is, but rather on how small is equation (7.8.4) for an implementable p, likely only a
crude approximation to the ideal.
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Stratified Sampling

The idea of stratified sampling is quite different from importance sampling. Let us
expand our notation slightly and let 〈〈f〉〉 denote the true average of the function f over
the volume V (namely the integral divided by V ), while 〈f〉 denotes as before the simplest
(uniformly sampled) Monte Carlo estimator of that average:

〈〈f〉〉 ≡ 1

V

∫
f dV 〈f〉 ≡ 1

N

∑
i

f(xi) (7.8.8)

The variance of the estimator, Var (〈f〉), which measures the square of the error of the
Monte Carlo integration, is asymptotically related to the variance of the function, Var (f) ≡
〈〈f2〉〉 − 〈〈f〉〉2, by the relation

Var (〈f〉) =
Var (f)

N
(7.8.9)

(compare equation 7.6.1).
Suppose we divide the volume V into two equal, disjoint subvolumes, denoted a and b,

and sample N/2 points in each subvolume. Then another estimator for 〈〈f〉〉, different from
equation (7.8.8), which we denote 〈f〉′, is

〈f〉′ ≡ 1

2

(〈f〉a + 〈f〉b

)
(7.8.10)

in other words, the mean of the sample averages in the two half-regions. The variance of
estimator (7.8.10) is given by

Var
(〈f〉′) =

1

4

[
Var
(〈f〉a

)
+ Var

(〈f〉b

)]

=
1

4

[
Vara (f)

N/2
+

Varb (f)

N/2

]

=
1

2N
[Vara (f) + Varb (f)]

(7.8.11)

Here Vara (f) denotes the variance of f in subregion a, that is, 〈〈f2〉〉a − 〈〈f〉〉2a, and
correspondingly for b.

From the definitions already given, it is not difficult to prove the relation

Var (f) =
1

2
[Vara (f) + Varb (f)] +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2 (7.8.12)

(In physics, this formula for combining second moments is the “parallel axis theorem.”)
Comparing equations (7.8.9), (7.8.11), and (7.8.12), one sees that the stratified (into two
subvolumes) sampling gives a variance that is never larger than the simple Monte Carlo case
— and smaller whenever the means of the stratified samples, 〈〈f〉〉a and 〈〈f〉〉b, are different.

We have not yet exploited the possibility of sampling the two subvolumes with different
numbers of points, say Na in subregion a and Nb ≡ N − Na in subregion b. Let us do so
now. Then the variance of the estimator is

Var
(〈f〉′) =

1

4

[
Vara (f)

Na
+

Varb (f)

N − Na

]
(7.8.13)

which is minimized (one can easily verify) when

Na

N
=

σa

σa + σb
(7.8.14)

Here we have adopted the shorthand notation σa ≡ [Vara (f)]1/2, and correspondingly for b.
If Na satisfies equation (7.8.14), then equation (7.8.13) reduces to

Var
(〈f〉′) =

(σa + σb)
2

4N
(7.8.15)
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Equation (7.8.15) reduces to equation (7.8.9) if Var (f) = Vara (f) = Varb (f), in which case
stratifying the sample makes no difference.

A standard way to generalize the above result is to consider the volume V divided into
more than two equal subregions. One can readily obtain the result that the optimal allocation of
sample points among the regions is to have the number of points in each region j proportional
to σj (that is, the square root of the variance of the function f in that subregion). In spaces
of high dimensionality (say d >∼ 4) this is not in practice very useful, however. Dividing a
volume into K segments along each dimension implies Kd subvolumes, typically much too
large a number when one contemplates estimating all the corresponding σj’s.

Mixed Strategies

Importance sampling and stratified sampling seem, at first sight, inconsistent with each
other. The former concentrates sample points where the magnitude of the integrand |f | is
largest, that latter where the variance of f is largest. How can both be right?

The answer is that (like so much else in life) it all depends on what you know and how
well you know it. Importance sampling depends on already knowing some approximation to
your integral, so that you are able to generate random points xi with the desired probability
density p. To the extent that your p is not ideal, you are left with an error that decreases
only as N−1/2. Things are particularly bad if your p is far from ideal in a region where the
integrand f is changing rapidly, since then the sampled function h = f/p will have a large
variance. Importance sampling works by smoothing the values of the sampled function h, and
is effective only to the extent that you succeed in this.

Stratified sampling, by contrast, does not necessarily require that you know anything
about f . Stratified sampling works by smoothing out the fluctuations of the number of points
in subregions, not by smoothing the values of the points. The simplest stratified strategy,
dividing V into N equal subregions and choosing one point randomly in each subregion,
already gives a method whose error decreases asymptotically as N−1, much faster than
N−1/2. (Note that quasi-random numbers, §7.7, are another way of smoothing fluctuations in
the density of points, giving nearly as good a result as the “blind” stratification strategy.)

However, “asymptotically” is an important caveat: For example, if the integrand is
negligible in all but a single subregion, then the resulting one-sample integration is all but
useless. Information, even very crude, allowing importance sampling to put many points in
the active subregion would be much better than blind stratified sampling.

Stratified sampling really comes into its own if you have some way of estimating the
variances, so that you can put unequal numbers of points in different subregions, according to
(7.8.14) or its generalizations, and if you can find a way of dividing a region into a practical
number of subregions (notably not Kd with large dimension d), while yet significantly
reducing the variance of the function in each subregion compared to its variance in the full
volume. Doing this requires a lot of knowledge about f , though different knowledge from
what is required for importance sampling.

In practice, importance sampling and stratified sampling are not incompatible. In many,
if not most, cases of interest, the integrand f is small everywhere in V except for a small
fractional volume of “active regions.” In these regions the magnitude of |f | and the standard
deviation σ = [Var (f)]1/2 are comparable in size, so both techniques will give about the
same concentration of points. In more sophisticated implementations, it is also possible to
“nest” the two techniques, so that (e.g.) importance sampling on a crude grid is followed
by stratification within each grid cell.

Adaptive Monte Carlo: VEGAS

The VEGAS algorithm, invented by Peter Lepage [1,2], is widely used for multidimen-
sional integrals that occur in elementary particle physics. VEGAS is primarily based on
importance sampling, but it also does some stratified sampling if the dimension d is small
enough to avoid Kd explosion (specifically, if (K/2)d < N/2, with N the number of sample
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points). The basic technique for importance sampling in VEGAS is to construct, adaptively,
a multidimensional weight function g that is separable,

p ∝ g(x, y, z, . . .) = gx(x)gy(y)gz(z) . . . (7.8.16)

Such a function avoids the Kd explosion in two ways: (i) It can be stored in the computer
as d separate one-dimensional functions, each defined by K tabulated values, say — so that
K × d replaces Kd. (ii) It can be sampled as a probability density by consecutively sampling
the d one-dimensional functions to obtain coordinate vector components (x, y, z, . . .).

The optimal separable weight function can be shown to be [1]

gx(x) ∝
[∫

dy

∫
dz . . .

f2(x, y, z, . . .)

gy(y)gz(z) . . .

]1/2

(7.8.17)

(and correspondingly for y, z, . . .). Notice that this reduces to g ∝ |f | (7.8.6) in one
dimension. Equation (7.8.17) immediately suggests VEGAS’ adaptive strategy: Given a
set of g-functions (initially all constant, say), one samples the function f , accumulating not
only the overall estimator of the integral, but also the Kd estimators (K subdivisions of the
independent variable in each of d dimensions) of the right-hand side of equation (7.8.17).
These then determine improved g functions for the next iteration.

When the integrand f is concentrated in one, or at most a few, regions in d-space, then
the weight function g’s quickly become large at coordinate values that are the projections of
these regions onto the coordinate axes. The accuracy of the Monte Carlo integration is then
enormously enhanced over what simple Monte Carlo would give.

The weakness of VEGAS is the obvious one: To the extent that the projection of the
function f onto individual coordinate directions is uniform, VEGAS gives no concentration
of sample points in those dimensions. The worst case for VEGAS, e.g., is an integrand that
is concentrated close to a body diagonal line, e.g., one from (0, 0, 0, . . .) to (1, 1, 1, . . .).
Since this geometry is completely nonseparable, VEGAS can give no advantage at all. More
generally, VEGAS may not do well when the integrand is concentrated in one-dimensional
(or higher) curved trajectories (or hypersurfaces), unless these happen to be oriented close
to the coordinate directions.

The routine vegas that follows is essentially Lepage’s standard version, minimally
modified to conform to our conventions. (We thank Lepage for permission to reproduce the
program here.) For consistency with other versions of the VEGAS algorithm in circulation,
we have preserved original variable names. The parameter NDMX is what we have called K,
the maximum number of increments along each axis; MXDIM is the maximum value of d; some
other parameters are explained in the comments.

The vegas routine performs m = itmx statistically independent evaluations of the
desired integral, each with N = ncall function evaluations. While statistically independent,
these iterations do assist each other, since each one is used to refine the sampling grid for
the next one. The results of all iterations are combined into a single best answer, and its
estimated error, by the relations

Ibest =
m∑

i=1

Ii

σ2
i

/
m∑

i=1

1

σ2
i

σbest =

(
m∑

i=1

1

σ2
i

)−1/2

(7.8.18)

Also returned is the quantity

χ2/m ≡ 1

m − 1

m∑
i=1

(Ii − Ibest)
2

σ2
i

(7.8.19)

If this is significantly larger than 1, then the results of the iterations are statistically
inconsistent, and the answers are suspect.

The input flag init can be used to advantage. One might have a call with init=0,
ncall=1000, itmx=5 immediately followed by a call with init=1, ncall=100000, itmx=1.
The effect would be to develop a sampling grid over 5 iterations of a small number of samples,
then to do a single high accuracy integration on the optimized grid.
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Note that the user-supplied integrand function, fxn, has an argument wgt in addition
to the expected evaluation point x. In most applications you ignore wgt inside the function.
Occasionally, however, you may want to integrate some additional function or functions along
with the principal function f . The integral of any such function g can be estimated by

Ig =
∑

i

wig(x) (7.8.20)

where the wi’s and x’s are the arguments wgt and x, respectively. It is straightforward to
accumulate this sum inside your function fxn, and to pass the answer back to your main
program via a common block. Of course, g(x) had better resemble the principal function f
to some degree, since the sampling will be optimized for f .

SUBROUTINE vegas(region,ndim,fxn,init,ncall,itmx,nprn,
* tgral,sd,chi2a)

INTEGER init,itmx,ncall,ndim,nprn,NDMX,MXDIM
REAL tgral,chi2a,sd,region(2*ndim),fxn,ALPH,TINY
PARAMETER (ALPH=1.5,NDMX=50,MXDIM=10,TINY=1.e-30)
EXTERNAL fxn

C USES fxn,ran2,rebin
Performs Monte Carlo integration of a user-supplied ndim-dimensional function fxn over
a rectangular volume specified by region, a 2×ndim vector consisting of ndim “lower
left” coordinates of the region followed by ndim “upper right” coordinates. The integration
consists of itmx iterations, each with approximately ncall calls to the function. After each
iteration the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag
init signals whether this call is a new start, or a subsequent call for additional iterations
(see comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER i,idum,it,j,k,mds,nd,ndo,ng,npg,ia(MXDIM),kg(MXDIM)
REAL calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,

* d(NDMX,MXDIM),di(NDMX,MXDIM),dt(MXDIM),dx(MXDIM),
* r(NDMX),x(MXDIM),xi(NDMX,MXDIM),xin(NDMX),ran2

DOUBLE PRECISION schi,si,swgt
COMMON /ranno/ idum Means for random number initialization.
SAVE Best make everything static, allowing restarts.
if(init.le.0)then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sampling, i.e., use im-
portance sampling only.ndo=1

do 11 j=1,ndim
xi(1,j)=1.

enddo 11

endif
if (init.le.1)then Enter here to inherit the grid from a previous call, but not its

answers.si=0.d0
swgt=0.d0
schi=0.d0

endif
if (init.le.2)then Enter here to inherit the previous grid and its answers.

nd=NDMX
ng=1
if(mds.ne.0)then Set up for stratification.

ng=(ncall/2.+0.25)**(1./ndim)
mds=1
if((2*ng-NDMX).ge.0)then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

endif
endif
k=ng**ndim
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npg=max(ncall/k,2)
calls=float(npg)*float(k)
dxg=1./ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.)
xnd=nd
dxg=dxg*xnd
xjac=1./calls
do 12 j=1,ndim

dx(j)=region(j+ndim)-region(j)
xjac=xjac*dx(j)

enddo 12

if(nd.ne.ndo)then Do binning if necessary.
do 13 i=1,max(nd,ndo)

r(i)=1.
enddo 13

do 14 j=1,ndim
call rebin(ndo/xnd,nd,r,xin,xi(1,j))

enddo 14

ndo=nd
endif
if(nprn.ge.0) write(*,200) ndim,calls,it,itmx,nprn,

* ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
endif
do 28 it=1,itmx

Main iteration loop. Can enter here (init ≥ 3) to do an additional itmx iterations with all
other parameters unchanged.
ti=0.
tsi=0.
do 16 j=1,ndim

kg(j)=1
do 15 i=1,nd

d(i,j)=0.
di(i,j)=0.

enddo 15

enddo 16

10 continue
fb=0.
f2b=0.
do 19 k=1,npg

wgt=xjac
do 17 j=1,ndim

xn=(kg(j)-ran2(idum))*dxg+1.
ia(j)=max(min(int(xn),NDMX),1)
if(ia(j).gt.1)then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo

endif
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

enddo 17

f=wgt*fxn(x,wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do 18 j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if(mds.ge.0) d(ia(j),j)=d(ia(j),j)+f2

enddo 18

enddo 19

f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
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if (f2b.le.0.) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if(mds.lt.0)then Use stratified sampling.

do 21 j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

enddo 21

endif
do 22 k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if(kg(k).ne.1) goto 10

enddo 22

tsi=tsi*dv2g Compute final results for this iteration.
wgt=1./tsi
si=si+dble(wgt)*dble(ti)
schi=schi+dble(wgt)*dble(ti)**2
swgt=swgt+dble(wgt)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-.99d0),0.d0)
sd=sqrt(1./swgt)
tsi=sqrt(tsi)
if(nprn.ge.0)then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if(nprn.ne.0)then

do 23 j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),

* i=1+nprn/2,nd,nprn)
enddo 23

endif
endif
do 25 j=1,ndim Refine the grid. Consult references to understand the subtlety

of this procedure. The refinement is damped, to avoid
rapid, destabilizing changes, and also compressed in range
by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.
dt(j)=d(1,j)
do 24 i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.
dt(j)=dt(j)+d(i,j)

enddo 24

d(nd,j)=(xo+xn)/2.
dt(j)=dt(j)+d(nd,j)

enddo 25

do 27 j=1,ndim
rc=0.
do 26 i=1,nd

if(d(i,j).lt.TINY) d(i,j)=TINY
r(i)=((1.-d(i,j)/dt(j))/(log(dt(j))-log(d(i,j))))**ALPH
rc=rc+r(i)

enddo 26

call rebin(rc/xnd,nd,r,xin,xi(1,j))
enddo 27

enddo 28

return
200 FORMAT(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0
* /28x,’ it=’,i5,’ itmx=’,i5
* /28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4
* /(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))
201 FORMAT(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’+/- ’,g9.2
* /’ all iterations: integral =’,g14.7,’+/- ’,g9.2,
* ’ chi**2/it’’n =’,g9.2)
202 FORMAT(/’ data for axis ’,I2/’ X delta i ’,
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* ’ x delta i ’,’ x delta i ’,
* /(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

END

SUBROUTINE rebin(rc,nd,r,xin,xi)
INTEGER nd
REAL rc,r(*),xi(*),xin(*)

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER i,k
REAL dr,xn,xo
k=0
xo=0.
dr=0.
do 11 i=1,nd-1

1 if(rc.gt.dr)then
k=k+1
dr=dr+r(k)

goto 1
endif
if(k.gt.1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

enddo 11

do 12 i=1,nd-1
xi(i)=xin(i)

enddo 12

xi(nd)=1.
return
END

Recursive Stratified Sampling

The problem with stratified sampling, we have seen, is that it may not avoid the Kd

explosion inherent in the obvious, Cartesian, tessellation of a d-dimensional volume. A
technique called recursive stratified sampling [3] attempts to do this by successive bisections
of a volume, not along all d dimensions, but rather along only one dimension at a time.
The starting points are equations (7.8.10) and (7.8.13), applied to bisections of successively
smaller subregions.

Suppose that we have a quota of N evaluations of the function f , and want to evaluate
〈f〉′ in the rectangular parallelepiped region R = (xa, xb). (We denote such a region by the
two coordinate vectors of its diagonally opposite corners.) First, we allocate a fraction p of
N towards exploring the variance of f in R: We sample pN function values uniformly in
R and accumulate the sums that will give the d different pairs of variances corresponding to
the d different coordinate directions along which R can be bisected. In other words, in pN
samples, we estimate Var (f) in each of the regions resulting from a possible bisection of R,

Rai ≡(xa, xb − 1

2
ei · (xb − xa)ei)

Rbi ≡(xa +
1

2
ei · (xb − xa)ei, xb)

(7.8.21)

Here ei is the unit vector in the ith coordinate direction, i = 1, 2, . . . , d.
Second, we inspect the variances to find the most favorable dimension i to bisect. By

equation (7.8.15), we could, for example, choose that i for which the sum of the square roots
of the variance estimators in regions Rai and Rbi is minimized. (Actually, as we will explain,
we do something slightly different.)
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Third, we allocate the remaining (1 − p)N function evaluations between the regions
Rai and Rbi. If we used equation (7.8.15) to choose i, we should do this allocation according
to equation (7.8.14).

We now have two parallelepipeds each with its own allocation of function evaluations for
estimating the mean of f . Our “RSS” algorithm now shows itself to be recursive: To evaluate
the mean in each region, we go back to the sentence beginning “First,...” in the paragraph
above equation (7.8.21). (Of course, when the allocation of points to a region falls below
some number, we resort to simple Monte Carlo rather than continue with the recursion.)

Finally, we combine the means, and also estimated variances of the two subvolumes,
using equation (7.8.10) and the first line of equation (7.8.11).

This completes the RSS algorithm in its simplest form. Before we describe some
additional tricks under the general rubric of “implementation details,” we need to return briefly
to equations (7.8.13)–(7.8.15) and derive the equations that we actually use instead of these.
The right-hand side of equation (7.8.13) applies the familiar scaling law of equation (7.8.9)
twice, once to a and again to b. This would be correct if the estimates 〈f〉a and 〈f〉b were
each made by simple Monte Carlo, with uniformly random sample points. However, the two
estimates of the mean are in fact made recursively. Thus, there is no reason to expect equation
(7.8.9) to hold. Rather, we might substitute for equation (7.8.13) the relation,

Var
(〈f〉′) =

1

4

[
Vara (f)

Nα
a

+
Varb (f)

(N − Na)α

]
(7.8.22)

where α is an unknown constant ≥ 1 (the case of equality corresponding to simple Monte
Carlo). In that case, a short calculation shows that Var

(〈f〉′) is minimized when

Na

N
=

Vara (f)1/(1+α)

Vara (f)1/(1+α) + Varb (f)1/(1+α)
(7.8.23)

and that its minimum value is

Var
(〈f〉′) ∝

[
Vara (f)1/(1+α) + Varb (f)1/(1+α)

]1+α

(7.8.24)

Equations (7.8.22)–(7.8.24) reduce to equations (7.8.13)–(7.8.15) when α = 1. Numerical
experiments to find a self-consistent value for α find that α ≈ 2. That is, when equation
(7.8.23) with α = 2 is used recursively to allocate sample opportunities, the observed variance
of the RSS algorithm goes approximately as N−2, while any other value of α in equation
(7.8.23) gives a poorer fall-off. (The sensitivity to α is, however, not very great; it is not
known whether α = 2 is an analytically justifiable result, or only a useful heuristic.)

Turn now to the routine, miser, which implements the RSS method. A bit of FORTRAN
wizardry is its implementation of the required recursion. This is done by dimensioning an
array stack, and a shorter “stack frame” stf; the latter has components that are equivalenced
to variables that need to be preserved during the recursion, including a flag indicating where
program control should return. A recursive call then consists of copying the stack frame
onto the stack, incrementing the stack pointer jstack, and transferring control. A recursive
return analogously pops the stack and transfers control to the saved location. Stack growth
in miser is only logarithmic in N , since at each bifurcation one of the subvolumes can be
processed immediately.

The principal difference between miser’s implementation and the algorithm as described
thus far lies in how the variances on the right-hand side of equation (7.8.23) are estimated. We
find empirically that it is somewhat more robust to use the square of the difference of maximum
and minimum sampled function values, instead of the genuine second moment of the samples.
This estimator is of course increasingly biased with increasing sample size; however, equation
(7.8.23) uses it only to compare two subvolumes (a and b) having approximately equal numbers
of samples. The “max minus min” estimator proves its worth when the preliminary sampling
yields only a single point, or small number of points, in active regions of the integrand. In
many realistic cases, these are indicators of nearby regions of even greater importance, and it
is useful to let them attract the greater sampling weight that “max minus min” provides.

A second modification embodied in the code is the introduction of a “dithering parameter,”
dith, whose nonzero value causes subvolumes to be divided not exactly down the middle, but
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rather into fractions 0.5±dith, with the sign of the ± randomly chosen by a built-in random
number routine. Normally dith can be set to zero. However, there is a large advantage in
taking dith to be nonzero if some special symmetry of the integrand puts the active region
exactly at the midpoint of the region, or at the center of some power-of-two submultiple of
the region. One wants to avoid the extreme case of the active region being evenly divided
into 2d abutting corners of a d-dimensional space. A typical nonzero value of dith, on
those occasions when it is useful, might be 0.1. Of course, when the dithering parameter
is nonzero, we must take the differing sizes of the subvolumes into account; the code does
this through the variable fracl.

One final feature in the code deserves mention. The RSS algorithm uses a single set
of sample points to evaluate equation (7.8.23) in all d directions. At bottom levels of the
recursion, the number of sample points can be quite small. Although rare, it can happen that
in one direction all the samples are in one half of the volume; in that case, that direction
is ignored as a candidate for bifurcation. Even more rare is the possibility that all of the
samples are in one half of the volume in all directions. In this case, a random direction is
chosen. If this happens too often in your application, then you should increase MNPT (see
line if (jb.eq.0). . . in the code).

Note that miser, as given, returns as ave an estimate of the average function value
〈〈f〉〉, not the integral of f over the region. The routine vegas, adopting the other convention,
returns as tgral the integral. The two conventions are of course trivially related, by equation
(7.8.8), since the volume V of the rectangular region is known.

SUBROUTINE miser(func,region,ndim,npts,dith,ave,var)
INTEGER ndim,npts,MNPT,MNBS,MAXD,NSTACK
REAL ave,dith,var,region(2*ndim),func,TINY,BIG,PFAC
PARAMETER (MNPT=15,MNBS=4*MNPT,MAXD=10,TINY=1.e-30,BIG=1.e30,

* NSTACK=1000,PFAC=0.1)
EXTERNAL func

C USES func,ranpt
Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-two subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stage to
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available. MAXD is the largest value of ndim. NSTACK is the total size of the stack.

INTEGER iran,j,jb,jstack,n,naddr,np,npre,nptl,nptr,nptt
REAL avel,fracl,fval,rgl,rgm,rgr,s,sigl,siglb,sigr,sigrb,sum,

* sumb,summ,summ2,varl,fmaxl(MAXD),fmaxr(MAXD),fminl(MAXD),
* fminr(MAXD),pt(MAXD),rmid(MAXD),stack(NSTACK),stf(9)

EQUIVALENCE (stf(1),avel),(stf(2),varl),(stf(3),jb),
* (stf(4),nptr),(stf(5),naddr),(stf(6),rgl),(stf(7),rgm),
* (stf(8),rgr),(stf(9),fracl)

SAVE iran
DATA iran /0/
jstack=0
nptt=npts

1 continue
if (nptt.lt.MNBS) then Too few points to bisect; do straight Monte Carlo.

np=abs(nptt)
summ=0.
summ2=0.
do 11 n=1,np

call ranpt(pt,region,ndim)
fval=func(pt)
summ=summ+fval
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summ2=summ2+fval**2
enddo 11

ave=summ/np
var=max(TINY,(summ2-summ**2/np)/np**2)

else Do the preliminary (uniform) sampling.
npre=max(int(nptt*PFAC),MNPT)
do 12 j=1,ndim Initialize the left and right bounds for each dimension.

iran=mod(iran*2661+36979,175000)
s=sign(dith,float(iran-87500))
rmid(j)=(0.5+s)*region(j)+(0.5-s)*region(j+ndim)
fminl(j)=BIG
fminr(j)=BIG
fmaxl(j)=-BIG
fmaxr(j)=-BIG

enddo 12

do 14 n=1,npre Loop over the points in the sample.
call ranpt(pt,region,ndim)
fval=func(pt)
do 13 j=1,ndim Find the left and right bounds for each dimension.

if(pt(j).le.rmid(j))then
fminl(j)=min(fminl(j),fval)
fmaxl(j)=max(fmaxl(j),fval)

else
fminr(j)=min(fminr(j),fval)
fmaxr(j)=max(fmaxr(j),fval)

endif
enddo 13

enddo 14

sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.
sigrb=1.
do 15 j=1,ndim

if(fmaxl(j).gt.fminl(j).and.fmaxr(j).gt.fminr(j))then
sigl=max(TINY,(fmaxl(j)-fminl(j))**(2./3.))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2./3.))
sum=sigl+sigr Equation (7.8.24), see text.
if (sum.le.sumb) then

sumb=sum
jb=j
siglb=sigl
sigrb=sigr

endif
endif

enddo 15

if (jb.eq.0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=region(jb) Apportion the remaining points between left and right.
rgm=rmid(jb)
rgr=region(jb+ndim)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=MNPT+(nptt-npre-2*MNPT)

* *fracl*siglb/(fracl*siglb+(1.-fracl)*sigrb) Equation (7.8.23).
nptr=nptt-npre-nptl
region(jb+ndim)=rgm Set region to left.
naddr=1 Push the stack.
do 16 j=1,9

stack(jstack+j)=stf(j)
enddo 16

jstack=jstack+9
nptt=nptl
goto 1 Dispatch recursive call; will return back here eventually.

10 continue
avel=ave Save left estimates on stack variable.
varl=var
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region(jb)=rgm Set region to right.
region(jb+ndim)=rgr
naddr=2 Push the stack.
do 17 j=1,9

stack(jstack+j)=stf(j)
enddo 17

jstack=jstack+9
nptt=nptr
goto 1 Dispatch recursive call; will return back here eventually.

20 continue
region(jb)=rgl Restore region to original value (so that we don’t

need to include it on the stack).ave=fracl*avel+(1.-fracl)*ave
var=fracl**2*varl+(1.-fracl)**2*var Combine left and right regions by equa-

tion (7.8.11) (1st line).endif
if (jstack.ne.0) then Pop the stack.

jstack=jstack-9
do 18 j=1,9

stf(j)=stack(jstack+j)
enddo 18

goto (10,20),naddr
pause ’miser: never get here’

endif
return
END

The miser routine calls a short subroutine ranpt to get a random point within a specified
d-dimensional region. The following version of ranpt makes consecutive calls to a uniform
random number generator and does the obvious scaling. One can easily modify ranpt to
generate its points via the quasi-random routine sobseq (§7.7). We find that miser with
sobseq can be considerably more accurate than miser with uniform random deviates. Since
the use of RSS and the use of quasi-random numbers are completely separable, however, we
have not made the code given here dependent on sobseq. A similar remark might be made
regarding importance sampling, which could in principle be combined with RSS. (One could
in principle combine vegas and miser, although the programming would be intricate.)

SUBROUTINE ranpt(pt,region,n)
INTEGER n,idum
REAL pt(n),region(2*n)
COMMON /ranno/ idum
SAVE /ranno/

C USES ran1
Returns a uniformly random point pt in an n-dimensional rectangular region. Used by
miser; calls ran1 for uniform deviates. Your main program should initialize idum, through
the COMMON block /ranno/, to a negative seed integer.

INTEGER j
REAL ran1
do 11 j=1,n

pt(j)=region(j)+(region(j+n)-region(j))*ran1(idum)
enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M. and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Kalos, M.H. and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-Verlag).

Lepage, G.P. 1978, Journal of Computational Physics, vol. 27, pp. 192–203. [1]
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Chapter 8. Sorting

8.0 Introduction

This chapter almost doesn’t belong in a book onnumerical methods. However,
some practical knowledge of techniques for sorting is an indispensable part of any
good programmer’s expertise. We would not want you to consider yourself expert in
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has tables
or lists of numbers, representing one or more independent (or “control”) variables,
and one or more dependent (or “measured”) variables. One may wish to arrange
these data, in various circumstances, in order by one or another of these variables.
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:
• Sort, i.e., rearrange, an array of numbers into numerical order.
• Rearrange an array into numerical order while performing the corre-

sponding rearrangement of one or more additional arrays, so that the
correspondence between elements in all arrays is maintained.

• Given an array, prepare anindex table for it, i.e., a table of pointers telling
which number array element comes first in numerical order, which second,
and so on.

• Given an array, prepare arank table for it, i.e., a table telling what is
the numerical rank of the first array element, the second array element,
and so on.

• Select theM th largest element from an array.

For the basic task of sortingN elements, the best algorithms require on the
order of several timesN log2 N operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms areQuicksort (§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (§8.3), invented by J.W.J. Williams.

For largeN (say> 1000), Quicksort is faster, on most machines, by a factor of
1.5 or 2; it requires a bit of extra memory, however, and is a moderately complicated
program. Heapsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for special purposes. On balance, we
recommend Quicksort because of its speed, but we implement both routines.

320
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For smallN one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power ofN , if the constant in front is small enough. For
N < 20, roughly, the method ofstraight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is anN 2 algorithm, whose potential for
misuse (by using it for too large anN ) is great. The resultant waste of computer
time is so awesome, that we were tempted not to include anyN 2 routine at all. We
will draw the line, however, at the inefficientN 2 algorithm, beloved of elementary
computer science texts, calledbubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

ForN < 50, roughly,Shell’s method (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes asN 3/2 in the worst case, but is usually faster.

See references[1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8–13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N 2 routine, and should be used only for smallN ,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

SUBROUTINE piksrt(n,arr)
INTEGER n
REAL arr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER i,j
REAL a
do 12 j=2,n Pick out each element in turn.

a=arr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

enddo 12

return
END

What if you also want to rearrange an arraybrr at the same time as you sort
arr? Simply move an element ofbrr whenever you move an element ofarr:
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For small N one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power of N , if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N 2 algorithm, whose potential for
misuse (by using it for too large an N ) is great. The resultant waste of computer
time is so awesome, that we were tempted not to include any N 2 routine at all. We
will draw the line, however, at the inefficient N 2 algorithm, beloved of elementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’s method (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes as N 3/2 in the worst case, but is usually faster.

See references [1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8–13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N 2 routine, and should be used only for small N ,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

SUBROUTINE piksrt(n,arr)
INTEGER n
REAL arr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER i,j
REAL a
do 12 j=2,n Pick out each element in turn.

a=arr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

enddo 12

return
END

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an element of arr:
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SUBROUTINE piksr2(n,arr,brr)
INTEGER n
REAL arr(n),brr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr(1:n).

INTEGER i,j
REAL a,b
do 12 j=2,n Pick out each element in turn.

a=arr(j)
b=brr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)
brr(i+1)=brr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

brr(i+1)=b
enddo 12

return
END

For the case of rearranging a larger number of arrays by sorting on one of
them, see §8.4.

Shell’s Method

This is actually a variant on straight insertion, but a very powerful variant indeed.
The rough idea, e.g., for the case of sorting 16 numbers n 1 . . . n16, is this: First sort,
by straight insertion, each of the 8 groups of 2 (n1, n9), (n2, n10), . . . , (n8, n16).
Next, sort each of the 4 groups of 4 (n1, n5, n9, n13), . . . , (n4, n8, n12, n16). Next
sort the 2 groups of 8 records, beginning with (n 1, n3, n5, n7, n9, n11, n13, n15).
Finally, sort the whole list of 16 numbers.

Of course, only the last sort is necessary for putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their final
resting places. Therefore, the straight insertion passes on the final sort rarely have to
go past more than a “few” elements before finding the right place. (Think of sorting
a hand of cards that are already almost in order.)

The spacings between the numbers sorted on each pass through the data (8,4,2,1
in the above example) are called the increments, and a Shell sort is sometimes
called a diminishing increment sort. There has been a lot of research into how to
choose a good set of increments, but the optimum choice is not known. The set
. . . , 8, 4, 2, 1 is in fact not a good choice, especially for N a power of 2. A much
better choice is the sequence

(3k − 1)/2, . . . , 40, 13, 4, 1 (8.1.1)

which can be generated by the recurrence

i1 = 1, ik+1 = 3ik + 1, k = 1, 2, . . . (8.1.2)

It can be shown (see [1]) that for this sequence of increments the number of operations
required in all is of order N 3/2 for the worst possible ordering of the original data.
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For “randomly” ordered data, the operations count goes approximately as N 1.25, at
least for N < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

SUBROUTINE shell(n,a)
INTEGER n
REAL a(n)

Sorts an array a(1:n) into ascending numerical order by Shell’s method (diminishing in-
crement sort). n is input; a is replaced on output by its sorted rearrangement.

INTEGER i,j,inc
REAL v
inc=1 Determine the starting increment.

1 inc=3*inc+1
if(inc.le.n)goto 1

2 continue Loop over the partial sorts.
inc=inc/3
do 11 i=inc+1,n Outer loop of straight insertion.

v=a(i)
j=i

3 if(a(j-inc).gt.v)then Inner loop of straight insertion.
a(j)=a(j-inc)
j=j-inc
if(j.le.inc)goto 4

goto 3
endif

4 a(j)=v
enddo 11

if(inc.gt.1)goto 2
return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for large N , the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element” a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At the end of a round of partitioning,
the element a is in its final place in the array. All elements in the left subarray are
≤ a, while all elements in the right subarray are ≥ a. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning element a. Scan a pointer up the array until you find
an element > a, and then scan another pointer down from the end of the array
until you find an element < a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers
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For “randomly” ordered data, the operations count goes approximately asN 1.25, at
least forN < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

SUBROUTINE shell(n,a)
INTEGER n
REAL a(n)

Sorts an array a(1:n) into ascending numerical order by Shell’s method (diminishing in-
crement sort). n is input; a is replaced on output by its sorted rearrangement.

INTEGER i,j,inc
REAL v
inc=1 Determine the starting increment.

1 inc=3*inc+1
if(inc.le.n)goto 1

2 continue Loop over the partial sorts.
inc=inc/3
do 11 i=inc+1,n Outer loop of straight insertion.

v=a(i)
j=i

3 if(a(j-inc).gt.v)then Inner loop of straight insertion.
a(j)=a(j-inc)
j=j-inc
if(j.le.inc)goto 4

goto 3
endif

4 a(j)=v
enddo 11

if(inc.gt.1)goto 2
return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for largeN , the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element”a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At the end of a round of partitioning,
the elementa is in its final place in the array. All elements in the left subarray are
≤ a, while all elements in the right subarray are≥ a. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning elementa. Scan a pointer up the array until you find
an element> a, and then scan another pointer down from the end of the array
until you find an element< a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers
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cross. This is the right place to inserta, and that round of partitioning is done. The
question of the best strategy when an element is equal to the partitioning element
is subtle; we refer you to Sedgewick[1] for a discussion. (Answer: You should
stop and do an exchange.)

Quicksort requires an auxiliary array of storage, of length2 log 2 N , which it
uses as a push-down stack for keeping track of the pending subarrays. When a
subarray has gotten down to some sizeM , it becomes faster to sort it by straight
insertion (§8.1), so we will do this. The optimal setting ofM is machine dependent,
but M = 7 is not too far wrong. Some people advocate leaving the short subarrays
unsorted until the end, and then doing one giant insertion sort at the end. Since
each element moves at most 7 places, this is just as efficient as doing the sorts
immediately, and saves on the overhead. However, on modern machines with paged
memory, there is increased overhead when dealing with a large array all at once. We
have not found any advantage in saving the insertion sorts till the end.

As already mentioned, Quicksort’saverage running time is fast, but itsworst
case running time can be very slow: For the worst case it is, in fact, anN 2 method!
And for the most straightforward implementation of Quicksort it turns out that the
worst case is achieved for an input array that is already in order! This ordering
of the input array might easily occur in practice. One way to avoid this is to use
a little random number generator to choose a random element as the partitioning
element. Another is to use instead the median of the first, middle, and last elements
of the current subarray.

The great speed of Quicksort comes from the simplicity and efficiency of its
inner loop. Simply adding one unnecessary test (for example, a test that your pointer
has not moved off the end of the array) can almost double the running time! One
avoids such unnecessary tests by placing “sentinels” at either end of the subarray
being partitioned. The leftmost sentinel is≤ a, the rightmost≥ a. With the
“median-of-three” selection of a partitioning element, we can use the two elements
that were not the median to be the sentinels for that subarray.

Our implementation closely follows[1]:

SUBROUTINE sort(n,arr)
INTEGER n,M,NSTACK
REAL arr(n)
PARAMETER (M=7,NSTACK=50)

Sorts an array arr(1:n) into ascending numerical order using the Quicksort algorithm. n
is input; arr is replaced on output by its sorted rearrangement.
Parameters: M is the size of subarrays sorted by straight insertion and NSTACK is the required
auxiliary storage.

INTEGER i,ir,j,jstack,k,l,istack(NSTACK)
REAL a,temp
jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then Insertion sort when subarray small enough.
do 12 j=l+1,ir

a=arr(j)
do 11 i=j-1,l,-1

if(arr(i).le.a)goto 2
arr(i+1)=arr(i)

enddo 11

i=l-1
2 arr(i+1)=a

enddo 12
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if(jstack.eq.0)return
ir=istack(jstack) Pop stack and begin a new round of partitioning.
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2 Choose median of left, center, and right elements as par-

titioning element a. Also rearrange so that a(l) ≤
a(l+1) ≤ a(ir).

temp=arr(k)
arr(k)=arr(l+1)
arr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements.
arr(i)=arr(j)
arr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

As usual you can move any other arrays around at the same time as you sort
arr. At the risk of being repetitious:
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SUBROUTINE sort2(n,arr,brr)
INTEGER n,M,NSTACK
REAL arr(n),brr(n)
PARAMETER (M=7,NSTACK=50)

Sorts an array arr(1:n) into ascending order using Quicksort, while making the corre-
sponding rearrangement of the array brr(1:n).

INTEGER i,ir,j,jstack,k,l,istack(NSTACK)
REAL a,b,temp
jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then Insertion sort when subarray small enough.
do 12 j=l+1,ir

a=arr(j)
b=brr(j)
do 11 i=j-1,l,-1

if(arr(i).le.a)goto 2
arr(i+1)=arr(i)
brr(i+1)=brr(i)

enddo 11

i=l-1
2 arr(i+1)=a

brr(i+1)=b
enddo 12

if(jstack.eq.0)return
ir=istack(jstack) Pop stack and begin a new round of partitioning.
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2 Choose median of left, center and right elements as par-

titioning element a. Also rearrange so that a(l) ≤
a(l+1) ≤ a(ir).

temp=arr(k)
arr(k)=arr(l+1)
arr(l+1)=temp
temp=brr(k)
brr(k)=brr(l+1)
brr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp
temp=brr(l)
brr(l)=brr(ir)
brr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp
temp=brr(l+1)
brr(l+1)=brr(ir)
brr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp
temp=brr(l)
brr(l)=brr(l+1)
brr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.
b=brr(l+1)
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3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements of both arrays.
arr(i)=arr(j)
arr(j)=temp
temp=brr(i)
brr(i)=brr(j)
brr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element in both arrays.
arr(j)=a
brr(l+1)=brr(j)
brr(j)=b
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort2’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in§8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847–857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log2 N process, not only on average, but also for the worst-case order of input data.
In fact, its worst case is only 20 percent or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references[1,2], or
analyze the program yourself, if you want to understand the details.

A set of N numbersai, i = 1, . . . , N , is said to form a “heap” if it satisfies
the relation

aj/2 ≥ aj for 1 ≤ j/2 < j ≤ N (8.3.1)
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3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements of both arrays.
arr(i)=arr(j)
arr(j)=temp
temp=brr(i)
brr(i)=brr(j)
brr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element in both arrays.
arr(j)=a
brr(l+1)=brr(j)
brr(j)=b
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort2’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in§8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847–857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log2 N process, not only on average, but also for the worst-case order of input data.
In fact, its worst case is only 20 percent or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references[1,2], or
analyze the program yourself, if you want to understand the details.

A set of N numbersai, i = 1, . . . , N , is said to form a “heap” if it satisfies
the relation

aj/2 ≥ aj for 1 ≤ j/2 < j ≤ N (8.3.1)
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a1

a2 a3

a7a6a5 a4

a8 a9 a10 a11 a12

Figure 8.3.1. Ordering implied by a “heap,” here of 12 elements. Elements connected by an upward
path are sorted with respect to one another, but there is not necessarily any ordering among elements
related only “ laterally.”

Here the division in j/2 means “ integer divide,” i.e., is an exact integer or else is
rounded down to the closest integer. Definition (8.3.1) will make sense if you think
of the numbers ai as being arranged in a binary tree, with the top, “boss,” node being
a1, the two “underling” nodes being a2 and a3, their four underling nodes being a4

througha7, etc. (See Figure 8.3.1.) In this form, a heap has every “supervisor” greater
than or equal to its two “supervisees,” down through the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “ top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promote its largest underling, and so on. The process is like
what happens (or is supposed to happen) in a large corporation when the chairman
of the board retires. You then repeat the whole process by retiring the new chairman
of the board. Evidently the whole thing is an N log2 N process, since each retiring
chairman leads to log2 N promotions of underlings.

Well, how do you arrange the array into a heap in the first place? The answer
is again a “sift-up” process like corporate promotion. Imagine that the corporation
starts out with N/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.
After supervisors are hired, then supervisors of supervisors are hired, and so on up
the corporate ladder. Each employee is brought in at the top of the tree, but then
immediately sifted down, with more capable workers promoted until their proper
corporate level has been reached.

In the Heapsort implementation, the same “sift-up” code can be used for the
initial creation of the heap and for the subsequent retirement-and-promotion phase.
One execution of the Heapsort subroutine represents the entire life-cycle of a giant
corporation: N/2 workers are hired; N/2 potential supervisors are hired; there is a
sifting up in the ranks, a sort of super Peter Principle: in due course, each of the
original employees gets promoted to chairman of the board.
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SUBROUTINE hpsort(n,ra)
INTEGER n
REAL ra(n)

Sorts an array ra(1:n) into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.

INTEGER i,ir,j,l
REAL rra
if (n.lt.2) return

The index l will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.

l=n/2+1
ir=n

10 continue
if(l.gt.1)then Still in hiring phase.

l=l-1
rra=ra(l)

else In retirement-and-promotion phase.
rra=ra(ir) Clear a space at end of array.
ra(ir)=ra(1) Retire the top of the heap into it.
ir=ir-1 Decrease the size of the corporation.
if(ir.eq.1)then Done with the last promotion.

ra(1)=rra The least competent worker of all!
return

endif
endif
i=l Whether in the hiring phase or promotion phase, we here

set up to sift down element rra to its proper level.j=l+l
20 if(j.le.ir)then “Do while j.le.ir:”

if(j.lt.ir)then
if(ra(j).lt.ra(j+1))j=j+1 Compare to the better underling.

endif
if(rra.lt.ra(j))then Demote rra.

ra(i)=ra(j)
i=j
j=j+j

else This is rra’s level. Set j to terminate the sift-down.
j=ir+1

endif
goto 20
endif
ra(i)=rra Put rra into its slot.

goto 10
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of data files. A
data record in such a file may contain several items, or fields. For example, a record
in a file of weather observations may have fields recording time, temperature, and



8.4 Indexing and Ranking 329

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE hpsort(n,ra)
INTEGER n
REAL ra(n)

Sorts an array ra(1:n) into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.

INTEGER i,ir,j,l
REAL rra
if (n.lt.2) return

The index l will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.

l=n/2+1
ir=n

10 continue
if(l.gt.1)then Still in hiring phase.

l=l-1
rra=ra(l)

else In retirement-and-promotion phase.
rra=ra(ir) Clear a space at end of array.
ra(ir)=ra(1) Retire the top of the heap into it.
ir=ir-1 Decrease the size of the corporation.
if(ir.eq.1)then Done with the last promotion.

ra(1)=rra The least competent worker of all!
return

endif
endif
i=l Whether in the hiring phase or promotion phase, we here

set up to sift down element rra to its proper level.j=l+l
20 if(j.le.ir)then “Do while j.le.ir:”

if(j.lt.ir)then
if(ra(j).lt.ra(j+1))j=j+1 Compare to the better underling.

endif
if(rra.lt.ra(j))then Demote rra.

ra(i)=ra(j)
i=j
j=j+j

else This is rra’s level. Set j to terminate the sift-down.
j=ir+1

endif
goto 20
endif
ra(i)=rra Put rra into its slot.

goto 10
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of data files. A
data record in such a file may contain several items, or fields. For example, a record
in a file of weather observations may have fields recording time, temperature, and
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Figure 8.4.1. (a) An unsorted array of six numbers. (b) Index table, whose entries are pointers to the
elements of (a) in ascending order. (c) Rank table, whose entries are the ranks of the corresponding
elements of (a). (d) Sorted array of the elements in (a).

wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called the key field.

For a data file with many records and many fields, the actual movement of N
records into the sorted order of their keys K i, i = 1, . . . , N , can be a daunting task.
Instead, one can construct an index table Ij , j = 1, . . . , N , such that the smallest
Ki has i = I1, the second smallest has i = I2, and so on up to the largest Ki with
i = IN . In other words, the array

KIj j = 1, 2, . . . , N (8.4.1)

is in sorted order when indexed by j. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initialize the
index array with the integers from 1 to N , then perform the Quicksort algorithm,
moving the elements around as if one were sorting the keys. The integer that initially
numbered the smallest key thus ends up in the number one position, and so on.

SUBROUTINE indexx(n,arr,indx)
INTEGER n,indx(n),M,NSTACK
REAL arr(n)
PARAMETER (M=7,NSTACK=50)

Indexes an array arr(1:n), i.e., outputs the array indx(1:n) such that arr(indx(j))
is in ascending order for j = 1, 2, . . . , N . The input quantities n and arr are not changed.
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INTEGER i,indxt,ir,itemp,j,jstack,k,l,istack(NSTACK)
REAL a
do 11 j=1,n

indx(j)=j
enddo 11

jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then
do 13 j=l+1,ir

indxt=indx(j)
a=arr(indxt)
do 12 i=j-1,l,-1

if(arr(indx(i)).le.a)goto 2
indx(i+1)=indx(i)

enddo 12

i=l-1
2 indx(i+1)=indxt

enddo 13

if(jstack.eq.0)return
ir=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2
itemp=indx(k)
indx(k)=indx(l+1)
indx(l+1)=itemp
if(arr(indx(l)).gt.arr(indx(ir)))then

itemp=indx(l)
indx(l)=indx(ir)
indx(ir)=itemp

endif
if(arr(indx(l+1)).gt.arr(indx(ir)))then

itemp=indx(l+1)
indx(l+1)=indx(ir)
indx(ir)=itemp

endif
if(arr(indx(l)).gt.arr(indx(l+1)))then

itemp=indx(l)
indx(l)=indx(l+1)
indx(l+1)=itemp

endif
i=l+1
j=ir
indxt=indx(l+1)
a=arr(indxt)

3 continue
i=i+1

if(arr(indx(i)).lt.a)goto 3
4 continue

j=j-1
if(arr(indx(j)).gt.a)goto 4
if(j.lt.i)goto 5
itemp=indx(i)
indx(i)=indx(j)
indx(j)=itemp
goto 3

5 indx(l+1)=indx(j)
indx(j)=indxt
jstack=jstack+2
if(jstack.gt.NSTACK)pause ’NSTACK too small in indexx’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir



332 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

If you want to sort an array while making the corresponding rearrangement of
several or many other arrays, you should first make an index table, then use it to
rearrange each array in turn. This requires two arrays of working space: one to
hold the index, and another into which an array is temporarily moved, and from
which it is redeposited back on itself in the rearranged order. For 3 arrays, the
procedure looks like this:

SUBROUTINE sort3(n,ra,rb,rc,wksp,iwksp)
INTEGER n,iwksp(n)
REAL ra(n),rb(n),rc(n),wksp(n)

C USES indexx
Sorts an array ra(1:n) into ascending numerical order while making the corresponding
rearrangements of the arrays rb(1:n) and rc(1:n). An index table is constructed via the
routine indexx.

INTEGER j
call indexx(n,ra,iwksp) Make the index table.
do 11 j=1,n Save the array ra.

wksp(j)=ra(j)
enddo 11

do 12 j=1,n Copy it back in the rearranged order.
ra(j)=wksp(iwksp(j))

enddo 12

do 13 j=1,n Ditto rb.
wksp(j)=rb(j)

enddo 13

do 14 j=1,n
rb(j)=wksp(iwksp(j))

enddo 14

do 15 j=1,n Ditto rc.
wksp(j)=rc(j)

enddo 15

do 16 j=1,n
rc(j)=wksp(iwksp(j))

enddo 16

return
END

The generalization to any other number of arrays is obviously straightforward.

A rank table is different from an index table. A rank table’s jth entry gives the
rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to N (if that element was the largest). One can easily construct
a rank table from an index table, however:
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SUBROUTINE rank(n,indx,irank)
INTEGER n,indx(n),irank(n)

Given indx(1:n) as output from the routine indexx, this routine returns an array irank(1:n),
the corresponding table of ranks.

INTEGER j
do 11 j=1,n

irank(indx(j))=j
enddo 11

return
END

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Say that five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is the kth smallest (or, equivalently, the m = N+1−kth largest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Such in place selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k = (N +1)/2. When N is even, statistics books define the median as the arithmetic
mean of the elements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N log N (see [1]). Comparison
with sort in §8.2 should make the following routine obvious:
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SUBROUTINE rank(n,indx,irank)
INTEGER n,indx(n),irank(n)

Given indx(1:n) as output from the routine indexx, this routine returns an array irank(1:n),
the corresponding table of ranks.

INTEGER j
do 11 j=1,n

irank(indx(j))=j
enddo 11

return
END

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Saythat five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is thekth smallest (or, equivalently, them = N+1−kth largest)
element out ofN elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of thekth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Suchin place selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. WhenN is odd, the median is thekth element, with
k = (N +1)/2. WhenN is even, statistics books define the median as the arithmetic
mean of the elementsk = N/2 andk = N/2 + 1 (that is,N/2 from the bottom
andN/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. ForN > 100 we usually definek = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, ispartition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desiredkth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales asN rather than asN log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:
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FUNCTION select(k,n,arr)
INTEGER k,n
REAL select,arr(n)

Returns the kth smallest value in the array arr(1:n). The input array will be rearranged
to have this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in
arbitrary order) and all larger elements in arr[k+1..n] (also in arbitrary order).

INTEGER i,ir,j,l,mid
REAL a,temp
l=1
ir=n

1 if(ir-l.le.1)then Active partition contains 1 or 2 elements.
if(ir-l.eq.1)then Active partition contains 2 elements.

if(arr(ir).lt.arr(l))then
temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
endif
select=arr(k)
return

else
mid=(l+ir)/2 Choose median of left, center, and right elements as par-

titioning element a. Also rearrange so that arr(l) ≤
arr(l+1), arr(ir) ≥ arr(l+1).

temp=arr(mid)
arr(mid)=arr(l+1)
arr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements.
arr(i)=arr(j)
arr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
if(j.ge.k)ir=j-1 Keep active the partition that contains the kth element.
if(j.le.k)l=i

endif
goto 1
END
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In-place, nondestructive, selection is conceptually simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The general idea is to pick some
numberM of elements at random, to sort them, and then to make a pass through
the arraycounting how many elements fall in each of theM + 1 intervals defined
by these elements. Thekth largest will fall in one such interval — call it the “live”
interval. One then does a second round, first pickingM random elements in the live
interval, and then determining which of the new, finer,M + 1 intervals all presently
live elements fall into. And so on, until thekth element is finally localized within a
single array of sizeM , at which point direct selection is possible.

How shall we pickM? The number of rounds,logM N = log2 N/ log2 M ,
will be smaller if M is larger; but the work to locate each element amongM + 1
subintervals will be larger, scaling aslog2 M for bisection, say. Each round
requires looking at allN elements, if only to find those that are still alive, while
the bisections are dominated by theN that occur in the first round. Minimizing
O(N logM N) + O(N log2 M) thus yields the result

M ∼ 2
√

log2 N (8.5.1)

The square root of the logarithm is so slowly varying that secondary considerations of
machine timing become important. We useM = 64 as a convenient constant value.

Two minor additional tricks in the following routine,selip, are (i) augmenting
the set ofM random values by anM + 1st, the arithmetic mean, and (ii) choosing
theM random values “on the fly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlying idea is to
give elementm > M anM/m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

FUNCTION selip(k,n,arr)
INTEGER k,n,M
REAL selip,arr(n),BIG
PARAMETER (M=64,BIG=1.E30)

Returns the kth smallest value in the array arr(1:n). The input array is not altered.
C USES shell

INTEGER i,j,jl,jm,ju,kk,mm,nlo,nxtmm,isel(M+2)
REAL ahi,alo,sum,sel(M+2)
if(k.lt.1.or.k.gt.n.or.n.le.0) pause ’bad input to selip’
kk=k
ahi=BIG
alo=-BIG

1 continue Main iteration loop, until desired element is isolated.
mm=0
nlo=0
sum=0.
nxtmm=M+1
do 11 i=1,n Make a pass through the whole array.

if(arr(i).ge.alo.and.arr(i).le.ahi)then Consider only elements in the cur-
rent brackets.mm=mm+1

if(arr(i).eq.alo) nlo=nlo+1 In case of ties for low bracket.
if(mm.le.M)then Statistical procedure for selecting m in-range elements

with equal probability, even without knowing in
advance how many there are!

sel(mm)=arr(i)
else if(mm.eq.nxtmm)then

nxtmm=mm+mm/M
sel(1+mod(i+mm+kk,M))=arr(i) The mod function provides a some-

what random number.endif
sum=sum+arr(i)
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endif
enddo 11

if(kk.le.nlo)then Desired element is tied for lower bound; return it.
selip=alo
return

else if(mm.le.M)then All in-range elements were kept. So return answer by
direct method.call shell(mm,sel)

selip=sel(kk)
return

endif Augment selected set by mean value (fixes degenera-
cies), and sort it.sel(M+1)=sum/mm

call shell(M+1,sel)
sel(M+2)=ahi
do 12 j=1,M+2 Zero the count array.

isel(j)=0
enddo 12

do 13 i=1,n Make another pass through the whole array.
if(arr(i).ge.alo.and.arr(i).le.ahi)then For each in-range element..

jl=0
ju=M+2

2 if(ju-jl.gt.1)then ...find its position among the select by bisection...
jm=(ju+jl)/2
if(arr(i).ge.sel(jm))then

jl=jm
else

ju=jm
endif

goto 2
endif
isel(ju)=isel(ju)+1 ...and increment the counter.

endif
enddo 13

j=1 Now we can narrow the bounds to just one bin, that
is, by a factor of order m.3 if(kk.gt.isel(j))then

alo=sel(j)
kk=kk-isel(j)
j=j+1

goto 3
endif
ahi=sel(j)

goto 1
END

Approximate timings:selip is about 10 times slower thanselect. Indeed,
for N in the range of∼ 105, selip is about 1.5 times slower than a full sort with
sort, while select is about 6 times faster thansort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases of
finding the largest, or smallest, element in an array. Those cases, you code by hand
as simpledo loops. There are also good ways to code the case wherek is modest in
comparison toN , so that extra memory of orderk is not burdensome. An example
is to use the method of Heapsort (§8.3) to make a single pass through an array of
lengthN while saving them largest elements. The advantage of the heap structure
is that onlylog m, rather thanm, comparisons are required every time a new element
is added to the candidate list. This becomes a real savings whenm > O(

√
N), but

it never hurts otherwise and is easy to code. The following program gives the idea.

SUBROUTINE hpsel(m,n,arr,heap)
INTEGER m,n
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REAL arr(n),heap(m)
C USES sort

Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m � n.

INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause ’probable misuse of hpsel’
do 11 i=1,m

heap(i)=arr(i)
enddo 11

call sort(m,heap) Create initial heap by overkill! We assume m � n.
do 12 i=m+1,n For each remaining element...

if(arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1

1 continue Sift down.
k=2*j
if(k.gt.m)goto 2
if(k.ne.m)then

if(heap(k).gt.heap(k+1))k=k+1
endif
if(heap(j).le.heap(k))goto 2
swap=heap(k)
heap(k)=heap(j)
heap(j)=swap
j=k

goto 1
2 continue

endif
enddo 12

return
end

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There areN “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For example,
you may have a list of facts like: “Element 3 and element 7 are in the same class; element
19 and element 4 are in the same class; element 7 and element 12 are in the same class,. . . .”
Alternatively, you may have a procedure, given the numbers of two elementsj andk, for
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REAL arr(n),heap(m)
C USES sort

Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m � n.

INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause ’probable misuse of hpsel’
do 11 i=1,m

heap(i)=arr(i)
enddo 11

call sort(m,heap) Create initial heap by overkill! We assume m � n.
do 12 i=m+1,n For each remaining element...

if(arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1

1 continue Sift down.
k=2*j
if(k.gt.m)goto 2
if(k.ne.m)then

if(heap(k).gt.heap(k+1))k=k+1
endif
if(heap(j).le.heap(k))goto 2
swap=heap(k)
heap(k)=heap(j)
heap(j)=swap
j=k

goto 1
2 continue

endif
enddo 12

return
end

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There are N “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For example,
you may have a list of facts like: “Element 3 and element 7 are in the same class; element
19 and element 4 are in the same class; element 7 and element 12 are in the same class, . . . .”
Alternatively, you may have a procedure, given the numbers of two elements j and k, for
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deciding whether they are in the same class or different classes. (Recall that an equivalence
relation can be anything satisfying the RST properties: reflexive, symmetric, transitive. This
is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the N elements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: Let F (j) be the class or “family” number of element
j. Start off with each element in its own family, so that F (j) = j. The array F (j) can be
interpreted as a tree structure, where F (j) denotes the parent of j. If we arrange for each family
to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’t matter at all, as long as we graft each related element onto it somewhere.

Therefore, we process each elemental datum “j is equivalent to k” by (i) tracking j
up to its highest ancestor, (ii) tracking k up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements j and reset their F (j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, lista,listb, the interpretation being
that lista(j) and listb(j), j=1...m, are the numbers of two elements which (we are
thus told) are related.

SUBROUTINE eclass(nf,n,lista,listb,m)
INTEGER m,n,lista(m),listb(m),nf(n)
Given m equivalences between pairs of n individual elements in the form of the input arrays
lista(1:m) and listb(1:m), this routine returns in nf(1:n) the number of the equiva-
lence class of each of the n elements, integers between 1 and n (not all such integers used).

INTEGER j,k,l
do 11 k=1,n Initialize each element its own class.

nf(k)=k
enddo 11

do 12 l=1,m For each piece of input information...
j=lista(l)

1 if(nf(j).ne.j)then Track first element up to its ancestor.
j=nf(j)

goto 1
endif
k=listb(l)

2 if(nf(k).ne.k)then Track second element up to its ancestor.
k=nf(k)

goto 2
endif
if(j.ne.k)nf(j)=k If they are not already related, make them so.

enddo 12

do 13 j=1,n Final sweep up to highest ancestors.
3 if(nf(j).ne.nf(nf(j)))then

nf(j)=nf(nf(j))
goto 3
endif

enddo 13

return
END

Alternatively, we may be able to construct a procedure equiv(j,k) that returns a value
.true. if elements j and k are related, or .false. if they are not. Then we want to loop
over all pairs of elements to get the complete picture. D. Eardley has devised a clever way of
doing this while simultaneously sweeping the tree up to high ancestors in a manner that keeps
it current and obviates most of the final sweep phase:
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SUBROUTINE eclazz(nf,n,equiv)
INTEGER n,nf(n)
LOGICAL equiv
EXTERNAL equiv
Given a user-supplied logical function equiv which tells whether a pair of elements, each
in the range 1...n, are related, return in nf equivalence class numbers for each element.

INTEGER jj,kk
nf(1)=1
do 12 jj=2,n Loop over first element of all pairs.

nf(jj)=jj
do 11 kk=1,jj-1 Loop over second element of all pairs.

nf(kk)=nf(nf(kk)) Sweep it up this much.
if (equiv(jj,kk)) nf(nf(nf(kk)))=jj Good exercise for the reader to figure

out why this much ancestry is
necessary!

enddo 11

enddo 12

do 13 jj=1,n Only this much sweeping is needed finally.
nf(jj)=nf(nf(jj))

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.3.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.
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Chapter 9. Root Finding and
Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one
traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be
satisfied simultaneously. You likely once learned the implicit function theorem
which (in this context) gives us the hope of satisfying N equations in N unknowns
simultaneously. Note that we have only hope, not certainty. A nonlinear set of
equations may have no (real) solutions at all. Contrariwise, it may have more than
one solution. The implicit function theorem tells us that “generically” the solutions
will be distinct, pointlike, and separated from each other. If, however, life is so
unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get
a continuous family of solutions. In vector notation, we want to find one or more
N -dimensional solution vectors x such that

f(x) = 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a root
between bracketing values, and then hunt it down like a rabbit. In multidimensions,
you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms

340
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will always converge, provided that the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on having
a good first guess for the solution, especially for multidimensional problems. This
crucial beginning usually depends on analysis rather than numerics. Carefully crafted
initial estimates reward you not only with reduced computational effort, but also
with understanding and increased self-esteem. Hamming’s motto, “the purpose of
computing is insight, not numbers,” is particularly apt in the area of finding roots.
You should repeat this motto aloud whenever your program converges, with ten-digit
accuracy, to the wrong root of a problem, or whenever it fails to converge because
there is actually no root, or because there is a root but your initial estimate was
not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but we
give it nonetheless) never let your iteration method get outside of the best bracketing
bounds obtained at any stage. We will see below that some pedagogically important
algorithms, such as secant method or Newton-Raphson, can violate this last constraint,
and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maintaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist on
bracketing a root, even if it takes the minimum-searching techniques of Chapter 10
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of §10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is
exactly zero, then you have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

• Brent’s algorithm in §9.3 is the method of choice to find a bracketed root
of a general one-dimensional function, when you cannot easily compute
the function’s derivative. Ridders’ method (§9.2) is concise, and a close
competitor.

• When you can compute the function’s derivative, the routine rtsafe in
§9.4, which combines the Newton-Raphson method with some bookkeep-
ing on bounds, is recommended. Again, you must first bracket your root.

• Roots of polynomials are a special case. Laguerre’s method, in §9.5,
is recommended as a starting point. Beware: Some polynomials are
ill-conditioned!

• Finally, for multidimensional problems, the only elementary method is
Newton-Raphson (§9.6), which works very well if you can supply a
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good first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives.

Avoiding implementations for specific computers, this book must generally
steer clear of interactive or graphics-related routines. We make an exception right
now. The following routine, which produces a crude function plot with interactively
scaled axes, can save you a lot of grief as you enter the world of root finding.

SUBROUTINE scrsho(fx)
INTEGER ISCR,JSCR
REAL fx
EXTERNAL fx
PARAMETER (ISCR=60,JSCR=21) Number of horizontal and vertical positions in display.

For interactive CRT terminal use. Produce a crude graph of the function fx over the
prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.

INTEGER i,j,jz
REAL dx,dyj,x,x1,x2,ybig,ysml,y(ISCR)
CHARACTER*1 scr(ISCR,JSCR),blank,zero,yy,xx,ff
SAVE blank,zero,yy,xx,ff
DATA blank,zero,yy,xx,ff/’ ’,’-’,’l’,’-’,’x’/

1 continue
write (*,*) ’ Enter x1,x2 (= to stop)’Query for another plot, quit if x1=x2.
read (*,*) x1,x2
if(x1.eq.x2) return
do 11 j=1,JSCR Fill vertical sides with character ’l’.

scr(1,j)=yy
scr(ISCR,j)=yy

enddo 11

do 13 i=2,ISCR-1
scr(i,1)=xx Fill top, bottom with character ’-’.
scr(i,JSCR)=xx
do 12 j=2,JSCR-1 Fill interior with blanks.

scr(i,j)=blank
enddo 12

enddo 13

dx=(x2-x1)/(ISCR-1)
x=x1
ybig=0. Limits will include 0.
ysml=ybig
do 14 i=1,ISCR Evaluate the function at equal intervals. Find the

largest and smallest values.y(i)=fx(x)
if(y(i).lt.ysml) ysml=y(i)
if(y(i).gt.ybig) ybig=y(i)
x=x+dx

enddo 14

if(ybig.eq.ysml) ybig=ysml+1. Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj Note which row corresponds to 0.
do 15 i=1,ISCR Place an indicator at function height and 0.

scr(i,jz)=zero
j=1+(y(i)-ysml)*dyj
scr(i,j)=ff

enddo 15

write (*,’(1x,1pe10.3,1x,80a1)’) ybig,(scr(i,JSCR),i=1,ISCR)
do 16 j=JSCR-1,2,-1 Display.

write (*,’(12x,80a1)’) (scr(i,j),i=1,ISCR)
enddo 16

write (*,’(1x,1pe10.3,1x,80a1)’) ysml,(scr(i,1),i=1,ISCR)
write (*,’(12x,1pe10.3,40x,e10.3)’) x1,x2
goto 1
END
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CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 5.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapters 2, 7, and 14.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a, b) if f(a) and f(b) have
opposite signs. If the function is continuous, then at least one root must lie in
that interval (the intermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x − c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any
number x close to it, for a root, since mere evaluation of |f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual if your function has opposite
signs in the limit x → ±∞.
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9.1 Bracketing and Bisection

We will say that a root isbracketed in the interval(a, b) if f(a) andf(b) have
opposite signs. If the function is continuous, then at least one root must lie in
that interval (theintermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x − c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistakingc, or any
numberx close to it, for a root, since mere evaluation of|f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of aboutx = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual if your function has opposite
signs in the limitx → ±∞.
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a b

(b)

x1

e f c x1 d a b

b

a

(c)

(d)

(a)

x2 x3

Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root x1 bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.
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SUBROUTINE zbrac(func,x1,x2,succes)
INTEGER NTRY
REAL x1,x2,func,FACTOR
EXTERNAL func
PARAMETER (FACTOR=1.6,NTRY=50)

Given a function func and an initial guessed range x1 to x2, the routine expands the range
geometrically until a root is bracketed by the returned values x1 and x2 (in which case
succes returns as .true.) or until the range becomes unacceptably large (in which case
succes returns as .false.).

INTEGER j
REAL f1,f2
LOGICAL succes
if(x1.eq.x2)pause ’you have to guess an initial range in zbrac’
f1=func(x1)
f2=func(x2)
succes=.true.
do 11 j=1,NTRY

if(f1*f2.lt.0.)return
if(abs(f1).lt.abs(f2))then

x1=x1+FACTOR*(x1-x2)
f1=func(x1)

else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)

endif
enddo 11

succes=.false.
return
END

Alternatively, you might want to “ look inward” on an initial interval, rather
than “ look outward” from it, asking if there are any roots of the function f(x) in
the interval from x1 to x2 when a search is carried out by subdivision into n equal
intervals. The following subroutine returns brackets for up to nb distinct intervals
which each contain one or more roots.

SUBROUTINE zbrak(fx,x1,x2,n,xb1,xb2,nb)
INTEGER n,nb
REAL x1,x2,xb1(nb),xb2(nb),fx
EXTERNAL fx

Given a function fx defined on the interval from x1-x2 subdivide the interval into n equally
spaced segments, and search for zero crossings of the function. nb is input as the maxi-
mum number of roots sought, and is reset to the number of bracketing pairs xb1(1:nb),
xb2(1:nb) that are found.

INTEGER i,nbb
REAL dx,fc,fp,x
nbb=0
x=x1
dx=(x2-x1)/n Determine the spacing appropriate to the mesh.
fp=fx(x)
do 11 i=1,n Loop over all intervals

x=x+dx
fc=fx(x)
if(fc*fp.le.0.) then If a sign change occurs then record values for the bounds.

nbb=nbb+1
xb1(nbb)=x-dx
xb2(nbb)=x
if(nbb.eq.nb)goto 1

endif
fp=fc

enddo 11
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1 continue
nb=nbb
return
END

Bisection Method

Once we know that an interval contains a root, several classical procedures are
available to refine it. These proceed with varying degrees of speed and sureness
towards the answer. Unfortunately, the methods that are guaranteed to converge plod
along most slowly, while those that rush to the solution in the best cases can also dash
rapidly to infinity without warning if measures are not taken to avoid such behavior.

The bisection method is one that cannot fail. It is thus not to be sneered at as
a method for otherwise badly behaved problems. The idea is simple. Over some
interval the function is known to pass through zero because it changes sign. Evaluate
the function at the interval’s midpoint and examine its sign. Use the midpoint to
replace whichever limit has the same sign. After each iteration the bounds containing
the root decrease by a factor of two. If after n iterations the root is known to
be within an interval of size εn, then after the next iteration it will be bracketed
within an interval of size

εn+1 = εn/2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

n = log2

ε0
ε

(9.1.3)

where ε0 is the size of the initially bracketing interval, ε is the desired ending
tolerance.

Bisection must succeed. If the interval happens to contain two or more roots,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When a method converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to converge linearly. Methods
that converge as a higher power,

εn+1 = constant × (εn)m m > 1 (9.1.4)

are said to converge superlinearly. In other contexts “ linear” convergence would be
termed “exponential,” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.

It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that computers use a fixed number of binary digits to represent floating-point
numbers. While your function might analytically pass through zero, it is possible
that its computed value is never zero, for any floating-point argument. One must
decide what accuracy on the root is attainable: Convergence to within 10−6 in
absolute value is reasonable when the root lies near 1, but certainly unachievable if
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the root lies near 1026. One might thus think to specify convergence by a relative
(fractional) criterion, but this becomes unworkable for roots near zero. To be most
general, the routines below will require you to specify an absolute tolerance, such that
iterations continue until the interval becomes smaller than this tolerance in absolute
units. Usually you may wish to take the tolerance to be ε(|x1|+ |x2|)/2 where ε is the
machine precision and x1 and x2 are the initial brackets. When the root lies near zero
you ought to consider carefully what reasonable tolerance means for your function.
The following routine quits after 40 bisections in any event, with 2−40 ≈ 10−12.

FUNCTION rtbis(func,x1,x2,xacc)
INTEGER JMAX
REAL rtbis,x1,x2,xacc,func
EXTERNAL func
PARAMETER (JMAX=40) Maximum allowed number of bisections.

Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if(f*fmid.ge.0.) pause ’root must be bracketed in rtbis’
if(f.lt.0.)then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

endif
do 11 j=1,JMAX Bisection loop.

dx=dx*.5
xmid=rtbis+dx
fmid=func(xmid)
if(fmid.le.0.)rtbis=xmid
if(abs(dx).lt.xacc .or. fmid.eq.0.) return

enddo 11

pause ’too many bisections in rtbis’
END

9.2 Secant Method, False Position Method,
and Ridders’ Method

For functions that are smooth near a root, the methods known respectively
as false position (or regula falsi) and secant method generally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration one of
the previous boundary points is discarded in favor of the latest estimate of the root.

The only difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value
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the root lies near 1026. One might thus think to specify convergence by a relative
(fractional) criterion, but this becomes unworkable for roots near zero. To be most
general, the routines below will require you to specify an absolute tolerance, such that
iterations continue until the interval becomes smaller than this tolerance in absolute
units. Usually you may wish to take the tolerance to be ε(|x1|+ |x2|)/2 where ε is the
machine precision and x1 and x2 are the initial brackets. When the root lies near zero
you ought to consider carefully what reasonable tolerance means for your function.
The following routine quits after 40 bisections in any event, with 2−40 ≈ 10−12.

FUNCTION rtbis(func,x1,x2,xacc)
INTEGER JMAX
REAL rtbis,x1,x2,xacc,func
EXTERNAL func
PARAMETER (JMAX=40) Maximum allowed number of bisections.

Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if(f*fmid.ge.0.) pause ’root must be bracketed in rtbis’
if(f.lt.0.)then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

endif
do 11 j=1,JMAX Bisection loop.

dx=dx*.5
xmid=rtbis+dx
fmid=func(xmid)
if(fmid.le.0.)rtbis=xmid
if(abs(dx).lt.xacc .or. fmid.eq.0.) return

enddo 11

pause ’too many bisections in rtbis’
END

9.2 Secant Method, False Position Method,
and Ridders’ Method

For functions that are smooth near a root, the methods known respectively
as false position (or regula falsi) and secant method generally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration one of
the previous boundary points is discarded in favor of the latest estimate of the root.

The only difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value
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f (x)

2

3

4

1

x

Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in
the order that they are used.

f (x)

x

4

3

2

1

Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.
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2
f (x)

1 3 4

x

Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

has opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio” 1.618 . . . ,
so that

lim
k→∞

|εk+1| ≈ const × |εk|1.618 (9.2.1)

The secant method has, however, the disadvantage that the root does not necessarily
remain bracketed. For functions that are not sufficiently continuous, the algorithm
can therefore not be guaranteed to converge: Local behavior might send it off
towards infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimes be kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare, Ridders’ method, described below, or Brent’s
method, in the next section, are almost always better choices. Figure 9.2.3 shows the
behavior of secant and false-position methods in a difficult situation.

FUNCTION rtflsp(func,x1,x2,xacc)
INTEGER MAXIT
REAL rtflsp,x1,x2,xacc,func
EXTERNAL func
PARAMETER (MAXIT=30) Set to the maximum allowed number of iterations.
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Using the false position method, find the root of a function func known to lie between x1
and x2. The root, returned as rtflsp, is refined until its accuracy is ±xacc.

INTEGER j
REAL del,dx,f,fh,fl,swap,xh,xl
fl=func(x1)
fh=func(x2) Be sure the interval brackets a root.
if(fl*fh.gt.0.) pause ’root must be bracketed in rtflsp’
if(fl.lt.0.)then Identify the limits so that xl corresponds to the low side.

xl=x1
xh=x2

else
xl=x2
xh=x1
swap=fl
fl=fh
fh=swap

endif
dx=xh-xl
do 11 j=1,MAXIT False position loop.

rtflsp=xl+dx*fl/(fl-fh) Increment with respect to latest value.
f=func(rtflsp)
if(f.lt.0.) then Replace appropriate limit.

del=xl-rtflsp
xl=rtflsp
fl=f

else
del=xh-rtflsp
xh=rtflsp
fh=f

endif
dx=xh-xl
if(abs(del).lt.xacc.or.f.eq.0.)return Convergence.

enddo 11

pause ’rtflsp exceed maximum iterations’
END

FUNCTION rtsec(func,x1,x2,xacc)
INTEGER MAXIT
REAL rtsec,x1,x2,xacc,func
EXTERNAL func
PARAMETER (MAXIT=30) Maximum allowed number of iterations.

Using the secant method, find the root of a function func thought to lie between x1 and
x2. The root, returned as rtsec, is refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fl,swap,xl
fl=func(x1)
f=func(x2)
if(abs(fl).lt.abs(f))then Pick the bound with the smaller function value as the most

recent guess.rtsec=x1
xl=x2
swap=fl
fl=f
f=swap

else
xl=x1
rtsec=x2

endif
do 11 j=1,MAXIT Secant loop.

dx=(xl-rtsec)*f/(f-fl) Increment with respect to latest value.
xl=rtsec
fl=f
rtsec=rtsec+dx
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f=func(rtsec)
if(abs(dx).lt.xacc.or.f.eq.0.)return Convergence.

enddo 11

pause ’rtsec exceed maximum iterations’
END

Ridders’ Method

A powerful variant on false position is due to Ridders [1]. When a root is
bracketed between x1 and x2, Ridders’ method first evaluates the function at the
midpoint x3 = (x1 + x2)/2. It then factors out that unique exponential function
which turns the residual function into a straight line. Specifically, it solves for a
factor eQ that gives

f(x1) − 2f(x3)eQ + f(x2)e2Q = 0 (9.2.2)

This is a quadratic equation in eQ, which can be solved to give

eQ =
f(x3) + sign[f(x2)]

√
f(x3)2 − f(x1)f(x2)

f(x2)
(9.2.3)

Now the false position method is applied, not to the values f(x1), f(x3), f(x2), but
to the values f(x1), f(x3)eQ, f(x2)e2Q, yielding a new guess for the root, x4. The
overall updating formula (incorporating the solution 9.2.3) is

x4 = x3 + (x3 − x1)
sign[f(x1) − f(x2)]f(x3)√

f(x3)2 − f(x1)f(x2)
(9.2.4)

Equation (9.2.4) has some very nice properties. First, x4 is guaranteed to lie
in the interval (x1, x2), so the method never jumps out of its brackets. Second,
the convergence of successive applications of equation (9.2.4) is quadratic, that is,
m = 2 in equation (9.1.4). Since each application of (9.2.4) requires two function
evaluations, the actual order of the method is

√
2, not 2; but this is still quite

respectably superlinear: the number of significant digits in the answer approximately
doubles with each two function evaluations. Third, taking out the function’s “bend”
via exponential (that is, ratio) factors, rather than via a polynomial technique (e.g.,
fitting a parabola), turns out to give an extraordinarily robust algorithm. In both
reliability and speed, Ridders’ method is generally competitive with the more highly
developed and better established (but more complicated) method of Van Wijngaarden,
Dekker, and Brent, which we next discuss.

FUNCTION zriddr(func,x1,x2,xacc)
INTEGER MAXIT
REAL zriddr,x1,x2,xacc,func,UNUSED
PARAMETER (MAXIT=60,UNUSED=-1.11E30)
EXTERNAL func

C USES func
Using Ridders’ method, return the root of a function func known to lie between x1 and
x2. The root, returned as zriddr, will be refined to an approximate accuracy xacc.

INTEGER j
REAL fh,fl,fm,fnew,s,xh,xl,xm,xnew
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fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do 11 j=1,MAXIT
xm=0.5*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if(s.eq.0.)return
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr).le.xacc) return
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew.eq.0.) return
if(sign(fm,fnew).ne.fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if(sign(fl,fnew).ne.fl) then
xh=zriddr
fh=fnew

else if(sign(fh,fnew).ne.fh) then
xl=zriddr
fl=fnew

else
pause ’never get here in zriddr’

endif
if(abs(xh-xl).le.xacc) return

enddo 11

pause ’zriddr exceed maximum iterations’
else if (fl.eq.0.) then

zriddr=x1
else if (fh.eq.0.) then

zriddr=x2
else

pause ’root must be bracketed in zriddr’
endif
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980. [1]

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.
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fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do 11 j=1,MAXIT
xm=0.5*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if(s.eq.0.)return
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr).le.xacc) return
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew.eq.0.) return
if(sign(fm,fnew).ne.fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if(sign(fl,fnew).ne.fl) then
xh=zriddr
fh=fnew

else if(sign(fh,fnew).ne.fh) then
xl=zriddr
fl=fnew

else
pause ’never get here in zriddr’

endif
if(abs(xh-xl).le.xacc) return

enddo 11

pause ’zriddr exceed maximum iterations’
else if (fl.eq.0.) then

zriddr=x1
else if (fh.eq.0.) then

zriddr=x2
else

pause ’root must be bracketed in zriddr’
endif
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980. [1]

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.
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These can be choppy, discontinuous functions, or even smooth functions if the
second derivative changes sharply near the root. Bisection always halves the interval,
while secant and false position can sometimes spend many cycles slowly pulling
distant bounds closer to a root. Ridders’ method does a much better job, but it
too can sometimes be fooled. Is there a way to combine superlinear convergence
with the sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guarantee at least linear convergence. This kind of super-strategy
requires attention to bookkeeping detail, and also careful consideration of how
roundoff errors can affect the guiding strategy. Also, we must be able to determine
reliably when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center
in Amsterdam, and later improved by Brent [1]. For brevity, we refer to the final
form of the algorithm as Brent’s method. The method is guaranteed (by Brent)
to converge, so long as the function can be evaluated within the initial interval
known to contain a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic
interpolation to converge from the neighborhood of a zero crossing. While the false
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function of y) whose value at y = 0 is
taken as the next estimate of the root x. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of
all that. If the three point pairs are [a, f(a)], [b, f(b)], [c, f(c)] then the interpolation
formula (cf. equation 3.1.1) is

x =
[y − f(a)][y − f(b)]c

[f(c) − f(a)][f(c) − f(b)]
+

[y − f(b)][y − f(c)]a
[f(a) − f(b)][f(a) − f(c)]

+
[y − f(c)][y − f(a)]b

[f(b) − f(c)][f(b) − f(a)]

(9.3.1)

Setting y to zero gives a result for the next root estimate, which can be written as

x = b + P/Q (9.3.2)

where, in terms of

R ≡ f(b)/f(c), S ≡ f(b)/f(a), T ≡ f(a)/f(c) (9.3.3)

we have

P = S [T (R − T )(c − b) − (1 − R)(b − a)] (9.3.4)
Q = (T − 1)(R − 1)(S − 1) (9.3.5)

In practice b is the current best estimate of the root and P/Q ought to be a “small”
correction. Quadratic methods work well only when the function behaves smoothly;
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they run the serious risk of giving very bad estimates of the next root or causing
machine failure by an inappropriate division by a very small number (Q ≈ 0).
Brent’s method guards against this problem by maintaining brackets on the root
and checking where the interpolation would land before carrying out the division.
When the correction P/Q would not land within the bounds, or when the bounds
are not collapsing rapidly enough, the algorithm takes a bisection step. Thus,
Brent’s method combines the sureness of bisection with the speed of a higher-order
method when appropriate. We recommend it as the method of choice for general
one-dimensional root finding where a function’s values only (and not its derivative
or functional form) are available.

FUNCTION zbrent(func,x1,x2,tol)
INTEGER ITMAX
REAL zbrent,tol,x1,x2,func,EPS
EXTERNAL func
PARAMETER (ITMAX=100,EPS=3.e-8)

Using Brent’s method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER iter
REAL a,b,c,d,e,fa,fb,fc,p,q,r,

* s,tol1,xm
a=x1
b=x2
fa=func(a)
fb=func(b)
if((fa.gt.0..and.fb.gt.0.).or.(fa.lt.0..and.fb.lt.0.))

* pause ’root must be bracketed for zbrent’
c=b
fc=fb
do 11 iter=1,ITMAX

if((fb.gt.0..and.fc.gt.0.).or.(fb.lt.0..and.fc.lt.0.))then
c=a Rename a, b, c and adjust bounding interval d.
fc=fa
d=b-a
e=d

endif
if(abs(fc).lt.abs(fb)) then

a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

endif
tol1=2.*EPS*abs(b)+0.5*tol Convergence check.
xm=.5*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.)then

zbrent=b
return

endif
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then

s=fb/fa Attempt inverse quadratic interpolation.
if(a.eq.c) then

p=2.*xm*s
q=1.-s

else
q=fa/fc
r=fb/fc
p=s*(2.*xm*q*(q-r)-(b-a)*(r-1.))
q=(q-1.)*(r-1.)*(s-1.)
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endif
if(p.gt.0.) q=-q Check whether in bounds.
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
d=p/q

else
d=xm Interpolation failed, use bisection.
e=d

endif
else Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
fb=func(b)

enddo 11

pause ’zbrent exceeding maximum iterations’
zbrent=b
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is New-
ton’s method, also called the Newton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the function f(x), and the derivative f ′(x), at arbitrary points x. The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current point xi until it crosses zero, then setting the next guess xi+1 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + . . . . (9.4.1)

For small enough values of δ, and for well-behaved functions, the terms beyond
linear are unimportant, hence f(x + δ) = 0 implies

δ = − f(x)
f ′(x)

. (9.4.2)
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endif
if(p.gt.0.) q=-q Check whether in bounds.
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
d=p/q

else
d=xm Interpolation failed, use bisection.
e=d

endif
else Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
fb=func(b)

enddo 11

pause ’zbrent exceeding maximum iterations’
zbrent=b
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is New-
ton’s method, also called the Newton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the function f(x), and the derivative f ′(x), at arbitrary points x. The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current point xi until it crosses zero, then setting the next guess xi+1 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + . . . . (9.4.1)

For small enough values of δ, and for well-behaved functions, the terms beyond
linear are unimportant, hence f(x + δ) = 0 implies

δ = − f(x)
f ′(x)

. (9.4.2)
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Newton-Raphson is not restricted to one dimension. The method readily
generalizes to multiple dimensions, as we shall see in §9.6 and §9.7, below.

Far from a root, where the higher-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let
the search interval include a local maximum or minimum of the function. This can
be death to the method (see Figure 9.4.2). If an iteration places a trial guess near
such a local extremum, so that the first derivative nearly vanishes, then Newton-
Raphson sends its solution off to limbo, with vanishingly small hope of recovery.
Like most powerful tools, Newton-Raphson can be destructive used in inappropriate
circumstances. Figure 9.4.3 demonstrates another possible pathology.

Why do we call Newton-Raphson powerful? The answer lies in its rate of
convergence: Within a small distance ε of x the function and its derivative are
approximately:

f(x + ε) = f(x) + εf ′(x) + ε2
f ′′(x)

2
+ · · · ,

f ′(x + ε) = f ′(x) + εf ′′(x) + · · ·
(9.4.3)

By the Newton-Raphson formula,

xi+1 = xi − f(xi)
f ′(xi)

, (9.4.4)

so that

εi+1 = εi − f(xi)
f ′(xi)

. (9.4.5)

When a trial solution xi differs from the true root by εi, we can use (9.4.3) to express
f(xi), f ′(xi) in (9.4.4) in terms of εi and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

εi+1 = −ε2i
f ′′(x)
2f ′(x)

. (9.4.6)

Equation (9.4.6) says that Newton-Raphson converges quadratically(cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximately doubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of its poor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two
or four its number of significant figures!

For an efficient realization of Newton-Raphson the user provides a routine that
evaluates both f(x) and its first derivative f ′(x) at the point x. The Newton-Raphson
formula can also be applied using a numerical difference to approximate the true
local derivative,

f ′(x) ≈ f(x + dx) − f(x)
dx

. (9.4.7)
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1

2

3

x

f (x)

Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.

f (x)

x

1

2
3

Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as in rtsafe, would save the day.
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x

f (x)

2

1

Figure 9.4.3. Unfortunate case where Newton’s method enters a nonconvergent cycle. This behavior
is often encountered when the function f is obtained, in whole or in part, by table interpolation. With
a better initial guess, the method would have succeeded.

This is not, however, a recommended procedure for the following reasons: (i) You
are doing two function evaluations per step, so at best the superlinear order of
convergence will be only

√
2. (ii) If you take dx too small you will be wiped out

by roundoff, while if you take it too large your order of convergence will be only
linear, no better than using the initial evaluation f ′(x0) for all subsequent steps.
Therefore, Newton-Raphson with numerical derivatives is (in one dimension) always
dominated by the secant method of §9.2. (In multidimensions, where there is a
paucity of available methods, Newton-Raphson with numerical derivatives must be
taken more seriously. See §§9.6–9.7.)

The following subroutine calls a user supplied subroutine funcd(x,fn,df)
which returns the function value as fn and the derivative as df. We have included
input bounds on the root simply to be consistent with previous root-finding routines:
Newton does not adjust bounds, and works only on local information at the point
x. The bounds are used only to pick the midpoint as the first guess, and to reject
the solution if it wanders outside of the bounds.

FUNCTION rtnewt(funcd,x1,x2,xacc)
INTEGER JMAX
REAL rtnewt,x1,x2,xacc
EXTERNAL funcd
PARAMETER (JMAX=20) Set to maximum number of iterations.

Using the Newton-Raphson method, find the root of a function known to lie in the interval
[x1, x2]. The root rtnewt will be refined until its accuracy is known within ±xacc. funcd
is a user-supplied subroutine that returns both the function value and the first derivative
of the function at the point x.

INTEGER j
REAL df,dx,f
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rtnewt=.5*(x1+x2) Initial guess.
do 11 j=1,JMAX

call funcd(rtnewt,f,df)
dx=f/df
rtnewt=rtnewt-dx
if((x1-rtnewt)*(rtnewt-x2).lt.0.)

* pause ’rtnewt jumped out of brackets’
if(abs(dx).lt.xacc) return Convergence.

enddo 11

pause ’rtnewt exceeded maximum iterations’
END

While Newton-Raphson’s global convergence properties are poor, it is fairly
easy to design a fail-safe routine that utilizes a combination of bisection and Newton-
Raphson. The hybrid algorithm takes a bisection step whenever Newton-Raphson
would take the solution out of bounds, or whenever Newton-Raphson is not reducing
the size of the brackets rapidly enough.

FUNCTION rtsafe(funcd,x1,x2,xacc)
INTEGER MAXIT
REAL rtsafe,x1,x2,xacc
EXTERNAL funcd
PARAMETER (MAXIT=100) Maximum allowed number of iterations.

Using a combination of Newton-Raphson and bisection, find the root of a function bracketed
between x1 and x2. The root, returned as the function value rtsafe, will be refined until
its accuracy is known within ±xacc. funcd is a user-supplied subroutine which returns
both the function value and the first derivative of the function.

INTEGER j
REAL df,dx,dxold,f,fh,fl,temp,xh,xl
call funcd(x1,fl,df)
call funcd(x2,fh,df)
if((fl.gt.0..and.fh.gt.0.).or.(fl.lt.0..and.fh.lt.0.))

* pause ’root must be bracketed in rtsafe’
if(fl.eq.0.)then

rtsafe=x1
return

else if(fh.eq.0.)then
rtsafe=x2
return

else if(fl.lt.0.)then Orient the search so that f(xl) < 0.
xl=x1
xh=x2

else
xh=x1
xl=x2

endif
rtsafe=.5*(x1+x2) Initialize the guess for root,
dxold=abs(x2-x1) the “stepsize before last,”
dx=dxold and the last step.
call funcd(rtsafe,f,df)
do 11 j=1,MAXIT Loop over allowed iterations.

if(((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f).gt.0. Bisect if Newton out of range,
* .or. abs(2.*f).gt.abs(dxold*df) ) then or not decreasing fast enough.

dxold=dx
dx=0.5*(xh-xl)
rtsafe=xl+dx
if(xl.eq.rtsafe)return Change in root is negligible.

else Newton step acceptable. Take it.
dxold=dx
dx=f/df
temp=rtsafe
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rtsafe=rtsafe-dx
if(temp.eq.rtsafe)return

endif
if(abs(dx).lt.xacc) return Convergence criterion.
call funcd(rtsafe,f,df) The one new function evaluation per iteration.
if(f.lt.0.) then Maintain the bracket on the root.

xl=rtsafe
else

xh=rtsafe
endif

enddo 11

pause ’rtsafe exceeding maximum iterations’
return
END

For many functions the derivative f ′(x) often converges to machine accuracy
before the function f(x) itself does. When that is the case one need not subsequently
update f ′(x). This shortcut is recommended only when you confidently understand
the generic behavior of your function, but it speeds computations when the derivative
calculation is laborious. (Formally this makes the convergence only linear, but if the
derivative isn’t changing anyway, you can do no better.)

Newton-Raphson and Fractals

An interesting sidelight to our repeated warnings about Newton-Raphson’s
unpredictable global convergence properties — its very rapid local convergence
notwithstanding — is to investigate, for some particular equation, the set of starting
values from which the method does, or doesn’t converge to a root.

Consider the simple equation

z3 − 1 = 0 (9.4.8)

whose single real root is z = 1, but which also has complex roots at the other two
cube roots of unity, exp(±2πi/3). Newton’s method gives the iteration

zj+1 = zj −
z3

j − 1
3z2

j

(9.4.9)

Up to now, we have applied an iteration like equation (9.4.9) only for real
starting values z0, but in fact all of the equations in this section also apply in the
complex plane. We can therefore map out the complex plane into regions from which
a starting value z0, iterated in equation (9.4.9), will, or won’t, converge to z = 1.
Naively, we might expect to find a “basin of convergence” somehow surrounding
the root z = 1. We surely do not expect the basin of convergence to fill the whole
plane, because the plane must also contain regions that converge to each of the two
complex roots. In fact, by symmetry, the three regions must have identical shapes.
Perhaps they will be three symmetric 120◦ wedges, with one root centered in each?

Now take a look at Figure 9.4.4, which shows the result of a numerical
exploration. The basin of convergence does indeed cover 1/3 the area of the complex
plane, but its boundary is highly irregular — in fact, fractal. (A fractal, so called,
has self-similar structure that repeats on all scales of magnification.) How does this
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Figure 9.4.4. The complex z plane with real and imaginary components in the range (−2, 2). The
black region is the set of points from which Newton’s method converges to the root z = 1 of the equation
z3 − 1 = 0. Its shape is fractal.

fractal emerge from something as simple as Newton’s method, and an equation as
simple as (9.4.8)? The answer is already implicit in Figure 9.4.2, which showed how,
on the real line, a local extremum causes Newton’s method to shoot off to infinity.
Suppose one is slightly removed from such a point. Then one might be shot off
not to infinity, but — by luck — right into the basin of convergence of the desired
root. But that means that in the neighborhood of an extremum there must be a tiny,
perhaps distorted, copy of the basin of convergence — a kind of “one-bounce away”
copy. Similar logic shows that there can be “two-bounce” copies, “three-bounce”
copies, and so on. A fractal thus emerges.

Notice that, for equation (9.4.8), almost the whole real axis is in the domain of
convergence for the root z = 1. We say “almost” because of the peculiar discrete
points on the negative real axis whose convergence is indeterminate (see figure).
What happens if you start Newton’s method from one of these points? (Try it.)
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Verlag).

9.5 Roots of Polynomials

Here we present a few methods for finding roots of polynomials. These will
serve for most practical problems involving polynomials of low-to-moderate degree
or for well-conditioned polynomials of higher degree. Not as well appreciated as it
ought to be is the fact that some polynomials are exceedingly ill-conditioned. The
tiniest changes in a polynomial’s coefficients can, in the worst case, send its roots
sprawling all over the complex plane. (An infamous example due to Wilkinson is
detailed by Acton [1].)

Recall that a polynomial of degree n will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate, i.e., if x 1 = a + bi
is a root then x2 = a − bi will also be a root. When the coefficients are complex,
the complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numerical
algorithms (see Figure 9.5.1). For example, P (x) = (x − a)2 has a double real root
at x = a. However, we cannot bracket the root by the usual technique of identifying
neighborhoods where the function changes sign, nor will slope-following methods
such as Newton-Raphson work well, because both the function and its derivative
vanish at a multiple root. Newton-Raphson may work, but slowly, since large
roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

Deflation of Polynomials

When seeking several or all roots of a polynomial, the total effort can be
significantly reduced by the use of deflation. As each root r is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree
one less than the original, i.e., P (x) = (x − r)Q(x). Since the roots of Q are
exactly the remaining roots of P , the effort of finding additional roots decreases,
because we work with polynomials of lower and lower degree as we find successive
roots. Even more important, with deflation we can avoid the blunder of having our
iterative method converge twice to the same (nonmultiple) root instead of separately
to two different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division by a
monomial factor was given in §5.3 above. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

[x − (a + ib)] [x − (a − ib)] = x2 − 2ax + (a2 + b2) (9.5.1)
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9.5 Roots of Polynomials

Here we present a few methods for finding roots of polynomials. These will
serve for most practical problems involving polynomials of low-to-moderate degree
or for well-conditioned polynomials of higher degree. Not as well appreciated as it
ought to be is the fact that some polynomials are exceedingly ill-conditioned. The
tiniest changes in a polynomial’s coefficients can, in the worst case, send its roots
sprawling all over the complex plane. (An infamous example due to Wilkinson is
detailed by Acton [1].)

Recall that a polynomial of degree n will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate, i.e., if x 1 = a + bi
is a root then x2 = a − bi will also be a root. When the coefficients are complex,
the complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numerical
algorithms (see Figure 9.5.1). For example, P (x) = (x − a)2 has a double real root
at x = a. However, we cannot bracket the root by the usual technique of identifying
neighborhoods where the function changes sign, nor will slope-following methods
such as Newton-Raphson work well, because both the function and its derivative
vanish at a multiple root. Newton-Raphson may work, but slowly, since large
roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

Deflation of Polynomials

When seeking several or all roots of a polynomial, the total effort can be
significantly reduced by the use of deflation. As each root r is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree
one less than the original, i.e., P (x) = (x − r)Q(x). Since the roots of Q are
exactly the remaining roots of P , the effort of finding additional roots decreases,
because we work with polynomials of lower and lower degree as we find successive
roots. Even more important, with deflation we can avoid the blunder of having our
iterative method converge twice to the same (nonmultiple) root instead of separately
to two different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division by a
monomial factor was given in §5.3 above. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

[x − (a + ib)] [x − (a − ib)] = x2 − 2ax + (a2 + b2) (9.5.1)
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(a)

x x

(b)

f (x) f (x)

Figure 9.5.1. (a) Linear, quadratic, and cubic behavior at the roots of polynomials. Only under high
magnification (b) does it become apparent that the cubic has one, not three, roots, and that the quadratic
has two roots rather than none.

The routine poldiv in §5.3 can be used to divide the polynomial by this factor.
Deflation must, however, be utilized with care. Because each new root is known

with only finite accuracy, errors creep into the determination of the coefficients of
the successively deflated polynomial. Consequently, the roots can become more and
more inaccurate. It matters a lot whether the inaccuracy creeps in stably (plus or
minus a few multiples of the machine precision at each stage) or unstably (erosion of
successive significant figures until the results become meaningless). Which behavior
occurs depends on just how the root is divided out. Forward deflation, where the
new polynomial coefficients are computed in the order from the highest power of x
down to the constant term, was illustrated in §5.3. This turns out to be stable if the
root of smallest absolute value is divided out at each stage. Alternatively, one can do
backward deflation, where new coefficients are computed in order from the constant
term up to the coefficient of the highest power of x. This is stable if the remaining
root of largest absolute value is divided out at each stage.

A polynomial whose coefficients are interchanged “end-to-end,” so that the
constant becomes the highest coefficient, etc., has its roots mapped into their
reciprocals. (Proof: Divide the whole polynomial by its highest power x n and
rewrite it as a polynomial in 1/x.) The algorithm for backward deflation is therefore
virtually identical to that of forward deflation, except that the original coefficients are
taken in reverse order and the reciprocal of the deflating root is used. Since we will
use forward deflation below, we leave to you the exercise of writing a concise coding
for backward deflation (as in §5.3). For more on the stability of deflation, consult [2].

To minimize the impact of increasing errors (even stable ones) when using
deflation, it is advisable to treat roots of the successively deflated polynomials as
only tentative roots of the original polynomial. One then polishes these tentative roots
by taking them as initial guesses that are to be re-solved for, using the nondeflated
original polynomial P . Again you must beware lest two deflated roots are inaccurate
enough that, under polishing, they both converge to the same undeflated root; in that
case you gain a spurious root-multiplicity and lose a distinct root. This is detectable,
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since you can compare each polished root for equality to previous ones from distinct
tentative roots. When it happens, you are advised to deflate the polynomial just
once (and for this root only), then again polish the tentative root, or to use Maehly’s
procedure (see equation 9.5.29 below).

Below we say more about techniques for polishing real and complex-conjugate
tentative roots. First, let’s get back to overall strategy.

There are two schools of thought about how to proceed when faced with a
polynomial of real coefficients. One school says to go after the easiest quarry, the
real, distinct roots, by the same kinds of methods that we have discussed in previous
sections for general functions, i.e., trial-and-error bracketing followed by a safe
Newton-Raphson as in rtsafe. Sometimes you are only interested in real roots, in
which case the strategy is complete. Otherwise, you then go after quadratic factors
of the form (9.5.1) by any of a variety of methods. One such is Bairstow’s method,
which we will discuss below in the context of root polishing. Another is Muller’s
method, which we here briefly discuss.

Muller’s Method

Muller’s method generalizes the secant method, but uses quadratic interpolation
among three points instead of linear interpolation between two. Solving for the
zeros of the quadratic allows the method to find complex pairs of roots. Given three
previous guesses for the root xi−2, xi−1, xi, and the values of the polynomial P (x)
at those points, the next approximation xi+1 is produced by the following formulas,

q ≡ xi − xi−1

xi−1 − xi−2

A ≡ qP (xi) − q(1 + q)P (xi−1) + q2P (xi−2)

B ≡ (2q + 1)P (xi) − (1 + q)2P (xi−1) + q2P (xi−2)

C ≡ (1 + q)P (xi)

(9.5.2)

followed by

xi+1 = xi − (xi − xi−1)
[

2C

B ±√
B2 − 4AC

]
(9.5.3)

where the sign in the denominator is chosen to make its absolute value or modulus
as large as possible. You can start the iterations with any three values of x that you
like, e.g., three equally spaced values on the real axis. Note that you must allow
for the possibility of a complex denominator, and subsequent complex arithmetic,
in implementing the method.

Muller’s method is sometimes also used for finding complex zeros of analytic
functions (not just polynomials) in the complex plane, for example in the IMSL
routine ZANLY [3].
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Laguerre’s Method

The second school regarding overall strategy happens to be the one to which we
belong. That school advises you to use one of a very small number of methods that
will converge (though with greater or lesser efficiency) to all types of roots: real,
complex, single, or multiple. Use such a method to get tentative values for all n
roots of your nth degree polynomial. Then go back and polish them as you desire.

Laguerre’s method is by far the most straightforward of these general, complex
methods. It does require complex arithmetic, even while converging to real roots;
however, for polynomials with all real roots, it is guaranteed to converge to a
root from any starting point. For polynomials with some complex roots, little is
theoretically proved about the method’s convergence. Much empirical experience,
however, suggests that nonconvergence is extremely unusual, and, further, can almost
always be fixed by a simple scheme to break a nonconverging limit cycle. (This is
implemented in our routine, below.) An example of a polynomial that requires this
cycle-breaking scheme is one of high degree (>∼ 20), with all its roots just outside of
the complex unit circle, approximately equally spaced around it. When the method
converges on a simple complex zero, it is known that its convergence is third order.

In some instances the complex arithmetic in the Laguerre method is no
disadvantage, since the polynomial itself may have complex coefficients.

To motivate (although not rigorously derive) the Laguerre formulas we can note
the following relations between the polynomial and its roots and derivatives

Pn(x) = (x − x1)(x − x2) . . . (x − xn) (9.5.4)

ln |Pn(x)| = ln |x − x1| + ln |x − x2| + . . . + ln |x − xn| (9.5.5)

d ln |Pn(x)|
dx

= +
1

x − x1
+

1
x − x2

+ . . . +
1

x − xn
=

P ′
n

Pn
≡ G (9.5.6)

−d2 ln |Pn(x)|
dx2

= +
1

(x − x1)2
+

1
(x − x2)2

+ . . . +
1

(x − xn)2

=
[
P ′

n

Pn

]2
− P ′′

n

Pn
≡ H (9.5.7)

Starting from these relations, the Laguerre formulas make what Acton [1] nicely calls
“a rather drastic set of assumptions”: The root x1 that we seek is assumed to be
located some distance a from our current guess x, while all other roots are assumed
to be located at a distance b

x − x1 = a ; x − xi = b i = 2, 3, . . . , n (9.5.8)

Then we can express (9.5.6), (9.5.7) as

1
a

+
n − 1

b
= G (9.5.9)

1
a2

+
n − 1

b2
= H (9.5.10)

which yields as the solution for a

a =
n

G ±√(n − 1)(nH − G2)
(9.5.11)
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where the sign should be taken to yield the largest magnitude for the denominator.
Since the factor inside the square root can be negative, a can be complex. (A more
rigorous justification of equation 9.5.11 is in [4].)

The method operates iteratively: For a trial value x, a is calculated by equation
(9.5.11). Then x − a becomes the next trial value. This continues until a is
sufficiently small.

The following routine implements the Laguerre method to find one root of a
given polynomial of degree m, whose coefficients can be complex. As usual, the first
coefficient a(1) is the constant term, while a(m+1) is the coefficient of the highest
power of x. The routine implements a simplified version of an elegant stopping
criterion due to Adams [5], which neatly balances the desire to achieve full machine
accuracy, on the one hand, with the danger of iterating forever in the presence of
roundoff error, on the other.

SUBROUTINE laguer(a,m,x,its)
INTEGER m,its,MAXIT,MR,MT
REAL EPSS
COMPLEX a(m+1),x
PARAMETER (EPSS=2.e-7,MR=8,MT=10,MAXIT=MT*MR)

Given the degree m and the complex coefficients a(1:m+1) of the polynomial
∑m+1

i=1 a(i)xi−1,
and given a complex value x, this routine improves x by Laguerre’s method until it con-
verges, within the achievable roundoff limit, to a root of the given polynomial. The number
of iterations taken is returned as its.
Parameters: EPSS is the estimated fractional roundoff error. We try to break (rare) limit
cycles with MR different fractional values, once every MT steps, for MAXIT total allowed
iterations.

INTEGER iter,j
REAL abx,abp,abm,err,frac(MR)
COMPLEX dx,x1,b,d,f,g,h,sq,gp,gm,g2
SAVE frac
DATA frac /.5,.25,.75,.13,.38,.62,.88,1./ Fractions used to break a limit cycle.
do 12 iter=1,MAXIT Loop over iterations up to allowed maximum.

its=iter
b=a(m+1)
err=abs(b)
d=cmplx(0.,0.)
f=cmplx(0.,0.)
abx=abs(x)
do 11 j=m,1,-1 Efficient computation of the polynomial and its first

two derivatives. f stores P ′′/2.f=x*f+d
d=x*d+b
b=x*b+a(j)
err=abs(b)+abx*err

enddo 11

err=EPSS*err Estimate of roundoff error in evaluating polynomial.
if(abs(b).le.err) then We are on the root.

return
else The generic case: use Laguerre’s formula.

g=d/b
g2=g*g
h=g2-2.*f/b
sq=sqrt((m-1)*(m*h-g2))
gp=g+sq
gm=g-sq
abp=abs(gp)
abm=abs(gm)
if(abp.lt.abm) gp=gm
if (max(abp,abm).gt.0.) then

dx=m/gp
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else
dx=exp(cmplx(log(1.+abx),float(iter)))

endif
endif
x1=x-dx
if(x.eq.x1)return Converged.
if (mod(iter,MT).ne.0) then

x=x1
else Every so often we take a fractional step, to break any

limit cycle (itself a rare occurrence).x=x-dx*frac(iter/MT)
endif

enddo 12

pause ’too many iterations in laguer’ Very unusual — can occur only for complex roots.
return Try a different starting guess for the root.
END

Here is a driver routine that calls laguer in succession for each root, performs
the deflation, optionally polishes the roots by the same Laguerre method — if you
are not going to polish in some other way — and finally sorts the roots by their real
parts. (We will use this routine in Chapter 13.)

SUBROUTINE zroots(a,m,roots,polish)
INTEGER m,MAXM
REAL EPS
COMPLEX a(m+1),roots(m)
LOGICAL polish
PARAMETER (EPS=1.e-6,MAXM=101) A small number and maximum anticipated value of m+1.

C USES laguer

Given the degree m and the complex coefficients a(1:m+1) of the polynomial
∑m+1

i=1 a(i)xi−1,
this routine successively calls laguer and finds all m complex roots. The logical variable
polish should be input as .true. if polishing (also by Laguerre’s method) is desired,
.false. if the roots will be subsequently polished by other means.

INTEGER i,j,jj,its
COMPLEX ad(MAXM),x,b,c
do 11 j=1,m+1 Copy of coefficients for successive deflation.

ad(j)=a(j)
enddo 11

do 13 j=m,1,-1 Loop over each root to be found.
x=cmplx(0.,0.) Start at zero to favor convergence to smallest remaining root.
call laguer(ad,j,x,its) Find the root.
if(abs(aimag(x)).le.2.*EPS**2*abs(real(x))) x=cmplx(real(x),0.)
roots(j)=x
b=ad(j+1) Forward deflation.
do 12 jj=j,1,-1

c=ad(jj)
ad(jj)=b
b=x*b+c

enddo 12

enddo 13

if (polish) then
do 14 j=1,m Polish the roots using the undeflated coefficients.

call laguer(a,m,roots(j),its)
enddo 14

endif
do 16 j=2,m Sort roots by their real parts by straight insertion.

x=roots(j)
do 15 i=j-1,1,-1

if(real(roots(i)).le.real(x))goto 10
roots(i+1)=roots(i)

enddo 15

i=0
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10 roots(i+1)=x
enddo 16

return
END

Eigenvalue Methods

The eigenvalues of a matrix A are the roots of the “characteristic polynomial”
P (x) = det[A − xI]. However, as we will see in Chapter 11, root-finding is not
generally an efficient way to find eigenvalues. Turning matters around, we can
use the more efficient eigenvalue methods that are discussed in Chapter 11 to find
the roots of arbitrary polynomials. You can easily verify (see, e.g., [6]) that the
characteristic polynomial of the special m × m companion matrix

A =




− am
am+1

−am−1
am+1

· · · − a2
am+1

− a1
am+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 1 0




(9.5.12)

is equivalent to the general polynomial

P (x) =
m+1∑
i=1

aix
i−1 (9.5.13)

If the coefficients ai are real, rather than complex, then the eigenvalues of A can be
found using the routines balanc and hqr in §§11.5–11.6 (see discussion there). This
method, implemented in the routine zrhqr following, is typically about a factor 2
slower than zroots (above). However, for some classes of polynomials, it is a more
robust technique, largely because of the fairly sophisticated convergence methods
embodied in hqr. If your polynomial has real coefficients, and you are having
trouble with zroots, then zrhqr is a recommended alternative.

SUBROUTINE zrhqr(a,m,rtr,rti)
INTEGER m,MAXM
REAL a(m+1),rtr(m),rti(m)
PARAMETER (MAXM=50)

C USES balanc,hqr

Find all the roots of a polynomial with real coefficients,
∑m+1

i=1 a(i)xi−1, given the degree
m and the coefficients a(1:m+1). The method is to construct an upper Hessenberg matrix
whose eigenvalues are the desired roots, and then use the routines balanc and hqr. The
real and imaginary parts of the roots are returned in rtr(1:m) and rti(1:m), respectively.

INTEGER j,k
REAL hess(MAXM,MAXM),xr,xi
if (m.gt.MAXM.or.a(m+1).eq.0.) pause ’bad args in zrhqr’
do 12 k=1,m Construct the matrix.

hess(1,k)=-a(m+1-k)/a(m+1)
do 11 j=2,m

hess(j,k)=0.
enddo 11

if (k.ne.m) hess(k+1,k)=1.
enddo 12
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call balanc(hess,m,MAXM) Find its eigenvalues.
call hqr(hess,m,MAXM,rtr,rti)
do 14 j=2,m Sort roots by their real parts by straight insertion.

xr=rtr(j)
xi=rti(j)
do 13 k=j-1,1,-1

if(rtr(k).le.xr)goto 1
rtr(k+1)=rtr(k)
rti(k+1)=rti(k)

enddo 13

k=0
1 rtr(k+1)=xr

rti(k+1)=xi
enddo 14

return
END

Other Sure-Fire Techniques

The Jenkins-Traub method has become practically a standard in black-box
polynomial root-finders, e.g., in the IMSL library [3]. The method is too complicated
to discuss here, but is detailed, with references to the primary literature, in [4].

The Lehmer-Schur algorithm is one of a class of methods that isolate roots in
the complex plane by generalizing the notion of one-dimensional bracketing. It is
possible to determine efficiently whether there are any polynomial roots within a
circle of given center and radius. From then on it is a matter of bookkeeping to
hunt down all the roots by a series of decisions regarding where to place new trial
circles. Consult [1] for an introduction.

Techniques for Root-Polishing

Newton-Raphson works very well for real roots once the neighborhood of
a root has been identified. The polynomial and its derivative can be efficiently
simultaneously evaluated as in §5.3. For a polynomial of degreen-1with coefficients
c(1)...c(n), the following segment of code embodies one cycle of Newton-
Raphson:

p=c(n)*x+c(n-1)
p1=c(n)
do 11 i=n-2,1,-1

p1=p+p1*x
p=c(i)+p*x

enddo 11

if (p1.eq.0.) pause ’derivative should not vanish’
x=x-p/p1

Once all real roots of a polynomial have been polished, one must polish the
complex roots, either directly, or by looking for quadratic factors.

Direct polishing by Newton-Raphson is straightforward for complex roots if the
above code is converted to complex data types. With real polynomial coefficients,
note that your starting guess (tentative root) must be off the real axis, otherwise
you will never get off that axis — and may get shot off to infinity by a minimum
or maximum of the polynomial.
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For real polynomials, the alternative means of polishing complex roots (or, for that
matter, double real roots) is Bairstow’s method, which seeks quadratic factors. The advantage
of going after quadratic factors is that it avoids all complex arithmetic. Bairstow’s method
seeks a quadratic factor that embodies the two roots x = a ± ib, namely

x2 − 2ax + (a2 + b2) ≡ x2 + Bx + C (9.5.14)

In general if we divide a polynomial by a quadratic factor, there will be a linear remainder

P (x) = (x2 + Bx + C)Q(x) + Rx + S. (9.5.15)

Given B and C, R and S can be readily found, by polynomial division (§5.3). We can
consider R and S to be adjustable functions of B and C, and they will be zero if the quadratic
factor is a divisor of P (x).

In the neighborhood of a root a first-order Taylor series expansion approximates the
variation of R, S with respect to small changes in B, C

R(B + δB, C + δC) ≈ R(B, C) +
∂R

∂B
δB +

∂R

∂C
δC (9.5.16)

S(B + δB, C + δC) ≈ S(B, C) +
∂S

∂B
δB +

∂S

∂C
δC (9.5.17)

To evaluate the partial derivatives, consider the derivative of (9.5.15) with respect to C. Since
P (x) is a fixed polynomial, it is independent of C, hence

0 = (x2 + Bx + C)
∂Q

∂C
+ Q(x) +

∂R

∂C
x +

∂S

∂C
(9.5.18)

which can be rewritten as

−Q(x) = (x2 + Bx + C)
∂Q

∂C
+

∂R

∂C
x +

∂S

∂C
(9.5.19)

Similarly, P (x) is independent of B, so differentiating (9.5.15) with respect to B gives

−xQ(x) = (x2 + Bx + C)
∂Q

∂B
+

∂R

∂B
x +

∂S

∂B
(9.5.20)

Now note that equation (9.5.19) matches equation (9.5.15) in form. Thus if we perform a
second synthetic division of P (x), i.e., a division of Q(x), yielding a remainder R1x+S1, then

∂R

∂C
= −R1

∂S

∂C
= −S1 (9.5.21)

To get the remaining partial derivatives, evaluate equation (9.5.20) at the two roots of the
quadratic, x+ and x−. Since

Q(x±) = R1x± + S1 (9.5.22)

we get

∂R

∂B
x+ +

∂S

∂B
= −x+(R1x+ + S1) (9.5.23)

∂R

∂B
x− +

∂S

∂B
= −x−(R1x− + S1) (9.5.24)

Solve these two equations for the partial derivatives, using

x+ + x− = −B x+x− = C (9.5.25)

and find
∂R

∂B
= BR1 − S1

∂S

∂B
= CR1 (9.5.26)

Bairstow’s method now consists of using Newton-Raphson in two dimensions (which is
actually the subject of the next section) to find a simultaneous zero of R and S. Synthetic
division is used twice per cycle to evaluate R, S and their partial derivatives with respect to
B, C. Like one-dimensional Newton-Raphson, the method works well in the vicinity of a root
pair (real or complex), but it can fail miserably when started at a random point. We therefore
recommend it only in the context of polishing tentative complex roots.
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SUBROUTINE qroot(p,n,b,c,eps)
INTEGER n,NMAX,ITMAX
REAL b,c,eps,p(n),TINY
PARAMETER (NMAX=20,ITMAX=20,TINY=1.0e-6)

C USES poldiv
Given coefficients p(1:n) of a polynomial of degree n-1, and trial values for the coefficients
of a quadratic factor x*x+b*x+c, improve the solution until the coefficients b,c change
by less than eps. The routine poldiv §5.3 is used.
Parameters: At most NMAX coefficients, ITMAX iterations.

INTEGER iter
REAL delb,delc,div,r,rb,rc,s,sb,sc,d(3),q(NMAX),qq(NMAX),rem(NMAX)
d(3)=1.
do 11 iter=1,ITMAX

d(2)=b
d(1)=c
call poldiv(p,n,d,3,q,rem)
s=rem(1) First division r,s.
r=rem(2)
call poldiv(q,n-1,d,3,qq,rem)
sc=-rem(1) Second division partial r,s with respect to c.
rc=-rem(2)
sb=-c*rc
rb=sc-b*rc
div=1./(sb*rc-sc*rb) Solve 2x2 equation.
delb=(r*sc-s*rc)*div
delc=(-r*sb+s*rb)*div
b=b+delb
c=c+delc
if((abs(delb).le.eps*abs(b).or.abs(b).lt.TINY)

* .and.(abs(delc).le.eps*abs(c)
* .or.abs(c).lt.TINY)) return Coefficients converged.

enddo 11

pause ’too many iterations in qroot’
END

We have already remarked on the annoyance of having two tentative roots
collapse to one value under polishing. You are left not knowing whether your
polishing procedure has lost a root, or whether there is actually a double root,
which was split only by roundoff errors in your previous deflation. One solution
is deflate-and-repolish; but deflation is what we are trying to avoid at the polishing
stage. An alternative is Maehly’s procedure. Maehly pointed out that the derivative
of the reduced polynomial

Pj(x) ≡ P (x)
(x − x1) · · · (x − xj)

(9.5.27)

can be written as

P ′
j(x) =

P ′(x)
(x − x1) · · · (x − xj)

− P (x)
(x − x1) · · · (x − xj)

j∑
i=1

(x − xi)−1 (9.5.28)

Hence one step of Newton-Raphson, taking a guess xk into a new guess xk+1,
can be written as

xk+1 = xk − P (xk)

P ′(xk) − P (xk)
∑j

i=1(xk − xi)−1
(9.5.29)
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This equation, if used with i ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-called zero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the polishing
stage.
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McGraw-Hill), §8.9–8.13. [4]

Adams, D.A. 1967, Communications of the ACM, vol. 10, pp. 655–658. [5]

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §4.4.3. [6]

Henrici, P. 1974, Applied and Computational Complex Analysis, vol. 1 (New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§5.5–5.9.

9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functions f and g are two arbitrary functions, each of which has zero
contour lines that divide the (x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f ’s point of view, or from g’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N − 1. You
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This equation, if used withi ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-calledzero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the polishing
stage.
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There areno good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) therenever will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functionsf and g are two arbitrary functions, each of which has zero
contour lines that divide the(x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f andg (see Figure 9.6.1). Unfortunately, the functionsf andg have, in general,
no relation to each other at all! There is nothing special about a common point from
eitherf ’s point of view, or fromg’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common toN unrelated zero-contour hypersurfaces, each of dimensionN − 1. You
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g = 0

g
=

0

f = 0

f = 0

f pos
M

g pos

f pos

f pos
f neg

g = 0

g neg

g pos

g neg

g pos

y 

x

no root here!
two roots here

Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer to f(x, y),
dashed curves to g(x, y). Each equation divides the (x, y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

see that root finding becomes virtually impossible without insight! You will almost
always have to use additional information, specific to your particular problem, to
answer such basic questions as, “Do I expect a unique solution?” and “Approximately
where?” Acton [1] has a good discussion of some of the particular strategies that
can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problem gives N functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN ) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi. In the neighborhood of x, each of the functions F i can be expanded
in Taylor series

Fi(x + δx) = Fi(x) +
N∑

j=1

∂Fi

∂xj
δxj + O(δx2). (9.6.3)
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The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian matrix J:

Jij ≡ ∂Fi

∂xj
. (9.6.4)

In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx + O(δx2). (9.6.5)

By neglecting terms of order δx2 and higher and by setting F(x + δx) = 0, we
obtain a set of linear equations for the corrections δx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’ t change.

The following routine mnewt performs ntrial iterations starting from an initial
guess at the solution vector x of length n variables. Iteration stops if either the sum
of the magnitudes of the functions Fi is less than some tolerance tolf, or the sum of
the absolute values of the corrections to δxi is less than some tolerance tolx. mnewt
calls a user supplied subroutine usrfun which must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)
INTEGER n,ntrial,NP
REAL tolf,tolx,x(n)
PARAMETER (NP=15) Up to NP variables.

C USES lubksb,ludcmp,usrfun
Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)
REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)
do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec
and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return
do 12 i=1,n Right-hand side of linear equations.

p(i)=-fvec(i)
enddo 12

call ludcmp(fjac,n,NP,indx,d) Solve linear equations using LU decomposition.
call lubksb(fjac,n,NP,indx,p)
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errx=0. Check root convergence.
do 13 i=1,n Update solution.

errx=errx+abs(p(i))
x(i)=x(i)+p(i)

enddo 13

if(errx.le.tolx)return
enddo 14

return
END

Newton’s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’ t minimization
equivalent to finding a zero of an N -dimensional gradient vector, not so different from
zeroing an N -dimensional function? No! The components of a gradient vector are not
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can always find a minimum by sliding
downhill on a single surface. The test of “downhillness” is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensional root,
where “downhill” must mean simultaneously downhill in N separate function spaces,
thus allowing a multitude of trade-offs, as to how much progress in one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensions into one: Add up the sums of squares of the individual functions
Fi to get a master function F which (i) is positive definite, and (ii) has a global
minimum of zero exactly at all solutions of the original set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithms for finding
minima come to rest on global and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your function F has a great number of local
minima. In Figure 9.6.1, for example, there is likely to be a local minimum wherever
the zero contours of f and g make a close approach to each other. The point labeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F , by
combining it with Newton’s method applied to the full set of functions F i. While
such methods can still occasionally fail by coming to rest on a local minimum of
F , they often succeed where a direct attack via Newton’s method alone fails. The
next section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 14. [1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).
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9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess is
not sufficiently close to the root. A global method is one that converges to a solution
from almost any starting point. In this section we will develop an algorithm that
combines the rapid local convergence of Newton’s method with a globally convergent
strategy that will guarantee some progress towards the solution at each iteration.
The algorithm is closely related to the quasi-Newton method of minimization which
we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)
is

xnew = xold + δx (9.7.2)
where

δx = −J−1 · F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease |F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1
2

F · F (9.7.4)

(The 1
2 is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f . If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction for f , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizes f by taking Newton steps designed
to bring F to zero. This is not equivalent to minimizing f directly by taking Newton
steps designed to bring ∇f to zero. While the method can still occasionally fail by
landing on a local minimum of f , this is quite rare in practice. The routine newt
below will warn you if this happens. The remedy is to try a new starting point.
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9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess is
not sufficiently close to the root. Aglobal method is one that converges to a solution
from almost any starting point. In this section we will develop an algorithm that
combines the rapid local convergenceof Newton’s method with a globally convergent
strategy that will guarantee some progress towards the solution at each iteration.
The algorithm is closely related to the quasi-Newton method of minimization which
we will describe in§10.7.

Recall our discussion of§9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)
is

xnew = xold + δx (9.7.2)
where

δx = −J−1 · F (9.7.3)

HereJ is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease|F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1
2

F · F (9.7.4)

(The 1
2 is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) isnot a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is adescent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reducesf . If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction forf , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizesf by taking Newton steps designed
to bringF to zero. This isnot equivalent to minimizingf directly by taking Newton
steps designed to bring∇f to zero. While the method can still occasionally fail by
landing on a local minimum off , this is quite rare in practice. The routinenewt
below will warn you if this happens. The remedy is to try a new starting point.
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Line Searches and Backtracking

When we are not close enough to the minimum off , taking the full Newton stepp = δx
need not decrease the function; we may move too far for the quadratic approximation to be
valid. All we are guaranteed is thatinitially f decreases as we move in the Newton direction.
So the goal is to move to a new pointxnew along thedirection of the Newton stepp, but
not necessarily all the way:

xnew = xold + λp, 0 < λ ≤ 1 (9.7.6)

The aim is to findλ so thatf(xold + λp) has decreased sufficiently. Until the early 1970s,
standard practice was to chooseλ so thatxnew exactly minimizesf in the directionp. However,
we now know that it is extremely wasteful of function evaluations to do so. A better strategy
is as follows: Sincep is always the Newton direction in our algorithms, we first tryλ = 1, the
full Newton step. This will lead to quadratic convergence whenx is sufficiently close to the
solution. However, iff(xnew) does not meet our acceptance criteria, webacktrack along the
Newton direction, trying a smaller value ofλ, until we find a suitable point. Since the Newton
direction is a descent direction, we are guaranteed to decreasef for sufficiently smallλ.

What should the criterion for accepting a step be? It isnot sufficient to require merely
that f(xnew) < f(xold). This criterion can fail to converge to a minimum off in one of
two ways. First, it is possible to construct a sequence of steps satisfying this criterion with
f decreasing too slowly relative to the step lengths. Second, one can have a sequence where
the step lengths are too small relative to the initial rate of decrease off . (For examples of
such sequences, see[1], p. 117.)

A simple way to fix the first problem is to require theaverage rate of decrease off to
be at least some fractionα of the initial rate of decrease∇f · p:

f(xnew) ≤ f(xold) + α∇f · (xnew − xold) (9.7.7)

Here the parameterα satisfies0 < α < 1. We can get away with quite small values of
α; α = 10−4 is a good choice.

The second problem can be fixed by requiring the rate of decrease off at xnew to be
greater than some fractionβ of the rate of decrease off at xold. In practice, we will not
need to impose this second constraint because our backtracking algorithm will have a built-in
cutoff to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine: Define

g(λ) ≡ f(xold + λp) (9.7.8)

so that

g′(λ) = ∇f · p (9.7.9)

If we need to backtrack, then we modelg with the most current information we have and
chooseλ to minimize the model. We start withg(0) andg′(0) available. The first step is
always the Newton step,λ = 1. If this step is not acceptable, we have availableg(1) as well.
We can therefore modelg(λ) as a quadratic:

g(λ) ≈ [g(1) − g(0) − g′(0)]λ2 + g′(0)λ + g(0) (9.7.10)

Taking the derivative of this quadratic, we find that it is a minimum when

λ = − g′(0)
2[g(1) − g(0) − g′(0)]

(9.7.11)

Since the Newton step failed, we can show thatλ <∼ 1
2

for smallα. We need to guard against
too small a value ofλ, however. We setλmin = 0.1.

On second and subsequent backtracks, we modelg as a cubic inλ, using the previous
value g(λ1) and the second most recent valueg(λ2):

g(λ) = aλ3 + bλ2 + g′(0)λ + g(0) (9.7.12)
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Requiring this expression to give the correct values ofg at λ1 andλ2 gives two equations
that can be solved for the coefficientsa and b:[

a

b

]
=

1

λ1 − λ2

[
1/λ2

1 −1/λ2
2

−λ2/λ2
1 λ1/λ2

2

]
·
[

g(λ1) − g′(0)λ1 − g(0)

g(λ2) − g′(0)λ2 − g(0)

]
(9.7.13)

The minimum of the cubic (9.7.12) is at

λ =
−b +

√
b2 − 3ag′(0)
3a

(9.7.14)

We enforce thatλ lie betweenλmax = 0.5λ1 andλmin = 0.1λ1.
The routine has two additional features, a minimum step lengthalamin and a maximum

step lengthstpmax. lnsrch will also be used in the quasi-Newton minimization routine
dfpmin in the next section.

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax,check,func)
INTEGER n
LOGICAL check
REAL f,fold,stpmax,g(n),p(n),x(n),xold(n),func,ALF,TOLX
PARAMETER (ALF=1.e-4,TOLX=1.e-7)
EXTERNAL func

C USES func
Given an n-dimensional point xold(1:n), the value of the function and gradient there,
fold and g(1:n), and a direction p(1:n), finds a new point x(1:n) along the direction
p from xold where the function func has decreased “sufficiently.” The new function value
is returned in f. stpmax is an input quantity that limits the length of the steps so that you
do not try to evaluate the function in regions where it is undefined or subject to overflow.
p is usually the Newton direction. The output quantity check is false on a normal exit.
It is true when x is too close to xold. In a minimization algorithm, this usually signals
convergence and can be ignored. However, in a zero-finding algorithm the calling program
should check whether the convergence is spurious.
Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on ∆x.

INTEGER i
REAL a,alam,alam2,alamin,b,disc,f2,rhs1,rhs2,slope,

* sum,temp,test,tmplam
check=.false.
sum=0.
do 11 i=1,n

sum=sum+p(i)*p(i)
enddo 11

sum=sqrt(sum)
if(sum.gt.stpmax)then Scale if attempted step is too big.

do 12 i=1,n
p(i)=p(i)*stpmax/sum

enddo 12

endif
slope=0.
do 13 i=1,n

slope=slope+g(i)*p(i)
enddo 13

if(slope.ge.0.) pause ’roundoff problem in lnsrch’
test=0. Compute λmin.
do 14 i=1,n

temp=abs(p(i))/max(abs(xold(i)),1.)
if(temp.gt.test)test=temp

enddo 14

alamin=TOLX/test
alam=1. Always try full Newton step first.

1 continue Start of iteration loop.
do 15 i=1,n

x(i)=xold(i)+alam*p(i)
enddo 15
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f=func(x)
if(alam.lt.alamin)then Convergence on ∆x. For zero finding,

the calling program should verify the
convergence.

do 16 i=1,n
x(i)=xold(i)

enddo 16

check=.true.
return

else if(f.le.fold+ALF*alam*slope)then Sufficient function decrease.
return

else Backtrack.
if(alam.eq.1.)then First time.

tmplam=-slope/(2.*(f-fold-slope))
else Subsequent backtracks.

rhs1=f-fold-alam*slope
rhs2=f2-fold-alam2*slope
a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/

* (alam-alam2)
if(a.eq.0.)then

tmplam=-slope/(2.*b)
else

disc=b*b-3.*a*slope
if(disc.lt.0.)then

tmplam=.5*alam
else if(b.le.0.)then

tmplam=(-b+sqrt(disc))/(3.*a)
else

tmplam=-slope/(b+sqrt(disc))
endif

endif
if(tmplam.gt..5*alam)tmplam=.5*alam λ ≤ 0.5λ1.

endif
endif
alam2=alam
f2=f
alam=max(tmplam,.1*alam) λ ≥ 0.1λ1.

goto 1 Try again.
END

Here now is the globally convergent Newton routinenewt that useslnsrch. A feature
of newt is that you need not supply the Jacobian matrix analytically; the routine will attempt to
compute the necessary partial derivatives ofF by finite differences in the routinefdjac. This
routine uses some of the techniques described in§5.7 for computing numerical derivatives. Of
course, you can always replacefdjac with a routine that calculates the Jacobian analytically
if this is easy for you to do.

SUBROUTINE newt(x,n,check)
INTEGER n,nn,NP,MAXITS
LOGICAL check
REAL x(n),fvec,TOLF,TOLMIN,TOLX,STPMX
PARAMETER (NP=40,MAXITS=200,TOLF=1.e-4,TOLMIN=1.e-6,TOLX=1.e-7,

* STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.
SAVE /newtv/

C USES fdjac,fmin,lnsrch,lubksb,ludcmp
Given an initial guess x(1:n) for a root in n dimensions, find the root by a globally
convergent Newton’s method. The vector of functions to be zeroed, called fvec(1:n)
in the routine below, is returned by a user-supplied subroutine that must be called funcv
and have the declaration subroutine funcv(n,x,fvec). The output quantity check
is false on a normal return and true if the routine has converged to a local minimum of the
function fmin defined below. In this case try restarting from a different initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; TOLF sets the convergence criterion on function values; TOLMIN sets the criterion
for deciding whether spurious convergence to a minimum of fmin has occurred; TOLX is
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the convergence criterion on δx; STPMX is the scaled maximum step length allowed in line
searches.

INTEGER i,its,j,indx(NP)
REAL d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),

* g(NP),p(NP),xold(NP),fmin
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 21 its=1,MAXITS Start of iteration loop.

call fdjac(n,x,fvec,NP,fjac)
If analytic Jacobian is available, you can replace the routine fdjac below with your own
routine.

do 14 i=1,n Compute ∇f for the line search.
sum=0.
do 13 j=1,n

sum=sum+fjac(j,i)*fvec(j)
enddo 13

g(i)=sum
enddo 14

do 15 i=1,n Store x,
xold(i)=x(i)

enddo 15

fold=f and f .
do 16 i=1,n Right-hand side for linear equations.

p(i)=-fvec(i)
enddo 16

call ludcmp(fjac,n,NP,indx,d) Solve linear equations by LU decomposition.
call lubksb(fjac,n,NP,indx,p)
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 17 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 17

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then Check for gradient of f zero, i.e., spurious con-

vergence.test=0.
den=max(f,.5*n)
do 18 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 18

if(test.lt.TOLMIN)then
check=.true.

else
check=.false.

endif
return
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endif
test=0. Test for convergence on δx.
do 19 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

enddo 19

if(test.lt.TOLX)return
enddo 21

pause ’MAXITS exceeded in newt’
END

SUBROUTINE fdjac(n,x,fvec,np,df)
INTEGER n,np,NMAX
REAL df(np,np),fvec(n),x(n),EPS
PARAMETER (NMAX=40,EPS=1.e-4)

C USES funcv
Computes forward-difference approximation to Jacobian. On input, x(1:n) is the point
at which the Jacobian is to be evaluated, fvec(1:n) is the vector of function values at
the point, and np is the physical dimension of the Jacobian array df(1:n,1:n) which is
output. subroutine funcv(n,x,f) is a fixed-name, user-supplied routine that returns
the vector of functions at x.
Parameters: NMAX is the maximum value of n; EPS is the approximate square root of the
machine precision.

INTEGER i,j
REAL h,temp,f(NMAX)
do 12 j=1,n

temp=x(j)
h=EPS*abs(temp)
if(h.eq.0.)h=EPS
x(j)=temp+h Trick to reduce finite precision error.
h=x(j)-temp
call funcv(n,x,f)
x(j)=temp
do 11 i=1,n Forward difference formula.

df(i,j)=(f(i)-fvec(i))/h
enddo 11

enddo 12

return
END

FUNCTION fmin(x)
INTEGER n,NP
REAL fmin,x(*),fvec
PARAMETER (NP=40)
COMMON /newtv/ fvec(NP),n
SAVE /newtv/

C USES funcv
Returns f = 1

2
F · F at x. subroutine funcv(n,x,f) is a fixed-name, user-supplied

routine that returns the vector of functions at x. The common block newtv communicates
the function values back to newt.

INTEGER i
REAL sum
call funcv(n,x,fvec)
sum=0.
do 11 i=1,n

sum=sum+fvec(i)**2
enddo 11

fmin=0.5*sum
return
END

The routinenewt assumes that typical values of all components ofx and ofF are of order
unity, and it can fail if this assumption is badly violated. You should rescale the variables by
their typical values before invokingnewt if this problem occurs.
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Multidimensional Secant Methods: Broyden’s Method

Newton’s method as implemented above is quite powerful, but it still has several
disadvantages. One drawback is that the Jacobian matrix is needed. In many problems
analytic derivatives are unavailable. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be prohibitive.

Just as the quasi-Newton methods to be discussed in§10.7 provide cheap approximations
for the Hessian matrix in minimization algorithms, there are quasi-Newton methods that
provide cheap approximations to the Jacobian for zero finding. These methods are often called
secant methods, since they reduce to the secant method (§9.2) in one dimension (see, e.g.,[1]).
The best of these methods still seems to be the first one introduced,Broyden’s method [2].

Let us denote the approximate Jacobian byB. Then theith quasi-Newton stepδxi

is the solution of

Bi · δxi = −Fi (9.7.15)

whereδxi = xi+1 − xi (cf. equation 9.7.3). The quasi-Newton or secant condition is that
Bi+1 satisfy

Bi+1 · δxi = δFi (9.7.16)

whereδFi = Fi+1 − Fi. This is the generalization of the one-dimensional secant approxima-
tion to the derivative,δF/δx. However, equation (9.7.16) does not determineBi+1 uniquely
in more than one dimension.

Many different auxiliary conditions to pin downBi+1 have been explored, but the
best-performing algorithm in practice results from Broyden’s formula. This formula is based
on the idea of gettingBi+1 by making the least change toBi consistent with the secant
equation (9.7.16). Broyden showed that the resulting formula is

Bi+1 = Bi +
(δFi − Bi · δxi) ⊗ δxi

δxi · δxi
(9.7.17)

You can easily check thatBi+1 satisfies (9.7.16).
Early implementations of Broyden’s method used the Sherman-Morrison formula,

equation (2.7.2), to invert equation (9.7.17) analytically,

B−1
i+1 = B−1

i +
(δxi − B−1

i · δFi) ⊗ δxi · B−1
i

δxi · B−1
i · δFi

(9.7.18)

Then instead of solving equation (9.7.3) by e.g.,LU decomposition, one determined

δxi = −B−1
i · Fi (9.7.19)

by matrix multiplication inO(N2) operations. The disadvantage of this method is that
it cannot easily be embedded in a globally convergent strategy, for which the gradient of
equation (9.7.4) requiresB, not B−1,

∇( 1
2

F · F) 	 BT · F (9.7.20)

Accordingly, we implement the update formula in the form (9.7.17).
However, we can still preserve theO(N2) solution of (9.7.3) by usingQR decomposition

(§2.10) instead ofLU decomposition. The reason is that because of the special form of equation
(9.7.17), theQR decomposition ofBi can be updated into theQR decomposition ofBi+1 in
O(N2) operations (§2.10). All we need is an initial approximationB0 to start the ball rolling.
It is often acceptable to start simply with the identity matrix, and then allowO(N) updates to
produce a reasonable approximation to the Jacobian. We prefer to spend the firstN function
evaluations on a finite-difference approximation to initializeB via a call tofdjac.

SinceB is not the exact Jacobian, we are not guaranteed thatδx is a descent direction for
f = 1

2
F ·F (cf. equation 9.7.5). Thus the line search algorithm can fail to return a suitable step

if B wanders far from the true Jacobian. In this case, we reinitializeB by another call tofdjac.
Like the secant method in one dimension, Broyden’s method converges superlinearly

once you get close enough to the root. Embedded in a global strategy, it is almost as robust
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as Newton’s method, and often needs far fewer function evaluations to determine a zero.
Note that the final value ofB is not always close to the true Jacobian at the root, even
when the method converges.

The routinebroydn given below is very similar tonewt in organization. The principal
differences are the use ofQR decomposition instead ofLU , and the updating formula instead
of directly determining the Jacobian. The remarks at the end ofnewt about scaling the
variables apply equally tobroydn.

SUBROUTINE broydn(x,n,check)
INTEGER n,nn,NP,MAXITS
REAL x(n),fvec,EPS,TOLF,TOLMIN,TOLX,STPMX
LOGICAL check
PARAMETER (NP=40,MAXITS=200,EPS=1.e-7,TOLF=1.e-4,TOLMIN=1.e-6,

* TOLX=EPS,STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.
SAVE /newtv/

C USES fdjac,fmin,lnsrch,qrdcmp,qrupdt,rsolv
Given an initial guess x(1:n) for a root in n dimensions, find the root by Broyden’s method
embedded in a globally convergent strategy. The vector of functions to be zeroed, called
fvec(1:n) in the routine below, is returned by a user-supplied subroutine that must be
called funcv and have the declaration subroutine funcv(n,x,fvec). The subroutine
fdjac and the function fmin from newt are used. The output quantity check is false on
a normal return and true if the routine has converged to a local minimum of the function
fmin or if Broyden’s method can make no further progress. In this case try restarting from
a different initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; EPS is close to the machine precision; TOLF sets the convergence criterion on
function values; TOLMIN sets the criterion for deciding whether spurious convergence to a
minimum of fmin has occurred; TOLX is the convergence criterion on δx; STPMX is the
scaled maximum step length allowed in line searches.

INTEGER i,its,j,k
REAL den,f,fold,stpmax,sum,temp,test,c(NP),d(NP),fvcold(NP),

* g(NP),p(NP),qt(NP,NP),r(NP,NP),s(NP),t(NP),w(NP),
* xold(NP),fmin

LOGICAL restrt,sing,skip
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
restrt=.true. Ensure initial Jacobian gets computed.
do 42 its=1,MAXITS Start of iteration loop.

if(restrt)then
call fdjac(n,x,fvec,NP,r) Initialize or reinitialize Jacobian in r.
call qrdcmp(r,n,NP,c,d,sing) QR decomposition of Jacobian.
if(sing) pause ’singular Jacobian in broydn’
do 14 i=1,n Form QT explicitly.

do 13 j=1,n
qt(i,j)=0.

enddo 13

qt(i,i)=1.
enddo 14
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do 18 k=1,n-1
if(c(k).ne.0.)then

do 17 j=1,n
sum=0.
do 15 i=k,n

sum=sum+r(i,k)*qt(i,j)
enddo 15

sum=sum/c(k)
do 16 i=k,n

qt(i,j)=qt(i,j)-sum*r(i,k)
enddo 16

enddo 17

endif
enddo 18

do 21 i=1,n Form R explicitly.
r(i,i)=d(i)
do 19 j=1,i-1

r(i,j)=0.
enddo 19

enddo 21

else Carry out Broyden update.
do 22 i=1,n s = δx.

s(i)=x(i)-xold(i)
enddo 22

do 24 i=1,n t = R · s.
sum=0.
do 23 j=i,n

sum=sum+r(i,j)*s(j)
enddo 23

t(i)=sum
enddo 24

skip=.true.
do 26 i=1,n w = δF − B · s.

sum=0.
do 25 j=1,n

sum=sum+qt(j,i)*t(j)
enddo 25

w(i)=fvec(i)-fvcold(i)-sum
if(abs(w(i)).ge.EPS*(abs(fvec(i))+abs(fvcold(i))))then

Don’t update with noisy components of w.
skip=.false.

else
w(i)=0.

endif
enddo 26

if(.not.skip)then
do 28 i=1,n t = QT · w.

sum=0.
do 27 j=1,n

sum=sum+qt(i,j)*w(j)
enddo 27

t(i)=sum
enddo 28

den=0.
do 29 i=1,n

den=den+s(i)**2
enddo 29

do 31 i=1,n Store s/(s · s) in s.
s(i)=s(i)/den

enddo 31

call qrupdt(r,qt,n,NP,t,s) Update R and QT .
do 32 i=1,n

if(r(i,i).eq.0.) pause ’r singular in broydn’
d(i)=r(i,i) Diagonal of R stored in d.
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enddo 32

endif
endif
do 34 i=1,n Right-hand side for linear equations is −QT ·F.

sum=0.
do 33 j=1,n

sum=sum+qt(i,j)*fvec(j)
enddo 33

p(i)=-sum
enddo 34

do 36 i=n,1,-1 Compute ∇f ≈ (Q · R)T · F for the line search.
sum=0.
do 35 j=1,i

sum=sum-r(j,i)*p(j)
enddo 35

g(i)=sum
enddo 36

do 37 i=1,n Store x and F.
xold(i)=x(i)
fvcold(i)=fvec(i)

enddo 37

fold=f Store f .
call rsolv(r,n,NP,d,p) Solve linear equations.
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 38 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 38

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then True if line search failed to find a new x.

if(restrt)then Failure; already tried reinitializing the Jacobian.
return

else Check for gradient of f zero, i.e., spurious con-
vergence.test=0.

den=max(f,.5*n)
do 39 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 39

if(test.lt.TOLMIN)then
return

else Try reinitializing the Jacobian.
restrt=.true.

endif
endif

else Successful step; will use Broyden update for next
step.restrt=.false.

test=0. Test for convergence on δx.
do 41 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

enddo 41

if(test.lt.TOLX)return
endif

enddo 42

pause ’MAXITS exceeded in broydn’
END
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More Advanced Implementations

One of the principal ways that the methods described so far can fail is ifJ (in Newton’s
method) orB in (Broyden’s method) becomes singular or nearly singular, so thatδx cannot
be determined. If you are lucky, this situation will not occur very often in practice. Methods
developed so far to deal with this problem involve monitoring the condition number ofJ and
perturbingJ if singularity or near singularity is detected. This is most easily implemented
if the QR decomposition is used instead ofLU in Newton’s method (see[1] for details).
Our personal experience is that, while such an algorithm can solve problems whereJ is
exactly singular and the standard Newton’s method fails, it is occasionally less robust on
other problems whereLU decomposition succeeds. Clearly implementation details involving
roundoff, underflow, etc., are important here and the last word is yet to be written.

Our global strategies both for minimization and zero finding have been based on line
searches. Other global algorithms, such as thehook step anddogleg step methods, are based
instead on themodel-trust region approach, which is related to the Levenberg-Marquardt
algorithm for nonlinear least-squares (§15.5). While somewhat more complicated than line
searches, these methods have a reputation for robustness even when starting far from the
desired zero or minimum[1].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Broyden, C.G. 1965, Mathematics of Computation, vol. 19, pp. 577–593. [2]
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Chapter 10. Minimization or
Maximization of Functions

10.0 Introduction

In a nutshell: You are given a single function f that depends on one or more
independent variables. You want to find the value of those variables where f takes
on a maximum or a minimum value. You can then calculate what value of f is
achieved at the maximum or minimum. The tasks of maximization and minimization
are trivially related to each other, since one person’s function f could just as well
be another’s −f . The computational desiderata are the usual ones: Do it quickly,
cheaply, and in small memory. Often the computational effort is dominated by
the cost of evaluating f (and also perhaps its partial derivatives with respect to all
variables, if the chosen algorithm requires them). In such cases the desiderata are
sometimes replaced by the simple surrogate: Evaluate f as few times as possible.

An extremum (maximum or minimum point) can be either global (truly
the highest or lowest function value) or local (the highest or lowest in a finite
neighborhood and not on the boundary of that neighborhood). (See Figure 10.0.1.)
Finding a global extremum is, in general, a very difficult problem. Two standard
heuristics are widely used: (i) find local extrema starting from widely varying
starting values of the independent variables (perhaps chosen quasi-randomly, as in
§7.7), and then pick the most extreme of these (if they are not all the same); or
(ii) perturb a local extremum by taking a finite amplitude step away from it, and
then see if your routine returns you to a better point, or “always” to the same
one. Relatively recently, so-called “simulated annealing methods” (§10.9) have
demonstrated important successes on a variety of global extremization problems.

Our chapter title could just as well be optimization, which is the usual name
for this very large field of numerical research. The importance ascribed to the
various tasks in this field depends strongly on the particular interests of whom
you talk to. Economists, and some engineers, are particularly concerned with
constrained optimization, where there are a priori limitations on the allowed values
of independent variables. For example, the production of wheat in the U.S. must
be a nonnegative number. One particularly well-developed area of constrained
optimization is linear programming, where both the function to be optimized and
the constraints happen to be linear functions of the independent variables. Section
10.8, which is otherwise somewhat disconnected from the rest of the material that we
have chosen to include in this chapter, implements the so-called “simplex algorithm”
for linear programming problems.

387
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⊗ ⊗
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Figure 10.0.1. Extrema of a function in an interval. Points A, C, and E are local, but not global
maxima. Points B and F are local, but not global minima. The global maximum occurs at G, which
is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E, derivatives higher than the first vanish, a situation which can
cause difficulty for some algorithms. The points X, Y , and Z are said to “bracket” the minimum F ,
since Y is less than both X and Z .

One other section, §10.9, also lies outside of our main thrust, but for a different
reason: so-called “annealing methods” are relatively new, so we do not yet know
where they will ultimately fit into the scheme of things. However, these methods
have solved some problems previously thought to be practically insoluble; they
address directly the problem of finding global extrema in the presence of large
numbers of undesired local extrema.

The other sections in this chapter constitute a selection of the best established
algorithms in unconstrained minimization. (For definiteness, we will henceforth
regard the optimization problem as that of minimization.) These sections are
connected, with later ones depending on earlier ones. If you are just looking for
the one “perfect” algorithm to solve your particular application, you may feel that
we are telling you more than you want to know. Unfortunately, there is no perfect
optimization algorithm. This is a case where we strongly urge you to try more than
one method in comparative fashion. Your initial choice of method can be based
on the following considerations:

• You must choose between methods that need only evaluations of the
function to be minimized and methods that also require evaluations of the
derivative of that function. In the multidimensional case, this derivative
is the gradient, a vector quantity. Algorithms using the derivative are
somewhat more powerful than those using only the function, but not
always enough so as to compensate for the additional calculations of
derivatives. We can easily construct examples favoring one approach or
favoring the other. However, if you can compute derivatives, be prepared
to try using them.

• For one-dimensional minimization (minimize a function of one variable)
without calculation of the derivative, bracket the minimum as described in
§10.1, and then use Brent’s method as described in §10.2. If your function
has a discontinuous second (or lower) derivative, then the parabolic
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interpolations of Brent’s method are of no advantage, and you might wish
to use the simplest form of golden section search, as described in §10.1.

• For one-dimensional minimization with calculation of the derivative, §10.3
supplies a variant of Brent’s method which makes limited use of the
first derivative information. We shy away from the alternative of using
derivative information to construct high-order interpolating polynomials.
In our experience the improvement in convergence very near a smooth,
analytic minimum does not make up for the tendency of polynomials
sometimes to give wildly wrong interpolations at early stages, especially
for functions that may have sharp, “exponential” features.

We now turn to the multidimensional case, both with and without computation
of first derivatives.

• You must choose between methods that require storage of order N 2 and
those that require only of order N , where N is the number of dimensions.
For moderate values of N and reasonable memory sizes this is not a
serious constraint. There will be, however, the occasional application
where storage may be critical.

• We give in §10.4 a sometimes overlooked downhill simplex method due
to Nelder and Mead. (This use of the word “simplex” is not to be
confused with the simplex method of linear programming.) This method
just crawls downhill in a straightforward fashion that makes almost no
special assumptions about your function. This can be extremely slow, but
it can also, in some cases, be extremely robust. Not to be overlooked is
the fact that the code is concise and completely self-contained: a general
N -dimensional minimization program in under 100 program lines! This
method is most useful when the minimization calculation is only an
incidental part of your overall problem. The storage requirement is of
order N 2, and derivative calculations are not required.

• Section 10.5 deals with direction-set methods, of which Powell’s method
is the prototype. These are the methods of choice when you cannot easily
calculate derivatives, and are not necessarily to be sneered at even if you
can. Although derivatives are not needed, the method does require a
one-dimensional minimization sub-algorithm such as Brent’s method (see
above). Storage is of order N 2.

There are two major families of algorithms for multidimensional minimization
with calculation of first derivatives. Both families require a one-dimensional
minimization sub-algorithm, which can itself either use, or not use, the derivative
information, as you see fit (depending on the relative effort of computing the function
and of its gradient vector). We do not think that either family dominates the other in
all applications; you should think of them as available alternatives:

• The first family goes under the name conjugate gradient methods, as typi-
fied by the Fletcher-Reeves algorithm and the closely related and probably
superior Polak-Ribiere algorithm. Conjugate gradient methods require
only of order a few times N storage, require derivative calculations and
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one-dimensional sub-minimization. Turn to §10.6 for detailed discussion
and implementation.

• The second family goes under the names quasi-Newton or variable metric
methods, as typified by the Davidon-Fletcher-Powell (DFP) algorithm
(sometimes referred to just as Fletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. These methods
require of order N 2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in §10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall).

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press).

Gill, P.E., Murray, W., and Wright, M.H. 1981, Practical Optimization (New York: Academic Press).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 17.

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.1.

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 10.

10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval (a, b). One
then evaluates the function at an intermediate point x and obtains a new, smaller
bracketing interval, either (a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choose x to be the midpoint of (a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean to bracket a minimum? A root of a
function is known to be bracketed by a pair of points, a and b, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when there is a triplet of points, a < b < c (or c < b < a), such that
f(b) is less than both f(a) and f(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval (a, c).

The analog of bisection is to choose a new point x, either between a and b or
between b and c. Suppose, to be specific, that we make the latter choice. Then we
evaluate f(x). If f(b) < f(x), then the new bracketing triplet of points is (a, b, x);
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one-dimensional sub-minimization. Turn to §10.6 for detailed discussion
and implementation.

• The second family goes under the names quasi-Newton or variable metric
methods, as typified by the Davidon-Fletcher-Powell (DFP) algorithm
(sometimes referred to just as Fletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. These methods
require of order N 2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in §10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.
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10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval (a, b). One
then evaluates the function at an intermediate point x and obtains a new, smaller
bracketing interval, either (a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choose x to be the midpoint of (a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean to bracket a minimum? A root of a
function is known to be bracketed by a pair of points, a and b, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when there is a triplet of points, a < b < c (or c < b < a), such that
f(b) is less than both f(a) and f(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval (a, c).

The analog of bisection is to choose a new point x, either between a and b or
between b and c. Suppose, to be specific, that we make the latter choice. Then we
evaluate f(x). If f(b) < f(x), then the new bracketing triplet of points is (a, b, x);
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Figure 10.1.1. Successive bracketing of a minimum. The minimum is originally bracketed by points
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.

contrariwise, if f(b) > f(x), then the new bracketing triplet is (b, x, c). In all cases
the middle point of the new triplet is the abscissa whose ordinate is the best minimum
achieved so far; see Figure 10.1.1. We continue the process of bracketing until the
distance between the two outer points of the triplet is tolerably small.

How small is “tolerably” small? For a minimum located at a value b, you
might naively think that you will be able to bracket it in as small a range as
(1 − ε)b < b < (1 + ε)b, where ε is your computer’s floating-point precision, a
number like 3 × 10−8 (single precision) or 10−15 (double precision). Not so! In
general, the shape of your function f(x) near b will be given by Taylor’s theorem

f(x) ≈ f(b) +
1
2
f ′′(b)(x − b)2 (10.1.1)

The second term will be negligible compared to the first (that is, will be a factor ε
smaller and will act just like zero when added to it) whenever

|x − b| <
√

ε|b|
√

2 |f(b)|
b2f ′′(b)

(10.1.2)

The reason for writing the right-hand side in this way is that, for most functions,
the final square root is a number of order unity. Therefore, as a rule of thumb, it
is hopeless to ask for a bracketing interval of width less than

√
ε times its central

value, a fractional width of only about 10−4 (single precision) or 3 × 10−8 (double
precision). Knowing this inescapable fact will save you a lot of useless bisections!

The minimum-finding routines of this chapter will often call for a user-supplied
argument tol, and return with an abscissa whose fractional precision is about ±tol
(bracketing interval of fractional size about 2×tol). Unless you have a better
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estimate for the right-hand side of equation (10.1.2), you should set tol equal to
(not much less than) the square root of your machine’s floating-point precision, since
smaller values will gain you nothing.

It remains to decide on a strategy for choosing the new point x, given (a, b, c).
Suppose that b is a fraction w of the way between a and c, i.e.

b − a

c − a
= w

c − b

c − a
= 1 − w (10.1.3)

Also suppose that our next trial point x is an additional fraction z beyond b,

x − b

c − a
= z (10.1.4)

Then the next bracketing segment will either be of length w+z relative to the current
one, or else of length 1 − w. If we want to minimize the worst case possibility, then
we will choose z to make these equal, namely

z = 1 − 2w (10.1.5)

We see at once that the new point is the symmetric point to b in the original interval,
namely with |b − a| equal to |x − c|. This implies that the point x lies in the larger
of the two segments (z is positive only if w < 1/2).

But where in the larger segment? Where did the value of w itself come from?
Presumably from the previous stage of applying our same strategy. Therefore, if z
is chosen to be optimal, then so was w before it. This scale similarity implies that
x should be the same fraction of the way from b to c (if that is the bigger segment)
as was b from a to c, in other words,

z

1 − w
= w (10.1.6)

Equations (10.1.5) and (10.1.6) give the quadratic equation

w2 − 3w + 1 = 0 yielding w =
3 −√

5
2

≈ 0.38197 (10.1.7)

In other words, the optimal bracketing interval (a, b, c) has its middle point b a
fractional distance 0.38197 from one end (say, a), and 0.61803 from the other end
(say, b). These fractions are those of the so-called golden mean or golden section,
whose supposedly aesthetic properties hark back to the ancient Pythagoreans. This
optimal method of function minimization, the analog of the bisection method for
finding zeros, is thus called the golden section search, summarized as follows:

Given, at each stage, a bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 into the larger of the two intervals (measuring
from the central point of the triplet). If you start out with a bracketing triplet whose
segments are not in the golden ratios, the procedure of choosing successive points
at the golden mean point of the larger segment will quickly converge you to the
proper, self-replicating ratios.

The golden section search guarantees that each new function evaluation will
(after self-replicating ratios have been achieved) bracket the minimum to an interval
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just 0.61803 times the size of the preceding interval. This is comparable to, but not
quite as good as, the 0.50000 that holds when finding roots by bisection. Note that
the convergence is linear (in the language of Chapter 9), meaning that successive
significant figures are won linearly with additional function evaluations. In the
next section we will give a superlinear method, where the rate at which successive
significant figures are liberated increases with each successive function evaluation.

Routine for Initially Bracketing a Minimum

The preceding discussion has assumed that you are able to bracket the minimum
in the first place. We consider this initial bracketing to be an essential part of any
one-dimensional minimization. There are some one-dimensional algorithms that
do not require a rigorous initial bracketing. However, we would never trade the
secure feeling of knowing that a minimum is “in there somewhere” for the dubious
reduction of function evaluations that these nonbracketing routines may promise.
Please bracket your minima (or, for that matter, your zeros) before isolating them!

There is not much theory as to how to do this bracketing. Obviously you want
to step downhill. But how far? We like to take larger and larger steps, starting with
some (wild?) initial guess and then increasing the stepsize at each step either by
a constant factor, or else by the result of a parabolic extrapolation of the preceding
points that is designed to take us to the extrapolated turning point. It doesn’t much
matter if the steps get big. After all, we are stepping downhill, so we already have
the left and middle points of the bracketing triplet. We just need to take a big enough
step to stop the downhill trend and get a high third point.

Our standard routine is this:

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
REAL ax,bx,cx,fa,fb,fc,func,GOLD,GLIMIT,TINY
EXTERNAL func
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.e-20)

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL dum,fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if(fb.gt.fa)then Switch roles of a and b so that we can go downhill in the

direction from a to b.dum=ax
ax=bx
bx=dum
dum=fb
fb=fa
fa=dum

endif
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)

1 if(fb.ge.fc)then “do while”: keep returning here until we bracket.
r=(bx-ax)*(fb-fc) Compute u by parabolic extrapolation from a, b, c. TINY

is used to prevent any possible division by zero.q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx) We won’t go farther than this. Test various possibilities:
if((bx-u)*(u-cx).gt.0.)then Parabolic u is between b and c: try it.

fu=func(u)
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if(fu.lt.fc)then Got a minimum between b and c.
ax=bx
fa=fb
bx=u
fb=fu
return

else if(fu.gt.fb)then Got a minimum between between a and u.
cx=u
fc=fu
return

endif
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default magnification.
fu=func(u)

else if((cx-u)*(u-ulim).gt.0.)then Parabolic fit is between c and its allowed
limit.fu=func(u)

if(fu.lt.fc)then
bx=cx
cx=u
u=cx+GOLD*(cx-bx)
fb=fc
fc=fu
fu=func(u)

endif
else if((u-ulim)*(ulim-cx).ge.0.)then Limit parabolic u to maximum allowed

value.u=ulim
fu=func(u)

else Reject parabolic u, use default magnification.
u=cx+GOLD*(cx-bx)
fu=func(u)

endif
ax=bx Eliminate oldest point and continue.
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1

endif
return
END

(Because of the housekeeping involved in moving around three or four points and
their function values, the above program ends up looking deceptively formidable.
That is true of several other programs in this chapter as well. The underlying ideas,
however, are quite simple.)

Routine for Golden Section Search

FUNCTION golden(ax,bx,cx,f,tol,xmin)
REAL golden,ax,bx,cx,tol,xmin,f,R,C
EXTERNAL f
PARAMETER (R=.61803399,C=1.-R)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine performs
a golden section search for the minimum, isolating it to a fractional precision of about
tol. The abscissa of the minimum is returned as xmin, and the minimum function value
is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of four points, x0,x1,x2,x3.
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x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s Method
in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’s mnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically called inverse
parabolic interpolation.

The formula for the abscissa x that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b − 1
2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b) − f(a)]
(b − a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]

(10.2.1)
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x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s Method
in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’smnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically calledinverse
parabolic interpolation.

The formula for the abscissax that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b − 1
2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b) − f(a)]
(b − a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]

(10.2.1)
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1

4

2

3

parabola through 1 2 3

parabola through 1 2 4

5

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.

as you can easily derive. This formula fails only if the three points are collinear,
in which case the denominator is zero (minimum of the parabola is infinitely far
away). Note, however, that (10.2.1) is as happy jumping to a parabolic maximum
as to a minimum. No minimization scheme that depends solely on (10.2.1) is likely
to succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.2.1) when the function allows. The task is nontrivial for several
reasons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Careful
attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.1.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method [1] is up to the task in all particulars. At any particular stage,
it is keeping track of six function points (not necessarily all distinct), a, b, u, v,
w and x, defined as follows: the minimum is bracketed between a and b; x is the
point with the very least function value found so far (or the most recent one in
case of a tie); w is the point with the second least function value; v is the previous
value of w; u is the point at which the function was evaluated most recently. Also
appearing in the algorithm is the point xm, the midpoint between a and b; however,
the function is not evaluated there.

You can read the code below to understand the method’s logical organization.
Mention of a few general principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic step must (i) fall within the bounding interval (a, b), and (ii) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion insures that the parabolic steps are actually
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converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps are acceptable but
useless, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the step before last seems essentially heuristic: Experience shows that it is better
not to “punish” the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distance tol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.1.2), there is simply no
information content in doing so: the function will differ from the value already
evaluated only by an amount of order the roundoff error. Therefore in the code below
you will find several tests and modifications of a potential new point, imposing this
restriction. This restriction also interacts subtly with the test for “doneness,” which
the method takes into account.

A typical ending configuration for Brent’s method is that a and b are 2×x×tol
apart, with x (the best abscissa) at the midpoint of a and b, and therefore fractionally
accurate to ±tol.

Indulge us a final reminder that tol should generally be no smaller than the
square root of your machine’s floating-point precision.

FUNCTION brent(ax,bx,cx,f,tol,xmin)
INTEGER ITMAX
REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS
EXTERNAL f
PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.0e-10)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent,
the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER iter
REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though the input

abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0. This will be the distance moved on the step before last.
fx=f(x)
fv=fx
fw=fx
do 11 iter=1,ITMAX Main program loop.

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3 Test for done here.
if(abs(e).gt.tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.*(q-r)
if(q.gt.0.) p=-p
q=abs(q)
etemp=e
e=d
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if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x).or.
* p.ge.q*(b-x)) goto 1

The above conditions determine the acceptability of the parabolic fit. Here it is o.k.:
d=p/q Take the parabolic step.
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2 Skip over the golden section step.

endif
1 if(x.ge.xm) then We arrive here for a golden section step, which we take

into the larger of the two segments.e=a-x
else

e=b-x
endif
d=CGOLD*e Take the golden section step.

2 if(abs(d).ge.tol1) then Arrive here with d computed either from parabolic fit, or
else from golden section.u=x+d

else
u=x+sign(tol1,d)

endif
fu=f(u) This is the one function evaluation per iteration,
if(fu.le.fx) then and now we have to decide what to do with our function

evaluation. Housekeeping follows:if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
w=x
fw=fx
x=u
fx=fu

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
w=u
fw=fu

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu

endif
endif Done with housekeeping. Back for another iteration.

enddo 11

pause ’brent exceed maximum iterations’
3 xmin=x Arrive here ready to exit with best values.

brent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.
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10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas (a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtflsp or zbrent (§§9.2–9.3).
It doesn’ t take long to reject that idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’ t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got” : Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in [1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet (a, b, c) indicates uniquely
whether the next test point should be taken in the interval (a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see [1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, we are fuddy-duddieswhen it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives” don’t integrate up to the function value and don’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on brent in the
previous section.
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10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas(a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder likertflsp or zbrent (§§9.2–9.3).
It doesn’t take long to rejectthat idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the directionout of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got”: Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in[1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet(a, b, c) indicates uniquely
whether the next test point should be taken in the interval(a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see[1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, webisect the interval under scrutiny.

Yes, we are fuddy-duddieswhen it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives”don’t integrate up to the function value anddon’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled onbrent in the
previous section.
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FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)
INTEGER ITMAX
REAL dbrent,ax,bx,cx,tol,xmin,df,f,ZEPS
EXTERNAL df,f
PARAMETER (ITMAX=100,ZEPS=1.0e-10)

Given a function f and its derivative function df, and given a bracketing triplet of abscissas
ax, bx, cx [such that bx is between ax and cx, and f(bx) is less than both f(ax) and
f(cx)], this routine isolates the minimum to a fractional precision of about tol using
a modification of Brent’s method that uses derivatives. The abscissa of the minimum is
returned as xmin, and the minimum function value is returned as dbrent, the returned
function value.

INTEGER iter
REAL a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,

* u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL ok1,ok2 Will be used as flags for whether proposed steps are accept-
able or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.
fx=f(x)
fv=fx
fw=fx
dx=df(x) All our housekeeping chores are doubled by the necessity of

moving derivative values around as well as function val-
ues.

dv=dx
dw=dx
do 11 iter=1,ITMAX

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3
if(abs(e).gt.tol1) then

d1=2.*(b-a) Initialize these d’s to an out-of-bracket value.
d2=d1
if(dw.ne.dx) d1=(w-x)*dx/(dx-dw) Secant method with one point.
if(dv.ne.dx) d2=(v-x)*dx/(dx-dv) And the other.

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b).gt.0.).and.(dx*d1.le.0.)
ok2=((a-u2)*(u2-b).gt.0.).and.(dx*d2.le.0.)
olde=e Movement on the step before last.
e=d
if(.not.(ok1.or.ok2))then Take only an acceptable d, and if both

are acceptable, then take the small-
est one.

goto 1
else if (ok1.and.ok2)then

if(abs(d1).lt.abs(d2))then
d=d1

else
d=d2

endif
else if (ok1)then

d=d1
else

d=d2
endif
if(abs(d).gt.abs(0.5*olde))goto 1
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2



10.3 One-Dimensional Search with First Derivatives 401

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

endif
1 if(dx.ge.0.) then Decide which segment by the sign of the derivative.

e=a-x
else

e=b-x
endif
d=0.5*e Bisect, not golden section.

2 if(abs(d).ge.tol1) then
u=x+d
fu=f(u)

else
u=x+sign(tol1,d)
fu=f(u)
if(fu.gt.fx)goto 3 If the minimum step in the downhill direction takes us uphill,

then we are done.endif
du=df(u) Now all the housekeeping, sigh.
if(fu.le.fx) then

if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
dv=dw
w=x
fw=fx
dw=dx
x=u
fx=fu
dx=du

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
dv=dw
w=u
fw=fu
dw=du

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
dv=du

endif
endif

enddo 11

pause ’dbrent exceeded maximum iterations’
3 xmin=x

dbrent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454–458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.
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10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead[1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be thebest method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, inN dimensions, ofN + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (Thesimplex method of linear programming,
described in§10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite innerN -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then theN other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, anN -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of anN -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N + 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting pointP0, then you can take
the otherN points to be

Pi = P0 + λei (10.4.1)

where theei’s areN unit vectors, and whereλ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have differentλ i’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,
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10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,
described in §10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N + 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting point P0, then you can take
the other N points to be

Pi = P0 + λei (10.4.1)

where the ei’s are N unit vectors, and where λ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different λ i’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,
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simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c)
a contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

and they are constructed to conserve the volume of the simplex (hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in all directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of this kind of behavior; the basic
moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent
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variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriate to let ftol be of order the machine precision (or perhaps slightly larger
so as not to be diddled by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the simplex again by equation (10.4.1), with
P0 being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N -dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)
INTEGER iter,mp,ndim,np,NMAX,ITMAX
REAL ftol,p(mp,np),y(mp),funk,TINY
PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

tion evaluations, and a small num-
ber.

EXTERNAL funk
C USES amotry,funk

Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y(1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.!). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n
REAL rtol,sum,swap,ysave,ytry,psum(NMAX),amotry
iter=0

1 do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,

and lowest (best),ihi=1
inhi=2

else
ihi=2
inhi=1

endif
do 13 i=1,ndim+1 by looping over the points in the simplex.

if(y(i).le.y(ilo)) ilo=i
if(y(i).gt.y(ihi)) then

inhi=ihi
ihi=i

else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i
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endif
enddo 13

rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
Compute the fractional range from highest to lowest and return if satisfactory.

if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)
if (ytry.le.y(ilo)) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)

else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=y(ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.

endif
else

iter=iter-1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp),funk
PARAMETER (NMAX=20)
EXTERNAL funk

C USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER j
REAL fac1,fac2,ytry,ptry(NMAX)
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11
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ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a point P in N -dimensional space, and proceed from there in some vector
direction n, then any function of N variables f(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such line minimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might call linmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f , find the scalar λ that minimizes f(P+λn).
Replace P by P + λn. Replace n by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whether linmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients in linmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.
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ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a pointP in N -dimensional space, and proceed from there in some vector
directionn, then any function ofN variablesf(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such line minimizations. Different
methods will differ only by how, at each stage, they choose the next directionn to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might calllinmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectorsP andn, and the
functionf , find the scalarλ that minimizesf(P+λn).
ReplaceP by P + λn. Replacen by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine,lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whetherlinmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients inlinmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.



10.5 Direction Set (Powell’s) Methods in Multidimensions 407

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

start

y

x

Figure 10.5.1. Successive minimizations along coordinate directions in a long, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

But what if, in your application, calculation of the gradient is out of the question.
You might first think of this simple method: Take the unit vectors e 1, e2, . . . eN as
a set of directions. Using linmin, move along the first direction to its minimum,
then from there along the second direction to its minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the function
stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basis vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, in N dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through all N basis vectors will be required in
order to get anywhere. This condition is not all that unusual; according to Murphy’s
Law, you should count on it.

Obviously what we need is a better set of directions than the e i’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very
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good directions that will take us far along narrow valleys, or else (more subtly)
(ii) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called con-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then the
gradient of the function must be perpendicular to u at the line minimum; if not, then
there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

f(x) = f(P) +
∑

i

∂f

∂xi
xi +

1
2

∑
i,j

∂2f

∂xi∂xj
xixj + · · ·

≈ c − b · x +
1
2

x · A · x

(10.5.1)

where

c ≡ f(P) b ≡ −∇f |P [A]ij ≡ ∂2f

∂xi∂xj

∣∣∣∣
P

(10.5.2)

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P.

In the approximation of (10.5.1), the gradient of f is easily calculated as

∇f = A · x − b (10.5.3)

(This implies that the gradient will vanish — the function will be at an extremum —
at a value of x obtained by solving A · x = b. This idea we will return to in §10.7!)

How does the gradient∇f change as we move along some direction? Evidently

δ(∇f) = A · (δx) (10.5.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v not
spoil our minimization along u is just that the gradient stay perpendicular to u, i.e.,
that the change in the gradient be perpendicular to u. By equation (10.5.4) this is just

0 = u · δ(∇f) = u · A · v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’ t need to redo any of those directions
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(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass of N line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won’ t be exactly at the minimum; but
repeated cycles of N line minimizations will in due course converge quadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes: Initialize the set of directions u i to
the basis vectors,

ui = ei i = 1, . . . , N (10.5.6)

Now repeat the following sequence of steps (“basic procedure” ) until your function
stops decreasing:

• Save your starting position as P0.
• For i = 1, . . . , N , move Pi−1 to the minimum along direction ui and

call this point Pi.
• For i = 1, . . . , N − 1, set ui ← ui+1.
• Set uN ← PN − P0.
• Move PN to the minimum along direction uN and call this point P0.

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations
of the above basic procedure produce a set of directions u i whose last k members
are mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in all, will exactly minimize a quadratic form.
Brent [1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage, u 1 in favor of PN − P0

tends to produce sets of directions that “ fold up on each other” and become linearly
dependent. Once this happens, then the procedure finds the minimum of the function
f only over a subspace of the full N -dimensional case; in other words, it gives the
wrong answer. Therefore, the algorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s algorithm, among them:

1. You can reinitialize the set of directions ui to the basis vectors ei after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commend to you if quadratic convergence is important for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions already built up, he resets the direction set to calculated
principal directions of the matrix A (which he gives a procedure for determining).
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The calculation is essentially a singular value decomposition algorithm (see §2.6).
Brent has a number of other cute tricks up his sleeve, and his modification of
Powell’s method is probably the best presently known. Consult [1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead of N necessarily conjugate directions. This is the method
that we now implement. (It is also the version of Powell’s method given in Acton [2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
quadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of a valley floor that twists one way and another (and
another, and another, . . . – there are N dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn’ t (yet) there; while the conjugacy of the N − 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, a method with quadratic convergence can save us several times
N2 extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take P N − P0 as
a new direction; it is, after all, the average direction moved after trying all N possible
directions. For a valley whose long direction is twisting slowly, this direction is
likely to give us a good run along the new long direction. The change is to discard
the old direction along which the function f made its largest decrease. This seems
paradoxical, since that direction was the best of the previous iteration. However, it
is also likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not
to add a new direction at all. Define

f0 ≡ f(P0) fN ≡ f(PN ) fE ≡ f(2PN − P0) (10.5.7)

Here fE is the function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define ∆f to be the magnitude of the largest
decrease along one particular direction of the present basic procedure iteration. (∆f
is a positive number.) Then:

1. If fE ≥ f0, then keep the old set of directions for the next basic procedure,
because the average direction PN − P0 is all played out.

2. If 2 (f0− 2fN + fE) [(f0 − fN)−∆f ]2 ≥ (f0 − fE)2∆f , then keep the old
set of directions for the next basic procedure, because either (i) the decrease along
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the average direction was not primarily due to any single direction’s decrease, or (ii)
there is a substantial second derivative along the average direction and we seem to
be near to the bottom of its minimum.

The following routine implements Powell’s method in the version just described.
In the routine, xi is the matrix whose columns are the set of directions n i; otherwise
the correspondence of notation should be self-evident.

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)
INTEGER iter,n,np,NMAX,ITMAX
REAL fret,ftol,p(np),xi(np,np),func,TINY
EXTERNAL func
PARAMETER (NMAX=20,ITMAX=200,TINY=1.e-25)

C USES func,linmin
Minimization of a function func of n variables. (func is not an argument, it is a fixed func-
tion name.) Input consists of an initial starting point p(1:n); an initial matrix xi(1:n,1:n)
with physical dimensions np by np, and whose columns contain the initial set of directions
(usually the n unit vectors); and ftol, the fractional tolerance in the function value such
that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, xi is the then-current direction set, fret is the
returned function value at p, and iter is the number of iterations taken. The routine
linmin is used.
Parameters: Maximum value of n, maximum allowed iterations, and a small number.

INTEGER i,ibig,j
REAL del,fp,fptt,t,pt(NMAX),ptt(NMAX),xit(NMAX)
fret=func(p)
do 11 j=1,n Save the initial point.

pt(j)=p(j)
enddo 11

iter=0
1 iter=iter+1

fp=fret
ibig=0
del=0. Will be the biggest function decrease.
do 13 i=1,n In each iteration, loop over all directions in the set.

do 12 j=1,n Copy the direction,
xit(j)=xi(j,i)

enddo 12

fptt=fret
call linmin(p,xit,n,fret) minimize along it,
if(fptt-fret.gt.del)then and record it if it is the largest decrease so far.

del=fptt-fret
ibig=i

endif
enddo 13

if(2.*(fp-fret).le.ftol*(abs(fp)+abs(fret))+TINY)return Termination criterion.
if(iter.eq.ITMAX) pause ’powell exceeding maximum iterations’
do 14 j=1,n Construct the extrapolated point and the average di-

rection moved. Save the old starting point.ptt(j)=2.*p(j)-pt(j)
xit(j)=p(j)-pt(j)
pt(j)=p(j)

enddo 14

fptt=func(ptt) Function value at extrapolated point.
if(fptt.ge.fp)goto 1 One reason not to use new direction.
t=2.*(fp-2.*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if(t.ge.0.)goto 1 Other reason not to use new direction.
call linmin(p,xit,n,fret) Move to the minimum of the new direction,
do 15 j=1,n and save the new direction.

xi(j,ibig)=xi(j,n)
xi(j,n)=xit(j)

enddo 15

goto 1 Back for another iteration.
END
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Implementation of Line Minimization

In the above routine, you might have wondered why we didn’ t make the function
name func an argument of the routine. The reason is buried in a slightly dirty
FORTRAN practicality in our implementation of linmin.

Make no mistake, there is a right way to implement linmin: It is to use
the methods of one-dimensional minimization described in §10.1–§10.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued points P (all lying along a given direction n) rather than scalar-valued
abscissas x. That straightforward task produces long routines densely populated
with “do k=1,n” loops.

We do not have space to include such routines in this book. Our linmin, which
works just fine, is instead a kind of bookkeeping swindle. It constructs an “artificial”
function of one variable called f1dim, which is the value of your function func
along the line going through the point p in the direction xi. linmin communicates
with f1dim through a common block. It then calls our familiar one-dimensional
routines mnbrak (§10.1) and brent (§10.2) and instructs them to minimize f1dim.

Still following? Then try this: brent receives the function name f1dim, which
it dutifully calls. But there is no way to signal to f1dim that it is supposed to use your
function name, which could have been passed to linmin as an argument. Therefore,
we have to make f1dim use a fixed function name, namely func. The situation is
reminiscent of Henry Ford’s black automobile: powell will minimize any function,
as long as it is named func. Needed to remedy this situation is a way to pass a
function name through a common block; this is lacking in FORTRAN.

The only thing inefficient about linmin is this: Its use as an interface between a
multidimensional minimization strategy and a one-dimensional minimization routine
results in some unnecessary copying of vectors hither and yon. That should not
normally be a significant addition to the overall computational burden, but we cannot
disguise its inelegance.

SUBROUTINE linmin(p,xi,n,fret)
INTEGER n,NMAX
REAL fret,p(n),xi(n),TOL
PARAMETER (NMAX=50,TOL=1.e-4) Maximum anticipated n, and TOL passed to brent.

C USES brent,f1dim,mnbrak
Given an n-dimensional point p(1:n) and an n-dimensional direction xi(1:n), moves and
resets p to where the function func(p) takes on a minimum along the direction xi from
p, and replaces xi by the actual vector displacement that p was moved. Also returns as
fret the value of func at the returned location p. This is actually all accomplished by
calling the routines mnbrak and brent.

INTEGER j,ncom
REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX),xicom(NMAX),brent
COMMON /f1com/ pcom,xicom,ncom
EXTERNAL f1dim
ncom=n Set up the common block.
do 11 j=1,n

pcom(j)=p(j)
xicom(j)=xi(j)

enddo 11

ax=0. Initial guess for brackets.
xx=1.
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
do 12 j=1,n Construct the vector results to return.



10.6 Conjugate Gradient Methods in Multidimensions 413

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a given N -
dimensional point P, not just the value of a function f(P) but also the gradient
(vector of first partial derivatives) ∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1
2

x · A · x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is 1

2N(N + 1), which we see to be of order N 2.
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N 2 numbers.
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xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a given N -
dimensional point P, not just the value of a function f(P) but also the gradient
(vector of first partial derivatives) ∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1
2

x · A · x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is 1

2N(N + 1), which we see to be of order N 2.
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N 2 numbers.
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In the direction set methods of §10.5, we collected the necessary information by
making on the order of N 2 separate line minimizations, each requiring “a few” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N 2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of a function’s gradient; when this is so, especially when
there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than N function evaluations.

A common beginner’s error is to assume that any reasonable way of incorporating
gradient information should be about as good as any other. This line of thought leads
to the following not very good algorithm, the steepest descent method:

Steepest Descent: Start at a point P0. As many times
as needed, move from point Pi to the point Pi+1 by
minimizing along the line from Pi in the direction of
the local downhill gradient −∇f(Pi).

The problem with the steepest descent method (which, incidentally, goes back
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small steps in going down a long, narrow valley, even if the valley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, you must make a right angle turn, which does not, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a way
of proceeding not down the new gradient, but rather in a direction that is somehow
constructed to be conjugate to the old gradient, and, insofar as possible, to all
previous directions traversed. Methods that accomplish this construction are called
conjugate gradient methods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
form (10.6.1). Recall that, starting with an arbitrary initial vector g 0 and letting
h0 = g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, . . . (10.6.2)
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(a)

(b)

Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i (10.6.3)

The scalars λi and γi are given by

λi =
gi · gi

hi · A · hi
=

gi · hi

hi · A · hi
(10.6.4)

γi =
gi+1 · gi+1

gi · gi

(10.6.5)

Equations (10.6.2)–(10.6.5) are simply equations (2.7.32)–(2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directions h i

along which to line-minimize. After N such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi = −∇f(Pi), for some point Pi, where f is of the form (10.6.1). Suppose that we
proceed from Pi along the direction hi to the local minimum of f located at some
point Pi+1 and then set gi+1 = −∇f(Pi+1). Then, this gi+1 is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge of A!)

Proof: By equation (10.5.3), g i = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (10.6.6)
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with λ chosen to take us to the line minimum. But at the line minimum h i · ∇f =
−hi · gi+1 = 0. This latter condition is easily combined with (10.6.6) to solve for
λ. The result is exactly the expression (10.6.4). But with this value of λ, (10.6.6)
is the same as (10.6.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A, nor even the storage necessary to store such a matrix. A sequence
of directions hi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi

(10.6.7)

instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of a function func(p), where p(1:n) is a vector of
length n, and also presumes the existence of a subroutine dfunc(p,df) that returns
the vector gradient df(1:n) evaluated at the input point p.

The routine calls linmin to do the line minimizations. As already discussed,
you may wish to use a modified version of linmin that uses dbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note below.

SUBROUTINE frprmn(p,n,ftol,iter,fret)
INTEGER iter,n,NMAX,ITMAX
REAL fret,ftol,p(n),EPS,func
EXTERNAL func
PARAMETER (NMAX=50,ITMAX=200,EPS=1.e-10)

C USES dfunc,func,linmin
Given a starting point p that is a vector of length n, Fletcher-Reeves-Polak-Ribiere minimiza-
tion is performed on a function func, using its gradient as calculated by a routine dfunc.
The convergence tolerance on the function value is input as ftol. Returned quantities are
p (the location of the minimum), iter (the number of iterations that were performed),
and fret (the minimum value of the function). The routine linmin is called to perform
line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; EPS is a small number to rectify special case of converging to exactly
zero function value.

INTEGER its,j
REAL dgg,fp,gam,gg,g(NMAX),h(NMAX),xi(NMAX)
fp=func(p) Initializations.
call dfunc(p,xi)
do 11 j=1,n

g(j)=-xi(j)
h(j)=g(j)
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xi(j)=h(j)
enddo 11

do 14 its=1,ITMAX Loop over iterations.
iter=its
call linmin(p,xi,n,fret) Next statement is the normal return:
if(2.*abs(fret-fp).le.ftol*(abs(fret)+abs(fp)+EPS))return
fp=fret
call dfunc(p,xi)
gg=0.
dgg=0.
do 12 j=1,n

gg=gg+g(j)**2
C dgg=dgg+xi(j)**2 This statement for Fletcher-Reeves.

dgg=dgg+(xi(j)+g(j))*xi(j) This statement for Polak-Ribiere.
enddo 12

if(gg.eq.0.)return Unlikely. If gradient is exactly zero then we are al-
ready done.gam=dgg/gg

do 13 j=1,n
g(j)=-xi(j)
h(j)=g(j)+gam*h(j)
xi(j)=h(j)

enddo 13

enddo 14

pause ’frprmn maximum iterations exceeded’
return
END

Note on Line Minimization Using Derivatives

Kindly reread the last part of §10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

Rather than reprint the whole routine linmin just to show one modified
statement, let us just tell you what the change is: The statement

fret=brent(ax,xx,bx,f1dim,tol,xmin)

should be replaced by

fret=dbrent(ax,xx,bx,f1dim,df1dim,tol,xmin)

You must also include the following function, which is analogous to f1dim as
discussed in §10.5. And remember, your function must be named func, and its
gradient calculation must be named dfunc.

FUNCTION df1dim(x)
INTEGER NMAX
REAL df1dim,x
PARAMETER (NMAX=50)

C USES dfunc
INTEGER j,ncom
REAL df(NMAX),pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

call dfunc(xt,df)
df1dim=0.
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do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of N , the number of dimensions, it requires a matrix of size
N × N . Generally, for any moderate N , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on. We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is the Davidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope [1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary function f(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any
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do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal ofvariable metric methods, which are sometimes calledquasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so thatN such line minimizations
lead to the exact minimum of a quadratic form inN dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order ofN , the number of dimensions, it requires a matrix of size
N × N . Generally, for any moderateN , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on.We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is theDavidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simplyFletcher-Powell). The
other goes by the nameBroyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope[1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary functionf(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any



10.7 Variable Metric Methods in Multidimensions 419

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

information about the values of the quadratic form’s parametersA and b, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matrixA−1, that is, to construct a sequence
of matricesHi with the property,

lim
i→∞

Hi = A−1 (10.7.1)

Even better if the limit is achieved afterN iterations instead of∞.
The reason that variable metric methods are sometimes called quasi-Newton

methods can now be explained. Consider finding a minimum by using Newton’s
method to search for a zero of the gradient of the function. Near the current point
xi, we have to second order

f(x) = f(xi) + (x − xi) · ∇f(xi) + 1
2 (x − xi) · A · (x − xi) (10.7.2)

so
∇f(x) = ∇f(xi) + A · (x − xi) (10.7.3)

In Newton’s method we set∇f(x) = 0 to determine the next iteration point:

x − xi = −A−1 · ∇f(xi) (10.7.4)

The left-hand side is the finite step we need take to get to the exact minimum; the
right-hand side is known once we have accumulated an accurateH ≈ A −1.

The “quasi” in quasi-Newton is because we don’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is oftenbetter than
using the true Hessian. We can understand this paradoxical result by considering the
descent directions of f at xi. These are the directionsp along whichf decreases:
∇f ·p < 0. For the Newton direction (10.7.4) to be a descent direction, we must have

∇f(xi) · (x − xi) = −(x − xi) · A · (x − xi) < 0 (10.7.5)

which is true ifA is positive definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive definite. Taking the actual Newton step with
the real Hessian can move us to points where the function isincreasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetric
approximation toA (usually the unit matrix) and build up the approximatingH i’s
in such a way that the matrixHi remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close
to the minimum, the updating formula approaches the true Hessian and we enjoy
the quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definiteA need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in§9.7 to choose a step along thedirection of
the Newton stepp, but not necessarily all the way.
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We won’t rigorously derive the DFP algorithm for takingH i into Hi+1; you
can consult[3] for clear derivations. Following Brodlie (in[2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4) atx i+1 from that same equation atxi gives

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (10.7.6)

where∇fj ≡ ∇f(xj). Having made the step fromxi to xi+1, we might reasonably
want to require that the new approximationH i+1 satisfy (10.7.6) as if it were
actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (10.7.7)

We might also imagine that the updating formula should be of the formH i+1 =
Hi + correction.

What “objects” are around out of which to construct a correction term? Most
notable are the two vectorsxi+1 − xi and ∇fi+1 − ∇fi; and there is alsoHi.
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.7.7) must hold! One such way, theDFP updating formula, is

Hi+1 = Hi +
(xi+1 − xi) ⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

− [Hi · (∇fi+1 −∇fi)] ⊗ [Hi · (∇fi+1 −∇fi)]
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.8)

where⊗ denotes the “outer” or “direct” product of two vectors, a matrix: Theij
component ofu⊗v isuivj . (You might want to verify that 10.7.8 does satisfy 10.7.7.)

TheBFGS updating formula is exactly the same, but with one additional term,

· · · + [(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)] u ⊗ u (10.7.9)

whereu is defined as the vector

u ≡ (xi+1 − xi)
(xi+1 − xi) · (∇fi+1 −∇fi)

− Hi · (∇fi+1 −∇fi)
(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.10)

(You might also verify that this satisfies 10.7.7.)
You will have to take on faith — or else consult[3] for details of — the “deep”

result that equation (10.7.8), with or without (10.7.9), does in fact converge toA −1

in N steps, iff is a quadratic form.
Here now is the routinedfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end ofnewt in §9.7, this algorithm
can fail if your variables are badly scaled.
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SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)
INTEGER iter,n,NMAX,ITMAX
REAL fret,gtol,p(n),func,EPS,STPMX,TOLX
PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)
EXTERNAL dfunc,func

C USES dfunc,func,lnsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,j
LOGICAL check
REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

* dg(NMAX),g(NMAX),hdg(NMAX),hessin(NMAX,NMAX),
* pnew(NMAX),xi(NMAX)

fp=func(p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do 12 i=1,n and initialize the inverse Hessian to the unit matrix.

do 11 j=1,n
hessin(i,j)=0.

enddo 11

hessin(i,i)=1.
xi(i)=-g(i) Initial line direction.
sum=sum+p(i)**2

enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 27 its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)
The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n

xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.

enddo 13

test=0. Test for convergence on ∆x.
do 14 i=1,n

temp=abs(xi(i))/max(abs(p(i)),1.)
if(temp.gt.test)test=temp

enddo 14

if(test.lt.TOLX)return
do 15 i=1,n Save the old gradient,

dg(i)=g(i)
enddo 15

call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.
den=max(fret,1.)
do 16 i=1,n

temp=abs(g(i))*max(abs(p(i)),1.)/den
if(temp.gt.test)test=temp

enddo 16

if(test.lt.gtol)return
do 17 i=1,n Compute difference of gradients,

dg(i)=g(i)-dg(i)
enddo 17

do 19 i=1,n and difference times current matrix.
hdg(i)=0.
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do 18 j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.
fae=0.
sumdg=0.
sumxi=0.
do 21 i=1,n

fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg(i)**2
sumxi=sumxi+xi(i)**2

enddo 21

if(fac.gt.sqrt(EPS*sumdg*sumxi))then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do 22 i=1,n The vector that makes BFGS different from DFP:

dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22

do 24 i=1,n The BFGS updating formula:
do 23 j=i,n

hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
* -fad*hdg(i)*hdg(j)+fae*dg(i)*dg(j)

hessin(j,i)=hessin(i,j)
enddo 23

enddo 24

endif
do 26 i=1,n Now calculate the next direction to go,

xi(i)=0.
do 25 j=1,n

xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25

enddo 26

enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return
END

Quasi-Newton methods likedfpmin work well with the approximate line
minimization done bylnsrch. The routinespowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrixHi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singularHi’s tend to give
subsequentHi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in§10.4: In case
of any doubt, you shouldrestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation toA−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (x − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to storeA but
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rather a triangular decomposition ofA, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition ofA is of orderN2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray[1,2].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1, §§3–6 (by K. W. Brodlie). [2]

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), pp. 56ff. [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 467–468.

10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledlinear optimization,
concerns itself with the following problem: ForN independent variablesx 1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · · + a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject toM = m1 + m2 + m3 additional constraints,m1 of
them of the form

ai1x1 + ai2x2 + · · · + aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · · + akNxN = bk ≥ 0

k = m1 + m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The variousaij ’s can have either sign, or be zero. The fact that theb’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by−1.
There is no particular significance in the number of constraintsM being less than,
equal to, or greater than the number of unknownsN .
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rather a triangular decomposition of A, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition of A is of order N2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray [1,2].
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10.8 Linear Programming and the Simplex
Method

The subject of linear programming, sometimes called linear optimization,
concerns itself with the following problem: For N independent variables x 1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · · + a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject to M = m1 + m2 + m3 additional constraints, m1 of
them of the form

ai1x1 + ai2x2 + · · · + aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · · + akNxN = bk ≥ 0

k = m1 + m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The various aij’s can have either sign, or be zero. The fact that the b’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by −1.
There is no particular significance in the number of constraints M being less than,
equal to, or greater than the number of unknowns N .
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A set of values x1 . . . xN that satisfies the constraints (10.8.2)–(10.8.5) is called
a feasible vector. The function that we are trying to maximize is called the objective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there are no feasible vectors, i.e., the given constraints are incompatible,
or (ii) there is no maximum, i.e., there is a direction in N space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable xi that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordable cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)–(10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by a linear function — since that is the
problem that linear programming can solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland [1].

Here is a specific example of a problem in linear programming, which has
N = 4, m1 = 2, m2 = m3 = 1, hence M = 4:

Maximize z = x1 + x2 + 3x3 − 1
2x4 (10.8.6)

with all the x’s nonnegative and also with

x1 + 2x3 ≤ 740

2x2 − 7x4 ≤ 0

x2 − x3 + 2x4 ≥ 1
2

x1 + x2 + x3 + x4 = 9

(10.8.7)

The answer turns out to be (to 2 decimals) x1 = 0, x2 = 3.33, x3 = 4.73, x4 = 0.95.
In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.
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Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
x1, x2, is shown. The linear function z, to be maximized, is represented by its contour lines. Primary
constraints require x1 and x2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

Fundamental Theorem of Linear Optimization

Imagine that we start with a full N -dimensional space of candidate vectors. Then
(in mind’s eye, at least) we carve away the regions that are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
this process is a plane, or rather hyperplane. Equality constraints of the form (10.8.5)
force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically a kind of convex polyhedron or simplex (cf. §10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.
Therefore, we can now run up the gradient projected into the boundary wall until we
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reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, a vertex of the
original simplex. Since this point has all N of its coordinates defined, it must be
the solution of N simultaneous equalities drawn from the original set of equalities
and inequalities (10.8.2)–(10.8.5).

Points that are feasible vectors and that satisfy N of the original constraints
as equalities, are termed feasible basic vectors. If N > M , then a feasible basic
vector has at least N − M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total of N . Put the other
way, at most M components of a feasible basic vector are nonzero. In the example
(10.8.6)–(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraint x1 ≥ 0, for the required total of 4.

Put together the two preceding paragraphs and you have the Fundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then there is a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which N constraints
(out of the M + N constraints in 10.8.2–10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is a way of organizing the procedure so that
(i) a series of combinations is tried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
is almost always no larger than of order M or N , whichever is larger. An interesting
mathematical sidelight is that this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be in normal form if it has no
constraints in the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

For our purposes it will be useful to consider an even more restricted set of cases,
with this additional property: Each equality constraint of the form (10.8.5) must
have at least one variable that has a positive coefficient and that appears uniquely in
that one constraint only. We can then choose one such variable in each constraint
equation, and solve that constraint equation for it. The variables thus chosen are
called left-hand variables or basic variables, and there are exactly M (= m 3) of
them. The remaining N − M variables are called right-hand variables or nonbasic
variables. Obviously this restricted normal form can be achieved only in the case
M ≤ N , so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at all! We will presently show how any linear programming problem can be
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transformed into restricted normal form. Therefore bear with us and learn how to
apply the simplex method to a restricted normal form.

Here is an example of a problem in restricted normal form:

Maximize z = 2x2 − 4x3 (10.8.8)

with x1, x2, x3, and x4 all nonnegative and also with

x1 = 2 − 6x2 + x3

x4 = 8 + 3x2 − 4x3

(10.8.9)

This example has N = 4, M = 2; the left-hand variables are x1 and x4; the
right-hand variables are x2 and x3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that this is not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off a feasible
basic vector (although not necessarily the optimal feasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
the left-hand variables for which the constraints are satisfied. The idea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and a left-hand variable change places. At each stage we maintain a problem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-called tableau, as follows:

x2 x3

z 0 2 −4
x1 2 −6 1
x4 8 3 −4 (10.8.10)

You should study (10.8.10) to be sure that you understand where each entry comes
from, and how to translate back and forth between the tableau and equation formats
of a problem in restricted normal form.

The first step in the simplex method is to examine the top row of the tableau,
which we will call the “z-row.” Look at the entries in columns labeled by right-hand
variables (we will call these “right-columns”). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Since we want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whose z-row entry is 2.

The second step is to examine the column entries below each z-row entry that
was selected by step one. We want to ask how much we can increase the right-hand
variable before one of the left-hand variables is driven negative, which is not allowed.
If the tableau element at the intersection of the right-hand column and the left-hand
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variable’s row is positive, then it poses no restriction: the corresponding left-hand
variable will just be driven more and more positive. If all the entries in any right-hand
column are positive, then there is no bound on the objective function and (having
said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently the limiting increase is given by dividing the element in the right-
hand column (which is called the pivot element) into the element in the “constant
column” (leftmost column) of the pivot element’s row. A value that is small in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely −6, so this is the pivot element. Its constant-column
entry is 2. This pivot will therefore allow x2 to be increased by 2÷ |6|, which results
in an increase of the objective function by an amount (2 × 2) ÷ |6|.

The third step is to do the increase of the selected right-hand variable, thus
making it a left-hand variable; and simultaneously to modify the left-hand variables,
reducing the pivot-row element to zero and thus making it a right-hand variable. For
our above example let’s do this first by hand: We begin by solving the pivot-row
equation for the new left-hand variable x2 in favor of the old one x1, namely

x1 = 2 − 6x2 + x3 → x2 = 1
3 − 1

6x1 + 1
6x3 (10.8.11)

We then substitute this into the old z-row,

z = 2x2 − 4x3 = 2
[
1
3 − 1

6x1 + 1
6x3

]− 4x3 = 2
3 − 1

3x1 − 11
3 x3 (10.8.12)

and into all other left-variable rows, in this case only x4,

x4 = 8 + 3
[
1
3 − 1

6x1 + 1
6x3

]− 4x3 = 9 − 1
2x1 − 7

2x3 (10.8.13)

Equations (10.8.11)–(10.8.13) form the new tableau

x1 x3

z 2
3 − 1

3 − 11
3

x2
1
3 − 1

6
1
6

x4 9 − 1
2 − 7

2 (10.8.14)

The fourth step is to go back and repeat the first step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
is possible. In the present example, this already occurs in (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of 2/3 for the
solution vector x2 = 1/3, x4 = 9, x1 = x3 = 0.

Now look back over the procedure that led from (10.8.10) to (10.8.14). You will
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:
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• Locate the pivot element and save it.
• Save the whole pivot column.
• Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.
• Divide the pivot row by the negative of the pivot.
• Replace the pivot element by the reciprocal of its saved value.
• Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called a degenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of translating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraints in (10.8.7). We do this by adding to the problem
so-called slack variables which, when their nonnegativity is required, convert the
inequalities to equalities. We will denote slack variables as yi. There will be
m1 + m2 of them. Once they are introduced, you treat them on an equal footing
with the original variables xi; then, at the very end, you simply ignore them.

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

x1 + 2x3 + y1 = 740

2x2 − 7x4 + y2 = 0

x2 − x3 + 2x4 − y3 = 1
2

x1 + x2 + x3 + x4 = 9

(10.8.15)

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that there is a set of M left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
There are M of these, and they are called artificial variables; we denote them by z i.
You put exactly one artificial variable into each constraint equation on the following
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model for the example (10.8.15):

z1 = 740 − x1 − 2x3 − y1

z2 = −2x2 + 7x4 − y2

z3 = 1
2 − x2 + x3 − 2x4 + y3

z4 = 9 − x1 − x2 − x3 − x4

(10.8.16)

Our example is now in restricted normal form.
Now you may object that (10.8.16) is not the same problem as (10.8.15) or

(10.8.7) unless all the zi’s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-called auxiliary objective function

z′ ≡ −z1 − z2 − z3 − z4 = −(749 1
2 − 2x1 − 4x2 − 2x3 + 4x4 − y1 − y2 + y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obviously the auxiliary objective function will be maximized for nonnegative z i’s if
all the zi’s are zero. We therefore expect the simplex method in this first phase to
produce a set of left-hand variables drawn from the x i’s and yi’s only, with all the
zi’s being right-hand variables. Aha! We then cross out the z i’s, leaving a problem
involving only xi’s and yi’s in restricted normal form. In other words, the first phase
produces an initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phase doesn’t produce zero values for all the z i’s? That
signals that there is no initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Here is how to translate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem
to be solved is as posed in equations (10.8.6)–(10.8.7).

x1 x2 x3 x4 y1 y2 y3

z 0 1 1 3 − 1
2 0 0 0

z1 740 −1 0 −2 0 −1 0 0

z2 0 0 −2 0 7 0 −1 0

z3
1
2 0 −1 1 −2 0 0 1

z4 9 −1 −1 −1 −1 0 0 0

z′ −749 1
2 2 4 2 −4 1 1 −1

(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)–(10.8.7) organized into a tabular form. In fact, these entries, along with



10.8 Linear Programming and the Simplex Method 431

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

the values of N , M , m1, m2, and m3, are the only input that is needed by the
simplex method routine below. The columns under the slack variables y i simply
record whether each of the M constraints is of the form ≤, ≥, or =; this is redundant
information with the values m1, m2, m3, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
so these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution, no solution, or an unbounded solution was found,and (ii) an updated tableau.
The output tableau that derives from (10.8.18), given to two significant figures, is

x1 y2 y3 · · ·
z 17.03 −.95 −.05 −1.05 · · ·
x2 3.33 −.35 −.15 .35 · · ·
x3 4.73 −.55 .05 −.45 · · ·
x4 .95 −.10 .10 .10 · · ·
y1 730.55 .10 −.10 .90 · · ·

(10.8.19)

A little counting of the xi’s and yi’s will convince you that there are M + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1 − m3 columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Where a slack variable (y i)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraints that are
satisfied as equalities.

Routine Implementing the Simplex Method

The following routine is based algorithmically on the implementation of Kuenzi,
Tzschach, and Zehnder [4]. Aside from input values of M , N , m1, m2, m3, the
principal input to the routine is a two-dimensional array a containing the portion of
the tableau (10.8.18) that is contained between the double lines. This input occupies
the first M + 1 rows and N + 1 columns of a. Note, however, that reference is made
internally to row M + 2 of a (used for the auxiliary objective function, just as in
10.8.18). Therefore the physical dimensions of a,

REAL a(MP,NP) (10.8.20)

must have NP≥ N + 1 and MP≥ M + 2.You will suffer endless agonies if you fail
to understand this simple point. Also do not neglect to order the rows of a in the
same order as equations (10.8.1), (10.8.3), (10.8.4), and (10.8.5), that is, objective
function, ≤-constraints, ≥-constraints, =-constraints.
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On output, the tableau a is indexed by two returned arrays of integers. iposv(j)
contains, for j= 1 . . .M , the number i whose original variable x i is now represented
by row j+1 of a. These are thus the left-hand variables in the solution. (The first row
of a is of course the z-row.) A value i > N indicates that the variable is a y i rather
than an xi, xN+j ≡ yj . Likewise, izrov(j) contains, for j= 1 . . .N , the number i
whose original variable xi is now a right-hand variable, represented by column j+1
of a. These variables are all zero in the solution. The meaning of i > N is the same
as above, except that i > N + m1 + m2 denotes an artificial or slack variable which
was used only internally and should now be entirely ignored.

The flag icase is returned as zero if a finite solution is found, +1 if the objective
function is unbounded, −1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameter EPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modify EPS in the routines simplx
and simp2. Permuting your variables can also help. Finally, consult [5].

SUBROUTINE simplx(a,m,n,mp,np,m1,m2,m3,icase,izrov,iposv)
INTEGER icase,m,m1,m2,m3,mp,n,np,iposv(m),izrov(n),MMAX,NMAX
REAL a(mp,np),EPS
PARAMETER (MMAX=100,NMAX=100,EPS=1.e-6)

C USES simp1,simp2,simp3
Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
Parameters: MMAX is the maximum number of constraints expected; NMAX is the maximum
number of variables expected; EPS is the absolute precision, which should be adjusted to
the scale of your variables.

INTEGER i,ip,is,k,kh,kp,nl1,l1(NMAX),l3(MMAX)
REAL bmax,q1
if(m.ne.m1+m2+m3)pause ’bad input constraint counts in simplx’
nl1=n
do 11 k=1,n

l1(k)=k Initialize index list of columns admissible for exchange.
izrov(k)=k Initially make all variables right-hand.

enddo 11

do 12 i=1,m
if(a(i+1,1).lt.0.)pause ’bad input tableau in simplx’ Constants bi must be non-

negative.iposv(i)=n+i
Initial left-hand variables. m1 type constraints are represented by having their slack vari-
able initially left-hand, with no artificial variable. m2 type constraints have their slack
variable initially left-hand, with a minus sign, and their artificial variable handled implic-
itly during their first exchange. m3 type constraints have their artificial variable initially
left-hand.

enddo 12

if(m2+m3.eq.0)goto 30 The origin is a feasible starting solution. Go to phase two.
do 13 i=1,m2 Initialize list of m2 constraints whose slack variables have never

been exchanged out of the initial basis.l3(i)=1
enddo 13

do 15 k=1,n+1 Compute the auxiliary objective function.
q1=0.
do 14 i=m1+1,m
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q1=q1+a(i+1,k)
enddo 14

a(m+2,k)=-q1
enddo 15

10 call simp1(a,mp,np,m+1,l1,nl1,0,kp,bmax) Find max. coeff. of auxiliary objec-
tive fn.if(bmax.le.EPS.and.a(m+2,1).lt.-EPS)then

icase=-1 Auxiliary objective function is still negative and can’t be im-
proved, hence no feasible solution exists.return

else if(bmax.le.EPS.and.a(m+2,1).le.EPS)then
Auxiliary objective function is zero and can’t be improved; we have a feasible starting vec-
tor. Clean out the artificial variables corresponding to any remaining equality constraints by
goto 1’s and then move on to phase two by goto 30.
do 16 ip=m1+m2+1,m

if(iposv(ip).eq.ip+n)then Found an artificial variable for an equality
constraint.call simp1(a,mp,np,ip,l1,nl1,1,kp,bmax)

if(bmax.gt.EPS)goto 1 Exchange with column corresponding to max-
imum pivot element in row.endif

enddo 16

do 18 i=m1+1,m1+m2 Change sign of row for any m2 constraints
still present from the initial basis.if(l3(i-m1).eq.1)then

do 17 k=1,n+1
a(i+1,k)=-a(i+1,k)

enddo 17

endif
enddo 18

goto 30 Go to phase two.
endif
call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase one).
if(ip.eq.0)then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
return

endif
1 call simp3(a,mp,np,m+1,n,ip,kp)

Exchange a left- and a right-hand variable (phase one), then update lists.
if(iposv(ip).ge.n+m1+m2+1)then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

do 19 k=1,nl1
if(l1(k).eq.kp)goto 2

enddo 19

2 nl1=nl1-1
do 21 is=k,nl1

l1(is)=l1(is+1)
enddo 21

else
kh=iposv(ip)-m1-n
if(kh.ge.1)then Exchanged out an m2 type constraint.

if(l3(kh).ne.0)then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit
artificial variable.

l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.
do 22 i=1,m+2

a(i,kp+1)=-a(i,kp+1)
enddo 22

endif
endif

endif
is=izrov(kp) Update lists of left- and right-hand variables.
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 10 Still in phase one, go back to 10.

End of phase one code for finding an initial feasible solution. Now, in phase two, optimize it.
30 call simp1(a,mp,np,0,l1,nl1,0,kp,bmax) Test the z-row for doneness.

if(bmax.le.EPS)then Done. Solution found. Return with the good news.
icase=0
return

endif
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call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase two).
if(ip.eq.0)then Objective function is unbounded. Report and return.

icase=1
return

endif
call simp3(a,mp,np,m,n,ip,kp) Exchange a left- and a right-hand variable (phase two),
is=izrov(kp) update lists of left- and right-hand variables,
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 30 and return for another iteration.
END

The preceding routine makes use of the following utility subroutines.

SUBROUTINE simp1(a,mp,np,mm,ll,nll,iabf,kp,bmax)
INTEGER iabf,kp,mm,mp,nll,np,ll(np)
REAL bmax,a(mp,np)

Determines the maximum of those elements whose index is contained in the supplied list
ll, either with or without taking the absolute value, as flagged by iabf.

INTEGER k
REAL test
if(nll.le.0)then No eligible columns.

bmax=0.
else

kp=ll(1)
bmax=a(mm+1,kp+1)
do 11 k=2,nll

if(iabf.eq.0)then
test=a(mm+1,ll(k)+1)-bmax

else
test=abs(a(mm+1,ll(k)+1))-abs(bmax)

endif
if(test.gt.0.)then

bmax=a(mm+1,ll(k)+1)
kp=ll(k)

endif
enddo 11

endif
return
END

SUBROUTINE simp2(a,m,n,mp,np,ip,kp)
INTEGER ip,kp,m,mp,n,np
REAL a(mp,np),EPS
PARAMETER (EPS=1.e-6)

Locate a pivot element, taking degeneracy into account.
INTEGER i,k
REAL q,q0,q1,qp
ip=0
do 11 i=1,m

if(a(i+1,kp+1).lt.-EPS)goto 1
enddo 11

return No possible pivots. Return with message.
1 q1=-a(i+1,1)/a(i+1,kp+1)

ip=i
do 13 i=ip+1,m

if(a(i+1,kp+1).lt.-EPS)then
q=-a(i+1,1)/a(i+1,kp+1)
if(q.lt.q1)then

ip=i
q1=q

else if (q.eq.q1) then We have a degeneracy.
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do 12 k=1,n
qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if(q0.ne.qp)goto 2

enddo 12

2 if(q0.lt.qp)ip=i
endif

endif
enddo 13

return
END

SUBROUTINE simp3(a,mp,np,i1,k1,ip,kp)
INTEGER i1,ip,k1,kp,mp,np
REAL a(mp,np)

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER ii,kk
REAL piv
piv=1./a(ip+1,kp+1)
do 12 ii=1,i1+1

if(ii-1.ne.ip)then
a(ii,kp+1)=a(ii,kp+1)*piv
do 11 kk=1,k1+1

if(kk-1.ne.kp)then
a(ii,kk)=a(ii,kk)-a(ip+1,kk)*a(ii,kp+1)

endif
enddo 11

endif
enddo 12

do 13 kk=1,k1+1
if(kk-1.ne.kp)a(ip+1,kk)=-a(ip+1,kk)*piv

enddo 13

a(ip+1,kp+1)=piv
return
END

Other Topics Briefly Mentioned

Every linear programming problem in normal form with N variables and M
constraints has a corresponding dual problem with M variables and N constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes called primal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex method is exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of size M × M , rather than
M × N , in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithm and the composite simplex algorithm are two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior
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to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a special case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:

Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126–144. [1]

Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University
Press). [2]

Kolata, G. 1982, Science, vol. 217, p. 39. [3]

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), Chapters 7–8.

Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-
ders).

Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).

Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).

Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-
Interscience).

Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical
Optimization (New York: Academic Press). [4]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famous traveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires [3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N -dimensional space of N
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to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressions nonlinear in the variables are callednonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is calledquadratic programming. Optimization prob-
lems where the variables take on only integer values are calledinteger programming
problems, a special case ofdiscrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.
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10.9 Simulated Annealing Methods

Themethod of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famoustraveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each ofN cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires[3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples ofcombinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply theN -dimensional space ofN
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continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration
space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of§§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquid move freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process isslow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
quenching. In all cases, we have gone greedily for the quick, nearby solution: From
the starting point, go immediately downhill as far as you can go. This, as often
remarked above, leads to a local, but not necessarily a global, minimum. Nature’s
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

Prob(E) ∼ exp(−E/kT ) (10.9.1)

expresses the idea that a system in thermal equilibrium at temperatureT has its
energy probabilistically distributed among all different energy statesE. Even at
low temperature, there is a chance, albeit very small, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goesuphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers[5] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from energyE 1 to
energyE2 with probabilityp = exp[−(E2 − E1)/kT ]. Notice that ifE2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
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probabilityp = 1, i.e., the systemalways took such an option. This general scheme,
of always taking a downhill step whilesometimes taking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective functionE (analog of energy) whose minimization is the

goal of the procedure.
4. A control parameterT (analog of temperature) and anannealing schedule

which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step inT taken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visitsN cities with given positions(xi, yi), returning finally to his or
her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class known asNP-complete problems,
whose computation time for anexact solution increases withN asexp(const.× N),
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective functionE
has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum which, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power ofN .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration. The cities are numberedi = 1 . . .N and each has coordinates
(xi, yi). A configuration is a permutation of the number1 . . .N , interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin[6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function. In the simplest form of the problem,E is taken just
as the total length of journey,

E = L ≡
N∑

i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (10.9.2)

with the convention that pointN + 1 is identified with point1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
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In that case, we would assign each city a parameterµ i, equal to+1 if it is east of the
Mississippi,−1 if it is west, and take the objective function to be

E =
N∑

i=1

[√
(xi − xi+1)2 + (yi − yi+1)2 + λ(µi − µi+1)2

]
(10.9.3)

A penalty4λ is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice ofλ. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to include
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of∆E that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest∆E normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decrease
in T . We hold each new value ofT constant for, say,100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduceE
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatorial
problems.

SUBROUTINE anneal(x,y,iorder,ncity)
INTEGER ncity,iorder(ncity)
REAL x(ncity),y(ncity)

C USES irbit1,metrop,ran3,revcst,revers,trncst,trnspt
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in
the arrays x(1:ncity),y(1:ncity). The array iorder(1:ncity) specifies the order
in which the cities are visited. On input, the elements of iorder may be set to any per-
mutation of the numbers 1 to ncity. This routine will return the best alternative path
it can find.

INTEGER i,i1,i2,idec,idum,iseed,j,k,nlimit,nn,nover,nsucc,n(6),
* irbit1

REAL de,path,t,tfactr,ran3,alen,x1,x2,y1,y2
LOGICAL ans
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
nover=100*ncity Maximum number of paths tried at any temperature.
nlimit=10*ncity Maximum number of successful path changes before continuing.
tfactr=0.9 Annealing schedule: t is reduced by this factor on each step.
path=0.0
t=0.5
do 11 i=1,ncity-1 Calculate initial path length.

i1=iorder(i)
i2=iorder(i+1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))

enddo 11

i1=iorder(ncity) Close the loop by tying path ends together.
i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
idum=-1
iseed=111
do 13 j=1,100 Try up to 100 temperature steps.

nsucc=0
do 12 k=1,nover

1 n(1)=1+int(ncity*ran3(idum)) Choose beginning of segment ..
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Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler
who crosses the river on the flimsiest excuse!
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n(2)=1+int((ncity-1)*ran3(idum)) ..and end of segment.
if (n(2).ge.n(1)) n(2)=n(2)+1
nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on the

segment.if (nn.lt.3) goto 1
idec=irbit1(iseed) Decide whether to do a segment reversal or transport.
if (idec.eq.0) then Do a transport.

n(3)=n(2)+int(abs(nn-2)*ran3(idum))+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,ncity,n) Carry out the transport.

endif
else Do a path reversal.

call revcst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,ncity,n) Carry out the reversal.

endif
endif
if (nsucc.ge.nlimit) goto 2 Finish early if we have enough

successful changes.enddo 12

2 write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc.eq.0) return If no success, we are done.

enddo 13

return
END

SUBROUTINE revcst(x,y,iorder,ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path reversal. ncity
is the number of cities, and arrays x(1:ncity),y(1:ncity) give the coordinates of these
cities. iorder(1:ncity) holds the present itinerary. The first two values n(1) and n(2)
of array n give the starting and ending cities along the path segment which is to be reversed.
On output, de is the cost of making the reversal. The actual reversal is not performed by
this routine.

INTEGER ii,j
REAL alen,xx(4),yy(4),x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) ..
n(4)=1+mod(n(2),ncity) .. and the city after n(2).
do 11 j=1,4

ii=iorder(n(j)) Find coordinates for the four cities involved.
xx(j)=x(ii)
yy(j)=y(ii)

enddo 11

de=-alen(xx(1),xx(3),yy(1),yy(3)) Calculate cost of disconnecting the segment
at both ends and reconnecting in the op-
posite order.

* -alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(1),xx(4),yy(1),yy(4))
* +alen(xx(2),xx(3),yy(2),yy(3))

return
END



442 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE revers(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6)

This routine performs a path segment reversal. iorder(1:ncity) is an input array giving
the present itinerary. The vector n has as its first four elements the first and last cities
n(1),n(2) of the path segment to be reversed, and the two cities n(3) and n(4) that
immediately precede and follow this segment. n(3) and n(4) are found by subroutine
revcst. On output, iorder(1:ncity) contains the segment from n(1) to n(2) in
reversed order.

INTEGER itmp,j,k,l,nn
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do 11 j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
itmp=iorder(k)
iorder(k)=iorder(l)
iorder(l)=itmp

enddo 11

return
END

SUBROUTINE trncst(x,y,iorder, ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path segment transport.
ncity is the number of cities, and arrays x(1:ncity) and y(1:ncity) give the city
coordinates. iorder is an array giving the present itinerary. The first three elements of
array n give the starting and ending cities of the path to be transported, and the point
among the remaining cities after which it is to be inserted. On output, de is the cost of
the change. The actual transport is not performed by this routine.

INTEGER ii,j
REAL xx(6),yy(6),alen,x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(4)=1+mod(n(3),ncity) Find the city following n(3)..
n(5)=1+mod((n(1)+ncity-2),ncity) ..and the one preceding n(1)..
n(6)=1+mod(n(2),ncity) ..and the one following n(2).
do 11 j=1,6

ii=iorder(n(j)) Determine coordinates for the six cities in-
volved.xx(j)=x(ii)

yy(j)=y(ii)
enddo 11

de=-alen(xx(2),xx(6),yy(2),yy(6)) Calculate the cost of disconnecting the path
segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

* -alen(xx(1),xx(5),yy(1),yy(5))
* -alen(xx(3),xx(4),yy(3),yy(4))
* +alen(xx(1),xx(3),yy(1),yy(3))
* +alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(5),xx(6),yy(5),yy(6))

return
END

SUBROUTINE trnspt(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6),MXCITY
PARAMETER (MXCITY=1000) Maximum number of cities anticipated.

This routine does the actual path transport, once metrop has approved. iorder is an
input array of length ncity giving the present itinerary. The array n has as its six elements
the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3)
and n(4) between which the path is to be placed, and the cities n(5) and n(6) that
precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst.
On output, iorder is modified to reflect the movement of the path segment.

INTEGER j,jj,m1,m2,m3,nn,jorder(MXCITY)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2)
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m2=1+mod((n(5)-n(4)+ncity),ncity) ...and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) ...and the number from n(6) to n(3).
nn=1
do 11 j=1,m1

jj=1+mod((j+n(1)-2),ncity) Copy the chosen segment.
jorder(nn)=iorder(jj)
nn=nn+1

enddo 11

do 12 j=1,m2 Then copy the segment from n(4) to n(5).
jj=1+mod((j+n(4)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 12

do 13 j=1,m3 Finally, the segment from n(6) to n(3).
jj=1+mod((j+n(6)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 13

do 14 j=1,ncity
iorder(j)=jorder(j) Copy jorder back into iorder.

enddo 14

return
END

SUBROUTINE metrop(de,t,ans)
REAL de,t
LOGICAL ans

C USES ran3
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function e. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

INTEGER jdum
REAL ran3
SAVE jdum
DATA jdum /1/
ans=(de.lt.0.0).or.(ran3(jdum).lt.exp(-de/t))
return
END

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuous N -dimensional control spaces, e.g., finding the (ideally,
global) minimum of some function f(x), in the presence of many local minima,
where x is an N -dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value of f is the objective function. The
system state is the point x. The control parameter T is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step from x to x + ∆x.
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The last of these elements is the most problematical. The literature to date [7-10]

describes several different schemes for choosing ∆x, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if, when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
become inefficient in narrow valleys; nor should it become more and more inefficient
as convergence to a minimum is approached. Except possibly for [7], all of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use a modification of the downhill simplex method (§10.4). This amounts
to replacing the single point x as a description of the system state by a simplex of
N + 1 points. The “moves” are the same as described in §10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedure is slightly subtle: We add a positive, logarithmically distributed random
variable, proportional to the temperature T , to the stored function value associated
with every vertex of the simplex, and we subtract a similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but
sometimes accepts an uphill one. In the limit T → 0, this algorithm reduces exactly
to the downhill simplex method and converges to a local minimum.

At a finite value of T , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random,
points as it does so. The efficiency with which a region is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly” ; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

• Reduce T to (1 − ε)T after every m moves, where ε/m is determined
by experiment.

• Budget a total of K moves, and reduce T after every m moves to a value
T = T0(1 − k/K)α, where k is the cumulative number of moves thus far,
and α is a constant, say 1, 2, or 4. The optimal value for α depends on the
statistical distribution of relative minima of various depths. Larger values
of α spend more iterations at lower temperature.

• After every m moves, set T to β times f1−fb, where β is an experimentally
determined constant of order 1, f1 is the smallest function value currently
represented in the simplex, and fb is the best function ever encountered.
However, never reduce T by more than some fraction γ at a time.

Another strategic question is whether to do an occasional restart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts
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have no positive, or a somewhat negative, effect.
You should compare the following routine, amebsa, with its counterpartamoeba

in §10.4. Note that the argument iter is used in a somewhat different manner.

SUBROUTINE amebsa(p,y,mp,np,ndim,pb,yb,ftol,funk,iter,temptr)
INTEGER iter,mp,ndim,np,NMAX
REAL ftol,temptr,yb,p(mp,np),pb(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES amotsa,funk,ran1
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector in
ndim dimensions, by simulated annealing combined with the downhill simplex method of
Nelder and Mead. The input matrix p(1..ndim+1,1..ndim) has ndim+1 rows, each an
ndim-dimensional vector which is a vertex of the starting simplex. Also input is the vector
y(1:ndim+1), whose components must be pre-initialized to the values of funk evaluated at
the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be achieved
in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then
decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb(1:ndim) will subsequently return the best function value
and point ever encountered (even if it is no longer a point in the simplex).

INTEGER i,idum,ihi,ilo,j,m,n
REAL rtol,sum,swap,tt,yhi,ylo,ynhi,ysave,yt,ytry,psum(NMAX),

* amotsa,ran1
COMMON /ambsa/ tt,idum
tt=-temptr

1 do 12 n=1,ndim Enter here when starting or after overall contraction.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here after changing a single point. Find which point
is the highest (worst), next-highest, and lowest (best).ihi=2

ylo=y(1)+tt*log(ran1(idum)) Whenever we “look at” a vertex, it gets a random thermal
fluctuation.ynhi=ylo

yhi=y(2)+tt*log(ran1(idum))
if (ylo.gt.yhi) then

ihi=1
ilo=2
ynhi=yhi
yhi=ylo
ylo=ynhi

endif
do 13 i=3,ndim+1 Loop over the points in the simplex.

yt=y(i)+tt*log(ran1(idum)) More thermal fluctuations.
if(yt.le.ylo) then

ilo=i
ylo=yt

endif
if(yt.gt.yhi) then

ynhi=yhi
ihi=i
yhi=yt

else if(yt.gt.ynhi) then
ynhi=yt

endif
enddo 13

rtol=2.*abs(yhi-ylo)/(abs(yhi)+abs(ylo))
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Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol.or.iter.lt.0) then If returning, put best point and value in slot 1.

swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
iter=iter-2
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,-1.0)
if (ytry.le.ylo) then
Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,2.0)

else if (ytry.ge.ynhi) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=yhi
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter-ndim
goto 1

endif
else

iter=iter+1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotsa,fac,yb,yhi,p(mp,np),pb(np),psum(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES funk,ran1
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER idum,j
REAL fac1,fac2,tt,yflu,ytry,ptry(NMAX),ran1
COMMON /ambsa/ tt,idum
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11
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ytry=funk(ptry)
if (ytry.le.yb) then Save the best-ever.

do 12 j=1,ndim
pb(j)=ptry(j)

enddo 12

yb=ytry
endif
yflu=ytry-tt*log(ran1(idum)) We added a thermal fluctuation to all the current vertices,

but we subtract it here, so as to give the simplex
a thermal Brownian motion: It likes to accept any
suggested change.

if (yflu.lt.yhi) then
y(ihi)=ytry
yhi=yflu
do 13 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 13

endif
amotsa=yflu
return
END

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods
will be. The method has several extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than about T . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T is large. These decisions become more permanent as T is lowered, and attention
then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, if λ is large, a decision to cross
the Mississippi only twice is made at high T , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in [1].
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Chapter 11. Eigensystems

11.0 Introduction

An N × N matrix A is said to have aneigenvector x and corresponding
eigenvalue λ if

A · x = λx (11.0.1)

Obviously any multiple of an eigenvectorx will also be an eigenvector, but we
won’t consider such multiples as being distinct eigenvectors. (The zero vector is not
considered to be an eigenvector at all.) Evidently (11.0.1) can hold only if

det|A − λ1| = 0 (11.0.2)

which, if expanded out, is anN th degree polynomial inλ whose roots are the eigen-
values. This proves that there are alwaysN (not necessarily distinct) eigenvalues.
Equal eigenvalues coming from multiple roots are calleddegenerate. Root-searching
in the characteristic equation (11.0.2) is usually a very poor computational method
for finding eigenvalues. We will learn much better ways in this chapter, as well as
efficient ways for finding corresponding eigenvectors.

The above two equations also prove that every one of theN eigenvalues has
a (not necessarily distinct) corresponding eigenvector: Ifλ is set to an eigenvalue,
then the matrixA − λ1 is singular, and we know that every singular matrix has at
least one nonzero vector in its nullspace (see§2.6 on singular value decomposition).

If you addτx to both sides of (11.0.1), you will easily see that the eigenvalues
of any matrix can be changed orshifted by an additive constantτ by adding to the
matrix that constant times the identity matrix. The eigenvectors are unchanged by
this shift. Shifting, as we will see, is an important part of many algorithms for
computing eigenvalues. We see also that there is no special significance to a zero
eigenvalue. Any eigenvalue can be shifted to zero, or any zero eigenvalue can be
shifted away from zero.

449
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Definitions and Basic Facts

A matrix is calledsymmetric if it is equal to its transpose,

A = AT or aij = aji (11.0.3)

It is calledHermitian orself-adjoint if it equals the complex-conjugateof its transpose
(its Hermitian conjugate, denoted by “†”)

A = A† or aij = aji* (11.0.4)

It is termedorthogonal if its transpose equals its inverse,

AT · A = A · AT = 1 (11.0.5)

andunitary if its Hermitian conjugate equals its inverse. Finally, a matrix is called
normal if it commutes with its Hermitian conjugate,

A · A† = A† · A (11.0.6)

For real matrices, Hermitian means the same as symmetric, unitary means the
same as orthogonal, andboth of these distinct classes are normal.

The reason that “Hermitian” is an important concept has to do with eigenvalues.
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues
of a real symmetric matrix are all real. Contrariwise, the eigenvalues of a real
nonsymmetric matrix may include real values, but may also include pairs of complex
conjugate values; and the eigenvalues of a complex matrix that is not Hermitian
will in general be complex.

The reason that “normal” is an important concept has to do with the eigen-
vectors. The eigenvectors of a normal matrix with nondegenerate (i.e., distinct)
eigenvalues are complete and orthogonal, spanning theN -dimensional vector space.
For a normal matrix with degenerate eigenvalues, we have the additional freedom of
replacing the eigenvectors corresponding to a degenerate eigenvalue by linear com-
binations of themselves. Using this freedom, we can always perform Gram-Schmidt
orthogonalization (consult any linear algebra text) andfind a set of eigenvectors that
are complete and orthogonal, just as in the nondegenerate case. The matrix whose
columns are an orthonormal set of eigenvectors is evidently unitary. A special case
is that the matrix of eigenvectors of a real, symmetric matrix is orthogonal, since
the eigenvectors of that matrix are all real.

When a matrix is not normal, as typified by any random, nonsymmetric, real
matrix, then in general we cannot findany orthonormal set of eigenvectors, nor even
any pairs of eigenvectors that are orthogonal (except perhaps by rare chance). While
theN non-orthonormal eigenvectors will “usually” span theN -dimensional vector
space, they do not always do so; that is, the eigenvectors are not always complete.
Such a matrix is said to bedefective.
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Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not particularly orthogonal
among themselves, theydo have an orthogonality relation with a different set of
vectors, which we must now define. Up to now our eigenvectors have been column
vectors that are multiplied to the right of a matrixA, as in (11.0.1). These, more
explicitly, are termedright eigenvectors. We could also, however, try to find row
vectors, which multiplyA to the left and satisfy

x · A = λx (11.0.7)

These are calledleft eigenvectors. By taking the transpose of equation (11.0.7), we
see that every left eigenvector is the transpose of a right eigenvectorof the transpose
of A. Now by comparing to (11.0.2), and using the fact that the determinant of a
matrix equals the determinant of its transpose, we also see that the left and right
eigenvalues of A are identical.

If the matrix A is symmetric, then the left and right eigenvectors are just
transposes of each other, that is, have the same numerical values as components.
Likewise, if the matrix is self-adjoint, the left and right eigenvectors are Hermitian
conjugates of each other. For the general nonnormal case, however, we have the
following calculation: LetXR be the matrix formed by columns from the right
eigenvectors, andXL be the matrix formed by rows from the left eigenvectors. Then
(11.0.1) and (11.0.7) can be rewritten as

A · XR = XR · diag(λ1 . . . λN ) XL · A = diag(λ1 . . . λN ) · XL (11.0.8)

Multiplying the first of these equations on the left byXL, the second on the right
by XR, and subtracting the two, gives

(XL · XR) · diag(λ1 . . . λN ) = diag(λ1 . . . λN ) · (XL · XR) (11.0.9)

This says that the matrix of dot products of the left and right eigenvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrixof distinct elements are themselves diagonal. Thus, if the eigenvalues
are nondegenerate, each left eigenvector is orthogonal to all right eigenvectors except
its corresponding one, and vice versa. By choice of normalization, the dot products
of corresponding left and right eigenvectors can always be made unity for any matrix
with nondegenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvec-
tors corresponding to a degenerate eigenvalue must be linearly combined among
themselves to achieve orthogonality with the right or left ones, respectively. This
can always be done by a procedure akin to Gram-Schmidt orthogonalization. The
normalization can then be adjusted to give unity for the nonzero dot products between
corresponding left and right eigenvectors. If the dot product of corresponding left and
right eigenvectors is zero at this stage, then you have a case where the eigenvectors
are incomplete! Note that incomplete eigenvectors can occur only where there are
degenerate eigenvalues, but do not always occur in such cases (in fact, never occur
for the class of “normal” matrices). See[1] for a clear discussion.
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In both the degenerate and nondegenerate cases, the final normalization to
unity of all nonzero dot products produces the result: The matrix whose rows
are left eigenvectors is the inverse matrix of the matrix whose columns are right
eigenvectors,if the inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (11.0.8) byXL, and using the fact thatXL

and XR are matrix inverses, we get

X−1
R · A · XR = diag(λ1 . . . λN ) (11.0.10)

This is a particular case of asimilarity transform of the matrixA,

A → Z−1 · A · Z (11.0.11)

for some transformation matrixZ. Similarity transformations play a crucial role
in the computation of eigenvalues, because they leave the eigenvalues of a matrix
unchanged. This is easily seen from

det
∣∣Z−1 · A · Z − λ1

∣∣ = det
∣∣Z−1 · (A − λ1) · Z

∣∣

= det|Z| det|A − λ1| det
∣∣Z−1

∣∣
= det|A − λ1|

(11.0.12)

Equation (11.0.10)shows that any matrix with complete eigenvectors (which includes
all normal matrices and “most” random nonnormal ones) can be diagonalized by a
similarity transformation, that the columns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse are
the left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

A → ZT · A · Z (11.0.13)

While real nonsymmetric matrices can be diagonalized in their usual case of complete
eigenvectors, the transformation matrix is not necessarily real. It turns out, however,
that a real similarity transformation can “almost” do the job. It can reduce the matrix
down to a form with little two-by-two blocks along the diagonal, all other elements
zero. Each two-by-two block corresponds to a complex-conjugate pair of complex
eigenvalues. We will see this idea exploited in some routines given later in the chapter.

The “grand strategy” of virtually all modern eigensystem routines is to nudge
the matrixA towards diagonal form by a sequence of similarity transformations,

A → P−1
1 · A · P1 → P−1

2 · P−1
1 · A · P1 · P2

→ P−1
3 · P−1

2 · P−1
1 · A · P1 · P2 · P3 → etc.

(11.0.14)
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If we get all the way to diagonal form, then the eigenvectors are the columns of
the accumulated transformation

XR = P1 · P2 · P3 · . . . (11.0.15)

Sometimes we do not want to go all the way to diagonal form. For example, if we are
interested only in eigenvalues, not eigenvectors, it is enough to transform the matrix
A to be triangular, with all elements below (or above) the diagonal zero. In this
case the diagonal elements are already the eigenvalues, as you can see by mentally
evaluating (11.0.2) using expansion by minors.

There are two rather different sets of techniques for implementing the grand
strategy (11.0.14). It turns out that they work rather well in combination, so most
modern eigensystem routines use both. The first set of techniques constructs individ-
ual Pi’s as explicit “atomic” transformations designed to perform specific tasks, for
example zeroing a particular off-diagonal element (Jacobi transformation,§11.1), or
a whole particular row or column (Householder transformation,§11.2; elimination
method,§11.5). In general, a finite sequence of these simple transformations cannot
completely diagonalize a matrix. There are then two choices: either use the finite
sequence of transformations to go most of the way (e.g., to some special form like
tridiagonal or Hessenberg, see§11.2 and§11.5 below) and follow up with the second
set of techniques about to be mentioned; or else iterate the finite sequence of simple
transformations over and over until the deviation of the matrix from diagonal is
negligibly small. This latter approach is conceptually simplest, so we will discuss
it in the next section; however, forN greater than∼ 10, it is computationally
inefficient by a roughly constant factor∼ 5.

The second set of techniques, calledfactorization methods, is more subtle.
Suppose that the matrixA can be factored into a left factorFL and a right factor
FR. Then

A = FL · FR or equivalently F−1
L · A = FR (11.0.16)

If we now multiply back together the factors in the reverse order, and use the second
equation in (11.0.16) we get

FR · FL = F−1
L · A · FL (11.0.17)

which we recognize as having effected a similarity transformation onA with the
transformation matrix beingFL! In §11.3 and§11.6 we will discuss theQR method
which exploits this idea.

Factorization methods also do not converge exactly in a finite number of
transformations. But the better ones do converge rapidly and reliably, and, when
following an appropriate initial reduction by simple similarity transformations, they
are the methods of choice.
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“Eigenpackages of Canned Eigenroutines”

You have probably gathered by now that the solution of eigensystems is a fairly
complicated business. It is. It is one of the few subjects covered in this book for
which we donot recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about using
them, and intelligent diagnoses when something goes wrong.

You will find that almost all canned routines in use nowadays trace their ancestry
back to routines published in Wilkinson and Reinsch’sHandbook for Automatic
Computation, Vol. II, Linear Algebra [2]. This excellent reference, containing papers
by a number of authors, is the Bible of the field. A public-domain implementation
of the Handbook routines inFORTRAN is the EISPACK set of programs[3]. The
routines in this chapter are translations of either theHandbook or EISPACK routines,
so understanding these will take you a lot of the way towards understanding those
canonical packages.

IMSL [4] and NAG[5] each provide proprietary implementations, inFORTRAN,
of what are essentially the Handbook routines.

A good “eigenpackage” will provide separate routines, or separate paths through
sequences of routines, for the following desired calculations:

• all eigenvalues and no eigenvectors
• all eigenvalues and some corresponding eigenvectors
• all eigenvalues and all corresponding eigenvectors

The purpose of these distinctions is to save compute time and storage; it is wasteful
to calculate eigenvectors that you don’t need. Often one is interested only in
the eigenvectors corresponding to the largest few eigenvalues, or largest few in
magnitude, or few that are negative. The method usually used to calculate “some”
eigenvectors is typically more efficient than calculating all eigenvectors if you desire
fewer than about a quarter of the eigenvectors.

A good eigenpackage also provides separate paths for each of the above
calculations for each of the following special forms of the matrix:

• real, symmetric, tridiagonal
• real, symmetric, banded (only a small number of sub- and superdiagonals

are nonzero)
• real, symmetric
• real, nonsymmetric
• complex, Hermitian
• complex, non-Hermitian

Again, the purpose of these distinctions is to save time and storage by using theleast
general routine that will serve in any particular application.

In this chapter, as a bare introduction, we give good routines for the following
paths:

• all eigenvalues and eigenvectors of a real, symmetric, tridiagonal matrix
(§11.3)

• all eigenvalues and eigenvectors of a real, symmetric, matrix (§11.1–§11.3)
• all eigenvalues and eigenvectors of a complex, Hermitian matrix

(§11.4)
• all eigenvalues and no eigenvectors of a real, nonsymmetric matrix (§11.5–
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§11.6)
We also discuss, in§11.7, how to obtain some eigenvectors of nonsymmetric

matrices by the method of inverse iteration.

Generalized and Nonlinear Eigenvalue Problems

Many eigenpackages also deal with the so-calledgeneralized eigenproblem, [6]

A · x = λB · x (11.0.18)

whereA and B are both matrices. Most such problems, whereB is nonsingular,
can be handled by the equivalent

(B−1 · A) · x = λx (11.0.19)

Often A and B are symmetric andB is positive definite. The matrixB−1 · A in
(11.0.19) is not symmetric, but we can recover a symmetric eigenvalue problem
by using the Cholesky decompositionB = L · LT of §2.9. Multiplying equation
(11.0.18) byL−1, we get

C · (LT · x) = λ(LT · x) (11.0.20)
where

C = L−1 · A · (L−1)T (11.0.21)

The matrixC is symmetric and its eigenvalues are the same as those of the original
problem (11.0.18); its eigenfunctions areLT · x. The efficient way to formC is
first to solve the equation

Y · LT = A (11.0.22)

for the lower triangle of the matrixY. Then solve

L · C = Y (11.0.23)

for the lower triangle of the symmetric matrixC.
Another generalization of the standard eigenvalue problem is to problems

nonlinear in the eigenvalueλ, for example,

(Aλ2 + Bλ + C) · x = 0 (11.0.24)

This can be turned into a linear problem by introducing an additional unknown
eigenvectory and solving the2N × 2N eigensystem,

(
0 1

−A−1 · C −A−1 · B

)
·
(

x
y

)
= λ

(
x
y

)
(11.0.25)

This technique generalizes to higher-order polynomials inλ. A polynomial of degree
M produces a linearMN × MN eigensystem (see[7]).
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11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogonal similarity transforma-
tions of the form of equation (11.0.14). Each transformation (aJacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. For
matrices of order greater than about 10, say, the algorithm is slower, by a significant
constant factor, than theQR method we shall give in§11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend it
for matrices of moderate order, where expense is not a major consideration.

The basic Jacobi rotationPpq is a matrix of the form

Ppq =




1
· · ·

c · · · s
... 1

...
−s · · · c

· · ·
1




(11.1.1)

Here all the diagonal elements are unity except for the two elementsc in rows (and
columns)p andq. All off-diagonal elements are zero except the two elementss and
−s. The numbersc ands are the cosine and sine of a rotation angleφ, soc 2 +s2 = 1.
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11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogonal similarity transforma-
tions of the form of equation (11.0.14). Each transformation (a Jacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. For
matrices of order greater than about 10, say, the algorithm is slower, by a significant
constant factor, than the QR method we shall give in §11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend it
for matrices of moderate order, where expense is not a major consideration.

The basic Jacobi rotation Ppq is a matrix of the form

Ppq =




1
· · ·

c · · · s
... 1

...
−s · · · c

· · ·
1




(11.1.1)

Here all the diagonal elements are unity except for the two elements c in rows (and
columns) p and q. All off-diagonal elements are zero except the two elements s and
−s. The numbers c and s are the cosine and sine of a rotation angle φ, so c 2 +s2 = 1.
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A plane rotation such as (11.1.1) is used to transform the matrix A according to

A′ = PT
pq · A · Ppq (11.1.2)

Now, PT
pq · A changes only rows p and q of A, while A · Ppq changes only columns

p and q. Notice that the subscripts p and q do not denote components of P pq , but
rather label which kind of rotation the matrix is, i.e., which rows and columns it
affects. Thus the changed elements of A in (11.1.2) are only in the p and q rows
and columns indicated below:

A′ =




· · · a′
1p · · · a′

1q · · ·
...

...
...

...
a′

p1 · · · a′
pp · · · a′

pq · · · a′
pn

...
...

...
...

a′
q1 · · · a′

qp · · · a′
qq · · · a′

qn

...
...

...
...

· · · a′
np · · · a′

nq · · ·




(11.1.3)

Multiplying out equation (11.1.2) and using the symmetry of A, we get the explicit
formulas

a′
rp = carp − sarq

a′
rq = carq + sarp

r �= p, r �= q (11.1.4)

a′
pp = c2app + s2aqq − 2scapq (11.1.5)

a′
qq = s2app + c2aqq + 2scapq (11.1.6)

a′
pq = (c2 − s2)apq + sc(app − aqq) (11.1.7)

The idea of the Jacobi method is to try to zero the off-diagonal elements by a
series of plane rotations. Accordingly, to set a ′

pq = 0, equation (11.1.7) gives the
following expression for the rotation angle φ

θ ≡ cot 2φ ≡ c2 − s2

2sc
=

aqq − app

2apq
(11.1.8)

If we let t ≡ s/c, the definition of θ can be rewritten

t2 + 2tθ − 1 = 0 (11.1.9)

The smaller root of this equation corresponds to a rotation angle less than π/4
in magnitude; this choice at each stage gives the most stable reduction. Using the
form of the quadratic formula with the discriminant in the denominator, we can
write this smaller root as

t =
sgn(θ)

|θ| + √
θ2 + 1

(11.1.10)
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If θ is so large that θ2 would overflow on the computer, we set t = 1/(2θ). It
now follows that

c =
1√

t2 + 1
(11.1.11)

s = tc (11.1.12)

When we actually use equations (11.1.4)–(11.1.7) numerically, we rewrite them
to minimize roundoff error. Equation (11.1.7) is replaced by

a′
pq = 0 (11.1.13)

The idea in the remaining equations is to set the new quantity equal to the old
quantity plus a small correction. Thus we can use (11.1.7) and (11.1.13) to eliminate
aqq from (11.1.5), giving

a′
pp = app − tapq (11.1.14)

Similarly,

a′
qq = aqq + tapq (11.1.15)

a′
rp = arp − s(arq + τarp) (11.1.16)

a′
rq = arq + s(arp − τarq) (11.1.17)

where τ (= tanφ/2) is defined by

τ ≡ s

1 + c
(11.1.18)

One can see the convergence of the Jacobi method by considering the sum of
the squares of the off-diagonal elements

S =
∑
r �=s

|ars|2 (11.1.19)

Equations (11.1.4)–(11.1.7) imply that

S′ = S − 2|apq|2 (11.1.20)

(Since the transformation is orthogonal, the sum of the squares of the diagonal
elements increases correspondingly by 2|apq|2.) The sequence of S’s thus decreases
monotonically. Since the sequence is bounded below by zero, and since we can
choose apq to be whatever element we want, the sequence can be made to converge
to zero.

Eventually one obtains a matrix D that is diagonal to machine precision. The
diagonal elements give the eigenvalues of the original matrix A, since

D = VT · A · V (11.1.21)



11.1 Jacobi Transformations of a Symmetric Matrix 459

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

where
V = P1 · P2 · P3 · · · (11.1.22)

the Pi’s being the successive Jacobi rotation matrices. The columns of V are the
eigenvectors (since A · V = V · D). They can be computed by applying

V′ = V · Pi (11.1.23)

at each stage of calculation, where initially V is the identity matrix. In detail,
equation (11.1.23) is

v′rs = vrs (s �= p, s �= q)

v′rp = cvrp − svrq

v′rq = svrp + cvrq

(11.1.24)

We rewrite these equations in terms of τ as in equations (11.1.16) and (11.1.17)
to minimize roundoff.

The only remaining question is the strategy one should adopt for the order in
which the elements are to be annihilated. Jacobi’s original algorithm of 1846 searched
the whole upper triangle at each stage and set the largest off-diagonal element to zero.
This is a reasonable strategy for hand calculation, but it is prohibitive on a computer
since the search alone makes each Jacobi rotation a process of order N 2 instead of N .

A better strategy for our purposes is the cyclic Jacobi method, where one
annihilates elements in strict order. For example, one can simply proceed down
the rows: P12, P13, ..., P1n; then P23, P24, etc. One can show that convergence
is generally quadratic for both the original or the cyclic Jacobi methods, for
nondegenerate eigenvalues. One such set of n(n − 1)/2 Jacobi rotations is called
a sweep.

The program below, based on the implementations in [1,2], uses two further
refinements:

• In the first three sweeps, we carry out the pq rotation only if |apq| > ε
for some threshold value

ε =
1
5

S0

n2
(11.1.25)

where S0 is the sum of the off-diagonal moduli,

S0 =
∑
r<s

|ars| (11.1.26)

• After four sweeps, if |apq| 	 |app| and |apq| 	 |aqq|, we set |apq| = 0
and skip the rotation. The criterion used in the comparison is |a pq| <
10−(D+2)|app|, where D is the number of significant decimal digits on the
machine, and similarly for |aqq|.
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In the following routine the n×n symmetric matrix a(1:n,1:n) is stored in
an np×np array. On output, the superdiagonal elements of a are destroyed, but the
diagonal and subdiagonal are unchanged and give full information on the original
symmetric matrix a. The parameter d is a vector of length np. On output, it returns
the eigenvalues of a in its first n elements. During the computation, it contains the
current diagonal of a. The matrix v outputs the normalized eigenvector belonging
to d(k) in its kth column. The parameter nrot is the number of Jacobi rotations
that were needed to achieve convergence.

Typical matrices require 6 to 10 sweeps to achieve convergence, or 3n 2 to 5n2

Jacobi rotations. Each rotation requires of order 4n operations, each consisting
of a multiply and an add, so the total labor is of order 12n 3 to 20n3 operations.
Calculation of the eigenvectors as well as the eigenvalues changes the operation
count from 4n to 6n per rotation, which is only a 50 percent overhead.

SUBROUTINE jacobi(a,n,np,d,v,nrot)
INTEGER n,np,nrot,NMAX
REAL a(np,np),d(np),v(np,np)
PARAMETER (NMAX=500)

Computes all eigenvalues and eigenvectors of a real symmetric matrix a, which is of size n
by n, stored in a physical np by np array. On output, elements of a above the diagonal are
destroyed. d returns the eigenvalues of a in its first n elements. v is a matrix with the same
logical and physical dimensions as a, whose columns contain, on output, the normalized
eigenvectors of a. nrot returns the number of Jacobi rotations that were required.

INTEGER i,ip,iq,j
REAL c,g,h,s,sm,t,tau,theta,tresh,b(NMAX),z(NMAX)
do 12 ip=1,n Initialize to the identity matrix.

do 11 iq=1,n
v(ip,iq)=0.

enddo 11

v(ip,ip)=1.
enddo 12

do 13 ip=1,n
b(ip)=a(ip,ip) Initialize b and d to the diagonal of a.
d(ip)=b(ip)
z(ip)=0. This vector will accumulate terms of the form tapq

as in equation (11.1.14).enddo 13

nrot=0
do 24 i=1,50

sm=0.
do 15 ip=1,n-1 Sum off-diagonal elements.

do 14 iq=ip+1,n
sm=sm+abs(a(ip,iq))

enddo 14

enddo 15

if(sm.eq.0.)return The normal return, which relies on quadratic conver-
gence to machine underflow.if(i.lt.4)then

tresh=0.2*sm/n**2 ...on the first three sweeps.
else

tresh=0. ...thereafter.
endif
do 22 ip=1,n-1

do 21 iq=ip+1,n
g=100.*abs(a(ip,iq))
After four sweeps, skip the rotation if the off-diagonal element is small.

if((i.gt.4).and.(abs(d(ip))+g.eq.abs(d(ip)))
* .and.(abs(d(iq))+g.eq.abs(d(iq))))then

a(ip,iq)=0.
else if(abs(a(ip,iq)).gt.tresh)then

h=d(iq)-d(ip)
if(abs(h)+g.eq.abs(h))then
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t=a(ip,iq)/h t = 1/(2θ)
else

theta=0.5*h/a(ip,iq) Equation (11.1.10).
t=1./(abs(theta)+sqrt(1.+theta**2))
if(theta.lt.0.)t=-t

endif
c=1./sqrt(1+t**2)
s=t*c
tau=s/(1.+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.
do 16 j=1,ip-1 Case of rotations 1 ≤ j < p.

g=a(j,ip)
h=a(j,iq)
a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)

enddo 16

do 17 j=ip+1,iq-1 Case of rotations p < j < q.
g=a(ip,j)
h=a(j,iq)
a(ip,j)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)

enddo 17

do 18 j=iq+1,n Case of rotations q < j ≤ n.
g=a(ip,j)
h=a(iq,j)
a(ip,j)=g-s*(h+g*tau)
a(iq,j)=h+s*(g-h*tau)

enddo 18

do 19 j=1,n
g=v(j,ip)
h=v(j,iq)
v(j,ip)=g-s*(h+g*tau)
v(j,iq)=h+s*(g-h*tau)

enddo 19

nrot=nrot+1
endif

enddo 21

enddo 22

do 23 ip=1,n
b(ip)=b(ip)+z(ip)
d(ip)=b(ip) Update d with the sum of tapq ,
z(ip)=0. and reinitialize z.

enddo 23

enddo 24

pause ’too many iterations in jacobi’
return
END

Note that the above routine assumes that underflows are set to zero. On
machines where this is not true, the program must be modified.

The eigenvalues are not ordered on output. If sorting is desired, the following
routine can be invoked to reorder the output of jacobi or of later routines in this
chapter. (The method, straight insertion, is N 2 rather than N log N ; but since you
have just done an N 3 procedure to get the eigenvalues, you can afford yourself
this little indulgence.)
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SUBROUTINE eigsrt(d,v,n,np)
INTEGER n,np
REAL d(np),v(np,np)

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER i,j,k
REAL p
do 13 i=1,n-1

k=i
p=d(i)
do 11 j=i+1,n

if(d(j).ge.p)then
k=j
p=d(j)

endif
enddo 11

if(k.ne.i)then
d(k)=d(i)
d(i)=p
do 12 j=1,n

p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p

enddo 12

endif
enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.4.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.2 Reduction of a Symmetric Matrix
to Tridiagonal Form: Givens and
Householder Reductions

As already mentioned, the optimum strategy for finding eigenvalues and
eigenvectors is, first, to reduce the matrix to a simple form, only then beginning an
iterative procedure. For symmetric matrices, the preferred simple form is tridiagonal.
The Givens reduction is a modification of the Jacobi method. Instead of trying to
reduce the matrix all the way to diagonal form, we are content to stop when the
matrix is tridiagonal. This allows the procedure to be carried out in a finite number
of steps, unlike the Jacobi method, which requires iteration to convergence.
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SUBROUTINE eigsrt(d,v,n,np)
INTEGER n,np
REAL d(np),v(np,np)

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER i,j,k
REAL p
do 13 i=1,n-1

k=i
p=d(i)
do 11 j=i+1,n

if(d(j).ge.p)then
k=j
p=d(j)

endif
enddo 11

if(k.ne.i)then
d(k)=d(i)
d(i)=p
do 12 j=1,n

p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p

enddo 12

endif
enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.4.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.2 Reduction of a Symmetric Matrix
to Tridiagonal Form: Givens and
Householder Reductions

As already mentioned, the optimum strategy for finding eigenvalues and
eigenvectors is, first, to reduce the matrix to a simple form, only then beginning an
iterative procedure. For symmetric matrices, the preferred simple form is tridiagonal.
The Givens reduction is a modification of the Jacobi method. Instead of trying to
reduce the matrix all the way to diagonal form, we are content to stop when the
matrix is tridiagonal. This allows the procedure to be carried out in a finite number
of steps, unlike the Jacobi method, which requires iteration to convergence.
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Givens Method

For the Givens method, we choose the rotation angle in equation (11.1.1) so
as to zero an element that is not at one of the four “corners,” i.e., not a pp, apq ,
or aqq in equation (11.1.3). Specifically, we first choose P23 to annihilate a31

(and, by symmetry, a13). Then we choose P24 to annihilate a41. In general, we
choose the sequence

P23, P24, . . . , P2n; P34, . . . , P3n; . . . ; Pn−1,n

where Pjk annihilates ak,j−1. The method works because elements such as a ′
rp and

a′
rq, with r �= p r �= q, are linear combinations of the old quantities arp and arq, by

equation (11.1.4). Thus, if arp and arq have already been set to zero, they remain
zero as the reduction proceeds. Evidently, of order n 2/2 rotations are required,
and the number of multiplications in a straightforward implementation is of order
4n3/3, not counting those for keeping track of the product of the transformation
matrices, required for the eigenvectors.

The Householder method, to be discussed next, is just as stable as the Givens
reduction and it is a factor of 2 more efficient, so the Givens method is not generally
used. Recent work (see [1]) has shown that the Givens reduction can be reformulated
to reduce the number of operations by a factor of 2, and also avoid the necessity
of taking square roots. This appears to make the algorithm competitive with the
Householder reduction. However, this “fast Givens” reduction has to be monitored
to avoid overflows, and the variables have to be periodically rescaled. There does
not seem to be any compelling reason to prefer the Givens reduction over the
Householder method.

Householder Method

The Householder algorithm reduces an n×n symmetric matrix A to tridiagonal
form by n − 2 orthogonal transformations. Each transformation annihilates the
required part of a whole column and whole corresponding row. The basic ingredient
is a Householder matrix P, which has the form

P = 1 − 2w · wT (11.2.1)

where w is a real vector with |w|2 = 1. (In the present notation, the outer or matrix
product of two vectors, a and b is written a · bT , while the inner or scalar product of
the vectors is written as aT · b.) The matrix P is orthogonal, because

P2 = (1 − 2w · wT ) · (1 − 2w · wT )

= 1 − 4w · wT + 4w · (wT · w) · wT

= 1

(11.2.2)

Therefore P = P−1. But PT = P, and so PT = P−1, proving orthogonality.
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Rewrite P as

P =1 − u · uT

H
(11.2.3)

where the scalar H is

H ≡ 1
2
|u|2 (11.2.4)

and u can now be any vector. Suppose x is the vector composed of the first column
of A. Choose

u = x ∓ |x|e1 (11.2.5)

where e1 is the unit vector [1, 0, . . . , 0]T , and the choice of signs will be made
later. Then

P · x = x − u
H

· (x ∓ |x|e1)T · x

= x − 2u · (|x|2 ∓ |x|x1)
2|x|2 ∓ 2|x|x1

= x − u

= ±|x|e1

(11.2.6)

This shows that the Householder matrix P acts on a given vector x to zero all its
elements except the first one.

To reduce a symmetric matrix A to tridiagonal form, we choose the vector x
for the first Householder matrix to be the lower n − 1 elements of the first column.
Then the lower n − 2 elements will be zeroed:

P1 · A =




1 0 0 · · · 0
0
0
... (n−1)P1

0



·




a11 a12 a13 · · · a1n

a21

a31

... irrelevant

an1




=




a11 a12 a13 · · · a1n

k

0
... irrelevant

0




(11.2.7)

Here we have written the matrices in partitioned form, with (n−1)P denoting a
Householder matrix with dimensions (n − 1) × (n − 1). The quantity k is simply
plus or minus the magnitude of the vector [a21, . . . , an1]T .
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The complete orthogonal transformation is now

A′ = P · A · P =




a11 k 0 · · · 0
k

0
... irrelevant

0




(11.2.8)

We have used the fact that PT = P.
Now choose the vector x for the second Householder matrix to be the bottom

n − 2 elements of the second column, and from it construct

P2 ≡




1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... (n−2)P2

0 0




(11.2.9)

The identity block in the upper left corner insures that the tridiagonalization achieved
in the first step will not be spoiled by this one, while the (n − 2)-dimensional
Householder matrix (n−2)P2 creates one additional row and column of the tridiagonal
output. Clearly, a sequence of n − 2 such transformations will reduce the matrix
A to tridiagonal form.

Instead of actually carrying out the matrix multiplications in P · A · P, we
compute a vector

p ≡ A · u
H

(11.2.10)

Then

A · P = A · (1 − u · uT

H
) = A − p · uT

A′ = P · A · P = A − p · uT − u · pT + 2Ku · uT

where the scalar K is defined by

K =
uT · p
2H

(11.2.11)

If we write
q ≡ p − Ku (11.2.12)

then we have
A′ = A − q · uT − u · qT (11.2.13)

This is the computationally useful formula.
Following [2], the routine for Householder reduction given below actually starts

in the nth column of A, not the first as in the explanation above. In detail, the
equations are as follows: At stage m (m = 1, 2, . . . , n−2) the vector u has the form

uT = [ai1, ai2, . . . , ai,i−2, ai,i−1 ±
√

σ, 0, . . . , 0] (11.2.14)
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Here
i ≡ n − m + 1 = n, n − 1, . . . , 3 (11.2.15)

and the quantity σ (|x|2 in our earlier notation) is

σ = (ai1)2 + · · · + (ai,i−1)2 (11.2.16)

We choose the sign of σ in (11.2.14) to be the same as the sign of a i,i−1 to lessen
roundoff error.

Variables are thus computed in the following order: σ, u, H, p, K, q, A ′. At any
stage m, A is tridiagonal in its last m − 1 rows and columns.

If the eigenvectors of the final tridiagonal matrix are found (for example, by the
routine in the next section), then the eigenvectors of A can be obtained by applying
the accumulated transformation

Q = P1 · P2 · · ·Pn−2 (11.2.17)

to those eigenvectors. We therefore form Q by recursion after all the P’s have
been determined:

Qn−2 = Pn−2

Qj = Pj · Qj+1, j = n − 3, . . . , 1

Q = Q1

(11.2.18)

The input parameters for the routine below are the n×n real, symmetric matrix
a, stored in an np×np array. On output, a contains the elements of the orthogonal
matrix q. The vector d returns the diagonal elements of the tridiagonal matrix A ′,
while the vector e returns the off-diagonal elements in its components 2 through n,
with e(1)=0. Note that since a is overwritten, you should copy it before calling the
routine, if it is required for subsequent computations.

No extra storage arrays are needed for the intermediate results. At stage m, the
vectors p and q are nonzero only in elements 1, . . . , i (recall that i = n − m + 1),
while u is nonzero only in elements 1, . . . , i − 1. The elements of the vector e are
being determined in the order n, n − 1, . . . , so we can store p in the elements of e
not already determined. The vector q can overwrite p once p is no longer needed.
We store u in the ith row of a and u/H in the ith column of a. Once the reduction
is complete, we compute the matrices Qj using the quantities u and u/H that have
been stored in a. Since Qj is an identity matrix in the last n − j + 1 rows and
columns, we only need compute its elements up to row and column n − j. These
can overwrite the u’s and u/H’s in the corresponding rows and columns of a, which
are no longer required for subsequent Q’s.

The routine tred2, given below, includes one further refinement. If the quantity
σ is zero or “small” at any stage, one can skip the corresponding transformation.
A simple criterion, such as

σ <
smallest positive number representable on machine

machine precision
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would be fine most of the time. A more careful criterion is actually used. Define
the quantity

ε =
i−1∑
k=1

|aik| (11.2.19)

If ε = 0 to machine precision, we skip the transformation. Otherwise we redefine

aik becomes aik/ε (11.2.20)

and use the scaled variables for the transformation. (A Householder transformation
depends only on the ratios of the elements.)

Note that when dealing with a matrix whose elements vary over many orders of
magnitude, it is important that the matrix be permuted, insofar as possible, so that
the smaller elements are in the top left-hand corner. This is because the reduction
is performed starting from the bottom right-hand corner, and a mixture of small and
large elements there can lead to considerable rounding errors.

The routine tred2 is designed for use with the routine tqli of the next section.
tqli finds the eigenvalues and eigenvectors of a symmetric, tridiagonal matrix.
The combination of tred2 and tqli is the most efficient known technique for
finding all the eigenvalues and eigenvectors (or just all the eigenvalues) of a real,
symmetric matrix.

In the listing below, the statements indicated by comments are required only for
subsequent computation of eigenvectors. If only eigenvalues are required, omission
of the commented statements speeds up the execution time of tred2 by a factor of 2
for large n. In the limit of large n, the operation count of the Householder reduction
is 2n3/3 for eigenvalues only, and 4n3/3 for both eigenvalues and eigenvectors.

SUBROUTINE tred2(a,n,np,d,e)
INTEGER n,np
REAL a(np,np),d(np),e(np)

Householder reduction of a real, symmetric, n by n matrix a, stored in an np by np physical
array. On output, a is replaced by the orthogonal matrix Q effecting the transformation. d
returns the diagonal elements of the tridiagonal matrix, and e the off-diagonal elements,
with e(1)=0. Several statements, as noted in comments, can be omitted if only eigenvalues
are to be found, in which case a contains no useful information on output. Otherwise they
are to be included.

INTEGER i,j,k,l
REAL f,g,h,hh,scale
do 18 i=n,2,-1

l=i-1
h=0.
scale=0.
if(l.gt.1)then

do 11 k=1,l
scale=scale+abs(a(i,k))

enddo 11

if(scale.eq.0.)then Skip transformation.
e(i)=a(i,l)

else
do 12 k=1,l

a(i,k)=a(i,k)/scale Use scaled a’s for transformation.
h=h+a(i,k)**2 Form σ in h.

enddo 12

f=a(i,l)
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g=-sign(sqrt(h),f)
e(i)=scale*g
h=h-f*g Now h is equation (11.2.4).
a(i,l)=f-g Store u in the ith row of a.
f=0.
do 15 j=1,l

C Omit following line if finding only eigenvalues
a(j,i)=a(i,j)/h Store u/H in ith column of a.
g=0. Form an element of A · u in g.
do 13 k=1,j

g=g+a(j,k)*a(i,k)
enddo 13

do 14 k=j+1,l
g=g+a(k,j)*a(i,k)

enddo 14

e(j)=g/h Form element of p in temporarily unused
f=f+e(j)*a(i,j) element of e.

enddo 15

hh=f/(h+h) Form K, equation (11.2.11).
do 17 j=1,l Form q and store in e overwriting p.

f=a(i,j)
g=e(j)-hh*f
e(j)=g
do 16 k=1,j Reduce a, equation (11.2.13).

a(j,k)=a(j,k)-f*e(k)-g*a(i,k)
enddo 16

enddo 17

endif
else

e(i)=a(i,l)
endif
d(i)=h

enddo 18

C Omit following line if finding only eigenvalues.
d(1)=0.
e(1)=0.
do 24 i=1,n Begin accumulation of transformation matrices.

C Delete lines from here ...
l=i-1
if(d(i).ne.0.)then This block skipped when i=1.

do 22 j=1,l
g=0.
do 19 k=1,l Use u and u/H stored in a to form P · Q.

g=g+a(i,k)*a(k,j)
enddo 19

do 21 k=1,l
a(k,j)=a(k,j)-g*a(k,i)

enddo 21

enddo 22

endif
C ... to here when finding only eigenvalues.

d(i)=a(i,i) This statement remains.
C Also delete lines from here ...

a(i,i)=1. Reset row and column of a to identity matrix for
next iteration.do 23 j=1,l

a(i,j)=0.
a(j,i)=0.

enddo 23

C ... to here when finding only eigenvalues.
enddo 24

return
END
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11.3 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

Evaluation of the Characteristic Polynomial

Once our original, real, symmetric matrix has been reduced to tridiagonal form,
one possible way to determine its eigenvalues is to find the roots of the characteristic
polynomial pn(λ) directly. The characteristic polynomial of a tridiagonal matrix can
be evaluated for any trial value of λ by an efficient recursion relation (see [1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
real axis. A root-finding method such as bisection or Newton’s method can then
be employed to refine the intervals. The corresponding eigenvectors can then be
found by inverse iteration (see §11.7).

Procedures based on these ideas can be found in [2,3]. If, however, more
than a small fraction of all the eigenvalues and eigenvectors are required, then the
factorization method next considered is much more efficient.

The QR and QL Algorithms

The basic idea behind the QR algorithm is that any real matrix can be
decomposed in the form

A = Q · R (11.3.1)

where Q is orthogonal and R is upper triangular. For a general matrix, the
decomposition is constructed by applying Householder transformations to annihilate
successive columns of A below the diagonal (see §2.10).

Now consider the matrix formed by writing the factors in (11.3.1) in the
opposite order:

A′ = R · Q (11.3.2)

Since Q is orthogonal, equation (11.3.1) gives R = Q T · A. Thus equation (11.3.2)
becomes

A′ = QT · A · Q (11.3.3)
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11.3 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

Evaluation of the Characteristic Polynomial

Once our original, real, symmetric matrix has been reduced to tridiagonal form,
one possible way to determine its eigenvalues is to find the roots of the characteristic
polynomial pn(λ) directly. The characteristic polynomial of a tridiagonal matrix can
be evaluated for any trial value of λ by an efficient recursion relation (see [1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
real axis. A root-finding method such as bisection or Newton’s method can then
be employed to refine the intervals. The corresponding eigenvectors can then be
found by inverse iteration (see §11.7).

Procedures based on these ideas can be found in [2,3]. If, however, more
than a small fraction of all the eigenvalues and eigenvectors are required, then the
factorization method next considered is much more efficient.

The QR and QL Algorithms

The basic idea behind the QR algorithm is that any real matrix can be
decomposed in the form

A = Q · R (11.3.1)

where Q is orthogonal and R is upper triangular. For a general matrix, the
decomposition is constructed by applying Householder transformations to annihilate
successive columns of A below the diagonal (see §2.10).

Now consider the matrix formed by writing the factors in (11.3.1) in the
opposite order:

A′ = R · Q (11.3.2)

Since Q is orthogonal, equation (11.3.1) gives R = Q T · A. Thus equation (11.3.2)
becomes

A′ = QT · A · Q (11.3.3)
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We see that A′ is an orthogonal transformation of A.
You can verify that a QR transformation preserves the following properties of

a matrix: symmetry, tridiagonal form, and Hessenberg form (to be defined in §11.5).
There is nothing special about choosing one of the factors of A to be upper

triangular; one could equally well make it lower triangular. This is called the QL
algorithm, since

A = Q · L (11.3.4)

where L is lower triangular. (The standard, but confusing, nomenclature R and L
stands for whether the right or left of the matrix is nonzero.)

Recall that in the Householder reduction to tridiagonal form in §11.2, we started
in the nth (last) column of the original matrix. To minimize roundoff, we then
exhorted you to put the biggest elements of the matrix in the lower right-hand
corner, if you can. If we now wish to diagonalize the resulting tridiagonal matrix,
the QL algorithm will have smaller roundoff than the QR algorithm, so we shall
use QL henceforth.

The QL algorithm consists of a sequence of orthogonal transformations:

As = Qs · Ls

As+1 = Ls · Qs (= QT
s · As · Qs)

(11.3.5)

The following (nonobvious!) theorem is the basis of the algorithm for a general
matrix A: (i) If A has eigenvalues of different absolute value |λ i|, then As → [lower
triangular form] as s → ∞. The eigenvalues appear on the diagonal in increasing
order of absolute magnitude. (ii) If A has an eigenvalue |λ i| of multiplicity p,
As → [lower triangular form] as s → ∞, except for a diagonal block matrix
of order p, whose eigenvalues → λi. The proof of this theorem is fairly lengthy;
see, for example, [4].

The workload in the QL algorithm is O(n3) per iteration for a general matrix,
which is prohibitive. However, the workload is only O(n) per iteration for a
tridiagonal matrix and O(n2) for a Hessenberg matrix, which makes it highly
efficient on these forms.

In this section we are concerned only with the case where A is a real, symmetric,
tridiagonal matrix. All the eigenvalues λi are thus real. According to the theorem,
if any λi has a multiplicity p, then there must be at least p − 1 zeros on the
sub- and superdiagonal. Thus the matrix can be split into submatrices that can be
diagonalized separately, and the complication of diagonal blocks that can arise in
the general case is irrelevant.

In the proof of the theorem quoted above, one finds that in general a super-
diagonal element converges to zero like

a
(s)
ij ∼

(
λi

λj

)s

(11.3.6)

Although λi < λj , convergence can be slow if λi is close to λj . Convergence can
be accelerated by the technique of shifting: If k is any constant, then A − k1 has
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eigenvalues λi − k. If we decompose

As − ks1 = Qs · Ls (11.3.7)
so that

As+1 = Ls · Qs + ks1

= QT
s · As · Qs

(11.3.8)

then the convergence is determined by the ratio

λi − ks

λj − ks
(11.3.9)

The idea is to choose the shift ks at each stage to maximize the rate of
convergence. A good choice for the shift initially would be k s close to λ1, the
smallest eigenvalue. Then the first row of off-diagonal elements would tend rapidly
to zero. However, λ1 is not usually known a priori. A very effective strategy in
practice (although there is no proof that it is optimal) is to compute the eigenvalues
of the leading 2 × 2 diagonal submatrix of A. Then set ks equal to the eigenvalue
closer to a11.

More generally, suppose you have already found r − 1 eigenvalues of A. Then
you can deflate the matrix by crossing out the first r − 1 rows and columns, leaving

A =




0 · · · · · · 0
· · ·

0
... dr er

...
... er dr+1

· · · 0
dn−1 en−1

0 · · · 0 en−1 dn




(11.3.10)

Choose ks equal to the eigenvalue of the leading 2× 2 submatrix that is closer to d r.
One can show that the convergence of the algorithm with this strategy is generally
cubic (and at worst quadratic for degenerate eigenvalues). This rapid convergence
is what makes the algorithm so attractive.

Note that with shifting, the eigenvalues no longer necessarily appear on the
diagonal in order of increasing absolute magnitude. The routine eigsrt (§11.1)
can be used if required.

As we mentioned earlier, the QL decomposition of a general matrix is effected
by a sequence of Householder transformations. For a tridiagonal matrix,however, it is
more efficient to use plane rotations Ppq. One uses the sequence P12, P23, . . . , Pn−1,n

to annihilate the elements a12, a23, . . . , an−1,n. By symmetry, the subdiagonal
elements a21, a32, . . . , an,n−1 will be annihilated too. Thus each Qs is a product
of plane rotations:

QT
s = P(s)

1 · P(s)
2 · · ·P(s)

n−1 (11.3.11)
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where Pi annihilates ai,i+1. Note that it is QT in equation (11.3.11), not Q, because
we defined L = QT · A.

QL Algorithm with Implicit Shifts

The algorithm as described so far can be very successful. However, when
the elements of A differ widely in order of magnitude, subtracting a large k s

from the diagonal elements can lead to loss of accuracy for the small eigenvalues.
This difficulty is avoided by the QL algorithm with implicit shifts. The implicit
QL algorithm is mathematically equivalent to the original QL algorithm, but the
computation does not require ks1 to be actually subtracted from A.

The algorithm is based on the following lemma: If A is a symmetric nonsingular matrix
and B = QT · A · Q, where Q is orthogonal and B is tridiagonal with positive off-diagonal
elements, then Q and B are fully determined when the last row of QT is specified. Proof:
Let qT

i denote the ith row vector of the matrix QT . Then qi is the ith column vector of the
matrix Q. The relation B · QT = QT · A can be written




β1 γ1

α2 β2 γ2

...
αn−1 βn−1 γn−1

αn βn



·




qT
1

qT
2

...
qT

n−1

qT
n




=




qT
1

qT
2

...
qT

n−1

qT
n



· A (11.3.12)

The nth row of this matrix equation is

αnqT
n−1 + βnqT

n = qT
n · A (11.3.13)

Since Q is orthogonal,

qT
n · qm = δnm (11.3.14)

Thus if we postmultiply equation (11.3.13) by qn, we find

βn = qT
n · A · qn (11.3.15)

which is known since qn is known. Then equation (11.3.13) gives

αnqT
n−1 = zT

n−1 (11.3.16)
where

zT
n−1 ≡ qT

n · A − βnqT
n (11.3.17)

is known. Therefore
α2

n = zT
n−1zn−1, (11.3.18)

or
αn = |zn−1| (11.3.19)

and
qT

n−1 = zT
n−1/αn (11.3.20)

(where αn is nonzero by hypothesis). Similarly, one can show by induction that if we know
qn, qn−1, . . . , qn−j and the α’s, β’s, and γ’s up to level n − j, one can determine the
quantities at level n − (j + 1).

To apply the lemma in practice, suppose one can somehow find a tridiagonal matrix
As+1 such that

As+1 = Q
T
s · As · Qs (11.3.21)

where Q
T
s is orthogonal and has the same last row as QT

s in the original QL algorithm.
Then Qs = Qs and As+1 = As+1.
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Now, in the original algorithm, from equation (11.3.11) we see that the last row of QT
s

is the same as the last row of P(s)
n−1. But recall that P(s)

n−1 is a plane rotation designed to
annihilate the (n − 1, n) element of As − ks1. A simple calculation using the expression
(11.1.1) shows that it has parameters

c =
dn − ks√

e2
n + (dn − ks)2

, s =
−en−1√

e2
n + (dn − ks)2

(11.3.22)

The matrix P(s)
n−1 · As · P(s)T

n−1 is tridiagonal with 2 extra elements:



· · ·
× × ×

× × × x
× × ×
x × ×


 (11.3.23)

We must now reduce this to tridiagonal form with an orthogonal matrix whose last row is
[0, 0, . . . , 0, 1] so that the last row of Q

T

s will stay equal to P(s)
n−1. This can be done by

a sequence of Householder or Givens transformations. For the special form of the matrix
(11.3.23), Givens is better. We rotate in the plane (n − 2, n − 1) to annihilate the (n − 2, n)
element. [By symmetry, the (n, n − 2) element will also be zeroed.] This leaves us with
tridiagonal form except for extra elements (n − 3, n − 1) and (n − 1, n − 3). We annihilate
these with a rotation in the (n − 3, n − 2) plane, and so on. Thus a sequence of n − 2
Givens rotations is required. The result is that

QT
s = Q

T

s = P
(s)
1 · P

(s)
2 · · ·P

(s)
n−2 · P(s)

n−1 (11.3.24)

where the P’s are the Givens rotations and Pn−1 is the same plane rotation as in the original
algorithm. Then equation (11.3.21) gives the next iterate of A. Note that the shift ks enters
implicitly through the parameters (11.3.22).

The following routine tqli (“Tridiagonal QL Implicit”), based algorithmically
on the implementations in [2,3], works extremely well in practice. The number of
iterations for the first few eigenvalues might be 4 or 5, say, but meanwhile the
off-diagonal elements in the lower right-hand corner have been reduced too. The
later eigenvalues are liberated with very little work. The average number of iterations
per eigenvalue is typically 1.3 − 1.6. The operation count per iteration is O(n),
with a fairly large effective coefficient, say, ∼ 20n. The total operation count for
the diagonalization is then ∼ 20n × (1.3 − 1.6)n ∼ 30n2. If the eigenvectors
are required, the statements indicated by comments are included and there is an
additional, much larger, workload of about 3n 3 operations.

SUBROUTINE tqli(d,e,n,np,z)
INTEGER n,np
REAL d(np),e(np),z(np,np)

C USES pythag
QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real,
symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2
§11.2. d is a vector of length np. On input, its first n elements are the diagonal elements of
the tridiagonal matrix. On output, it returns the eigenvalues. The vector e inputs the sub-
diagonal elements of the tridiagonal matrix, with e(1) arbitrary. On output e is destroyed.
When finding only the eigenvalues, several lines may be omitted, as noted in the comments.
If the eigenvectors of a tridiagonal matrix are desired, the matrix z (n by n matrix stored
in np by np array) is input as the identity matrix. If the eigenvectors of a matrix that has
been reduced by tred2 are required, then z is input as the matrix output by tred2. In
either case, the kth column of z returns the normalized eigenvector corresponding to d(k).

INTEGER i,iter,k,l,m
REAL b,c,dd,f,g,p,r,s,pythag
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do 11 i=2,n Convenient to renumber the elements of e.
e(i-1)=e(i)

enddo 11

e(n)=0.
do 15 l=1,n

iter=0
1 do 12 m=l,n-1 Look for a single small subdiagonal element

to split the matrix.dd=abs(d(m))+abs(d(m+1))
if (abs(e(m))+dd.eq.dd) goto 2

enddo 12

m=n
2 if(m.ne.l)then

if(iter.eq.30)pause ’too many iterations in tqli’
iter=iter+1
g=(d(l+1)-d(l))/(2.*e(l)) Form shift.
r=pythag(g,1.)
g=d(m)-d(l)+e(l)/(g+sign(r,g)) This is dm − ks.
s=1.
c=1.
p=0.
do 14 i=m-1,l,-1 A plane rotation as in the original QL, fol-

lowed by Givens rotations to restore tridi-
agonal form.

f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if(r.eq.0.)then Recover from underflow.

d(i+1)=d(i+1)-p
e(m)=0.
goto 1

endif
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.*c*b
p=s*r
d(i+1)=g+p
g=c*r-b

C Omit lines from here ...
do 13 k=1,n Form eigenvectors.

f=z(k,i+1)
z(k,i+1)=s*z(k,i)+c*f
z(k,i)=c*z(k,i)-s*f

enddo 13

C ... to here when finding only eigenvalues.
enddo 14

d(l)=d(l)-p
e(l)=g
e(m)=0.
goto 1

endif
enddo 15

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 331–335. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]
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Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.6.6. [4]

11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routines jacobi, tred2, and tqli
are quite analogous to their real counterparts. For working routines, consult [1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to a real, symmetric one: If C = A + iB is a Hermitian matrix, then the
n × n complex eigenvalue problem

(A + iB) · (u + iv) = λ(u + iv) (11.4.1)

is equivalent to the 2n × 2n real problem
[

A −B
B A

]
·
[

u
v

]
= λ

[
u
v

]
(11.4.2)

Note that the 2n × 2n matrix in (11.4.2) is symmetric: AT = A and BT = −B
if C is Hermitian.

Corresponding to a given eigenvalue λ, the vector
[−v

u

]
(11.4.3)

is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thus if λ1, λ2, . . . , λn are the eigenvalues of C, then
the 2n eigenvalues of the augmented problem (11.4.2) are λ 1, λ1, λ2, λ2, . . . ,
λn, λn; each, in other words, is repeated twice. The eigenvectors are pairs of the
form u + iv and i(u + iv); that is, they are the same up to an inessential phase. Thus
we solve the augmented problem (11.4.2), and choose one eigenvalue and eigenvector
from each pair. These give the eigenvalues and eigenvectors of the original matrix C.

Working with the augmented matrix requires a factor of 2 more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of 2
more efficient in computer time than is the solution of the augmented problem. In
practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]
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Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.6.6. [4]

11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routines jacobi, tred2, and tqli
are quite analogous to their real counterparts. For working routines, consult [1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to a real, symmetric one: If C = A + iB is a Hermitian matrix, then the
n × n complex eigenvalue problem

(A + iB) · (u + iv) = λ(u + iv) (11.4.1)

is equivalent to the 2n × 2n real problem
[

A −B
B A

]
·
[

u
v

]
= λ

[
u
v

]
(11.4.2)

Note that the 2n × 2n matrix in (11.4.2) is symmetric: AT = A and BT = −B
if C is Hermitian.

Corresponding to a given eigenvalue λ, the vector
[−v

u

]
(11.4.3)

is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thus if λ1, λ2, . . . , λn are the eigenvalues of C, then
the 2n eigenvalues of the augmented problem (11.4.2) are λ 1, λ1, λ2, λ2, . . . ,
λn, λn; each, in other words, is repeated twice. The eigenvectors are pairs of the
form u + iv and i(u + iv); that is, they are the same up to an inessential phase. Thus
we solve the augmented problem (11.4.2), and choose one eigenvalue and eigenvector
from each pair. These give the eigenvalues and eigenvectors of the original matrix C.

Working with the augmented matrix requires a factor of 2 more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of 2
more efficient in computer time than is the solution of the augmented problem. In
practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]
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11.5 Reduction of a General Matrix to
Hessenberg Form

The algorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, the eigenvalues of a nonsymmetric matrix can be very sensitive to small changes
in the matrix elements. Second, the matrix itself can be defective, so that there is
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure”
them. The best we can hope for are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof algorithm to determine
whether a given matrix is defective or not. Thus current algorithms generally try to
find a complete set of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.

Apart from referring you to the literature, and to the collected routines in [1,2], we
are going to sidestep the problem of eigenvectors, giving algorithms for eigenvalues
only. If you require just a few eigenvectors, you can read §11.7 and consider finding
them by inverse iteration. We consider the problem of finding all eigenvectors of a
nonsymmetric matrix as lying beyond the scope of this book.

Balancing

The sensitivity of eigenvalues to rounding errors during the execution of
some algorithms can be reduced by the procedure of balancing. The errors in
the eigensystem found by a numerical procedure are generally proportional to the
Euclidean norm of the matrix, that is, to the square root of the sum of the squares
of the elements. The idea of balancing is to use similarity transformations to
make corresponding rows and columns of the matrix have comparable norms, thus
reducing the overall norm of the matrix while leaving the eigenvalues unchanged.
A symmetric matrix is already balanced.

Balancing is a procedure with of order N 2 operations. Thus, the time taken
by the procedure balanc, given below, should never be more than a few percent
of the total time required to find the eigenvalues. It is therefore recommended that
you always balance nonsymmetric matrices. It never hurts, and it can substantially
improve the accuracy of the eigenvalues computed for a badly balanced matrix.

The actual algorithm used is due to Osborne, as discussed in [1]. It consists of a
sequence of similarity transformations by diagonal matrices D. To avoid introducing
rounding errors during the balancing process, the elements of D are restricted to be
exact powers of the radix base employed for floating-point arithmetic (i.e., 2 for most
machines, but 16 for IBM mainframe architectures). The output is a matrix that
is balanced in the norm given by summing the absolute magnitudes of the matrix
elements. This is more efficient than using the Euclidean norm, and equally effective:
A large reduction in one norm implies a large reduction in the other.

Note that if the off-diagonal elements of any row or column of a matrix are
all zero, then the diagonal element is an eigenvalue. If the eigenvalue happens to
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11.5 Reduction of a General Matrix to
Hessenberg Form

The algorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, the eigenvalues of a nonsymmetric matrix can be very sensitive to small changes
in the matrix elements. Second, the matrix itself can be defective, so that there is
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure”
them. The best we can hope for are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof algorithm to determine
whether a given matrix is defective or not. Thus current algorithms generally try to
find a complete set of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.

Apart from referring you to the literature, and to the collected routines in [1,2], we
are going to sidestep the problem of eigenvectors, giving algorithms for eigenvalues
only. If you require just a few eigenvectors, you can read §11.7 and consider finding
them by inverse iteration. We consider the problem of finding all eigenvectors of a
nonsymmetric matrix as lying beyond the scope of this book.

Balancing

The sensitivity of eigenvalues to rounding errors during the execution of
some algorithms can be reduced by the procedure of balancing. The errors in
the eigensystem found by a numerical procedure are generally proportional to the
Euclidean norm of the matrix, that is, to the square root of the sum of the squares
of the elements. The idea of balancing is to use similarity transformations to
make corresponding rows and columns of the matrix have comparable norms, thus
reducing the overall norm of the matrix while leaving the eigenvalues unchanged.
A symmetric matrix is already balanced.

Balancing is a procedure with of order N 2 operations. Thus, the time taken
by the procedure balanc, given below, should never be more than a few percent
of the total time required to find the eigenvalues. It is therefore recommended that
you always balance nonsymmetric matrices. It never hurts, and it can substantially
improve the accuracy of the eigenvalues computed for a badly balanced matrix.

The actual algorithm used is due to Osborne, as discussed in [1]. It consists of a
sequence of similarity transformations by diagonal matrices D. To avoid introducing
rounding errors during the balancing process, the elements of D are restricted to be
exact powers of the radix base employed for floating-point arithmetic (i.e., 2 for most
machines, but 16 for IBM mainframe architectures). The output is a matrix that
is balanced in the norm given by summing the absolute magnitudes of the matrix
elements. This is more efficient than using the Euclidean norm, and equally effective:
A large reduction in one norm implies a large reduction in the other.

Note that if the off-diagonal elements of any row or column of a matrix are
all zero, then the diagonal element is an eigenvalue. If the eigenvalue happens to
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be ill-conditioned (sensitive to small changes in the matrix elements), it will have
relatively large errors when determined by the routine hqr (§11.6). Had we merely
inspected the matrix beforehand, we could have determined the isolated eigenvalue
exactly and then deleted the corresponding row and column from the matrix. You
should consider whether such a pre-inspection might be useful in your application.
(For symmetric matrices, the routines we gave will determine isolated eigenvalues
accurately in all cases.)

The routine balanc does not keep track of the accumulated similarity trans-
formation of the original matrix, since we will only be concerned with finding
eigenvalues of nonsymmetric matrices, not eigenvectors. Consult [1-3] if you want
to keep track of the transformation.

SUBROUTINE balanc(a,n,np)
INTEGER n,np
REAL a(np,np),RADIX,SQRDX
PARAMETER (RADIX=2.,SQRDX=RADIX**2)

Given an n by n matrix a stored in an array of physical dimensions np by np, this routine
replaces it by a balanced matrix with identical eigenvalues. A symmetric matrix is already
balanced and is unaffected by this procedure. The parameter RADIX should be the machine’s
floating-point radix.

INTEGER i,j,last
REAL c,f,g,r,s

1 continue
last=1
do 14 i=1,n Calculate row and column norms.

c=0.
r=0.
do 11 j=1,n

if(j.ne.i)then
c=c+abs(a(j,i))
r=r+abs(a(i,j))

endif
enddo 11

if(c.ne.0..and.r.ne.0.)then If both are nonzero,
g=r/RADIX
f=1.
s=c+r

2 if(c.lt.g)then find the integer power of the machine radix that
comes closest to balancing the matrix.f=f*RADIX

c=c*SQRDX
goto 2
endif
g=r*RADIX

3 if(c.gt.g)then
f=f/RADIX
c=c/SQRDX

goto 3
endif
if((c+r)/f.lt.0.95*s)then

last=0
g=1./f
do 12 j=1,n Apply similarity transformation.

a(i,j)=a(i,j)*g
enddo 12

do 13 j=1,n
a(j,i)=a(j,i)*f

enddo 13

endif
endif

enddo 14
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if(last.eq.0)goto 1
return
END

Reduction to Hessenberg Form

The strategy for finding the eigensystem of a general matrix parallels that of the
symmetric case. First we reduce the matrix to a simpler form, and then we perform
an iterative procedure on the simplified matrix. The simpler structure we use here is
called Hessenberg form. An upper Hessenberg matrix has zeros everywhere below
the diagonal except for the first subdiagonal row. For example, in the 6 × 6 case,
the nonzero elements are:




× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×




By now you should be able to tell at a glance that such a structure can
be achieved by a sequence of Householder transformations, each one zeroing the
required elements in a column of the matrix. Householder reduction to Hessenberg
form is in fact an accepted technique. An alternative, however, is a procedure
analogous to Gaussian elimination with pivoting. We will use this elimination
procedure since it is about a factor of 2 more efficient than the Householder method,
and also since we want to teach you the method. It is possible to construct matrices
for which the Householder reduction, being orthogonal, is stable and elimination is
not, but such matrices are extremely rare in practice.

Straight Gaussian elimination is not a similarity transformation of the matrix.
Accordingly, the actual elimination procedure used is slightly different. Before the
rth stage, the original matrix A ≡ A1 has become Ar, which is upper Hessenberg
in its first r − 1 rows and columns. The rth stage then consists of the following
sequence of operations:

• Find the element of maximum magnitude in the rth column below the
diagonal. If it is zero, skip the next two “bullets” and the stage is done.
Otherwise, suppose the maximum element was in row r ′.

• Interchange rows r′ and r + 1. This is the pivoting procedure. To make
the permutation a similarity transformation, also interchange columns r ′

and r + 1.
• For i = r + 2, r + 3, . . . , N , compute the multiplier

ni,r+1 ≡ air

ar+1,r

Subtract ni,r+1 times row r + 1 from row i. To make the elimination a
similarity transformation, also add ni,r+1 times column i to column r + 1.

A total of N − 2 such stages are required.
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When the magnitudes of the matrix elements vary over many orders, you should
try to rearrange the matrix so that the largest elements are in the top left-hand corner.
This reduces the roundoff error, since the reduction proceeds from left to right.

Since we are concerned only with eigenvalues, the routine elmhes does not
keep track of the accumulated similarity transformation. The operation count is
about 5N 3/6 for large N .

SUBROUTINE elmhes(a,n,np)
INTEGER n,np
REAL a(np,np)

Reduction to Hessenberg form by the elimination method. The real, nonsymmetric, n by
n matrix a, stored in an array of physical dimensions np by np, is replaced by an upper
Hessenberg matrix with identical eigenvalues. Recommended, but not required, is that this
routine be preceded by balanc. On output, the Hessenberg matrix is in elements a(i,j)
with i ≤ j+1. Elements with i > j+1 are to be thought of as zero, but are returned with
random values.

INTEGER i,j,m
REAL x,y
do 17 m=2,n-1 m is called r + 1 in the text.

x=0.
i=m
do 11 j=m,n Find the pivot.

if(abs(a(j,m-1)).gt.abs(x))then
x=a(j,m-1)
i=j

endif
enddo 11

if(i.ne.m)then Interchange rows and columns.
do 12 j=m-1,n

y=a(i,j)
a(i,j)=a(m,j)
a(m,j)=y

enddo 12

do 13 j=1,n
y=a(j,i)
a(j,i)=a(j,m)
a(j,m)=y

enddo 13

endif
if(x.ne.0.)then Carry out the elimination.

do 16 i=m+1,n
y=a(i,m-1)
if(y.ne.0.)then

y=y/x
a(i,m-1)=y
do 14 j=m,n

a(i,j)=a(i,j)-y*a(m,j)
enddo 14

do 15 j=1,n
a(j,m)=a(j,m)+y*a(j,i)

enddo 15

endif
enddo 16

endif
enddo 17

return
END
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11.6 The QR Algorithm for Real Hessenberg
Matrices

Recall the following relations for the QR algorithm with shifts:

Qs · (As − ks1) = Rs (11.6.1)

where Q is orthogonal and R is upper triangular, and

As+1 = Rs · QT
s + ks1

= Qs · As · QT
s

(11.6.2)

The QR transformation preserves the upper Hessenberg form of the original matrix
A ≡ A1, and the workload on such a matrix is O(n2) per iteration as opposed
to O(n3) on a general matrix. As s → ∞, As converges to a form where the
eigenvalues are either isolated on the diagonal or are eigenvalues of a 2×2 submatrix
on the diagonal.

As we pointed out in §11.3, shifting is essential for rapid convergence. A key
difference here is that a nonsymmetric real matrix can have complex eigenvalues. This
means that good choices for the shifts ks may be complex, apparently necessitating
complex arithmetic.

Complex arithmetic can be avoided, however, by a clever trick. The trick
depends on a result analogous to the lemma we used for implicit shifts in §11.3. The
lemma we need here states that if B is a nonsingular matrix such that

B · Q = Q · H (11.6.3)

where Q is orthogonal and H is upper Hessenberg, then Q and H are fully determined
by the first column of Q. (The determination is unique if H has positive subdiagonal
elements.) The lemma can be proved by induction analogously to the proof given
for tridiagonal matrices in §11.3.

The lemma is used in practice by taking two steps of the QR algorithm,
either with two real shifts ks and ks+1, or with complex conjugate values ks and
ks+1 = ks*. This gives a real matrix As+2, where

As+2 = Qs+1 · Qs · As · QT
s · QT

s+1· (11.6.4)
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11.6 The QR Algorithm for Real Hessenberg
Matrices

Recall the following relations for the QR algorithm with shifts:

Qs · (As − ks1) = Rs (11.6.1)

where Q is orthogonal and R is upper triangular, and

As+1 = Rs · QT
s + ks1

= Qs · As · QT
s

(11.6.2)

The QR transformation preserves the upper Hessenberg form of the original matrix
A ≡ A1, and the workload on such a matrix is O(n2) per iteration as opposed
to O(n3) on a general matrix. As s → ∞, As converges to a form where the
eigenvalues are either isolated on the diagonal or are eigenvalues of a 2×2 submatrix
on the diagonal.

As we pointed out in §11.3, shifting is essential for rapid convergence. A key
difference here is that a nonsymmetric real matrix can have complex eigenvalues. This
means that good choices for the shifts ks may be complex, apparently necessitating
complex arithmetic.

Complex arithmetic can be avoided, however, by a clever trick. The trick
depends on a result analogous to the lemma we used for implicit shifts in §11.3. The
lemma we need here states that if B is a nonsingular matrix such that

B · Q = Q · H (11.6.3)

where Q is orthogonal and H is upper Hessenberg, then Q and H are fully determined
by the first column of Q. (The determination is unique if H has positive subdiagonal
elements.) The lemma can be proved by induction analogously to the proof given
for tridiagonal matrices in §11.3.

The lemma is used in practice by taking two steps of the QR algorithm,
either with two real shifts ks and ks+1, or with complex conjugate values ks and
ks+1 = ks*. This gives a real matrix As+2, where

As+2 = Qs+1 · Qs · As · QT
s · QT

s+1· (11.6.4)
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The Q’s are determined by

As − ks1 = QT
s · Rs (11.6.5)

As+1 = Qs · As · QT
s (11.6.6)

As+1 − ks+11 = QT
s+1 · Rs+1 (11.6.7)

Using (11.6.6), equation (11.6.7) can be rewritten

As − ks+11 = QT
s · QT

s+1 · Rs+1 · Qs (11.6.8)

Hence, if we define

M = (As − ks+11) · (As − ks1) (11.6.9)

equations (11.6.5) and (11.6.8) give

R = Q · M (11.6.10)
where

Q = Qs+1 · Qs (11.6.11)
R = Rs+1 · Rs (11.6.12)

Equation (11.6.4) can be rewritten

As · QT = QT · As+2 (11.6.13)

Thus suppose we can somehow find an upper Hessenberg matrix H such that

As · Q
T

= Q
T · H (11.6.14)

where Q is orthogonal. If Q
T

has the same first column as QT (i.e., Q has the same
first row as Q), then Q = Q and As+2 = H.

The first row of Q is found as follows. Equation (11.6.10) shows that Q is
the orthogonal matrix that triangularizes the real matrix M. Any real matrix can
be triangularized by premultiplying it by a sequence of Householder matrices P 1

(acting on the first column), P2 (acting on the second column), . . . , Pn−1. Thus
Q = Pn−1 · · ·P2 · P1, and the first row of Q is the first row of P1 since Pi is an
(i − 1) × (i − 1) identity matrix in the top left-hand corner. We now must find Q
satisfying (11.6.14) whose first row is that of P1.

The Householder matrix P1 is determined by the first column of M. Since As

is upper Hessenberg, equation (11.6.9) shows that the first column of M has the
form [p1, q1, r1, 0, ..., 0]T , where

p1 = a2
11 − a11(ks + ks+1) + ksks+1 + a12a21

q1 = a21(a11 + a22 − ks − ks+1)

r1 = a21a32

(11.6.15)
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Hence

P1 = 1 − 2w1 · wT
1 (11.6.16)

where w1 has only its first 3 elements nonzero (cf. equation 11.2.5). The matrix
P1 · As · PT

1 is therefore upper Hessenberg with 3 extra elements:

P1 · A1 · PT
1 =




× × × × × × ×
× × × × × × ×
x × × × × × ×
x x × × × × ×

× × × ×
× × ×

× ×




(11.6.17)

This matrix can be restored to upper Hessenberg form without affecting the first row
by a sequence of Householder similarity transformations. The first such Householder
matrix, P2, acts on elements 2, 3, and 4 in the first column, annihilating elements
3 and 4. This produces a matrix of the same form as (11.6.17), with the 3 extra
elements appearing one column over:




× × × × × × ×
× × × × × × ×

× × × × × ×
x × × × × ×
x x × × × ×

× × ×
× ×




(11.6.18)

Proceeding in this way up to Pn−1, we see that at each stage the Householder
matrix Pr has a vector wr that is nonzero only in elements r, r + 1, and r + 2.
These elements are determined by the elements r, r + 1, and r + 2 in the (r − 1)st
column of the current matrix. Note that the preliminary matrix P 1 has the same
structure as P2, . . . , Pn−1.

The result is that

Pn−1 · · ·P2 · P1 · As · PT
1 · PT

2 · · ·PT
n−1 = H (11.6.19)

where H is upper Hessenberg. Thus

Q = Q = Pn−1 · · ·P2 · P1 (11.6.20)
and

As+2 = H (11.6.21)

The shifts of origin at each stage are taken to be the eigenvalues of the 2 × 2
matrix in the bottom right-hand corner of the current A s. This gives

ks + ks+2 = an−1,n−1 + ann

ksks+1 = an−1,n−1ann − an−1,nan,n−1

(11.6.22)
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Substituting (11.6.22) in (11.6.15), we get

p1 = a21 {[(ann − a11)(an−1,n−1 − a11) − an−1,nan,n−1]/a21 + a12}
q1 = a21[a22 − a11 − (ann − a11) − (an−1,n−1 − a11)]
r1 = a21a32 (11.6.23)

We have judiciously grouped terms to reduce possible roundoff when there are
small off-diagonal elements. Since only the ratios of elements are relevant for a
Householder transformation, we can omit the factor a21 from (11.6.23).

In summary, to carry out a double QR step we construct the Householder
matrices Pr, r = 1, . . . , n− 1. For P1 we use p1, q1, and r1 given by (11.6.23). For
the remaining matrices, pr, qr, and rr are determined by the (r, r−1), (r +1, r−1),
and (r + 2, r − 1) elements of the current matrix. The number of arithmetic
operations can be reduced by writing the nonzero elements of the 2w · w T part of
the Householder matrix in the form

2w · wT =




(p ± s)/(±s)
q/(±s)
r/(±s)


 · [ 1 q/(p ± s) r/(p ± s) ] (11.6.24)

where

s2 = p2 + q2 + r2 (11.6.25)

(We have simply divided each element by a piece of the normalizing factor; cf.
the equations in §11.2.)

If we proceed in this way, convergence is usually very fast. There are two
possible ways of terminating the iteration for an eigenvalue. First, if an,n−1 becomes
“negligible,” then ann is an eigenvalue. We can then delete the nth row and column
of the matrix and look for the next eigenvalue. Alternatively, a n−1,n−2 may become
negligible. In this case the eigenvalues of the 2 × 2 matrix in the lower right-hand
corner may be taken to be eigenvalues. We delete the nth and (n − 1)st rows and
columns of the matrix and continue.

The test for convergence to an eigenvalue is combined with a test for negligible
subdiagonal elements that allows splitting of the matrix into submatrices. We find
the largest i such that ai,i−1 is negligible. If i = n, we have found a single
eigenvalue. If i = n − 1, we have found two eigenvalues. Otherwise we continue
the iteration on the submatrix in rows i to n (i being set to unity if there is no
small subdiagonal element).

After determining i, the submatrix in rows i to n is examined to see if the product
of any two consecutive subdiagonal elements is small enough that we can work with
an even smaller submatrix, starting say in row m. We start with m = n − 2
and decrement it down to i + 1, computing p, q, and r according to equations
(11.6.23) with 1 replaced by m and 2 by m + 1. If these were indeed the elements
of the special “first” Householder matrix in a double QR step, then applying the
Householder matrix would lead to nonzero elements in positions (m + 1, m − 1),
(m + 2, m− 1), and (m + 2, m). We require that the first two of these elements be
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small compared with the local diagonal elements am−1,m−1, amm and am+1,m+1.
A satisfactory approximate criterion is

|am,m−1|(|q| + |r|) � |p|(|am+1,m+1| + |amm| + |am−1,m−1|) (11.6.26)

Very rarely, the procedure described so far will fail to converge. On such
matrices, experience shows that if one double step is performed with any shifts
that are of order the norm of the matrix, convergence is subsequently very rapid.
Accordingly, if ten iterations occur without determining an eigenvalue, the usual
shifts are replaced for the next iteration by shifts defined by

ks + ks+1 = 1.5 × (|an,n−1| + |an−1,n−2|)
ksks+1 = (|an,n−1| + |an−1,n−2|)2

(11.6.27)

The factor 1.5 was arbitrarily chosen to lessen the likelihood of an “unfortunate”
choice of shifts. This strategy is repeated after 20 unsuccessful iterations. After 30
unsuccessful iterations, the routine reports failure.

The operation count for the QR algorithm described here is ∼ 5k 2 per iteration,
where k is the current size of the matrix. The typical average number of iterations per
eigenvalue is ∼ 1.8, so the total operation count for all the eigenvalues is ∼ 3n 3. This
estimate neglects any possible efficiency due to splitting or sparseness of the matrix.

The following routine hqr is based algorithmically on the above description,
in turn following the implementations in [1,2].

SUBROUTINE hqr(a,n,np,wr,wi)
INTEGER n,np
REAL a(np,np),wi(np),wr(np)

Finds all eigenvalues of an n by n upper Hessenberg matrix a that is stored in an np by np
array. On input a can be exactly as output from elmhes §11.5; on output it is destroyed.
The real and imaginary parts of the eigenvalues are returned in wr and wi, respectively.

INTEGER i,its,j,k,l,m,nn
REAL anorm,p,q,r,s,t,u,v,w,x,y,z
anorm=0. Compute matrix norm for possible use

in locating single small subdiagonal
element.

do 12 i=1,n
do 11 j=max(i-1,1),n

anorm=anorm+abs(a(i,j))
enddo 11

enddo 12

nn=n
t=0. Gets changed only by an exceptional shift.

1 if(nn.ge.1)then Begin search for next eigenvalue.
its=0

2 do 13 l=nn,2,-1 Begin iteration: look for single small sub-
diagonal element.s=abs(a(l-1,l-1))+abs(a(l,l))

if(s.eq.0.)s=anorm
if(abs(a(l,l-1))+s.eq.s)then

abs(a(l,l-1)=0.
goto 3

endif
enddo 13

l=1
3 x=a(nn,nn)

if(l.eq.nn)then One root found.
wr(nn)=x+t
wi(nn)=0.
nn=nn-1
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else
y=a(nn-1,nn-1)
w=a(nn,nn-1)*a(nn-1,nn)
if(l.eq.nn-1)then Two roots found...

p=0.5*(y-x)
q=p**2+w
z=sqrt(abs(q))
x=x+t
if(q.ge.0.)then ...a real pair.

z=p+sign(z,p)
wr(nn)=x+z
wr(nn-1)=wr(nn)
if(z.ne.0.)wr(nn)=x-w/z
wi(nn)=0.
wi(nn-1)=0.

else ...a complex pair.
wr(nn)=x+p
wr(nn-1)=wr(nn)
wi(nn)=z
wi(nn-1)=-z

endif
nn=nn-2

else No roots found. Continue iteration.
if(its.eq.30)pause ’too many iterations in hqr’
if(its.eq.10.or.its.eq.20)then Form exceptional shift.

t=t+x
do 14 i=1,nn

a(i,i)=a(i,i)-x
enddo 14

s=abs(a(nn,nn-1))+abs(a(nn-1,nn-2))
x=0.75*s
y=x
w=-0.4375*s**2

endif
its=its+1
do 15 m=nn-2,l,-1 Form shift and then look for 2 consecu-

tive small subdiagonal elements.z=a(m,m)
r=x-z
s=y-z
p=(r*s-w)/a(m+1,m)+a(m,m+1) Equation (11.6.23).
q=a(m+1,m+1)-z-r-s
r=a(m+2,m+1)
s=abs(p)+abs(q)+abs(r) Scale to prevent overflow or underflow.
p=p/s
q=q/s
r=r/s
if(m.eq.l)goto 4
u=abs(a(m,m-1))*(abs(q)+abs(r))
v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
if(u+v.eq.v)goto 4 Equation (11.6.26).

enddo 15

4 do 16 i=m+2,nn
a(i,i-2)=0.
if (i.ne.m+2) a(i,i-3)=0.

enddo 16

do 19 k=m,nn-1 Double QR step on rows l to nn and
columns m to nn.if(k.ne.m)then

p=a(k,k-1) Begin setup of Householder vector.
q=a(k+1,k-1)
r=0.
if(k.ne.nn-1)r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if(x.ne.0.)then

p=p/x Scale to prevent overflow or underflow.
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q=q/x
r=r/x

endif
endif
s=sign(sqrt(p**2+q**2+r**2),p)
if(s.ne.0.)then

if(k.eq.m)then
if(l.ne.m)a(k,k-1)=-a(k,k-1)

else
a(k,k-1)=-s*x

endif
p=p+s Equations (11.6.24).
x=p/s
y=q/s
z=r/s
q=q/p
r=r/p
do 17 j=k,nn Row modification.

p=a(k,j)+q*a(k+1,j)
if(k.ne.nn-1)then

p=p+r*a(k+2,j)
a(k+2,j)=a(k+2,j)-p*z

endif
a(k+1,j)=a(k+1,j)-p*y
a(k,j)=a(k,j)-p*x

enddo 17

do 18 i=l,min(nn,k+3) Column modification.
p=x*a(i,k)+y*a(i,k+1)
if(k.ne.nn-1)then

p=p+z*a(i,k+2)
a(i,k+2)=a(i,k+2)-p*r

endif
a(i,k+1)=a(i,k+1)-p*q
a(i,k)=a(i,k)-p

enddo 18

endif
enddo 19

goto 2 ...for next iteration on current eigenvalue.
endif

endif
goto 1 ...for next eigenvalue.
endif
return
END

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §7.5.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]
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11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Let y be the solution
of the linear system

(A − τ1) · y = b (11.7.1)

where b is a random vector and τ is close to some eigenvalue λ of A. Then the
solution y will be close to the eigenvector corresponding to λ. The procedure can
be iterated: Replace b by y and solve for a new y, which will be even closer to
the true eigenvector.

We can see why this works by expanding both y and b as linear combinations
of the eigenvectors xj of A:

y =
∑

j

αjxj b =
∑

j

βjxj (11.7.2)

Then (11.7.1) gives
∑

j

αj(λj − τ)xj =
∑

j

βjxj (11.7.3)

so that

αj =
βj

λj − τ
(11.7.4)

and

y =
∑

j

βjxj

λj − τ
(11.7.5)

If τ is close to λn, say, then provided βn is not accidentally too small, y will be
approximately xn, up to a normalization. Moreover, each iteration of this procedure
gives another power of λj − τ in the denominator of (11.7.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at the kth stage of iteration we are solving the equation

(A − τk1) · y = bk (11.7.6)

where bk and τk are our current guesses for some eigenvector and eigenvalue of
interest (let’s say, xn and λn). Normalize bk so that bk · bk = 1. The exact
eigenvector and eigenvalue satisfy

A · xn = λnxn (11.7.7)
so

(A − τk1) · xn = (λn − τk)xn (11.7.8)

Since y of (11.7.6) is an improved approximation to x n, we normalize it and set

bk+1 =
y
|y| (11.7.9)
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11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Lety be the solution
of the linear system

(A − τ1) · y = b (11.7.1)

whereb is a random vector andτ is close to some eigenvalueλ of A. Then the
solutiony will be close to the eigenvector corresponding toλ. The procedure can
be iterated: Replaceb by y and solve for a newy, which will be even closer to
the true eigenvector.

We can see why this works by expanding bothy andb as linear combinations
of the eigenvectorsxj of A:

y =
∑

j

αjxj b =
∑

j

βjxj (11.7.2)

Then (11.7.1) gives
∑

j

αj(λj − τ)xj =
∑

j

βjxj (11.7.3)

so that

αj =
βj

λj − τ
(11.7.4)

and

y =
∑

j

βjxj

λj − τ
(11.7.5)

If τ is close toλn, say, then providedβn is not accidentally too small,y will be
approximatelyxn, up to a normalization. Moreover, each iteration of this procedure
gives another power ofλj − τ in the denominator of (11.7.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at thekth stage of iteration we are solving the equation

(A − τk1) · y = bk (11.7.6)

wherebk and τk are our current guesses for some eigenvector and eigenvalue of
interest (let’s say,xn and λn). Normalizebk so thatbk · bk = 1. The exact
eigenvector and eigenvalue satisfy

A · xn = λnxn (11.7.7)
so

(A − τk1) · xn = (λn − τk)xn (11.7.8)

Sincey of (11.7.6) is an improved approximation tox n, we normalize it and set

bk+1 =
y
|y| (11.7.9)
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We get an improved estimate of the eigenvalue by substituting our improved guess
y for xn in (11.7.8). By (11.7.6), the left-hand side isb k, so callingλn our new
value τk+1, we find

τk+1 = τk +
1

bk · y
(11.7.10)

While the above formulas look simple enough, in practice the implementation
can be quite tricky. The first question to be resolved iswhen to use inverse iteration.
Most of the computational load occurs in solving the linear system (11.7.6). Thus
a possible strategy is first to reduce the matrixA to a special form that allows easy
solution of (11.7.6). Tridiagonal form for symmetric matrices or Hessenberg for
nonsymmetric are the obvious choices. Then apply inverse iteration to generate
all the eigenvectors. While this is anO(N 3) method for symmetric matrices, it
is many times less efficient than theQL method given earlier. In fact, even the
best inverse iteration packages are less efficient than theQL method as soon as
more than about 25 percent of the eigenvectors are required. Accordingly, inverse
iteration is generally used when one already has good eigenvalues and wants only
a few selected eigenvectors.

You can write a simple inverse iteration routine yourself usingLU decompo-
sition to solve (11.7.6). You can decide whether to use the generalLU algorithm
we gave in Chapter 2 or whether to take advantage of tridiagonal or Hessenberg
form. Note that, since the linear system (11.7.6) is nearly singular, you must be
careful to use a version ofLU decomposition like that in§2.3 which replaces a zero
pivot with a very small number.

We have chosen not to give a general inverse iteration routine in this book,
because it is quite cumbersome to take account of all the cases that can arise.
Routines are given, for example, in[1,2]. If you use these, or write your own routine,
you may appreciate the following pointers.

One starts by supplying an initial valueτ0 for the eigenvalueλn of interest.
Choose a random normalized vectorb0 as the initial guess for the eigenvectorxn,
and solve (11.7.6). The new vectory is bigger thanb 0 by a “growth factor”|y|,
which ideally should be large. Equivalently, the change in the eigenvalue, which by
(11.7.10) is essentially1/ |y|, should be small. The following cases can arise:

• If the growth factor is too small initially, then we assume we have made
a “bad” choice of random vector. This can happen not just because of
a smallβn in (11.7.5), but also in the case of a defective matrix, when
(11.7.5) does not even apply (see, e.g.,[1] or [3] for details). We go back
to the beginning and choose a new initial vector.

• The change|b1 − b0| might be less than some toleranceε. We can use this
as a criterion for stopping, iterating until it is satisfied, with a maximum
of 5 – 10 iterations, say.

• After a few iterations, if|bk+1 − bk| is not decreasing rapidly enough,
we can try updating the eigenvalue according to (11.7.10). Ifτ k+1 = τk

to machine accuracy, we are not going to improve the eigenvector much
more and can quit. Otherwise start another cycle of iterations with the
new eigenvalue.

The reason we do not update the eigenvalue at every step is that when we solve
the linear system (11.7.6) byLU decomposition, we can save the decomposition
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if τk is fixed. We only need do the backsubstitution step each time we updateb k.
The number of iterations we decide to do with a fixedτk is a trade-off between the
quadratic convergence butO(N 3) workload for updatingτk at each step and the
linear convergence butO(N 2) load for keepingτk fixed. If you have determined the
eigenvalue by one of the routines given earlier in the chapter, it is probably correct
to machine accuracy anyway, and you can omit updating it.

There are two different pathologies that can arise during inverse iteration. The
first is multiple or closely spaced roots. This is more often a problem with symmetric
matrices. Inverse iteration will find only one eigenvector for a given initial guessτ 0.
A good strategy is to perturb the last few significant digits inτ0 and then repeat the
iteration. Usually this provides an independent eigenvector. Special steps generally
have to be taken to ensure orthogonality of the linearly independent eigenvectors,
whereas the Jacobi andQL algorithms automatically yield orthogonal eigenvectors
even in the case of multiple eigenvalues.

The second problem, peculiar to nonsymmetric matrices, is the defective case.
Unless one makes a “good” initial guess, the growth factor is small. Moreover,
iteration does not improve matters. In this case, the remedy is to choose random
initial vectors, solve (11.7.6) once, and quit as soon asany vector gives an acceptably
large growth factor. Typically only a few trials are necessary.

One further complication in the nonsymmetric case is that a real matrix can
have complex-conjugate pairs of eigenvalues. You will then have to use complex
arithmetic to solve (11.7.6) for the complex eigenvectors. For any moderate-sized
(or larger) nonsymmetric matrix, our recommendation is to avoid inverse iteration
in favor of a QR method that includes the eigenvector computation in complex
arithmetic. You will find routines for this in[1,2] and other places.

CITED REFERENCES AND FURTHER READING:
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putation (New York: Springer-Verlag), p. 418. [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
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Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods” or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “power spectrum”) is itself
of intrinsic interest. These two kinds of problems share a common methodology.

Largely for historical reasons the literature on Fourier and spectral methods has
been disjoint from the literature on “classical” numerical analysis. Nowadays there
is no justification for such a split. Fourier methods are commonplace in research and
we shall not treat them as specialized or arcane. At the same time, we realize that
many computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
results will be more complete. Numerical algorithms, per se, begin in§12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in thetime domain, by the values of
some quantityh as a function of timet, e.g.,h(t), or else in thefrequency domain,
where the process is specified by giving its amplitudeH (generally a complex
number indicating phase also) as a function of frequencyf , that is H(f), with
−∞ < f < ∞. For many purposes it is useful to think ofh(t) andH(f) as being
two differentrepresentations of thesame function. One goes back and forth between
these two representations by means of theFourier transform equations,

H(f) =
∫ ∞

−∞
h(t)e2πiftdt

h(t) =
∫ ∞

−∞
H(f)e−2πiftdf

(12.0.1)

If t is measured in seconds, thenf in equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units too. If
h is a function of positionx (in meters),H will be a function of inverse wavelength
(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to usingangular frequency ω, which is given inradians per
sec. The relation betweenω andf , H(ω) andH(f) is

ω ≡ 2πf H(ω) ≡ [H(f)]f=ω/2π (12.0.2)

490
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and equation (12.0.1) looks like this

H(ω) =
∫ ∞

−∞
h(t)eiωtdt

h(t) =
1
2π

∫ ∞

−∞
H(ω)e−iωtdω

(12.0.3)

We were raised on theω-convention, but we changed! There are fewer factors of
2π to remember if you use thef -convention, especially when we get to discretely
sampled data in§12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, functionh(t) may happen to have one or more special
symmetries It might bepurely real or purely imaginary or it might be even,
h(t) = h(−t), or odd, h(t) = −h(−t). In the frequency domain, these symmetries
lead to relationships betweenH(f) and H(−f). The following table gives the
correspondence between symmetries in the two domains:

If . . . then. . .

h(t) is real H(−f) = [H(f)]*
h(t) is imaginary H(−f) = −[H(f)]*
h(t) is even H(−f) = H(f) [i.e.,H(f) is even]
h(t) is odd H(−f) = −H(f) [i.e., H(f) is odd]
h(t) is real and even H(f) is real and even
h(t) is real and odd H(f) is imaginary and odd
h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase
computational efficiency.

Here are some other elementary properties of the Fourier transform. (We’ll use
the “⇐⇒” symbol to indicate transform pairs.) If

h(t) ⇐⇒ H(f)

is such a pair, then other transform pairs are

h(at) ⇐⇒ 1
|a|H(

f

a
) “time scaling” (12.0.4)

1
|b|h(

t

b
) ⇐⇒ H(bf) “frequency scaling” (12.0.5)

h(t − t0) ⇐⇒ H(f) e2πift0 “time shifting” (12.0.6)
h(t) e−2πif0t ⇐⇒ H(f − f0) “frequency shifting” (12.0.7)
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With two functionsh(t) andg(t), and their corresponding Fourier transforms
H(f) andG(f), we can form two combinations of special interest. Theconvolution
of the two functions, denotedg ∗ h, is defined by

g ∗ h ≡
∫ ∞

−∞
g(τ)h(t − τ) dτ (12.0.8)

Note thatg ∗ h is a function in the time domain and thatg ∗ h = h ∗ g. It turns out
that the functiong ∗ h is one member of a simple transform pair

g ∗ h ⇐⇒ G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.

Thecorrelation of two functions, denoted Corr(g, h), is defined by

Corr(g, h) ≡
∫ ∞

−∞
g(τ + t)h(τ) dτ (12.0.10)

The correlation is a function oft, which is called thelag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr(g, h) ⇐⇒ G(f)H*(f) “Correlation Theorem” (12.0.11)

[More generally, the second member of the pair isG(f)H(−f), but we are restricting
ourselves to the usual case in whichg andh are real functions, so we take the liberty of
settingH(−f) = H*(f).] This result shows that multiplying the Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of a function with itself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) ⇐⇒ |G(f)|2 “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is known asParseval’s theorem:

Total Power≡
∫ ∞

−∞
|h(t)|2 dt =

∫ ∞

−∞
|H(f)|2 df (12.0.13)

Frequently one wants to know “how much power” is contained in the frequency
interval betweenf and f + df . In such circumstances one does not usually
distinguish between positive and negativef , but rather regardsf as varying from 0
(“zero frequency” or D.C.) to+∞. In such cases, one defines theone-sided power
spectral density (PSD) of the functionh as

Ph(f) ≡ |H(f)|2 + |H(−f)|2 0 ≤ f < ∞ (12.0.14)

so that the total power is just the integral ofPh(f) from f = 0 to f = ∞. When the
functionh(t) is real, then the two terms in (12.0.14) are equal, soPh(f) = 2 |H(f)|2.
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Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will always use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from −∞ < t < ∞, then its total power
and power spectral density will, in general, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function h(t), computing its PSD [that is, the PSD
of a function that equals h(t) in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signal h(t).

You might well worry about how the PSD-per-unit-time, which is a function of
frequency f , converges as one evaluates it using longer and longer stretches of data.
This interesting question is the content of the subject of “power spectrum estimation,”
and will be considered below in §13.4–§13.7. A crude answer for now is: The
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PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean square amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(ti) for a discrete set of ti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Academic
Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency f c, called the
Nyquist critical frequency, given by

fc ≡ 1
2∆

(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval ∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
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PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean square amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(ti) for a discrete set of ti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Academic
Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency f c, called the
Nyquist critical frequency, given by

fc ≡ 1
2∆

(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval ∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
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fact known as the sampling theorem: If a continuous function h(t), sampled at an
interval ∆, happens to be bandwidth limited to frequencies smaller in magnitude than
fc, i.e., if H(f) = 0 for all |f | ≥ fc, then the function h(t) is completely determined
by its samples hn. In fact, h(t) is given explicitly by the formula

h(t) = ∆
+∞∑

n=−∞
hn

sin[2πfc(t − n∆)]
π(t − n∆)

(12.1.3)

This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate ∆−1 equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range −fc < f < fc is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (−fc, fc) is aliased (falsely translated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(2πif 1t)
and exp(2πif2t) give the same samples at an interval ∆ if and only if f1 and
f2 differ by a multiple of 1/∆, which is just the width in frequency of the range
(−fc, fc). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
range in between −fc and fc. Then we look to the Fourier transform to tell whether
the continuous function has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches fc from below, or −fc from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . . , N − 1 (12.1.4)
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h(t)
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(a)
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0
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(c)

aliased Fourier transform

true Fourier transform

0

H( f )

1
2∆

1
2∆

−

f

∆

T

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time T .
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval ∆, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is ∆. To make things simpler, let us also suppose that
N is even. If the function h(t) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function h(t) goes on forever, then the sampled points are
supposed to be at least “typical” of what h(t) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at all values of f in the range −fc to fc, let us seek estimates
only at the discrete values

fn ≡ n

N∆
, n = −N

2
, . . . ,

N

2
(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N , values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but all the
others are. This reduces the count to N .
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The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H(fn) =
∫ ∞

−∞
h(t)e2πifntdt ≈

N−1∑
k=0

hk e2πifntk∆ = ∆
N−1∑
k=0

hk e2πikn/N

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points hk. Let us denote it by Hn,

Hn ≡
N−1∑
k=0

hk e2πikn/N (12.1.7)

The discrete Fourier transform maps N complex numbers (the h k’s) into N complex
numbers (the Hn’s). It does not depend on any dimensional parameter, such as the
time scale ∆. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval ∆ can be rewritten as

H(fn) ≈ ∆Hn (12.1.8)

where fn is given by (12.1.5).
Up to now we have taken the view that the index n in (12.1.7) varies from−N/2

to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in n, with
period N . Therefore, H−n = HN−n n = 1, 2, . . . . With this conversion in mind,
one generally lets the n in Hn vary from 0 to N − 1 (one complete period). Then n
and k (in hk) vary exactly over the same range, so the mapping of N numbers into
N numbers is manifest. When this convention is followed, you must remember that
zero frequency corresponds to n = 0, positive frequencies 0 < f < f c correspond
to values 1 ≤ n ≤ N/2− 1, while negative frequencies −fc < f < 0 correspond to
N/2+1 ≤ n ≤ N−1. The value n = N/2 corresponds to both f = fc and f = −fc.

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hk for h(t), Hn for H(f), and HN−n

for H(−f). (Likewise, “even” and “odd” in time refer to whether the values h k at k
and N − k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hk’s exactly from the Hn’s is:

hk =
1
N

N−1∑
n=0

Hn e−2πikn/N (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N . This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.
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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1
N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =
N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces a vector
result whose components are the Hn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers of W . So, the discrete Fourier transform appears to be an O(N 2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log2 N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log2 N and N 2 is immense.
With N = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length N/2. One of the two is formed from the
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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1
N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to§13.1 and§13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) ofN points? For many years, until the mid-1960s, the standard answer
was this: DefineW as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =
N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector ofhk ’s is multiplied by a matrix whose(n, k)th element
is the constantW to the powern × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers ofW . So, the discrete Fourier transform appears to be anO(N 2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed inO(N log2 N) operations with an algorithm called thefast
Fourier transform, or FFT. The difference betweenN log2 N andN 2 is immense.
With N = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of lengthN can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the
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even-numbered points of the originalN , the other from the odd-numbered points.
The proof is simply this:

Fk =
N−1∑
j=0

e2πijk/N fj

=
N/2−1∑

j=0

e2πik(2j)/N f2j +
N/2−1∑

j=0

e2πik(2j+1)/N f2j+1

=
N/2−1∑

j=0

e2πikj/(N/2)f2j + W k

N/2−1∑
j=0

e2πikj/(N/2)f2j+1

= F e
k + W k F o

k

(12.2.3)

In the last line,W is the same complex constant as in (12.2.1),F e
k denotes thekth

component of the Fourier transform of lengthN/2 formed from the even components
of the originalfj ’s, while F o

k is the corresponding transform of lengthN/2 formed
from the odd components. Notice also thatk in the last line of (12.2.3) varies from
0 to N , not just toN/2. Nevertheless, the transformsF e

k andF o
k are periodic ink

with lengthN/2. So each is repeated through two cycles to obtainFk.
The wonderful thing about theDanielson-Lanczos Lemma is that it can be used

recursively. Having reduced the problem of computingF k to that of computing
F e

k and F o
k , we can do the same reduction ofF e

k to the problem of computing
the transform ofits N/4 even-numbered input data andN/4 odd-numbered data.
In other words, we can defineF ee

k andF eo
k to be the discrete Fourier transforms

of the points which are respectively even-even and even-odd on the successive
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the originalN is an integer power of 2. In fact, we categorically
recommend that youonly use FFTs withN a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N , it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern oflog 2 N
e’s ando’s, there is a one-point transform that is just one of the input numbersf n

F eoeeoeo···oee
k = fn for somen (12.2.4)

(Of course this one-point transform actually does not depend onk, since it is periodic
in k with period 1.)

The next trick is to figure out which value ofn corresponds to which pattern of
e’s ando’s in equation (12.2.4). The answer is: Reverse the pattern ofe’s ando’s,
then lete = 0 ando = 1, and you will have,in binary the value ofn. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits ofn. This idea ofbit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos
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Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of data f j

and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Danielson-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log 2 N combinations, so the whole
algorithm is of order N log2 N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log 2 N ).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional storage,
since it involves only swapping pairs of elements. (If k1 is the bit reverse of k2, then
k2 is the bit reverse of k1.) The second section has an outer loop that is executed
log2 N times and calculates, in turn, transforms of length 2, 4, 8, . . . , N . For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log 2 N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data), and isign, which should be set to either ±1 and is the sign of i in
the exponential of equation (12.1.7). When isign is set to −1, the routine thus
calculates the inverse transform (12.1.9) — except that it does not multiply by the
normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points, although
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we avoid the use of complex arithmetic because of the inefficient implementations
found on many computers. The actual length of the real array (data) is 2 times
nn, with each complex value occupying two consecutive locations. In other words,
data(1) is the real part of f0, data(2) is the imaginary part of f0, and so on up
to data(2*nn-1), which is the real part of fN−1, and data(2*nn), which is the
imaginary part of fN−1. The FFT routine returns the Fn’s packed in exactly the
same fashion, as nn complex numbers.

The real and imaginary parts of the zero frequency component F 0 are in data(1)
and data(2); the smallest nonzero positive frequency has real and imaginary parts in
data(3) and data(4); the smallest (in magnitude) nonzero negative frequency has
real and imaginary parts in data(2*nn-1) and data(2*nn). Positive frequencies
increasing in magnitude are stored in the real-imaginary pairs data(5), data(6)
up to data(nn-1), data(nn). Negative frequencies of increasing magnitude are
stored in data(2*nn-3), data(2*nn-2) down to data(nn+3), data(nn+4).
Finally, the pair data(nn+1), data(nn+2) contain the real and imaginary parts of
the one aliased point that contains the most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

SUBROUTINE four1(data,nn,isign)
INTEGER isign,nn
REAL data(2*nn)

Replaces data(1:2*nn) by its discrete Fourier transform, if isign is input as 1; or replaces
data(1:2*nn) by nn times its inverse discrete Fourier transform, if isign is input as −1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn
MUST be an integer power of 2 (this is not checked for!).

INTEGER i,istep,j,m,mmax,n
REAL tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for the trigonomet-

ric recurrences.n=2*nn
j=1
do 11 i=1,n,2 This is the bit-reversal section of the routine.

if(j.gt.i)then
tempr=data(j) Exchange the two complex numbers.
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi

endif
m=nn

1 if ((m.ge.2).and.(j.gt.m)) then
j=j-m
m=m/2

goto 1
endif
j=j+m

enddo 11

mmax=2 Here begins the Danielson-Lanczos section of the routine.
2 if (n.gt.mmax) then Outer loop executed log2 nn times.

istep=2*mmax
theta=6.28318530717959d0/(isign*mmax) Initialize for the trigonometric recur-

rence.wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax,2 Here are the two nested inner loops.
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in a real array of length 2N , with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

do 12 i=m,n,istep
j=i+mmax This is the Danielson-Lanczos formula:
tempr=sngl(wr)*data(j)-sngl(wi)*data(j+1)
tempi=sngl(wr)*data(j+1)+sngl(wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi

enddo 12

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 13

mmax=istep
goto 2 Not yet done.
endif All done.
return
END

(A double precision version of four1, named dfour1, is used by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)
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Other FFT Algorithms

We should mention that there are a number of variants on the basic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log 2 N iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possible to derive FFT algorithms that first go through a set of
log2 N iterations on the input data, and rearrange the output values into bit-reverse
order. These are called decimation-in-frequencyor Sande-Tukey FFT algorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. In these cases it is possible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT’s
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular small N . For example, for
N = 4, the trigonometric sines and cosines that enter are all ±1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

There are also FFT algorithms for data sets of length N not a power of two. They
work by using relations analogous to the Danielson-Lanczos Lemma to subdivide
the initial problem into successively smaller problems, not by factors of 2, but by
whatever small prime factors happen to divide N . The larger that the largest prime
factor of N is, the worse this method works. If N is prime, then no subdivision
is possible, and the user (whether he knows it or not) is taking a slow Fourier
transform, of order N 2 instead of order N log2 N . Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., for N = 2, 3, 4, 5, 7, 8, 11, 13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values of N , the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “ in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with
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integer arithmetic modulo some large prime N+1, and the N th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “ frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples fj , j = 0 . . .N − 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn, n = 0 . . .N − 1
satisfies FN−n* = Fn. Since this complex-valued array has real values for F0

and FN/2, and (N/2) − 1 other independent values F1 . . . FN/2−1, it has the same
2(N/2 − 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production” : Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase
two of an item when you only need one. However, remember that for correlations
and convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.
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integer arithmetic modulo some large primeN+1, and theN th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are notFourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samplesfj , j = 0 . . .N − 1. To usefour1, we put these into a complex array
with all imaginary parts set to zero. The resulting transformFn, n = 0 . . .N − 1
satisfiesFN−n* = Fn. Since this complex-valued array has real values forF0

andFN/2, and(N/2) − 1 other independent valuesF1 . . . FN/2−1, it has the same
2(N/2 − 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There aretwo better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the programtwofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase
two of an item when you only need one. However, remember that for correlations
and convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the programrealft below.
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Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transformFn to handle
two real functions at once: Since the input datafj are real, the components of the
discrete Fourier transform satisfy

FN−n = (Fn)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set ofg j ’s has the opposite symmetry.

GN−n = −(Gn)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
lengthN simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array offour1. Then the resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routinetwofft works out these ideas.

SUBROUTINE twofft(data1,data2,fft1,fft2,n)
INTEGER n
REAL data1(n),data2(n)
COMPLEX fft1(n),fft2(n)

C USES four1
Given two real input arrays data1(1:n) and data2(1:n), this routine calls four1 and
returns two complex output arrays, fft1(1:n) and fft2(1:n), each of complex length n
(i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2
COMPLEX h1,h2,c1,c2
c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5)
do 11 j=1,n

fft1(j)=cmplx(data1(j),data2(j)) Pack the two real arrays into one complex
array.enddo 11

call four1(fft1,n,1) Transform the complex array.
fft2(1)=cmplx(aimag(fft1(1)),0.0)
fft1(1)=cmplx(real(fft1(1)),0.0)
n2=n+2
do 12 j=2,n/2+1

h1=c1*(fft1(j)+conjg(fft1(n2-j))) Use symmetries to separate the two trans-
forms.h2=c2*(fft1(j)-conjg(fft1(n2-j)))

fft1(j)=h1 Ship them out in two complex arrays.
fft1(n2-j)=conjg(h1)
fft2(j)=h2
fft2(n2-j)=conjg(h2)

enddo 12

return
END

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plusi times the second. Invert usingfour1 with
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isign = −1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numberedf j as
one data set, and the odd-numberedf j as the other. The beauty of this is that
we can take the original real array and treat it as a complex arrayh j of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed fortwofft. No repacking is required. In other words
hj = f2j + if2j+1, j = 0, . . . , N/2 − 1. We submit this tofour1, and it will
return a complex arrayHn = F e

n + iF o
n , n = 0, . . . , N/2 − 1 with

F e
n =

N/2−1∑
k=0

f2k e2πikn/(N/2)

F o
n =

N/2−1∑
k=0

f2k+1 e2πikn/(N/2)

(12.3.3)

The discussion of programtwofft tells you how to separate the two transforms
F e

n andF o
n out ofHn. How do you work them into the transformFn of the original

data setfj? Simply glance back at equation (12.2.3):

Fn = F e
n + e2πin/NF o

n n = 0, . . . , N − 1 (12.3.4)

Expressed directly in terms of the transformHn of our real (masquerading as
complex) data set, the result is

Fn =
1
2
(Hn + HN/2−n*) − i

2
(Hn − HN/2−n*)e2πin/N n = 0, . . . , N − 1

(12.3.5)

A few remarks:
• SinceFN−n* = Fn there is no point in saving the entire spectrum. The

positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

• Even so, we need valuesHn, n = 0, . . . , N/2 whereasfour1 returns only
the valuesn = 0, . . . , N/2 − 1. Symmetry to the rescue,HN/2 = H0.

• The valuesF0 andFN/2 are real and independent. In order to actually get
the entireFn in the original array space, it is convenient to returnFN/2

as the imaginary part ofF0.
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• Despite its complicated form, the process above is invertible. First peel
FN/2 out of F0. Then construct

F e
n =

1
2
(Fn + F *

N/2−n)

F o
n =

1
2
e−2πin/N (Fn − F *

N/2−n)
n = 0, . . . , N/2 − 1 (12.3.6)

and usefour1 to find the inverse transform ofHn = F
(1)
n + iF

(2)
n .

Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

SUBROUTINE realft(data,n,isign)
INTEGER isign,n
REAL data(n)

C USES four1
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data
(which is stored in array data(1:n)) by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,i1,i2,i3,i4,n2p3
REAL c1,c2,h1i,h1r,h2i,h2r,wis,wrs
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision for the trigonometric recurrences.
theta=3.141592653589793d0/dble(n/2) Initialize the recurrence.
c1=0.5
if (isign.eq.1) then

c2=-0.5
call four1(data,n/2,+1) The forward transform is here.

else
c2=0.5 Otherwise set up for an inverse transform.
theta=-theta

endif
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
do 11 i=2,n/4 Case i=1 done separately below.

i1=2*i-1
i2=i1+1
i3=n2p3-i2
i4=i3+1
wrs=sngl(wr)
wis=sngl(wi)
h1r=c1*(data(i1)+data(i3)) The two separate transforms are separated out of

data.h1i=c1*(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2*(data(i1)-data(i3))
data(i1)=h1r+wrs*h2r-wis*h2i Here they are recombined to form the true trans-

form of the original real data.data(i2)=h1i+wrs*h2i+wis*h2r
data(i3)=h1r-wrs*h2r+wis*h2i
data(i4)=-h1i+wrs*h2i+wis*h2r
wtemp=wr The recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 11
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if (isign.eq.1) then
h1r=data(1)
data(1)=h1r+data(2)
data(2)=h1r-data(2) Squeeze the first and last data together to get

them all within the original array.else
h1r=data(1)
data(1)=c1*(h1r+data(2))
data(2)=c1*(h1r-data(2))
call four1(data,n/2,-1) This is the inverse transform for the case isign=-1.

endif
return
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see§19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

Fk =
N−1∑
j=1

fj sin(πjk/N) sine transform (12.3.7)

wherefj , j = 0, . . . , N − 1 is the data array, andf0 ≡ 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier

transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform usessines only as a complete set
of functions in the interval from0 to 2π, and, as we shall see, the cosine transform
usescosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function aboutj = N , with fN = 0,

f2N−j ≡ −fj j = 0, . . . , N − 1 (12.3.8)

Consider the FFT of this extended function:

Fk =
2N−1∑
j=0

fje
2πijk/(2N) (12.3.9)

The half of this sum fromj = N to j = 2N − 1 can be rewritten with the
substitutionj ′ = 2N − j

2N−1∑
j=N

fje
2πijk/(2N) =

N∑
j′=1

f2N−j′e
2πi(2N−j′)k/(2N)

= −
N−1∑
j′=0

fj′e
−2πij′k/(2N)

(12.3.10)
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Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b), and cosine transform
(c), are plotted. The first five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

so that

Fk =
N−1∑
j=0

fj

[
e2πijk/(2N) − e−2πijk/(2N)

]

= 2i

N−1∑
j=0

fj sin(πjk/N)

(12.3.11)

Thus, up to a factor 2i we get the sine transform from the FFT of the extended function.
This method introduces a factor of two inefficiency into the computation by

extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partial differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.
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From the original real data array fj we will construct an auxiliary array yj and
apply to it the routine realft. The output will then be used to construct the desired
transform. For the sine transform of data fj , j = 1, . . . , N −1, the auxiliary array is

y0 = 0

yj = sin(jπ/N)(fj + fN−j) +
1
2
(fj − fN−j) j = 1, . . . , N − 1

(12.3.12)

This array is of the same dimension as the original. Notice that the first term is
symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft is applied to yj , the result has real parts Rk and imaginary parts Ik given by

Rk =
N−1∑
j=0

yj cos(2πjk/N)

=
N−1∑
j=1

(fj + fN−j) sin(jπ/N) cos(2πjk/N)

=
N−1∑
j=0

2fj sin(jπ/N) cos(2πjk/N)

=
N−1∑
j=0

fj

[
sin

(2k + 1)jπ
N

− sin
(2k − 1)jπ

N

]

= F2k+1 − F2k−1 (12.3.13)

Ik =
N−1∑
j=0

yj sin(2πjk/N)

=
N−1∑
j=1

(fj − fN−j)
1
2

sin(2πjk/N)

=
N−1∑
j=0

fj sin(2πjk/N)

= F2k (12.3.14)

Therefore Fk can be determined as follows:

F2k = Ik F2k+1 = F2k−1 + Rk k = 0, . . . , (N/2 − 1) (12.3.15)

The even terms of Fk are thus determined very directly. The odd terms require
a recursion, the starting point of which follows from setting k = 0 in equation
(12.3.15) and using F1 = −F−1:

F1 =
1
2
R0 (12.3.16)

The implementing program is
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SUBROUTINE sinft(y,n)
INTEGER n
REAL y(n)

C USES realft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision in the trigonometric recurrences.
theta=3.141592653589793d0/dble(n) Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
y(1)=0.0
do 11 j=1,n/2

wtemp=wr
wr=wr*wpr-wi*wpi+wr Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi The cosine is needed to continue the recurrence.
y1=wi*(y(j+1)+y(n-j+1)) Construct the auxiliary array.
y2=0.5*(y(j+1)-y(n-j+1))
y(j+1)=y1+y2 Terms j and N − j are related.
y(n-j+1)=y1-y2

enddo 11

call realft(y,n,+1) Transform the auxiliary array.
sum=0.0
y(1)=0.5*y(1) Initialize the sum used for odd terms below.
y(2)=0.0
do 12 j=1,n-1,2

sum=sum+y(j)
y(j)=y(j+1) Even terms in the transform are determined directly.
y(j+1)=sum Odd terms are determined by this running sum.

enddo 12

return
END

The sine transform, curiously, is its own inverse. If you apply it twice, you get the
original data, but multiplied by a factor of N/2.

The other common boundary condition for differential equations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is the cosine transform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of double the length, and/or from whether the extended array
contains 2N − 1, 2N , or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

Fk =
1
2
[f0 + (−1)kfN ] +

N−1∑
j=1

fj cos(πjk/N) (12.3.17)

It results from extending the given array to an even array about j = N , with

f2N−j = fj , j = 0, . . . , N − 1 (12.3.18)
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If you substitute this extended array into equation (12.3.9),and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosine transform (12.3.17). Another way of thinking about the formula
(12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

yj =
1
2
(fj + fN−j) − sin(jπ/N)(fj − fN−j) j = 0, . . . , N − 1 (12.3.19)

Instead of equation (12.3.15), realft now gives

F2k = Rk F2k+1 = F2k−1 + Ik k = 0, . . . , (N/2 − 1) (12.3.20)

The starting value for the recursion for odd k in this case is

F1 =
1
2
(f0 − fN ) +

N−1∑
j=1

fj cos(jπ/N) (12.3.21)

This sum does not appear naturally among the Rk and Ik, and so we accumulate it
during the generation of the array y j .

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

SUBROUTINE cosft1(y,n)
INTEGER n
REAL y(n+1)

C USES realft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp For trig. recurrences.
theta=3.141592653589793d0/n Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
sum=0.5*(y(1)-y(n+1))
y(1)=0.5*(y(1)+y(n+1))
do 11 j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.

wtemp=wr
wr=wr*wpr-wi*wpi+wr Carry out the recurrence.
wi=wi*wpr+wtemp*wpi+wi
y1=0.5*(y(j+1)+y(n-j+1)) Calculate the auxiliary function.
y2=(y(j+1)-y(n-j+1))
y(j+1)=y1-wi*y2 The values for j and N − j are related.
y(n-j+1)=y1+wi*y2
sum=sum+wr*y2 Carry along this sum for later use in unfolding the

transform.enddo 11
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call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=sum sum is the value of F1 in equation (12.3.21).
do 12 j=4,n,2

sum=sum+y(j) Equation (12.3.20).
y(j)=sum

enddo 12

return
END

The second important form of the cosine transform is defined by

Fk =
N−1∑
j=0

fj cos
πk(j + 1

2 )
N

(12.3.22)

with inverse

fj =
2
N

N−1∑′

k=0

Fk cos
πk(j + 1

2 )
N

(12.3.23)

Here the prime on the summation symbol means that the term for k = 0 has a
coefficient of 1

2 in front. This form arises by extending the given data, defined for
j = 0, . . . , N − 1, to j = N, . . . , 2N − 1 in such a way that it is even about the point
N − 1

2 and periodic. (It is therefore also even about j = − 1
2 .) The form (12.3.23)

is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

yj =
1
2
(fj + fN−j−1) + sin

π(j + 1
2 )

N
(fj − fN−j−1) j = 0, . . . , N − 1

(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

F2k = cos
πk

N
Rk − sin

πk

N
Ik (12.3.25)

F2k−1 = sin
πk

N
Rk + cos

πk

N
Ik + F2k+1 (12.3.26)

Note that equation (12.3.26) gives

FN−1 =
1
2
RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from k = N/2 − 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps to
find the inverse. Here is the routine:
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SUBROUTINE cosft2(y,n,isign)
INTEGER isign,n
REAL y(n)

C USES realft
Calculates the “staggered” cosine transform of a set y(1:n) of real-valued data points.
The transformed data replace the original data in array y. n must be a power of 2. Set
isign to +1 for a transform, and to −1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.

INTEGER i
REAL sum,sum1,y1,y2,ytemp
DOUBLE PRECISION theta,wi,wi1,wpi,wpr,wr,wr1,wtemp,PI
Double precision for the trigonometric recurrences.

PARAMETER (PI=3.141592653589793d0)
theta=0.5d0*PI/n Initialize the recurrences.
wr=1.0d0
wi=0.0d0
wr1=cos(theta)
wi1=sin(theta)
wpr=-2.0d0*wi1**2
wpi=sin(2.d0*theta)
if(isign.eq.1)then Forward transform.

do 11 i=1,n/2
y1=0.5*(y(i)+y(n-i+1)) Calculate the auxiliary function.
y2=wi1*(y(i)-y(n-i+1))
y(i)=y1+y2
y(n-i+1)=y1-y2
wtemp=wr1 Carry out the recurrence.
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 11

call realft(y,n,1) Calculate the transform of the auxiliary function.
do 12 i=3,n,2 Even terms.

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr-y(i+1)*wi
y2=y(i+1)*wr+y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 12

sum=0.5*y(2) Initialize recurrence for odd terms with 1
2
RN/2.

do 13 i=n,2,-2 Carry out recurrence for odd terms.
sum1=sum
sum=sum+y(i)
y(i)=sum1

enddo 13

else if(isign.eq.-1)then Inverse transform.
ytemp=y(n)
do 14 i=n,4,-2 Form difference of odd terms.

y(i)=y(i-2)-y(i)
enddo 14

y(2)=2.0*ytemp
do 15 i=3,n,2 Calculate Rk and Ik.

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr+y(i+1)*wi
y2=y(i+1)*wr-y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 15

call realft(y,n,-1)
do 16 i=1,n/2 Invert auxiliary array.

y1=y(i)+y(n-i+1)
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y2=(0.5/wi1)*(y(i)-y(n-i+1))
y(i)=0.5*(y1+y2)
y(n-i+1)=0.5*(y1-y2)
wtemp=wr1
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 16

endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of f j into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].
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12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex function H(n1, n2), defined over the same grid,

H(n1, n2) ≡
N2−1∑
k2=0

N1−1∑
k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k 1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k 2,
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y(i)=0.5*(y1+y2)
y(n-i+1)=0.5*(y1-y2)
wtemp=wr1
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 16

endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of f j into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].
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12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex function H(n1, n2), defined over the same grid,

H(n1, n2) ≡
N2−1∑
k2=0

N1−1∑
k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k 1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k 2,
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we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(n1, n2) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)])
(12.4.2)

For this to be practical, of course, both N1 and N2 should be some efficient length
for an FFT, usually a power of 2. Programming a two-dimensional FFT, using
(12.4.2) with a one-dimensional FFT routine, is a bit clumsier than it seems at first.
Because the one-dimensional routine requires that its input be in consecutive order
as a one-dimensional complex array, you find that you are endlessly copying things
out of the multidimensional input array and then copying things back into it. This
is not recommended technique. Rather, you should use a multidimensional FFT
routine, such as the one we give below.

The generalization of (12.4.1) to more than two dimensions, say to L-
dimensions, is evidently

H(n1, . . . , nL) ≡
NL−1∑
kL=0

· · ·
N1−1∑
k1=0

exp(2πikLnL/NL) × · · ·

× exp(2πik1n1/N1) h(k1, . . . , kL)

(12.4.3)

where n1 and k1 range from 0 to N1 − 1, . . . , nL and kL range from 0 to NL − 1.
How many calls to a one-dimensional FFT are in (12.4.3)? Quite a few! For each
value of k1, k2, . . . , kL−1 you FFT to transform the L index. Then for each value of
k1, k2, . . . , kL−2 and nL you FFT to transform the L − 1 index. And so on. It is
best to rely on someone else having done the bookkeeping for once and for all.

The inverse transforms of (12.4.1) or (12.4.3) are just what you would expect
them to be: Change the i’s in the exponentials to −i’s, and put an overall
factor of 1/(N1 × · · · × NL) in front of the whole thing. Most other features
of multidimensional FFTs are also analogous to features already discussed in the
one-dimensional case:

• Frequencies are arranged in wrap-around order in the transform, but now
for each separate dimension.

• The input data are also treated as if they were wrapped around. If they are
discontinuous across this periodic identification (in any dimension) then
the spectrum will have some excess power at high frequencies because
of the discontinuity. The fix, if you care, is to remove multidimensional
linear trends.

• If you are doing spatial filtering and are worried about wrap-around effects,
then you need to zero-pad all around the border of the multidimensional
array. However, be sure to notice how costly zero-padding is in multidi-
mensional transforms. If you use too thick a zero-pad, you are going to
waste a lot of storage, especially in 3 or more dimensions!

• Aliasing occurs as always if sufficient bandwidth limiting does not exist
along one or more of the dimensions of the transform.
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Figure 12.4.1. Storage arrangement of frequencies in the output H(f1, f2) of a two-dimensional FFT.
The input data is a two-dimensional N1 × N2 array h(t1, t2) (stored by columns of complex numbers).
The output is also stored by complex columns. Each column corresponds to a particular value of f2, as
shown in the figure. Within each column, the arrangement of frequencies f1 is exactly as shown in Figure
12.2.2 ∆1 and ∆2 are the sampling intervals in the 1 and 2 directions, respectively. The total number
of (real) array elements is 2N1N2. The program fourn can also do more than two dimensions, and the
storage arrangement generalizes in the obvious way.

The routine fourn that we furnish herewith is a descendant of one written by N.
M. Brenner. It requires as input (i) a scalar, telling the number of dimensions, e.g.,
2; (ii) a vector, telling the length of the array in each dimension, e.g., (32,64). Note
that these lengths must all be powers of 2, and are the numbers of complex values
in each direction; (iii) the usual scalar equal to ±1 indicating whether you want the
transform or its inverse; and, finally (iv) the array of data.

A few words about the data array: fourn accesses it as a one-dimensional
array of real numbers, of length equal to twice the product of the lengths of the
L dimensions. It assumes that the array represents an L-dimensional complex
array, in normal FORTRAN order. Normal FORTRAN order means: (i) each complex
value occupies two sequential locations, real part followed by imaginary; (ii)
the first subscript changes most rapidly as one goes through the array; the last
subscript changes least rapidly; (iii) subscripts range from 1 to their maximum values
(N1, N2, . . . , NL, respectively), rather than from 0 to N1 − 1, N2 − 1, . . . , NL − 1.
Almost all failures to get fourn to work result from improper understanding of
the above ordering of the data array, so take care! (Figure 12.4.1 illustrates the
format of the output array.)
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SUBROUTINE fourn(data,nn,ndim,isign)
INTEGER isign,ndim,nn(ndim)
REAL data(*)

Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as
1. nn(1:ndim) is an integer array containing the lengths of each dimension (number of
complex values), which MUST all be powers of 2. data is a real array of length twice the
product of these lengths, in which the data are stored as in a multidimensional complex
FORTRAN array. If isign is input as −1, data is replaced by its inverse transform times
the product of the lengths of all dimensions.

INTEGER i1,i2,i2rev,i3,i3rev,ibit,idim,ifp1,ifp2,ip1,ip2,
* ip3,k1,k2,n,nprev,nrem,ntot

REAL tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for trigonometric re-

currences.ntot=1
do 11 idim=1,ndim Compute total number of complex values.

ntot=ntot*nn(idim)
enddo 11

nprev=1
do 18 idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nrem=ntot/(n*nprev)
ip1=2*nprev
ip2=ip1*n
ip3=ip2*nrem
i2rev=1
do 14 i2=1,ip2,ip1 This is the bit-reversal section of the routine.

if(i2.lt.i2rev)then
do 13 i1=i2,i2+ip1-2,2

do 12 i3=i1,ip3,ip2
i3rev=i2rev+i3-i2
tempr=data(i3)
tempi=data(i3+1)
data(i3)=data(i3rev)
data(i3+1)=data(i3rev+1)
data(i3rev)=tempr
data(i3rev+1)=tempi

enddo 12

enddo 13

endif
ibit=ip2/2

1 if ((ibit.ge.ip1).and.(i2rev.gt.ibit)) then
i2rev=i2rev-ibit
ibit=ibit/2

goto 1
endif
i2rev=i2rev+ibit

enddo 14

ifp1=ip1 Here begins the Danielson-Lanczos section of the routine.
2 if(ifp1.lt.ip2)then

ifp2=2*ifp1
theta=isign*6.28318530717959d0/(ifp2/ip1) Initialize for the trig. recur-

rence.wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 17 i3=1,ifp1,ip1

do 16 i1=i3,i3+ip1-2,2
do 15 i2=i1,ip3,ifp2

k1=i2 Danielson-Lanczos formula:
k2=k1+ifp1
tempr=sngl(wr)*data(k2)-sngl(wi)*data(k2+1)
tempi=sngl(wr)*data(k2+1)+sngl(wi)*data(k2)
data(k2)=data(k1)-tempr
data(k2+1)=data(k1+1)-tempi
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data(k1)=data(k1)+tempr
data(k1+1)=data(k1+1)+tempi

enddo 15

enddo 16

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 17

ifp1=ifp2
goto 2
endif
nprev=n*nprev

enddo 18

return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place.” We
want a routine with functionality similar to the multidimensional FFT routine fourn
(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to the
one-dimensional routine realft. (You might wish to review that material at this
point, particularly equation 12.3.5.)

It is convenient to think of the independent variables n 1, . . . , nL in equation
(12.4.3) as representing anL-dimensional vector
n in wave-number space,with values
on the lattice of integers. The transform H(n1, . . . , nL) is then denoted H(
n).

It is easy to see that the transform H(
n) is periodic in each of its L dimensions.
Specifically, if 
P1, 
P2, 
P3, . . . denote the vectors (N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(
n ± 
Pj) = H(
n) j = 1, . . . , L (12.5.1)
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data(k1)=data(k1)+tempr
data(k1+1)=data(k1+1)+tempi

enddo 15

enddo 16

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 17

ifp1=ifp2
goto 2
endif
nprev=n*nprev

enddo 18

return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place.” We
want a routine with functionality similar to the multidimensional FFT routine fourn
(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to the
one-dimensional routine realft. (You might wish to review that material at this
point, particularly equation 12.3.5.)

It is convenient to think of the independent variables n 1, . . . , nL in equation
(12.4.3) as representing anL-dimensional vector�n in wave-number space,with values
on the lattice of integers. The transform H(n1, . . . , nL) is then denoted H(�n).

It is easy to see that the transform H(�n) is periodic in each of its L dimensions.
Specifically, if �P1, �P2, �P3, . . . denote the vectors (N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(�n ± �Pj) = H(�n) j = 1, . . . , L (12.5.1)
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Equation (12.5.1) holds for any input data, real or complex. When the data is real,
we have the additional symmetry

H(−�n) = H(�n)* (12.5.2)

Equations (12.5.1) and (12.5.2) imply that the full transform can be trivially obtained
from the subset of lattice values �n that have

0 ≤ n1 ≤ N1

2
0 ≤ n2 ≤ N2 − 1

· · ·
0 ≤ nL ≤ NL − 1

(12.5.3)

In fact, this set of values is overcomplete, because there are additional symmetry
relations among the transform values that have n1 = 0 and n1 = N1/2. However
these symmetries are complicated and their use becomes extremely confusing.
Therefore, we will compute our FFT on the lattice subset of equation (12.5.3),
even though this requires a small amount of extra storage for the answer, i.e., the
transform is not quite “in place.” (Although an in-place transform is in fact possible,
we have found it virtually impossible to explain to any user how to unscramble its
output, i.e., where to find the real and imaginary components of the transform at
some particular frequency!)

Figure 12.5.1 shows the storage scheme that we will use for the input data
and the output transform. The figure is specialized to the case of two dimensions,
L = 2, but the generalization to higher dimensions is obvious. The input data is
a two-dimensional real array of dimensions N1 (called nn1) by N2 (called nn2).
Notice that the FORTRAN subscripts number from 1 to nn1, and not from 0 to N 1 − 1.
The output spectrum is in two complex arrays, one two-dimensional and the other
one-dimensional. The two-dimensional one, spec, has dimensions nn1/2 by nn2.
This is exactly half the size of the input data array; but since it is complex, it is
the same amount of storage. In fact, spec will share storage with (and overwrite)
the input data array. As the figure shows, spec contains those spectral components
whose first component of frequency, f1, ranges from zero to just short of the
Nyquist frequency fc. The full range of positive and negative second-component of
frequencies, f2, is stored, in wrap-around order (see §12.2), with negative frequencies
shifted by exactly one period to put them “above” the positive frequencies, as the
figure indicates. The figure also indicates how the additional L − 1 (here, one-)
dimensional array speq stores only that single value of n1 that corresponds to the
Nyquist frequency, but all values of n2, etc.

With this much introduction, the implementing procedure, called rlft3, is
something of an anticlimax. The routine is written for the case of L = 3 dimensions,
but (we will explain below) it can be used without modification for L = 2 also; and
it is quite trivial to generalize it to larger L. Look at the innermost (“do 13”) loop in
the procedure, and you will see equation (12.3.5) implemented on the first transform
index. The case of i1=1 is coded separately, to account for the fact that speq is
to be filled instead of spec (which is here called data since it shares storage with
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Input data array

Output spectrum
arrays

nn1, 1 nn1, nn2

REAL data(nn1,nn2)

1,1

1,1

1, nn2

nn1/2,1 nn1/2,nn2

1,nn2

COMPLEX speq(nn2)

COMPLEX spec(nn1/2,nn2)

f1  = fc

f1  = 0

f 2
  =

 f c

f 2
  =

 0

1 nn2

f 2
  =

 –
f c

f1  = – fc

Figure 12.5.1. Input and output data arrangement for rlft3 in the case of two-dimensional data. The
input data array is a real, two-dimensional array. The output data array spec is a complex, two-dimensional
array whose (1, 1) element contains the f1 = f2 = 0 spectral component; a complete set of f2 values
are stored in wrap-around order, while only positive f1 values are stored (others being obtainable by
symmetry). The output array speq contains components with f1 equal to the Nyquist frequency.
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the input array). The three enclosing do loops (indices i2, i1, and i3, from inside
to outside) could in fact be done in any order — their actions all commute. We
chose the order shown because of the following considerations: (i) i1 should not be
the inner loop, because if it is, then the recurrence relations on wr and wi become
burdensome. (ii) On virtual-memory machines, i3 should be the outer loop, because
(with FORTRAN order of array storage) this results in the array data, which might
be very large, being accessed in block sequential order.

Note that the work done in rlft3 is quite (logarithmically) small, compared to
the associated complex FFT, fourn. For this reason, we allow ourselves the clarity
of using FORTRAN complex arithmetic even when (as in the multiplications by c1
and c2) there are a few unnecessary operations. The routine rlft3 is based on
an earlier routine by G.B. Rybicki.

SUBROUTINE rlft3(data,speq,nn1,nn2,nn3,isign)
INTEGER isign,nn1,nn2,nn3
COMPLEX data(nn1/2,nn2,nn3),speq(nn2,nn3)

C USES fourn
Given a two- or three-dimensional real array data whose dimensions are nn1, nn2, nn3
(where nn3 is 1 for the case of a two-dimensional array), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, data contains the
zero and positive frequency values of the first frequency component, while speq contains
the Nyquist critical frequency values of the first frequency component. Second (and third)
frequency components are stored for zero, positive, and negative frequencies, in standard
wrap-around order. For isign=-1, the inverse transform (times nn1*nn2*nn3/2 as a
constant multiplicative factor) is performed, with output data (viewed as a real array)
deriving from input data (viewed as complex) and speq. For inverse transforms on data
not generated first by a forward transform, make sure the complex input data array satisfies
property (12.5.2). The dimensions nn1, nn2, nn3 must always be integer powers of 2.

INTEGER i1,i2,i3,j1,j2,j3,nn(3)
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp
COMPLEX c1,c2,h1,h2,w Note that data is dimensioned as complex, its output

format.c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5*isign)
theta=6.28318530717959d0/dble(isign*nn1)
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
nn(1)=nn1/2
nn(2)=nn2
nn(3)=nn3
if(isign.eq.1)then Case of forward transform.

call fourn(data,nn,3,isign) Here is where most all of the compute time is spent.
do 12 i3=1,nn3 Extend data periodically into speq.

do 11 i2=1,nn2
speq(i2,i3)=data(1,i2,i3)

enddo 11

enddo 12

endif
do 15 i3=1,nn3

j3=1 Zero frequency is its own reflection, otherwise locate cor-
responding negative frequency in wrap-around order.if (i3.ne.1) j3=nn3-i3+2

wr=1.0d0 Initialize trigonometric recurrence.
wi=0.0d0
do 14 i1=1,nn1/4+1

j1=nn1/2-i1+2
do 13 i2=1,nn2

j2=1
if (i2.ne.1) j2=nn2-i2+2
if(i1.eq.1)then Equation (12.3.5).

h1=c1*(data(1,i2,i3)+conjg(speq(j2,j3)))
h2=c2*(data(1,i2,i3)-conjg(speq(j2,j3)))
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Figure 12.5.2. (a) A two-dimensional image with intensities either purely black or purely white. (b) The
same image, after it has been low-pass filtered using rlft3. Regions with fine-scale features become gray.

data(1,i2,i3)=h1+h2
speq(j2,j3)=conjg(h1-h2)

else
h1=c1*(data(i1,i2,i3)+conjg(data(j1,j2,j3)))
h2=c2*(data(i1,i2,i3)-conjg(data(j1,j2,j3)))
data(i1,i2,i3)=h1+w*h2
data(j1,j2,j3)=conjg(h1-w*h2)

endif
enddo 13

wtemp=wr Do the recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
w=cmplx(sngl(wr),sngl(wi))

enddo 14

enddo 15

if(isign.eq.-1)then Case of reverse transform.
call fourn(data,nn,3,isign)

endif
return
END

We now give some fragments from notional calling programs, to clarify the
use of rlft3 for two- and three-dimensional data. Note that the routine does not
actually distinguish between two and three dimensions; two is treated like three, but
with the third dimension having length 1. Since the third dimension is the outer
loop, almost no inefficiency is introduced.

The first program fragment FFTs a two-dimensional data array, allows for some
processing on it, e.g., filtering, and then takes the inverse transform. Figure 12.5.2
shows an example of the use of this kind of code: A sharp image becomes blurry
when its high-frequency spatial components are suppressed by the factor (here)
max (1 − 6f 2/f2

c , 0). The second program example illustrates a three-dimensional
transform, where the three dimensions have different lengths. The third program
example is an example of convolution, as it might occur in a program to compute the
potential generated by a three-dimensional distribution of sources.
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PROGRAM exmpl1
This fragment shows how one might filter a 256 by 256 digital image.

INTEGER N1,N2,N3
PARAMETER (N1=256,N2=256,N3=1) Note that the third component must be set to 1.

C USES rlft3
REAL data(N1,N2)
COMPLEX spec(N1/2,N2),speq(N2)
EQUIVALENCE (data,spec)

C ... Here the image would be loaded into data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here the arrays spec and speq would be multiplied by a suit-
able filter function (of frequency).call rlft3(data,speq,N1,N2,N3,-1)

C ... Here the filtered image would be unloaded from data.
END

PROGRAM exmpl2
This fragment shows how one might FFT a real three-dimensional array of size 32 by 64
by 16.

INTEGER N1,N2,N3
PARAMETER (N1=32,N2=64,N3=16)

C USES rlft3
REAL data(N1,N2,N3)
COMPLEX spec(N1/2,N2,N3),speq(N2,N3)
EQUIVALENCE (data,spec)

C ... Here load data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here unload spec and speq.
END

PROGRAM exmpl3
This fragment shows how one might convolve two real, three-dimensional arrays of size 32
by 32 by 32, replacing the first array by the result.

INTEGER N
PARAMETER (N=32)

C USES rlft3
INTEGER j
REAL fac,data1(N,N,N),data2(N,N,N)
COMPLEX spec1(N/2,N,N),speq1(N,N),spec2(N/2,N,N),speq2(N,N),

* zpec1(N*N*N/2),zpeq1(N*N),zpec2(N*N*N/2),zpeq2(N*N)
EQUIVALENCE (data1,spec1,zpec1), (data2,spec2,zpec2),

* (speq1,zpeq1), (speq2,zpeq2)
C ...

call rlft3(data1,speq1,N,N,N,1) FFT both input arrays.
call rlft3(data2,speq2,N,N,N,1)
fac=2./(N*N*N) Factor needed to get normalized inverse.
do 11 j=1,N*N*N/2 The sole purpose of the zpecs and zpeqs is to make

this a single do-loop instead of three-nested ones.zpec1(j)=fac*zpec1(j)*zpec2(j)
enddo 11

do 12 j=1,N*N
zpeq1(j)=fac*zpeq1(j)*zpeq2(j)

enddo 12

call rlft3(data1,speq1,N,N,N,-1) Inverse FFT the product of the two FFTs.
C ...

END

To extendrlft3 to four dimensions, you simply add an additional (outer) nested
do loop in i4, analogous to the present i3. (Modifying the routine to do an arbitrary
number of dimensions, as in fourn, is a good programming exercise for the reader.)

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Swartztrauber, P. N. 1986, Mathematics of Computation, vol. 47, pp. 323–346.
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12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of a really
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton [1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse 2M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copy two values from the first device, then two values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of pass M − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequence of computing and permutation passes is repeated
M − K − 1 times, where 2K is the size of internal buffer available to the program. The
second phase of the computation consists of a final K computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are 2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on [1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)
INTEGER ndim,nn(ndim),isign,iunit(4),KBF
PARAMETER (KBF=128)

C USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit(1), its second half on
iunit(2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to −1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit(4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv,jx,
* mate(4),na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF),afc(KBF)
DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta
SAVE mate
DATA mate /2,1,4,3/
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12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of areally
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton[1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse2M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copytwo values from the first device, thentwo values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of passM − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequence of computing and permutation passes is repeated
M − K − 1 times, where2K is the size of internal buffer available to the program. The
second phase of the computation consists of a finalK computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on[1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)
INTEGER ndim,nn(ndim),isign,iunit(4),KBF
PARAMETER (KBF=128)

C USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit(1), its second half on
iunit(2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to −1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit(4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv,jx,
* mate(4),na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF),afc(KBF)
DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta
SAVE mate
DATA mate /2,1,4,3/
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n=1
do 11 j=1,ndim

n=n*nn(j)
if (nn(j).le.1)

* pause ’invalid dimension or wrong ndim in fourfs’
enddo 11

nv=ndim
jk=nn(nv)
mm=n
ns=n/KBF
nr=ns/2
kc=0
kd=KBF/2
ks=n
call fourew(iunit,na,nb,nc,nd)
The first phase of the transform starts here.

1 continue Start of the computing pass.
theta=3.141592653589793d0/(isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/2
do 13 j12=1,2

kr=0
2 continue

read (iunit(na)) (afa(jx),jx=1,KBF)
read (iunit(nb)) (afb(jx),jx=1,KBF)
do 12 j=1,KBF,2

tempr=sngl(wr)*afb(j)-sngl(wi)*afb(j+1)
tempi=sngl(wi)*afb(j)+sngl(wr)*afb(j+1)
afb(j)=afa(j)-tempr
afa(j)=afa(j)+tempr
afb(j+1)=afa(j+1)-tempi
afa(j+1)=afa(j+1)+tempi

enddo 12

kc=kc+kd
if (kc.eq.mm) then

kc=0
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

endif
write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)

kr=kr+1
if (kr.lt.nr) goto 2
if(j12.eq.1.and.ks.ne.n.and.ks.eq.KBF) then

na=mate(na)
nb=na

endif
if (nr.eq.0) goto 3

enddo 13

3 call fourew(iunit,na,nb,nc,nd) Start of the permutation pass.
jk=jk/2

4 if (jk.eq.1) then
mm=n
nv=nv-1
jk=nn(nv)

goto 4
endif
ks=ks/2
if (ks.gt.KBF) then

do 16 j12=1,2
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do 15 kr=1,ns,ks/KBF
do 14 k=1,ks,KBF

read (iunit(na)) (afa(jx),jx=1,KBF)
write (iunit(nc)) (afa(jx),jx=1,KBF)

enddo 14

nc=mate(nc)
enddo 15

na=mate(na)
enddo 16

call fourew(iunit,na,nb,nc,nd)
goto 1

else if (ks.eq.KBF) then
nb=na
goto 1

endif
continue
j=1
The second phase of the transform starts here. Now, the remaining permutations are suffi-
ciently local to be done in place.

5 continue
theta=3.141592653589793d0/(isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/2
ks=kd
kd=kd/2
do 18 j12=1,2

do 17 kr=1,ns
read (iunit(na)) (afc(jx),jx=1,KBF)
kk=1
k=ks+1

6 continue
tempr=sngl(wr)*afc(kk+ks)-sngl(wi)*afc(kk+ks+1)
tempi=sngl(wi)*afc(kk+ks)+sngl(wr)*afc(kk+ks+1)
afa(j)=afc(kk)+tempr
afb(j)=afc(kk)-tempr
afa(j+1)=afc(kk+1)+tempi
afb(j+1)=afc(kk+1)-tempi
j=j+2
kk=kk+2

if (kk.lt.k) goto 6
kc=kc+kd
if (kc.eq.mm) then

kc=0
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

endif
kk=kk+ks
if (kk.le.KBF) then

k=kk+ks
goto 6

endif
if (j.gt.KBF) then

write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)
j=1

endif
enddo 17

na=mate(na)
enddo 18

call fourew(iunit,na,nb,nc,nd)
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jk=jk/2
if (jk.gt.1) goto 5
mm=n

7 if (nv.gt.1) then
nv=nv-1
jk=nn(nv)
if (jk.eq.1) goto 7
goto 5

endif
return
END

SUBROUTINE fourew(iunit,na,nb,nc,nd)
INTEGER na,nb,nc,nd,iunit(4),ii

Utility used by fourfs. Rewinds and renumbers the four files.
do 11 ii=1,4

rewind(unit=iunit(ii))
enddo 11

ii=iunit(2)
iunit(2)=iunit(4)
iunit(4)=ii
ii=iunit(1)
iunit(1)=iunit(3)
iunit(3)=ii
na=3
nb=4
nc=1
nd=2
return
END

For one-dimensional data, Singleton’s algorithm produces output in exactly the same
order as a standard FFT (e.g.,four1). For multidimensional data, the output is thetranspose of
the conventional arrangement (e.g., the output offourn). This peculiarity, which is intrinsic to
the method, is generally only a minor inconvenience. For convolutions, one simply computes
the component-by-component product of two transforms in their nonstandard arrangement,
and then does an inverse transform on the result. Note that, if the lengths of the different
dimensions are not all the same, then you must reverse the order of the values innn(1:ndim)
(thus giving the transpose dimensions) before performing the inverse transform. Note also
that, just likefourn, performing a transform and then an inverse results in multiplying the
original data by the product of the lengths of all dimensions.

We leave it as an exercise for the reader to figure out how to reorderfourfs’s output
into normal order, taking additional passes through the externally stored data. We doubt that
such reordering is ever really needed.

You will likely want to modify fourfs to fit your particular application. For example,
as written,KBF ≡ 2K plays the dual role of being the size of the internal buffers, and the
record size of the unformatted reads and writes. The latter role limits its size to that allowed
by your machine’s I/O facility. It is a simple matter to perform multiple reads for a much
largerKBF, thus reducing the number of passes by a few.

Another modification offourfs would be for the case where your virtual memory
machine has sufficient address space, but not sufficient physical memory, to do an efficient
FFT by the conventional algorithm (whose memory references are extremely nonlocal). In
that case, you will need to replace the reads, writes, and rewinds by mappings of the arrays
afa, afb, andafc into your address space. In other words, these arrays are replaced by
references to a single data array, with offsets that get modified whereverfourfs performs an
I/O operation. The resulting algorithm will have its memory references local within blocks
of sizeKBF. Execution speed is thereby sometimes increased enormously, albeit at the cost
of requiring twice as much virtual memory as an in-place FFT.
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Chapter 13. Fourier and Spectral

Applications

13.0 Introduction

Fourier methods have revolutionized fields of science and engineering, from
radio astronomy to medical imaging, from seismology to spectroscopy. In this
chapter, we present some of the basic applications of Fourier and spectral methods
that have made these revolutions possible.

Say the word “Fourier” to a numericist, and the response, as if by Pavlovian
conditioning, will likely be “FFT.” Indeed, the wide application of Fourier methods
must be credited principally to the existence of the fast Fourier transform. Better
mousetraps stand aside: If you speed up any nontrivial algorithm by a factor of a
million or so, the world will beat a path towards finding useful applications for it.
The most direct applications of the FFT are to the convolution or deconvolution of
data (§13.1), correlation and autocorrelation (§13.2), optimal filtering (§13.3), power
spectrum estimation (§13.4), and the computation of Fourier integrals (§13.9).

As important as they are, however, FFT methods are not the be-all and end-all
of spectral analysis. Section 13.5 is a brief introduction to the field of time-domain
digital filters. In the spectral domain, one limitation of the FFT is that it always
represents a function’s Fourier transform as a polynomial in z = exp(2πif∆)
(cf. equation 12.1.7). Sometimes, processes have spectra whose shapes are not
well represented by this form. An alternative form, which allows the spectrum to
have poles in z, is used in the techniques of linear prediction (§13.6) and maximum
entropy spectral estimation (§13.7).

Another significant limitation of all FFT methods is that they require the input
data to be sampled at evenly spaced intervals. For irregularly or incompletely
sampled data, other (albeit slower) methods are available, as discussed in §13.8.

So-called wavelet methods inhabit a representation of function space that is
neither in the temporal, nor in the spectral, domain, but rather something in-between.
Section 13.10 is an introduction to this subject. Finally §13.11 is an excursion into
numerical use of the Fourier sampling theorem.

530
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13.1 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.8), and have given the convolution theorem as equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functions is equal
to the product of their individual Fourier transforms. Now, we want to deal with
the discrete case. We will mention first the context in which convolution is a useful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functions r(t) and s(t), denoted r ∗ s, is mathematically
equal to their convolution in the opposite order, s ∗ r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, say s, is typically a signal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
function r is a “response function,” typically a peaked function that falls to zero in
both directions from its maximum. The effect of convolution is to smear the signal
s(t) in time according to the recipe provided by the response function r(t), as shown
in Figure 13.1.1. In particular, a spike or delta-function of unit area in s which occurs
at some time t0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to time t0 as r(t − t0).

In the discrete case, the signal s(t) is represented by its sampled values at equal
time intervals sj . The response function is also a discrete set of numbers rk, with the
following interpretation: r0 tells what multiple of the input signal in one channel (one
particular value of j) is copied into the identical output channel (same value of j);
r1 tells what multiple of input signal in channel j is additionally copied into output
channel j + 1; r−1 tells the multiple that is copied into channel j − 1; and so on for
both positive and negative values of k in rk. Figure 13.1.2 illustrates the situation.

Example: a response function with r0 = 1 and all other rk’s equal to zero
is just the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function with r 14 = 1.5 and
all other rk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M :

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−k rk (13.1.1)

If a discrete response function is nonzero only in some range −M/2 < k ≤ M/2,
where M is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and its duration is M . (Notice that we are defining M
as the number of nonzero values of rk; these values span a time interval of M − 1
sampling times.) In most practical circumstances the case of finite M is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

The discrete convolution theorem is this: If a signal sj is periodic with period
N , so that it is completely determined by the N values s0, . . . , sN−1, then its
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13.1 Convolution and Deconvolution Using
the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.8), and have given the convolution theorem as equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functions is equal
to the product of their individual Fourier transforms. Now, we want to deal with
the discrete case. We will mention first the context in which convolution is a useful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functions r(t) and s(t), denoted r ∗ s, is mathematically
equal to their convolution in the opposite order, s ∗ r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, say s, is typically a signal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
function r is a “response function,” typically a peaked function that falls to zero in
both directions from its maximum. The effect of convolution is to smear the signal
s(t) in time according to the recipe provided by the response function r(t), as shown
in Figure 13.1.1. In particular, a spike or delta-function of unit area in s which occurs
at some time t0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to time t0 as r(t − t0).

In the discrete case, the signal s(t) is represented by its sampled values at equal
time intervals sj . The response function is also a discrete set of numbers rk, with the
following interpretation: r0 tells what multiple of the input signal in one channel (one
particular value of j) is copied into the identical output channel (same value of j);
r1 tells what multiple of input signal in channel j is additionally copied into output
channel j + 1; r−1 tells the multiple that is copied into channel j − 1; and so on for
both positive and negative values of k in rk. Figure 13.1.2 illustrates the situation.

Example: a response function with r0 = 1 and all other rk’s equal to zero
is just the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function with r 14 = 1.5 and
all other rk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M :

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−k rk (13.1.1)

If a discrete response function is nonzero only in some range −M/2 < k ≤ M/2,
where M is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and its duration is M . (Notice that we are defining M
as the number of nonzero values of rk; these values span a time interval of M − 1
sampling times.) In most practical circumstances the case of finite M is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

The discrete convolution theorem is this: If a signal sj is periodic with period
N , so that it is completely determined by the N values s0, . . . , sN−1, then its
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s(t)

r(t)

r*s(t)

t

t

t

Figure 13.1.1. Example of the convolution of two functions. A signal s(t) is convolved with a
response function r(t). Since the response function is broader than some features in the original signal,
these are “washed out” in the convolution. In the absence of any additional noise, the process can be
reversed by deconvolution.

sj
0

0

0

N − 1
rk

(r*s)j

N − 1

N − 1

Figure 13.1.2. Convolution of discretely sampled functions. Note how the response function for negative
times is wrapped around and stored at the extreme right end of the array rk .
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discrete convolution with a response function of finite duration N is a member of
the discrete Fourier transform pair,

N/2∑
k=−N/2+1

sj−k rk ⇐⇒ SnRn (13.1.2)

Here Sn, (n = 0, . . . , N − 1) is the discrete Fourier transform of the values
sj , (j = 0, . . . , N − 1), while Rn, (n = 0, . . . , N − 1) is the discrete Fourier
transform of the values rk, (k = 0, . . . , N − 1). These values of rk are the same
ones as for the range k = −N/2 + 1, . . . , N/2, but in wrap-around order, exactly
as was described at the end of §12.2.

Treatment of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances that
are not universal. First, it assumes that the input signal is periodic, whereas real
data often either go forever without repetition or else consist of one nonperiodic
stretch of finite length. Second, the convolution theorem takes the duration of the
response to be the same as the period of the data; they are both N . We need to
work around these two constraints.

The second is very straightforward. Almost always, one is interested in a
response function whose duration M is much shorter than the length of the data
set N . In this case, you simply extend the response function to length N by
padding it with zeros, i.e., define rk = 0 for M/2 ≤ k ≤ N/2 and also for
−N/2 + 1 ≤ k ≤ −M/2 + 1. Dealing with the first constraint is more challenging.
Since the convolution theorem rashly assumes that the data are periodic, it will
falsely “pollute” the first output channel (r ∗ s)0 with some wrapped-around data
from the far end of the data stream sN−1, sN−2, etc. (See Figure 13.1.3.) So,
we need to set up a buffer zone of zero-padded values at the end of the s j vector,
in order to make this pollution zero. How many zero values do we need in this
buffer? Exactly as many as the most negative index for which the response function
is nonzero. For example, if r−3 is nonzero, while r−4, r−5, . . . are all zero, then we
need three zero pads at the end of the data: sN−3 = sN−2 = sN−1 = 0. These
zeros will protect the first output channel (r ∗ s)0 from wrap-around pollution. It
should be obvious that the second output channel (r ∗ s) 1 and subsequent ones will
also be protected by these same zeros. Let K denote the number of padding zeros,
so that the last actual input data point is sN−K−1.

What now about pollution of the very last output channel? Since the data
now end with sN−K−1, the last output channel of interest is (r ∗ s)N−K−1. This
channel can be polluted by wrap-around from input channel s 0 unless the number
K is also large enough to take care of the most positive index k for which the
response function rk is nonzero. For example, if r0 through r6 are nonzero, while
r7, r8 . . . are all zero, then we need at least K = 6 padding zeros at the end of the
data: sN−6 = . . . = sN−1 = 0.

To summarize — we need to pad the data with a number of zeros on one
end equal to the maximum positive duration or maximum negative duration of the
response function, whichever is larger. (For a symmetric response function of
duration M , you will need only M/2 zero pads.) Combining this operation with the
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m+

spoiled spoiledunspoiled

m−

response function

sample of original function

convolution

m+

m−

Figure 13.1.3. The wrap-around problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled original function. Therefore
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.

response function

m+ m−

m−

m+ m−

m+

zero paddingoriginal function

spoiled
but irrelevant

unspoiled

not spoiled because zero

Figure 13.1.4. Zero padding as solution to the wrap-around problem. The original function is extended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.
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padding of the response rk described above, we effectively insulate the data from
artifacts of undesired periodicity. Figure 13.1.4 illustrates matters.

Use of FFT for Convolution

The data, complete with zero padding, are now a set of real numbers s j, j =
0, . . . , N − 1, and the response function is zero padded out to duration N and
arranged in wrap-around order. (Generally this means that a large contiguous section
of the rk’s, in the middle of that array, is zero, with nonzero values clustered at
the two extreme ends of the array.) You now compute the discrete convolution as
follows: Use the FFT algorithm to compute the discrete Fourier transform of s and of
r. Multiply the two transforms together component by component, remembering that
the transforms consist of complex numbers. Then use the FFT algorithm to take the
inverse discrete Fourier transform of the products. The answer is the convolution r∗s.

What about deconvolution? Deconvolution is the process of undoing the
smearing in a data set that has occurred under the influence of a known response
function, for example, because of the known effect of a less-than-perfect measuring
apparatus. The defining equation of deconvolution is the same as that for convolution,
namely (13.1.1), except now the left-hand side is taken to be known, and (13.1.1) is
to be considered as a set of N linear equations for the unknown quantities s j . Solving
these simultaneous linear equations in the time domain of (13.1.1) is unrealistic in
most cases, but the FFT renders the problem almost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just divide the transform of the (known) convolution by the transform of the response
to get the transform of the deconvolved signal.

This procedure can go wrong mathematically if the transform of the response
function is exactly zero for some value Rn, so that we can’t divide by it. This
indicates that the original convolution has truly lost all information at that one
frequency, so that a reconstruction of that frequency component is not possible.
You should be aware, however, that apart from mathematical problems, the process
of deconvolution has other practical shortcomings. The process is generally quite
sensitive to noise in the input data, and to the accuracy to which the response function
rk is known. Perfectly reasonable attempts at deconvolution can sometimes produce
nonsense for these reasons. In such cases you may want to make use of the additional
process of optimal filtering, which is discussed in §13.3.

Here is our routine for convolution and deconvolution, using the FFT as
implemented in four1 of §12.2. Since the data and response functions are real,
not complex, both of their transforms can be taken simultaneously using twofft.
Note, however, that two calls to realft should be substituted if data and respns
have very different magnitudes, to minimize roundoff. The data are assumed to be
stored in a real array data of length n, which must be an integer power of two.
The response function is assumed to be stored in wrap-around order in a real array
respns of length m. The value of m can be any odd integer less than or equal to
n, since the first thing the program does is to recopy the response function into the
appropriate wrap-around order in an array of length n. The answer is returned in
ans, which is also used as working space.
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SUBROUTINE convlv(data,n,respns,m,isign,ans)
INTEGER isign,m,n,NMAX
REAL data(n),respns(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated size of FFT.

C USES realft,twofft
Convolves or deconvolves a real data set data(1:n) (including any user-supplied zero
padding) with a response function respns, stored in wrap-around order in a real array of
length m ≤ n. (m should be an odd integer.) Wrap-around order means that the first half
of the array respns contains the impulse response function at positive times, while the
second half of the array contains the impulse response function at negative times, counting
down from the highest element respns(m). On input isign is +1 for convolution, −1
for deconvolution. The answer is returned in the first n components of ans. However, ans
must be supplied in the calling program with length at least 2*n, for consistency with
twofft. n MUST be an integer power of two.

INTEGER i,no2
COMPLEX fft(NMAX)
do 11 i=1,(m-1)/2 Put respns in array of length n.

respns(n+1-i)=respns(m+1-i)
enddo 11

do 12 i=(m+3)/2,n-(m-1)/2 Pad with zeros.
respns(i)=0.0

enddo 12

call twofft(data,respns,fft,ans,n) FFT both at once.
no2=n/2
do 13 i=1,no2+1

if (isign.eq.1) then
ans(i)=fft(i)*ans(i)/no2 Multiply FFTs to convolve.

else if (isign.eq.-1) then
if (abs(ans(i)).eq.0.0) pause ’deconvolving at response zero in convlv’
ans(i)=fft(i)/ans(i)/no2 Divide FFTs to deconvolve.

else
pause ’no meaning for isign in convlv’

endif
enddo 13

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack last element with first for realft.
call realft(ans,n,-1) Inverse transform back to time domain.
return
END

Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory all at
once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wrap-around effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly
obvious, so with a few words of description here, you ought to be able to implement
them for yourself. The first solution is called the overlap-save method. In this
technique you pad only the very beginning of the data with enough zeros to avoid
wrap-around pollution. After this initial padding, you forget about zero padding
altogether. Bring in a section of data and convolve or deconvolve it. Then throw out
the points at each end that are polluted by wrap-around end effects. Output only the
remaining good points in the middle. Now bring in the next section of data, but not
all new data. The first points in each new section overlap the last points from the
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convolution (out)A A + B B B + C C

C

c

cba

A
b

B

0 0a

00

0 0

data (in)

Figure 13.1.5. The overlap-add method for convolving a response with a very long signal. The signal
data is broken up into smaller pieces. Each is zero padded at both ends and convolved (denoted by
bold arrows in the figure). Finally the pieces are added back together, including the overlapping regions
formed by the zero pads.

preceding section of data. The sections must be overlapped sufficiently so that the
polluted output points at the end of one section are recomputed as the first of the
unpolluted output points from the subsequent section. With a bit of thought you can
easily determine how many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Figure
13.1.5. Here you don’t overlap the input data. Each section of data is disjoint from
the others and is used exactly once. However, you carefully zero-pad it at both ends
so that there is no wrap-around ambiguity in the output convolution or deconvolution.
Now you overlap and add these sections of output. Thus, an output point near the
end of one section will have the response due to the input points at the beginning
of the next section of data properly added in to it, and likewise for an output point
near the beginning of a section, mutatis mutandis.

Even when computer memory is available, there is some slight gain in computing
speed in segmenting a long data set, since the FFTs’ N log2 N is slightly slower than
linear in N . However, the log term is so slowly varying that you will often be much
happier to avoid the bookkeeping complexities of the overlap-add or overlap-save
methods: If it is practical to do so, just cram the whole data set into memory and
FFT away. Then you will have more time for the finer things in life, some of which
are described in succeeding sections of this chapter.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), Chap-
ter 13.
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13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functions g(t) and h(t), which is denoted Corr(g, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large at some value of t if the
first function (g) is a close copy of the second (h) but lags it in time by t, i.e., if the first
function is shifted to the right of the second. Likewise, the correlation will be large
for some negative value of t if the first function leads the second, i.e., is shifted to the
left of the second. The relation that holds when the two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(−t) (13.2.1)

The discrete correlation of two sampled functions gk and hk, each periodic
with period N , is defined by

Corr(g, h)j ≡
N−1∑
k=0

gj+khk (13.2.2)

The discrete correlation theorem says that this discrete correlation of two real
functions g and h is one member of the discrete Fourier transform pair

Corr(g, h)j ⇐⇒ GkHk* (13.2.3)

where Gk and Hk are the discrete Fourier transforms of gj and hj , and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it rk) will formally be a complex vector
of length N . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components of rk are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag is in r 0, the first component;
the correlation at lag 1 is in r1, the second component; the correlation at lag −1
is in rN−1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as
large as ±K , then you must append a buffer zone of K zeros at the end of both
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13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functionsg(t) andh(t), which is denoted Corr(g, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large at some value oft if the
first function (g) is a close copy of the second (h) but lags it in time byt, i.e., if the first
function is shifted to the right of the second. Likewise, the correlation will be large
for some negative value oft if the first functionleads the second, i.e., is shifted to the
left of the second. The relation that holds when the two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(−t) (13.2.1)

The discrete correlation of two sampled functionsgk andhk, each periodic
with period N , is defined by

Corr(g, h)j ≡
N−1∑
k=0

gj+khk (13.2.2)

The discrete correlation theorem says that this discrete correlation of two real
functionsg andh is one member of the discrete Fourier transform pair

Corr(g, h)j ⇐⇒ GkHk* (13.2.3)

whereGk andHk are the discrete Fourier transforms ofgj andhj, and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call itrk) will formally be a complex vector
of lengthN . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components ofrk are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag is inr 0, the first component;
the correlation at lag 1 is inr1, the second component; the correlation at lag−1
is in rN−1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as
large as±K, then you must append a buffer zone ofK zeros at the end of both
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input data sets. If you want all possible lags fromN data points (not a usual thing),
then you will need to pad the data with an equal number of zeros; this is the extreme
case. So here is the program:

SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated FFT size.

C USES realft,twofft
Computes the correlation of two real data sets data1(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans
must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if data1 lags data2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2
COMPLEX fft(NMAX)
call twofft(data1,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1

ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
lation.enddo 11

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convlv, it would be better to substitute two calls torealft for the one
call to twofft, if data1 anddata2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelation of a sampled functiong j is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routinecorrel
to obtain autocorrelations, simply calling it with the samedata vector in both
arguments. If the inefficiency bothers you, routinerealft can, of course, be used
to transform thedata vector instead.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signalu(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signalc(t). The signalc(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,
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input data sets. If you want all possible lags from N data points (not a usual thing),
then you will need to pad the data with an equal number of zeros; this is the extreme
case. So here is the program:

SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated FFT size.

C USES realft,twofft
Computes the correlation of two real data sets data1(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans
must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if data1 lags data2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2
COMPLEX fft(NMAX)
call twofft(data1,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1

ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
lation.enddo 11

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convlv, it would be better to substitute two calls to realft for the one
call to twofft, if data1 and data2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelation of a sampled function g j is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routine correl
to obtain autocorrelations, simply calling it with the same data vector in both
arguments. If the inefficiency bothers you, routine realft can, of course, be used
to transform the data vector instead.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal u(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signal c(t). The signal c(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,



540 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

so that the true signal u(t) is convolved with (smeared out by) some known response
function r(t) to give a smeared signal s(t),

s(t) =
∫ ∞

−∞
r(t − τ)u(τ) dτ or S(f) = R(f)U(f) (13.3.1)

where S, R, U are the Fourier transforms of s, r, u, respectively. Second, the
measured signal c(t) may contain an additional component of noise n(t),

c(t) = s(t) + n(t) (13.3.2)

We already know how to deconvolve the effects of the response function r in
the absence of any noise (§13.1); we just divide C(f) by R(f) to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Our
task is to find the optimal filter, φ(t) or Φ(f), which, when applied to the measured
signal c(t) or C(f), and then deconvolved by r(t) or R(f), produces a signal ũ(t)
or Ũ(f) that is as close as possible to the uncorrupted signal u(t) or U(f). In other
words we will estimate the true signal U by

Ũ(f) =
C(f)Φ(f)

R(f)
(13.3.3)

In what sense is Ũ to be close to U? We ask that they be close in the
least-square sense

∫ ∞

−∞
|ũ(t) − u(t)|2 dt =

∫ ∞

−∞

∣∣∣Ũ(f) − U(f)
∣∣∣
2

df is minimized. (13.3.4)

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomes

∫ ∞

−∞

∣∣∣∣
[S(f) + N(f)]Φ(f)

R(f)
− S(f)

R(f)

∣∣∣∣
2

df

=
∫ ∞

−∞
|R(f)|−2

{
|S(f)|2 |1 − Φ(f)|2 + |N(f)|2 |Φ(f)|2

}
df

(13.3.5)

The signal S and the noise N are uncorrelated, so their cross product, when
integrated over frequency f , gave zero. (This is practically the definition of what we
mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand
is minimized with respect to Φ(f) at every value of f . Let us search for such a
solution where Φ(f) is a real function. Differentiating with respect to Φ, and setting
the result equal to zero gives

Φ(f) =
|S(f)|2

|S(f)|2 + |N(f)|2 (13.3.6)

This is the formula for the optimal filter Φ(f).
Notice that equation (13.3.6) involves S, the smeared signal, and N , the noise.

The two of these add up to be C, the measured signal. Equation (13.3.6) does not
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contain U , the “true” signal. This makes for an important simplification: The optimal
filter can be determined independently of the determination of the deconvolution
function that relates S and U .

To determine the optimal filter from equation (13.3.6) we need some way of
separately estimating |S|2 and |N |2. There is no way to do this from the measured
signal C alone without some other information, or some assumption or guess.
Luckily, the extra information is often easy to obtain. For example, we can sample a
long stretch of data c(t) and plot its power spectral density using equations (12.0.14),
(12.1.8), and (12.1.5). This quantity is proportional to the sum |S| 2+|N |2, so we have

|S(f)|2 + |N(f)|2 ≈ Pc(f) = |C(f)|2 0 ≤ f < fc (13.3.7)

(More sophisticated methods of estimating the power spectral density will be
discussed in §13.4 and §13.7, but the estimation above is almost always good enough
for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often
immediately show the spectral signature of a signal sticking up above a continuous
noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it
doesn’t matter, as long as we can guess a reasonable hypothesis as to what it is.
Draw a smooth curve through the noise spectrum, extrapolating it into the region
dominated by the signal as well. Now draw a smooth curve through the signal plus
noise power. The difference between these two curves is your smooth “model” of the
signal power. The quotient of your model of signal power to your model of signal
plus noise power is the optimal filter Φ(f). [Extend it to negative values of f by the
formula Φ(−f) = Φ(f).] Notice that Φ(f) will be close to unity where the noise
is negligible, and close to zero where the noise is dominant. That is how it does its
job! The intermediate dependence given by equation (13.3.6) just turns out to be the
optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of
the results obtained by optimal filtering differs from the true optimum by an amount
that is second order in the precision to which the optimal filter is determined. In other
words, even a fairly crudely determined optimal filter (sloppy, say, at the 10 percent
level) can give excellent results when it is applied to data. That is why the separation
of the measured signal C into signal and noise components S and N can usefully be
done “by eye” from a crude plot of power spectral density. All of this may give you
thoughts about iterating the procedure we have just described. For example, after
designing a filter with response Φ(f) and using it to make a respectable guess at the
signal Ũ(f) = Φ(f)C(f)/R(f), you might turn about and regard Ũ(f) as a fresh
new signal which you could improve even further with the same filtering technique.
Don’t waste your time on this line of thought. The scheme converges to a signal of
S(f) = 0. Converging iterative methods do exist; this just isn’t one of them.

You can use the routine four1 (§12.2) or realft (§12.3) to FFT your data
when you are constructing an optimal filter. To apply the filter to your data, you
can use the methods described in §13.1. The specific routine convlv is not needed
for optimal filtering, since your filter is constructed in the frequency domain to
begin with. If you are also deconvolving your data with a known response function,
however, you can modify convlv to multiply by your optimal filter just before it
takes the inverse Fourier transform.
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 S 2 (deduced)

 N 2 (extrapolated)

 C 2 (measured)
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Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple algebraic
combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally” estimated the power spectral density of a
function c(t) by taking the modulus-squared of the discrete Fourier transform of some
finite, sampled stretch of it. In this section we’ll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or
PSD) normalization. In general there is some relation of proportionality between a
measure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are several different conventions for describing
the normalization in each domain, and many opportunities for getting wrong the
relationship between the two domains. Suppose that our function c(t) is sampled at
N points to produce values c0 . . . cN−1, and that these points span a range of time
T , that is T = (N − 1)∆, where ∆ is the sampling interval. Then here are several
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Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple algebraic
combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally” estimated the power spectral density of a
function c(t) by taking the modulus-squared of the discrete Fourier transform of some
finite, sampled stretch of it. In this section we’ll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or
PSD) normalization. In general there is some relation of proportionality between a
measure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are several different conventions for describing
the normalization in each domain, and many opportunities for getting wrong the
relationship between the two domains. Suppose that our function c(t) is sampled at
N points to produce values c0 . . . cN−1, and that these points span a range of time
T , that is T = (N − 1)∆, where ∆ is the sampling interval. Then here are several
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different descriptions of the total power:

N−1∑
j=0

|cj |2 ≡ “sum squared amplitude” (13.4.1)

1
T

∫ T

0

|c(t)|2 dt ≈ 1
N

N−1∑
j=0

|cj |2 ≡ “mean squared amplitude” (13.4.2)

∫ T

0

|c(t)|2 dt ≈ ∆
N−1∑
j=0

|cj |2 ≡ “time-integral squared amplitude” (13.4.3)

PSD estimators, as we shall see, have an even greater variety. In this section,
we consider a class of them that give estimates at discrete values of frequency f i,
where i will range over integer values. In the next section, we will learn about
a different class of estimators that produce estimates that are continuous functions
of frequency f . Even if it is agreed always to relate the PSD normalization to a
particular description of the function normalization (e.g., 13.4.2), there are at least
the following possibilities: The PSD is

• defined for discrete positive, zero, and negative frequencies, and its sum
over these is the function mean squared amplitude

• defined for zero and discrete positive frequencies only, and its sum over
these is the function mean squared amplitude

• defined in the Nyquist interval from −fc to fc, and its integral over this
range is the function mean squared amplitude

• defined from 0 to fc, and its integral over this range is the function mean
squared amplitude

It never makes sense to integrate the PSD of a sampled function outside of the
Nyquist interval −fc and fc since, according to the sampling theorem, power there
will have been aliased into the Nyquist interval.

It is hopeless to define enough notation to distinguish all possible combinations
of normalizations. In what follows, we use the notation P (f) to mean any of the
above PSDs, stating in each instance how the particular P (f) is normalized. Beware
the inconsistent notation in the literature.

The method of power spectrum estimation used in the previous section is a
simple version of an estimator called, historically, the periodogram. If we take an
N -point sample of the function c(t) at equal intervals and use the FFT to compute
its discrete Fourier transform

Ck =
N−1∑
j=0

cj e2πijk/N k = 0, . . . , N − 1 (13.4.4)

then the periodogram estimate of the power spectrum is defined at N/2 + 1
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frequencies as

P (0) = P (f0) =
1

N2
|C0|2

P (fk) =
1

N2

[
|Ck|2 + |CN−k|2

]
k = 1, 2, . . . ,

(
N

2
− 1
)

P (fc) = P (fN/2) =
1

N2

∣∣CN/2

∣∣2
(13.4.5)

where fk is defined only for the zero and positive frequencies

fk ≡ k

N∆
= 2fc

k

N
k = 0, 1, . . . ,

N

2
(13.4.6)

By Parseval’s theorem, equation (12.1.10), we see immediately that equation (13.4.5)
is normalized so that the sum of the N/2 + 1 values of P is equal to the mean
squared amplitude of the function cj .

We must now ask this question. In what sense is the periodogram estimate
(13.4.5) a “true” estimator of the power spectrum of the underlying function c(t)?
You can find the answer treated in considerable detail in the literature cited (see,
e.g., [1] for an introduction). Here is a summary.

First, is the expectation value of the periodogram estimate equal to the power
spectrum, i.e., is the estimator correct on average? Well, yes and no. We wouldn’t
really expect one of the P (fk)’s to equal the continuous P (f) at exactly fk, since fk

is supposed to be representative of a whole frequency “bin” extending from halfway
from the preceding discrete frequency to halfway to the next one. We should be
expecting the P (fk) to be some kind of average of P (f) over a narrow window
function centered on its fk. For the periodogram estimate (13.4.6) that window
function, as a function of s the frequency offset in bins, is

W (s) =
1

N2

[
sin(πs)

sin(πs/N)

]2
(13.4.7)

Notice that W (s) has oscillatory lobes but, apart from these, falls off only about as
W (s) ≈ (πs)−2. This is not a very rapid fall-off, and it results in significant leakage
(that is the technical term) from one frequency to another in the periodogram estimate.
Notice also that W (s) happens to be zero for s equal to a nonzero integer. This means
that if the function c(t) is a pure sine wave of frequency exactly equal to one of the
fk’s, then there will be no leakage to adjacent fk’s. But this is not the characteristic
case! If the frequency is, say, one-third of the way between two adjacent f k’s, then
the leakage will extend well beyond those two adjacent bins. The solution to the
problem of leakage is called data windowing, and we will discuss it below.

Turn now to another question about the periodogram estimate. What is the
variance of that estimate as N goes to infinity? In other words, as we take more
sampled points from the original function (either sampling a longer stretch of data at
the same sampling rate, or else by resampling the same stretch of data with a faster
sampling rate), then how much more accurate do the estimates Pk become? The
unpleasant answer is that the periodogram estimates do not become more accurate
at all! In fact, the variance of the periodogram estimate at a frequency f k is always
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equal to the square of its expectation value at that frequency. In other words, the
standard deviation is always 100 percent of the value, independent of N ! How can
this be? Where did all the information go as we added points? It all went into
producing estimates at a greater number of discrete frequencies f k. If we sample a
longer run of data using the same sampling rate, then the Nyquist critical frequency
fc is unchanged, but we now have finer frequency resolution (more f k’s) within the
Nyquist frequency interval; alternatively, if we sample the same length of data with a
finer sampling interval, then our frequency resolution is unchanged, but the Nyquist
range now extends up to a higher frequency. In neither case do the additional samples
reduce the variance of any one particular frequency’s estimated PSD.

You don’t have to live with PSD estimates with 100 percent standard deviations,
however. You simply have to know some techniques for reducing the variance of
the estimates. Here are two techniques that are very nearly identical mathematically,
though different in implementation. The first is to compute a periodogram estimate
with finer discrete frequency spacing than you really need, and then to sum the
periodogram estimates at K consecutive discrete frequencies to get one “smoother”
estimate at the mid frequency of those K . The variance of that summed estimate
will be smaller than the estimate itself by a factor of exactly 1/K , i.e., the standard
deviation will be smaller than 100 percent by a factor 1/

√
K. Thus, to estimate the

power spectrum at M +1 discrete frequencies between 0 and f c inclusive, you begin
by taking the FFT of 2MK points (which number had better be an integer power of
two!). You then take the modulus square of the resulting coefficients, add positive
and negative frequency pairs, and divide by (2MK) 2, all according to equation
(13.4.5) with N = 2MK . Finally, you “bin” the results into summed (not averaged)
groups of K . This procedure is very easy to program, so we will not bother to give
a routine for it. The reason that you sum, rather than average, K consecutive points
is so that your final PSD estimate will preserve the normalization property that the
sum of its M + 1 values equals the mean square value of the function.

A second technique for estimating the PSD at M + 1 discrete frequencies in
the range 0 to fc is to partition the original sampled data into K segments each of
2M consecutive sampled points. Each segment is separately FFT’d to produce a
periodogram estimate (equation 13.4.5 with N ≡ 2M ). Finally, the K periodogram
estimates are averaged at each frequency. It is this final averaging that reduces the
variance of the estimate by a factor K (standard deviation by

√
K). This second

technique is computationally more efficient than the first technique above by a modest
factor, since it is logarithmically more efficient to take many shorter FFTs than one
longer one. The principal advantage of the second technique, however, is that only
2M data points are manipulated at a single time, not 2KM as in the first technique.
This means that the second technique is the natural choice for processing long runs
of data, as from a magnetic tape or other data record. We will give a routine later
for implementing this second technique, but we need first to return to the matters of
leakage and data windowing which were brought up after equation (13.4.7) above.

Data Windowing

The purpose of data windowing is to modify equation (13.4.7), which expresses
the relation between the spectral estimate Pk at a discrete frequency and the actual
underlying continuous spectrum P (f) at nearby frequencies. In general, the spectral
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power in one “bin” k contains leakage from frequency components that are actually
s bins away, where s is the independent variable in equation (13.4.7). There is, as
we pointed out, quite substantial leakage even from moderately large values of s.

When we select a run of N sampled points for periodogram spectral estimation,
we are in effect multiplying an infinite run of sampled data c j by a window function
in time, one that is zero except during the total sampling time N∆, and is unity during
that time. In other words, the data are windowed by a square window function. By
the convolution theorem (12.0.9; but interchanging the roles of f and t), the Fourier
transform of the product of the data with this square window function is equal to the
convolution of the data’s Fourier transform with the window’s Fourier transform. In
fact, we determined equation (13.4.7) as nothing more than the square of the discrete
Fourier transform of the unity window function.

W (s) =
1

N2

[
sin(πs)

sin(πs/N)

]2
=

1
N2

∣∣∣∣∣
N−1∑
k=0

e2πisk/N

∣∣∣∣∣
2

(13.4.8)

The reason for the leakage at large values of s, is that the square window function
turns on and off so rapidly. Its Fourier transform has substantial components
at high frequencies. To remedy this situation, we can multiply the input data
cj , j = 0, . . . , N − 1 by a window function wj that changes more gradually from
zero to a maximum and then back to zero as j ranges from 0 to N . In this case, the
equations for the periodogram estimator (13.4.4–13.4.5) become

Dk ≡
N−1∑
j=0

cjwj e2πijk/N k = 0, . . . , N − 1 (13.4.9)

P (0) = P (f0) =
1

Wss
|D0|2

P (fk) =
1

Wss

[
|Dk|2 + |DN−k|2

]
k = 1, 2, . . . ,

(
N

2
− 1
)

P (fc) = P (fN/2) =
1

Wss

∣∣DN/2

∣∣2 (13.4.10)

where Wss stands for “window squared and summed,”

Wss ≡ N

N−1∑
j=0

w2
j (13.4.11)

and fk is given by (13.4.6). The more general form of (13.4.7) can now be written
in terms of the window function wj as

W (s) =
1

Wss

∣∣∣∣∣
N−1∑
k=0

e2πisk/N wk

∣∣∣∣∣
2

≈ 1
Wss

∣∣∣∣∣
∫ N/2

−N/2

cos(2πsk/N)w(k − N/2) dk

∣∣∣∣∣
2

(13.4.12)
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Figure 13.4.1. Window functions commonly used in FFT power spectral estimation. The data segment,
here of length 256, is multiplied (bin by bin) by the window function before the FFT is computed. The
square window, which is equivalent to no windowing, is least recommended. The Welch and Bartlett
windows are good choices.

Here the approximate equality is useful for practical estimates, and holds for any
window that is left-right symmetric (the usual case), and for s � N (the case of
interest for estimating leakage into nearby bins). The continuous function w(k−N/2)
in the integral is meant to be some smooth function that passes through the points w k .

There is a lot of perhaps unnecessary lore about choice of a window function, and
practically every function that rises from zero to a peak and then falls again has been
named after someone. A few of the more common (also shown in Figure 13.4.1) are:

wj = 1 −
∣∣∣∣
j − 1

2N
1
2N

∣∣∣∣ ≡ “Bartlett window” (13.4.13)

(The “Parzen window” is very similar to this.)

wj =
1
2

[
1 − cos

(
2πj

N

)]
≡ “Hann window” (13.4.14)

(The “Hamming window” is similar but does not go exactly to zero at the ends.)

wj = 1 −
(

j − 1
2N

1
2N

)2

≡ “Welch window” (13.4.15)

We are inclined to follow Welch in recommending that you use either (13.4.13)
or (13.4.15) in practical work. However, at the level of this book, there is effectively
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Figure 13.4.2. Leakage functions for the window functions of Figure 13.4.1. A signal whose frequency
is actually located at zero offset “leaks” into neighboring bins with the amplitude shown. The purpose
of windowing is to reduce the leakage at large offsets, where square (no) windowing has large sidelobes.
Offset can have a fractional value, since the actual signal frequency can be located between two frequency
bins of the FFT.

no difference between any of these (or similar) window functions. Their difference
lies in subtle trade-offs among the various figures of merit that can be used to
describe the narrowness or peakedness of the spectral leakage functions computed
by (13.4.12). These figures of merit have such names as: highest sidelobe level (dB),
sidelobe fall-off (dB per octave), equivalent noise bandwidth (bins), 3-dB bandwidth
(bins), scallop loss (dB), worst case process loss (dB). Roughly speaking, the principal
trade-off is between making the central peak as narrow as possible versus making
the tails of the distribution fall off as rapidly as possible. For details, see (e.g.) [2].
Figure 13.4.2 plots the leakage amplitudes for several windows already discussed.

There is particularly a lore about window functions that rise smoothly from
zero to unity in the first small fraction (say 10 percent) of the data, then stay at
unity until the last small fraction (again say 10 percent) of the data, during which
the window function falls smoothly back to zero. These windows will squeeze a
little bit of extra narrowness out of the main lobe of the leakage function (never as
much as a factor of two, however), but trade this off by widening the leakage tail
by a significant factor (e.g., the reciprocal of 10 percent, a factor of ten). If we
distinguish between the width of a window (number of samples for which it is at
its maximum value) and its rise/fall time (number of samples during which it rises
and falls); and if we distinguish between the FWHM (full width to half maximum
value) of the leakage function’s main lobe and the leakage width (full width that
contains half of the spectral power that is not contained in the main lobe); then these
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quantities are related roughly by

(FWHM in bins) ≈ N

(window width)
(13.4.16)

(leakage width in bins) ≈ N

(window rise/fall time)
(13.4.17)

For the windows given above in (13.4.13)–(13.4.15), the effective window
widths and the effective window rise/fall times are both of order 1

2N . Generally
speaking, we feel that the advantages of windows whose rise and fall times are
only small fractions of the data length are minor or nonexistent, and we avoid using
them. One sometimes hears it said that flat-topped windows “throw away less of
the data,” but we will now show you a better way of dealing with that problem by
use of overlapping data segments.

Let us now suppose that we have chosen a window function, and that we are
ready to segment the data into K segments of N = 2M points. Each segment will
be FFT’d, and the resulting K periodograms will be averaged together to obtain a
PSD estimate at M + 1 frequency values from 0 to fc. We must now distinguish
between two possible situations. We might want to obtain the smallest variance
from a fixed amount of computation, without regard to the number of data points
used. This will generally be the goal when the data are being gathered in real time,
with the data-reduction being computer-limited. Alternatively, we might want to
obtain the smallest variance from a fixed number of available sampled data points.
This will generally be the goal in cases where the data are already recorded and
we are analyzing it after the fact.

In the first situation (smallest spectral variance per computer operation), it is
best to segment the data without any overlapping. The first 2M data points constitute
segment number 1; the next 2M data points constitute segment number 2; and so on,
up to segment number K , for a total of 2KM sampled points. The variance in this
case, relative to a single segment, is reduced by a factor K .

In the second situation (smallest spectral variance per data point), it turns out
to be optimal, or very nearly optimal, to overlap the segments by one half of their
length. The first and second sets of M points are segment number 1; the second
and third sets of M points are segment number 2; and so on, up to segment number
K , which is made of the Kth and K + 1st sets of M points. The total number of
sampled points is therefore (K +1)M , just over half as many as with nonoverlapping
segments. The reduction in the variance is not a full factor of K , since the segments
are not statistically independent. It can be shown that the variance is instead reduced
by a factor of about 9K/11 (see the paper by Welch in [3]). This is, however,
significantly better than the reduction of about K/2 that would have resulted if the
same number of data points were segmented without overlapping.

We can now codify these ideas into a routine for spectral estimation. While we
generally avoid input/output coding, we make an exception here to show how data
are read sequentially in one pass through a data file (here FORTRAN Unit 9). Only a
small fraction of the data is in memory at any one time. Note that spctrm returns the
power at M , not M + 1, frequencies, omitting the component P (f c) at the Nyquist
frequency. It would also be straightforward to include that component.
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SUBROUTINE spctrm(p,m,k,ovrlap,w1,w2)
INTEGER k,m
REAL p(m),w1(4*m),w2(m)
LOGICAL ovrlap True for overlapping segments, false otherwise.

C USES four1
Reads data from input unit 9 and returns as p(j) the data’s power (mean square amplitude)
at frequency (j-1)/(2*m) cycles per gridpoint, for j=1,2,...,m, based on (2*k+1)*m
data points (if ovrlap is set .true.) or 4*k*m data points (if ovrlap is set .false.).
The number of segments of the data is 2*k in both cases: The routine calls four1 k
times, each call with 2 partitions each of 2*m real data points. w1(1:4*m) and w2(1:m)
are user-supplied workspaces.

INTEGER j,j2,joff,joffn,kk,m4,m43,m44,mm
REAL den,facm,facp,sumw,w,window
window(j)=(1.-abs(((j-1)-facm)*facp)) Statement function defines Bartlett window.

C window(j)=1. Alternative for square window.
C window(j)=(1.-(((j-1)-facm)*facp)**2) Alternative for Welch window.

mm=m+m Useful factors.
m4=mm+mm
m44=m4+4
m43=m4+3
den=0.
facm=m Factors used by the window statement function.
facp=1./m
sumw=0. Accumulate the squared sum of the weights.
do 11 j=1,mm

sumw=sumw+window(j)**2
enddo 11

do 12 j=1,m Initialize the spectrum to zero.
p(j)=0.

enddo 12

if(ovrlap)then Initialize the “save” half-buffer.
read (9,*) (w2(j),j=1,m)

endif
do 18 kk=1,k Loop over data set segments in groups of two.

do 15 joff=-1,0,1 Get two complete segments into workspace.
if (ovrlap) then

do 13 j=1,m
w1(joff+j+j)=w2(j)

enddo 13

read (9,*) (w2(j),j=1,m)
joffn=joff+mm
do 14 j=1,m

w1(joffn+j+j)=w2(j)
enddo 14

else
read (9,*) (w1(j),j=joff+2,m4,2)

endif
enddo 15

do 16 j=1,mm Apply the window to the data.
j2=j+j
w=window(j)
w1(j2)=w1(j2)*w
w1(j2-1)=w1(j2-1)*w

enddo 16

call four1(w1,mm,1) Fourier transform the windowed data.
p(1)=p(1)+w1(1)**2+w1(2)**2 Sum results into previous segments.
do 17 j=2,m

j2=j+j
p(j)=p(j)+w1(j2)**2+w1(j2-1)**2

* +w1(m44-j2)**2+w1(m43-j2)**2
enddo 17

den=den+sumw
enddo 18

den=m4*den Correct normalization.
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do 19 j=1,m
p(j)=p(j)/den Normalize the output.

enddo 19

return
END
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13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to apply high-pass or low-pass filtering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need a bandpass filter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need a notch filter to remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen
to do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter function H(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

• Remember that you must define your filter function H(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency 1/(2∆), where ∆ is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is ±1/(N∆), where N is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

• If the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obey H(−f) = H(f)*. You can arrange this
most easily by picking an H that is real and even in f .

• If your chosen H(f) has sharp vertical edges in it, then the impulse response of
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smoother H(f). To get a first-hand
look at the impulse response of your filter, just take the inverse FFT of your H(f).
If you smooth all edges of the filter function over some number k of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.
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do 19 j=1,m
p(j)=p(j)/den Normalize the output.

enddo 19

return
END
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13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to apply high-pass or low-pass filtering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need a bandpass filter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need a notch filter to remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen
to do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter function H(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

• Remember that you must define your filter function H(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency 1/(2∆), where ∆ is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is ±1/(N∆), where N is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

• If the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obey H(−f) = H(f)*. You can arrange this
most easily by picking an H that is real and even in f .

• If your chosen H(f) has sharp vertical edges in it, then the impulse response of
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smoother H(f). To get a first-hand
look at the impulse response of your filter, just take the inverse FFT of your H(f).
If you smooth all edges of the filter function over some number k of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.
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• If your data set is too long to FFT all at once, then break it up into segments of
any convenient size, as long as they are much longer than the impulse response
function of the filter. Use zero-padding, if necessary.

• You should probably remove any trend from the data, by subtracting from it a
straight line through the first and last points (i.e., make the first and last points equal
to zero). If you are segmenting the data, then you can pick overlapping segments
and use only the middle section of each, comfortably distant from edge effects.

• A digital filter is said to be causal or physically realizable if its output for a
particular time-step depends only on inputs at that particular time-step or earlier.
It is said to be acausal if its output can depend on both earlier and later inputs.
Filtering in the Fourier domain is, in general, acausal, since the data are processed
“in a batch,” without regard to time ordering. Don’t let this bother you! Acausal
filters can generally give superior performance (e.g., less dispersion of phases,
sharper edges, less asymmetric impulse response functions). People use causal
filters not because they are better, but because some situations just don’t allow
access to out-of-time-order data. Time domain filters can, in principle, be either
causal or acausal, but they are most often used in applications where physical
realizability is a constraint. For this reason we will restrict ourselves to the causal
case in what follows.

If you are still favoring time-domain filtering after all we have said, it is probably because
you have a real-time application, for which you must process a continuous data stream and
wish to output filtered values at the same rate as you receive raw data. Otherwise, it may
be that the quantity of data to be processed is so large that you can afford only a very small
number of floating operations on each data point and cannot afford even a modest-sized FFT
(with a number of floating operations per data point several times the logarithm of the number
of points in the data set or segment).

Linear Filters

The most general linear filter takes a sequence xk of input points and produces a
sequence yn of output points by the formula

yn =
M∑

k=0

ck xn−k +
N∑

j=1

dj yn−j (13.5.1)

Here the M + 1 coefficients ck and the N coefficients dj are fixed and define the filter
response. The filter (13.5.1) produces each new output value from the current and M previous
input values, and from its own N previous output values. If N = 0, so that there is no
second sum in (13.5.1), then the filter is called nonrecursive or finite impulse response (FIR). If
N �= 0, then it is called recursive or infinite impulse response (IIR). (The term “IIR” connotes
only that such filters are capable of having infinitely long impulse responses, not that their
impulse response is necessarily long in a particular application. Typically the response of an
IIR filter will drop off exponentially at late times, rapidly becoming negligible.)

The relation between the ck’s and dj’s and the filter response function H(f) is

H(f) =

M∑
k=0

cke−2πik(f∆)

1 −
N∑

j=1

dje−2πij(f∆)

(13.5.2)

where ∆ is, as usual, the sampling interval. The Nyquist interval corresponds to f∆ between
−1/2 and 1/2. For FIR filters the denominator of (13.5.2) is just unity.

Equation (13.5.2) tells how to determine H(f) from the c’s and d’s. To design a filter,
though, we need a way of doing the inverse, getting a suitable set of c’s and d’s — as small
a set as possible, to minimize the computational burden — from a desired H(f). Entire
books are devoted to this issue. Like many other “inverse problems,” it has no all-purpose
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solution. One clearly has to make compromises, since H(f) is a full continuous function,
while the short list of c’s and d’s represents only a few adjustable parameters. The subject of
digital filter design concerns itself with the various ways of making these compromises. We
cannot hope to give any sort of complete treatment of the subject. We can, however, sketch
a couple of basic techniques to get you started. For further details, you will have to consult
some specialized books (see references).

FIR (Nonrecursive) Filters

When the denominator in (13.5.2) is unity, the right-hand side is just a discrete Fourier
transform. The transform is easily invertible, giving the desired small number of ck coefficients
in terms of the same small number of values of H(fi) at some discrete frequencies fi. This
fact, however, is not very useful. The reason is that, for values of ck computed in this way,
H(f) will tend to oscillate wildly in between the discrete frequencies where it is pinned
down to specific values.

A better strategy, and one which is the basis of several formal methods in the literature,
is this: Start by pretending that you are willing to have a relatively large number of filter
coefficients, that is, a relatively large value of M . Then H(f) can be fixed to desired values
on a relatively fine mesh, and the M coefficients ck, k = 0, . . . , M − 1 can be found by
an FFT. Next, truncate (set to zero) most of the ck’s, leaving nonzero only the first, say,
K, (c0, c1, . . . , cK−1) and last K − 1, (cM−K+1, . . . , cM−1). The last few ck’s are filter
coefficients at negative lag, because of the wrap-around property of the FFT. But we don’t
want coefficients at negative lag. Therefore we cyclically shift the array of ck’s, to bring
everything to positive lag. (This corresponds to introducing a time-delay into the filter.) Do
this by copying the ck’s into a new array of length M in the following order:

(cM−K+1, . . . , cM−1, c0, c1, . . . , cK−1, 0, 0, . . . , 0) (13.5.3)

To see if your truncation is acceptable, take the FFT of the array (13.5.3), giving an
approximation to your original H(f). You will generally want to compare the modulus
|H(f)| to your original function, since the time-delay will have introduced complex phases
into the filter response.

If the new filter function is acceptable, then you are done and have a set of 2K − 1
filter coefficients. If it is not acceptable, then you can either (i) increase K and try again,
or (ii) do something fancier to improve the acceptability for the same K. An example of
something fancier is to modify the magnitudes (but not the phases) of the unacceptable H(f)
to bring it more in line with your ideal, and then to FFT to get new ck’s. Once again set
to zero all but the first 2K − 1 values of these (no need to cyclically shift since you have
preserved the time-delaying phases), then inverse transform to get a new H(f), which will
often be more acceptable. You can iterate this procedure. Note, however, that the procedure
will not converge if your requirements for acceptability are more stringent than your 2K − 1
coefficients can handle.

The key idea, in other words, is to iterate between the space of coefficients and the space
of functions H(f), until a Fourier conjugate pair that satisfies the imposed constraints in both
spaces is found. A more formal technique for this kind of iteration is the Remes Exchange
Algorithm which produces the best Chebyshev approximation to a given desired frequency
response with a fixed number of filter coefficients (cf. §5.13).

IIR (Recursive) Filters

Recursive filters, whose output at a given time depends both on the current and previous
inputs and on previous outputs, can generally have performance that is superior to nonrecursive
filters with the same total number of coefficients (or same number of floating operations per
input point). The reason is fairly clear by inspection of (13.5.2): A nonrecursive filter has a
frequency response that is a polynomial in the variable 1/z, where

z ≡ e2πi(f∆) (13.5.4)
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By contrast, a recursive filter’s frequency response is a rational function in 1/z. The class of
rational functions is especially good at fitting functions with sharp edges or narrow features,
and most desired filter functions are in this category.

Nonrecursive filters are always stable. If you turn off the sequence of incoming xi’s,
then after no more than M steps the sequence of yj’s produced by (13.5.1) will also turn off.
Recursive filters, feeding as they do on their own output, are not necessarily stable. If the
coefficients dj are badly chosen, a recursive filter can have exponentially growing, so-called
homogeneous, modes, which become huge even after the input sequence has been turned off.
This is not good. The problem of designing recursive filters, therefore, is not just an inverse
problem; it is an inverse problem with an additional stability constraint.

How do you tell if the filter (13.5.1) is stable for a given set of ck and dj coefficients?
Stability depends only on the dj’s. The filter is stable if and only if all N complex roots
of the characteristic polynomial equation

zN −
N∑

j=1

djz
N−j = 0 (13.5.5)

are inside the unit circle, i.e., satisfy

|z| ≤ 1 (13.5.6)

The various methods for constructing stable recursive filters again form a subject area
for which you will need more specialized books. One very useful technique, however, is the
bilinear transformation method. For this topic we define a new variable w that reparametrizes
the frequency f ,

w ≡ tan[π(f∆)] = i

(
1 − e2πi(f∆)

1 + e2πi(f∆)

)
= i

(
1 − z

1 + z

)
(13.5.7)

Don’t be fooled by the i’s in (13.5.7). This equation maps real frequencies f into real values of
w. In fact, it maps the Nyquist interval − 1

2
< f∆ < 1

2
onto the real w axis −∞ < w < +∞.

The inverse equation to (13.5.7) is

z = e2πi(f∆) =
1 + iw

1 − iw
(13.5.8)

In reparametrizing f , w also reparametrizes z, of course. Therefore, the condition for
stability (13.5.5)–(13.5.6) can be rephrased in terms of w: If the filter response H(f) is
written as a function of w, then the filter is stable if and only if the poles of the filter function
(zeros of its denominator) are all in the upper half complex plane,

Im(w) ≥ 0 (13.5.9)

The idea of the bilinear transformation method is that instead of specifying your desired
H(f), you specify only its desired modulus square, |H(f)|2 = H(f)H(f)* = H(f)H(−f).
Pick this to be approximated by some rational function in w2. Then find all the poles of this
function in the w complex plane. Every pole in the lower half-plane will have a corresponding
pole in the upper half-plane, by symmetry. The idea is to form a product only of the factors
with good poles, ones in the upper half-plane. This product is your stably realizable H(f).
Now substitute equation (13.5.7) to write the function as a rational function in z, and compare
with equation (13.5.2) to read off the c’s and d’s.

The procedure becomes clearer when we go through an example. Suppose we want to
design a simple bandpass filter, whose lower cutoff frequency corresponds to a value w = a,
and whose upper cutoff frequency corresponds to a value w = b, with a and b both positive
numbers. A simple rational function that accomplishes this is

|H(f)|2 =

(
w2

w2 + a2

)(
b2

w2 + b2

)
(13.5.10)

This function does not have a very sharp cutoff, but it is illustrative of the more general
case. To obtain sharper edges, one could take the function (13.5.10) to some positive integer
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power, or, equivalently, run the data sequentially through some number of copies of the filter
that we will obtain from (13.5.10).

The poles of (13.5.10) are evidently at w = ±ia and w = ±ib. Therefore the stably
realizable H(f) is

H(f) =

(
w

w − ia

)(
ib

w − ib

)
=

(
1−z
1+z

)
b

[(
1−z
1+z

)
− a
] [(

1−z
1+z

)
− b
] (13.5.11)

We put the i in the numerator of the second factor in order to end up with real-valued
coefficients. If we multiply out all the denominators, (13.5.11) can be rewritten in the form

H(f) =
− b

(1+a)(1+b)
+ b

(1+a)(1+b)
z−2

1 − (1+a)(1−b)+(1−a)(1+b)
(1+a)(1+b)

z−1 + (1−a)(1−b)
(1+a)(1+b)

z−2
(13.5.12)

from which one reads off the filter coefficients for equation (13.5.1),

c0 = − b

(1 + a)(1 + b)

c1 = 0

c2 =
b

(1 + a)(1 + b)

d1 =
(1 + a)(1 − b) + (1 − a)(1 + b)

(1 + a)(1 + b)

d2 = − (1 − a)(1− b)

(1 + a)(1 + b)
(13.5.13)

This completes the design of the bandpass filter.
Sometimes you can figure out how to construct directly a rational function in w forH(f),

rather than having to start with its modulus square. The function that you construct has to have
its poles only in the upper half-plane, for stability. It should also have the property of going into
its own complex conjugate if you substitute −w for w, so that the filter coefficients will be real.

For example, here is a function for a notch filter, designed to remove only a narrow
frequency band around some fiducial frequency w = w0, where w0 is a positive number,

H(f) =

(
w − w0

w − w0 − iεw0

)(
w + w0

w + w0 − iεw0

)

=
w2 − w2

0

(w − iεw0)2 − w2
0

(13.5.14)

In (13.5.14) the parameter ε is a small positive number that is the desired width of the notch, as a
fraction of w0. Going through the arithmetic of substituting z for w gives the filter coefficients

c0 =
1 + w2

0

(1 + εw0)2 + w2
0

c1 = −2
1 − w2

0

(1 + εw0)2 + w2
0

c2 =
1 + w2

0

(1 + εw0)2 + w2
0

d1 = 2
1 − ε2w2

0 − w2
0

(1 + εw0)2 + w2
0

d2 = − (1 − εw0)
2 + w2

0

(1 + εw0)2 + w2
0

(13.5.15)
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(a)

(b)

Figure 13.5.1. (a) A “chirp,” or signal whose frequency increases continuously with time. (b) Same
signal after it has passed through the notch filter (13.5.15). The parameter ε is here 0.2.

Figure 13.5.1 shows the results of using a filter of the form (13.5.15) on a “chirp” input
signal, one that glides upwards in frequency, crossing the notch frequency along the way.

While the bilinear transformation may seem very general, its applications are limited
by some features of the resulting filters. The method is good at getting the general shape
of the desired filter, and good where “flatness” is a desired goal. However, the nonlinear
mapping between w and f makes it difficult to design to a desired shape for a cutoff, and
may move cutoff frequencies (defined by a certain number of dB) from their desired places.
Consequently, practitioners of the art of digital filter design reserve the bilinear transformation
for specific situations, and arm themselves with a variety of other tricks. We suggest that
you do likewise, as your projects demand.

CITED REFERENCES AND FURTHER READING:

Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall).

Antoniou, A. 1979, Digital Filters: Analysis and Design (New York: McGraw-Hill).

Parks, T.W., and Burrus, C.S. 1987, Digital Filter Design (New York: Wiley).

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall).

Rice, J.R. 1964, The Approximation of Functions (Reading, MA: Addison-Wesley); also 1969,
op. cit., Vol. 2.

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).
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13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let {y ′

α} be a set of measured values for some underlying
set of true values of a quantity y, denoted {yα}, related to these true values by
the addition of random noise,

y′
α = yα + nα (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular point y � as a linear
combination of the known, noisy, values. Writing

y� =
∑
α

d�αy′
α + x� (13.6.2)

we want to find coefficients d�α that minimize, in some way, the discrepancy x�.
The coefficients d�α have a “star” subscript to indicate that they depend on the choice
of point y�. Later, we might want to let y� be one of the existing yα’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in §13.3. On the other hand, we might want y� to be a completely new
point. In that case, our problem will be one of linear prediction.

A natural way to minimize the discrepancy x� is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seek d�α’s that minimize

〈
x2

�

〉
=

〈[∑
α

d�α(yα + nα) − y�

]2〉

=
∑
αβ

(〈yαyβ〉 + 〈nαnβ〉)d�αd�β − 2
∑
α

〈y�yα〉 d�α +
〈
y2

�

〉 (13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g., 〈nαyβ〉 = 0.
The quantities 〈yαyβ〉 and 〈y�yα〉 describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities 〈nαnβ〉 describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have 〈nαnβ〉 =

〈
n2

α

〉
δαβ . It is convenient to think of the various correlation

quantities as comprising matrices and vectors,

φαβ ≡ 〈yαyβ〉 φ�α ≡ 〈y�yα〉 ηαβ ≡ 〈nαnβ〉 or
〈
n2

α

〉
δαβ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to the d �α’s equal to zero,
one readily obtains the set of linear equations,

∑
β

[φαβ + ηαβ ] d�β = φ�α (13.6.5)
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13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let{y ′

α} be a set of measured values for some underlying
set of true values of a quantityy, denoted{yα}, related to these true values by
the addition of random noise,

y′
α = yα + nα (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular pointy � as a linear
combination of the known, noisy, values. Writing

y� =
∑
α

d�αy′
α + x� (13.6.2)

we want to find coefficientsd�α that minimize, in some way, thediscrepancy x�.
The coefficientsd�α have a “star” subscript to indicate that they depend on the choice
of pointy�. Later, we might want to lety� be one of the existingyα’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in§13.3. On the other hand, we might wanty� to be a completely new
point. In that case, our problem will be one oflinear prediction.

A natural way to minimize the discrepancyx� is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seekd�α’s that minimize

〈
x2

�

〉
=

〈[∑
α

d�α(yα + nα) − y�

]2〉

=
∑
αβ

(〈yαyβ〉 + 〈nαnβ〉)d�αd�β − 2
∑
α

〈y�yα〉 d�α +
〈
y2

�

〉 (13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g.,〈nαyβ〉 = 0.
The quantities〈yαyβ〉 and 〈y�yα〉 describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities〈nαnβ〉 describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have〈nαnβ〉 =

〈
n2

α

〉
δαβ . It is convenient to think of the various correlation

quantities as comprising matrices and vectors,

φαβ ≡ 〈yαyβ〉 φ�α ≡ 〈y�yα〉 ηαβ ≡ 〈nαnβ〉 or
〈
n2

α

〉
δαβ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to thed �α’s equal to zero,
one readily obtains the set of linear equations,

∑
β

[φαβ + ηαβ ] d�β = φ�α (13.6.5)
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If we write the solution as a matrix inverse, then the estimation equation (13.6.2)
becomes, omitting the minimized discrepancyx�,

y� ≈
∑
αβ

φ�α [φµν + ηµν ]−1
αβ y′

β (13.6.6)

From equations (13.6.3) and (13.6.5) one can also calculate the expected mean square
value of the discrepancy at its minimum, denoted

〈
x2

�

〉
0
,

〈
x2

�

〉
0

=
〈
y2

�

〉−
∑

β

d�βφ�β =
〈
y2

�

〉−
∑
αβ

φ�α [φµν + ηµν ]−1
αβ φ�β (13.6.7)

A final general result tells how much the mean square discrepancy
〈
x2

�

〉
is

increased if we use the estimation equation (13.6.2) not with the best valuesd �β , but
with some other valueŝd�β . The above equations then imply

〈
x2

�

〉
=
〈
x2

�

〉
0

+
∑
αβ

(d̂�α − d�α) [φαβ + ηαβ ] (d̂�β − d�β) (13.6.8)

Since the second term is a pure quadratic form, we see that the increase in the
discrepancy is only second order in any error made in estimating thed �β ’s.

Connection to Optimal Filtering

If we change “star” to a Greek index, sayγ, then the above formulas describe
optimal filtering, generalizing the discussion of§13.3. One sees, for example, that
if the noise amplitudesnα go to zero, so likewise do the noise autocorrelations
ηαβ , and, canceling a matrix times its inverse, equation (13.6.6) simply becomes
yγ = y′

γ . Another special case occurs if the matricesφαβ andηαβ are diagonal.
In that case, equation (13.6.6) becomes

yγ =
φγγ

φγγ + ηγγ
y′

γ (13.6.9)

which is readily recognizable as equation (13.3.6) withS 2 → φγγ , N2 → ηγγ . What
is going on is this: For the case of equally spaced data points, and in the Fourier
domain, autocorrelations become simply squares of Fourier amplitudes (Wiener-
Khinchin theorem, equation 12.0.12), and the optimal filter can be constructed
algebraically, as equation (13.6.9), without inverting any matrix.

More generally, in the time domain, or any other domain, an optimal filter (one
that minimizes the square of the discrepancy from the underlying true value in the
presence of measurement noise) can be constructed by estimating the autocorrelation
matricesφαβ and ηαβ , and applying equation (13.6.6) with� → γ. (Equation
13.6.8 is in fact the basis for the§13.3’s statement that even crude optimal filtering
can be quite effective.)
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Linear Prediction

Classicallinear prediction specializes to the case where the data pointsyβ

are equally spaced along a line,yi, i = 1, 2, . . . , N , and we want to useM
consecutive values ofyi to predict anM + 1st. Stationarity is assumed. That is, the
autocorrelation〈yjyk〉 is assumed to depend only on the difference|j − k|, and not
on j or k individually, so that the autocorrelationφ has only a single index,

φj ≡ 〈yiyi+j〉 ≈ 1
N − j

N−j∑
i=1

yiyi+j (13.6.10)

Here, the approximate equality shows one way to use the actual data set values to
estimate the autocorrelation components. (In fact, there is a better way to make these
estimates; see below.) In the situation described, the estimation equation (13.6.2) is

yn =
M∑

j=1

djyn−j + xn (13.6.11)

(compare equation 13.5.1) and equation (13.6.5) becomes the set ofM equations for
theM unknowndj ’s, now called thelinear prediction (LP) coefficients,

M∑
j=1

φ|j−k| dj = φk (k = 1, . . . , M) (13.6.12)

Notice that while noise is not explicitly included in the equations, it is properly
accounted for,if it is point-to-point uncorrelated:φ0, as estimated by equation
(13.6.10)usingmeasured valuesy ′

i, actually estimates the diagonal part ofφαα+ηαα,
above. The mean square discrepancy

〈
x2

n

〉
is estimated by equation (13.6.7) as

〈
x2

n

〉
= φ0 − φ1d1 − φ2d2 − · · · − φMdM (13.6.13)

To use linear prediction, we first compute thedj ’s, using equations (13.6.10)
and (13.6.12). We then calculate equation (13.6.13) or, more concretely, apply
(13.6.11) to the known record to get an idea of how large are the discrepanciesx i.
If the discrepancies are small, then we can continue applying (13.6.11) right on into
the future, imagining the unknown “future” discrepanciesx i to be zero. In this
application, (13.6.11) is a kind of extrapolation formula. In many situations, this
extrapolation turns out to be vastly more powerful than any kind of simple polynomial
extrapolation. (By the way, you should not confuse the terms “linear prediction” and
“linear extrapolation”; the general functional form used by linear prediction ismuch
more complex than a straight line, or even a low-order polynomial!)

However, to achieve its full usefulness, linear prediction must be constrained in
one additional respect: One must take additional measures to guarantee itsstability.
Equation (13.6.11) is a special case of the general linear filter (13.5.1). The condition
that (13.6.11) be stable as a linear predictor is precisely that given in equations
(13.5.5) and (13.5.6), namely that the characteristic polynomial

zN −
N∑

j=1

djz
N−j = 0 (13.6.14)
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have allN of its roots inside the unit circle,

|z| ≤ 1 (13.6.15)

There is no guarantee that the coefficients produced by equation (13.6.12) will have
this property. If the data contain many oscillations without any particular trend
towards increasing or decreasing amplitude, then the complex roots of (13.6.14)
will generally all be rather close to the unit circle. The finite length of the data
set will cause some of these roots to be inside the unit circle, others outside. In
some applications, where the resulting instabilities are slowly growing and the linear
prediction is not pushed too far, it is best to use the “unmassaged” LP coefficients
that come directly out of (13.6.12). For example, one might be extrapolating to fill a
short gap in a data set; then one might extrapolate both forwards across the gap and
backwards from the data beyond the gap. If the two extrapolations agree tolerably
well, then instability is not a problem.

When instabilityis a problem, you have to “massage” the LP coefficients. You
do this by (i) solving (numerically) equation (13.6.14) for itsN complex roots; (ii)
moving the roots to where you think they ought to be inside or on the unit circle; (iii)
reconstituting the now-modified LP coefficients. You may think that step (ii) sounds
a little vague. It is. There is no “best” procedure. If you think that your signal
is truly a sum of undamped sine and cosine waves (perhaps with incommensurate
periods), then you will want simply to move each rootz i onto the unit circle,

zi → zi/ |zi| (13.6.16)

In other circumstances it may seem appropriate to reflect a bad root across the
unit circle

zi → 1/zi* (13.6.17)

This alternative has the property that it preserves the amplitude of the output of
(13.6.11) when it is driven by a sinusoidal set ofx i’s. It assumes that (13.6.12)
has correctly identified the spectral width of a resonance, but only slipped up on
identifying its time sense so that signals that should be damped as time proceeds end
up growing in amplitude. The choice between (13.6.16) and (13.6.17) sometimes
might as well be based on voodoo. We prefer (13.6.17).

Also magical is the choice ofM , the number of LP coefficients to use. You
should chooseM to be as small as works for you, that is, you should choose it by
experimenting with your data. TryM = 5, 10, 20, 40. If you need largerM ’s than
this, be aware that the procedure of “massaging” all those complex roots is quite
sensitive to roundoff error. Use double precision.

Linear prediction is especially successful at extrapolatingsignals that are smooth
and oscillatory, though not necessarily periodic. In such cases, linear prediction often
extrapolates accurately throughmany cycles of the signal. By contrast, polynomial
extrapolation in general becomes seriously inaccurate after at most a cycle or two.
A prototypical example of a signal that can successfully be linearly predicted is the
height of ocean tides, for which the fundamental 12-hour period is modulated in
phase and amplitude over the course of the month and year, and for which local



13.6 Linear Prediction and Linear Predictive Coding 561

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

hydrodynamic effects may make even one cycle of the curve look rather different
in shape from a sine wave.

We already remarked that equation (13.6.10) is not necessarily the best way
to estimate the covariancesφk from the data set. In fact, results obtained from
linear prediction are remarkably sensitive to exactly how theφk ’s are estimated.
One particularly good method is due to Burg[1], and involves a recursive procedure
for increasing the orderM by one unit at a time, at each stage re-estimating the
coefficientsdj , j = 1, . . . , M so as to minimize the residual in equation (13.6.13).
Although further discussion of the Burg method is beyond our scope here, the method
is implemented in the following routine[1,2] for estimating the LP coefficientsdj

of a data set.

SUBROUTINE memcof(data,n,m,xms,d)
INTEGER m,n,MMAX,NMAX
REAL xms,d(m),data(n)
PARAMETER (MMAX=60,NMAX=2000)

Given a real vector of data(1:n), and given m, this routine returns m linear prediction
coefficients as d(1:m), and returns the mean square discrepancy as xms.

INTEGER i,j,k
REAL denom,p,pneum,wk1(NMAX),wk2(NMAX),wkm(MMAX)
if (m.gt.MMAX.or.n.gt.NMAX) pause ’workspace too small in memcof’
p=0.
do 11 j=1,n

p=p+data(j)**2
enddo 11

xms=p/n
wk1(1)=data(1)
wk2(n-1)=data(n)
do 12 j=2,n-1

wk1(j)=data(j)
wk2(j-1)=data(j)

enddo 12

do 17 k=1,m
pneum=0.
denom=0.
do 13 j=1,n-k

pneum=pneum+wk1(j)*wk2(j)
denom=denom+wk1(j)**2+wk2(j)**2

enddo 13

d(k)=2.*pneum/denom
xms=xms*(1.-d(k)**2)
do 14 i=1,k-1

d(i)=wkm(i)-d(k)*wkm(k-i)
enddo 14

The algorithm is recursive, building up the answer for larger and larger values of m until
the desired value is reached. At this point in the algorithm, one could return the vector
d and scalar xms for a set of LP coefficients with k (rather than m) terms.

if(k.eq.m)return
do 15 i=1,k

wkm(i)=d(i)
enddo 15

do 16 j=1,n-k-1
wk1(j)=wk1(j)-wkm(k)*wk2(j)
wk2(j)=wk2(j+1)-wkm(k)*wk1(j+1)

enddo 16

enddo 17

pause ’never get here in memcof’
END
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Here are procedures for rendering the LP coefficients stable (if you choose to
do so), and for extrapolating a data set by linear prediction, using the original or
massaged LP coefficients. The routinezroots (§9.5) is used to find all complex
roots of a polynomial.

SUBROUTINE fixrts(d,m)
INTEGER m,MMAX
REAL d(m)
PARAMETER (MMAX=100) Largest expected value of m.

C USES zroots
Given the LP coefficients d(1:m), this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients d(1:m).

INTEGER i,j
LOGICAL polish
COMPLEX a(MMAX),roots(MMAX)
a(m+1)=cmplx(1.,0.)
do 11 j=m,1,-1 Set up complex coefficients for polynomial root finder.

a(j)=cmplx(-d(m+1-j),0.)
enddo 11

polish=.true.
call zroots(a,m,roots,polish) Find all the roots.
do 12 j=1,m Look for a...

if(abs(roots(j)).gt.1.)then root outside the unit circle,
roots(j)=1./conjg(roots(j)) and reflect it back inside.

endif
enddo 12

a(1)=-roots(1) Now reconstruct the polynomial coefficients,
a(2)=cmplx(1.,0.)
do 14 j=2,m by looping over the roots

a(j+1)=cmplx(1.,0.)
do 13 i=j,2,-1 and synthetically multiplying.

a(i)=a(i-1)-roots(j)*a(i)
enddo 13

a(1)=-roots(j)*a(1)
enddo 14

do 15 j=1,m The polynomial coefficients are guaranteed to be real,
d(m+1-j)=-real(a(j)) so we need only return the real part as new LP coefficients.

enddo 15

return
END

SUBROUTINE predic(data,ndata,d,m,future,nfut)
INTEGER ndata,nfut,m,MMAX
REAL d(m),data(ndata),future(nfut)
PARAMETER (MMAX=100)

Given data(1:ndata), and given the data’s LP coefficients d(1:m), this routine applies
equation (13.6.11) to predict the next nfut data points, which it returns in the array
future(1:nfut). Note that the routine references only the last m values of data, as
initial values for the prediction.
Parameter: MMAX is the largest expected value of m.

INTEGER j,k
REAL discrp,sum,reg(MMAX)
do 11 j=1,m

reg(j)=data(ndata+1-j)
enddo 11

do 14 j=1,nfut
discrp=0. This is where you would put in a known discrepancy if you

were reconstructing a function by linear predictive coding
rather than extrapolating a function by linear prediction.
See text.

sum=discrp
do 12 k=1,m
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sum=sum+d(k)*reg(k)
enddo 12

do 13 k=m,2,-1 [If you want to implement circular arrays, you can avoid this
shifting of coefficients!]reg(k)=reg(k-1)

enddo 13

reg(1)=sum
future(j)=sum

enddo 14

return
END

Removing the Bias in Linear Prediction

You might expect that the sum of thedj ’s in equation (13.6.11) (or, more
generally, in equation 13.6.2) should be 1, so that (e.g.) adding a constant to all the
data pointsyi yields a prediction that is increased by the same constant. However,
thedj ’s do not sum to 1 but, in general, to a value slightly less than one. This fact
reveals a subtle point, that the estimator of classical linear prediction is notunbiased,
even though it does minimize the mean square discrepancy. At any place where the
measured autocorrelation does not imply a better estimate, the equations of linear
prediction tend to predict a value that tends towards zero.

Sometimes, that is just what you want. If the process that generates they i’s
in fact has zero mean, then zero is the best guess absent other information. At
other times, however, this behavior is unwarranted. If you have data that show
only small variations around a positive value, you don’t want linear predictions
that droop towards zero.

Often it is a workable approximation to subtract the mean off your data set,
perform the linear prediction, and then add the mean back. This procedure contains
the germ of the correct solution; but the simple arithmetic mean is not quite the
correct constant to subtract. In fact, an unbiased estimator is obtained by subtracting
from every data point an autocorrelation-weighted mean defined by[3,4]

y ≡
∑

β

[φµν + ηµν ]−1
αβ yβ

/∑
αβ

[φµν + ηµν ]−1
αβ (13.6.18)

With this subtraction, the sum of the LP coefficients should be unity, up to roundoff
and differences in how theφk ’s are estimated.

Linear Predictive Coding (LPC)

A different, though related, method to which the formalism above can be
applied is the “compression” of a sampled signal so that it can be stored more
compactly. The original form should beexactly recoverable from the compressed
version. Obviously, compression can be accomplished only if there is redundancy
in the signal. Equation (13.6.11) describes one kind of redundancy: It says that
the signal, except for a small discrepancy, is predictable from its previous values
and from a small number of LP coefficients. Compression of a signal by the use of
(13.6.11) is thus calledlinear predictive coding, or LPC.

The basic idea of LPC (in its simplest form) is to record as a compressed file (i)
the number of LP coefficientsM , (ii) their M values, e.g., as obtained bymemcof,



564 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

(iii) the first M data points, and then (iv) for each subsequent data point only its
residual discrepancyxi (equation 13.6.1). When you are creating the compressed
file, you find the residual by applying (13.6.1) to the previousM points, subtracting
the sum from the actual value of the current point. When you are reconstructing the
original file, you add the residual back in, at the point indicated in the routinepredic.

It may not be obvious why there is any compression at all in this scheme. After
all, we are storing one value of residual per data point! Why not just store the original
data point? The answer depends on the relative sizes of the numbers involved. The
residual is obtained by subtracting two very nearly equal numbers (the data and the
linear prediction). Therefore, the discrepancy typically has only a very small number
of nonzero bits. These can be stored in a compressed file. How do you do it in a
high-level language? Here is one way: Scale your data to have integer values, say
between+1000000 and−1000000 (supposing that you need six significant figures).
Modify equation (13.6.1) by enclosing the sum term in an “integer part of” operator.
The discrepancy will now, by definition, be an integer. Experiment with different
values ofM , to find LP coefficients that make the range of the discrepancy as small
as you can. If you can get to within a range of±127 (and in our experience this is not
at all difficult) then you can write it to a file as a single byte. This is a compression
factor of 4, compared to 4-byte integer or floating formats.

Notice that the LP coefficients are computed using thequantized data, and that
the discrepancy is also quantized, i.e., quantization is done both outside and inside
the LPC loop. If you are careful in following this prescription, then, apart from the
initial quantization of the data, you will not introduce even a single bit of roundoff
error into the compression-reconstruction process: While the evaluation of the sum
in (13.6.11) may have roundoff errors, the residual that you store is the value which,
when added back to the sum, givesexactly the original (quantized) data value. Notice
also that you do not need to massage the LP coefficients for stability; by adding the
residual back in to each point, you never depart from the original data, so instabilities
cannot grow. There is therefore no need forfixrts, above.

Look at§20.4 to learn aboutHuffman coding, which will further compress the
residuals by taking advantage of the fact that smaller values of discrepancy will occur
more often than larger values. A very primitive version of Huffman coding would
be this: If most of the discrepancies are in the range±127, but an occasional one is
outside, then reserve the value 127 to mean “out of range,” and then record on the file
(immediately following the 127) a full-word value of the out-of-range discrepancy.
§20.4 explains how to do much better.

There are many variant procedures that all fall under the rubric of LPC.
• If the spectral character of the data is time-variable, then it is best not

to use a single set of LP coefficients for the whole data set, but rather
to partition the data into segments, computing and storing different LP
coefficients for each segment.

• If the data are really well characterized by their LP coefficients, and you
can tolerate some small amount of error, then don’t bother storing all of the
residuals. Just do linear prediction until you are outside of tolerances, then
reinitialize (usingM sequential stored residuals) and continue predicting.

• In some applications, most notably speech synthesis, one cares only about
the spectral content of the reconstructed signal, not the relative phases.
In this case, one need not store any starting values at all, but only the
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LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residualsxi arenot small. Thexi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see§13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filterand
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), especially the
paper by J. Makhoul (reprinted from Proceedings of the IEEE, vol. 63, p. 561, 1975).

Burg, J.P. 1968, reprinted in Childers, 1978. [1]

Anderson, N. 1974, reprinted in Childers, 1978. [2]

Cressie, N. 1991, in Spatial Statistics and Digital Image Analysis (Washington: National Academy
Press). [3]

Press, W.H., and Rybicki, G.B. 1992, Astrophysical Journal, vol. 398, pp. 169–176. [4]

13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval−fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complexf -plane to a new plane, called thez-transform
plane or z-plane, by the relation

z ≡ e2πif∆ (13.7.1)

where∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of thef -plane maps one-to-one onto the unit circle in the complexz-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled functionck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣∣∣∣∣∣

N/2−1∑
k=−N/2

ckzk

∣∣∣∣∣∣

2

(13.7.2)

Of course, (13.7.2) is not thetrue power spectrum of the underlying functionc(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, in the
time domain, the estimate is based on only a finite range of the functionc(t) which may, for all
we know, have continued fromt = −∞ to∞. Second, in thez-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic function of
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣∣∣∣∣
∞∑

k=−∞
ckzk

∣∣∣∣∣
2

(13.7.3)
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LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residuals xi are not small. The xi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see §13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filter and
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), especially the
paper by J. Makhoul (reprinted from Proceedings of the IEEE, vol. 63, p. 561, 1975).

Burg, J.P. 1968, reprinted in Childers, 1978. [1]

Anderson, N. 1974, reprinted in Childers, 1978. [2]

Cressie, N. 1991, in Spatial Statistics and Digital Image Analysis (Washington: National Academy
Press). [3]

Press, W.H., and Rybicki, G.B. 1992, Astrophysical Journal, vol. 398, pp. 169–176. [4]

13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval −fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complex f -plane to a new plane, called the z-transform
plane or z-plane, by the relation

z ≡ e2πif∆ (13.7.1)

where ∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of the f -plane maps one-to-one onto the unit circle in the complex z-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled function ck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣∣∣∣∣∣

N/2−1∑
k=−N/2

ckzk

∣∣∣∣∣∣

2

(13.7.2)

Of course, (13.7.2) is not the true power spectrum of the underlying function c(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, in the
time domain, the estimate is based on only a finite range of the function c(t) which may, for all
we know, have continued from t = −∞ to ∞. Second, in the z-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic function of
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣∣∣∣∣
∞∑

k=−∞
ckzk

∣∣∣∣∣
2

(13.7.3)
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This is an infinite Laurent series which depends on an infinite number of values ck. Equation
(13.7.2) is just one kind of analytic approximation to the analytic function of z represented
by (13.7.3); the kind, in fact, that is implicit in the use of FFTs to estimate power spectra by
periodogram methods. It goes under several names, including direct method, all-zero model,
and moving average (MA) model. The term “all-zero” in particular refers to the fact that the
model spectrum can have zeros in the z-plane, but not poles.

If we look at the problem of approximating (13.7.3) more generally it seems clear that
we could do a better job with a rational function, one with a series of type (13.7.2) in both the
numerator and the denominator. Less obviously, it turns out that there are some advantages in
an approximation whose free parameters all lie in the denominator, namely,

P (f) ≈ 1∣∣∣∣∣
M/2∑

k=−M/2

bkzk

∣∣∣∣∣
2 =

a0∣∣∣∣1 +
M∑

k=1

akzk

∣∣∣∣
2 (13.7.4)

Here the second equality brings in a new set of coefficients ak’s, which can be determined
from the bk’s using the fact that z lies on the unit circle. The bk’s can be thought of as
being determined by the condition that power series expansion of (13.7.4) agree with the
first M + 1 terms of (13.7.3). In practice, as we shall see, one determines the bk’s or
ak’s by another method.

The differences between the approximations (13.7.2) and (13.7.4) are not just cosmetic.
They are approximations with very different character. Most notable is the fact that (13.7.4)
can have poles, corresponding to infinite power spectral density, on the unit z-circle, i.e., at
real frequencies in the Nyquist interval. Such poles can provide an accurate representation
for underlying power spectra that have sharp, discrete “lines” or delta-functions. By contrast,
(13.7.2) can have only zeros, not poles, at real frequencies in the Nyquist interval, and must
thus attempt to fit sharp spectral features with, essentially, a polynomial. The approximation
(13.7.4) goes under several names: all-poles model, maximum entropy method (MEM),
autoregressive model (AR). We need only find out how to compute the coefficients a0 and the
ak’s from a data set, so that we can actually use (13.7.4) to obtain spectral estimates.

A pleasant surprise is that we already know how! Look at equation (13.6.11) for linear
prediction. Compare it with linear filter equations (13.5.1) and (13.5.2), and you will see that,
viewed as a filter that takes input x’s into output y’s, linear prediction has a filter function

H(f) =
1

1 −
N∑

j=1

djz−j

(13.7.5)

Thus, the power spectrum of the y’s should be equal to the power spectrum of the x’s
multiplied by |H(f)|2. Now let us think about what the spectrum of the input x’s is, when
they are residual discrepancies from linear prediction. Although we will not prove it formally,
it is intuitively believable that the x’s are independently random and therefore have a flat
(white noise) spectrum. (Roughly speaking, any residual correlations left in the x’s would
have allowed a more accurate linear prediction, and would have been removed.) The overall
normalization of this flat spectrum is just the mean square amplitude of the x’s. But this is
exactly the quantity computed in equation (13.6.13) and returned by the routine memcof as
xms. Thus, the coefficients a0 and ak in equation (13.7.4) are related to the LP coefficients
returned by memcof simply by

a0 = xms ak = −d(k), k = 1, . . . , M (13.7.6)

There is also another way to describe the relation between the ak’s and the autocorrelation
components φk. The Wiener-Khinchin theorem (12.0.12) says that the Fourier transform of
the autocorrelation is equal to the power spectrum. In z-transform language, this Fourier
transform is just a Laurent series in z. The equation that is to be satisfied by the coefficients
in equation (13.7.4) is thus

a0∣∣∣∣1 +
M∑

k=1

akzk

∣∣∣∣
2 ≈

M∑
j=−M

φjz
j (13.7.7)
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The approximately equal sign in (13.7.7) has a somewhat special interpretation. It means
that the series expansion of the left-hand side is supposed to agree with the right-hand side
term by term from z−M to zM . Outside this range of terms, the right-hand side is obviously
zero, while the left-hand side will still have nonzero terms. Notice that M , the number of
coefficients in the approximation on the left-hand side, can be any integer up to N , the total
number of autocorrelations available. (In practice, one often chooses M much smaller than
N .) M is called the order or number of poles of the approximation.

Whatever the chosen value of M , the series expansion of the left-hand side of (13.7.7)
defines a certain sort of extrapolation of the autocorrelation function to lags larger than M , in
fact even to lags larger than N , i.e., larger than the run of data can actually measure. It turns
out that this particular extrapolation can be shown to have, among all possible extrapolations,
the maximum entropy in a definable information-theoretic sense. Hence the name maximum
entropy method, or MEM. The maximum entropy property has caused MEM to acquire a
certain “cult” popularity; one sometimes hears that it gives an intrinsically “better” estimate
than is given by other methods. Don’t believe it. MEM has the very cute property of
being able to fit sharp spectral features, but there is nothing else magical about its power
spectrum estimates.

The operations count in memcof scales as the product of N (the number of data points)
and M (the desired order of the MEM approximation). If M were chosen to be as large as
N , then the method would be much slower than the N log N FFT methods of the previous
section. In practice, however, one usually wants to limit the order (or number of poles) of the
MEM approximation to a few times the number of sharp spectral features that one desires it
to fit. With this restricted number of poles, the method will smooth the spectrum somewhat,
but this is often a desirable property. While exact values depend on the application, one
might take M = 10 or 20 or 50 for N = 1000 or 10000. In that case MEM estimation is
not much slower than FFT estimation.

We feel obliged to warn you that memcof can be a bit quirky at times. If the number of
poles or number of data points is too large, roundoff error can be a problem, even in double
precision. With “peaky” data (i.e., data with extremely sharp spectral features), the algorithm
may suggest split peaks even at modest orders, and the peaks may shift with the phase of the
sine wave. Also, with noisy input functions, if you choose too high an order, you will find
spurious peaks galore! Some experts recommend the use of this algorithm in conjunction with
more conservative methods, like periodograms, to help choose the correct model order, and to
avoid getting too fooled by spurious spectral features. MEM can be finicky, but it can also do
remarkable things. We recommend that you try it out, cautiously, on your own problems. We
now turn to the evaluation of the MEM spectral estimate from its coefficients.

The MEM estimation (13.7.4) is a function of continuously varying frequency f . There
is no special significance to specific equally spaced frequencies as there was in the FFT
case. In fact, since the MEM estimate may have very sharp spectral features, one wants
to be able to evaluate it on a very fine mesh near to those features, but perhaps only more
coarsely farther away from them. Here is a subroutine which, given the coefficients already
computed, evaluates (13.7.4) and returns the estimated power spectrum as a function of f∆
(the frequency times the sampling interval). Of course, f∆ should lie in the Nyquist range
between −1/2 and 1/2.

FUNCTION evlmem(fdt,d,m,xms)
INTEGER m
REAL evlmem,fdt,xms,d(m)

Given d, m, xms as returned by memcof, this function returns the power spectrum estimate
P (f) as a function of fdt = f∆.

INTEGER i
REAL sumi,sumr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Trigonometric recurrences in double

precision.theta=6.28318530717959d0*fdt
wpr=cos(theta) Set up for recurrence relations.
wpi=sin(theta)
wr=1.d0
wi=0.d0
sumr=1. These will accumulate the denominator of (13.7.4).
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Figure 13.7.1. Sample output of maximum entropy spectral estimation. The input signal consists of
512 samples of the sum of two sinusoids of very nearly the same frequency, plus white noise with about
equal power. Shown is an expanded portion of the full Nyquist frequency interval (which would extend
from zero to 0.5). The dashed spectral estimate uses 20 poles; the dotted, 40; the solid, 150. With the
larger number of poles, the method can resolve the distinct sinusoids; but the flat noise background is
beginning to show spurious peaks. (Note logarithmic scale.)

sumi=0.
do 11 i=1,m Loop over the terms in the sum.

wtemp=wr
wr=wr*wpr-wi*wpi
wi=wi*wpr+wtemp*wpi
sumr=sumr-d(i)*sngl(wr)
sumi=sumi-d(i)*sngl(wi)

enddo 11

evlmem=xms/(sumr**2+sumi**2) Equation (13.7.4).
return
END

Be sure to evaluate P (f) on a fine enough grid to find any narrow features that may
be there! Such narrow features, if present, can contain virtually all of the power in the data.
You might also wish to know how the P (f) produced by the routines memcof and evlmem is
normalized with respect to the mean square value of the input data vector. The answer is

∫ 1/2

−1/2

P (f∆)d(f∆) = 2

∫ 1/2

0

P (f∆)d(f∆) = mean square value of data (13.7.8)

Sample spectra produced by the routines memcof and evlmem are shown in Figure 13.7.1.
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13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (13.8.1)

where ∆ is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

fc ≡ 1

2∆
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
complete information about all spectral components in a signal h(t) up to the Nyquist
frequency, and scrambled or aliased information about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set of ti’s.

There are some obvious ways to get from unevenly spaced ti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning [2] and Vanı́ček [3], and additionally
elaborated by Scargle [4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at times ti that are actually measured. Suppose that there are N data
points hi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡ 1

N

N∑
1

hi σ2 ≡ 1

N − 1

N∑
1

(hi − h)2 (13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) is defined by

PN(ω) ≡ 1

2σ2





[∑
j(hj − h) cos ω(tj − τ )

]2
∑

j cos2 ω(tj − τ )
+

[∑
j(hj − h) sin ω(tj − τ )

]2
∑

j sin2 ω(tj − τ )





(13.8.4)
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the significance of the Nyquist critical frequency

fc ≡ 1

2∆
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
complete information about all spectral components in a signal h(t) up to the Nyquist
frequency, and scrambled or aliased information about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set of ti’s.

There are some obvious ways to get from unevenly spaced ti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning [2] and Vanı́ček [3], and additionally
elaborated by Scargle [4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at times ti that are actually measured. Suppose that there are N data
points hi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡ 1

N

N∑
1

hi σ2 ≡ 1

N − 1

N∑
1

(hi − h)2 (13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) is defined by

PN(ω) ≡ 1

2σ2





[∑
j(hj − h) cos ω(tj − τ )

]2
∑

j cos2 ω(tj − τ )
+

[∑
j(hj − h) sin ω(tj − τ )

]2
∑

j sin2 ω(tj − τ )


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
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Here τ is defined by the relation

tan(2ωτ ) =

∑
j sin 2ωtj∑
j cos 2ωtj

(13.8.5)

The constant τ is a kind of offset that makes PN(ω) completely independent of shifting
all the ti’s by any constant. Lomb shows that this particular choice of offset has another,
deeper, effect: It makes equation (13.8.4) identical to the equation that one would obtain if one
estimated the harmonic content of a data set, at a given frequency ω, by linear least-squares
fitting to the model

h(t) = A cos ωt + B sin ωt (13.8.6)

This fact gives some insight into why the method can give results superior to FFT methods: It
weights the data on a “per point” basis instead of on a “per time interval” basis, when uneven
sampling can render the latter seriously in error.

A very common occurrence is that the measured data points hi are the sum of a periodic
signal and independent (white) Gaussian noise. If we are trying to determine the presence
or absence of such a periodic signal, we want to be able to give a quantitative answer to
the question, “How significant is a peak in the spectrum PN (ω)?” In this question, the null
hypothesis is that the data values are independent Gaussian random values. A very nice
property of the Lomb normalized periodogram is that the viability of the null hypothesis can
be tested fairly rigorously, as we now discuss.

The word “normalized” refers to the factor σ2 in the denominator of equation (13.8.4).
Scargle [4] shows that with this normalization, at any particular ω and in the case of the null
hypothesis, PN(ω) has an exponential probability distribution with unit mean. In other words,
the probability that PN (ω) will be between some positive z and z + dz is exp(−z)dz. It
readily follows that, if we scan some M independent frequencies, the probability that none
give values larger than z is (1 − e−z)M . So

P (> z) ≡ 1 − (1 − e−z)M (13.8.7)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak
in PN (ω) that we do see. A small value for the false-alarm probability indicates a highly
significant periodic signal.

To evaluate this significance, we need to know M . After all, the more frequencies we
look at, the less significant is some one modest bump in the spectrum. (Look long enough,
find anything!) A typical procedure will be to plot PN (ω) as a function of many closely
spaced frequencies in some large frequency range. How many of these are independent?

Before answering, let us first see how accurately we need to know M . The interesting
region is where the significance is a small (significant) number, � 1. There, equation (13.8.7)
can be series expanded to give

P (> z) ≈ Me−z (13.8.8)

We see that the significance scales linearly with M . Practical significance levels are numbers
like 0.05, 0.01, 0.001, etc. An error of even ±50% in the estimated significance is often
tolerable, since quoted significance levels are typically spaced apart by factors of 5 or 10. So
our estimate of M need not be very accurate.

Horne and Baliunas [5] give results from extensive Monte Carlo experiments for deter-
mining M in various cases. In general M depends on the number of frequencies sampled,
the number of data points N , and their detailed spacing. It turns out that M is very nearly
equal to N when the data points are approximately equally spaced, and when the sampled
frequencies “fill” (oversample) the frequency range from 0 to the Nyquist frequency fc

(equation 13.8.2). Further, the value of M is not importantly different for random spacing of
the data points than for equal spacing. When a larger frequency range than the Nyquist range
is sampled, M increases proportionally. About the only case where M differs significantly
from the case of evenly spaced points is when the points are closely clumped, say into
groups of 3; then (as one would expect) the number of independent frequencies is reduced
by a factor of about 3.
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Figure 13.8.1. Example of the Lomb algorithm in action. The 100 data points (upper figure) are at
random times between 0 and 100. Their sinusoidal component is readily uncovered (lower figure) by
the algorithm, at a significance level better than 0.001. If the 100 data points had been evenly spaced at
unit interval, the Nyquist critical frequency would have been 0.5. Note that, for these unevenly spaced
points, there is no visible aliasing into the Nyquist range.

The program period, below, calculates an effective value for M based on the above
rough-and-ready rules and assumes that there is no important clumping. This will be adequate
for most purposes. In any particular case, if it really matters, it is not too difficult to compute
a better value of M by simple Monte Carlo: Holding fixed the number of data points and their
locations ti, generate synthetic data sets of Gaussian (normal) deviates, find the largest values
of PN (ω) for each such data set (using the accompanying program), and fit the resulting
distribution for M in equation (13.8.7).

Figure 13.8.1 shows the results of applying the method as discussed so far. In the
upper figure, the data points are plotted against time. Their number is N = 100, and their
distribution in t is Poisson random. There is certainly no sinusoidal signal evident to the eye.
The lower figure plots PN(ω) against frequency f = ω/2π. The Nyquist critical frequency
that would obtain if the points were evenly spaced is at f = fc = 0.5. Since we have searched
up to about twice that frequency, and oversampled the f ’s to the point where successive values
of PN (ω) vary smoothly, we take M = 2N . The horizontal dashed and dotted lines are
(respectively from bottom to top) significance levels 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001.
One sees a highly significant peak at a frequency of 0.81. That is in fact the frequency of the
sine wave that is present in the data. (You will have to take our word for this!)

Note that two other peaks approach, but do not exceed the 50% significance level; that
is about what one might expect by chance. It is also worth commenting on the fact that the
significant peak was found (correctly) above the Nyquist frequency and without any significant
aliasing down into the Nyquist interval! That would not be possible for evenly spaced data. It
is possible here because the randomly spaced data has some points spaced much closer than
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the “average” sampling rate, and these remove ambiguity from any aliasing.
Implementation of the normalized periodogram in code is straightforward, with, however,

a few points to be kept in mind. We are dealing with a slow algorithm. Typically, for N data
points, we may wish to examine on the order of 2N or 4N frequencies. Each combination
of frequency and data point has, in equations (13.8.4) and (13.8.5), not just a few adds or
multiplies, but four calls to trigonometric functions; the operations count can easily reach
several hundred times N2. It is highly desirable — in fact results in a factor 4 speedup —
to replace these trigonometric calls by recurrences. That is possible only if the sequence of
frequencies examined is a linear sequence. Since such a sequence is probably what most users
would want anyway, we have built this into the implementation.

At the end of this section we describe a way to evaluate equations (13.8.4) and (13.8.5)
— approximately, but to any desired degree of approximation — by a fast method [6] whose
operation count goes only as N log N . This faster method should be used for long data sets.

The lowest independent frequency f to be examined is the inverse of the span of the
input data, maxi(ti)−mini(ti) ≡ T . This is the frequency such that the data can include one
complete cycle. In subtracting off the data’s mean, equation (13.8.4) already assumed that you
are not interested in the data’s zero-frequency piece — which is just that mean value. In an
FFT method, higher independent frequencies would be integer multiples of 1/T . Because we
are interested in the statistical significance of any peak that may occur, however, we had better
(over-) sample more finely than at interval 1/T , so that sample points lie close to the top of
any peak. Thus, the accompanying program includes an oversampling parameter, called ofac;
a value ofac >∼ 4 might be typical in use. We also want to specify how high in frequency
to go, say fhi. One guide to choosing fhi is to compare it with the Nyquist frequency fc

which would obtain if the N data points were evenly spaced over the same span T , that is
fc = N/(2T ). The accompanying program includes an input parameter hifac, defined as
fhi/fc. The number of different frequencies NP returned by the program is then given by

NP =
ofac× hifac

2
N (13.8.9)

(You have to remember to dimension the output arrays to at least this size.)
The code does the trigonometric recurrences in double precision and embodies a few

tricks with trigonometric identities, to decrease roundoff errors. If you are an aficionado of
such things you can puzzle it out. A final detail is that equation (13.8.7) will fail because of
roundoff error if z is too large; but equation (13.8.8) is fine in this regime.

SUBROUTINE period(x,y,n,ofac,hifac,px,py,np,nout,jmax,prob)
INTEGER jmax,n,nout,np,NMAX
REAL hifac,ofac,prob,px(np),py(np),x(n),y(n)
PARAMETER (NMAX=2000) Maximum expected value of n.

C USES avevar
Given n data points with abscissas x(1:n) (which need not be equally spaced) and ordinates
y(1:n), and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px with an increasing sequence of frequencies (not angular frequencies)
up to hifac times the “average” Nyquist frequency, and fills array py with the values of
the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
np, the dimension of px and py, must be large enough to contain the output, or an error
(pause) results. The routine also returns jmax such that py(jmax) is the maximum element
in py, and prob, an estimate of the significance of that maximum against the hypothesis of
random noise. A small value of prob indicates that a significant periodic signal is present.

INTEGER i,j
REAL ave,c,cc,cwtau,effm,expy,pnow,pymax,s,ss,sumc,sumcy,

* sums,sumsh,sumsy,swtau,var,wtau,xave,xdif,xmax,xmin,yy
DOUBLE PRECISION arg,wtemp,wi(NMAX),wpi(NMAX),

* wpr(NMAX),wr(NMAX),TWOPID
PARAMETER (TWOPID=6.2831853071795865D0)
nout=0.5*ofac*hifac*n
if(nout.gt.np) pause ’output arrays too short in period’
call avevar(y,n,ave,var) Get mean and variance of the input data.
if(var.eq.0.) pause ’zero variance in period’
xmax=x(1)
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xmin=x(1) Go through data to get the range of abscissas.
do 11 j=1,n

if(x(j).gt.xmax)xmax=x(j)
if(x(j).lt.xmin)xmin=x(j)

enddo 11

xdif=xmax-xmin
xave=0.5*(xmax+xmin)
pymax=0.
pnow=1./(xdif*ofac) Starting frequency.
do 12 j=1,n Initialize values for the trigonometric recurrences

at each data point. The recurrences are done
in double precision.

arg=TWOPID*((x(j)-xave)*pnow)
wpr(j)=-2.d0*sin(0.5d0*arg)**2
wpi(j)=sin(arg)
wr(j)=cos(arg)
wi(j)=wpi(j)

enddo 12

do 15 i=1,nout Main loop over the frequencies to be evaluated.
px(i)=pnow
sumsh=0.
sumc=0. First, loop over the data to get τ and related quantities.
do 13 j=1,n

c=wr(j)
s=wi(j)
sumsh=sumsh+s*c
sumc=sumc+(c-s)*(c+s)

enddo 13

wtau=0.5*atan2(2.*sumsh,sumc)
swtau=sin(wtau)
cwtau=cos(wtau)
sums=0.
sumc=0.
sumsy=0. Then, loop over the data again to get the periodogram value.
sumcy=0.
do 14 j=1,n

s=wi(j)
c=wr(j)
ss=s*cwtau-c*swtau
cc=c*cwtau+s*swtau
sums=sums+ss**2
sumc=sumc+cc**2
yy=y(j)-ave
sumsy=sumsy+yy*ss
sumcy=sumcy+yy*cc
wtemp=wr(j) Update the trigonometric recurrences.
wr(j)=(wr(j)*wpr(j)-wi(j)*wpi(j))+wr(j)
wi(j)=(wi(j)*wpr(j)+wtemp*wpi(j))+wi(j)

enddo 14

py(i)=0.5*(sumcy**2/sumc+sumsy**2/sums)/var
if (py(i).ge.pymax) then

pymax=py(i)
jmax=i

endif
pnow=pnow+1./(ofac*xdif)The next frequency.

enddo 15

expy=exp(-pymax) Evaluate statistical significance of the maximum.
effm=2.*nout/ofac
prob=effm*expy
if(prob.gt.0.01)prob=1.-(1.-expy)**effm
return
END
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Fast Computation of the Lomb Periodogram

We here show how equations (13.8.4) and (13.8.5) can be calculated — approximately,
but to any desired precision — with an operation count only of order NP log NP . The
method uses the FFT, but it is in no sense an FFT periodogram of the data. It is an actual
evaluation of equations (13.8.4) and (13.8.5), the Lomb normalized periodogram, with exactly
that method’s strengths and weaknesses. This fast algorithm, due to Press and Rybicki [6],
makes feasible the application of the Lomb method to data sets at least as large as 106 points;
it is already faster than straightforward evaluation of equations (13.8.4) and (13.8.5) for data
sets as small as 60 or 100 points.

Notice that the trigonometric sums that occur in equations (13.8.5) and (13.8.4) can be
reduced to four simpler sums. If we define

Sh ≡
N∑

j=1

(hj − h̄) sin(ωtj) Ch ≡
N∑

j=1

(hj − h̄) cos(ωtj) (13.8.10)

and

S2 ≡
N∑

j=1

sin(2ωtj) C2 ≡
N∑

j=1

cos(2ωtj) (13.8.11)

then
N∑

j=1

(hj − h̄) cos ω(tj − τ ) = Ch cos ωτ + Sh sin ωτ

N∑
j=1

(hj − h̄) sin ω(tj − τ ) = Sh cos ωτ − Ch sin ωτ

N∑
j=1

cos2 ω(tj − τ ) =
N

2
+

1

2
C2 cos(2ωτ ) +

1

2
S2 sin(2ωτ )

N∑
j=1

sin2 ω(tj − τ ) =
N

2
− 1

2
C2 cos(2ωτ ) − 1

2
S2 sin(2ωτ )

(13.8.12)

Now notice that if the tjs were evenly spaced, then the four quantities Sh, Ch, S2, and C2 could
be evaluated by two complex FFTs, and the results could then be substituted back through
equation (13.8.12) to evaluate equations (13.8.5) and (13.8.4). The problem is therefore only
to evaluate equations (13.8.10) and (13.8.11) for unevenly spaced data.

Interpolation, or rather reverse interpolation — we will here call it extirpolation —
provides the key. Interpolation, as classically understood, uses several function values on a
regular mesh to construct an accurate approximation at an arbitrary point. Extirpolation, just
the opposite, replaces a function value at an arbitrary point by several function values on a
regular mesh, doing this in such a way that sums over the mesh are an accurate approximation
to sums over the original arbitrary point.

It is not hard to see that the weight functions for extirpolation are identical to those for
interpolation. Suppose that the function h(t) to be extirpolated is known only at the discrete
(unevenly spaced) points h(ti) ≡ hi, and that the function g(t) (which will be, e.g., cos ωt)
can be evaluated anywhere. Let t̂k be a sequence of evenly spaced points on a regular mesh.
Then Lagrange interpolation (§3.1) gives an approximation of the form

g(t) ≈
∑

k

wk(t)g(t̂k) (13.8.13)

where wk(t) are interpolation weights. Now let us evaluate a sum of interest by the following
scheme:

N∑
j=1

hjg(tj) ≈
N∑

j=1

hj

[∑
k

wk(tj)g(t̂k)

]
=
∑

k

[
N∑

j=1

hjwk(tj)

]
g(t̂k) ≡

∑
k

ĥk g(t̂k)

(13.8.14)
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Here ĥk ≡ ∑
j hjwk(tj). Notice that equation (13.8.14) replaces the original sum by one

on the regular mesh. Notice also that the accuracy of equation (13.8.13) depends only on the
fineness of the mesh with respect to the function g and has nothing to do with the spacing of the
points tj or the function h; therefore the accuracy of equation (13.8.14) also has this property.

The general outline of the fast evaluation method is therefore this: (i) Choose a mesh
size large enough to accommodate some desired oversampling factor, and large enough to
have several extirpolation points per half-wavelength of the highest frequency of interest. (ii)
Extirpolate the values hi onto the mesh and take the FFT; this gives Sh and Ch in equation
(13.8.10). (iii) Extirpolate the constant values 1 onto another mesh, and take its FFT; this,
with some manipulation, gives S2 and C2 in equation (13.8.11). (iv) Evaluate equations
(13.8.12), (13.8.5), and (13.8.4), in that order.

There are several other tricks involved in implementing this algorithm efficiently. You
can figure most out from the code, but we will mention the following points: (a) A nice way
to get transform values at frequencies 2ω instead of ω is to stretch the time-domain data by a
factor 2, and then wrap it to double-cover the original length. (This trick goes back to Tukey.)
In the program, this appears as a modulo function. (b) Trigonometric identities are used to get
from the left-hand side of equation (13.8.5) to the various needed trigonometric functions of
ωτ . FORTRAN identifiers like (e.g.) cwt and hs2wt represent quantities like (e.g.) cos ωτ and
1
2

sin(2ωτ ). (c) The subroutine spread does extirpolation onto the M most nearly centered
mesh points around an arbitrary point; its turgid code evaluates coefficients of the Lagrange
interpolating polynomials, in an efficient manner.

SUBROUTINE fasper(x,y,n,ofac,hifac,wk1,wk2,nwk,nout,jmax,prob)
INTEGER jmax,n,nout,nwk,MACC
REAL hifac,ofac,prob,wk1(nwk),wk2(nwk),x(n),y(n)
PARAMETER (MACC=4) Number of interpolation points per 1/4 cycle of highest fre-

quency.C USES avevar,realft,spread
Given n data points with abscissas x (which need not be equally spaced) and ordinates y,
and given a desired oversampling factor ofac (a typical value being 4 or larger), this routine
fills array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up
to hifac times the “average” Nyquist frequency, and fills array wk2 with the values of the
Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
nwk, the dimension of wk1 and wk2, must be large enough for intermediate work space,
or an error (pause) results. The routine also returns jmax such that wk2(jmax) is the
maximum element in wk2, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
periodic signal is present.

INTEGER j,k,ndim,nfreq,nfreqt
REAL ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,

* hs2wt,hypo,pmax,sterm,swt,var,xdif,xmax,xmin
EXTERNAL spread
nout=0.5*ofac*hifac*n
nfreqt=ofac*hifac*n*MACC Size the FFT as next power of 2 above nfreqt.
nfreq=64

1 if (nfreq.lt.nfreqt) then
nfreq=nfreq*2

goto 1
endif
ndim=2*nfreq
if(ndim.gt.nwk) pause ’workspaces too small in fasper’
call avevar(y,n,ave,var) Compute the mean, variance, and range of the data.
if(var.eq.0.) pause ’zero variance in fasper’
xmin=x(1)
xmax=xmin
do 11 j=2,n

if(x(j).lt.xmin)xmin=x(j)
if(x(j).gt.xmax)xmax=x(j)

enddo 11

xdif=xmax-xmin
do 12 j=1,ndim Zero the workspaces.

wk1(j)=0.
wk2(j)=0.
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enddo 12

fac=ndim/(xdif*ofac)
fndim=ndim
do 13 j=1,n Extirpolate the data into the workspaces.

ck=1.+mod((x(j)-xmin)*fac,fndim)
ckk=1.+mod(2.*(ck-1.),fndim)
call spread(y(j)-ave,wk1,ndim,ck,MACC)
call spread(1.,wk2,ndim,ckk,MACC)

enddo 13

call realft(wk1,ndim,1) Take the Fast Fourier Transforms.
call realft(wk2,ndim,1)
df=1./(xdif*ofac)
k=3
pmax=-1.
do 14 j=1,nout Compute the Lomb value for each frequency.

hypo=sqrt(wk2(k)**2+wk2(k+1)**2)
hc2wt=0.5*wk2(k)/hypo
hs2wt=0.5*wk2(k+1)/hypo
cwt=sqrt(0.5+hc2wt)
swt=sign(sqrt(0.5-hc2wt),hs2wt)
den=0.5*n+hc2wt*wk2(k)+hs2wt*wk2(k+1)
cterm=(cwt*wk1(k)+swt*wk1(k+1))**2/den
sterm=(cwt*wk1(k+1)-swt*wk1(k))**2/(n-den)
wk1(j)=j*df
wk2(j)=(cterm+sterm)/(2.*var)
if (wk2(j).gt.pmax) then

pmax=wk2(j)
jmax=j

endif
k=k+2

enddo 14 Estimate significance of largest peak value.
expy=exp(-pmax)
effm=2.*nout/ofac
prob=effm*expy
if(prob.gt.0.01)prob=1.-(1.-expy)**effm
return
END

SUBROUTINE spread(y,yy,n,x,m)
INTEGER m,n
REAL x,y,yy(n)

Given an array yy of length n, extirpolate (spread) a value y into m actual array elements
that best approximate the “fictional” (i.e., possibly noninteger) array element number x.
The weights used are coefficients of the Lagrange interpolating polynomial.

INTEGER ihi,ilo,ix,j,nden,nfac(10)
REAL fac
SAVE nfac
DATA nfac /1,1,2,6,24,120,720,5040,40320,362880/
if(m.gt.10) pause ’factorial table too small in spread’
ix=x
if(x.eq.float(ix))then

yy(ix)=yy(ix)+y
else

ilo=min(max(int(x-0.5*m+1.0),1),n-m+1)
ihi=ilo+m-1
nden=nfac(m)
fac=x-ilo
do 11 j=ilo+1,ihi

fac=fac*(x-j)
enddo 11

yy(ihi)=yy(ihi)+y*fac/(nden*(x-ihi))
do 12 j=ihi-1,ilo,-1

nden=(nden/(j+1-ilo))*(j-ihi)
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yy(j)=yy(j)+y*fac/(nden*(x-j))
enddo 12

endif
return
END

CITED REFERENCES AND FURTHER READING:

Lomb, N.R. 1976, Astrophysics and Space Science, vol. 39, pp. 447–462. [1]
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values of ω. In cases of interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, where M is a large integer, and define

∆ ≡ b − a

M
, tj ≡ a + j∆ , hj ≡ h(tj) , j = 0, . . . , M (13.9.3)

Notice that h0 = h(a) and hM = h(b), and that there are M + 1 values hj . We can
approximate the integral I by a sum,

I ≈ ∆

M−1∑
j=0

hj exp(iωtj) (13.9.4)

which is at any rate first-order accurate. (If we centered the hj’s and the tj’s in the intervals,
we could be accurate to second order.) Now for certain values of ω and M , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can choose M to be an integer
power of 2, and define a set of special ω’s by

ωm∆ ≡ 2πm

M
(13.9.5)
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yy(j)=yy(j)+y*fac/(nden*(x-j))
enddo 12

endif
return
END
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values of ω. In cases of interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, where M is a large integer, and define

∆ ≡ b − a

M
, tj ≡ a + j∆ , hj ≡ h(tj) , j = 0, . . . , M (13.9.3)

Notice that h0 = h(a) and hM = h(b), and that there are M + 1 values hj . We can
approximate the integral I by a sum,

I ≈ ∆

M−1∑
j=0

hj exp(iωtj) (13.9.4)

which is at any rate first-order accurate. (If we centered the hj’s and the tj’s in the intervals,
we could be accurate to second order.) Now for certain values of ω and M , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can choose M to be an integer
power of 2, and define a set of special ω’s by

ωm∆ ≡ 2πm

M
(13.9.5)
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where m has the values m = 0, 1, . . . , M/2 − 1. Then equation (13.9.4) becomes

I(ωm) ≈ ∆eiωma
M−1∑
j=0

hje
2πimj/M = ∆eiωma[DFT(h0 . . . hM−1)]m (13.9.6)

Equation (13.9.6), while simple and clear, is emphatically not recommended for use: It is
likely to give wrong answers!

The problem lies in the oscillatory nature of the integral (13.9.1). If h(t) is at all smooth,
and if ω is large enough to imply several cycles in the interval [a, b] — in fact, ωm in equation
(13.9.5) gives exactly m cycles — then the value of I is typically very small, so small that
it is easily swamped by first-order, or even (with centered values) second-order, truncation
error. Furthermore, the characteristic “small parameter” that occurs in the error term is not
∆/(b− a) = 1/M , as it would be if the integrand were not oscillatory, but ω∆, which can be
as large as π for ω’s within the Nyquist interval of the DFT (cf. equation 13.9.5). The result
is that equation (13.9.6) becomes systematically inaccurate as ω increases.

It is a sobering exercise to implement equation (13.9.6) for an integral that can be done
analytically, and to see just how bad it is. We recommend that you try it.

Let us therefore turn to a more sophisticated treatment. Given the sampled points hj , we
can approximate the function h(t) everywhere in the interval [a, b] by interpolation on nearby
hj ’s. The simplest case is linear interpolation, using the two nearest hj’s, one to the left and
one to the right. A higher-order interpolation, e.g., would be cubic interpolation, using two
points to the left and two to the right — except in the first and last subintervals, where we
must interpolate with three hj ’s on one side, one on the other.

The formulas for such interpolation schemes are (piecewise) polynomial in the inde-
pendent variable t, but with coefficients that are of course linear in the function values
hj . Although one does not usually think of it in this way, interpolation can be viewed as
approximating a function by a sum of kernel functions (which depend only on the interpolation
scheme) times sample values (which depend only on the function). Let us write

h(t) ≈
M∑

j=0

hj ψ

(
t − tj

∆

)
+

∑
j=endpoints

hj ϕj

(
t − tj

∆

)
(13.9.7)

Here ψ(s) is the kernel function of an interior point: It is zero for s sufficiently negative
or sufficiently positive, and becomes nonzero only when s is in the range where the
hj multiplying it is actually used in the interpolation. We always have ψ(0) = 1 and
ψ(m) = 0, m = ±1,±2, . . . , since interpolation right on a sample point should give the
sampled function value. For linear interpolation ψ(s) is piecewise linear, rises from 0 to 1
for s in (−1, 0), and falls back to 0 for s in (0, 1). For higher-order interpolation, ψ(s) is
made up piecewise of segments of Lagrange interpolation polynomials. It has discontinuous
derivatives at integer values of s, where the pieces join, because the set of points used in
the interpolation changes discretely.

As already remarked, the subintervals closest to a and b require different (noncentered)
interpolation formulas. This is reflected in equation (13.9.7) by the second sum, with the
special endpoint kernels ϕj(s). Actually, for reasons that will become clearer below, we have
included all the points in the first sum (with kernel ψ), so the ϕj ’s are actually differences
between true endpoint kernels and the interior kernel ψ. It is a tedious, but straightforward,
exercise to write down all the ϕj(s)’s for any particular order of interpolation, each one
consisting of differences of Lagrange interpolating polynomials spliced together piecewise.

Now apply the integral operator
∫ b

a
dt exp(iωt) to both sides of equation (13.9.7),

interchange the sums and integral, and make the changes of variable s = (t − tj)/∆ in the
first sum, s = (t − a)/∆ in the second sum. The result is

I ≈ ∆eiωa

[
W (θ)

M∑
j=0

hje
ijθ +

∑
j=endpoints

hjαj(θ)

]
(13.9.8)

Here θ ≡ ω∆, and the functions W (θ) and αj(θ) are defined by

W (θ) ≡
∫ ∞

−∞
ds eiθsψ(s) (13.9.9)
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αj(θ) ≡
∫ ∞

−∞
ds eiθsϕj(s − j) (13.9.10)

The key point is that equations (13.9.9) and (13.9.10) can be evaluated, analytically,
once and for all, for any given interpolation scheme. Then equation (13.9.8) is an algorithm
for applying “endpoint corrections” to a sum which (as we will see) can be done using the
FFT, giving a result with high-order accuracy.

We will consider only interpolations that are left-right symmetric. Then symmetry
implies

ϕM−j(s) = ϕj(−s) αM−j(θ) = eiθMα*
j (θ) = eiω(b−a)α*

j (θ) (13.9.11)

where * denotes complex conjugation. Also, ψ(s) = ψ(−s) implies that W (θ) is real.
Turn now to the first sum in equation (13.9.8), which we want to do by FFT methods.

To do so, choose some N that is an integer power of 2 with N ≥ M + 1. (Note that
M need not be a power of two, so M = N − 1 is allowed.) If N > M + 1, define
hj ≡ 0, M + 1 < j ≤ N − 1, i.e., “zero pad” the array of hj ’s so that j takes on the range
0 ≤ j ≤ N − 1. Then the sum can be done as a DFT for the special values ω = ωn given by

ωn∆ ≡ 2πn

N
≡ θ n = 0, 1, . . . ,

N

2
− 1 (13.9.12)

For fixed M , the larger N is chosen, the finer the sampling in frequency space. The
value M , on the other hand, determines the highest frequency sampled, since ∆ decreases
with increasing M (equation 13.9.3), and the largest value of ω∆ is always just under π
(equation 13.9.12). In general it is advantageous to oversample by at least a factor of 4, i.e.,
N > 4M (see below). We can now rewrite equation (13.9.8) in its final form as

I(ωn) = ∆eiωna

{
W (θ)[DFT(h0 . . . hN−1)]n

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3 + . . .

+ eiω(b−a)
[
α*

0(θ)hM + α*
1(θ)hM−1 + α*

2(θ)hM−2 + α*
3(θ)hM−3 + . . .

]}

(13.9.13)
For cubic (or lower) polynomial interpolation, at most the terms explicitly shown above

are nonzero; the ellipses (. . .) can therefore be ignored, and we need explicit forms only for
the functions W, α0, α1, α2, α3, calculated with equations (13.9.9) and (13.9.10). We have
worked these out for you, in the trapezoidal (second-order) and cubic (fourth-order) cases.
Here are the results, along with the first few terms of their power series expansions for small θ:

Trapezoidal order:

W (θ) =
2(1 − cos θ)

θ2
≈ 1 − 1

12
θ2 +

1

360
θ4 − 1

20160
θ6

α0(θ) = − (1 − cos θ)

θ2
+ i

(θ − sin θ)

θ2

≈ −1

2
+

1

24
θ2 − 1

720
θ4 +

1

40320
θ6 + iθ

(
1

6
− 1

120
θ2 +

1

5040
θ4 − 1

362880
θ6

)

α1 = α2 = α3 = 0
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Cubic order:

W (θ) =

(
6 + θ2

3θ4

)
(3 − 4 cos θ + cos 2θ) ≈ 1 − 11

720
θ4 +

23

15120
θ6

α0(θ) =
(−42 + 5θ2) + (6 + θ2)(8 cos θ − cos 2θ)

6θ4
+ i

(−12θ + 6θ3) + (6 + θ2) sin 2θ

6θ4

≈ −2

3
+

1

45
θ2 +

103

15120
θ4 − 169

226800
θ6 + iθ

(
2

45
+

2

105
θ2 − 8

2835
θ4 +

86

467775
θ6

)

α1(θ) =
14(3 − θ2) − 7(6 + θ2) cos θ

6θ4
+ i

30θ − 5(6 + θ2) sin θ

6θ4

≈ 7

24
− 7

180
θ2 +

5

3456
θ4 − 7

259200
θ6 + iθ

(
7

72
− 1

168
θ2 +

11

72576
θ4 − 13

5987520
θ6

)

α2(θ) =
−4(3 − θ2) + 2(6 + θ2) cos θ

3θ4
+ i

−12θ + 2(6 + θ2) sin θ

3θ4

≈ −1

6
+

1

45
θ2 − 5

6048
θ4 +

1

64800
θ6 + iθ

(
− 7

90
+

1

210
θ2 − 11

90720
θ4 +

13

7484400
θ6

)

α3(θ) =
2(3 − θ2) − (6 + θ2) cos θ

6θ4
+ i

6θ − (6 + θ2) sin θ

6θ4

≈ 1

24
− 1

180
θ2 +

5

24192
θ4 − 1

259200
θ6 + iθ

(
7

360
− 1

840
θ2 +

11

362880
θ4 − 13

29937600
θ6

)

The program dftcor, below, implements the endpoint corrections for the cubic case.
Given input values of ω, ∆, a, b, and an array with the eight values h0 , . . . , h3, hM−3, . . . , hM ,
it returns the real and imaginary parts of the endpoint corrections in equation (13.9.13), and the
factor W (θ). The code is turgid, but only because the formulas above are complicated. The
formulas have cancellations to high powers of θ. It is therefore necessary to compute the right-
hand sides in double precision, even when the corrections are desired only to single precision.
It is also necessary to use the series expansion for small values of θ. The optimal cross-over
value of θ depends on your machine’s wordlength, but you can always find it experimentally
as the largest value where the two methods give identical results to machine precision.

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
REAL a,b,corfac,corim,corre,delta,w,endpts(8)

For an integral approximated by a discrete Fourier transform, this routine computes the
correction factor that multiplies the DFT and the endpoint correction to be added. Input
is the angular frequency w, stepsize delta, lower and upper limits of the integral a and b,
while the array endpts contains the first 4 and last 4 function values. The correction factor
W (θ) is returned as corfac, while the real and imaginary parts of the endpoint correction
are returned as corre and corim.

REAL a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,
* t2,t4,t6

DOUBLE PRECISION cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,
* tmth2,tth4i

th=w*delta
if (a.ge.b.or.th.lt.0.d0.or.th.gt.3.1416d0)

* pause ’bad arguments to dftcor’
if(abs(th).lt.5.d-2)then Use series.

t=th
t2=t*t
t4=t2*t2
t6=t4*t2
corfac=1.-(11./720.)*t4+(23./15120.)*t6
a0r=(-2./3.)+t2/45.+(103./15120.)*t4-(169./226800.)*t6
a1r=(7./24.)-(7./180.)*t2+(5./3456.)*t4-(7./259200.)*t6
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a2r=(-1./6.)+t2/45.-(5./6048.)*t4+t6/64800.
a3r=(1./24.)-t2/180.+(5./24192.)*t4-t6/259200.
a0i=t*(2./45.+(2./105.)*t2-(8./2835.)*t4+(86./467775.)*t6)
a1i=t*(7./72.-t2/168.+(11./72576.)*t4-(13./5987520.)*t6)
a2i=t*(-7./90.+t2/210.-(11./90720.)*t4+(13./7484400.)*t6)
a3i=t*(7./360.-t2/840.+(11./362880.)*t4-(13./29937600.)*t6)

else Use trigonometric formulas in double precision.
cth=cos(th)
sth=sin(th)
ctth=cth**2-sth**2
stth=2.d0*sth*cth
th2=th*th
th4=th2*th2
tmth2=3.d0-th2
spth2=6.d0+th2
sth4i=1./(6.d0*th4)
tth4i=2.d0*sth4i
corfac=tth4i*spth2*(3.d0-4.d0*cth+ctth)
a0r=sth4i*(-42.d0+5.d0*th2+spth2*(8.d0*cth-ctth))
a0i=sth4i*(th*(-12.d0+6.d0*th2)+spth2*stth)
a1r=sth4i*(14.d0*tmth2-7.d0*spth2*cth)
a1i=sth4i*(30.d0*th-5.d0*spth2*sth)
a2r=tth4i*(-4.d0*tmth2+2.d0*spth2*cth)
a2i=tth4i*(-12.d0*th+2.d0*spth2*sth)
a3r=sth4i*(2.d0*tmth2-spth2*cth)
a3i=sth4i*(6.d0*th-spth2*sth)

endif
cl=a0r*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
sl=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=a0r*endpts(8)+a1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
arg=w*(b-a)
c=cos(arg)
s=sin(arg)
corre=cl+c*cr-s*sr
corim=sl+s*cr+c*sr
return
END

Since the use of dftcor can be confusing, we also give an illustrative program dftint
which uses dftcor to compute equation (13.9.1) for general a, b, ω, and h(t). Several points
within this program bear mentioning: The parameters M and NDFT correspond to M and N
in the above discussion. On successive calls, we recompute the Fourier transform only if a
or b has changed. (We should also recompute if h(t) has changed, but FORTRAN doesn’t
provide a way for us to test this.)

Since dftint is designed to work for any value of ω satisfying ω∆ < π, not just the
special values returned by the DFT (equation 13.9.12), we do polynomial interpolation of
degree MPOL on the DFT spectrum. You should be warned that a large factor of oversampling
(N � M ) is required for this interpolation to be accurate. After interpolation, we add the
endpoint corrections from dftcor, which can be evaluated for any ω.

While dftcor is good at what it does, dftint is illustrative only. It is not a general
purpose program, because it does not adapt its parameters M, NDFT, MPOL, or its interpolation
scheme, to any particular function h(t). You will have to experiment with your own application.

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
INTEGER M,NDFT,MPOL
REAL a,b,cosint,sinint,w,func,TWOPI
PARAMETER (M=64,NDFT=1024,MPOL=6,TWOPI=2.*3.14159265)
EXTERNAL func

C USES dftcor,func,polint,realft
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Example program illustrating how to use the routine dftcor. The user supplies an external

function func that returns the quantity h(t). The routine then returns
∫ b
a cos(ωt)h(t) dt

as cosint and
∫ b
a sin(ωt)h(t) dt as sinint.

Parameters: The values of M, NDFT, and MPOL are merely illustrative and should be opti-
mized for your particular application. M is the number of subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.

INTEGER init,j,nn
REAL aold,bold,c,cdft,cerr,corfac,corim,corre,delta,en,s,

* sdft,serr,cpol(MPOL),data(NDFT),endpts(8),spol(MPOL),
* xpol(MPOL)

SAVE init,aold,bold,delta,data,endpts
DATA init/0/,aold/-1.e30/,bold/-1.e30/
if (init.ne.1.or.a.ne.aold.or.b.ne.bold) then Do we need to initialize, or is only ω

changed?init=1
aold=a
bold=b
delta=(b-a)/M
do 11 j=1,M+1 Load the function values into the data array.

data(j)=func(a+(j-1)*delta)
enddo 11

do 12 j=M+2,NDFT Zero pad the rest of the data array.
data(j)=0.

enddo 12

do 13 j=1,4 Load the endpoints.
endpts(j)=data(j)
endpts(j+4)=data(M-3+j)

enddo 13

call realft(data,NDFT,1)
realft returns the unused value corresponding to ωN/2 in data(2). We actually want
this element to contain the imaginary part corresponding to ω0, which is zero.

data(2)=0.
endif

Now interpolate on the DFT result for the desired frequency. If the frequency is an ωn, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.

en=w*delta*NDFT/TWOPI+1.
nn=min(max(int(en-0.5*MPOL+1.),1),NDFT/2-MPOL+1) Leftmost point for the interpola-

tion.do 14 j=1,MPOL
cpol(j)=data(2*nn-1)
spol(j)=data(2*nn)
xpol(j)=nn
nn=nn+1

enddo 14

call polint(xpol,cpol,MPOL,en,cdft,cerr)
call polint(xpol,spol,MPOL,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac) Now get the endpoint cor-

rection and the multiplica-
tive factor W (θ).

cdft=cdft*corfac+corre
sdft=sdft*corfac+corim
c=delta*cos(w*a) Finally multiply by ∆ and exp(iωa).
s=delta*sin(w*a)
cosint=c*cdft-s*sdft
sinint=s*cdft+c*sdft
return
END

Sometimes one is interested only in the discrete frequencies ωm of equation (13.9.5),
the ones that have integral numbers of periods in the interval [a, b]. For smooth h(t), the
value of I tends to be much smaller in magnitude at these ω’s than at values in between,
since the integral half-periods tend to cancel precisely. (That is why one must oversample for
interpolation to be accurate: I(ω) is oscillatory with small magnitude near the ωm’s.) If you
want these ωm’s without messy (and possibly inaccurate) interpolation, you have to set N to



13.9 Computing Fourier Integrals Using the FFT 583

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

a multiple of M (compare equations 13.9.5 and 13.9.12). In the method implemented above,
however, N must be at least M + 1, so the smallest such multiple is 2M , resulting in a factor
∼2 unnecessary computing. Alternatively, one can derive a formula like equation (13.9.13),
but with the last sample function hM = h(b) omitted from the DFT, but included entirely in
the endpoint correction for hM . Then one can set M = N (an integer power of 2) and get the
special frequencies of equation (13.9.5) with no additional overhead. The modified formula is

I(ωm) = ∆eiωma

{
W (θ)[DFT(h0 . . . hM−1)]m

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3

+ eiω(b−a)
[
A(θ)hM + α*

1(θ)hM−1 + α*
2(θ)hM−2 + α*

3(θ)hM−3

]}
(13.9.14)

where θ ≡ ωm∆ and A(θ) is given by

A(θ) = −α0(θ) (13.9.15)

for the trapezoidal case, or

A(θ) =
(−6 + 11θ2) + (6 + θ2) cos 2θ

6θ4
− i Im[α0(θ)]

≈ 1

3
+

1

45
θ2 − 8

945
θ4 +

11

14175
θ6 − i Im[α0(θ)]

(13.9.16)

for the cubic case.
Factors like W (θ) arise naturally whenever one calculates Fourier coefficients of smooth

functions, and they are sometimes called attenuation factors [1]. However, the endpoint
corrections are equally important in obtaining accurate values of integrals. Narasimhan
and Karthikeyan [2] have given a formula that is algebraically equivalent to our trapezoidal
formula. However, their formula requires the evaluation of two FFTs, which is unnecessary.
The basic idea used here goes back at least to Filon [3] in 1928 (before the FFT!). He used
Simpson’s rule (quadratic interpolation). Since this interpolation is not left-right symmetric,
two Fourier transforms are required. An alternative algorithm for equation (13.9.14) has been
given by Lyness in [4]; for related references, see [5]. To our knowledge, the cubic-order
formulas derived here have not previously appeared in the literature.

Calculating Fourier transforms when the range of integration is (−∞,∞) can be tricky.
If the function falls off reasonably quickly at infinity, you can split the integral at a large
enough value of t. For example, the integration to + ∞ can be written

∫ ∞

a

eiωth(t) dt =

∫ b

a

eiωth(t) dt +

∫ ∞

b

eiωth(t) dt

=

∫ b

a

eiωth(t) dt − h(b)eiωb

iω
+

h′(b)eiωb

(iω)2
− · · · (13.9.17)

The splitting point b must be chosen large enough that the remaining integral over (b,∞) is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over (a, b) can be done using dftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See [6] for some examples of this idea. More
powerful methods, which work well for long-tailed functions but which do not use the FFT,
are described in [7-9].
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors e i,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that, unlike sines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain [1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies [2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUB4, has only four coefficients, c0, . . . , c3. For the moment we specialize
to this case for ease of notation.
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectorse i,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that,unlike sines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain[1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies[2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
calledDAUB4, has only four coefficients,c0, . . . , c3. For the moment we specialize
to this case for ease of notation.
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Consider the following transformation matrix acting on a column vector of
data to its right:




c0 c1 c2 c3

c3 −c2 c1 −c0

c0 c1 c2 c3

c3 −c2 c1 −c0
...

...
. . .

c0 c1 c2 c3

c3 −c2 c1 −c0

c2 c3 c0 c1

c1 −c0 c3 −c2




(13.10.1)

Here blank entries signify zeroes. Note the structure of this matrix. The first row
generates one component of the data convolved with the filter coefficientsc 0 . . . , c3.
Likewise the third, fifth, and other odd rows. If the even rows followed this pattern,
offset by one, then the matrix would be a circulant, that is, an ordinary convolution
that could be done by FFT methods. (Note how the last two rows wrap around
like convolutions with periodic boundary conditions.) Instead of convolving with
c0, . . . , c3, however, the even rows perform a different convolution, with coefficients
c3,−c2, c1,−c0. The action of the matrix, overall, is thus to perform two related
convolutions, then to decimate each of them by half (throw away half the values),
and interleave the remaining halves.

It is useful to think of the filterc0, . . . , c3 as being a smoothing filter, call itH ,
something like a moving average of four points. Then, because of the minus signs,
the filter c3,−c2, c1,−c0, call it G, is not a smoothing filter. (In signal processing
contexts,H andG are calledquadrature mirror filters [3].) In fact, thec’s are chosen
so as to makeG yield, insofar as possible, azero response to a sufficiently smooth
data vector. This is done by requiring the sequencec 3,−c2, c1,−c0 to have a certain
number of vanishing moments. When this is the case forp moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
p.” This results in the output ofH , decimated by half, accurately representing the
data’s “smooth” information. The output ofG, also decimated, is referred to as
the data’s “detail” information[4].

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of lengthN from its N/2 smooth or s-components and itsN/2
detail or d-components. That is effected by requiring the matrix (13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix




c0 c3 · · · c2 c1

c1 −c2 · · · c3 −c0

c2 c1 c0 c3

c3 −c0 c1 −c2

. . .
c2 c1 c0 c3

c3 −c0 c1 −c2

c2 c1 c0 c3

c3 −c0 c1 −c2




(13.10.2)
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One sees immediately that matrix (13.10.2) is inverse to matrix (13.10.1) if and
only if these two equations hold,

c2
0 + c2

1 + c2
2 + c2

3 = 1

c2c0 + c3c1 = 0
(13.10.3)

If additionally we require the approximation condition of orderp = 2, then two
additional relations are required,

c3 − c2 + c1 − c0 = 0

0c3 − 1c2 + 2c1 − 3c0 = 0
(13.10.4)

Equations (13.10.3) and (13.10.4) are 4 equations for the 4 unknownsc 0, . . . , c3,
first recognized and solved by Daubechies. The unique solution (up to a left-right
reversal) is

c0 = (1 +
√

3)/4
√

2 c1 = (3 +
√

3)/4
√

2

c2 = (3 −√
3)/4

√
2 c3 = (1 −√

3)/4
√

2
(13.10.5)

In fact, DAUB4 is only the most compact of a sequence of wavelet sets: If we had
six coefficients instead of four, there would be three orthogonality requirements in
equation (13.10.3) (with offsets of zero, two, and four), and we could require the
vanishing ofp = 3 moments in equation (13.10.4). In this case, DAUB6, the solution
coefficients can also be expressed in closed form,

c0 = (1 +
√

10 +
√

5 + 2
√

10)/16
√

2 c1 = (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

c2 = (10 − 2
√

10 + 2
√

5 + 2
√

10)/16
√

2 c3 = (10 − 2
√

10 − 2
√

5 + 2
√

10)/16
√

2

c4 = (5 +
√

10 − 3
√

5 + 2
√

10)/16
√

2 c5 = (1 +
√

10 −
√

5 + 2
√

10)/16
√

2

(13.10.6)
For higherp, up to 10, Daubechies[2] has tabulated the coefficients numerically. The
number of coefficients increases by two each timep is increased by one.

Discrete Wavelet Transform

We have not yet defined the discrete wavelet transform (DWT), but we are
almost there: The DWT consists of applying a wavelet coefficient matrix like
(13.10.1)hierarchically, first to the full data vector of lengthN , then to the “smooth”
vector of lengthN/2, then to the “smooth-smooth” vector of lengthN/4, and
so on until only a trivial number of “smooth-. . .-smooth” components (usually 2)
remain. The procedure is sometimes called apyramidal algorithm [4], for obvious
reasons. The output of the DWT consists of these remaining components and all
the “detail” components that were accumulated along the way. A diagram should
make the procedure clear:
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


y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16




13.10.1−→




s1

d1

s2

d2

s3

d3

s4

d4

s5

d5

s6

d6

s7

d7

s8

d8




permute−→




s1

s2

s3

s4

s5

s6

s7

s8
d1

d2

d3

d4

d5

d6

d7

d8




13.10.1−→




S1

D1

S2

D2

S3

D3

S4

D4
d1

d2

d3

d4

d5

d6

d7

d8




permute−→




S1

S2

S3

S4
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8




etc.−→




S1

S2
D1

D2
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8




(13.10.7)
If the length of the data vector were a higher power of two, there would be

more stages of applying (13.10.1) (or any other wavelet coefficients) and permuting.
The endpoint will always be a vector with twoS ’s and a hierarchy ofD’s, D’s,
d’s, etc. Notice that onced’s are generated, they simply propagate through to all
subsequent stages.

A value di of any level is termed a “wavelet coefficient” of the original data
vector; the final valuesS1,S2 should strictly be called “mother-functioncoefficients,”
although the term “wavelet coefficients” is often used loosely for bothd’s and final
S ’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonal linear operator.

To invert the DWT, one simply reverses the procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix (13.10.1).

As already noted, the matrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around”) boundary conditions on the data vector. One normally accepts this as a
minor inconvenience: the last few wavelet coefficients at each level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the
matrix (13.10.1)N/2 columns to the left, one can symmetrize the wrap-around;
but this does not eliminate it. It is in fact possible to eliminate the wrap-around
completely by altering the coefficients in the first and lastN rows of (13.10.1),
giving an orthogonal matrix that is purely band-diagonal[5]. This variant, beyond
our scope here, is useful when, e.g., the data varies by many orders of magnitude
from one end of the data vector to the other.

Here is a routine,wt1, that performs the pyramidal algorithm (or its inverse
if isign is negative) on some data vectora(1:n). Successive applications of the
wavelet filter, and accompanying permutations, are done by an assumed routine
wtstep, which must be provided. (We give examples of several differentwtstep
routines just below.)

SUBROUTINE wt1(a,n,isign,wtstep)
INTEGER isign,n
REAL a(n)
EXTERNAL wtstep

C USES wtstep
One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a(1:n) by its wavelet transform (for isign=1), or performing the inverse
operation (for isign=-1). Note that n MUST be an integer power of 2. The subroutine
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wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER nn
if (n.lt.4) return
if (isign.ge.0) then Wavelet transform.

nn=n Start at largest hierarchy,
1 if (nn.ge.4) then

call wtstep(a,nn,isign) and work towards smallest.
nn=nn/2

goto 1
endif

else Inverse wavelet transform.
nn=4 Start at smallest hierarchy,

2 if (nn.le.n) then
call wtstep(a,nn,isign)
nn=nn*2 and work towards largest.

goto 2
endif

endif
return
END

Here, as a specific instance ofwtstep, is a routine for the DAUB4 wavelets:

SUBROUTINE daub4(a,n,isign)
INTEGER n,isign,NMAX NMAX is the maximum allowed value of n.
REAL a(n),C3,C2,C1,C0
PARAMETER (C0=0.4829629131445341,C1=0.8365163037378079,

* C2=0.2241438680420134,C3=-0.1294095225512604,NMAX=1024)
Applies the Daubechies 4-coefficient wavelet filter to data vector a(1:n) (for isign=1) or
applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.

REAL wksp(NMAX)
INTEGER nh,nh1,i,j
if(n.lt.4)return
if(n.gt.NMAX) pause ’wksp too small in daub4’
nh=n/2
nh1=nh+1
if (isign.ge.0) then Apply filter.

i=1
do 11 j=1,n-3,2

wksp(i)=C0*a(j)+C1*a(j+1)+C2*a(j+2)+C3*a(j+3)
wksp(i+nh)=C3*a(j)-C2*a(j+1)+C1*a(j+2)-C0*a(j+3)
i=i+1

enddo 11

wksp(i)=C0*a(n-1)+C1*a(n)+C2*a(1)+C3*a(2)
wksp(i+nh)=C3*a(n-1)-C2*a(n)+C1*a(1)-C0*a(2)

else Apply transpose filter.
wksp(1)=C2*a(nh)+C1*a(n)+C0*a(1)+C3*a(nh1)
wksp(2)=C3*a(nh)-C0*a(n)+C1*a(1)-C2*a(nh1)
j=3
do 12 i=1,nh-1

wksp(j)=C2*a(i)+C1*a(i+nh)+C0*a(i+1)+C3*a(i+nh1)
wksp(j+1)=C3*a(i)-C0*a(i+nh)+C1*a(i+1)-C2*a(i+nh1)
j=j+2

enddo 12

endif
do 13 i=1,n

a(i)=wksp(i)
enddo 13

return
END
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For larger sets of wavelet coefficients, the wrap-around of the last rows or
columns is a programming inconvenience. An efficient implementation would
handle the wrap-arounds as special cases, outside of the main loop. Here, we will
content ourselves with a more general scheme involving some extra arithmetic at
run time. The following routine sets up any particular wavelet coefficients whose
values you happen to know.

SUBROUTINE pwtset(n)
INTEGER n,NCMAX,ncof,ioff,joff
PARAMETER (NCMAX=50) Maximum number of wavelet coefficients passed to pwt.
REAL cc(NCMAX),cr(NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff,joff

Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)

INTEGER k
REAL sig,c4(4),c12(12),c20(20)
SAVE c4,c12,c20,/pwtcom/
DATA c4/0.4829629131445341, 0.8365163037378079,

* 0.2241438680420134,-0.1294095225512604/
DATA c12 /.111540743350, .494623890398, .751133908021,

* .315250351709,-.226264693965,-.129766867567,
* .097501605587, .027522865530,-.031582039318,
* .000553842201, .004777257511,-.001077301085/

DATA c20 /.026670057901, .188176800078, .527201188932,
* .688459039454, .281172343661,-.249846424327,
* -.195946274377, .127369340336, .093057364604,
* -.071394147166,-.029457536822, .033212674059,
* .003606553567,-.010733175483, .001395351747,
* .001992405295,-.000685856695,-.000116466855,
* .000093588670,-.000013264203 /

ncof=n
sig=-1.
do 11 k=1,n

if(n.eq.4)then
cc(k)=c4(k)

else if(n.eq.12)then
cc(k)=c12(k)

else if(n.eq.20)then
cc(k)=c20(k)

else
pause ’unimplemented value n in pwtset’

endif
cr(ncof+1-k)=sig*cc(k)
sig=-sig

enddo 11

ioff=-n/2 These values center the “support” of the wavelets at each level.
Alternatively, the “peaks” of the wavelets can be approx-
imately centered by the choices ioff=-2 and joff=-n+2.
Note that daub4 and pwtset with n=4 use different default
centerings.

joff=-n/2
return
END

Oncepwtset has been called, the following routine can be used as a specific
instance ofwtstep.

SUBROUTINE pwt(a,n,isign)
INTEGER isign,n,NMAX,NCMAX,ncof,ioff,joff
PARAMETER (NMAX=2048,NCMAX=50)
REAL a(n),wksp(NMAX),cc(NCMAX),cr(NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff,joff
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Partial wavelet transform: applies an arbitrary wavelet filter to data vector a(1:n) (for
isign=1) or applies its transpose (for isign=-1). Used hierarchically by routines wt1
and wtn. The actual filter is determined by a preceding (and required) call to pwtset,
which initializes the common block pwtcom.

INTEGER i,ii,j,jf,jr,k,n1,ni,nj,nh,nmod
REAL ai,ai1
SAVE /pwtcom/
if (n.lt.4) return
nmod=ncof*n A positive constant equal to zero mod n.
n1=n-1 Mask of all bits, since n a power of 2.
nh=n/2
do 11 j=1,n

wksp(j)=0.
enddo 11

if (isign.ge.0) then Apply filter.
ii=1
do 13 i=1,n,2

ni=i+nmod+ioff Pointer to be incremented and wrapped-around.
nj=i+nmod+joff
do 12 k=1,ncof

jf=iand(n1,ni+k) We use bitwise and to wrap-around the pointers.
jr=iand(n1,nj+k)
wksp(ii)=wksp(ii)+cc(k)*a(jf+1)
wksp(ii+nh)=wksp(ii+nh)+cr(k)*a(jr+1)

enddo 12

ii=ii+1
enddo 13

else Apply transpose filter.
ii=1
do 15 i=1,n,2

ai=a(ii)
ai1=a(ii+nh)
ni=i+nmod+ioff See comments above.
nj=i+nmod+joff
do 14 k=1,ncof

jf=iand(n1,ni+k)+1
jr=iand(n1,nj+k)+1
wksp(jf)=wksp(jf)+cc(k)*ai
wksp(jr)=wksp(jr)+cr(k)*ai1

enddo 14

ii=ii+1
enddo 15

endif
do 16 j=1,n Copy the results back from workspace.

a(j)=wksp(j)
enddo 16

return
END

What Do Wavelets Look Like?

We are now in a position actually to see some wavelets. To do so, we simply
run unit vectors through any of the above discrete wavelet transforms, withisign
negative so that the inverse transform is performed. Figure 13.10.1 shows the
DAUB4 wavelet that is the inverse DWT of a unit vector in the 5th component of a
vector of length 1024, and also the DAUB20 wavelet that is the inverse of the 22nd
component. (One needs to go to a later hierarchical level for DAUB20, to avoid a
wavelet with a wrapped-around tail.) Other unit vectors would give wavelets with
the same shapes, but different positions and scales.
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Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4
and DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of either one
of these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior
in a higher derivative.

One sees that both DAUB4 and DAUB20 have wavelets that are continuous.
DAUB20 wavelets also have higher continuous derivatives. DAUB4 has the peculiar
property that its derivative exists only almost everywhere. Examples of where it fails
to exist are the points p/2n, where p and n are integers; at such points, DAUB4 is
left differentiable, but not right differentiable! This kind of discontinuity — at least
in some derivative — is a necessary feature of wavelets with compact support, like
the Daubechies series. For every increase in the number of wavelet coefficients by
two, the Daubechies wavelets gain about half a derivative of continuity. (But not
exactly half; the actual orders of regularity are irrational numbers!)

Note that the fact that wavelets are not smooth does not prevent their having
exact representations for some smooth functions,as demanded by their approximation
order p. The continuity of a wavelet is not the same as the continuity of functions
that a set of wavelets can represent. For example, DAUB4 can represent (piecewise)
linear functions of arbitrary slope: in the correct linear combinations, the cusps all
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the result of performing the inverse DWT on the input
vector e10 + e58, again for the two different particular wavelets. Since 10 lies early
in the hierarchical range of 9 − 16, that wavelet lies on the left side of the picture.
Since 58 lies in a later (smaller-scale) hierarchy, it is a narrower wavelet; in the range
of 33–64 it is towards the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, so as to have the same squared integral.
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Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors, e10 + e58, which
are in different hierarchical levels of scale, and also at different spatial positions. DAUB4 wavelets (a)
are defined by a filter in coordinate space (equation 13.10.5), while Lemarie wavelets (b) are defined by
a filter most easily written in Fourier space (equation 13.10.14).

Wavelet Filters in the Fourier Domain

The Fourier transform of a set of filter coefficients cj is given by

H(ω) =
∑

j

cje
ijω (13.10.8)

Here H is a function periodic in 2π, and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for the c’s (e.g., equation 13.10.3 above) collapse to two
simple relations in the Fourier domain,

1
2
|H(0)|2 = 1 (13.10.9)

and

1
2
[|H(ω)|2 + |H(ω + π)|2] = 1 (13.10.10)

Likewise the approximation condition of order p (e.g., equation 13.10.4 above)
has a simple formulation, requiring that H(ω) have a pth order zero at ω = π,
or (equivalently)

H(m)(π) = 0 m = 0, 1, . . . , p − 1 (13.10.11)
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It is thus relatively straightforward to invent wavelet sets in the Fourier domain.
You simply invent a function H(ω) satisfying equations (13.10.9)–(13.10.11). To
find the actual cj ’s applicable to a data (or s-component) vector of length N , and
with periodic wrap-around as in matrices (13.10.1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

cj =
1
N

N−1∑
k=0

H(
2πk

N
)e−2πijk/N (13.10.12)

The quadrature mirror filter G (reversed cj ’s with alternating signs), incidentally,
has the Fourier representation

G(ω) = e−iωH*(ω + π) (13.10.13)

where asterisk denotes complex conjugation.
In general the above procedure will not produce wavelet filters with compact

support. In other words, all N of the cj ’s, j = 0, . . . , N − 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavelets with compact support, are specially chosen so that H(ω)
is a trigonometric polynomial with only a small number of Fourier components,
guaranteeing that there will be only a small number of nonzero c j ’s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values of p). Even without compact support, the convolutions
implicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’s wavelet (see [4]) has p = 4, does not have compact support, and is
defined by the choice of H(ω),

H(ω) =
[
2(1 − u)4

315 − 420u + 126u2 − 4u3

315 − 420v + 126v2 − 4v3

]1/2

(13.10.14)

where

u ≡ sin2 ω

2
v ≡ sin2 ω (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An
informal description is that the quadrature mirror filter G(ω) deriving from equation
(13.10.14) has the property that it gives identically zero when applied to any function
whose odd-numbered samples are equal to the cubic spline interpolation of its
even-numbered samples. Since this class of functions includes many very smooth
members, it follows that H(ω) does a good job of truly selecting a function’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.
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Figure 13.10.3. (a) Arbitrary test function, with cusp, sampled on a vector of length 1024. (b)
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of (a). Note
log scale. The dotted curve plots the same amplitudes when sorted by decreasing size. One sees that
only 130 out of 1024 coefficients are larger than 10−4 (or larger than about 10−5 times the largest
coefficient, whose value is ∼ 10).

Truncated Wavelet Approximations

Most of the usefulness of wavelets rests on the fact that wavelet transforms
can usefully be severely truncated, that is, turned into sparse expansions. The case
of Fourier transforms is different: FFTs are ordinarily used without truncation,
to compute fast convolutions, for example. This works because the convolution
operator is particularly simple in the Fourier basis. There are not, however, any
standard mathematical operations that are especially simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper panel shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length 2 10. The bottom panel
(solid curve) shows, on a log scale, the absolute value of the vector’s components
after it has been run through the DAUB4 discrete wavelet transform. One notes,
from right to left, the different levels of hierarchy, 513–1024, 257–512, 129–256,
etc. Within each level, the wavelet coefficients are non-negligible only very near the
location of the cusp, or very near the left and right boundaries of the hierarchical
range (edge effects).

The dotted curve in the lower panel of Figure 13.10.3 plots the same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
example, that the 130th largest wavelet coefficient has an amplitude less than 10−5

of the largest coefficient, whose magnitude is ∼ 10 (power or square integral ratio
less than 10−10). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to
zero. Note that this kind of truncation makes the vector sparse, but not shorter
than 1024. It is very important that vectors in wavelet space be truncated according
to the amplitude of the components, not their position in the vector. Keeping the
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first 256 components of the vector (all levels of the hierarchy except the last two)
would give an extremely poor, and jagged, approximation to the function. When
you compress a function with wavelets, you have to record both the values and the
positions of the nonzero coefficients.

Generally, compact (and therefore unsmooth) wavelets are better for lower
accuracy approximation and for functions with discontinuities (like edges), while
smooth (and therefore noncompact) wavelets are better for achieving high numerical
accuracy. This makes compact wavelets a good choice for image compression, for
example, while it makes smooth wavelets best for fast solution of integral equations.

Wavelet Transform in Multidimensions

A wavelet transform of a d-dimensional array is most easily obtained by
transforming the array sequentially on its first index (for all values of its other indices),
then on its second, and so on. Each transformation corresponds to multiplication
by an orthogonal matrix. By matrix associativity, the result is independent of the
order in which the indices were transformed. The situation is exactly like that for
multidimensional FFTs. A routine for effecting the multidimensional DWT can thus
be modeled on a multidimensional FFT routine like fourn:

SUBROUTINE wtn(a,nn,ndim,isign,wtstep)
INTEGER isign,ndim,nn(ndim),NMAX
REAL a(*)
EXTERNAL wtstep
PARAMETER (NMAX=1024)

C USES wtstep
Replaces a by its ndim-dimensional discrete wavelet transform, if isign is input as 1. nn
is an integer array of length ndim, containing the lengths of each dimension (number of real
values), which MUST all be powers of 2. a is a real array of length equal to the product
of these lengths, in which the data are stored as in a multidimensional real FORTRAN array.
If isign is input as −1, a is replaced by its inverse wavelet transform. The subroutine
wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER i1,i2,i3,idim,k,n,nnew,nprev,nt,ntot
REAL wksp(NMAX)
ntot=1
do 11 idim=1,ndim

ntot=ntot*nn(idim)
enddo 11

nprev=1
do 16 idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nnew=n*nprev
if (n.gt.4) then

do 15 i2=0,ntot-1,nnew
do 14 i1=1,nprev

i3=i1+i2
do 12 k=1,n Copy the relevant row or column or etc. into

workspace.wksp(k)=a(i3)
i3=i3+nprev

enddo 12

if (isign.ge.0) then Do one-dimensional wavelet transform.
nt=n

1 if (nt.ge.4) then
call wtstep(wksp,nt,isign)
nt=nt/2
goto 1
endif
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else Or inverse transform.
nt=4

2 if (nt.le.n) then
call wtstep(wksp,nt,isign)
nt=nt*2
goto 2
endif

endif
i3=i1+i2
do 13 k=1,n Copy back from workspace.

a(i3)=wksp(k)
i3=i3+nprev

enddo 13

enddo 14

enddo 15

endif
nprev=nnew

enddo 16

return
END

Here, as before, wtstep is an individual wavelet step, either daub4 or pwt.

Compression of Images

An immediate application of the multidimensional transform wtn is to image
compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “allocate bits” among the wavelet coefficients in some highly
nonuniform, optimized, manner. In general, large wavelet coefficients get quantized
accurately, while small coefficients are quantized coarsely with only a bit or two
— or else are truncated completely. If the resulting quantization levels are still
statistically nonuniform, they may then be further compressed by a technique like
Huffman coding (§20.4).

While a more detailed description of the “back end” of this process, namely the
quantization and coding of the image, is beyond our scope, it is quite straightforward
to demonstrate the “ front-end” wavelet encoding with a simple truncation: We keep
(with full accuracy) all wavelet coefficients larger than some threshold, and we delete
(set to zero) all smaller wavelet coefficients. We can then adjust the threshold to
vary the fraction of preserved coefficients.

Figure 13.10.4 shows a sequence of images that differ in the number of wavelet
coefficients that have been kept. The original picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet
coefficients. The latter image illustrates the kind of compromises made by the
truncated wavelet representation. High-contrast edges (the model’s right cheek and
hair highlights, e.g.) are maintained at a relatively high resolution, while low-contrast
areas (the model’s left eye and cheek, e.g.) are washed out into what amounts to
large constant pixels. Figure 13.10.4 (d) is the result of performing the identical
procedure with Fourier, instead of wavelet, transforms: The figure is reconstructed
from the 5.5% of 65536 real Fourier components having the largest magnitudes.
One sees that, since sines and cosines are nonlocal, the resolution is uniformly poor
across the picture; also, the deletion of any components produces a mottled “ ringing”
everywhere. (Practical Fourier image compression schemes therefore break up an
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Figure 13.10.4. (a) IEEE test image, 256×256 pixels with 8-bit grayscale. (b) The image is transformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitude); it
is then reconstructed from the remaining 23%. (c) Same as (b), but 94.5% of the wavelet components
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet transform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

image into small blocks of pixels, 16 × 16, say, and do rather elaborate smoothing
across block boundaries when the image is reconstructed.)

Fast Solution of Linear Systems

One of the most interesting, and promising, wavelet applications is linear
algebra. The basic idea [1] is to think of an integral operator (that is, a large matrix) as
a digital image. Suppose that the operator compresses well under a two-dimensional
wavelet transform, i.e., that a large fraction of its wavelet coefficients are so small
as to be negligible. Then any linear system involving the operator becomes a sparse
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system in the wavelet basis. In other words, to solve

A · x = b (13.10.16)

we first wavelet-transform the operator A and the right-hand side b by

Ã ≡ W · A · WT , b̃ ≡ W · b (13.10.17)

where W represents the one-dimensional wavelet transform, then solve

Ã · x̃ = b̃ (13.10.18)

and finally transform to the answer by the inverse wavelet transform

x = WT · x̃ (13.10.19)

(Note that the routine wtn does the complete transformation of A into Ã.)
A typical integral operator that compresses well into wavelets has arbitrary (or

even nearly singular) elements near to its main diagonal, but becomes smooth away
from the diagonal. An example might be

Aij =
{−1 if i = j
|i − j|−1/2 otherwise

(13.10.20)

Figure 13.10.5 shows a graphical representation of the wavelet transform of this
matrix, where i and j range over 1 . . . 256, using the DAUB12 wavelets. Elements
larger in magnitude than 10−3 times the maximum element are shown as black
pixels, while elements between 10−3 and 10−6 are shown in gray. White pixels are
< 10−6. The indices i and j each number from the lower left.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wrap-around wavelet boundary conditions. Apart from edge effects, within
each block, the nonnegligible elements are concentrated along the block diagonals.
This is a statement that, for this type of linear operator, a wavelet is coupled mainly
to near neighbors in its own hierarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only as N , the linear size of the matrix; as a rough rule of thumb it is about
10N log10(1/ε), where ε is the truncation level, e.g., 10−6. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin [1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagonal (truncating, of course, newly generated elements that
are smaller than the predetermined threshold ε); and moreover that (2) the product
can be formed in order N operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz’s (or Hotelling’s) method, see §2.5.
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Figure 13.10.5. Wavelet transform of a 256 × 256 matrix, represented graphically. The original matrix
has a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In
wavelet basis, the matrix becomes sparse: Components larger than 10−3 are shown as black, components
larger than 10−6 as gray, and smaller-magnitude components are white. The matrix indices i and j
number from the lower left.

Other schemes are also possible for fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 as linbcg.
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13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives from numerical application of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki [1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary function g(t) and the grid of sampling points tn = α + nh, where n
ranges over the integers and α is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑
n=−∞

g(tn) sinc
π

h
(t − tn) + e(t) (13.11.1)

where sinc x ≡ sin x/x. The summation over the sampling points is called the sampling
representation of g(t), and e(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is, e(t) ≡ 0, if the Fourier transform of g(t),

G(ω) =

∫ ∞

−∞
g(t)eiωt dt (13.11.2)

vanishes identically for |ω| ≥ π/h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transform G(ω)
must be sufficiently small for |ω| ≥ π/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the function g(t)
itself should be very small outside of a fairly limited range of values of t. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(t) and its Fourier transform G(ω) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy [2], if g(t) = O(e−t2)

as |t| → ∞ and G(ω) = O(e−ω2/4) as |ω| → ∞, then g(t) ≡ Ce−t2 , where C is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in both t and ω, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussian g(t) = e−t2 ,

e−t2 =
∞∑

n=−∞
e−t2n sinc

π

h
(t − tn) + e(t) (13.11.3)

The error e(t) depends on the parameters h and α as well as on t, but it is sufficient for
the present purposes to state the bound,

|e(t)| < e−(π/2h)2 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “ spills over” into the region |ω| > π/h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 − N to N0 + N , where N0 is the integer nearest to −α/h, there is a further truncation
error. However, if N is chosen so that N > π/(2h2), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values of N . For example,
|e(t)| < 5 × 10−5 for h = 1/2 and N = 7; |e(t)| < 2 × 10−10 for h = 1/3 and N = 15;
and |e(t)| < 7 × 10−18 for h = 1/4 and N = 25.
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13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives fromnumerical application of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki[1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary functiong(t) and the grid of sampling pointstn = α + nh, wheren
ranges over the integers andα is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑
n=−∞

g(tn) sinc
π

h
(t − tn) + e(t) (13.11.1)

wheresinc x ≡ sin x/x. The summation over the sampling points is called thesampling
representation of g(t), and e(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is,e(t) ≡ 0, if the Fourier transform ofg(t),

G(ω) =

∫ ∞

−∞
g(t)eiωt dt (13.11.2)

vanishes identically for|ω| ≥ π/h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transformG(ω)
must be sufficiently small for|ω| ≥ π/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the functiong(t)
itself should be very small outside of a fairly limited range of values oft. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(t) and its Fourier transformG(ω) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy[2], if g(t) = O(e−t2)

as |t| → ∞ and G(ω) = O(e−ω2/4) as |ω| → ∞, then g(t) ≡ Ce−t2 , whereC is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in botht and ω, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussiang(t) = e−t2 ,

e−t2 =
∞∑

n=−∞
e−t2n sinc

π

h
(t − tn) + e(t) (13.11.3)

The errore(t) depends on the parametersh and α as well as ont, but it is sufficient for
the present purposes to state the bound,

|e(t)| < e−(π/2h)2 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region|ω| > π/h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 − N to N0 + N , whereN0 is the integer nearest to−α/h, there is a further truncation
error. However, ifN is chosen so thatN > π/(2h2), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values ofN . For example,
|e(t)| < 5 × 10−5 for h = 1/2 andN = 7; |e(t)| < 2 × 10−10 for h = 1/3 andN = 15;
and |e(t)| < 7 × 10−18 for h = 1/4 and N = 25.
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One may ask, what is the point of such a numerical representation for the Gaussian,
which can be computed so easily and quickly as an exponential? The answer is that many
transcendental functions can be expressed as an integral involving the Gaussian, and by
substituting (13.11.3) one can often find excellent approximations to the integrals as a sum
over elementary functions.

Let us consider as an example the functionw(z) of the complex variablez = x + iy,
related to the complex error function by

w(z) = e−z2
erfc(−iz) (13.11.5)

having the integral representation

w(z) =
1

πi

∫

C

e−t2 dt

t − z
(13.11.6)

where the contourC extends from−∞ to ∞, passing belowz (see, e.g.,[3]). Many methods
exist for the evaluation of this function (e.g.,[4]). Substituting the sampling representation
(13.11.3) into (13.11.6) and performing the resulting elementary contour integrals, we obtain

w(z) ≈ 1

πi

∞∑
n=−∞

he−t2n
1 − (−1)ne−πi(α−z)/h

tn − z
(13.11.7)

where we now omit the error term. One should note that there is no singularity asz → tm
for somen = m, but a special treatment of themth term will be required in this case (for
example, by power series expansion).

An alternative form of equation (13.11.7) can be found by expressing the complex expo-
nential in (13.11.7) in terms of trigonometric functions and using the sampling representation
(13.11.3) withz replacingt. This yields

w(z) ≈ e−z2
+

1

πi

∞∑
n=−∞

he−t2n
1 − (−1)n cos π(α − z)/h

tn − z
(13.11.8)

This form is particularly useful in obtaining Rew(z) when|y| 
 1. Note that in evaluating
(13.11.7) the exponential inside the summation is a constant and needs to be evaluated only
once; a similar comment holds for the cosine in (13.11.8).

There are a variety of formulas that can now be derived from either equation (13.11.7)
or (13.11.8) by choosing particular values ofα. Eight interesting choices are:α = 0, x, iy,
or z, plus the values obtained by addingh/2 to each of these. Since the error bound (13.11.3)
assumed a real value ofα, the choices involving a complexα are useful only if the imaginary
part ofz is not too large. This is not the place to catalog all sixteen possible formulas, and we
give only two particular cases that show some of the important features.

First of all let α = 0 in equation (13.11.8), which yields,

w(z) ≈ e−z2
+

1

πi

∞∑
n=−∞

he−(nh)2 1 − (−1)n cos(πz/h)

nh − z
(13.11.9)

This approximation is good over the entirez-plane. As stated previously, one has to treat the
case where one denominator becomes small by expansion in a power series. Formulas for
the caseα = 0 were discussed briefly in[5]. They are similar, but not identical, to formulas
derived by Chiarella and Reichel[6], using the method of Goodwin[7].

Next, let α = z in (13.11.7), which yields

w(z) ≈ e−z2 − 2

πi

∑
n odd

e−(z−nh)2

n
(13.11.10)

the sum being over all odd integers (positive and negative). Note that we have made the
substitutionn → −n in the summation. This formula is simpler than (13.11.9) and contains
half the number of terms, but its error is worse ify is large. Equation (13.11.10) is the source
of the approximation formula (6.10.3) for Dawson’s integral, used in§6.10.
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Chapter 14. Statistical Description
of Data

14.0 Introduction

In this chapter and the next, the concept ofdata enters the discussion more
prominently than before.

Data consist of numbers, of course. But these numbers are fed into the computer,
not produced by it. These are numbers to be treated with considerable respect, neither
to be tampered with, nor subjected to a numerical process whose character you do
not completely understand. You are well advised to acquire a reverence for data that
is rather different from the “sporty” attitude that is sometimes allowable, or even
commendable, in other numerical tasks.

The analysis of data inevitably involves some trafficking with the field of
statistics, that gray area which is not quite a branch of mathematics — and just as
surely not quite a branch of science. In the following sections, you will repeatedly
encounter the following paradigm:

• apply some formula to the data to compute “a statistic”
• compute where the value of that statistic falls in a probability distribution

that is computed on the basis of some “null hypothesis”
• if it falls in a very unlikely spot, way out on a tail of the distribution,

conclude that the null hypothesis isfalse for your data set
If a statistic falls in areasonable part of the distribution, you must not make

the mistake of concluding that the null hypothesis is “verified” or “proved.” That is
the curse of statistics, that it can never prove things, only disprove them! At best,
you can substantiate a hypothesis by ruling out, statistically, a whole long list of
competing hypotheses, every one that has ever been proposed. After a while your
adversaries and competitors will give up trying to think of alternative hypotheses,
or else they will grow old and die, andthen your hypothesis will become accepted.
Sounds crazy, we know, but that’s how science works!

In this book we make a somewhat arbitrary distinction between data analysis
procedures that aremodel-independent and those that aremodel-dependent. In the
former category, we include so-calleddescriptive statistics that characterize a data
set in general terms: its mean, variance, and so on. We also include statistical tests
that seek to establish the “sameness” or “differentness” of two or more data sets, or
that seek to establish and measure a degree ofcorrelation between two data sets.
These subjects are discussed in this chapter.

603
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In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-calledmeasures of central tendency, the moments of
a distribution, the median and mode. In§14.2 we learn to test whether different data
sets are drawn from distributions with different values of these measures of central
tendency. This leads naturally, in§14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal withmeasures of association for two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially§6.1–§6.4. You may wish, at this point, to
review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to itsmoments, the sums of integer powers
of the values.

Best known is themean of the valuesx1, . . . , xN ,

x =
1
N

N∑
j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this
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In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-called measures of central tendency, the moments of
a distribution, the median and mode. In §14.2 we learn to test whether different data
sets are drawn from distributions with different values of these measures of central
tendency. This leads naturally, in §14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal with measures of association for two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially §6.1–§6.4. You may wish, at this point, to
review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to its moments, the sums of integer powers
of the values.

Best known is the mean of the values x1, . . . , xN ,

x =
1
N

N∑
j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this
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quantity, nor is it necessarily the best one. For values drawn from a probability
distribution with very broad “tails,” the mean may converge poorly, or not at all, as
the number of sampled points is increased. Alternative estimators, the median and
the mode, are mentioned at the end of this section.

Having characterized a distribution’s central value, one conventionally next
characterizes its “width” or “variability” around that value. Here again, more than
one measure is available. Most common is the variance,

Var(x1 . . . xN ) =
1

N − 1

N∑
j=1

(xj − x)2 (14.1.2)

or its square root, the standard deviation,

σ(x1 . . . xN ) =
√

Var(x1 . . . xN ) (14.1.3)

Equation (14.1.2) estimates the mean squared deviation of x from its mean value.
There is a long story about why the denominator of (14.1.2) is N − 1 instead of
N . If you have never heard that story, you may consult any good statistics text.
Here we will be content to note that the N − 1 should be changed to N if you
are ever in the situation of measuring the variance of a distribution whose mean
x is known a priori rather than being estimated from the data. (We might also
comment that if the difference between N and N − 1 ever matters to you, then you
are probably up to no good anyway — e.g., trying to substantiate a questionable
hypothesis with marginal data.)

As the mean depends on the first moment of the data, so do the variance and
standard deviation depend on the second moment. It is not uncommon, in real
life, to be dealing with a distribution whose second moment does not exist (i.e., is
infinite). In this case, the variance or standard deviation is useless as a measure
of the data’s width around its central value: The values obtained from equations
(14.1.2) or (14.1.3) will not converge with increased numbers of points, nor show
any consistency from data set to data set drawn from the same distribution. This can
occur even when the width of the peak looks, by eye, perfectly finite. A more robust
estimator of the width is the average deviation or mean absolute deviation, defined by

ADev(x1 . . . xN ) =
1
N

N∑
j=1

|xj − x| (14.1.4)

One often substitutes the sample median xmed for x in equation (14.1.4). For any
fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2),
since the absolute value brackets in (14.1.4) are “nonanalytic” and make theorem-
proving difficult. In recent years, however, the fashion has changed, and the subject
of robust estimation (meaning, estimation for broad distributions with significant
numbers of “outlier” points) has become a popular and important one. Higher
moments, or statistics involving higher powers of the input data, are almost always
less robust than lower moments or statistics that involve only linear sums or (the
lowest moment of all) counting.
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(b)(a)

Skewness

negative positive

positive
(leptokurtic)

negative
(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN ) =
1
N

N∑
j=1

[
xj − x

σ

]3
(14.1.5)

where σ = σ(x1 . . . xN ) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness).
For (14.1.5) to be meaningful, we need to have some idea of its standard deviation
as an estimator of the skewness of the underlying distribution. Unfortunately, that
depends on the shape of the underlying distribution, and rather critically on its tails!
For the idealized case of a normal (Gaussian) distribution, the standard deviation of
(14.1.5) is approximately

√
15/N when x is the true mean, and

√
6/N when it is

estimated by the sample mean, (14.1.1). In real life it is good practice to believe in
skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN ) =





1
N

N∑
j=1

[
xj − x

σ

]4
− 3 (14.1.6)
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where the −3 term makes the value zero for a normal distribution.
The standard deviation of (14.1.6) as an estimator of the kurtosis of an underlying

normal distribution is
√

96/N when σ is the true standard deviation, and
√

24/N
when it is the sample estimate (14.1.3). However, the kurtosis depends on such
a high moment that there are many real-life distributions for which the standard
deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums
of various powers of the data, e.g., the familiar

Var(x1 . . . xN ) =
1

N − 1






N∑
j=1

x2
j


− Nx2


 ≈ x2 − x2 (14.1.7)

but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use the corrected two-pass algorithm [1]: First calculate x,
then calculate Var(x1 . . . xN ) by

Var(x1 . . . xN ) =
1

N − 1





N∑
j=1

(xj − x)2 − 1
N




N∑
j=1

(xj − x)




2




(14.1.8)

The second sum would be zero if x were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

SUBROUTINE moment(data,n,ave,adev,sdev,var,skew,curt)
INTEGER n
REAL adev,ave,curt,sdev,skew,var,data(n)

Given an array of data(1:n), this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER j
REAL p,s,ep
if(n.le.1)pause ’n must be at least 2 in moment’
s=0. First pass to get the mean.
do 11 j=1,n

s=s+data(j)
enddo 11

ave=s/n
adev=0. Second pass to get the first (absolute), second, third, and fourth

moments of the deviation from the mean.var=0.
skew=0.
curt=0.
ep=0.
do 12 j=1,n

s=data(j)-ave
ep=ep+s
adev=adev+abs(s)
p=s*s
var=var+p
p=p*s
skew=skew+p
p=p*s
curt=curt+p

enddo 12
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adev=adev/n Put the pieces together according to the conventional definitions.
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if(var.ne.0.)then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.

else
pause ’no skew or kurtosis when zero variance in moment’

endif
return
END

Semi-Invariants

The mean and variance of independent random variables are additive: If x and y are
drawn independently from two, possibly different, probability distributions, then

(x + y) = x + y Var(x + y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk ,

Mk ≡
〈
(xi − x)k

〉
(14.1.10)

so that, e.g., M2 = Var(x), then the first few semi-invariants, denoted Ik are given by

I2 = M2 I3 = M3 I4 = M4 − 3M2
2

I5 = M5 − 10M2M3 I6 = M6 − 15M2M4 − 10M2
3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I
3/2
2 Kurt(x) = I4/I2

2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function p(x) is the value xmed for
which larger and smaller values of x are equally probable:

∫ xmed

−∞
p(x) dx =

1
2

=
∫ ∞

xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of values x1, . . . ,
xN by finding that value xi which has equal numbers of values above it and below
it. Of course, this is not possible when N is even. In that case it is conventional
to estimate the median as the mean of the unique two central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =
{

x(N+1)/2, N odd
1
2 (xN/2 + x(N/2)+1), N even

(14.1.14)
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If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of order N log N . You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the element x(N+1)/2 can be located in of order N operations. Consult
that section for routines.

The mode of a probability distribution function p(x) is the value of x where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 2.

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics], vol. 1, §10.15

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242–247. [1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press),
§15.10. [2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data
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If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of order N log N . You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the element x(N+1)/2 can be located in of order N operations. Consult
that section for routines.

The mode of a probability distribution function p(x) is the value of x where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 2.

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics], vol. 1, §10.15

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242–247. [1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press),
§15.10. [2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data
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are sparse. We will be meeting these distinct concepts of strength and significance
several times in the next few sections.

A quantity that measures the significance of a difference of means is not the
number of standard deviations that they are apart, but the number of so-called
standard errors that they are apart. The standard error of a set of values measures
the accuracy with which the sample mean estimates the population (or “true”) mean.
Typically the standard error is equal to the sample’s standard deviation divided by
the square root of the number of points in the sample.

Student’s t-test for Significantly Different Means

Applying the concept of standard error, the conventional statistic for measuring
the significance of a difference of means is termed Student’s t. When the two
distributions are thought to have the same variance, but possibly different means,
then Student’s t is computed as follows: First, estimate the standard error of the
difference of the means, sD, from the “pooled variance” by the formula

sD =

√∑
i∈A(xi − xA)2 +

∑
i∈B(xi − xB)2

NA + NB − 2

(
1

NA
+

1
NB

)
(14.2.1)

where each sum is over the points in one sample, the first or second, each mean
likewise refers to one sample or the other, and NA and NB are the numbers of points
in the first and second samples, respectively. Second, compute t by

t =
xA − xB

sD
(14.2.2)

Third, evaluate the significance of this value of t for Student’s distribution with
NA + NB − 2 degrees of freedom, by equations (6.4.7) and (6.4.9), and by the
routine betai (incomplete beta function) of §6.4.

The significance is a number between zero and one, and is the probability that
|t| could be this large or larger just by chance, for distributions with equal means.
Therefore, a small numerical value of the significance (0.05 or 0.01) means that the
observed difference is “very significant.” The function A(t|ν) in equation (6.4.7)
is one minus the significance.

As a routine, we have

SUBROUTINE ttest(data1,n1,data2,n2,t,prob)
INTEGER n1,n2
REAL prob,t,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns Student’s t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
different means. The data arrays are assumed to be drawn from populations with the same
true variance.

REAL ave1,ave2,df,var,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
df=n1+n2-2 Degrees of freedom.
var=((n1-1)*var1+(n2-1)*var2)/df Pooled variance.
t=(ave1-ave2)/sqrt(var*(1./n1+1./n2))
prob=betai(0.5*df,0.5,df/(df+t**2)) See equation (6.4.9).
return
END
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which makes use of the following routine for computing the mean and variance
of a set of numbers,

SUBROUTINE avevar(data,n,ave,var)
INTEGER n
REAL ave,var,data(n)

Given array data(1:n), returns its mean as ave and its variance as var.
INTEGER j
REAL s,ep
ave=0.0
do 11 j=1,n

ave=ave+data(j)
enddo 11

ave=ave/n
var=0.0
ep=0.0
do 12 j=1,n

s=data(j)-ave
ep=ep+s
var=var+s*s

enddo 12

var=(var-ep**2/n)/(n-1) Corrected two-pass formula (14.1.8).
return
END

The next case to consider is where the two distributions have significantly
different variances, but we nevertheless want to know if their means are the same or
different. (A treatment for baldness has caused some patients to lose all their hair
and turned others into werewolves, but we want to know if it helps cure baldness on
the average!) Be suspicious of the unequal-variance t-test: If two distributions have
very different variances, then they may also be substantially different in shape; in
that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly
different, you use the F-test, described later on in this section.

The relevant statistic for the unequal variance t-test is

t =
xA − xB

[Var(xA)/NA + Var(xB)/NB]1/2
(14.2.3)

This statistic is distributed approximately as Student’s t with a number of degrees
of freedom equal to

[
Var(xA)

NA
+ Var(xB)

NB

]2

[Var(xA)/NA]2

NA − 1 + [Var(xB)/NB]2

NB − 1

(14.2.4)

Expression (14.2.4) is in general not an integer, but equation (6.4.7) doesn’t care.
The routine is

SUBROUTINE tutest(data1,n1,data2,n2,t,prob)
INTEGER n1,n2
REAL prob,t,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns Student’s t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
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different means. The data arrays are allowed to be drawn from populations with unequal
variances.

REAL ave1,ave2,df,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
t=(ave1-ave2)/sqrt(var1/n1+var2/n2)
df=(var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
prob=betai(0.5*df,0.5,df/(df+t**2))
return
END

Our final example of a Student’s t test is the case of paired samples. Here
we imagine that much of the variance in both samples is due to effects that are
point-by-point identical in the two samples. For example, we might have two job
candidates who have each been rated by the same ten members of a hiring committee.
We want to know if the means of the ten scores differ significantly. We first try
ttest above, and obtain a value of prob that is not especially significant (e.g.,
> 0.05). But perhaps the significance is being washed out by the tendency of some
committee members always to give high scores, others always to give low scores,
which increases the apparent variance and thus decreases the significance of any
difference in the means. We thus try the paired-sample formulas,

Cov(xA, xB) ≡ 1
N − 1

N∑
i=1

(xAi − xA)(xBi − xB) (14.2.5)

sD =
[

Var(xA) + Var(xB) − 2Cov(xA, xB)
N

]1/2

(14.2.6)

t =
xA − xB

sD
(14.2.7)

where N is the number in each sample (number of pairs). Notice that it is important
that a particular value of i label the corresponding points in each sample, that is,
the ones that are paired. The significance of the t statistic in (14.2.7) is evaluated
for N − 1 degrees of freedom.

The routine is

SUBROUTINE tptest(data1,data2,n,t,prob)
INTEGER n
REAL prob,t,data1(n),data2(n)

C USES avevar,betai
Given the paired arrays data1(1:n) and data2(1:n), this routine returns Student’s t for
paired data as t, and its significance as prob, small values of prob indicating a significant
difference of means.

INTEGER j
REAL ave1,ave2,cov,df,sd,var1,var2,betai
call avevar(data1,n,ave1,var1)
call avevar(data2,n,ave2,var2)
cov=0.
do 11 j=1,n

cov=cov+(data1(j)-ave1)*(data2(j)-ave2)
enddo 11

df=n-1
cov=cov/df
sd=sqrt((var1+var2-2.*cov)/n)
t=(ave1-ave2)/sd
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prob=betai(0.5*df,0.5,df/(df+t**2))
return
END

F-Test for Significantly Different Variances

The F-test tests the hypothesis that two samples have different variances by
trying to reject the null hypothesis that their variances are actually consistent. The
statistic F is the ratio of one variance to the other, so values either � 1 or � 1
will indicate very significant differences. The distribution of F in the null case is
given in equation (6.4.11), which is evaluated using the routine betai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances) by
either very large or very small values of F , so the correct significance is two-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and double it. Occasionally,
when the null hypothesis is strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchanges the tails. These considerations and equation
(6.4.3) give the routine

SUBROUTINE ftest(data1,n1,data2,n2,f,prob)
INTEGER n1,n2
REAL f,prob,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns the value of f, and
its significance as prob. Small values of prob indicate that the two arrays have significantly
different variances.

REAL ave1,ave2,df1,df2,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
if(var1.gt.var2)then Make F the ratio of the larger variance to the smaller one.

f=var1/var2
df1=n1-1
df2=n2-1

else
f=var2/var1
df1=n2-1
df2=n1-1

endif
prob=2.*betai(0.5*df2,0.5*df1,df2/(df2+df1*f))
if(prob.gt.1.)prob=2.-prob
return
END

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter IX(B).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).
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14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in 1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that Ni is the number of events observed in the ith bin, and that n i is
the number expected according to some known distribution. Note that the N i’s are
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14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can beconsistent with a single distribution function.
One can neverprove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is thechi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is theKolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose thatNi is the number of events observed in theith bin, and thatn i is
the number expected according to some known distribution. Note that theN i’s are
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integers, while theni’s may not be. Then the chi-square statistic is

χ2 =
∑

i

(Ni − ni)2

ni
(14.3.1)

where the sum is over all bins. A large value ofχ2 indicates that the null hypothesis
(that theNi’s are drawn from the population representedby then i’s) is rather unlikely.

Any termj in (14.3.1) with0 = nj = Nj should be omitted from the sum. A
term withnj = 0, Nj �= 0 gives an infiniteχ2, as it should, since in this case the
Ni’s cannot possibly be drawn from then i’s!

Thechi-square probability function Q(χ2|ν) is an incomplete gamma function,
and was already discussed in§6.2 (see equation 6.2.18). Strictly speakingQ(χ 2|ν)
is the probability that the sum of the squares ofν randomnormal variables of unit
variance (and zero mean) will be greater thanχ2. The terms in the sum (14.3.1)
are not individually normal. However, if either the number of bins is large (� 1),
or the number of events in each bin is large (� 1), then the chi-square probability
function is a good approximation to the distribution of (14.3.1) in the case of the null
hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value ofν, the number of degrees of freedom, bears some
additional discussion. If the data are collected with the modeln i’s fixed — that
is, not later renormalized to fit the total observed number of eventsΣN i — thenν
equals the number of binsNB. (Note that this isnot the total number ofevents!)
Much more commonly, theni’s are normalized after the fact so that their sum equals
the sum of theNi’s. In this case the correct value forν is NB − 1, and the model
is said to have one constraint (knstrn=1 in the program below). If the model that
gives theni’s has additional free parameters that were adjusted after the fact to agree
with the data, then each of these additional “fitted” parameters decreasesν (and
increasesknstrn) by one additional unit.

We have, then, the following program:

SUBROUTINE chsone(bins,ebins,nbins,knstrn,df,chsq,prob)
INTEGER knstrn,nbins
REAL chsq,df,prob,bins(nbins),ebins(nbins)

C USES gammq
Given the array bins(1:nbins) containing the observed numbers of events, and an array
ebins(1:nbins) containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the significance prob. A small value
of prob indicates a significant difference between the distributions bins and ebins. Note
that bins and ebins are both real arrays, although bins will normally contain integer
values.

INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins

if(ebins(j).le.0.)pause ’bad expected number in chsone’
chsq=chsq+(bins(j)-ebins(j))**2/ebins(j)

enddo 11

prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END
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Next we consider the case of comparingtwo binned data sets. LetR i be the
number of events in bini for the first data set,S i the number of events in the same
bin i for the second data set. Then the chi-square statistic is

χ2 =
∑

i

(Ri − Si)2

Ri + Si
(14.3.2)

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average ofRi andSi (which would be an estimator ofni in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum
of their individual variances, not the average.

If the data were collected in such a way that the sum of theR i’s is necessarily
equal to the sum ofSi’s, then the number of degrees of freedom is equal to one
less than the number of bins,NB − 1 (that is, knstrn = 1), the usual case. If
this requirement were absent, then the number of degrees of freedom would beN B.
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to one
species. If the birdwatcher takes his data to be the first 1000 birds that he saw in
each year, then the number of degrees of freedom isNB − 1. If he takes his data to
be all the birds he saw on a random sample of days, the same days in each year, then
the number of degrees of freedom isNB (knstrn = 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or the
other: That is the extra degree of freedom. Of course, any additional constraints on
the data set lower the number of degrees of freedom (i.e., increaseknstrn to more
positive values) in accordance with their number.

The program is

SUBROUTINE chstwo(bins1,bins2,nbins,knstrn,df,chsq,prob)
INTEGER knstrn,nbins
REAL chsq,df,prob,bins1(nbins),bins2(nbins)

C USES gammq
Given the arrays bins1(1:nbins) and bins2(1:nbins), containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns
the number of degrees of freedom df, the chi-square chsq, and the significance prob.
A small value of prob indicates a significant difference between the distributions bins1
and bins2. Note that bins1 and bins2 are both real arrays, although they will normally
contain integer values.

INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins

if(bins1(j).eq.0..and.bins2(j).eq.0.)then
df=df-1. No data means one less degree of freedom.

else
chsq=chsq+(bins1(j)-bins2(j))**2/(bins1(j)+bins2(j))

endif
enddo 11

prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END
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Equation (14.3.2) and the routinechstwo both apply to the case where the total
number of data points is the same in the two binned sets. For unequal numbers of
data points, the formula analogous to (14.3.2) is

χ2 =
∑

i

(
√

S/RRi −
√

R/SSi)2

Ri + Si
(14.3.3)

where

R ≡
∑

i

Ri S ≡
∑

i

Si (14.3.4)

are the respective numbers of data points. It is straightforward to make the
corresponding change inchstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (orK–S) test is applicable to unbinned distributions
that are functions of a single independent variable, that is, to data sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimatorSN (x) of the cumulative distribution
function of the probability distribution from which it was drawn: If theN events are
located at valuesxi, i = 1, . . . , N , thenSN(x) is the function giving the fraction
of data points to the left of a given valuex. This function is obviously constant
between consecutive (i.e., sorted into ascending order)x i’s, and jumps by the same
constant1/N at eachxi. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative
distribution function estimates by the above procedure. However, all cumulative
distribution functions agree at the smallest allowable value ofx (where they are
zero), and at the largest allowable value ofx (where they are unity). (The smallest
and largest values might of course be±∞.) So it is the behavior between the largest
and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference
between two cumulative distribution functions: the absolute value of the area between
them, for example. Or their integrated mean square difference. The Kolmogorov-
SmirnovD is a particularly simple measure: It is defined as themaximum value
of the absolute difference between two cumulative distribution functions. Thus,
for comparing one data set’sSN (x) to a known cumulative distribution function
P (x), the K–S statistic is

D = max−∞<x<∞ |SN (x) − P (x)| (14.3.5)

while for comparing two different cumulative distribution functionsS N1(x) and
SN2(x), the K–S statistic is

D = max−∞<x<∞ |SN1(x) − SN2(x)| (14.3.6)
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Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown
as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative
probability distribution is plotted as P (x). A step-function cumulative probability distribution SN (x) is
constructed, one that rises an equal amount at each measured point. D is the greatest distance between
the two cumulative distributions.

What makes the K–S statistic useful is that its distribution in the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to
useful approximation, thus giving the significance of any observed nonzero value of
D. A central feature of the K–S test is that it is invariant under reparametrization
of x; in other words, you can locally slide or stretch the x axis in Figure 14.3.1,
and the maximum distance D remains unchanged. For example, you will get the
same significance using x as using log x.

The function that enters into the calculation of the significance can be written
as the following sum:

QKS(λ) = 2
∞∑

j=1

(−1)j−1 e−2j2λ2
(14.3.7)

which is a monotonic function with the limiting values

QKS(0) = 1 QKS(∞) = 0 (14.3.8)

In terms of this function, the significance level of an observed value of D (as
a disproof of the null hypothesis that the distributions are the same) is given
approximately [1] by the formula

Probability (D > observed ) = QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
D
)

(14.3.9)
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where Ne is the effective number of data points, Ne = N for the case (14.3.5)
of one distribution, and

Ne =
N1N2

N1 + N2
(14.3.10)

for the case (14.3.6) of two distributions, where N1 is the number of data points in
the first distribution, N2 the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes asymp-
totically accurate as the Ne becomes large, but is already quite good for Ne ≥ 4, as
small a number as one might ever actually use. (See [1].)

So, we have the following routines for the cases of one and two distributions:

SUBROUTINE ksone(data,n,func,d,prob)
INTEGER n
REAL d,data(n),func,prob
EXTERNAL func

C USES probks,sort
Given an array data(1:n), and given a user-supplied function of a single variable func
which is a cumulative distribution function ranging from 0 (for smallest values of its argu-
ment) to 1 (for largest values of its argument), this routine returns the K–S statistic d, and
the significance level prob. Small values of prob show that the cumulative distribution
function of data is significantly different from func. The array data is modified by being
sorted into ascending order.

INTEGER j
REAL dt,en,ff,fn,fo,probks
call sort(n,data) If the data are already sorted into ascending or-

der, then this call can be omitted.en=n
d=0.
fo=0. Data’s c.d.f. before the next step.
do 11 j=1,n Loop over the sorted data points.

fn=j/en Data’s c.d.f. after this step.
ff=func(data(j)) Compare to the user-supplied function.
dt=max(abs(fo-ff),abs(fn-ff)) Maximum distance.
if(dt.gt.d)d=dt
fo=fn

enddo 11

en=sqrt(en)
prob=probks((en+0.12+0.11/en)*d) Compute significance.
return
END

SUBROUTINE kstwo(data1,n1,data2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,data1(n1),data2(n2)

C USES probks,sort
Given an array data1(1:n1), and an array data2(1:n2), this routine returns the K–
S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of data1 is significantly different from that of data2. The arrays
data1 and data2 are modified by being sorted into ascending order.

INTEGER j1,j2
REAL d1,d2,dt,en1,en2,en,fn1,fn2,probks
call sort(n1,data1)
call sort(n2,data2)
en1=n1
en2=n2
j1=1 Next value of data1 to be processed.
j2=1 Ditto, data2.
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fn1=0.
fn2=0.
d=0.

1 if(j1.le.n1.and.j2.le.n2)then If we are not done...
d1=data1(j1)
d2=data2(j2)
if(d1.le.d2)then Next step is in data1.

fn1=j1/en1
j1=j1+1

endif
if(d2.le.d1)then Next step is in data2.

fn2=j2/en2
j2=j2+1

endif
dt=abs(fn2-fn1)
if(dt.gt.d)d=dt

goto 1
endif
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12+0.11/en)*d) Compute significance.
return
END

Both of the above routines use the following routine for calculating the function
QKS :

FUNCTION probks(alam)
REAL probks,alam,EPS1,EPS2
PARAMETER (EPS1=0.001, EPS2=1.e-8)

Kolmogorov-Smirnov probability function.
INTEGER j
REAL a2,fac,term,termbf
a2=-2.*alam**2
fac=2.
probks=0.
termbf=0. Previous term in sum.
do 11 j=1,100

term=fac*exp(a2*j**2)
probks=probks+term
if(abs(term).le.EPS1*termbf.or.abs(term).le.EPS2*probks)return
fac=-fac Alternating signs in sum.
termbf=abs(term)

enddo 11

probks=1. Get here only by failing to converge.
return
END

Variants on the K–S Test

The sensitivity of the K–S test to deviations from a cumulative distribution function
P (x) is not independent of x. In fact, the K–S test tends to be most sensitive around the
median value, where P (x) = 0.5, and less sensitive at the extreme ends of the distribution,
where P (x) is near 0 or 1. The reason is that the difference |SN (x) − P (x)| does not, in the
null hypothesis, have a probability distribution that is independent of x. Rather, its variance is
proportional to P (x)[1− P (x)], which is largest at P = 0.5. Since the K–S statistic (14.3.5)
is the maximum difference over all x of two cumulative distribution functions, a deviation that
might be statistically significant at its own value of x gets compared to the expected chance
deviation at P = 0.5, and is thus discounted. A result is that, while the K–S test is good at
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finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K–S statistic out on the tails is to replace
D (equation 14.3.5) by a so-called stabilized or weighted statistic [2-4], for example the
Anderson-Darling statistic,

D* = max
−∞<x<∞

|SN (x) − P (x)|√
P (x)[1 − P (x)]

(14.3.11)

Unfortunately, there is no simple formula analogous to equations (14.3.7) and (14.3.9) for this
statistic, although Noé [5] gives a computational method using a recursion relation and provides
a graph of numerical results. There are many other possible similar statistics, for example

D** =

∫ 1

P=0

[SN (x) − P (x)]2

P (x)[1− P (x)]
dP (x) (14.3.12)

which is also discussed by Anderson and Darling (see [3]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [6,7].

We already mentioned that the standard K–S test is invariant under reparametrizations of the
variable x. An even more general symmetry, which guarantees equal sensitivities at all values
of x, is to wrap the x axis around into a circle (identifying the points at ±∞), and to look for
a statistic that is now invariant under all shifts and parametrizations on the circle. This allows,
for example, a probability distribution to be “cut” at some central value of x, and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V = D+ + D− = max
−∞<x<∞

[SN(x) − P (x)] + max
−∞<x<∞

[P (x) − SN (x)] (14.3.13)

is the sum of the maximum distance of SN (x) above and below P (x). You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360◦. If you change the starting
point of the integration, D+ and D− change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V ,
directly analogous to equations (14.3.7)–(14.3.10). Let

QKP (λ) = 2

∞∑
j=1

(4j2λ2 − 1)e−2j2λ2
(14.3.14)

which is monotonic and satisfies

QKP (0) = 1 QKP (∞) = 0 (14.3.15)

In terms of this function the significance level is [1]

Probability (V > observed ) = QKP

([√
Ne + 0.155 + 0.24/

√
Ne

]
V

)
(14.3.16)

Here Ne is N in the one-sample case, or is given by equation (14.3.10) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for
example, to test whether the distribution in longitude of something agrees with some theory,
or whether two somethings have different distributions in longitude. (See also [8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks,
above. (For λ < 0.4, don’ t try to do the sum 14.3.14. Its value is 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K–S test lack
the ability to discriminate some kinds of distributions. A simple example is a probability
distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
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but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statistic D for a cumulative distribution function
P (x) that uses the estimated parameters is no longer given by equation (14.3.9). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.
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14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal with measures of association
for two distributions. The situation is this: Each data point has two or more different
quantities associated with it, and we want to know whether knowledge of one quantity
gives us any demonstrable advantage in predicting the value of another quantity. In
many cases, one variable will be an “ independent” or “control” variable, and another
will be a “dependent” or “measured” variable. Then, we want to know if the latter
variable is in fact dependent on or associated with the former variable. If it is, we
want to have some quantitative measure of the strength of the association. One often
hears this loosely stated as the question of whether two variables are correlated or
uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in §14.5 and §14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with different
categories forming a loose hierarchy.

• A variable is called nominal if its values are the members of some unordered
set. For example, “ state of residence” is a nominal variable that (in the
U.S.) takes on one of 50 values; in astrophysics, “ type of galaxy” is a
nominal variable with the three values “spiral,” “ elliptical,” and “ irregular.”
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Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
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14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal withmeasures of association
for two distributions. The situation is this: Each data point has two or more different
quantities associated with it, and we want to know whether knowledge of one quantity
gives us any demonstrable advantage in predicting the value of another quantity. In
many cases, one variable will be an “independent” or “control” variable, and another
will be a “dependent” or “measured” variable. Then, we want to know if the latter
variableis in fact dependent on orassociatedwith the former variable. If it is, we
want to have some quantitative measure of the strength of the association. One often
hears this loosely stated as the question of whether two variables arecorrelatedor
uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in§14.5 and§14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with different
categories forming a loose hierarchy.

• A variable is callednominalif its values are the members of some unordered
set. For example, “state of residence” is a nominal variable that (in the
U.S.) takes on one of 50 values; in astrophysics, “type of galaxy” is a
nominal variable with the three values “spiral,” “elliptical,” and “irregular.”
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• A variable is termedordinal if its values are the members of a discrete, but
ordered, set. Examples are: grade in school, planetary order from the Sun
(Mercury = 1, Venus = 2,. . .), number of offspring. There need not be
any concept of “equal metric distance” between the values of an ordinal
variable, only that they be intrinsically ordered.

• We will call a variablecontinuousif its values are real numbers, as
are times, distances, temperatures, etc. (Social scientists sometimes
distinguish betweenintervalandratio continuous variables, but we do not
find that distinction very compelling.)

A continuous variable can always be made into an ordinal one by binning it
into ranges. If we choose to ignore the ordering of the bins, then we can turn it into
a nominal variable. Nominal variables constitute the lowest type of the hierarchy,
and therefore the most general. For example, a set ofseveralcontinuous or ordinal
variables can be turned, if crudely, into a single nominal variable, by coarsely
binning each variable and then taking each distinct combination of bin assignments
as a single nominal value. When multidimensional data are sparse, this is often
the only sensible way to proceed.

The remainder of this section will deal with measures of association between
nominalvariables. For any pair of nominal variables, the data can be displayed as
a contingency table, a table whose rows are labeled by the values of one nominal
variable, whose columns are labeled by the values of the other nominal variable,
and whose entries are nonnegative integers giving the number of observed events
for each combination of row and column (see Figure 14.4.1). The analysis of
association between nominal variables is thus calledcontingency table analysisor
crosstabulation analysis.

We will introduce two different approaches. The first approach, based on the
chi-square statistic, does a good job of characterizing the significance of association,
but is only so-so as a measure of the strength (principally because its numerical
values have no very direct interpretations). The second approach, based on the
information-theoretic concept ofentropy, says nothing at all about the significance of
association (use chi-square for that!), but is capable of very elegantly characterizing
the strength of an association already known to be significant.

Measures of Association Based on Chi-Square

Some notation first: LetNij denote the number of events that occur with the
first variablex taking on itsith value, and the second variabley taking on itsjth
value. LetN denote the total number of events, the sum of all theN ij ’s. Let Ni·
denote the number of events for which the first variablex takes on itsith value
regardless of the value ofy; N·j is the number of events with thejth value ofy
regardless ofx. So we have

Ni· =
∑

j

Nij N·j =
∑

i

Nij

N =
∑

i

Ni· =
∑

j

N·j
(14.4.1)
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 males

N1⋅

# of
females

N2⋅

2.
green

# of red
N ⋅1

# of green
N⋅2

total #
N

Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The row
and column marginals (totals) are shown. The variables are “nominal,” i.e., the order in which their values
are listed is arbitrary and does not affect the result of the contingency table analysis. If the ordering
of values has some intrinsic meaning, then the variables are “ordinal” or “continuous,” and correlation
techniques (§14.5-§14.6) can be utilized.

N·j and Ni· are sometimes called the row and column totalsor marginals, but we
will use these terms cautiously since we can never keep straight which are the rows
and which are the columns!

The null hypothesis is that the two variables x and y have no association. In this
case, the probability of a particular value of x given a particular value of y should
be the same as the probability of that value of x regardless of y. Therefore, in the
null hypothesis, the expected number for any N ij , which we will denote nij , can be
calculated from only the row and column totals,

nij

N·j
=

Ni·
N

which implies nij =
Ni·N·j

N
(14.4.2)

Notice that if a column or row total is zero, then the expected number for all the
entries in that column or row is also zero; in that case, the never-occurring bin of x
or y should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present
case, is summed over all entries in the table,

χ2 =
∑
i,j

(Nij − nij)2

nij
(14.4.3)

The number of degrees of freedom is equal to the number of entries in the table
(product of its row size and column size) minus the number of constraints that have
arisen from our use of the data themselves to determine the n ij . Each row total and
column total is a constraint, except that this overcounts by one, since the total of the
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column totals and the total of the row totals both equal N , the total number of data
points. Therefore, if the table is of size I by J , the number of degrees of freedom is
IJ − I − J + 1. Equation (14.4.3), along with the chi-square probability function
(§6.2), now give the significance of an association between the variables x and y.

Suppose there is a significant association. How do we quantify its strength, so
that (e.g.) we can compare the strength of one association with another? The idea
here is to find some reparametrization of χ2 which maps it into some convenient
interval, like 0 to 1, where the result is not dependent on the quantity of data that we
happen to sample, but rather depends only on the underlying population from which
the data were drawn. There are several different ways of doing this. Two of the more
common are called Cramer’s Vand the contingency coefficient C.

The formula for Cramer’s V is

V =

√
χ2

N min (I − 1, J − 1)
(14.4.4)

where I and J are again the numbers of rows and columns, and N is the total
number of events. Cramer’s V has the pleasant property that it lies between zero
and one inclusive, equals zero when there is no association, and equals one only
when the association is perfect: All the events in any row lie in one unique column,
and vice versa. (In chess parlance, no two rooks, placed on a nonzero table entry,
can capture each other.)

In the case of I = J = 2, Cramer’s V is also referred to as the phi statistic.
The contingency coefficient C is defined as

C =

√
χ2

χ2 + N
(14.4.5)

It also lies between zero and one, but (as is apparent from the formula) it can never
achieve the upper limit. While it can be used to compare the strength of association
of two tables with the same I and J , its upper limit depends on I and J . Therefore
it can never be used to compare tables of different sizes.

The trouble with both Cramer’s V and the contingency coefficient C is that, when
they take on values in between their extremes, there is no very direct interpretation
of what that value means. For example, you are in Las Vegas, and a friend tells you
that there is a small, but significant, association between the color of a croupier’s
eyes and the occurrence of red and black on his roulette wheel. Cramer’s V is about
0.028, your friend tells you. You know what the usual odds against you are (because
of the green zero and double zero on the wheel). Is this association sufficient for
you to make money? Don’ t ask us!

SUBROUTINE cntab1(nn,ni,nj,chisq,df,prob,cramrv,ccc)
INTEGER ni,nj,nn(ni,nj),MAXI,MAXJ
REAL ccc,chisq,cramrv,df,prob,TINY
PARAMETER (MAXI=100,MAXJ=100,TINY=1.e-30) Maximum table size, and a small num-

ber.C USES gammq
Given a two-dimensional contingency table in the form of an integer array nn(1:ni,1:nj),
this routine returns the chi-square chisq, the number of degrees of freedom df, the signif-
icance level prob (small values indicating a significant association), and two measures of
association, Cramer’s V (cramrv) and the contingency coefficient C (ccc).

INTEGER i,j,nni,nnj
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REAL expctd,sum,sumi(MAXI),sumj(MAXJ),gammq
sum=0 Will be total number of events.
nni=ni Number of rows
nnj=nj and columns.
do 12 i=1,ni Get the row totals.

sumi(i)=0.
do 11 j=1,nj

sumi(i)=sumi(i)+nn(i,j)
sum=sum+nn(i,j)

enddo 11

if(sumi(i).eq.0.)nni=nni-1 Eliminate any zero rows by reducing the
number.enddo 12

do 14 j=1,nj Get the column totals.
sumj(j)=0.
do 13 i=1,ni

sumj(j)=sumj(j)+nn(i,j)
enddo 13

if(sumj(j).eq.0.)nnj=nnj-1 Eliminate any zero columns.
enddo 14

df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
chisq=0.
do 16 i=1,ni Do the chi-square sum.

do 15 j=1,nj
expctd=sumj(j)*sumi(i)/sum
chisq=chisq+(nn(i,j)-expctd)**2/(expctd+TINY) Here TINY guarantees that

any eliminated row or column will not
contribute to the sum.

enddo 15

enddo 16

prob=gammq(0.5*df,0.5*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sum*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sum))
return
END

Measures of Association Based on Entropy

Consider the game of “ twenty questions,” where by repeated yes/no questions
you try to eliminate all except one correct possibility for an unknown object. Better
yet, consider a generalization of the game, where you are allowed to ask multiple
choice questions as well as binary (yes/no) ones. The categories in your multiple
choice questions are supposed to be mutually exclusive and exhaustive (as are “yes”
and “no” ).

The value to you of an answer increases with the number of possibilities that
it eliminates. More specifically, an answer that eliminates all except a fraction p of
the remaining possibilities can be assigned a value − ln p (a positive number, since
p < 1). The purpose of the logarithm is to make the value additive, since (e.g.) one
question that eliminates all but 1/6 of the possibilities is considered as good as two
questions that, in sequence, reduce the number by factors 1/2 and 1/3.

So that is the value of an answer; but what is the value of a question? If there
are I possible answers to the question (i = 1, . . . , I) and the fraction of possibilities
consistent with the ith answer is pi (with the sum of the pi’s equal to one), then the
value of the question is the expectation value of the value of the answer, denoted H ,

H = −
I∑

i=1

pi ln pi (14.4.6)
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In evaluating (14.4.6), note that

lim
p→0

p ln p = 0 (14.4.7)

The value H lies between 0 and ln I . It is zero only when one of the p i’s is one, all
the others zero: In this case, the question is valueless, since its answer is preordained.
H takes on its maximum value when all the pi’s are equal, in which case the question
is sure to eliminate all but a fraction 1/I of the remaining possibilities.

The value H is conventionally termed the entropyof the distribution given by
the pi’s, a terminology borrowed from statistical physics.

So far we have said nothing about the association of two variables; but suppose
we are deciding what question to ask next in the game and have to choose between
two candidates, or possibly want to ask both in one order or another. Suppose that
one question, x, has I possible answers, labeled by i, and that the other question,
y, as J possible answers, labeled by j. Then the possible outcomes of asking both
questions form a contingency table whose entries N ij , when normalized by dividing
by the total number of remaining possibilities N , give all the information about the
p’s. In particular, we can make contact with the notation (14.4.1) by identifying

pij =
Nij

N

pi· =
Ni·
N

(outcomes of question x alone)

p·j =
N·j
N

(outcomes of question y alone)

(14.4.8)

The entropies of the questions x and y are, respectively,

H(x) = −
∑

i

pi· ln pi· H(y) = −
∑

j

p·j ln p·j (14.4.9)

The entropy of the two questions together is

H(x, y) = −
∑
i,j

pij ln pij (14.4.10)

Now what is the entropy of the question y givenx (that is, if x is asked first)?
It is the expectation value over the answers to x of the entropy of the restricted
y distribution that lies in a single column of the contingency table (corresponding
to the x answer):

H(y|x) = −
∑

i

pi·
∑

j

pij

pi·
ln

pij

pi·
= −

∑
i,j

pij ln
pij

pi·
(14.4.11)

Correspondingly, the entropy of x given y is

H(x|y) = −
∑

j

p·j
∑

i

pij

p·j
ln

pij

p·j
= −

∑
i,j

pij ln
pij

p·j
(14.4.12)
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We can readily prove that the entropy of y given x is never more than the
entropy of y alone, i.e., that asking x first can only reduce the usefulness of asking
y (in which case the two variables are associated!):

H(y|x) − H(y) = −
∑
i,j

pij ln
pij/pi·

p·j

=
∑
i,j

pij ln
p·jpi·
pij

≤
∑
i,j

pij

(
p·jpi·
pij

− 1
)

=
∑
i,j

pi·p·j −
∑
i,j

pij

= 1 − 1 = 0

(14.4.13)

where the inequality follows from the fact

lnw ≤ w − 1 (14.4.14)

We now have everything we need to define a measure of the “dependency” of y
on x, that is to say a measure of association. This measure is sometimes called the
uncertainty coefficientof y. We will denote it as U(y|x),

U(y|x) ≡ H(y) − H(y|x)
H(y)

(14.4.15)

This measure lies between zero and one, with the value 0 indicating that x and y
have no association, the value 1 indicating that knowledge of x completely predicts
y. For in-between values, U(y|x) gives the fraction of y’s entropy H(y) that is
lost if x is already known (i.e., that is redundant with the information in x). In our
game of “ twenty questions,” U(y|x) is the fractional loss in the utility of question
y if question x is to be asked first.

If we wish to view x as the dependent variable, y as the independent one, then
interchanging x and y we can of course define the dependency of x on y,

U(x|y) ≡ H(x) − H(x|y)
H(x)

(14.4.16)

If we want to treat x and y symmetrically, then the useful combination turns
out to be

U(x, y) ≡ 2
[
H(y) + H(x) − H(x, y)

H(x) + H(y)

]
(14.4.17)

If the two variables are completely independent, then H(x, y) = H(x) + H(y), so
(14.4.17) vanishes. If the two variables are completely dependent, then H(x) =
H(y) = H(x, y), so (14.4.16) equals unity. In fact, you can use the identities (easily
proved from equations 14.4.9–14.4.12)

H(x, y) = H(x) + H(y|x) = H(y) + H(x|y) (14.4.18)
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to show that

U(x, y) =
H(x)U(x|y) + H(y)U(y|x)

H(x) + H(y)
(14.4.19)

i.e., that the symmetrical measure is just a weighted average of the two asymmetrical
measures (14.4.15) and (14.4.16),weighted by the entropy of each variable separately.

Here is a program for computing all the quantities discussed, H(x), H(y),
H(x|y), H(y|x), H(x, y), U(x|y), U(y|x), and U(x, y):

SUBROUTINE cntab2(nn,ni,nj,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
INTEGER ni,nj,nn(ni,nj),MAXI,MAXJ
REAL h,hx,hxgy,hy,hygx,uxgy,uxy,uygx,TINY
PARAMETER (MAXI=100,MAXJ=100,TINY=1.e-30)

Given a two-dimensional contingency table in the form of an integer array nn(i,j), where
i labels the x variable and ranges from 1 to ni, j labels the y variable and ranges from 1 to
nj, this routine returns the entropy h of the whole table, the entropy hx of the x distribution,
the entropy hy of the y distribution, the entropy hygx of y given x, the entropy hxgy of
x given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y
(eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).
Parameters: MAXI and MAXJ define the maximum size of table; TINY is a small number.

INTEGER i,j
REAL p,sum,sumi(MAXI),sumj(MAXJ)
sum=0
do 12 i=1,ni Get the row totals.

sumi(i)=0.0
do 11 j=1,nj

sumi(i)=sumi(i)+nn(i,j)
sum=sum+nn(i,j)

enddo 11

enddo 12

do 14 j=1,nj Get the column totals.
sumj(j)=0.
do 13 i=1,ni

sumj(j)=sumj(j)+nn(i,j)
enddo 13

enddo 14

hx=0. Entropy of the x distribution,
do 15 i=1,ni

if(sumi(i).ne.0.)then
p=sumi(i)/sum
hx=hx-p*log(p)

endif
enddo 15

hy=0. and of the y distribution.
do 16 j=1,nj

if(sumj(j).ne.0.)then
p=sumj(j)/sum
hy=hy-p*log(p)

endif
enddo 16

h=0.
do 18 i=1,ni Total entropy: loop over both x

do 17 j=1,nj and y.
if(nn(i,j).ne.0)then

p=nn(i,j)/sum
h=h-p*log(p)

endif
enddo 17

enddo 18

hygx=h-hx Uses equation (14.4.18),
hxgy=h-hy as does this.
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uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is the linear correlation
coefficient. For pairs of quantities (xi, yi), i = 1, . . . , N , the linear correlation
coefficient r (also called the product-moment correlation coefficient, or Pearson’s
r) is given by the formula

r =

∑
i

(xi − x)(yi − y)
√∑

i

(xi − x)2
√∑

i

(yi − y)2
(14.5.1)

where, as usual, x is the mean of the xi’s, y is the mean of the yi’s.
The value of r lies between −1 and 1, inclusive. It takes on a value of 1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, with x and y increasing together. The value 1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope, y decreasing as x increases, then r has the value −1; this is called
“complete negative correlation.” A value of r near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant, r is one conventional way of
summarizing its strength. In fact, the value of r can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see §15.2, especially equations
15.2.13 – 15.2.14). Unfortunately, r is a rather poor statistic for deciding whether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is that r is ignorant of
the individual distributions of x and y, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions for x and y each have
enough convergent moments (“ tails” die off sufficiently rapidly), and if N is large
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uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is the linear correlation
coefficient. For pairs of quantities (xi, yi), i = 1, . . . , N , the linear correlation
coefficient r (also called the product-moment correlation coefficient, or Pearson’s
r) is given by the formula

r =

∑
i

(xi − x)(yi − y)
√∑

i

(xi − x)2
√∑

i

(yi − y)2
(14.5.1)

where, as usual, x is the mean of the xi’s, y is the mean of the yi’s.
The value of r lies between −1 and 1, inclusive. It takes on a value of 1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, with x and y increasing together. The value 1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope, y decreasing as x increases, then r has the value −1; this is called
“complete negative correlation.” A value of r near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant, r is one conventional way of
summarizing its strength. In fact, the value of r can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see §15.2, especially equations
15.2.13 – 15.2.14). Unfortunately, r is a rather poor statistic for deciding whether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is that r is ignorant of
the individual distributions of x and y, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions for x and y each have
enough convergent moments (“tails” die off sufficiently rapidly), and if N is large
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(typically > 500), then r is distributed approximately normally, with a mean of zero
and a standard deviation of 1/

√
N . In that case, the (double-sided) significance of

the correlation, that is, the probability that |r| should be larger than its observed
value in the null hypothesis, is

erfc

(
|r| √N√

2

)
(14.5.2)

where erfc(x) is the complementary error function, equation (6.2.8), computed by
the routines erfc or erfcc of §6.2. A small value of (14.5.2) indicates that the
two distributions are significantly correlated. (See expression 14.5.9 below for a
more accurate test.)

Most statistics books try to go beyond (14.5.2) and give additional statistical
tests that can be made using r. In almost all cases, however, these tests are valid
only for a very special class of hypotheses, namely that the distributions of x and y
jointly form a binormal or two-dimensional Gaussian distribution around their mean
values, with joint probability density

p(x, y) dxdy = const. × exp
[
−1

2
(a11x

2 − 2a12xy + a22y
2)
]

dxdy (14.5.3)

where a11, a12, and a22 are arbitrary constants. For this distribution r has the value

r = − a12√
a11a22

(14.5.4)

There are occasions when (14.5.3) may be known to be a good model of the
data. There may be other occasions when we are willing to take (14.5.3) as at least
a rough and ready guess, since many two-dimensional distributions do resemble a
binormal distribution, at least not too far out on their tails. In either situation, we can
use (14.5.3) to go beyond (14.5.2) in any of several directions:

First, we can allow for the possibility that the number N of data points is not
large. Here, it turns out that the statistic

t = r

√
N − 2
1 − r2

(14.5.5)

is distributed in the null case (of no correlation) like Student’s t-distribution with
ν = N − 2 degrees of freedom, whose two-sided significance level is given by
1 − A(t|ν) (equation 6.4.7). As N becomes large, this significance and (14.5.2)
become asymptotically the same, so that one never does worse by using (14.5.5),
even if the binormal assumption is not well substantiated.

Second, when N is only moderately large (≥ 10), we can compare whether
the difference of two significantly nonzero r’s, e.g., from different experiments, is
itself significant. In other words, we can quantify whether a change in some control
variable significantly alters an existing correlation between two other variables. This
is done by using Fisher’s z-transformation to associate each measured r with a
corresponding z,

z =
1
2

ln
(

1 + r

1 − r

)
(14.5.6)
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Then, each z is approximately normally distributed with a mean value

z =
1
2

[
ln
(

1 + rtrue

1 − rtrue

)
+

rtrue

N − 1

]
(14.5.7)

where rtrue is the actual or population value of the correlation coefficient, and with
a standard deviation

σ(z) ≈ 1√
N − 3

(14.5.8)

Equations (14.5.7) and (14.5.8), when they are valid, give several useful
statistical tests. For example, the significance level at which a measured value of r
differs from some hypothesized value rtrue is given by

erfc

( |z − z| √N − 3√
2

)
(14.5.9)

where z and z are given by (14.5.6) and (14.5.7), with small values of (14.5.9)
indicating a significant difference. (Setting z = 0 makes expression 14.5.9 a more
accurate replacement for expression 14.5.2 above.) Similarly, the significance of a
difference between two measured correlation coefficients r1 and r2 is

erfc


 |z1 − z2|√

2
√

1
N1−3 + 1

N2−3


 (14.5.10)

where z1 and z2 are obtained from r1 and r2 using (14.5.6), and where N1 and N2

are, respectively, the number of data points in the measurement of r 1 and r2.
All of the significances above are two-sided. If you wish to disprove the null

hypothesis in favor of a one-sided hypothesis, such as that r 1 > r2 (where the sense
of the inequality was decided a priori), then (i) if your measured r 1 and r2 have
the wrong sense, you have failed to demonstrate your one-sided hypothesis, but (ii)
if they have the right ordering, you can multiply the significances given above by
0.5, which makes them more significant.

But keep in mind: These interpretations of the r statistic can be completely
meaningless if the joint probability distribution of your variables x and y is too
different from a binormal distribution.

SUBROUTINE pearsn(x,y,n,r,prob,z)
INTEGER n
REAL prob,r,z,x(n),y(n),TINY
PARAMETER (TINY=1.e-20) Will regularize the unusual case of com-

plete correlation.C USES betai
Given two arrays x(1:n) and y(1:n), this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation
is disproved (prob whose small value indicates a significant correlation), and Fisher’s z
(returned as z), whose value can be used in further statistical tests as described above.

INTEGER j
REAL ax,ay,df,sxx,sxy,syy,t,xt,yt,betai
ax=0.
ay=0.
do 11 j=1,n Find the means.
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ax=ax+x(j)
ay=ay+y(j)

enddo 11

ax=ax/n
ay=ay/n
sxx=0.
syy=0.
sxy=0.
do 12 j=1,n Compute the correlation coefficient.

xt=x(j)-ax
yt=y(j)-ay
sxx=sxx+xt**2
syy=syy+yt**2
sxy=sxy+xt*yt

enddo 12

r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5*log(((1.+r)+TINY)/((1.-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.-r)+TINY)*((1.+r)+TINY))) Equation (14.5.5).
prob=betai(0.5*df,0.5,df/(df+t**2)) Student’s t probability.

C prob=erfcc(abs(z*sqrt(n-1.))/1.4142136) For large n, this easier computation of
prob, using the short routine erfcc,
would give approximately the same
value.

return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficient r that leads us to the important concepts of nonparametric or
rank correlation. As before, we are given N pairs of measurements (x i, yi). Before,
difficulties arose because we did not necessarily know the probability distribution
function from which the xi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of each xi by the value of its rank among all the other x i’s in the sample, that
is, 1, 2, 3, . . . , N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between 1 and N ,
inclusive. Better than uniformly, in fact, since if the x i’s are all distinct, then each
integer will occur precisely once. If some of the x i’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. This midrank will sometimes be an
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ax=ax+x(j)
ay=ay+y(j)

enddo 11

ax=ax/n
ay=ay/n
sxx=0.
syy=0.
sxy=0.
do 12 j=1,n Compute the correlation coefficient.

xt=x(j)-ax
yt=y(j)-ay
sxx=sxx+xt**2
syy=syy+yt**2
sxy=sxy+xt*yt

enddo 12

r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5*log(((1.+r)+TINY)/((1.-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.-r)+TINY)*((1.+r)+TINY))) Equation (14.5.5).
prob=betai(0.5*df,0.5,df/(df+t**2)) Student’s t probability.

C prob=erfcc(abs(z*sqrt(n-1.))/1.4142136) For large n, this easier computation of
prob, using the short routine erfcc,
would give approximately the same
value.

return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficient r that leads us to the important concepts of nonparametric or
rank correlation. As before, we are given N pairs of measurements (x i, yi). Before,
difficulties arose because we did not necessarily know the probability distribution
function from which the xi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of each xi by the value of its rank among all the other x i’s in the sample, that
is, 1, 2, 3, . . . , N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between 1 and N ,
inclusive. Better than uniformly, in fact, since if the x i’s are all distinct, then each
integer will occur precisely once. If some of the x i’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. This midrank will sometimes be an
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integer, sometimes a half-integer. In all cases the sum of all assigned ranks will be
the same as the sum of the integers from 1 to N , namely 1

2N(N + 1).
Of course we do exactly the same procedure for the y i’s, replacing each value

by its rank among the other yi’s in the sample.
Now we are free to invent statistics for detecting correlation between uniform

sets of integers between 1 and N , keeping in mind the possibility of ties in the ranks.
There is, of course, some loss of information in replacing the original numbers by
ranks. We could construct some rather artificial examples where a correlation could
be detected parametrically (e.g., in the linear correlation coefficient r), but could not
be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically,
then it is really there! (That is, to a certainty level that depends on the significance
chosen.) Nonparametric correlation is more robust than linear correlation, more
resistant to unplanned defects in the data, in the same sort of sense that the median
is more robust than the mean. For more on the concept of robustness, see §15.7.

As always in statistics, some particular choices of a statistic have already been
invented for us and consecrated, if not beatified, by popular use. We will discuss
two, the Spearman rank-order correlation coefficient (rs), and Kendall’s tau (τ ).

Spearman Rank-Order Correlation Coefficient

Let Ri be the rank of xi among the other x’s, Si be the rank of yi among the
other y’s, ties being assigned the appropriate midrank as described above. Then the
rank-order correlation coefficient is defined to be the linear correlation coefficient
of the ranks, namely,

rs =
∑

i(Ri − R)(Si − S)√∑
i(Ri − R)2

√∑
i(Si − S)2

(14.6.1)

The significance of a nonzero value of rs is tested by computing

t = rs

√
N − 2
1 − r2

s

(14.6.2)

which is distributed approximately as Student’s distribution with N − 2 degrees of
freedom. A key point is that this approximation does not depend on the original
distribution of the x’s and y’s; it is always the same approximation, and always
pretty good.

It turns out that rs is closely related to another conventional measure of
nonparametric correlation, the so-called sum squared difference of ranks, defined as

D =
N∑

i=1

(Ri − Si)2 (14.6.3)

(This D is sometimes denoted D**, where the asterisks are used to indicate that
ties are treated by midranking.)
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When there are no ties in the data, then the exact relation between D and r s is

rs = 1 − 6D

N3 − N
(14.6.4)

When there are ties, then the exact relation is slightly more complicated: Let f k be
the number of ties in the kth group of ties among the R i’s, and let gm be the number
of ties in the mth group of ties among the S i’s. Then it turns out that

rs =
1 − 6

N3 − N

[
D + 1

12

∑
k(f3

k − fk) + 1
12

∑
m(g3

m − gm)
]

[
1 −

∑
k(f3

k − fk)

N3 − N

]1/2 [
1 −

∑
m(g3

m − gm)

N3 − N

]1/2
(14.6.5)

holds exactly. Notice that if all the fk’s and all the gm’s are equal to one, meaning
that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave a t-statistic that tests the significance of a nonzero r s. It is
also possible to test the significance of D directly. The expectation value of D in
the null hypothesis of uncorrelated data sets is

D =
1
6
(N3 − N) − 1

12

∑
k

(f3
k − fk) − 1

12

∑
m

(g3
m − gm) (14.6.6)

its variance is

Var(D) =
(N − 1)N2(N + 1)2

36

×
[
1 −

∑
k(f3

k − fk)
N3 − N

] [
1 −

∑
m(g3

m − gm)
N3 − N

] (14.6.7)

and it is approximately normally distributed, so that the significance level is a
complementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7)
are not independent tests, but simply variants of the same test. In the program that
follows, we return both the significance level obtained by using (14.6.2) and the
significance level obtained by using (14.6.7); their discrepancy will give you an idea
of how good the approximations are. You will also notice that we break off the task
of assigning ranks (including tied midranks) into a separate routine, crank.

SUBROUTINE spear(data1,data2,n,wksp1,wksp2,d,zd,probd,rs,probrs)
INTEGER n
REAL d,probd,probrs,rs,zd,data1(n),data2(n),wksp1(n),wksp2(n)

C USES betai,crank,erfcc,sort2
Given two data arrays, data1(1:n) and data2(1:n), each of length n, and given two
workspaces of the same length, this routine returns their sum-squared difference of ranks as
D, the number of standard deviations by which D deviates from its null-hypothesis expected
value as zd, the two-sided significance level of this deviation as probd, Spearman’s rank
correlation rs as rs, and the two-sided significance level of its deviation from zero as
probrs. The workspaces can be identical to the data arrays, but in that case the data
arrays are destroyed. The external routines crank (below) and sort2 (§8.2) are used. A
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small value of either probd or probrs indicates a significant correlation (rs positive) or
anticorrelation (rs negative).

INTEGER j
REAL aved,df,en,en3n,fac,sf,sg,t,vard,betai,erfcc
do 11 j=1,n

wksp1(j)=data1(j)
wksp2(j)=data2(j)

enddo 11

call sort2(n,wksp1,wksp2) Sort each of the data arrays, and convert the entries to
ranks. The values sf and sg return the sums

∑
(f3

k − fk)

and
∑

(g3
m − gm), respectively.

call crank(n,wksp1,sf)
call sort2(n,wksp2,wksp1)
call crank(n,wksp2,sg)
d=0.
do 12 j=1,n Sum the squared difference of ranks.

d=d+(wksp1(j)-wksp2(j))**2
enddo 12

en=n
en3n=en**3-en
aved=en3n/6.-(sf+sg)/12. Expectation value of D,
fac=(1.-sf/en3n)*(1.-sg/en3n)
vard=((en-1.)*en**2*(en+1.)**2/36.)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/1.4142136) and significance.
rs=(1.-(6./en3n)*(d+(sf+sg)/12.))/sqrt(fac) Rank correlation coefficient,
fac=(1.+rs)*(1.-rs)
if(fac.gt.0.)then

t=rs*sqrt((en-2.)/fac) and its t value,
df=en-2.
probrs=betai(0.5*df,0.5,df/(df+t**2)) give its significance.

else
probrs=0.

endif
return
END

SUBROUTINE crank(n,w,s)
INTEGER n
REAL s,w(n)

Given a sorted array w(1:n), replaces the elements by their rank, including midranking of
ties, and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER j,ji,jt
REAL rank,t
s=0.
j=1 The next rank to be assigned.

1 if(j.lt.n)then “do while” structure.
if(w(j+1).ne.w(j))then Not a tie.

w(j)=j
j=j+1

else A tie:
do 11 jt=j+1,n How far does it go?

if(w(jt).ne.w(j))goto 2
enddo 11

jt=n+1 If here, it goes all the way to the last element.
2 rank=0.5*(j+jt-1) This is the mean rank of the tie,

do 12 ji=j,jt-1 so enter it into all the tied entries,
w(ji)=rank

enddo 12

t=jt-j
s=s+t**3-t and update s.
j=jt

endif
goto 1
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endif
if(j.eq.n)w(n)=n If the last element was not tied, this is its rank.
return
END

Kendall’s Tau

Kendall’s τ is even more nonparametric than Spearman’s r s or D. Instead of
using the numerical difference of ranks, it uses only the relative ordering of ranks:
higher in rank, lower in rank, or the same in rank. But in that case we don’t even
have to rank the data! Ranks will be higher, lower, or the same if and only if
the values are larger, smaller, or equal, respectively. On balance, we prefer r s as
being the more straightforward nonparametric test, but both statistics are in general
use. In fact, τ and rs are very strongly correlated and, in most applications, are
effectively the same test.

To define τ , we start with the N data points (xi, yi). Now consider all
1
2N(N − 1) pairs of data points, where a data point cannot be paired with itself,
and where the points in either order count as one pair. We call a pair concordant
if the relative ordering of the ranks of the two x’s (or for that matter the two x’s
themselves) is the same as the relative ordering of the ranks of the two y’s (or for
that matter the two y’s themselves). We call a pair discordant if the relative ordering
of the ranks of the two x’s is opposite from the relative ordering of the ranks of the
two y’s. If there is a tie in either the ranks of the two x’s or the ranks of the two
y’s, then we don’t call the pair either concordant or discordant. If the tie is in the
x’s, we will call the pair an “extra y pair.” If the tie is in the y’s, we will call the
pair an “extra x pair.” If the tie is in both the x’s and the y’s, we don’t call the pair
anything at all. Are you still with us?

Kendall’s τ is now the following simple combination of these various counts:

τ =
concordant− discordant√

concordant + discordant + extra-y
√

concordant + discordant + extra-x
(14.6.8)

You can easily convince yourself that this must lie between 1 and −1, and that it
takes on the extreme values only for complete rank agreement or complete rank
reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approx-
imate distribution of τ in the null hypothesis of no association between x and y.
In this case τ is approximately normally distributed, with zero expectation value
and a variance of

Var(τ) =
4N + 10

9N(N − 1)
(14.6.9)

The following program proceeds according to the above description, and
therefore loops over all pairs of data points. Beware: This is an O(N 2) algorithm,
unlike the algorithm for rs, whose dominant sort operations are of order N log N . If
you are routinely computing Kendall’s τ for data sets of more than a few thousand
points, you may be in for some serious computing. If, however, you are willing to
bin your data into a moderate number of bins, then read on.
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SUBROUTINE kendl1(data1,data2,n,tau,z,prob)
INTEGER n
REAL prob,tau,z,data1(n),data2(n)

C USES erfcc
Given data arrays data1(1:n) and data2(1:n), this program returns Kendall’s τ as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative).

INTEGER is,j,k,n1,n2
REAL a1,a2,aa,var,erfcc
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do 12 j=1,n-1 Loop over first member of pair,

do 11 k=j+1,n and second member.
a1=data1(j)-data1(k)
a2=data2(j)-data2(k)
aa=a1*a2
if(aa.ne.0.)then Neither array has a tie.

n1=n1+1
n2=n2+1
if(aa.gt.0.)then

is=is+1
else

is=is-1
endif

else One or both arrays have ties.
if(a1.ne.0.)n1=n1+1 An “extra x” event.
if(a2.ne.0.)n2=n2+1 An “extra y” event.

endif
enddo 11

enddo 12

tau=float(is)/sqrt(float(n1)*float(n2)) Equation (14.6.8).
var=(4.*n+10.)/(9.*n*(n-1.)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136) Significance.
return
END

Sometimes it happens that there are only a few possible values each for x and
y. In that case, the data can be recorded as a contingency table (see §14.4) that gives
the number of data points for each contingency of x and y.

Spearman’s rank-order correlation coefficient is not a very natural statistic
under these circumstances, since it assigns to each x and y bin a not-very-meaningful
midrank value and then totals up vast numbers of identical rank differences. Kendall’s
tau, on the other hand, with its simple counting, remains quite natural. Furthermore,
its O(N2) algorithm is no longer a problem, since we can arrange for it to loop over
pairs of contingency table entries (each containing many data points) instead of over
pairs of data points. This is implemented in the program that follows.

Note that Kendall’s tau can be applied only to contingency tables where both
variables are ordinal, i.e., well-ordered, and that it looks specifically for monotonic
correlations, not for arbitrary associations. These two properties make it less general
than the methods of §14.4, which applied to nominal, i.e., unordered, variables and
arbitrary associations.

Comparing kendl1 above with kendl2 below, you will see that we have
“floated” a number of variables. This is because the number of events in a
contingency table might be sufficiently large as to cause overflows in some of the
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integer arithmetic, while the number of individual data points in a list could not
possibly be that large [for an O(N 2) routine!].

SUBROUTINE kendl2(tab,i,j,ip,jp,tau,z,prob)
INTEGER i,ip,j,jp
REAL prob,tau,z,tab(ip,jp)

C USES erfcc
Given a two-dimensional table tab of physical dimension (ip,jp) and logical dimension
(i,j), such that tab(k,l) contains the number of events falling in bin k of one variable
and bin l of another, this program returns Kendall’s τ as tau, its number of standard
deviations from zero as z, and its two-sided significance level as prob. Small values of prob
indicate a significant correlation (tau positive) or anticorrelation (tau negative) between
the two variables. Although tab is a real array, it will normally contain integral values.

INTEGER k,ki,kj,l,li,lj,m1,m2,mm,nn
REAL en1,en2,pairs,points,s,var,erfcc
en1=0. See kendl1 above.
en2=0.
s=0.
nn=i*j Total number of entries in contingency table.
points=tab(i,j)
do 12 k=0,nn-2 Loop over entries in table,

ki=k/j decoding a row index,
kj=k-j*ki and a column index.
points=points+tab(ki+1,kj+1) Increment the total count of events.
do 11 l=k+1,nn-1 Loop over other member of the pair,

li=l/j decoding its row
lj=l-j*li and column.
m1=li-ki
m2=lj-kj
mm=m1*m2
pairs=tab(ki+1,kj+1)*tab(li+1,lj+1)
if(mm.ne.0)then Not a tie.

en1=en1+pairs
en2=en2+pairs
if(mm.gt.0)then Concordant, or

s=s+pairs
else discordant.

s=s-pairs
endif

else
if(m1.ne.0)en1=en1+pairs
if(m2.ne.0)en2=en2+pairs

endif
enddo 11

enddo 12

tau=s/sqrt(en1*en2)
var=(4.*points+10.)/(9.*points*(points-1.))
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136)
return
END

CITED REFERENCES AND FURTHER READING:

Lehmann, E.L. 1975, Nonparametrics: Statistical Methods Based on Ranks (San Francisco:
Holden-Day).

Downie, N.M., and Heath, R.W. 1965, Basic Statistical Methods, 2nd ed. (New York: Harper &
Row), pp. 206–209.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).



640 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini [1], a variant on an earlier
idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an (x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a time ti and by an energy Ei (see [3]). We
might wish to know whether these measured pairs (ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the (x, y) [here, (t,E)] plane. That would be
a one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximum cumulative difference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four natural quadrants around a given point (xi, yi),
namely the total probabilities (or fraction of data) in (x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statistic D is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value of D may
depend on which data set is ranged over. In that case, define an effective D as the average
of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes the D statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value of D is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution of
D in the null hypothesis is independent of the shape of the two-dimensional distribution. In this
respect the two-dimensional K–S test is not as natural as its one-dimensional parent. However,
extensive Monte Carlo integrations have shown that the distribution of the two-dimensional
D is very nearly identical for even quite different distributions, as long as they have the same
coefficient of correlation r, defined in the usual way by equation (14.5.1). In their paper,
Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the distribution of
D as a function of (of course) D, sample size N , and coefficient of correlation r. Analyzing
their results, one finds that the significance levels for the two-dimensional K–S test can be
summarized by the simple, though approximate, formulas,

Probability (D > observed ) = QKS

( √
N D

1 +
√

1 − r2(0.25 − 0.75/
√

N)

)
(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 + N2
. (14.7.2)

The above formulas are accurate enough when N >∼ 20, and when the indicated
probability (significance level) is less than (more significant than) 0.20 or so. When the
indicated probability is > 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.
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14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini[1], a variant on an earlier
idea due to Peacock[2].

In a two-dimensional distribution, each data point is characterized by an(x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a timeti and by an energyEi (see[3]). We
might wish to know whether these measured pairs(ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the(x, y) [here,(t,E)] plane. That would be
a one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximumcumulative difference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four natural quadrants around a given point(xi, yi),
namely the total probabilities (or fraction of data) in(x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statisticD is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value ofD may
depend on which data set is ranged over. In that case, define an effectiveD as the average
of the two values obtained. If you are confused at this point about the exact definition ofD,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes theD statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value ofD is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution of
D in the null hypothesis is independent of the shape of the two-dimensional distribution. In this
respect the two-dimensional K–S test is not as natural as its one-dimensional parent. However,
extensive Monte Carlo integrations have shown that the distribution of the two-dimensional
D is very nearly identical for even quite different distributions, as long as they have the same
coefficient of correlationr, defined in the usual way by equation (14.5.1). In their paper,
Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the distribution of
D as a function of (of course)D, sample sizeN , and coefficient of correlationr. Analyzing
their results, one finds that the significance levels for the two-dimensional K–S test can be
summarized by the simple, though approximate, formulas,

Probability(D > observed) = QKS

( √
N D

1 +
√

1 − r2(0.25 − 0.75/
√

N)

)
(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 + N2
. (14.7.2)

The above formulas are accurate enough whenN >∼ 20, and when the indicated
probability (significance level) is less than (more significant than)0.20 or so. When the
indicated probability is> 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.
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Figure 14.7.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional K–S
test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between
fraction of triangles and fraction of squares. Then, equation (14.7.1) indicates whether the difference is
statistically significant, i.e., whether the triangles and squares must have different underlying distributions.

The significance level for the data in Figure 14.7.1, by the way, is about 0.001. This
establishes to a near-certainty that the triangles and squares were drawn from different
distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied in
equation (14.7.1), you can do your own: Generate a lot of synthetic data sets from your
model, each one with the same number of points as the real data set. Compute D for each
synthetic data set, using the accompanying computer routines (but ignoring their calculated
probabilities), and count what fraction of the time these synthetic D’s exceed the D from the
real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their one-dimensional
progenitors, is that the two-dimensional tests require of order N2 operations: Two nested
loops of order N take the place of an N log N sort. For small computers, this restricts the
usefulness of the tests to N less than several thousand.

We now give computer implementations. The one-sample case is embodied in the
routine ks2d1s (that is, 2-dimensions, 1-sample). This routine calls a straightforward utility
routine quadct to count points in the four quadrants, and it calls a user-supplied routine
quadvl that must be capable of returning the integrated probability of an analytic model in
each of four quadrants around an arbitrary (x, y) point. A trivial sample quadvl is shown;
realistic quadvls can be quite complicated, often incorporating numerical quadratures over
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analytic two-dimensional distributions.

SUBROUTINE ks2d1s(x1,y1,n1,quadvl,d1,prob)
INTEGER n1
REAL d1,prob,x1(n1),y1(n1)
EXTERNAL quadvl

C USES pearsn,probks,quadct,quadvl
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x
and y coordinates of n1 data points in arrays x1(1:n1) and y1(1:n1), and given a
user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER j
REAL dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen,probks
d1=0.0
do 11 j=1,n1 Loop over the data points.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))
For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

enddo 11

call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(float(n1))
rr=sqrt(1.0-r1**2)
Estimate the probability using the K-S probability function probks.

prob=probks(d1*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END

SUBROUTINE quadct(x,y,xx,yy,nn,fa,fb,fc,fd)
INTEGER nn
REAL fa,fb,fc,fd,x,y,xx(nn),yy(nn)

Given an origin (x, y), and an array of nn points with coordinates xx and yy, count how
many of them are in each quadrant around the origin, and return the normalized frac-
tions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used
by ks2d1s and ks2d2s.

INTEGER k,na,nb,nc,nd
REAL ff
na=0
nb=0
nc=0
nd=0
do 11 k=1,nn

if(yy(k).gt.y)then
if(xx(k).gt.x)then

na=na+1
else

nb=nb+1
endif

else
if(xx(k).gt.x)then

nd=nd+1
else

nc=nc+1
endif

endif
enddo 11

ff=1.0/nn
fa=ff*na
fb=ff*nb
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fc=ff*nc
fd=ff*nd
return
END

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
REAL fa,fb,fc,fd,x,y

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL qa,qb,qc,qd
qa=min(2.,max(0.,1.-x))
qb=min(2.,max(0.,1.-y))
qc=min(2.,max(0.,x+1.))
qd=min(2.,max(0.,y+1.))
fa=0.25*qa*qb
fb=0.25*qb*qc
fc=0.25*qc*qd
fd=0.25*qd*qa
return
END

The routine ks2d2s is the two-sample case of the two-dimensional K–S test. It also calls
quadct, pearsn, and probks. Being a two-sample test, it does not need an analytic model.

SUBROUTINE ks2d2s(x1,y1,n1,x2,y2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,x1(n1),x2(n2),y1(n1),y2(n2)

C USES pearsn,probks,quadct
Two-dimensional Kolmogorov-Smirnov test on two samples. Given the x and y coordinates
of the first sample as n1 values in arrays x1(1:n1) and y1(1:n1), and likewise for the
second sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-
sample K-S statistic as d, and its significance level as prob. Small values of prob show
that the two samples are significantly different. Note that the test is slightly distribution-
dependent, so prob is only an estimate.

INTEGER j
REAL d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,

* sqen,probks
d1=0.0
do 11 j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,n2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 11

d2=0.0
do 12 j=1,n2 Then, use points in the second sample as origins.

call quadct(x2(j),y2(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,n2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 12

d=0.5*(d1+d2) Average the K-S statistics.
sqen=sqrt(float(n1)*float(n2)/float(n1+n2))
call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient for each sample.
call pearsn(x2,y2,n2,r2,dum,dumm)
rr=sqrt(1.0-0.5*(r1**2+r2**2))
Estimate the probability using the K-S probability function probks.

prob=probks(d*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END
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14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given on which particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use for low-pass filters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that are
discussed elsewhere in this book. If you are fitting data to a parametric model, for example
(see Chapter 15), it is almost always better to use raw data than to use data that has been
pre-processed by a smoothing procedure. Another alternative to blind smoothing is so-called
“optimal” or Wiener filtering, as discussed in §13.3 and more generally in §13.6. Data
smoothing is probably most justified when it is used simply as a graphical technique, to guide
the eye through a forest of data points all with large error bars; or as a means of making initial
rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital
Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values fi ≡ f(ti),
where ti ≡ t0 + i∆ for some constant sample spacing ∆ and i = . . . − 2,−1, 0, 1, 2, . . . .
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data value fi by a linear combination gi of itself and some
number of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n (14.8.1)

Here nL is the number of points used “ to the left” of a data point i, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-called causal filter would have nR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixed nL = nR, compute each gi as the average of
the data points from fi−nL to fi+nR . This is sometimes called moving window averaging
and corresponds to equation (14.8.1) with constant cn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on
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14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given on which particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use for low-pass filters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that are
discussed elsewhere in this book. If you are fitting data to a parametric model, for example
(see Chapter 15), it is almost always better to use raw data than to use data that has been
pre-processed by a smoothing procedure. Another alternative to blind smoothing is so-called
“optimal” or Wiener filtering, as discussed in §13.3 and more generally in §13.6. Data
smoothing is probably most justified when it is used simply as a graphical technique, to guide
the eye through a forest of data points all with large error bars; or as a means of making initial
rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital
Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values fi ≡ f(ti),
where ti ≡ t0 + i∆ for some constant sample spacing ∆ and i = . . . − 2,−1, 0, 1, 2, . . . .
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data value fi by a linear combination gi of itself and some
number of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n (14.8.1)

Here nL is the number of points used “to the left” of a data point i, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-called causal filter would have nR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixed nL = nR, compute each gi as the average of
the data points from fi−nL to fi+nR . This is sometimes called moving window averaging
and corresponds to equation (14.8.1) with constant cn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on
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the average balanced by lower points at the other end. A bias is introduced, however, if
the underlying function has a nonzero second derivative. At a local maximum, for example,
moving window averaging always reduces the function value. In the spectrometric application,
a narrow spectral line has its height reduced and its width increased. Since these parameters
are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a spectral
line, which is its zeroth moment, and also (if the window is symmetric with nL = nR) its
mean position in time, which is its first moment. What is violated is the second moment,
equivalent to the line width.

The idea of Savitzky-Golay filtering is to find filter coefficients cn that preserve higher
moments. Equivalently, the idea is to approximate the underlying function within the moving
window not by a constant (whose estimate is the average), but by a polynomial of higher
order, typically quadratic or quartic: For each point fi, we least-squares fit a polynomial to all
nL + nR + 1 points in the moving window, and then set gi to be the value of that polynomial
at position i. (If you are not familiar with least-squares fitting, you might want to look ahead
to Chapter 15.) We make no use of the value of the polynomial at any other point. When we
move on to the next point fi+1, we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily, since the
process of least-squares fitting involves only a linear matrix inversion, the coefficients of a
fitted polynomial are themselves linear in the values of the data. That means that we can do
all the fitting in advance, for fictitious data consisting of all zeros except for a single 1, and
then do the fits on the real data just by taking linear combinations. This is the key point, then:
There are particular sets of filter coefficients cn for which equation (14.8.1) “automatically”
accomplishes the process of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider how g0 might be obtained: We want to fit a
polynomial of degree M in i, namely a0 + a1i + · · · + aM iM to the values f−nL , . . . , fnR .
Then g0 will be the value of that polynomial at i = 0, namely a0. The design matrix for
this problem (§15.4) is

Aij = ij i = −nL, . . . , nR, j = 0, . . . , M (14.8.2)

and the normal equations for the vector of aj ’s in terms of the vector of fi’s is in matrix notation

(AT · A) · a = AT · f or a = (AT · A)−1 · (AT · f) (14.8.3)

We also have the specific forms
{

AT · A
}

ij
=

nR∑
k=−nL

AkiAkj =

nR∑
k=−nL

ki+j (14.8.4)

and
{

AT · f
}

j
=

nR∑
k=−nL

Akjfk =

nR∑
k=−nL

kjfk (14.8.5)

Since the coefficient cn is the component a0 when f is replaced by the unit vector en,
−nL ≤ n < nR, we have

cn =
{
(AT · A)−1 · (AT · en)

}
0

=
M∑

m=0

{
(AT · A)−1

}
0m

nm (14.8.6)

Note that equation (14.8.6) says that we need only one row of the inverse matrix. (Numerically
we can get this by LU decomposition with only a single backsubstitution.)

The subroutine savgol, below, implements equation (14.8.6). As input, it takes the
parameters nl = nL, nr = nR, and m = M (the desired order). Also input is np, the
physical length of the output array c, and a parameter ld which for data fitting should be
zero. In fact, ld specifies which coefficient among the ai’s should be returned, and we are
here interested in a0. For another purpose, namely the computation of numerical derivatives
(already mentioned in §5.7) the useful choice is ld ≥ 1. With ld = 1, for example, the
filtered first derivative is the convolution (14.8.1) divided by the stepsize ∆. For ld = k > 1,
the array c must be multiplied by k! to give derivative coefficients. For derivatives, one
usually wants m = 4 or larger.
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M nL nR Sample Savitzky-Golay Coefficients

2 2 2 −0.086 0.343 0.486 0.343 −0.086

2 3 1 −0.143 0.171 0.343 0.371 0.257

2 4 0 0.086 −0.143 −0.086 0.257 0.886

2 5 5 −0.084 0.021 0.103 0.161 0.196 0.207 0.196 0.161 0.103 0.021 −0.084

4 4 4 0.035 −0.128 0.070 0.315 0.417 0.315 0.070 −0.128 0.035

4 5 5 0.042 −0.105 −0.023 0.140 0.280 0.333 0.280 0.140 −0.023 −0.105 0.042

SUBROUTINE savgol(c,np,nl,nr,ld,m)
INTEGER ld,m,nl,np,nr,MMAX
REAL c(np)
PARAMETER (MMAX=6)

C USES lubksb,ludcmp
Returns in c(1:np), in wrap-around order (N.B.!) consistent with the argument respns
in routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward
(past) data points used, while nr is the number of rightward (future) data points, making
the total number of data points used nl+ nr+ 1. ld is the order of the derivative desired
(e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also
equal to the highest conserved moment; usual values are m = 2 or m = 4.

INTEGER imj,ipj,j,k,kk,mm,indx(MMAX+1)
REAL d,fac,sum,a(MMAX+1,MMAX+1),b(MMAX+1)
if(np.lt.nl+nr+1.or.nl.lt.0.or.nr.lt.0.or.ld.gt.m.or.m.gt.MMAX

* .or.nl+nr.lt.m) pause ’bad args in savgol’
do 14 ipj=0,2*m Set up the normal equations of the desired least-

squares fit.sum=0.
if(ipj.eq.0)sum=1.
do 11 k=1,nr

sum=sum+float(k)**ipj
enddo 11

do 12 k=1,nl
sum=sum+float(-k)**ipj

enddo 12

mm=min(ipj,2*m-ipj)
do 13 imj=-mm,mm,2

a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sum
enddo 13

enddo 14

call ludcmp(a,m+1,MMAX+1,indx,d) Solve them: LU decomposition.
do 15 j=1,m+1

b(j)=0.
enddo 15

b(ld+1)=1. Right-hand side vector is unit vector, depending on which derivative we want.
call lubksb(a,m+1,MMAX+1,indx,b) Backsubstitute, giving one row of the inverse matrix.
do 16 kk=1,np Zero the output array (it may be bigger than number

of coefficients).c(kk)=0.
enddo 16

do 18 k=-nl,nr Each Savitzky-Golay coefficient is the dot product
of powers of an integer with the inverse matrix
row.

sum=b(1)
fac=1.
do 17 mm=1,m

fac=fac*k
sum=sum+b(mm+1)*fac

enddo 17

kk=mod(np-k,np)+1 Store in wrap-around order.
c(kk)=sum

enddo 18

return
END
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Figure 14.8.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps,
and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window
average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow
features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying
function used to generate the synthetic data. Bottom: Result of smoothing the data by a Savitzky-Golay
smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest
feature, narrower features have their heights and widths preserved.

As output, savgol returns the coefficients cn, for −nL ≤ n ≤ nR. These are stored in
c in “wrap-around order”; that is, c0 is in c(1), c−1 is in c(2), and so on for further negative
indices. The value c1 is stored in c(np), c2 in c(np-1), and so on for positive indices. This
order may seem arcane, but it is the natural one where causal filters have nonzero coefficients
in low array elements of c. It is also the order required by the subroutine convlv in §13.1,
which can be used to apply the digital filter to a data set.

The accompanying table shows some typical output from savgol. For orders 2 and
4, the coefficients of Savitzky-Golay filters with several choices of nL and nR are shown.
The central column is the coefficient applied to the data fi in obtaining the smoothed gi.
Coefficients to the left are applied to earlier data; to the right, to later. The coefficients
always add (within roundoff error) to unity. One sees that, as befits a smoothing operator,
the coefficients always have a central positive lobe, but with smaller, outlying corrections of
both positive and negative sign. In practice, the Savitzky-Golay filters are most useful for
much larger values of nL and nR, since these few-point formulas can accomplish only a
relatively small amount of smoothing.

Figure 14.8.1 shows a numerical experiment using a 33 point smoothing filter, that is,
nL = nR = 16. The upper panel shows a test function, constructed to have six “bumps” of
varying widths, all of height 8 units. To this function Gaussian white noise of unit variance
has been added. (The test function without noise is shown as the dotted curves in the center
and lower panels.) The widths of the bumps (full width at half of maximum, or FWHM) are
140, 43, 24, 17, 13, and 10, respectively.

The middle panel of Figure 14.8.1 shows the result of smoothing by a moving window
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Figure 14.8.2. Result of applying wider 65 point Savitzky-Golay filters to the same data set as in Figure
14.8.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimally broad
for the resolution of the narrow features. Higher-order filters do best at preserving feature heights and
widths, but do less smoothing on broader features.

average. One sees that the window of width 33 does quite a nice job of smoothing the broadest
bump, but that the narrower bumps suffer considerable loss of height and increase of width.
The underlying signal (dotted) is very badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of the
identical width, and degree M = 4. One sees that the heights and widths of the bumps are
quite extraordinarily preserved. A trade-off is that the broadest bump is less smoothed. That
is because the central positive lobe of the Savitzky-Golay filter coefficients fills only a fraction
of the full 33 point width. As a rough guideline, best results are obtained when the full width
of the degree 4 Savitzky-Golay filter is between 1 and 2 times the FWHM of desired features
in the data. (References [3] and [4] give additional practical hints.)

Figure 14.8.2 shows the result of smoothing the same noisy “data” with broader
Savitzky-Golay filters of 3 different orders. Here we have nL = nR = 32 (65 point filter)
and M = 2, 4, 6. One sees that, when the bumps are too narrow with respect to the filter
size, then even the Savitzky-Golay filter must at some point give out. The higher order filter
manages to track narrower features, but at the cost of less smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide smoothing
without loss of resolution. It does this by assuming that relatively distant data points have
some significant redundancy that can be used to reduce the level of noise. The specific nature
of the assumed redundancy is that the underlying function should be locally well-fitted by a
polynomial. When this is true, as it is for smooth line profiles not too much narrower than
the filter width, then the performance of Savitzky-Golay filters can be spectacular. When it
is not true, then these filters have no compelling advantage over other classes of smoothing
filter coefficients.

A last remark concerns irregularly sampled data, where the values fi are not uniformly
spaced in time. The obvious generalization of Savitzky-Golay filtering would be to do a
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least-squares fit within a moving window around each data point, one containing a fixed
number of data points to the left (nL) and right (nR). Because of the irregular spacing,
however, there is no way to obtain universal filter coefficients applicable to more than one
data point. One must instead do the actual least-squares fits for each data point. This becomes
computationally burdensome for larger nL, nR, and M .

As a cheap alternative, one can simply pretend that the data points are equally spaced.
This amounts to virtually shifting, within each moving window, the data points to equally
spaced positions. Such a shift introduces the equivalent of an additional source of noise
into the function values. In those cases where smoothing is useful, this noise will often be
much smaller than the noise already present. Specifically, if the location of the points is
approximately random within the window, then a rough criterion is this: If the change in f

across the full width of the N = nL + nR + 1 point window is less than
√

N/2 times the
measurement noise on a single point, then the cheap method can be used.

CITED REFERENCES AND FURTHER READING:

Savitzky A., and Golay, M.J.E. 1964, Analytical Chemistry, vol. 36, pp. 1627–1639. [1]

Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall). [2]

Ziegler, H. 1981, Applied Spectroscopy, vol. 35, pp. 88–92. [3]

Bromba, M.U.A., and Ziegler, H. 1981, Analytical Chemistry, vol. 53, pp. 1583–1586. [4]
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Chapter 15. Modeling of Data

15.0 Introduction

Given a set of observations, one often wants to condense and summarize the
data by fitting it to a “model” that depends on adjustable parameters. Sometimes the
model is simply a convenient class of functions, such as polynomials or Gaussians,
and the fit supplies the appropriate coefficients. Other times, the model’s parameters
come from some underlying theory that the data are supposed to satisfy; examples
are coefficients of rate equations in a complex network of chemical reactions, or
orbital elements of a binary star. Modeling can also be used as a kind of constrained
interpolation, where you want to extend a few data points into a continuous function,
but with some underlying idea of what that function should look like.

The basic approach in all cases is usually the same: You choose or design a
figure-of-merit function (“merit function,” for short) that measures the agreement
between the data and the model with a particular choice of parameters. The merit
function is conventionally arranged so that small values represent close agreement.
The parameters of the model are then adjusted to achieve a minimum in the merit
function, yielding best-fit parameters. The adjustment process is thus a problem in
minimization in many dimensions. This optimization was the subject of Chapter 10;
however, there exist special, more efficient, methods that are specific to modeling,
and we will discuss these in this chapter.

There are important issues that go beyond the mere finding of best-fit parameters.
Data are generally not exact. They are subject to measurement errors (called noise
in the context of signal-processing). Thus, typical data never exactly fit the model
that is being used, even when that model is correct. We need the means to assess
whether or not the model is appropriate, that is, we need to test the goodness-of-fit
against some useful statistical standard.

We usually also need to know the accuracy with which parameters are determined
by the data set. In other words, we need to know the likely errors of the best-fit
parameters.

Finally, it is not uncommon in fitting data to discover that the merit function
is not unimodal, with a single minimum. In some cases, we may be interested in
global rather than local questions. Not, “how good is this fit?” but rather, “how sure
am I that there is not a very much better fit in some corner of parameter space?”
As we have seen in Chapter 10, especially §10.9, this kind of problem is generally
quite difficult to solve.

The important message we want to deliver is that fitting of parameters is not
the end-all of parameter estimation. To be genuinely useful, a fitting procedure

650
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should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks good.” This
approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), Chapters 18–19.

15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fitting N data points (xi, yi) i = 1, . . . , N , to a model that
has M adjustable parameters aj, j = 1, . . . , M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1 . . . aM ) (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for the a j’s? The

first thing that comes to mind is the familiar least-squares fit,

minimize overa1 . . . aM :
N∑

i=1

[yi − y(xi; a1 . . . aM )]2 (15.1.2)

But where does this come from? What general principles is it based on? The answer
to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of xi’s and yi’s, we have the intuitive feeling that
some parameter sets a1 . . . aM are very unlikely — those for which the model
function y(x) looks nothing like the data — while others may be very likely — those
that closely resemble the data. How can we quantify this intuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
a1 . . . aM is correct?” The reason is that there is no statistical universe of models
from which the parameters are drawn. There is just one model, the correct one, and
a statistical universe of data sets that are drawn from it!
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should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks good.” This
approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), Chapters 18–19.

15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fitting N data points (xi, yi) i = 1, . . . , N , to a model that
has M adjustable parameters aj, j = 1, . . . , M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1 . . . aM ) (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for the a j’s? The

first thing that comes to mind is the familiar least-squares fit,

minimize overa1 . . . aM :
N∑

i=1

[yi − y(xi; a1 . . . aM )]2 (15.1.2)

But where does this come from? What general principles is it based on? The answer
to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of xi’s and yi’s, we have the intuitive feeling that
some parameter sets a1 . . . aM are very unlikely — those for which the model
function y(x) looks nothing like the data — while others may be very likely — those
that closely resemble the data. How can we quantify this intuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
a1 . . . aM is correct?” The reason is that there is no statistical universe of models
from which the parameters are drawn. There is just one model, the correct one, and
a statistical universe of data sets that are drawn from it!
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That being the case, we can, however, turn the question around, and ask, “Given
a particular set of parameters, what is the probability that this data set could have
occurred?” If the yi’s take on continuous values, the probability will always be
zero unless we add the phrase, “...plus or minus some fixed ∆y on each data point.”
So let’s always take this phrase as understood. If the probability of obtaining the
data set is infinitesimally small, then we can conclude that the parameters under
consideration are “unlikely” to be right. Conversely, our intuition tells us that the
data set should not be too improbable for the correct choice of parameters.

In other words, we identify the probability of the data given the parameters
(which is a mathematically computable number), as the likelihood of the parameters
given the data. This identification is entirely based on intuition. It has no formal
mathematical basis in and of itself; as we already remarked, statistics is not a
branch of mathematics!

Once we make this intuitive identification, however, it is only a small further
step to decide to fit for the parameters a1 . . . aM precisely by finding those values
that maximize the likelihood defined in the above way. This form of parameter
estimation is maximum likelihood estimation.

We are now ready to make the connection to (15.1.2). Suppose that each data
point yi has a measurement error that is independently random and distributed as a
normal (Gaussian) distribution around the “true” model y(x). And suppose that the
standard deviations σ of these normal distributions are the same for all points. Then
the probability of the data set is the product of the probabilities of each point,

P ∝
N∏

i=1

{
exp

[
−1

2

(
yi − y(xi)

σ

)2
]

∆y

}
(15.1.3)

Notice that there is a factor ∆y in each term in the product. Maximizing (15.1.3) is
equivalent to maximizing its logarithm, or minimizing the negative of its logarithm,
namely,

[
N∑

i=1

[yi − y(xi)]2

2σ2

]
− N log ∆y (15.1.4)

Since N , σ, and ∆y are all constants, minimizing this equation is equivalent to
minimizing (15.1.2).

What we see is that least-squares fitting is a maximum likelihood estimation
of the fitted parameters if the measurement errors are independent and normally
distributed with constant standard deviation. Notice that we made no assumption
about the linearity or nonlinearity of the model y(x; a1 . . .) in its parameters
a1 . . . aM . Just below, we will relax our assumption of constant standard deviations
and obtain the very similar formulas for what is called “chi-square fitting” or
“weighted least-squares fitting.” First, however, let us discuss further our very
stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with
the fact that the probability distribution of the sum of a very large number of very
small random deviations almost always converges to a normal distribution. (For
precise statements of this central limit theorem, consult [1] or other standard works
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on mathematical statistics.) This infatuation tended to focus interest away from the
fact that, for real data, the normal distribution is often rather poorly realized, if it is
realized at all. We are often taught, rather casually, that, on average, measurements
will fall within ±σ of the true value 68 percent of the time, within ±2σ 95 percent
of the time, and within ±3σ 99.7 percent of the time. Extending this, one would
expect a measurement to be off by ±20σ only one time out of 2 × 10 88. We all
know that “glitches” are much more likely than that!

In some instances, the deviations from a normal distribution are easy to
understand and quantify. For example, in measurements obtained by counting
events, the measurement errors are usually distributed as a Poisson distribution,
whose cumulative probability function was already discussed in §6.2. When the
number of counts going into one data point is large, the Poisson distribution converges
towards a Gaussian. However, the convergence is not uniform when measured in
fractional accuracy. The more standard deviations out on the tail of the distribution,
the larger the number of counts must be before a value close to the Gaussian is
realized. The sign of the effect is always the same: The Gaussian predicts that “tail”
events are much less likely than they actually (by Poisson) are. This causes such
events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to
understand in detail. Experimental points are occasionally just way off. Perhaps
the power flickered during a point’s measurement, or someone kicked the apparatus,
or someone wrote down a wrong number. Points like this are called outliers.
They can easily turn a least-squares fit on otherwise adequate data into nonsense.
Their probability of occurrence in the assumed Gaussian model is so small that the
maximum likelihood estimator is willing to distort the whole curve to try to bring
them, mistakenly, into line.

The subject of robust statistics deals with cases where the normal or Gaussian
model is a bad approximation, or cases where outliers are important. We will discuss
robust methods briefly in §15.7. All the sections between this one and that one
assume, one way or the other, a Gaussian model for the measurement errors in the
data. It it quite important that you keep the limitations of that model in mind, even
as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to
statistical errors, the kind that will average away if we only take enough data.
Measurements are also susceptible to systematic errors that will not go away with
any amount of averaging. For example, the calibration of a metal meter stick might
depend on its temperature. If we take all our measurements at the same wrong
temperature, then no amount of averaging or numerical processing will correct for
this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in §14.3. Here it arises
in a slightly different context.

If each data point (xi, yi) has its own, known standard deviation σi, then
equation (15.1.3) is modified only by putting a subscript i on the symbol σ. That
subscript also propagates docilely into (15.1.4), so that the maximum likelihood
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estimate of the model parameters is obtained by minimizing the quantity

χ2 ≡
N∑

i=1

(
yi − y(xi; a1 . . . aM )

σi

)2

(15.1.5)

called the “chi-square.”
To whatever extent the measurement errors actually are normally distributed, the

quantity χ2 is correspondingly a sum of N squares of normally distributed quantities,
each normalized to unit variance. Once we have adjusted the a 1 . . . aM to minimize
the value of χ2, the terms in the sum are not all statistically independent. For models
that are linear in the a’s, however, it turns out that the probability distribution for
different values of χ2 at its minimum can nevertheless be derived analytically, and
is the chi-square distribution for N − M degrees of freedom. We learned how to
compute this probability function using the incomplete gamma function gammq in
§6.2. In particular, equation (6.2.18) gives the probability Q that the chi-square
should exceed a particular value χ2 by chance, where ν = N − M is the number of
degrees of freedom. The quantity Q, or its complement P ≡ 1 − Q, is frequently
tabulated in appendices to statistics books, but we generally find it easier to use
gammq and compute our own values: Q = gammq (0.5ν, 0.5χ2). It is quite common,
and usually not too wrong, to assume that the chi-square distribution holds even for
models that are not strictly linear in the a’s.

This computed probability gives a quantitative measure for the goodness-of-fit
of the model. If Q is a very small probability for some particular data set, then the
apparent discrepancies are unlikely to be chance fluctuations. Much more probably
either (i) the model is wrong — can be statistically rejected, or (ii) someone has lied to
you about the size of the measurement errors σ i — they are really larger than stated.

It is an important point that the chi-square probability Q does not directly
measure the credibility of the assumption that the measurement errors are normally
distributed. It assumes they are. In most, but not all, cases, however, the effect of
nonnormal errors is to create an abundance of outlier points. These decrease the
probability Q, so that we can add another possible, though less definitive, conclusion
to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason
that reasonable experimenters are often rather tolerant of low probabilities Q. It is
not uncommon to deem acceptable on equal terms any models with, say, Q > 0.001.
This is not as sloppy as it sounds: Truly wrong models will often be rejected with
vastly smaller values of Q, 10−18, say. However, if day-in and day-out you find
yourself accepting models with Q ∼ 10−3, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors,
then you might wish to Monte Carlo simulate some data sets drawn from a particular
model, cf. §7.2–§7.3. You can then subject these synthetic data sets to your actual
fitting procedure, so as to determine both the probability distribution of the χ 2

statistic, and also the accuracy with which your model parameters are reproduced
by the fit. We discuss this further in §15.6. The technique is very general, but it
can also be very expensive.

At the opposite extreme, it sometimes happens that the probability Q is too large,
too near to 1, literally too good to be true! Nonnormal measurement errors cannot
in general produce this disease, since the normal distribution is about as “compact”
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as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, has overestimated his or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value of χ2 for a “moderately” good fit is
χ2 ≈ ν. More precise is the statement that the χ2 statistic has a mean ν and a standard
deviation

√
2ν, and, asymptotically for large ν, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related to χ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation, σ i = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant σ to all points, next fitting for the model parameters by minimizing χ 2,
and finally recomputing

σ2 =
N∑

i=1

[yi − y(xi)]2/(N − M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allows some kind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters a k,
we obtain equations that must hold at the chi-square minimum,

0 =
N∑

i=1

(
yi − y(xi)

σ2
i

)(
∂y(xi; . . . ak . . .)

∂ak

)
k = 1, . . . , M (15.1.7)

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (x i, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)
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as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, has overestimated his or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value of χ2 for a “moderately” good fit is
χ2 ≈ ν. More precise is the statement that the χ2 statistic has a mean ν and a standard
deviation

√
2ν, and, asymptotically for large ν, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related to χ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation, σ i = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant σ to all points, next fitting for the model parameters by minimizing χ 2,
and finally recomputing

σ2 =
N∑

i=1

[yi − y(xi)]2/(N − M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allows some kind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters a k,
we obtain equations that must hold at the chi-square minimum,

0 =
N∑

i=1

(
yi − y(xi)

σ2
i

)(
∂y(xi; . . . ak . . .)

∂ak

)
k = 1, . . . , M (15.1.7)

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (x i, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)
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This problem is often called linear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertainty σi associated with
each measurement yi is known, and that the xi’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

χ2(a, b) =
N∑

i=1

(
yi − a − bxi

σi

)2

(15.2.2)

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In §15.7, we will treat the case where outlier points are so
numerous as to render the χ2 merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum,
derivatives of χ2(a, b) with respect to a, b vanish.

0 =
∂χ2

∂a
= −2

N∑
i=1

yi − a − bxi

σ2
i

0 =
∂χ2

∂b
= −2

N∑
i=1

xi(yi − a − bxi)
σ2

i

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums:

S ≡
N∑

i=1

1
σ2

i

Sx ≡
N∑

i=1

xi

σ2
i

Sy ≡
N∑

i=1

yi

σ2
i

Sxx ≡
N∑

i=1

x2
i

σ2
i

Sxy ≡
N∑

i=1

xiyi

σ2
i

(15.2.4)

With these definitions (15.2.3) becomes

aS + bSx = Sy

aSx + bSxx = Sxy

(15.2.5)

The solution of these two equations in two unknowns is calculated as

∆ ≡ SSxx − (Sx)2

a =
SxxSy − SxSxy

∆

b =
SSxy − SxSy

∆

(15.2.6)

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.
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We are not done, however. We must estimate the probable uncertainties in
the estimates of a and b, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the variance σ 2

f in the value of
any function will be

σ2
f =

N∑
i=1

σ2
i

(
∂f

∂yi

)2

(15.2.7)

For the straight line, the derivatives of a and b with respect to y i can be directly
evaluated from the solution:

∂a

∂yi
=

Sxx − Sxxi

σ2
i ∆

∂b

∂yi
=

Sxi − Sx

σ2
i ∆

(15.2.8)

Summing over the points as in (15.2.7), we get

σ2
a = Sxx/∆

σ2
b = S/∆

(15.2.9)

which are the variances in the estimates of a and b, respectively. We will see in
§15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov(a, b) = −Sx/∆ (15.2.10)

The coefficient of correlation between the uncertainty in a and the uncertainty
in b, which is a number between −1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

rab =
−Sx√
SSxx

(15.2.11)

A positive value of rab indicates that the errors in a and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probability Q that a value of
chi-square as poor as the value (15.2.2) should occur by chance is

Q = gammq

(
N − 2

2
,

χ2

2

)
(15.2.12)
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Here gammq is our routine for the incomplete gamma function Q(a, x), §6.2. If
Q is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
than, say, 0.001, then the fit may be acceptable if the errors are nonnormal or have
been moderately underestimated. If Q is less than 0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the points σ i, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set σi ≡ 1 in all equations through (15.2.6), and multiply σa and σb, as
obtained from equation (15.2.9), by the additional factor

√
χ2/(N − 2), where χ2

is computed by (15.2.2) using the fitted parameters a and b. As discussed above,
this procedure is equivalent to assuming a good fit, so you get no independent
goodness-of-fit probability Q.

In §14.5 we promised a relation between the linear correlation coefficient
r (equation 14.5.1) and a goodness-of-fit measure, χ 2 (equation 15.2.2). For
unweighted data (all σi = 1), that relation is

χ2 = (1 − r2)NVar (y1 . . . yN ) (15.2.13)
where

NVar (y1 . . . yN) ≡
N∑

i=1

(yi − y)2 (15.2.14)

For data with varying weights σi, the above equations remain valid if the sums in
equation (14.5.1) are weighted by 1/σ 2

i .

The following subroutine, fit, carries out exactly the operations that we have
discussed. When the weights σ are known in advance, the calculations exactly
correspond to the formulas above. However, when weights σ are unavailable,
the routine assumes equal values of σ for each point and assumes a good fit, as
discussed in §15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

ti =
1
σi

(
xi − Sx

S

)
, i = 1, 2, . . . , N (15.2.15)

and

Stt =
N∑

i=1

t2i (15.2.16)

Then, as you can verify by direct substitution,

b =
1

Stt

N∑
i=1

tiyi

σi
(15.2.17)

a =
Sy − Sxb

S
(15.2.18)
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σ2
a =

1
S

(
1 +

S2
x

SStt

)
(15.2.19)

σ2
b =

1
Stt

(15.2.20)

Cov(a, b) = − Sx

SStt
(15.2.21)

rab =
Cov(a, b)

σaσb
(15.2.22)

SUBROUTINE fit(x,y,ndata,sig,mwt,a,b,siga,sigb,chi2,q)
INTEGER mwt,ndata
REAL a,b,chi2,q,siga,sigb,sig(ndata),x(ndata),y(ndata)

C USES gammq
Given a set of data points x(1:ndata),y(1:ndata) with individual standard deviations
sig(1:ndata), fit them to a straight line y = a + bx by minimizing χ2. Returned are
a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and
the goodness-of-fit probability q (that the fit would have χ2 this large or larger). If mwt=0
on input, then the standard deviations are assumed to be unavailable: q is returned as 1.0
and the normalization of chi2 is to unit standard deviation on all points.

INTEGER i
REAL sigdat,ss,st2,sx,sxoss,sy,t,wt,gammq
sx=0. Initialize sums to zero.
sy=0.
st2=0.
b=0.
if(mwt.ne.0) then Accumulate sums ...

ss=0.
do 11 i=1,ndata ...with weights

wt=1./(sig(i)**2)
ss=ss+wt
sx=sx+x(i)*wt
sy=sy+y(i)*wt

enddo 11

else
do 12 i=1,ndata ...or without weights.

sx=sx+x(i)
sy=sy+y(i)

enddo 12

ss=float(ndata)
endif
sxoss=sx/ss
if(mwt.ne.0) then

do 13 i=1,ndata
t=(x(i)-sxoss)/sig(i)
st2=st2+t*t
b=b+t*y(i)/sig(i)

enddo 13

else
do 14 i=1,ndata

t=x(i)-sxoss
st2=st2+t*t
b=b+t*y(i)

enddo 14

endif
b=b/st2 Solve for a, b, σa, and σb.
a=(sy-sx*b)/ss
siga=sqrt((1.+sx*sx/(ss*st2))/ss)
sigb=sqrt(1./st2)
chi2=0. Calculate χ2.
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q=1.
if(mwt.eq.0) then

do 15 i=1,ndata
chi2=chi2+(y(i)-a-b*x(i))**2

enddo 15

sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-
ing chi2, and adjust the standard devia-
tions.

siga=siga*sigdat
sigb=sigb*sigdat

else
do 16 i=1,ndata

chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
enddo 16

if(ndata.gt.2) q=gammq(0.5*(ndata-2),0.5*chi2) Equation (15.2.12).
endif
return
END

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the yi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a + bx (15.3.1)

is considerably harder. It is straightforward to write down the χ2 merit function for this case,

χ2(a, b) =
N∑

i=1

(yi − a − bxi)
2

σ2
y i + b2σ2

x i

(15.3.2)

where σx i and σy i are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallest χ2 between each data point and the line with
slope b, and also as the variance of the linear combination yi − a − bxi of two random
variables xi and yi,

Var(yi − a − bxi) = Var(yi) + b2Var(xi) = σ2
y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope ∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[∑
i

wi(yi − bxi)

]/∑
i

wi (15.3.4)

where the wi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
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q=1.
if(mwt.eq.0) then

do 15 i=1,ndata
chi2=chi2+(y(i)-a-b*x(i))**2

enddo 15

sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-
ing chi2, and adjust the standard devia-
tions.

siga=siga*sigdat
sigb=sigb*sigdat

else
do 16 i=1,ndata

chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
enddo 16

if(ndata.gt.2) q=gammq(0.5*(ndata-2),0.5*chi2) Equation (15.2.12).
endif
return
END

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in theyi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a + bx (15.3.1)

is considerably harder. It is straightforward to write down theχ2 merit function for this case,

χ2(a, b) =
N∑

i=1

(yi − a − bxi)
2

σ2
y i + b2σ2

x i

(15.3.2)

whereσx i andσy i are, respectively, thex andy standard deviations for theith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallestχ2 between each data point and the line with
slope b, and also as the variance of the linear combinationyi − a − bxi of two random
variablesxi and yi,

Var(yi − a − bxi) = Var(yi) + b2Var(xi) = σ2
y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square ofN random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect toa and b. Unfortunately, the
occurrence ofb in the denominator of equation (15.3.2) makes the resulting equation for
the slope∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[∑
i

wi(yi − bxi)

]/∑
i

wi (15.3.4)

where thewi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routinebrent) for minimizing a general one-dimensional
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∆χ2 = 1

σa

A

B

σb

0

b

a

s

r

Figure 15.3.1. Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This gives the standard error σb, and also the
value s. The standard error σa can then be found by the geometric relation σ2a = s2 + r2.

function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.

Because of the finite error bars on the xi’s, the minimum χ2 as a function of b will
be finite, though usually large, when b equals infinity (line of infinite slope). The angle
θ ≡ arctan b is thus more suitable as a parametrization of slope than b itself. The value of χ2

will then be periodic in θ with period π (not 2π!). If any data points have very small σy ’s
but moderate or large σx ’s, then it is also possible to have a maximum in χ2 near zero slope,
θ ≈ 0. In that case, there can sometimes be two χ2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess for b (or θ). Our strategy, implemented below, is to scale the
yi’s so as to have variance equal to the xi’s, then to do a conventional (as in §15.2) linear fit
with weights derived from the (scaled) sum σ2

y i + σ2
x i. This yields a good starting guess for

b if the data are even plausibly related to a straight-line model.
Finding the standard errors σa and σb on the parameters a and b is more complicated.

We will see in §15.6 that, in appropriate circumstances, the standard errors in a and b are the
respective projections onto the a and b axes of the “confidence region boundary” where χ2

takes on a value one greater than its minimum, ∆χ2 = 1. In the linear case of §15.2, these
projections follow from the Taylor series expansion

∆χ2 ≈ 1

2

[
∂2χ2

∂a2
(∆a)2 +

∂2χ2

∂b2
(∆b)2

]
+

∂2χ2

∂a∂b
∆a∆b (15.3.5)

Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to ∆χ2. Our strategy is therefore to find the roots of ∆χ2 = 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. §9.1).

Because a is minimized at each stage of varying b, successful numerical root-finding
leads to a value of ∆a that minimizes χ2 for the value of ∆b that gives ∆χ2 = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b axis,
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and thus σb. It does not, however, give the tangent projection of the confidence region onto
the a axis. In the figure, we have found the point labeled B; to find σa we need to find the
point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) that σ2

a = r2 + s2. The value of s is known
from having found the point B. The value of r follows from equations (15.3.2) and (15.3.3)
applied at the χ2 minimum (point O in the figure), giving

r2 = 1

/∑
i

wi (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
(a, θ) space than in (a, b) space. That is in fact how the following program works. Since
it is conventional, however, to return standard errors for a and b, not a and θ, we finally
use the relation

σb = σθ/ cos2 θ (15.3.7)

We caution that if b and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard error σb is not very meaningful. The function chixy
is normally called only by the routine fitexy. However, if you want, you can yourself explore
the confidence region by making repeated calls to chixy (whose argument is an angle θ, not
a slope b), after a single initializing call to fitexy.

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable
(returned probability is too small), the standard errors σa and σb are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible values for σa and σb.

SUBROUTINE fitexy(x,y,ndat,sigx,sigy,a,b,siga,sigb,chi2,q)
INTEGER ndat,NMAX
REAL x(ndat),y(ndat),sigx(ndat),sigy(ndat),a,b,siga,sigb,chi2,

* q,POTN,PI,BIG,ACC
PARAMETER (NMAX=1000,POTN=1.571000,BIG=1.e30,PI=3.14159265,

* ACC=1.e-3)
C USES avevar,brent,chixy,fit,gammq,mnbrak,zbrent

Straight-line fit to input data x(1:ndat) and y(1:ndat) with errors in both x and y, the
respective standard deviations being the input quantities sigx(1:ndat) and sigy(1:ndat).
Output quantities are a and b such that y = a + bx minimizes χ2, whose value is returned
as chi2. The χ2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and
sigb. These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the
data are consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG,
then the data are consistent with all values of b.

INTEGER j,nn
REAL xx(NMAX),yy(NMAX),sx(NMAX),sy(NMAX),ww(NMAX),swap,amx,amn

* ,varx,vary,aa,offs,ang(6),ch(6),scale,bmn,bmx,d1,d2
* ,r2,dum1,dum2,dum3,dum4,dum5,brent,chixy,gammq,zbrent

COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn
EXTERNAL chixy
if (ndat.gt.NMAX) pause ’NMAX too small in fitexy’
call avevar(x,ndat,dum1,varx) Find the x and y variances, and scale the data

into the common block for communication
with the function chixy.

call avevar(y,ndat,dum1,vary)
scale=sqrt(varx/vary)
nn=ndat
do 11 j=1,ndat

xx(j)=x(j)
yy(j)=y(j)*scale
sx(j)=sigx(j)
sy(j)=sigy(j)*scale
ww(j)=sqrt(sx(j)**2+sy(j)**2) Use both x and y weights in first trial fit.

enddo 11

call fit(xx,yy,nn,ww,1,dum1,b,dum2,dum3,dum4,dum5) Trial fit for b.
offs=0.
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ang(1)=0. Construct several angles for reference points.
ang(2)=atan(b) Make b an angle.
ang(4)=0.
ang(5)=ang(2)
ang(6)=POTN
do 12 j=4,6

ch(j)=chixy(ang(j))
enddo 12

call mnbrak(ang(1),ang(2),ang(3),ch(1),ch(2),ch(3),chixy) Bracket the χ2 min-
imum and then locate it with brent.chi2=brent(ang(1),ang(2),ang(3),chixy,ACC,b)

chi2=chixy(b)
a=aa
q=gammq(0.5*(nn-2),0.5*chi2) Compute χ2 probability.
r2=0.
do 13 j=1,nn Save the inverse sum of weights at the mini-

mum.r2=r2+ww(j)
enddo 13

r2=1./r2
bmx=BIG Now, find standard errors for b as points where

∆χ2 = 1.bmn=BIG
offs=chi2+1.
do 14 j=1,6 Go through saved values to bracket the desired

roots. Note periodicity in slope angles.if (ch(j).gt.offs) then
d1=mod(abs(ang(j)-b),PI)
d2=PI-d1
if(ang(j).lt.b)then

swap=d1
d1=d2
d2=swap

endif
if (d1.lt.bmx) bmx=d1
if (d2.lt.bmn) bmn=d2

endif
enddo 14

if (bmx.lt. BIG) then Call zbrent to find the roots.
bmx=zbrent(chixy,b,b+bmx,ACC)-b
amx=aa-a
bmn=zbrent(chixy,b,b-bmn,ACC)-b
amn=aa-a
sigb=sqrt(0.5*(bmx**2+bmn**2))/(scale*cos(b)**2)
siga=sqrt(0.5*(amx**2+amn**2)+r2)/scale Error in a has additional piece r2.

else
sigb=BIG
siga=BIG

endif
a=a/scale Unscale the answers.
b=tan(b)/scale
return
END

FUNCTION chixy(bang)
REAL chixy,bang,BIG
INTEGER NMAX
PARAMETER (NMAX=1000,BIG=1.E30)

Captive function of fitexy, returns the value of (χ2 −offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the common block /fitxyc/.

INTEGER nn,j
REAL xx(NMAX),yy(NMAX),sx(NMAX),sy(NMAX),ww(NMAX),aa,offs,

* avex,avey,sumw,b
COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn
b=tan(bang)
avex=0.
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avey=0.
sumw=0.
do 11 j=1,nn

ww(j)=(b*sx(j))**2+sy(j)**2
if(ww(j).lt.1./BIG) then

ww(j)=BIG
else

ww(j)=1./ww(j)
endif
sumw=sumw+ww(j)
avex=avex+ww(j)*xx(j)
avey=avey+ww(j)*yy(j)

enddo 11

avex=avex/sumw
avey=avey/sumw
aa=avey-b*avex
chixy=-offs
do 12 j=1,nn

chixy=chixy+ww(j)*(yy(j)-aa-b*xx(j))**2
enddo 12

return
END

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming’s [1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who
have still different points of view.
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Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop,
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15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (x i, yi) to a
model that is not just a linear combination of 1 and x (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
could be 1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x + a3x
2 + · · · + aMxM−1 (15.4.1)

is a polynomial of degree M − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =
M∑

k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(x) can be wildly nonlinear functions of x. In this
discussion “ linear” refers only to the model’s dependence on its parameters a k.

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =
N∑

i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.3)

As before, σi is the measurement error (standard deviation) of the ith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value σ = 1.

Once again, we will pick as best parameters those that minimize χ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N × M components are constructed from the M
basis functions evaluated at the N abscissas xi, and from the N measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi
(15.4.4)

The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by

bi =
yi

σi
(15.4.5)

and denote the M vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.
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15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (x i, yi) to a
model that is not just a linear combination of 1 and x (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
could be 1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x + a3x
2 + · · · + aMxM−1 (15.4.1)

is a polynomial of degree M − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =
M∑

k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(x) can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters a k.

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =
N∑

i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.3)

As before, σi is the measurement error (standard deviation) of the ith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value σ = 1.

Once again, we will pick as best parameters those that minimize χ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N × M components are constructed from the M
basis functions evaluated at the N abscissas xi, and from the N measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi
(15.4.4)

The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by

bi =
yi

σi
(15.4.5)

and denote the M vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.
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X1(x1)

σ1

x1 X2(x1)
σ1

. . . XM(x1)
σ1

X1( ) X2( ) . . . XM( )

X1(x2)
σ2

x2 X2(x2)
σ2

. . . XM(x2)
σ2

...
...

...
...

...
...

...

X1(xN)
σN

xN X2(xN)
σN

. . . XM(xN)
σN

da
ta

 p
oi

nt
s

basis functions

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination of M basis functions to N
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurements are made, and the standard deviations of the measured dependent variable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of χ 2 with respect to all
M parameters ak vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields the M equations

0 =
N∑

i=1

1
σ2

i


yi −

M∑
j=1

ajXj(xi)


Xk(xi) k = 1, . . . , M (15.4.6)

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M∑
j=1

αkjaj = βk (15.4.7)

where

αkj =
N∑

i=1

Xj(xi)Xk(xi)
σ2

i

or equivalently [α] = AT · A (15.4.8)

an M × M matrix, and

βk =
N∑

i=1

yiXk(xi)
σ2

i

or equivalently [β] = AT · b (15.4.9)
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a vector of length M .
The equations (15.4.6) or (15.4.7) are called the normal equations of the least-

squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[α] · a = [β] or as
(
AT · A

) · a = AT · b (15.4.10)

The inverse matrix Cjk ≡ [α]−1
jk is closely related to the probable (or, more

precisely, standard) uncertainties of the estimated parameters a. To estimate these
uncertainties, consider that

aj =
M∑

k=1

[α]−1
jk βk =

M∑
k=1

Cjk

[
N∑

i=1

yiXk(xi)
σ2

i

]
(15.4.11)

and that the variance associated with the estimate aj can be found as in (15.2.7) from

σ2(aj) =
N∑

i=1

σ2
i

(
∂aj

∂yi

)2

(15.4.12)

Note that αjk is independent of yi, so that

∂aj

∂yi
=

M∑
k=1

CjkXk(xi)/σ2
i (15.4.13)

Consequently, we find that

σ2(aj) =
M∑

k=1

M∑
l=1

CjkCjl

[
N∑

i=1

Xk(xi)Xl(xi)
σ2

i

]
(15.4.14)

The final term in brackets is just the matrix [α]. Since this is the matrix inverse of
[C], (15.4.14) reduces immediately to

σ2(aj) = Cjj (15.4.15)

In other words, the diagonal elements of [C] are the variances (squared
uncertainties) of the fitted parameters a. It should not surprise you to learn that the
off-diagonal elements Cjk are the covariances between aj and ak (cf. 15.2.10); but
we shall defer discussion of these to §15.6.

We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but also the covariance matrix [C], it is most
convenient to use Gauss-Jordan elimination (routine gaussj of §2.1) to perform the
linear algebra. The operation count, in this application, is no larger than that for LU
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching to LU decomposition, without
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computation of the matrix inverse. In theory, since A T · A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error. An alternative, and
preferred, technique involves QR decomposition (§2.10, §11.3, and §11.6) of the
design matrix A. This is essentially what we did at the end of §15.2 for fitting data to
a straight line, but without invoking all the machinery of QR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure is singular value decomposition (SVD), of which we give
an implementation. It turns out that SVD also fixes the roundoff problem, so it is our
recommended technique for all but “easy” least-squares problems. It is for these easy
problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in
practical work. Frequently it is a matter of “art” to decide which parameters a k

in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parameters ak. In the following routine the total number of
parameters ak is denoted ma (called M above). As input to the routine, you supply
an array ia(1:ma), whose components are either zero or nonzero (e.g., 1). Zeros
indicate that you want the corresponding elements of the parameter vector a(1:ma)
to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

SUBROUTINE lfit(x,y,sig,ndat,a,ia,ma,covar,npc,chisq,funcs)
INTEGER ma,ia(ma),npc,ndat,MMAX
REAL chisq,a(ma),covar(npc,npc),sig(ndat),x(ndat),y(ndat)
EXTERNAL funcs
PARAMETER (MMAX=50) Set to the maximum number of coefficients ma.

C USES covsrt,gaussj
Given a set of data points x(1:ndat), y(1:ndat) with individual standard deviations
sig(1:ndat), use χ2 minimization to fit for some or all of the coefficients a(1:ma) of a
function that depends linearly on a, y =

∑
i ai×afunci(x). The input array ia(1:ma) in-

dicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a(1:ma), χ2 = chisq, and the covariance matrix covar(1:ma,1:ma). (Parameters
held fixed will return zero covariances.) npc is the physical dimension of covar(npc,npc)
in the calling routine. The user supplies a subroutine funcs(x,afunc,ma) that returns
the ma basis functions evaluated at x = x in the array afunc.

INTEGER i,j,k,l,m,mfit
REAL sig2i,sum,wt,ym,afunc(MMAX),beta(MMAX)
mfit=0
do 11 j=1,ma

if(ia(j).ne.0) mfit=mfit+1
enddo 11

if(mfit.eq.0) pause ’lfit: no parameters to be fitted’
do 13 j=1,mfit Initialize the (symmetric) matrix.

do 12 k=1,mfit
covar(j,k)=0.

enddo 12

beta(j)=0.
enddo 13
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do 17 i=1,ndat Loop over data to accumulate coefficients of the normal
equations.call funcs(x(i),afunc,ma)

ym=y(i)
if(mfit.lt.ma) then Subtract off dependences on known pieces of the fitting

function.do 14 j=1,ma
if(ia(j).eq.0) ym=ym-a(j)*afunc(j)

enddo 14

endif
sig2i=1./sig(i)**2
j=0
do 16 l=1,ma

if (ia(l).ne.0) then
j=j+1
wt=afunc(l)*sig2i
k=0
do 15 m=1,l

if (ia(m).ne.0) then
k=k+1
covar(j,k)=covar(j,k)+wt*afunc(m)

endif
enddo 15

beta(j)=beta(j)+ym*wt
endif

enddo 16

enddo 17

do 19 j=2,mfit Fill in above the diagonal from symmetry.
do 18 k=1,j-1

covar(k,j)=covar(j,k)
enddo 18

enddo 19

call gaussj(covar,mfit,npc,beta,1,1) Matrix solution.
j=0
do 21 l=1,ma

if(ia(l).ne.0) then
j=j+1
a(l)=beta(j) Partition solution to appropriate coefficients a.

endif
enddo 21

chisq=0. Evaluate χ2 of the fit.
do 23 i=1,ndat

call funcs(x(i),afunc,ma)
sum=0.
do 22 j=1,ma

sum=sum+a(j)*afunc(j)
enddo 22

chisq=chisq+((y(i)-sum)/sig(i))**2
enddo 23

call covsrt(covar,npc,ma,ia,mfit) Sort covariance matrix to true order of fitting
return coefficients.
END

That last call to a subroutine covsrt is only for the purpose of spreading
the covariances back into the full ma × ma covariance matrix, in the proper rows
and columns and with zero variances and covariances set for variables which were
held frozen.

The subroutine covsrt is as follows.
SUBROUTINE covsrt(covar,npc,ma,ia,mfit)
INTEGER ma,mfit,npc,ia(ma)
REAL covar(npc,npc)

Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

INTEGER i,j,k
REAL swap



670 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

do 12 i=mfit+1,ma
do 11 j=1,i

covar(i,j)=0.
covar(j,i)=0.

enddo 11

enddo 12

k=mfit
do 15 j=ma,1,-1

if(ia(j).ne.0)then
do 13 i=1,ma

swap=covar(i,k)
covar(i,k)=covar(i,j)
covar(i,j)=swap

enddo 13

do 14 i=1,ma
swap=covar(k,i)
covar(k,i)=covar(j,i)
covar(j,i)=swap

enddo 14

k=k-1
endif

enddo 15

return
END

Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equations are very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., in gaussj), in which case you get no solution at all. Or a
very small pivot may occur, in which case you typically get fitted parameters a k

with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [α], unable to distinguish between them, neatly folds up its tent and
becomes singular. There is a certain mathematical irony in the fact that least-squares
problems are both overdetermined (number of data points greater than number of
parameters) and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in §2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In the
case of an underdetermined system, SVD produces a solution whose values (for us,
the ak’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is also
what we want: When some combination of basis functions is irrelevant to the fit, that
combination will be driven down to a small, innocuous, value, rather than pushed
up to delicately canceling infinities.
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In terms of the design matrix A (equation 15.4.4) and the vector b (equation
15.4.5), minimization of χ2 in (15.4.3) can be written as

find a that minimizes χ2 = |A · a − b|2 (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
svdcmp and svbksb are designed to solve. The solution, which is given by equation
(2.6.12), can be rewritten as follows: If U and V enter the SVD decomposition
of A according to equation (2.6.1), as computed by svdcmp, then let the vectors
U(i) i = 1, . . . , M denote the columns of U (each one a vector of length N ); and
let the vectors V(i); i = 1, . . . , M denote the columns of V (each one a vector
of length M ). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

a =
M∑
i=1

(
U(i) · b

wi

)
V(i) (15.4.17)

where the wi are, as in §2.6, the singular values returned by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of

the columns of V, with coefficients obtained by forming dot products of the columns
of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns of V. In fact, equation (15.4.17) can
be written in a form displaying these errors as

a =

[
M∑
i=1

(
U(i) · b

wi

)
V(i)

]
± 1

w1
V(1) ± · · · ± 1

wM
V(M) (15.4.18)

Here each ± is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectors V(i) are the principal axes of the error ellipsoid
of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter a j is given by

σ2(aj) =
M∑
i=1

1
w2

i

[V(i)]2j =
M∑
i=1

(
Vji

wi

)2

(15.4.19)

whose result should be identical with (15.4.14). As before, you should not be
surprised at the formula for the covariances, here given without proof,

Cov(aj , ak) =
M∑
i=1

(
VjiVki

w2
i

)
(15.4.20)

We introduced this subsection by noting that the normal equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is: If any singular value w i is zero, its
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reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corresponds to adding to the fitted
parameters a a zero multiple, rather than some random large multiple, of any linear
combination of basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular value wi is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the
largest singular value is less than N times the machine precision ε. (You might
argue for

√
N , or a constant, instead of N as the multiple; that starts getting into

hardware-dependent questions.)
There is another reason for editing even additional singular values, ones large

enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the χ2 of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, while increasing the minimum
χ2 only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead
of using the normal equations. SVD’s only significant disadvantage is that it requires
an extra array of size N × M to store the whole design matrix. This storage
is overwritten by the matrix U. Storage is also required for the M × M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly slower than solving the normal equations;
however, its great advantage, that it (theoretically) cannot fail, more than makes up
for the speed disadvantage.

In the routine that follows, the matrices u,v and the vector w are input as working
space. np and mp are their various physical dimensions. The logical dimensions of the
problem are ndata data points by ma basis functions (and fitted parameters). If you
care only about the values a of the fitted parameters, then u,v,w contain no useful
information on output. If you want probable errors for the fitted parameters, read on.

SUBROUTINE svdfit(x,y,sig,ndata,a,ma,u,v,w,mp,np,
* chisq,funcs)

INTEGER ma,mp,ndata,np,NMAX,MMAX
REAL chisq,a(ma),sig(ndata),u(mp,np),v(np,np),w(np),

* x(ndata),y(ndata),TOL
EXTERNAL funcs
PARAMETER (NMAX=1000,MMAX=50,TOL=1.e-5)
NMAX is the maximum expected value of ndata; MMAX the maximum expected for ma; the
default TOL value is appropriate for single precision and variables scaled to be of order unity.

C USES svbksb,svdcmp
Given a set of data points x(1:ndata),y(1:ndata) with individual standard deviations
sig(1:ndata), use χ2 minimization to determine the ma coefficients a of the fitting func-
tion y =

∑
i ai×afunci(x). Here we solve the fitting equations using singular value decom-

position of the ndata by ma matrix, as in §2.6. Arrays u(1:mp,1:np),v(1:np,1:np),
w(1:np) provide workspace on input; on output they define the singular value decomposi-
tion, and can be used to obtain the covariance matrix. mp,np are the physical dimensions
of the matrices u,v,w, as indicated above. It is necessary that mp≥ndata, np ≥ ma. The
program returns values for the ma fit parameters a, and χ2, chisq. The user supplies a
subroutine funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x
in the array afunc.

INTEGER i,j
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REAL sum,thresh,tmp,wmax,afunc(MMAX),b(NMAX)
do 12 i=1,ndata Accumulate coefficients of the fitting ma-

trix.call funcs(x(i),afunc,ma)
tmp=1./sig(i)
do 11 j=1,ma

u(i,j)=afunc(j)*tmp
enddo 11

b(i)=y(i)*tmp
enddo 12

call svdcmp(u,ndata,ma,mp,np,w,v) Singular value decomposition.
wmax=0. Edit the singular values, given TOL from the

parameter statement, between here ...do 13 j=1,ma
if(w(j).gt.wmax)wmax=w(j)

enddo 13

thresh=TOL*wmax
do 14 j=1,ma

if(w(j).lt.thresh)w(j)=0.
enddo 14 ...and here.
call svbksb(u,w,v,ndata,ma,mp,np,b,a)
chisq=0. Evaluate chi-square.
do 16 i=1,ndata

call funcs(x(i),afunc,ma)
sum=0.
do 15 j=1,ma

sum=sum+a(j)*afunc(j)
enddo 15

chisq=chisq+((y(i)-sum)/sig(i))**2
enddo 16

return
END

Feeding the matrix v and vector w output by the above program into the
following short routine, you easily obtain variances and covariances of the fitted
parameters a. The square roots of the variances are the standard deviations of
the fitted parameters. The routine straightforwardly implements equation (15.4.20)
above, with the convention that singular values equal to zero are recognized as
having been edited out of the fit.
SUBROUTINE svdvar(v,ma,np,w,cvm,ncvm)
INTEGER ma,ncvm,np,MMAX
REAL cvm(ncvm,ncvm),v(np,np),w(np)
PARAMETER (MMAX=20) Set to the maximum number of fit parameters.

To evaluate the covariance matrix cvm of the fit for ma parameters obtained by svdfit,
call this routine with matrices v,w as returned from svdfit. np,ncvm give the physical
dimensions of v,w,cvm as indicated.

INTEGER i,j,k
REAL sum,wti(MMAX)
do 11 i=1,ma

wti(i)=0.
if(w(i).ne.0.) wti(i)=1./(w(i)*w(i))

enddo 11

do 14 i=1,ma Sum contributions to covariance matrix (15.4.20).
do 13 j=1,i

sum=0.
do 12 k=1,ma

sum=sum+v(i,k)*v(j,k)*wti(k)
enddo 12

cvm(i,j)=sum
cvm(j,i)=sum

enddo 13

enddo 14

return
END
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Examples

Be aware that some apparently nonlinear problems can be expressed so that
they are linear. For example, an exponential model with two parameters a and b,

y(x) = a exp(−bx) (15.4.21)
can be rewritten as

log[y(x)] = c − bx (15.4.22)

which is linear in its parameters c and b. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for “non-parameters,” as in

y(x) = a exp(−bx + d) (15.4.23)

Here the parameters a and d are, in fact, indistinguishable. This is a good example of
where the normal equations will be exactly singular, and where SVD will find a zero
singular value. SVD will then make a “least-squares” choice for setting a balance
between a and d (or, rather, their equivalents in the linear model derived by taking
the logarithms). However — and this is true whenever SVD returns a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletions in the basis set.

Here are two examples for user-supplied routines funcs. The first one is trivial
and fits a general polynomial to a set of data:

SUBROUTINE fpoly(x,p,np)
INTEGER np
REAL x,p(np)

Fitting routine for a polynomial of degree np-1, with np coefficients.
INTEGER j
p(1)=1.
do 11 j=2,np

p(j)=p(j-1)*x
enddo 11

return
END

The second example is slightly less trivial. It is used to fit Legendre polynomials
up to some order nl-1 through a data set.

SUBROUTINE fleg(x,pl,nl)
INTEGER nl
REAL x,pl(nl)

Fitting routine for an expansion with nl Legendre polynomials pl, evaluated using the
recurrence relation as in §5.5.

INTEGER j
REAL d,f1,f2,twox
pl(1)=1.
pl(2)=x
if(nl.gt.2) then

twox=2.*x
f2=x
d=1.
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do 11 j=3,nl
f1=d
f2=f2+twox
d=d+1.
pl(j)=(f2*pl(j-1)-f1*pl(j-2))/d

enddo 11

endif
return
END

Multidimensional Fits

If you are measuring a single variable y as a function of more than one variable
— say, a vector of variables x, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). The χ2 merit function is now

χ2 =
N∑

i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.24)

All of the preceding discussion goes through unchanged, with x replaced by x. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In both lfit and svdfit, the only use made
of the array elements x(i) is that each element is in turn passed to the user-supplied
routine funcs, which duly returns the values of the basis functions at that point. If
you set x(i)=i before calling lfit or svdfit, and independently provide funcs
with the true vector values of your data points (e.g., in a COMMON block), then funcs
can translate from the fictitious x(i)’s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8–9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M
unknown parameters ak, k = 1, 2, . . . , M . We use the same approach as in previous
sections, namely to define a χ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated until χ 2 stops (or
effectively stops) decreasing.
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do 11 j=3,nl
f1=d
f2=f2+twox
d=d+1.
pl(j)=(f2*pl(j-1)-f1*pl(j-2))/d

enddo 11

endif
return
END

Multidimensional Fits

If you are measuring a single variabley as a function of more than one variable
— say, avector of variablesx, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). The χ2 merit function is now

χ2 =
N∑

i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2

(15.4.24)

All of the preceding discussion goes through unchanged, withx replaced byx. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In bothlfit andsvdfit, the only use made
of the array elementsx(i) is that each element is in turn passed to the user-supplied
routinefuncs, which duly returns the values of the basis functions at that point. If
you setx(i)=i before callinglfit or svdfit, and independently providefuncs
with the true vector values of your data points (e.g., in aCOMMON block), thenfuncs
can translate from the fictitiousx(i)’s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8–9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model dependsnonlinearly on the set ofM
unknown parametersak, k = 1, 2, . . . , M . We use the same approach as in previous
sections, namely to define aχ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated untilχ 2 stops (or
effectively stops) decreasing.
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How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently
close to the minimum, we expect theχ2 function to be well approximated by a
quadratic form, which we can write as

χ2(a) ≈ γ − d · a +
1
2

a · D · a (15.5.1)

whered is anM -vector andD is anM × M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parametersacur to the minimizing onesamin in a single leap, namely

amin = acur + D−1 · [−∇χ2(acur)
]

(15.5.2)

(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape

of the function that we are trying to minimize atacur. In that case, about all we
can do is take a step down the gradient, as in the steepest descent method (§10.6).
In other words,

anext = acur − constant×∇χ2(acur) (15.5.3)

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of theχ 2

function at any set of parametersa. To use (15.5.2) we also need the matrixD, which
is the second derivative matrix (Hessian matrix) of theχ2 merit function, at anya.

Now, this is the crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methodsnot just because our function was nonlinear,but also
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6
concerned themselves with two different techniques for building up this information.

Here, life is much simpler. Weknow exactly the form ofχ2, since it is based
on a model function that we ourselves have specified. Therefore the Hessian matrix
is known to us. Thus we are free to use (15.5.2) whenever we care to do so. The
only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling
failure of (15.5.1) as a good local approximation.

Calculation of the Gradient and Hessian

The model to be fitted is

y = y(x; a) (15.5.4)

and theχ2 merit function is

χ2(a) =
N∑

i=1

[
yi − y(xi; a)

σi

]2
(15.5.5)
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The gradient ofχ2 with respect to the parametersa, which will be zero at theχ2

minimum, has components

∂χ2

∂ak
= −2

N∑
i=1

[yi − y(xi; a)]
σ2

i

∂y(xi; a)
∂ak

k = 1, 2, . . . , M (15.5.6)

Taking an additional partial derivative gives

∂2χ2

∂ak∂al
= 2

N∑
i=1

1
σ2

i

[
∂y(xi; a)

∂ak

∂y(xi; a)
∂al

− [yi − y(xi; a)]
∂2y(xi; a)
∂al∂ak

]
(15.5.7)

It is conventional to remove the factors of 2 by defining

βk ≡ −1
2

∂χ2

∂ak
αkl ≡ 1

2
∂2χ2

∂ak∂al
(15.5.8)

making [α] = 1
2D in equation (15.5.2), in terms of which that equation can be

rewritten as the set of linear equations

M∑
l=1

αkl δal = βk (15.5.9)

This set is solved for the incrementsδal that, added to the current approximation,
give the next approximation. In the context of least-squares, the matrix[α], equal to
one-half times the Hessian matrix, is usually called thecurvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

δal = constant× βl (15.5.10)

Note that the componentsαkl of the Hessian matrix (15.5.7) depend both on the
first derivatives and on the second derivatives of the basis functions with respect to
their parameters. Some treatments proceed to ignore the second derivative without
comment. We will ignore it also, but onlyafter a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependence
on∂y/∂ak, so the next derivative simply must contain terms involving∂ 2y/∂al∂ak.
The second derivative term can be dismissed when it is zero (as in the linear case
of equation 15.4.8), or small enough to be negligible when compared to the term
involving the first derivative. It also has an additional possibility of being ignorably
small in practice: The term multiplying the second derivative in equation (15.5.7)
is [yi − y(xi; a)]. For a successful model, this term should just be the random
measurement error of each point. This error can have either sign, and should in
general be uncorrelated with the model. Therefore, the second derivative terms tend
to cancel out when summed overi.

Inclusion of the second-derivative term can in fact be destabilizing if the model
fits badly or is contaminated by outlier points that are unlikely to be offset by
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compensating points of opposite sign. From this point on, we will always use as
the definition ofαkl the formula

αkl =
N∑

i=1

1
σ2

i

[
∂y(xi; a)

∂ak

∂y(xi; a)
∂al

]
(15.5.11)

This expression more closely resembles its linear cousin (15.4.8). You should
understand that minor (or even major) fiddling with[α] has no effect at all on
what final set of parametersa is reached, but affects only the iterative route that is
taken in getting there. The condition at theχ2 minimum, thatβk = 0 for all k,
is independent of how[α] is defined.

Levenberg-Marquardt Method

Marquardt[1] has put forth an elegant method, related to an earlier suggestion of
Levenberg, for varying smoothly between the extremes of the inverse-Hessian method
(15.5.9) and the steepest descent method (15.5.10). The latter method is used far from
the minimum, switching continuously to the former as the minimum is approached.
ThisLevenberg-Marquardt method (also calledMarquardt method) works very well
in practice and has become the standard of nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Consider the
“constant” in equation (15.5.10). What should it be, even in order of magnitude?
What sets its scale? There is no information about the answer in the gradient. That
tells only the slope, not how far that slope extends. Marquardt’s first insight is that
the components of the Hessian matrix, even if they are not usable in any precise
fashion, givesome information about the order-of-magnitude scale of the problem.

The quantityχ2 is nondimensional, i.e., is a pure number; this is evident from
its definition (15.5.5). On the other hand,βk has the dimensions of1/ak, which
may well be dimensional, i.e., have units like cm−1, or kilowatt-hours, or whatever.
(In fact, each component ofβk can have different dimensions!) The constant of
proportionality betweenβk andδak must therefore have the dimensions ofa2

k. Scan
the components of[α] and you see that there is only one obvious quantity with these
dimensions, and that is1/αkk, the reciprocal of the diagonal element. So that must
set the scale of the constant. But that scale might itself be too big. So let’s divide
the constant by some (nondimensional) fudge factorλ, with the possibility of setting
λ � 1 to cut down the step. In other words, replace equation (15.5.10) by

δal =
1

λαll
βl or λαll δal = βl (15.5.12)

It is necessary thatαll be positive, but this is guaranteed by definition (15.5.11) —
another reason for adopting that equation.

Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be
combined if we define a new matrixα ′ by the following prescription

α′
jj ≡ αjj(1 + λ)

α′
jk ≡ αjk (j 	= k)

(15.5.13)
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and then replace both (15.5.12) and (15.5.9) by

M∑
l=1

α′
kl δal = βk (15.5.14)

Whenλ is very large, the matrixα′ is forced into beingdiagonally dominant, so
equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, asλ
approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parametersa, the recommended
Marquardt recipe is as follows:

• Computeχ2(a).
• Pick a modest value forλ, sayλ = 0.001.
• (†) Solve the linear equations (15.5.14) forδa and evaluateχ 2(a + δa).
• If χ2(a + δa) ≥χ2(a), increase λ by a factor of 10 (or any other

substantial factor) and go back to (†).
• If χ2(a + δa) < χ2(a), decrease λ by a factor of 10, update the trial

solutiona ← a + δa, and go back to (†).
Also necessary is a condition for stopping. Iterating to convergence (to machine

accuracy or to the roundoff limit) is generally wasteful and unnecessary since the
minimum is at best only a statistical estimate of the parametersa. As we will see
in §15.6, a change in the parameters that changesχ2 by an amount� 1 is never
statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering
around near the minimum in a flat valley of complicated topography. The rea-
son is that Marquardt’s method generalizes the method of normal equations (§15.4),
hence has the same problem as that method with regard to near-degeneracy of the
minimum. Outright failure by a zero pivot is possible, but unlikely. More often,
a small pivot will generate a large correction which is then rejected, the value of
λ being then increased. For sufficiently largeλ the matrix[α ′] is positive definite
and can have no small pivots. Thus the method does tend to stay away from zero
pivots, but at the cost of a tendency to wander around doing steepest descent in
very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating
on the first or second occasion thatχ2 decreases by a negligible amount, say either
less than0.01 absolutely or (in case roundoff prevents that being reached) some
fractional amount like10−3. Don’t stop after a step whereχ2 increases: That only
shows thatλ has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to setλ = 0 and
compute the matrix

[C] ≡ [α]−1 (15.5.15)

which, as before, is the estimated covariance matrix of the standard errors in the
fitted parametersa (see next section).

The following pair of subroutines encodes Marquardt’s method for nonlinear
parameter estimation. Much of the organization matches that used inlfit of
§15.4. In particular the arrayia(1:ma) must be input with components one or zero
corresponding to whether the respective parameter valuesa(1:ma) are to be fitted
for or held fixed at their input values, respectively.
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The routinemrqmin performs one iteration of Marquardt’s method. It is first
called (once) withalamda < 0, which signals the routine to initialize.alamda is
returned on the first and all subsequent calls as the suggested value ofλ for the
next iteration;a andchisq are always returned as the best parameters found so
far and theirχ2. When convergence is deemed satisfactory, setalamda to zero
before a final call. The matricesalpha andcovar (which were used as workspace
in all previous calls) will then be set to the curvature and covariance matrices for
the converged parameter values. The argumentsalpha, a, andchisq must not be
modified between calls, nor shouldalamda be, except to set it to zero for the final
call. When an uphill step is taken,chisq anda are returned with their input (best)
values, butalamda is returned with an increased value.

The routinemrqmin calls the routinemrqcof for the computation of the matrix
[α] (equation 15.5.11) and vectorβ (equations 15.5.6 and 15.5.8). In turnmrqcof
calls the user-supplied routinefuncs(x,a,y,dyda), which for input valuesx ≡ x i

anda ≡ a returns the model functiony ≡ y(xi; a) and the vector of derivatives
dyda ≡ ∂y/∂ak.

SUBROUTINE mrqmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
* chisq,funcs,alamda)

INTEGER ma,nca,ndata,ia(ma),MMAX
REAL alamda,chisq,funcs,a(ma),alpha(nca,nca),covar(nca,nca),

* sig(ndata),x(ndata),y(ndata)
PARAMETER (MMAX=20) Set to largest number of fit parameters.

C USES covsrt,gaussj,mrqcof
Levenberg-Marquardt method, attempting to reduce the value χ2 of a fit between a set of
data points x(1:ndata), y(1:ndata) with individual standard deviations sig(1:ndata),
and a nonlinear function dependent on ma coefficients a(1:ma). The input array ia(1:ma)
indicates by nonzero entries those components of a that should be fitted for, and by zero
entries those components that should be held fixed at their input values. The program
returns current best-fit values for the parameters a(1:ma), and χ2 = chisq. The ar-
rays covar(1:nca,1:nca), alpha(1:nca,1:nca) with physical dimension nca (≥ the
number of fitted parameters) are used as working space during most iterations. Supply a
subroutine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its
derivatives dyda with respect to the fitting parameters a at x. On the first call provide
an initial guess for the parameters a, and set alamda<0 for initialization (which then sets
alamda=.001). If a step succeeds chisq becomes smaller and alamda decreases by a
factor of 10. If a step fails alamda grows by a factor of 10. You must call this routine
repeatedly until convergence is achieved. Then, make one final call with alamda=0, so
that covar(1:ma,1:ma) returns the covariance matrix, and alpha the curvature matrix.
(Parameters held fixed will return zero covariances.)

INTEGER j,k,l,mfit
REAL ochisq,atry(MMAX),beta(MMAX),da(MMAX)
SAVE ochisq,atry,beta,da,mfit
if(alamda.lt.0.)then Initialization.

mfit=0
do 11 j=1,ma

if (ia(j).ne.0) mfit=mfit+1
enddo 11

alamda=0.001
call mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nca,chisq,funcs)
ochisq=chisq
do 12 j=1,ma

atry(j)=a(j)
enddo 12

endif
do 14 j=1,mfit Alter linearized fitting matrix, by augmenting

diagonal elements.do 13 k=1,mfit
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covar(j,k)=alpha(j,k)
enddo 13

covar(j,j)=alpha(j,j)*(1.+alamda)
da(j)=beta(j)

enddo 14

call gaussj(covar,mfit,nca,da,1,1) Matrix solution.
if(alamda.eq.0.)then Once converged, evaluate covariance matrix.

call covsrt(covar,nca,ma,ia,mfit)
call covsrt(alpha,nca,ma,ia,mfit) Spread out alpha to its full size too.
return

endif
j=0
do 15 l=1,ma Did the trial succeed?

if(ia(l).ne.0) then
j=j+1
atry(l)=a(l)+da(j)

endif
enddo 15

call mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,nca,chisq,funcs)
if(chisq.lt.ochisq)then Success, accept the new solution.

alamda=0.1*alamda
ochisq=chisq
do 17 j=1,mfit

do 16 k=1,mfit
alpha(j,k)=covar(j,k)

enddo 16

beta(j)=da(j)
enddo 17

do 18 l=1,ma
a(l)=atry(l)

enddo 18

else Failure, increase alamda and return.
alamda=10.*alamda
chisq=ochisq

endif
return
END

Notice the use of the routinecovsrt from §15.4. This is merely for rearranging
the covariance matrixcovar into the order of allma parameters. The above routine
also makes use of

SUBROUTINE mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nalp,
* chisq,funcs)

INTEGER ma,nalp,ndata,ia(ma),MMAX
REAL chisq,a(ma),alpha(nalp,nalp),beta(ma),sig(ndata),x(ndata),

* y(ndata)
EXTERNAL funcs
PARAMETER (MMAX=20)

Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate χ2.

INTEGER mfit,i,j,k,l,m
REAL dy,sig2i,wt,ymod,dyda(MMAX)
mfit=0
do 11 j=1,ma

if (ia(j).ne.0) mfit=mfit+1
enddo 11

do 13 j=1,mfit Initialize (symmetric) alpha, beta.
do 12 k=1,j
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alpha(j,k)=0.
enddo 12

beta(j)=0.
enddo 13

chisq=0.
do 16 i=1,ndata Summation loop over all data.

call funcs(x(i),a,ymod,dyda,ma)
sig2i=1./(sig(i)*sig(i))
dy=y(i)-ymod
j=0
do 15 l=1,ma

if(ia(l).ne.0) then
j=j+1
wt=dyda(l)*sig2i
k=0
do 14 m=1,l

if(ia(m).ne.0) then
k=k+1
alpha(j,k)=alpha(j,k)+wt*dyda(m)

endif
enddo 14

beta(j)=beta(j)+dy*wt
endif

enddo 15

chisq=chisq+dy*dy*sig2i And find χ2.
enddo 16

do 18 j=2,mfit Fill in the symmetric side.
do 17 k=1,j-1

alpha(k,j)=alpha(j,k)
enddo 17

enddo 18

return
END

Example

The following subroutinefgauss is an example of a user-supplied subroutine
funcs. Used with the above routinemrqmin (in turn usingmrqcof, covsrt, and
gaussj), it fits for the model

y(x) =
K∑

k=1

Bk exp

[
−
(

x − Ek

Gk

)2
]

(15.5.16)

which is a sum ofK Gaussians, each having a variable position, amplitude, and
width. We store the parameters in the orderB1, E1, G1, B2, E2, G2, . . . , BK ,
EK , GK .
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SUBROUTINE fgauss(x,a,y,dyda,na)
INTEGER na
REAL x,y,a(na),dyda(na)

y(x; a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a(i) = Bk, a(i+1) = Ek, a(i+2) =
Gk, k = 1, ...,na/3.

INTEGER i
REAL arg,ex,fac
y=0.
do 11 i=1,na-1,3

arg=(x-a(i+1))/a(i+2)
ex=exp(-arg**2)
fac=a(i)*ex*2.*arg
y=y+a(i)*ex
dyda(i)=ex
dyda(i+1)=fac/a(i+2)
dyda(i+2)=fac*arg/a(i+2)

enddo 11

return
END

More Advanced Methods for Nonlinear Least Squares

The Levenberg-Marquardt algorithm can be implemented as a model-trust
region method for minimization (see§9.7 and ref.[2]) applied to the special case
of a least squares function. A code of this kind due to Moré [3] can be found in
MINPACK [4]. Another algorithm for nonlinear least-squares keeps the second-
derivative term we dropped in the Levenberg-Marquardt method whenever it would
be better to do so. These methods are called “full Newton-type” methods and
are reputed to be more robust than Levenberg-Marquardt, but more complex. One
implementation is the code NL2SOL[5].

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 11.

Marquardt, D.W. 1963, Journal of the Society for Industrial and Applied Mathematics, vol. 11,
pp. 431–441. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.2 (by J.E. Dennis).

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [2]
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15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set ofM estimated parametersa. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parametersa true that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize asD(0). The data setD(0) is known to the experimenter.
He or she fits the data to a model byχ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denotea (0).

Because measurement errors have a random component,D (0) is not a unique
realization of the true parametersatrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets” each of whichcould
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), . . . . Each one, had it been realized, would have given a slightly
different set of fitted parameters,a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in theM -dimensional space
of all possible parameter setsa. The actual measured seta(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution ofa (i) would be the
distribution of the differencea(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knewthis
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurementa (0).

So the name of the game is to find some way of estimating or approximating
the probability distribution ofa(i) − atrue without knowingatrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter seta(0) is not the true one, let us consider
a fictitious world in which itwas the true one. Since we hope that our measured
parameters are nottoo wrong, we hope that that fictitious world is not too different
from the actual world with parametersatrue. In particular, let us hope — no, let us
assume — that the shape of the probability distributiona (i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution
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15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set of M estimated parameters a. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parameters a true that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize as D(0). The data set D(0) is known to the experimenter.
He or she fits the data to a model by χ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denote a (0).

Because measurement errors have a random component, D (0) is not a unique
realization of the true parameters atrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets” each of which could
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), . . . . Each one, had it been realized, would have given a slightly
different set of fitted parameters, a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in the M -dimensional space
of all possible parameter sets a. The actual measured set a(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution of a (i) would be the
distribution of the difference a(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knew this
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurement a (0).

So the name of the game is to find some way of estimating or approximating
the probability distribution of a(i) − atrue without knowing atrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter set a(0) is not the true one, let us consider
a fictitious world in which it was the true one. Since we hope that our measured
parameters are not too wrong, we hope that that fictitious world is not too different
from the actual world with parameters atrue. In particular, let us hope — no, let us
assume — that the shape of the probability distribution a (i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution
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Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters atrue are
realized in a data set, from which fitted (observed) parameters a0 are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a(i) − atrue in the real world. Notice that we are not assuming that a(0) and atrue are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
atrue, so that a(0) can serve as a reasonable surrogate.

Now, often, the distribution of a(i) − a(0) in the fictitious world is within our
power to calculate (see Figure 15.6.2). If we know something about the process
that generated our data, given an assumed set of parameters a (0), then we can
usually figure out how to simulate our own sets of “synthetic” realizations of these
parameters as “synthetic data sets.” The procedure is to draw random numbers from
appropriate distributions (cf. §7.2–§7.3) so as to mimic our best understanding of
the underlying process and measurement errors in our apparatus. With such random
draws, we construct data sets with exactly the same numbers of measured points, and
precisely the same values of all control (independent) variables, as our actual data set
D(0). Let us call these simulated data sets DS

(1),DS
(2), . . . . By construction these are

supposed to have exactly the same statistical relationship to a(0) as the D(i)’s have
to atrue. (For the case where you don’t know enough about what you are measuring
to do a credible job of simulating it, see below.)

Next, for each DS
(j), perform exactly the same procedure for estimation of

parameters, e.g., χ2 minimization, as was performed on the actual data to get
the parameters a(0), giving simulated measured parameters aS

(1), aS
(2), . . . . Each

simulated measured parameter set yields a point aS
(i) − a(0). Simulate enough data

sets and enough derived simulated measured parameters, and you map out the desired
probability distribution in M dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has revo-
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Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.

lutionized many fields of modern experimental science. Not only is one able to
characterize the errors of parameter estimation in a very precise way; one can also
try out on the computer different methods of parameter estimation, or different data
reduction techniques, and seek to minimize the uncertainty of the result according
to any desired criteria. Offered the choice between mastery of a five-foot shelf of
analytical statistics books and middling ability at performing statistical Monte Carlo
simulations, we would surely choose to have the latter skill.

Quick-and-Dirty Monte Carlo: The Bootstrap Method

Here is a powerful technique that can often be used when you don’t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed (or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more
associated measured values (each distributed however Mother Nature chooses). “Iid”
means that the sequential order of the data points is not of consequence to the process
that you are using to get the fitted parameters a. For example, a χ 2 sum like
(15.5.5) does not care in what order the points are added. Even simpler examples
are the mean value of a measured quantity, or the mean of some function of the
measured quantities.

The bootstrap method [1] uses the actual data set DS
(0), with its N data points, to

generate any number of synthetic data sets DS
(1),DS

(2), . . . , also with N data points.
The procedure is simply to draw N data points at a time with replacement from the
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set DS
(0). Because of the replacement, you do not simply get back your original

data set each time. You get sets in which a random fraction of the original points,
typically ∼ 1/e ≈ 37%, are replaced by duplicated original points. Now, exactly
as in the previous discussion, you subject these data sets to the same estimation
procedure as was performed on the actual data, giving a set of simulated measured
parameters aS

(1), aS
(2), . . . . These will be distributed around a(0) in close to the same

way that a(0) is distributed around atrue.
Sounds like getting something for nothing, doesn’t it? In fact, it has taken more

than a decade for the bootstrap method to become accepted by statisticians. By now,
however, enough theorems have been proved to render the bootstrap reputable (see [2]

for references). The basic idea behind the bootstrap is that the actual data set, viewed
as a probability distribution consisting of delta functions at the measured values, is
in most cases the best — or only — available estimator of the underlying probability
distribution. It takes courage, but one can often simply use that distribution as the
basis for Monte Carlo simulations.

Watch out for cases where the bootstrap’s “iid” assumption is violated. For
example, if you have made measurements at evenly spaced intervals of some control
variable, then you can usually get away with pretending that these are “iid,” uniformly
distributed over the measured range. However, some estimators of a (e.g., ones
involving Fourier methods) might be particularly sensitive to all the points on a grid
being present. In that case, the bootstrap is going to give a wrong distribution. Also
watch out for estimators that look at anything like small-scale clumpiness within the
N data points, or estimators that sort the data and look at sequential differences.
Obviously the bootstrap will fail on these, too. (The theorems justifying the method
are still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very
quick, Monte Carlo estimates of the errors in an estimated parameter set.

Confidence Limits

Rather than present all details of the probability distribution of errors in
parameter estimation, it is common practice to summarize the distribution in the
form of confidence limits. The full probability distribution is a function defined
on the M -dimensional space of parameters a. A confidence region (or confidence
interval) is just a region of that M -dimensional space (hopefully a small region) that
contains a certain (hopefully large) percentage of the total probability distribution.
You point to a confidence region and say, e.g., “there is a 99 percent chance that the
true parameter values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the
confidence level (99 percent in the above example), and the shape of the confidence
region. The only requirement is that your region does include the stated percentage
of probability. Certain percentages are, however, customary in scientific usage: 68.3
percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99
percent, and 99.73 percent. Higher confidence levels are conventionally “ninety-nine
point nine . . . nine.” As for shape, obviously you want a region that is compact
and reasonably centered on your measurement a (0), since the whole purpose of a
confidence limit is to inspire confidence in that measured value. In one dimension,
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68% confidence interval on a2

68% confidence
interval on a1

68% confidence region
on a1 and a2 jointly

bias

a(i)1 − a(0)1
(s)

a(i)2 − a(0)2
(s)

Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

the convention is to use a line segment centered on the measured value; in higher
dimensions, ellipses or ellipsoids are most frequently used.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent,
and 99.73 percent, and the use of ellipsoids, have some connection with a normal
distribution. That is true historically, but not always relevant nowadays. In general,
the probability distribution of the parameters will not be normal, and the above
numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the case M = 2.
Shown are three different confidence regions which might usefully be given, all at
the same confidence level. The two vertical lines enclose a band (horizontal interval)
which represents the 68 percent confidence interval for the variable a 1 without regard
to the value of a2. Similarly the horizontal lines enclose a 68 percent confidence
interval for a2. The ellipse shows a 68 percent confidence interval for a1 and a2

jointly. Notice that to enclose the same probability as the two bands, the ellipse must
necessarily extend outside of both of them (a point we will return to below).

Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters a(0) is chi-square minimiza-
tion, as in the previous sections of this chapter, then there is a natural choice for the
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C

B

A

Z ′

Z

C ′

∆χ2 = 6.63

∆χ2 = 2.71

∆χ2 = 1.00

∆χ2 = 2.30A′

B ′

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with ∆χ2 = 1.00, 2.71, 6.63 project onto one-dimensional intervals AA′,
BB′, CC′. These intervals — not the ellipses themselves — contain 68.3%, 90%, and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed, and has
∆χ2 = 2.30. For additional numerical values, see accompanying table.

shape of confidence intervals, whose use is almost universal. For the observed data
set D(0), the value of χ2 is a minimum at a(0). Call this minimum value χ2

min. If
the vector a of parameter values is perturbed away from a (0), then χ2 increases. The
region within which χ2 increases by no more than a set amount ∆χ2 defines some
M -dimensional confidence region around a (0). If ∆χ2 is set to be a large number,
this will be a big region; if it is small, it will be small. Somewhere in between there
will be choices of ∆χ2 that cause the region to contain, variously, 68 percent, 90
percent, etc. of probability distribution for a’s, as defined above. These regions are
taken as the confidence regions for the parameters a (0).

Very frequently one is interested not in the full M -dimensional confidence
region, but in individual confidence regions for some smaller numberν of parameters.
For example, one might be interested in the confidence interval of each parameter
taken separately (the bands in Figure 15.6.3), in which case ν = 1. In that case,
the natural confidence regions in the ν-dimensional subspace of the M -dimensional
parameter space are the projections of the M -dimensional regions defined by fixed
∆χ2 into the ν-dimensional spaces of interest. In Figure 15.6.4, for the case M = 2,
we show regions corresponding to several values of ∆χ2. The one-dimensional
confidence interval in a2 corresponding to the region bounded by ∆χ 2 = 1 lies
between the lines A and A′.

Notice that the projection of the higher-dimensional region on the lower-
dimension space is used, not the intersection. The intersection would be the band
between Z and Z ′. It is never used. It is shown in the figure only for the purpose of
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making this cautionary point, that it should not be confused with the projection.

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made no
connection at all with the error estimates that come out of the χ2 fitting procedure,
most notably the covariance matrix Cij . The reason is this: χ2 minimization
is a useful means for estimating parameters even if the measurement errors are
not normally distributed. While normally distributed errors are required if the χ 2

parameter estimate is to be a maximum likelihood estimator (§15.1), one is often
willing to give up that property in return for the relative convenience of the χ 2

procedure. Only in extreme cases, measurement error distributions with very large
“tails,” is χ2 minimization abandoned in favor of more robust techniques, as will
be discussed in §15.7.

However, the formal covariance matrix that comes out of a χ 2 minimization has
a clear quantitative interpretation only if (or to the extent that) the measurement errors
actually are normally distributed. In the case of nonnormal errors, you are “allowed”

• to fit for parameters by minimizing χ2

• to use a contour of constant ∆χ2 as the boundary of your confidence region
• to use Monte Carlo simulation or detailed analytic calculation in deter-

mining which contour ∆χ2 is the correct one for your desired confidence
level

• to give the covariance matrix Cij as the “formal covariance matrix of
the fit.”

You are not allowed
• to use formulas that we now give for the case of normal errors, which

establish quantitative relationships among ∆χ2, Cij , and the confidence
level.

Here are the key theorems that hold when (i) the measurement errors are
normally distributed, and either (ii) the model is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parameters a do not
extend outside a region in which the model could be replaced by a suitable linearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like mqrfit to find the fitted parameters.]

Theorem A. χ2
min is distributed as a chi-square distribution with N − M

degrees of freedom, where N is the number of data points and M is the number of
fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit
of the model, as discussed above in §15.1. We list it first to remind you that unless
the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If aS
(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the probability distribution of δa ≡ aS
(j) − a(0) is the

multivariate normal distribution

P (δa) da1 . . . daM = const. × exp
(
−1

2
δa · [α] · δa

)
da1 . . . daM

where [α] is the curvature matrix defined in equation (15.5.8).
Theorem C. If aS

(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the quantity ∆χ2 ≡ χ2(a(j))−χ2(a(0)) is distributed as
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a chi-square distribution with M degrees of freedom. Here the χ 2’s are all evaluated
using the fixed (actual) data set D(0). This theorem makes the connection between
particular values of ∆χ2 and the fraction of the probability distribution that they
enclose as an M -dimensional region, i.e., the confidence level of the M -dimensional
confidence region.

Theorem D. Suppose that aS
(j) is drawn from the universe of simulated data

sets (as above), that its first ν components a1, . . . , aν are held fixed, and that its
remaining M − ν components are varied so as to minimize χ2. Call this minimum
value χ2

ν . Then ∆χ2
ν ≡ χ2

ν − χ2
min is distributed as a chi-square distribution with

ν degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects the projected ∆χ2 region with a confidence level. In the figure, a point that
is held fixed in a2 and allowed to vary in a1 minimizing χ2 will seek out the ellipse
whose top or bottom edge is tangent to the line of constant a 2, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case ν = 1, where we want to find
the confidence interval of a single parameter, say a1. Notice that the chi-square
distribution with ν = 1 degree of freedom is the same distribution as that of the square
of a single normally distributed quantity. Thus ∆χ2

ν < 1 occurs 68.3 percent of the
time (1-σ for the normal distribution), ∆χ2

ν < 4 occurs 95.4 percent of the time (2-σ
for the normal distribution), ∆χ2

ν < 9 occurs 99.73 percent of the time (3-σ for the
normal distribution), etc. In this manner you find the ∆χ 2

ν that corresponds to your
desired confidence level. (Additional values are given in the accompanying table.)

Let δa be a change in the parameters whose first component is arbitrary, δa 1,
but the rest of whose components are chosen to minimize the ∆χ 2. Then Theorem
D applies. The value of ∆χ2 is given in general by

∆χ2 = δa · [α] · δa (15.6.1)

which follows from equation (15.5.8) applied at χ 2
min where βk = 0. Since δa by

hypothesis minimizes χ2 in all but its first component, the second through M th
components of the normal equations (15.5.9) continue to hold. Therefore, the
solution of (15.5.9) is

δa = [α]−1 ·




c
0
...
0


 = [C] ·




c
0
...
0


 (15.6.2)

where c is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that [C]
and [α] are inverse matrices of one another, we get

c = δa1/C11 and ∆χ2
ν = (δa1)2/C11 (15.6.3)

or

δa1 = ±
√

∆χ2
ν

√
C11 (15.6.4)

At last! A relation between the confidence interval ±δa1 and the formal
standard error σ1 ≡ √

C11. Not unreasonably, we find that the 68 percent confidence
interval is ±σ1, the 95 percent confidence interval is ±2σ1, etc.
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∆χ2 as a Function of Confidence Level and Degrees of Freedom

ν

p 1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.4% 4.00 6.17 8.02 9.70 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.8

These considerations hold not just for the individual parameters a i, but also
for any linear combination of them: If

b ≡
M∑

k=1

ciai = c · a (15.6.5)

then the 68 percent confidence interval on b is

δb = ±
√

c · [C] · c (15.6.6)

However, these simple, normal-sounding numerical relationships do not hold in
the case ν > 1 [3]. In particular, ∆χ2 = 1 is not the boundary, nor does it project
onto the boundary, of a 68.3 percent confidence region when ν > 1. If you want
to calculate not confidence intervals in one parameter, but confidence ellipses in
two parameters jointly, or ellipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

• Let ν be the number of fitted parameters whose joint confidence region you
wish to display, ν ≤M . Call these parameters the “parameters of interest.”

• Let p be the confidence limit desired, e.g., p = 0.68 or p = 0.95.
• Find ∆ (i.e., ∆χ2) such that the probability of a chi-square variable with

ν degrees of freedom being less than ∆ is p. For some useful values of p
and ν, ∆ is given in the table. For other values, you can use the routine
gammq and a simple root-finding routine (e.g., bisection) to find ∆ such
that gammq(ν/2, ∆/2) = 1 − p.

• Take the M × M covariance matrix [C] = [α]−1 of the chi-square fit.
Copy the intersection of the ν rows and columns corresponding to the
parameters of interest into a ν × ν matrix denoted [Cproj].

• Invert the matrix [Cproj]. (In the one-dimensional case this was just taking
the reciprocal of the element C11.)

• The equation for the elliptical boundary of your desired confidence region
in the ν-dimensional subspace of interest is

∆ = δa′ · [Cproj]−1 · δa′ (15.6.7)

where δa′ is the ν-dimensional vector of parameters of interest.
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1
w2

V(2)

V(1)

∆χ2  = 1

a2

a1

length

length
1

w1

Figure 15.6.5. Relation of the confidence region ellipse ∆χ2 = 1 to quantities computed by singular
value decomposition. The vectors V(i) are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values wi. If the axes are all scaled
by some constant factor α, ∆χ2 is scaled by the factor α2.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the accompanying table, considering the case M = 2 with ν = 1 and
ν = 2. You should be able to verify the following statements: (i) The horizontal
band between C and C ′ contains 99 percent of the probability distribution, so it
is a confidence limit on a2 alone at this level of confidence. (ii) Ditto the band
between B and B ′ at the 90 percent confidence level. (iii) The dashed ellipse,
labeled by ∆χ2 = 2.30, contains 68.3 percent of the probability distribution, so it is
a confidence region for a1 and a2 jointly, at this level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained your χ2 fit by singular value decomposition (§15.4), the
information about the fit’s formal errors comes packaged in a somewhat different, but
generally more convenient, form. The columns of the matrix V are an orthonormal
set of M vectors that are the principal axes of the ∆χ2 = constant ellipsoids.
We denote the columns as V(1) . . . V(M). The lengths of those axes are inversely
proportional to the corresponding singular values w 1 . . . wM ; see Figure 15.6.5. The
boundaries of the ellipsoids are thus given by

∆χ2 = w2
1(V(1) · δa)2 + · · · + w2

M (V(M) · δa)2 (15.6.8)

which is the justification for writing equation (15.4.18) above. Keep in mind that
it is much easier to plot an ellipsoid given a list of its vector principal axes, than
given its matrix quadratic form!

The formula for the covariance matrix [C] in terms of the columns V (i) is

[C] =
M∑
i=1

1
w2

i

V(i) ⊗ V(i) (15.6.9)

or, in components,
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Cjk =
M∑
i=1

1
w2

i

VjiVki (15.6.10)
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15.7 Robust Estimation

The concept of robustness has been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.” [1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median, and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order
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15.7 Robust Estimation

The concept ofrobustnesshas been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in§14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in§15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.”[1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimatesfollow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimatesare “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median, and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimatesare estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by theWilcoxon testof computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order
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narrow
central peak

tail of
outliers

least squares fit

robust straight-line fit

(a)

(b)

Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional
distribution with a tail of outliers; statistical fluctuations in these outliers can prevent accurate determination
of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust
techniques such as least-squares fitting can have undesired sensitivity to outlying points.

correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal
definition.

Some other kinds of robust techniques, coming from the fields of optimal control
and filtering rather than from the field of mathematical statistics, are mentioned at
the end of this section. Some examples where robust statistical methods are desirable
are shown in Figure 15.7.1.

Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum-likelihood formula for the estimated parameters a in a
model y(x; a), we would write instead of equation (15.1.3)

P =
N∏

i=1

{exp [−ρ(yi, y {xi; a})] ∆y} (15.7.1)
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where the function ρ is the negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize
the expression

N∑
i=1

ρ(yi, y {xi; a}) (15.7.2)

Very often, it is the case that the function ρ depends not independently on its
two arguments, measured yi and predicted y(xi), but only on their difference, at least
if scaled by some weight factors σi which we are able to assign to each point. In this
case the M-estimate is said to be local, and we can replace (15.7.2) by the prescription

minimize over a
N∑

i=1

ρ

(
yi − y(xi; a)

σi

)
(15.7.3)

where the function ρ(z) is a function of a single variable z ≡ [y i − y(xi)]/σi.
If we now define the derivative of ρ(z) to be a function ψ(z),

ψ(z) ≡ dρ(z)
dz

(15.7.4)

then the generalization of (15.1.7) to the case of a general M-estimate is

0 =
N∑

i=1

1
σi

ψ

(
yi − y(xi)

σi

)(
∂y(xi; a)

∂ak

)
k = 1, . . . , M (15.7.5)

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see at once
that the specialization for normally distributed errors is

ρ(z) =
1
2
z2 ψ(z) = z (normal) (15.7.6)

If the errors are distributed as a doubleor two-sided exponential, namely

Prob {yi − y(xi)} ∼ exp
(
−
∣∣∣∣
yi − y(xi)

σi

∣∣∣∣
)

(15.7.7)

then, by contrast,

ρ(x) = |z| ψ(z) = sgn(z) (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing the mean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, although exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — therefore sometimes even more
realistic — tails is the Cauchyor Lorentziandistribution,

Prob {yi − y(xi)} ∼ 1

1 +
1
2

(
yi − y(xi)

σi

)2 (15.7.9)
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This implies

ρ(z) = log
(

1 +
1
2
z2

)
ψ(z) =

z

1 + 1
2z2

(Lorentzian) (15.7.10)

Notice that the ψ function occurs as a weighting function in the generalized
normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says the ψ increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This general idea, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions for ψ which
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew’s sine

ψ(z) =
{

sin(z/c)
0

|z| < cπ
|z| > cπ

(15.7.11)

If the measurement errors happen to be normal after all, with standard deviations σ i,
then it can be shown that the optimal value for the constant c is c = 2.1.

Tukey’s biweight

ψ(z) =
{

z(1 − z2/c2)2

0
|z| < c
|z| > c

(15.7.12)

where the optimal value of c for normal errors is c = 6.0.

Numerical Calculation of M-Estimates

To fit a model by means of an M-estimate, you first decide which M-estimate
you want, that is, which matching pair ρ, ψ you want to use. We rather like
(15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult
problems. Either find the solution of the nonlinear set of M equations (15.7.5), or
else minimize the single function in M variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous ψ, and a discontinuous
derivative for ρ. Such discontinuities frequently wreak havoc on both general
nonlinear equation solvers and general function minimizing routines. You might
now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However,
you will find that the latter choice is also bad news for many general equation solving
or minimization routines: small changes in the fitted parameters can drive ψ(z)
off its peak into one or the other of its asymptotically small regimes. Therefore,
different terms in the equation spring into or out of action (almost as bad as analytic
discontinuities).

Don’ t despair. If your computer budget (or, for personal computers, patience)
is up to it, this is an excellent application for the downhill simplex minimization
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algorithm exemplified in amoeba §10.4 or amebsa in §10.9. Those algorithms make
no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the function ρ.

It is very much to your (financial) advantage to find good starting values,
however. Often this is done by first fitting the model by the standard χ 2 (nonrobust)
techniques, e.g., as described in §15.4 or §15.5. The fitted parameters thus obtained
are then used as starting values in amoeba, now using the robust choice of ρ and
minimizing the expression (15.7.3).

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier than is
suggested by the general strategy outlined above. The case of equations (15.7.7)–
(15.7.8), when the model is a simple straight line

y(x; a, b) = a + bx (15.7.13)

and where the weights σi are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit a straight line through a set of data points. The merit function to be minimized is

N∑
i=1

|yi − a − bxi| (15.7.14)

rather than the χ2 given by equation (15.2.2).
The key simplification is based on the following fact: The median cM of a set

of numbers ci is also that value which minimizes the sum of the absolute deviations
∑

i

|ci − cM |

(Proof: Differentiate the above expression with respect to cM and set it to zero.)
It follows that, for fixed b, the value of a that minimizes (15.7.14) is

a = median{yi − bxi} (15.7.15)

Equation (15.7.5) for the parameter b is

0 =
N∑

i=1

xi sgn(yi − a − bxi) (15.7.16)

(where sgn(0) is to be interpreted as zero). If we replace a in this equation by the
implied function a(b) of (15.7.15), then we are left with an equation in a single
variable which can be solved by bracketing and bisection, as described in §9.1.
(In fact, it is dangerous to use any fancier method of root-finding, because of the
discontinuities in equation 15.7.16.)

Here is a routine that does all this. It calls select (§8.5) to find the median.
The bracketing and bisection are built in to the routine, as is the χ 2 solution that
generates the initial guesses for a and b. Notice that the evaluation of the right-hand
side of (15.7.16) occurs in the function rofunc, with communication via a common
block. To save memory, you could generate your data arrays directly into that
common block, deleting them from this routine’s calling sequence.
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SUBROUTINE medfit(x,y,ndata,a,b,abdev)
INTEGER ndata,NMAX,ndatat
PARAMETER (NMAX=1000)
REAL a,abdev,b,x(ndata),y(ndata),

* arr(NMAX),xt(NMAX),yt(NMAX),aa,abdevt
COMMON /arrays/ xt,yt,arr,aa,abdevt,ndatat

C USES rofunc
Fits y = a + bx by the criterion of least absolute deviations. The arrays x(1:ndata)
and y(1:ndata) are the input experimental points. The fitted parameters a and b are
output, along with abdev, which is the mean absolute deviation (in y) of the experimental
points from the fitted line. This routine uses the routine rofunc, with communication via
a common block.

INTEGER j
REAL b1,b2,bb,chisq,del,f,f1,f2,sigb,sx,sxx,sxy,sy,rofunc
sx=0.
sy=0.
sxy=0.
sxx=0.
do 11 j=1,ndata As a first guess for a and b, we will find the least-

squares fitting line.xt(j)=x(j)
yt(j)=y(j)
sx=sx+x(j)
sy=sy+y(j)
sxy=sxy+x(j)*y(j)
sxx=sxx+x(j)**2

enddo 11

ndatat=ndata
del=ndata*sxx-sx**2
aa=(sxx*sy-sx*sxy)/del Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del
chisq=0.
do 12 j=1,ndata

chisq=chisq+(y(j)-(aa+bb*x(j)))**2
enddo 12

sigb=sqrt(chisq/del) The standard deviation will give some idea of how
big an iteration step to take.b1=bb

f1=rofunc(b1)
if(sigb.gt.0.)then

b2=bb+sign(3.*sigb,f1) Guess bracket as 3-σ away, in the downhill direction
known from f1.f2=rofunc(b2)

if(b2.eq.b1)then
a=aa
b=bb
abdev=abdevt/ndata
return

endif
1 if(f1*f2.gt.0.)then Bracketing.

bb=b2+1.6*(b2-b1)
b1=b2
f1=f2
b2=bb
f2=rofunc(b2)
goto 1

endif
sigb=0.01*sigb Refine until error a negligible number of standard de-

viations.2 if(abs(b2-b1).gt.sigb)then
bb=b1+0.5*(b2-b1) Bisection.
if(bb.eq.b1.or.bb.eq.b2)goto 3
f=rofunc(bb)
if(f*f1.ge.0.)then

f1=f
b1=bb

else
f2=f
b2=bb

endif
goto 2

endif
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endif
3 a=aa

b=bb
abdev=abdevt/ndata
return
END

FUNCTION rofunc(b)
INTEGER NMAX
REAL rofunc,b,EPS
PARAMETER (NMAX=1000,EPS=1.e-7)

C USES select
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication
with the program medfit is through a common block.

INTEGER j,ndata
REAL aa,abdev,d,sum,arr(NMAX),x(NMAX),y(NMAX),select
COMMON /arrays/ x,y,arr,aa,abdev,ndata
do 11 j=1,ndata

arr(j)=y(j)-b*x(j)
enddo 11

if (mod(ndata,2).eq.0) then
j=ndata/2
aa=0.5*(select(j,ndata,arr)+select(j+1,ndata,arr))

else
aa=select((ndata+1)/2,ndata,arr)

endif
sum=0.
abdev=0.
do 12 j=1,ndata

d=y(j)-(b*x(j)+aa)
abdev=abdev+abs(d)
if (y(j).ne.0.) d=d/abs(y(j))
if (abs(d).gt.EPS) sum=sum+x(j)*sign(1.0,d)

enddo 12

rofunc=sum
return
END

Other Robust Techniques

Sometimes you may have a priori knowledge about the probable values and probable
uncertainties of some parameters that you are trying to estimate from a data set. In such
cases you may want to perform a fit that takes this advance information properly into account,
neither completely freezing a parameter at a predetermined value (as in lfit §15.4) nor
completely leaving it to be determined by the data set. The formalism for doing this is called
“use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is sometimes
desired to “ track” (i.e., maintain an estimate of) a time-varying signal in the presence of
noise. If the signal is known to be characterized by some number of parameters that vary only
slowly, then the formalism of Kalman filteringtells how the incoming, raw measurements of
the signal should be processed to produce best parameter estimates as a function of time. For
example, if the signal is a frequency-modulated sine wave, then the slowly varying parameter
might be the instantaneous frequency. The Kalman filter for this case is called a phase-locked
loop and is implemented in the circuitry of good radio receivers [3,4].
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Chapter 16. Integration of Ordinary

Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x) − q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)
dx

= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions
on the values of the functions yi in (16.0.3). In general they can be satisfied at

701
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discrete specified points, but do not hold between those points, i.e., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as
a set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which
numerical methods will be feasible. Boundary conditions divide into two broad
categories.

• In initial value problems all the yi are given at some starting value xs, and
it is desired to find the yi’s at some final point xf , or at some discrete list
of points (for example, at tabulated intervals).

• In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than one x. Typically, some of the
conditions will be specified at xs and the remainder at xf .

This chapter will consider exclusively the initial value problem, deferring two-
point boundary value problems, which are generally more difficult, to Chapter 17.

The underlying idea of any routine for solving the initial value problem is always
this: Rewrite the dy’s and dx’s in (16.0.3) as finite steps ∆y and ∆x, and multiply the
equations by ∆x. This gives algebraic formulas for the change in the functions when
the independent variable x is “stepped” by one “stepsize” ∆x. In the limit of making
the stepsize very small, a good approximation to the underlying differential equation
is achieved. Literal implementation of this procedure results in Euler’s method
(16.1.1, below), which is, however, not recommended for any practical use. Euler’s
method is conceptually important, however; one way or another, practical methods all
come down to this same idea: Add small increments to your functions corresponding
to derivatives (right-hand sides of the equations) multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

• Runge-Kutta methods
• Richardson extrapolation and its particular implementation as the Bulirsch-

Stoer method
• predictor-corrector methods.
A brief description of each of these types follows.
1. Runge-Kutta methods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the
right-hand f ’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize is
the desired goal. The first practical ODE integrator that implemented this idea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.

Runge-Kutta is what you use when (i) you don’t know any better, or (ii) you
have an intransigent problem where Bulirsch-Stoer is failing, or (iii) you have a trivial
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problem where computational efficiency is of no concern. Runge-Kutta succeeds
virtually always; but it is not usually fastest, except when evaluating f i is cheap and
moderate accuracy (<∼ 10−5) is required. Predictor-corrector methods, since they
use past information, are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
is too soon to say that predictor-corrector is dominated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
Accordingly, we have chosen not to give an implementation of predictor-corrector
in this book. We discuss predictor-corrector further in §16.7, so that you can use
a canned routine should you encounter a suitable problem. In our experience, the
relatively simple Runge-Kutta and Bulirsch-Stoer routines we give are adequate
for most problems.

Each of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value
problem. Each comes with its own set of debits and credits that must be understood
before it is used.

We have organized the routines in this chapter into three nested levels. The
lowest or “nitty-gritty” level is the piece we call the algorithm routine. This
implements the basic formulas of the method, starts with dependent variables y i at x,
and returns new values of the dependent variables at the value x + h. The algorithm
routine also yields up some information about the quality of the solution after the
step. The routine is dumb, however, and it is unable to make any adaptive decision
about whether the solution is of acceptable quality or not.

That quality-control decision we encode in a stepper routine. The stepper
routine calls the algorithm routine. It may reject the result, set a smaller stepsize, and
call the algorithm routine again, until compatibility with a predetermined accuracy
criterion has been achieved. The stepper’s fundamental task is to take the largest
stepsize consistent with specified performance. Only when this is accomplished does
the true power of an algorithm come to light.

Above the stepper is the driver routine, which starts and stops the integration,
stores intermediate results, and generally acts as an interface with the user. There is
nothing at all canonical about our driver routines. You should consider them to be
examples, and you can customize them for your particular application.

Of the routines that follow, rk4, rkck, mmid, stoerm, and simpr are algorithm
routines; rkqs, bsstep, stiff, and stifbs are steppers; rkdumb and odeint
are drivers.

Section 16.6 of this chapter treats the subject of stiff equations, relevant both to
ordinary differential equations and also to partial differential equations (Chapter 19).
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16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution from xn to xn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(
xn + 1

2h, yn + 1
2k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic
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16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn toxn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an intervalh, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power ofh smaller
than the correction, i.eO(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of bothx and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(
xn + 1

2h, yn + 1
2k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the methodsecond order. [A method is conventionally callednth
order if its error term isO(hn+1).] In fact, (16.1.2) is called thesecond-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun[1], and Gear[2], give various specific formulas that derive from this basic
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y(x)

1

2

x1 x2 x3 x

Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpoint
method (16.1.2) if at least twice as large a step is possible with (16.1.3) for the same
accuracy. Is that so? The answer is: often, perhaps even usually, but surely not
always! This takes us back to a central theme, namely that high order does not always
mean high accuracy. The statement “ fourth-order Runge-Kutta is generally superior
to second-order” is a true one, but you should recognize it as a statement about the
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1

2

3

4

yn + 1

yn

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in [3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not be
your only one with these starting conditions. You may have taken a previous step
with too large a stepsize, and this is your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)
hh=h*0.5
h6=h/6.
xh=x+hh
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do 11 i=1,n First step.
yt(i)=y(i)+hh*dydx(i)

enddo 11

call derivs(xh,yt,dyt) Second step.
do 12 i=1,n

yt(i)=y(i)+hh*dyt(i)
enddo 12

call derivs(xh,yt,dym) Third step.
do 13 i=1,n

yt(i)=y(i)+h*dym(i)
dym(i)=dyt(i)+dym(i)

enddo 13

call derivs(x+h,yt,dyt) Fourth step.
do 14 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i))
enddo 14

return
END

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along the trajectory of an ordinary differential
equation can serve as an initial point. The fact that all steps are treated identically also
makes it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabulate a function at
equally spaced intervals, and without particularly high accuracy. In the most common
case, you want to produce a graph of the function. Then all you need may be a
simple driver program that goes from an initial xs to a final xf in a specified number
of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problems whose nature requires a variable stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such a driver, self-explanatory, which tabulates the integrated functions
in a common block path.

SUBROUTINE rkdumb(vstart,nvar,x1,x2,nstep,derivs)
INTEGER nstep,nvar,NMAX,NSTPMX
PARAMETER (NMAX=50,NSTPMX=200) Maximum number of functions and

maximum number of values to
be stored.

REAL x1,x2,vstart(nvar),xx(NSTPMX),y(NMAX,NSTPMX)
EXTERNAL derivs
COMMON /path/ xx,y Storage of results.

C USES rk4
Starting from initial values vstart(1:nvar) known at x1 use fourth-order Runge-Kutta to
advance nstep equal increments to x2. The user-supplied subroutine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the common block path. Be sure to dimension
the common block appropriately.

INTEGER i,k
REAL h,x,dv(NMAX),v(NMAX)
do 11 i=1,nvar Load starting values.

v(i)=vstart(i)
y(i,1)=v(i)

enddo 11

xx(1)=x1
x=x1
h=(x2-x1)/nstep
do 13 k=1,nstep Take nstep steps.

call derivs(x,v,dv)
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call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93–
121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance,most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single
and double sequences share a starting point, so the total is 11. This is to be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are
achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?
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call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END
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Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93–
121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance,most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single
and double sequences share a starting point, so the total is 11. This is to be compared
not to 4, but to 8 (the two half-steps), since — stepsize control aside — we are
achieving the accuracy of the smaller (half) stepsize. The overhead cost is therefore
a factor 1.375. What does it buy us?
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two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two steps.
Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the stepsize
on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from x to x + 2h by y(x + 2h)
and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ + O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ + O(h6) + . . .
(16.2.1)

where, to order h5, the value φ remains constant over the step. [Taylor series
expansion tells us the φ is a number whose order of magnitude is y (5)(x)/5!.] The
first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expression involves 2(h5) since the error on each step is h5φ. The difference between
the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h 6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆
15

+ O(h6) (16.2.3)

This estimate is accurate to fifth order, one order higher than the original Runge-
Kutta steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function
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evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the error
estimate is based on independent function evaluations. However, experience has
shown that this concern is not a problem in practice. Accordingly, embedded Runge-
Kutta formulas, which are roughly a factor of two more efficient, have superseded
algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·
k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + O(h6)

(16.2.4)

The embedded fourth-order formula is

y∗
n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y∗
n+1 =

6∑
i=1

(ci − c∗i )ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h 5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is
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Cash-Karp Parameters for Embedded Runga-Kutta Method

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 − 11
54

5
2 − 70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

smaller than ∆0, on the other hand, then the equation tells how much we can safely
increase the stepsize for the next step. Local extrapolation consists in accepting
the fifth order value yn+1, even though the error estimate actually applies to the
fourth order value y∗

n+1.
Our notation hides the fact that ∆0 is actually a vector of desired accuracies,

one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender” equation.

How is ∆0, the desired accuracy, related to some looser prescription like “get a
solution good to one part in 106”? That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors, ∆0 = εy, where ε is the number like 10−6 or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set ∆ 0

equal to ε times those maximum values.
A convenient way to fold these considerations into a generally useful stepper

routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call that y(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(1:n), and also an overall tolerance level eps. Then the desired accuracy
for the ith equation will be taken to be

∆0 = eps× yscal(i) (16.2.8)

If you desire constant fractional errors, plug y into the yscal calling slot (no need
to copy the values into a different array). If you desire constant absolute errors
relative to some maximum values, set the elements of yscal equal to those maximum
values. A useful “trick” for getting constant fractional errors except “very” near
zero crossings is to set yscal(i) equal to |y(i)| + |h × dydx(i)|. (The routine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may be unusually sensitive
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about a “global” accumulation of errors, from beginning to end of the integration
and in the worst possible case where the errors all are presumed to add with the
same sign. Then, the smaller the stepsize h, the smaller the value ∆0 that you will
need to impose. Why? Because there will be more steps between your starting
and ending values of x. In such cases you will want to set yscal proportional to
h, typically to something like

∆0 = εh × dydx(i) (16.2.9)

This enforces fractional accuracy ε not on the values of y but (much more stringently)
on the increments to those values at each step. But now look back at (16.2.7). If ∆ 0

has an implicit scaling with h, then the exponent 0.20 is no longer correct: When
the stepsize is reduced from a too-large value, the new predicted value h 1 will fail to
meet the desired accuracy when yscal is also altered to this new h1 value. Instead
of 0.20 = 1/5, we must scale by the exponent 0.25 = 1/4 for things to work out.

The exponents 0.20 and 0.25 are not really very different. This motivates us
to adopt the following pragmatic approach, one that frees us from having to know
in advance whether or not you, the user, plan to scale your yscal’s with stepsize.
Whenever we decrease a stepsize, let us use the larger value of the exponent (whether
we need it or not!), and whenever we increase a stepsize, let us use the smaller
exponent. Furthermore, because our estimates of error are not exact, but only
accurate to the leading order in h, we are advised to put in a safety factor S which is
a few percent smaller than unity. Equation (16.2.7) is thus replaced by

h0 =





Sh1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.20

∆0 ≥ ∆1

Sh1

∣∣∣∣
∆0

∆1

∣∣∣∣
0.25

∆0 < ∆1

(16.2.10)

We have found this prescription to be a reliable one in practice.
Here, then, is a stepper program that takes one “quality-controlled” Runge-

Kutta step.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum number of equations.

C USES derivs,rkck
Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y(1:n) and its derivative
dydx(1:n) at the starting value of the independent variable x. Also input are the stepsize
to be attempted htry, the required accuracy eps, and the vector yscal(1:n) against
which the error is scaled. On output, y and x are replaced by their new values, hdid is the
stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs
is the user-supplied subroutine that computes the right-hand side derivatives.

INTEGER i
REAL errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,

* PSHRNK,ERRCON
PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)

The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.
h=htry Set stepsize to the initial trial value.

1 call rkck(y,dydx,n,x,h,ytemp,yerr,derivs) Take a step.
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errmax=0. Evaluate accuracy.
do 11 i=1,n

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 11

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.gt.1.)then Truncation error too large, reduce stepsize.

htemp=SAFETY*h*(errmax**PSHRNK)
h=sign(max(abs(htemp),0.1*abs(h)),h) No more than a factor of 10.
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in rkqs’
goto 1 For another try.

else Step succeeded. Compute size of next step.
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*(errmax**PGROW)
else No more than a factor of 5 increase.

hnext=5.*h
endif
hdid=h
x=x+h
do 12 i=1,n

y(i)=ytemp(i)
enddo 12

return
endif
END

The routine rkqs calls the routine rkck to take a Cash-Karp Runge-Kutta step:

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

C USES derivs
Given values for n variables y and their derivatives dydx known at x, use the fifth-order
Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth-order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),

* ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,
* B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,
* DC4,DC5,DC6

PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
* B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
* B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
* B63=575./13824.,B64=44275./110592.,B65=253./4096.,
* C1=37./378.,C3=250./621.,C4=125./594.,C6=512./1771.,
* DC1=C1-2825./27648.,DC3=C3-18575./48384.,
* DC4=C4-13525./55296.,DC5=-277./14336.,DC6=C6-.25)

do 11 i=1,n First step.
ytemp(i)=y(i)+B21*h*dydx(i)

enddo 11

call derivs(x+A2*h,ytemp,ak2) Second step.
do 12 i=1,n

ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i))
enddo 12

call derivs(x+A3*h,ytemp,ak3) Third step.
do 13 i=1,n

ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
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enddo 13

call derivs(x+A4*h,ytemp,ak4) Fourth step.
do 14 i=1,n

ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+
* B54*ak4(i))

enddo 14

call derivs(x+A5*h,ytemp,ak5) Fifth step.
do 15 i=1,n

ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+
* B64*ak4(i)+B65*ak5(i))

enddo 15

call derivs(x+A6*h,ytemp,ak6) Sixth step.
do 16 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+
* C6*ak6(i))

enddo 16

do 17 i=1,n
Estimate error as difference between fourth and fifth order methods.
yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)

* +DC6*ak6(i))
enddo 17

return
END

Noting that the above routines are all in single precision, don’t be too greedy in
specifying eps. The punishment for excessive greediness is interesting and worthy of
Gilbert and Sullivan’s Mikado: The routine can always achieve an apparent zero error
by making the stepsize so small that quantities of order hy ′ add to quantities of order
y as if they were zero. Then the routine chugs happily along taking infinitely many
infinitesimal steps and never changing the dependent variables one iota. (You guard
against this catastrophic loss of your computer budget by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a personal workstation you guard against it by not taking too long a
lunch hour while your program is running.)

Here is a full-fledged “driver” for Runge-Kutta with adaptive stepsize control.
We warmly recommend this routine, or one like it, for a variety of problems, notably
including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). For storage of intermediate results (if you desire to
inspect them) we assume a common block path, which can hold up to KMAXX steps.
Because steps occur at unequal intervals results are stored only at intervals greater
than dxsav. Also in the block is kmax, indicating the number of steps that can be
stored. If kmax=0 there is no intermediate storage, and the rest of the common block
need not exist. Otherwise you should set kmax = KMAXX. Storage of steps stops
if kmax is exceeded, except that the ending values are always stored. Again, these
controls are merely indicative of what you might need. The routine odeint should
be customized to the problem at hand.

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,derivs,rkqs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY
EXTERNAL derivs,rkqs
PARAMETER (MAXSTP=10000,NMAX=50,KMAXX=200,TINY=1.e-30)

Runge-Kutta driver with adaptive stepsize control. Integrate the starting values ystart(1:nvar)
from x1 to x2 with accuracy eps, storing intermediate results in the common block /path/.
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can
be zero). On output nok and nbad are the number of good and bad (but retried and
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fixed) steps taken, and ystart is replaced by values at the end of the integration interval.
derivs is the user-supplied subroutine for calculating the right-hand side derivative, while
rkqs is the name of the stepper routine to be used. /path/ contains its own information
about how often an intermediate value is to be stored.

INTEGER i,kmax,kount,nstp
REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),

* yp(NMAX,KMAXX),yscal(NMAX)
COMMON /path/ kmax,kount,dxsav,xp,yp

User storage for intermediate results. Preset dxsav and kmax.
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
do 11 i=1,nvar

y(i)=ystart(i)
enddo 11

if (kmax.gt.0) xsav=x-2.*dxsav Assures storage of first step.
do 16 nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
do 12 i=1,nvar

Scaling used to monitor accuracy. This general-purpose choice can be modified if need
be.
yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY

enddo 12

if(kmax.gt.0)then
if(abs(x-xsav).gt.abs(dxsav)) then Store intermediate results.

if(kount.lt.kmax-1)then
kount=kount+1
xp(kount)=x
do 13 i=1,nvar

yp(i,kount)=y(i)
enddo 13

xsav=x
endif

endif
endif
if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x If stepsize can overshoot, decrease.
call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if(hdid.eq.h)then

nok=nok+1
else

nbad=nbad+1
endif
if((x-x2)*(x2-x1).ge.0.)then Are we done?

do 14 i=1,nvar
ystart(i)=y(i)

enddo 14

if(kmax.ne.0)then
kount=kount+1 Save final step.
xp(kount)=x
do 15 i=1,nvar

yp(i,kount)=y(i)
enddo 15

endif
return Normal exit.

endif
if(abs(hnext).lt.hmin) pause ’stepsize smaller than minimum in odeint’
h=hnext

enddo 16

pause ’too many steps in odeint’
return
END



716 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201–
222. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93–
121.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n − 1

y(x + H) ≈ yn ≡ 1
2
[zn + zn−1 + hf(x + H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for large n) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns
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16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n − 1

y(x + H) ≈ yn ≡ 1
2
[zn + zn−1 + hf(x + H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for large n) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns
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out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x + H) =
∞∑

i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x + H) ≈ 4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)
INTEGER nstep,nvar,NMAX
REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)
EXTERNAL derivs
PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n
REAL h,h2,swap,x,ym(NMAX),yn(NMAX)
h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)
yn(i)=y(i)+h*dydx(i) First step.

enddo 11

x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h
do 13 n=2,nstep General step.

do 12 i=1,nvar
swap=ym(i)+h2*yout(i)
ym(i)=yn(i)
yn(i)=swap

enddo 12

x=x+h
call derivs(x,yn,yout)
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enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.12.

16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular points inside the
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this; more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in §16.7.)

Three key ideas are involved. The first is Richardson’s deferred approach
to the limit, which we already met in §4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsize h. That
analytic function can be probed by performing the calculation with various values
of h, none of them being necessarily small enough to yield the accuracy that we
desire. When we know enough about the function, we fit it to some analytic form,
and then evaluate it at that mythical and golden point h = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength of rational function extrapolation in Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex
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enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.12.

16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular points inside the
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this; more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in §16.7.)

Three key ideas are involved. The first is Richardson’s deferred approach
to the limit, which we already met in §4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsize h. That
analytic function can be probed by performing the calculation with various values
of h, noneof them being necessarily small enough to yield the accuracy that we
desire. When we know enough about the function, we fit it to some analytic form,
and then evaluateit at that mythical and golden point h = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength of rational function extrapolationin Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex
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6 steps

2 steps 4 steps ⊗

extrapolation
to ∞ steps

x x + H

y

Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large interval H is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer
that is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations
are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

plane. Rational function fits can remain good approximations to analytic functions
even after the various terms in powers of h all have comparable magnitudes. In
other words, h can be so large as to make the whole notion of the “order” of the
method meaningless — and the method can still work superbly. Nevertheless, more
recent experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation. We will
accordingly adopt polynomial extrapolation as the default, but the routine bsstep
below allows easy substitution of one kind of extrapolation for the other. You
might wish at this point to review §3.1–§3.2, where polynomial and rational function
extrapolation were already discussed.

The third idea was discussed in the section before this one, namely to use
a method whose error function is strictly even, allowing the rational function or
polynomial approximation to be in terms of the variable h 2 instead of just h.

Put these ideas together and you have the Bulirsch-Stoer method [1]. A single
Bulirsch-Stoer step takes us from x to x+H , where H is supposed to be quite a large
— not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of modified midpoint method, which
are then extrapolated to zero stepsize.

The sequence of separate attempts to cross the interval H is made with increasing
values of n, the number of substeps. Bulirsch and Stoer originally proposed the
sequence

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . , [nj = 2nj−2], . . . (16.4.1)

More recent work by Deuflhard [2,3] suggests that the sequence

n = 2, 4, 6, 8, 10, 12, 14, . . . , [nj = 2j], . . . (16.4.2)

is usually more efficient. For each step, we do not know in advance how far up this
sequence we will go. After each successive n is tried, a polynomial extrapolation is
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attempted. That extrapolation returns both extrapolated values and error estimates.
If the errors are not satisfactory, we go higher in n. If they are satisfactory, we go
on to the next step and begin anew with n = 2.

Of course there must be some upper limit, beyond which we conclude that there
is some obstacle in our path in the interval H , so that we must reduce H rather than
just subdivide it more finely. In the implementations below, the maximum number
of n’s to be tried is called KMAXX. For reasons described below we usually take this
equal to 8; the 8th value of the sequence (16.4.2) is 16, so this is the maximum
number of subdivisions of H that we allow.

We enforce error control, as in the Runge-Kutta method, by monitoring internal
consistency, and adapting stepsize to match a prescribed bound on the local truncation
error. Each new result from the sequence of modified midpoint integrations allows a
tableau like that in §3.1 to be extended by one additional set of diagonals. The size of
the new correction added at each stage is taken as the (conservative) error estimate.
How should we use this error estimate to adjust the stepsize? The best strategy now
known is due to Deuflhard [2,3]. For completeness we describe it here:

Suppose the absolute value of the error estimate returned from the kth column (and hence
the k + 1st row) of the extrapolation tableau is εk+1,k. Error control is enforced by requiring

εk+1,k < ε (16.4.3)

as the criterion for accepting the current step, where ε is the required tolerance. For the even
sequence (16.4.2) the order of the method is 2k + 1:

εk+1,k ∼ H2k+1 (16.4.4)

Thus a simple estimate of a new stepsize Hk to obtain convergence in a fixed column k would be

Hk = H

(
ε

εk+1,k

)1/(2k+1)

(16.4.5)

Which column k should we aim to achieve convergence in? Let’s compare the work
required for different k. Suppose Ak is the work to obtain row k of the extrapolation tableau,
so Ak+1 is the work to obtain column k. We will assume the work is dominated by the cost
of evaluating the functions defining the right-hand sides of the differential equations. For nk

subdivisions in H , the number of function evaluations can be found from the recurrence

A1 = n1 + 1

Ak+1 = Ak + nk+1

(16.4.6)

The work per unit step to get column k is Ak+1/Hk, which we nondimensionalize with a
factor of H and write as

Wk =
Ak+1

Hk
H (16.4.7)

= Ak+1

( εk+1,k

ε

)1/(2k+1)

(16.4.8)

The quantities Wk can be calculated during the integration. The optimal column index q
is then defined by

Wq = min
k=1,...,kf

Wk (16.4.9)

where kf is the final column, in which the error criterion (16.4.3) was satisfied. The q
determined from (16.4.9) defines the stepsize Hq to be used as the next basic stepsize, so that
we can expect to get convergence in the optimal column q.

Two important refinements have to be made to the strategy outlined so far:
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• If the current H is “too small,” then kf will be “too small,” and so q remains
“too small.” It may be desirable to increase H and aim for convergence in a
column q > kf .

• If the current H is “too big,” we may not converge at all on the current step and we
will have to decrease H . We would like to detect this by monitoring the quantities
εk+1,k for each k so we can stop the current step as soon as possible.

Deuflhard’s prescription for dealing with these two problems uses ideas from communi-
cation theory to determine the “average expected convergence behavior” of the extrapolation.
His model produces certain correction factors α(k, q) by which Hk is to be multiplied to try
to get convergence in column q. The factors α(k, q) depend only on ε and the sequence {ni}
and so can be computed once during initialization:

α(k, q) = ε
Ak+1−Aq+1

(2k+1)(Aq+1−A1+1) for k < q (16.4.10)

with α(q, q) = 1.
Now to handle the first problem, suppose convergence occurs in column q = kf . Then

rather than taking Hq for the next step, we might aim to increase the stepsize to get convergence
in column q + 1. Since we don’t have Hq+1 available from the computation, we estimate it as

Hq+1 = Hqα(q, q + 1) (16.4.11)

By equation (16.4.7) this replacement is efficient, i.e., reduces the work per unit step, if

Aq+1

Hq
>

Aq+2

Hq+1
(16.4.12)

or
Aq+1α(q, q + 1) > Aq+2 (16.4.13)

During initialization, this inequality can be checked for q = 1, 2, . . . to determine kmax, the
largest allowed column. Then when (16.4.12) is satisfied it will always be efficient to use
Hq+1. (In practice we limit kmax to 8 even when ε is very small as there is very little further
gain in efficiency whereas roundoff can become a problem.)

The problem of stepsize reduction is handled by computing stepsize estimates

H̄k ≡ Hkα(k, q), k = 1, . . . , q − 1 (16.4.14)

during the current step. The H̄’s are estimates of the stepsize to get convergence in the optimal
column q. If any H̄k is “too small,” we abandon the current step and restart using H̄k. The
criterion of being “too small” is taken to be

Hkα(k, q + 1) < H (16.4.15)

The α’s satisfy α(k, q + 1) > α(k, q).
During the first step, when we have no information about the solution, the stepsize

reduction check is made for all k. Afterwards, we test for convergence and for possible
stepsize reduction only in an “order window”

max(1, q − 1) ≤ k ≤ min(kmax, q + 1) (16.4.16)

The rationale for the order window is that if convergence appears to occur for k < q − 1 it
is often spurious, resulting from some fortuitously small error estimate in the extrapolation.
On the other hand, if you need to go beyond k = q + 1 to obtain convergence, your local
model of the convergence behavior is obviously not very good and you need to cut the
stepsize and reestablish it.

In the routine bsstep, these various tests are actually carried out using quantities

ε(k) ≡ H

Hk
=
( εk+1,k

ε

)1/(2k+1)

(16.4.17)

called err(k) in the code. As usual, we include a “safety factor” in the stepsize selection.
This is implemented by replacing ε by 0.25ε. Other safety factors are explained in the
program comments.

Note that while the optimal convergence column is restricted to increase by at most one
on each step, a sudden drop in order is allowed by equation (16.4.9). This gives the method
a degree of robustness for problems with discontinuities.
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Let us remind you once again that scaling of the variables is often crucial for
successful integration of differential equations. The scaling “trick” suggested in
the discussion following equation (16.2.8) is a good general purpose choice, but
not foolproof. Scaling by the maximum values of the variables is more robust, but
requires you to have some prior information.

The following implementation of a Bulirsch-Stoer step has exactly the same
calling sequence as the quality-controlled Runge-Kutta stepper rkqs. This means
that the driver odeint in §16.2 can be used for Bulirsch-Stoer as well as Runge-
Kutta: Just substitute bsstep for rkqs in odeint’s argument list. The routine
bsstep calls mmid to take the modified midpoint sequences, and calls pzextr, given
below, to do the polynomial extrapolation.

SUBROUTINE bsstep(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
PARAMETER (NMAX=50,KMAXX=8,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,mmid,pzextr

Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector y(1:nv) and its derivative dydx(1:nv)
at the starting value of the independent variable x. Also input are the stepsize to be at-
tempted htry, the required accuracy eps, and the vector yscal(1:nv) against which the
error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is the
user-supplied subroutine that computes the right-hand side derivatives. Be sure to set htry
on successive steps to the value of hnext returned from the previous step, as is the case
if the routine is called by odeint.
Parameters: NMAX is the maximum value of nv; KMAXX is the maximum row number used
in the extrapolation; IMAX is the next row number; SAFE1 and SAFE2 are safety factors;
REDMAX is the maximum factor used when a stepsize is reduced, REDMIN the minimum;
TINY prevents division by zero; 1/SCALMX is the maximum factor by which a stepsize can
be increased.

INTEGER i,iq,k,kk,km,kmax,kopt,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,

* xnew,a(IMAX),alf(KMAXX,KMAXX),err(KMAXX),yerr(NMAX),
* ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,xnew
EXTERNAL derivs
DATA first/.true./,epsold/-1./
DATA nseq /2,4,6,8,10,12,14,16,18/
if(eps.ne.epsold)then A new tolerance, so reinitialize.

hnext=-1.e29 “Impossible” values.
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1 Compute work coefficients Ak.
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX Compute α(k, q).
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13

epsold=eps
do 14 kopt=2,KMAXX-1 Determine optimal row number for conver-

gence.if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1
enddo 14



16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 723

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

1 kmax=kopt
endif
h=htry
do 15 i=1,nv Save the starting values.

ysav(i)=y(i)
enddo 15

if(h.ne.hnext.or.x.ne.xnew)then A new stepsize or a new integration: re-establish
the order window.first=.true.

kopt=kmax
endif
reduct=.false.

2 do 17 k=1,kmax Evaluate the sequence of modified midpoint
integrations.xnew=x+h

if(xnew.eq.x)pause ’step size underflow in bsstep’
call mmid(ysav,dydx,nv,x,h,nseq(k),yseq,derivs)
xest=(h/nseq(k))**2 Squared, since error series is even.
call pzextr(k,xest,yseq,y,yerr,nv) Perform extrapolation.
if(k.ne.1)then Compute normalized error estimate ε(k).

errmax=TINY
do 16 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 16

errmax=errmax/eps Scale error relative to tolerance.
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then In order window.

if(errmax.lt.1.)goto 4 Converged.
if(k.eq.kmax.or.k.eq.kopt+1)then Check for possible stepsize reduction.

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 17

3 red=min(red,REDMIN) Reduce stepsize by at least REDMIN and at
most REDMAX.red=max(red,REDMAX)

h=h*red
reduct=.true.
goto 2 Try again.

4 x=xnew Successful step taken.
hdid=h
first=.false.
wrkmin=1.e35 Compute optimal row for convergence and

corresponding stepsize.do 18 kk=1,km
fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1
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endif
enddo 18

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then Check for possible order in-

crease, but not if step-
size was just reduced.

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The polynomial extrapolation routine is based on the same algorithm as polint
§3.1. It is simpler in that it is always extrapolating to zero, rather than to an arbitrary
value. However, it is more complicated in that it must individually extrapolate each
component of a vector of quantities.

SUBROUTINE pzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Use polynomial extrapolation to evaluate nv functions at x = 0 by fitting a polynomial to a
sequence of estimates with progressively smaller values x = xest, and corresponding func-
tion vectors yest(1:nv). This call is number iest in the sequence of calls. Extrapolated
function values are output as yz(1:nv), and their estimated error is output as dy(1:nv).
Parameters: Maximum expected value of iest is IMAX; of nv is NMAX.

INTEGER j,k1
REAL delta,f1,f2,q,d(NMAX),qcol(NMAX,IMAX),x(IMAX)
SAVE qcol,x
x(iest)=xest Save current independent variable.
do 11 j=1,nv

dy(j)=yest(j)
yz(j)=yest(j)

enddo 11

if(iest.eq.1) then Store first estimate in first column.
do 12 j=1,nv

qcol(j,1)=yest(j)
enddo 12

else
do 13 j=1,nv

d(j)=yest(j)
enddo 13

do 15 k1=1,iest-1
delta=1./(x(iest-k1)-xest)
f1=xest*delta
f2=x(iest-k1)*delta
do 14 j=1,nv Propagate tableau 1 diagonal more.

q=qcol(j,k1)
qcol(j,k1)=dy(j)
delta=d(j)-q
dy(j)=f1*delta
d(j)=f2*delta
yz(j)=yz(j)+dy(j)

enddo 14

enddo 15

do 16 j=1,nv
qcol(j,iest)=dy(j)

enddo 16

endif
return
END
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Current wisdom favors polynomial extrapolation over rational function extrap-
olation in the Bulirsch-Stoer method. However, our feeling is that this view is guided
more by the kinds of problems used for tests than by one method being actually
“better.” Accordingly, we provide the optional routine rzextr for rational function
extrapolation, an exact substitution for pzextr above.

SUBROUTINE rzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER j,k
REAL b,b1,c,ddy,v,yy,d(NMAX,IMAX),fx(IMAX),x(IMAX)
SAVE d,x
x(iest)=xest Save current independent variable.
if(iest.eq.1) then

do 11 j=1,nv
yz(j)=yest(j)
d(j,1)=yest(j)
dy(j)=yest(j)

enddo 11

else
do 12 k=1,iest-1

fx(k+1)=x(iest-k)/xest
enddo 12

do 14 j=1,nv Evaluate next diagonal in tableau.
yy=yest(j)
v=d(j,1)
c=yy
d(j,1)=yy
do 13 k=2,iest

b1=fx(k)*v
b=b1-c
if(b.ne.0.) then

b=(c-v)/b
ddy=c*b
c=b1*b

else Care needed to avoid division by 0.
ddy=v

endif
if (k.ne.iest) v=d(j,k)
d(j,k)=ddy
yy=yy+ddy

enddo 13

dy(j)=ddy
yz(j)=yy

enddo 14

endif
return
END

CITED REFERENCES AND FURTHER READING:
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16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. With h = H/m we have

y1 = y0 + h[z0 + 1
2
hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . , m − 1

zm = (ym − ym−1)/h + 1
2
hf(x0 + H,ym)

(16.5.2)

Here zm is y′(x0 + H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities ∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1
2
hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . , m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h + 1
2
hf(x0 + H,ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer.
We replace mmid by the following routine stoerm:

SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv.

C USES derivs
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y(1:nv) contains y in its first n elements and y′ in its second n elements, all evaluated
at xs. d2y(1:nv) contains the right-hand side function f (also evaluated at xs) in its
first n elements. Its second n elements are not referenced. Also input is htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned
as yout(1:nv), with the same storage arrangement as y. derivs is the user-supplied
subroutine that calculates f .

INTEGER i,n,neqns,nn
REAL h,h2,halfh,x,ytemp(NMAX)
h=htot/nstep Stepsize this trip.
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1,neqns First step.

n=neqns+i
ytemp(n)=h*(y(n)+halfh*d2y(i))
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Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. With h = H/m we have

y1 = y0 + h[z0 + 1
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hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . , m − 1

zm = (ym − ym−1)/h + 1
2
hf(x0 + H,ym)

(16.5.2)

Here zm is y′(x0 + H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities ∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1
2
hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . , m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h + 1
2
hf(x0 + H,ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer.
We replace mmid by the following routine stoerm:

SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv.

C USES derivs
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y(1:nv) contains y in its first n elements and y′ in its second n elements, all evaluated
at xs. d2y(1:nv) contains the right-hand side function f (also evaluated at xs) in its
first n elements. Its second n elements are not referenced. Also input is htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned
as yout(1:nv), with the same storage arrangement as y. derivs is the user-supplied
subroutine that calculates f .

INTEGER i,n,neqns,nn
REAL h,h2,halfh,x,ytemp(NMAX)
h=htot/nstep Stepsize this trip.
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1,neqns First step.

n=neqns+i
ytemp(n)=h*(y(n)+halfh*d2y(i))
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ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
n=neqns+i
ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the second n elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u′ = 998u + 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)
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ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
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ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the second n elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
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16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u′ = 998u + 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)
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x

y

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e−1000x term would require a stepsize h � 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
though the e−1000x term is completely negligible in determining the values of u and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations: we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y′ = −cy (16.6.5)

where c > 0 is a constant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

yn+1 = yn + hy′
n = (1 − ch)yn (16.6.6)

The method is called explicit because the new value yn+1 is given explicitly in
terms of the old value yn. Clearly the method is unstable if h > 2/c, for then
|yn| → ∞ as n → ∞.
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The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

yn+1 = yn + hy′
n+1 (16.6.7)

or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y′ = −C · y (16.6.9)

where C is a positive definite matrix. Explicit differencing gives

yn+1 = (1 − Ch) · yn (16.6.10)

Now a matrix An tends to zero as n → ∞ only if the largest eigenvalue of A
has magnitude less than unity. Thus yn is bounded as n → ∞ only if the largest
eigenvalue of 1 − Ch is less than 1, or in other words

h <
2

λmax
(16.6.11)

where λmax is the largest eigenvalue of C.
On the other hand, implicit differencing gives

yn+1 = yn + hy′n+1 (16.6.12)
or

yn+1 = (1 + Ch)−1 · yn (16.6.13)

If the eigenvalues of C are λ, then the eigenvalues of (1 + Ch)−1 are (1 + λh)−1,
which has magnitude less than one for all h. (Recall that all the eigenvalues of a
positive definite matrix are nonnegative.) Thus the method is stable for all stepsizes
h. The penalty we pay for this stability is that we are required to invert a matrix
at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y′ = f(y) (16.6.14)

implicit differencing gives

yn+1 = yn + hf(yn+1) (16.6.15)
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In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

[
f(yn) +

∂f
∂y

∣∣∣∣
y

n

· (yn+1 − yn)

]
(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

[
1 − h

∂f
∂y

]−1

· f(yn) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1 − h
∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoer method, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is

(
y
x

)′
=
(

f
1

)
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector y scal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values
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by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods

These methods have the advantage of being relatively simple to understand and imple-
ment. For moderate accuracies (ε <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s∑

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1 − γhf ′) · ki = hf

(
y0 +

i−1∑
j=1

αijkj

)
+ hf ′ ·

i−1∑
j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f′. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2, . . . .

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y and
a lower-order estimate ŷ with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the ki

are the same. The difference between y and ŷ leads to an estimate of the local truncation error,
which can then be used for stepsize control. Kaps and Rentrop showed that the smallest value
of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =

i−1∑
j=1

γijkj + γki (16.6.23)

The equations then take the form

(1/γh − f ′) · g1 = f(y0)

(1/γh − f ′) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh − f ′) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh − f ′) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h

(16.6.24)
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In our implementation stiff of the Kaps-Rentrop algorithm, we have carried out the
replacement (16.6.19) explicitly in equations (16.6.24), so you need not concern yourself
about it. Simply provide a subroutine (called derivs in stiff) that returns f (called dydx)
as a function of x and y. Also supply a subroutine jacobn that returns f′ (dfdy) and ∂f/∂x
(dfdx) as functions of x and y. If x does not occur explicitly on the right-hand side, then dfdx
will be zero. Usually the Jacobian matrix will be available to you by analytic differentiation of
the right-hand side f. If not, your subroutine will have to compute it by numerical differencing
with appropriate increments ∆y.

Kaps and Rentrop gave two different sets of parameters, which have slightly different
stability properties. Several other sets have been proposed. Our default choice is that of
Shampine [3], but we also give you one of the Kaps-Rentrop sets as an option. Some proposed
parameter sets require function evaluations outside the domain of integration; we prefer to
avoid that complication.

The calling sequence of stiff is exactly the same as the nonstiff routines given earlier
in this chapter. It is thus “plug-compatible” with them in the general ODE integrating routine
odeint. This compatibility requires, unfortunately, one slight anomaly: While the user-
supplied routine derivs is a dummy argument (which can therefore have any actual name),
the other user-supplied routine is not an argument and must be named (exactly) jacobn.

stiff begins by saving the initial values, in case the step has to be repeated because
the error tolerance is exceeded. The linear equations (16.6.24) are solved by first computing
the LU decomposition of the matrix 1/γh − f′ using the routine ludcmp. Then the four
gi are found by back-substitution of the four different right-hand sides using lubksb. Note
that each step of the integration requires one call to jacobn and three calls to derivs (one
call to get dydx before calling stiff, and two calls inside stiff). The reason only three
calls are needed and not four is that the parameters have been chosen so that the last two
calls in equation (16.6.24) are done with the same arguments. Counting the evaluation of
the Jacobian matrix as roughly equivalent to N evaluations of the right-hand side f, we see
that the Kaps-Rentrop scheme involves about N + 3 function evaluations per step. Note that
if N is large and the Jacobian matrix is sparse, you should replace the LU decomposition
by a suitable sparse matrix procedure.

Stepsize control depends on the fact that

yexact = y + O(h5)

yexact = ŷ + O(h4)
(16.6.25)

Thus

|y − ŷ| = O(h4) (16.6.26)

Referring back to the steps leading from equation (16.2.4) to equation (16.2.10), we see
that the new stepsize should be chosen as in equation (16.2.10) but with the exponents 1/4
and 1/5 replaced by 1/3 and 1/4, respectively. Also, experience shows that it is wise to
prevent too large a stepsize change in one step, otherwise we will probably have to undo
the large change in the next step. We adopt 0.5 and 1.5 as the maximum allowed decrease
and increase of h in one step.

SUBROUTINE stiff(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX,MAXTRY
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n),SAFETY,GROW,

* PGROW,SHRNK,PSHRNK,ERRCON,GAM,A21,A31,A32,A2X,A3X,C21,
* C31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X,
* C4X

EXTERNAL derivs
PARAMETER (NMAX=50,SAFETY=0.9,GROW=1.5,PGROW=-.25,

* SHRNK=0.5,PSHRNK=-1./3.,ERRCON=.1296,MAXTRY=40)
PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8.,

* C31=372./25.,C32=12./5.,C41=-112./125.,C42=-54./125.,
* C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108.,
* E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2.,
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* C2X=-3./2.,C3X=121./50.,C4X=29./250.,A2X=1.,A3X=3./5.)
C USES derivs,jacobn,lubksb,ludcmp

Fourth-order Rosenbrock step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:n) and its
derivative dydx(1:n) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:n)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Parameters: NMAX is the maximum value of n; GROW and SHRNK are the largest and smallest
factors by which stepsize can change in one step; ERRCON=(GROW/SAFETY)**(1/PGROW)
and handles the case when errmax � 0.

INTEGER i,j,jtry,indx(NMAX)
REAL d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX),dfdy(NMAX,NMAX),

* dysav(NMAX),err(NMAX),g1(NMAX),g2(NMAX),g3(NMAX),
* g4(NMAX),ysav(NMAX)

xsav=x Save initial values.
do 11 i=1,n

ysav(i)=y(i)
dysav(i)=dydx(i)

enddo 11

call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX)
The user must supply this subroutine to return the n-by-n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do 23 jtry=1,MAXTRY

do 13 i=1,n Set up the matrix 1 − γhf′.
do 12 j=1,n

a(i,j)=-dfdy(i,j)
enddo 12

a(i,i)=1./(GAM*h)+a(i,i)
enddo 13

call ludcmp(a,n,NMAX,indx,d) LU decomposition of the matrix.
do 14 i=1,n Set up right-hand side for g1.

g1(i)=dysav(i)+h*C1X*dfdx(i)
enddo 14

call lubksb(a,n,NMAX,indx,g1) Solve for g1.
do 15 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A21*g1(i)
enddo 15

x=xsav+A2X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 16 i=1,n Set up right-hand side for g2.

g2(i)=dydx(i)+h*C2X*dfdx(i)+C21*g1(i)/h
enddo 16

call lubksb(a,n,NMAX,indx,g2) Solve for g2.
do 17 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A31*g1(i)+A32*g2(i)
enddo 17

x=xsav+A3X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 18 i=1,n Set up right-hand side for g3.

g3(i)=dydx(i)+h*C3X*dfdx(i)+(C31*g1(i)+
* C32*g2(i))/h

enddo 18

call lubksb(a,n,NMAX,indx,g3) Solve for g3.
do 19 i=1,n Set up right-hand side for g4.

g4(i)=dydx(i)+h*C4X*dfdx(i)+(C41*g1(i)+
* C42*g2(i)+C43*g3(i))/h

enddo 19

call lubksb(a,n,NMAX,indx,g4) Solve for g4.
do 21 i=1,n Get fourth-order estimate of y and error estimate.

y(i)=ysav(i)+B1*g1(i)+B2*g2(i)+B3*g3(i)+B4*g4(i)
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err(i)=E1*g1(i)+E2*g2(i)+E3*g3(i)+E4*g4(i)
enddo 21

x=xsav+h
if(x.eq.xsav)pause ’stepsize not significant in stiff’
errmax=0. Evaluate accuracy.
do 22 i=1,n

errmax=max(errmax,abs(err(i)/yscal(i)))
enddo 22

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.le.1.)then Step succeeded. Compute size of next step and re-

turn.hdid=h
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*errmax**PGROW
else

hnext=GROW*h
endif
return

else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)

endif
enddo 23 Go back and re-try step.
pause ’exceeded MAXTRY in stiff’
END

Here are the Kaps-Rentrop parameters, which can be substituted for those of Shampine
simply by replacing the PARAMETER statement:

PARAMETER (GAM=.231,A21=2.,A31=4.52470820736,A32=4.16352878860,
* C21=-5.07167533877,C31=6.02015272865,C32=.159750684673,
* C41=-1.856343618677,C42=-8.50538085819,C43=
* -2.08407513602,B1=3.95750374663,B2=4.62489238836,B3=
* .617477263873,B4=1.282612945268,E1=-2.30215540292,
* E2=-3.07363448539,E3=.873280801802,E4=1.282612945268,
* C1X=GAM,C2X=-.396296677520e-01,C3X=.550778939579,
* C4X=-.553509845700e-01,A2X=.462,A3X=.880208333333)

As an example of how stiff is used, one can solve the system

y′
1 = −.013y1 − 1000y1y3

y′
2 = −2500y2y3

y′
3 = −.013y1 − 1000y1y3 − 2500y2y3

(16.6.27)

with initial conditions

y1(0) = 1, y2(0) = 1, y3(0) = 0 (16.6.28)

(This is test problem D4 in [4].) We integrate the system up to x = 50 with an initial stepsize
of h = 2.9 × 10−4 using odeint. The components of C in (16.6.20) are all set to unity.
The routines derivs and jacobn for this problem are given below. Even though the ratio
of largest to smallest decay constants for this problem is around 106, stiff succeeds in
integrating this set in only 29 steps with ε = 10−4. By contrast, the Runge-Kutta routine
rkqs requires 51,012 steps!

SUBROUTINE jacobn(x,y,dfdx,dfdy,n,nmax)
INTEGER n,nmax,i
REAL x,y(*),dfdx(*),dfdy(nmax,nmax)
do 11 i=1,3

dfdx(i)=0.
enddo 11
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dfdy(1,1)=-.013-1000.*y(3)
dfdy(1,2)=0.
dfdy(1,3)=-1000.*y(1)
dfdy(2,1)=0.
dfdy(2,2)=-2500.*y(3)
dfdy(2,3)=-2500.*y(2)
dfdy(3,1)=-.013-1000.*y(3)
dfdy(3,2)=-2500.*y(3)
dfdy(3,3)=-1000.*y(1)-2500.*y(2)
return
END

SUBROUTINE derivs(x,y,dydx)
REAL x,y(*),dydx(*)
dydx(1)=-.013*y(1)-1000.*y(1)*y(3)
dydx(2)=-2500.*y(2)*y(3)
dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)
return
END

Semi-implicit Extrapolation Method

The Bulirsch-Stoer method, which discretizes the differential equation using the modified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
(

yn+1 + yn−1

2

)
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

[
1 − h

∂f
∂y

]
· yn+1 =

[
1 + h

∂f
∂y

]
· yn−1 + 2h

[
f(yn) − ∂f

∂y
· yn

]
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡ 1
2
(yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using ∆k ≡ yk+1 − yk.
With h = H/m, start by calculating

∆0 =

[
1 − h

∂f
∂y

]−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . , m − 1, set

∆k = ∆k−1 + 2

[
1 − h

∂f
∂y

]−1

· [hf(yk) − ∆k−1]

yk+1 = yk + ∆k

(16.6.33)
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Finally compute

∆m =

[
1 − h

∂f
∂y

]−1

· [hf(ym) − ∆m−1]

ym = ym + ∆m

(16.6.34)

It is easy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from ∂f/∂x all cancel out of the semi-implicit midpoint rule
(16.6.30). In the special first step (16.6.17), and in the corresponding equation (16.6.32), the
term hf becomes hf + h2∂f/∂x. The remaining equations are all unchanged.

This algorithm is implemented in the routine simpr:

SUBROUTINE simpr(y,dydx,dfdx,dfdy,nmax,n,xs,htot,nstep,yout,
* derivs)

INTEGER n,nmax,nstep,NMAXX
REAL htot,xs,dfdx(n),dfdy(nmax,nmax),dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAXX=50) Maximum expected value of n.

C USES derivs,lubksb,ludcmp
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y(1:n),
its derivative dydx(1:n), the derivative of the right-hand side with respect to x, dfdx(1:n),
and the Jacobian dfdy(1:nmax,1:nmax) at xs. Also input are htot, the total step
to be taken, and nstep, the number of substeps to be used. The output is returned as
yout(1:n). derivs is the user-supplied subroutine that calculates dydx.

INTEGER i,j,nn,indx(NMAXX)
REAL d,h,x,a(NMAXX,NMAXX),del(NMAXX),ytemp(NMAXX)
h=htot/nstep Stepsize this trip.
do 12 i=1,n Set up the matrix 1 − hf′.

do 11 j=1,n
a(i,j)=-h*dfdy(i,j)

enddo 11

a(i,i)=a(i,i)+1.
enddo 12

call ludcmp(a,n,NMAXX,indx,d) LU decomposition of the matrix.
do 13 i=1,n Set up right-hand side for first step. Use yout for

temporary storage.yout(i)=h*(dydx(i)+h*dfdx(i))
enddo 13

call lubksb(a,n,NMAXX,indx,yout)
do 14 i=1,n First step.

del(i)=yout(i)
ytemp(i)=y(i)+del(i)

enddo 14

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do 17 nn=2,nstep General step.

do 15 i=1,n Set up right-hand side for general step.
yout(i)=h*yout(i)-del(i)

enddo 15

call lubksb(a,n,NMAXX,indx,yout)
do 16 i=1,n

del(i)=del(i)+2.*yout(i)
ytemp(i)=ytemp(i)+del(i)

enddo 16

x=x+h
call derivs(x,ytemp,yout)

enddo 17

do 18 i=1,n Set up right-hand side for last step.
yout(i)=h*yout(i)-del(i)

enddo 18

call lubksb(a,n,NMAXX,indx,yout)
do 19 i=1,n Take last step.

yout(i)=ytemp(i)+yout(i)
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enddo 19

return
END

The routine simpr is intended to be used in a routine stifbs that is almost exactly the
same as bsstep. The only differences are:

• The stepsize sequence is

n = 2, 6, 10, 14, 22, 34, 50, . . . , (16.6.35)

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of successive terms be ≤ 5

7
. The parameter KMAXX is taken to be 7.

• The work per unit step now includes the cost of Jacobian evaluations as well
as function evaluations. We count one Jacobian evaluation as equivalent to N
function evaluations, where N is the number of equations.

• Once again the user-supplied routine derivs is a dummy argument and so can have
any name. However, to maintain “plug-compatibility” with rkqs, bsstep and
stiff, the routine jacobn is not an argument and must have exactly this name. It
is called once per step to return f′ (dfdy) and ∂f/∂x (dfdx) as functions of x and y.

Here is the routine, with comments pointing out only the differences from bsstep:

SUBROUTINE stifbs(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
EXTERNAL derivs
PARAMETER (NMAX=50,KMAXX=7,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,jacobn,simpr,pzextr

Semi-implicit extrapolation step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:nv) and its
derivative dydx(1:nv) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:nv)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Be sure to set htry on successive steps to the value of hnext returned from the previous
step, as is the case if the routine is called by odeint.

INTEGER i,iq,k,kk,km,kmax,kopt,nvold,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,xnew,

* a(IMAX),alf(KMAXX,KMAXX),dfdx(NMAX),dfdy(NMAX,NMAX),
* err(KMAXX),yerr(NMAX),ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,nvold,xnew
DATA first/.true./,epsold/-1./,nvold/-1/
DATA nseq /2,6,10,14,22,34,50,70/ Sequence is different from bsstep.
if(eps.ne.epsold.or.nv.ne.nvold)then Reinitialize also if nv has changed.

hnext=-1.e29
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13
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epsold=eps
nvold=nv Save nv.
a(1)=nv+a(1) Add cost of Jacobian evaluations to work co-

efficients.do 14 k=1,KMAXX
a(k+1)=a(k)+nseq(k+1)

enddo 14

do 15 kopt=2,KMAXX-1
if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1

enddo 15

1 kmax=kopt
endif
h=htry
do 16 i=1,nv

ysav(i)=y(i)
enddo 16

call jacobn(x,y,dfdx,dfdy,nv,nmax) Evaluate Jacobian.
if(h.ne.hnext.or.x.ne.xnew)then

first=.true.
kopt=kmax

endif
reduct=.false.

2 do 18 k=1,kmax
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in stifbs’
call simpr(ysav,dydx,dfdx,dfdy,nmax,nv,x,h,nseq(k),yseq,

* derivs) Semi-implicit midpoint rule.
xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr,nv)
if(k.ne.1)then

errmax=TINY
do 17 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 17

errmax=errmax/eps
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then

if(errmax.lt.1.)goto 4
if(k.eq.kmax.or.k.eq.kopt+1)then

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 18

3 red=min(red,REDMIN)
red=max(red,REDMAX)
h=h*red
reduct=.true.
goto 2
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4 x=xnew
hdid=h
first=.false.
wrkmin=1.e35
do 19 kk=1,km

fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1

endif
enddo 19

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The routine stifbs is an excellent routine for all stiff problems, competitive with
the best Gear-type routines. stiff is comparable in execution time for moderate N and
ε <∼ 10−4. By the time ε ∼ 10−8, stifbs is roughly an order of magnitude faster. There
are further improvements that could be applied to stifbs to make it even more robust. For
example, very occasionally ludcmp in simpr will encounter a singular matrix. You could
arrange for the stepsize to be reduced, say by a factor of the current nseq(k). There are
also certain stability restrictions on the stepsize that come into play on some problems. For
a discussion of how to implement these automatically, see [6].
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16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistep and multivalue describe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptional case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see no reason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be a big surprise in store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variable x, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
x and on the dependent variables y. Thus to advance the solution of y ′ = f(x, y)
from xn to x, we have

y(x) = yn +
∫ x

xn

f(x′, y) dx′ (16.7.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the value yn+1 at xn+1

depends only on yn. In a multistep method, we approximate f(x, y) by a polynomial
passing through several previous points xn, xn−1, . . . and possibly also through
xn+1. The result of evaluating the integral (16.7.1) at x = xn+1 is then of the form

yn+1 = yn + h(β0y
′
n+1 + β1y

′
n + β2y

′
n−1 + β3y

′
n−2 + · · ·) (16.7.2)

where y′
n denotes f(xn, yn), and so on. If β0 = 0, the method is explicit; otherwise

it is implicit. The order of the method depends on how many previous steps we
use to get each new value of y.

Consider how we might solve an implicit formula of the form (16.7.2) for y n+1.
Two methods suggest themselves: functional iteration and Newton’s method. In
functional iteration, we take some initial guess for yn+1, insert it into the right-hand
side of (16.7.2) to get an updated value of yn+1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess for
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16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistep and multivalue describe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptional case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see no reason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be a big surprise in store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variablex, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
x and on the dependent variablesy. Thus to advance the solution ofy ′ = f(x, y)
from xn to x, we have

y(x) = yn +
∫ x

xn

f(x′, y) dx′ (16.7.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the valueyn+1 at xn+1

depends only onyn. In a multistep method, we approximatef(x, y) by a polynomial
passing throughseveral previous pointsxn, xn−1, . . . and possibly also through
xn+1. The result of evaluating the integral (16.7.1) atx = xn+1 is then of the form

yn+1 = yn + h(β0y
′
n+1 + β1y

′
n + β2y

′
n−1 + β3y

′
n−2 + · · ·) (16.7.2)

wherey′
n denotesf(xn, yn), and so on. Ifβ0 = 0, the method is explicit; otherwise

it is implicit. The order of the method depends on how many previous steps we
use to get each new value ofy.

Consider how we might solve an implicit formula of the form (16.7.2) fory n+1.
Two methods suggest themselves:functional iteration and Newton’s method. In
functional iteration, we take some initial guess foryn+1, insert it into the right-hand
side of (16.7.2) to get an updated value ofyn+1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess for
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yn+1? Easy! Just use someexplicit formula of the same form as (16.7.2). This is
called thepredictor step. In the predictor step we are essentiallyextrapolating the
polynomial fit to the derivative from the previous points to the new pointx n+1 and
then doing the integral (16.7.1) in a Simpson-like manner fromx n to xn+1. The
subsequent Simpson-like integration, using the prediction step’s value ofy n+1 to
interpolate the derivative, is called thecorrector step. The difference between the
predicted and corrected function values supplies information on the local truncation
error that can be used to control accuracy and to adjust stepsize.

If one corrector step is good, aren’t many better? Why not use each corrector
as an improved predictor and iterate to convergence on each step? Answer: Even if
you had aperfect predictor, the step would still be accurate only to the finite order
of the corrector. This incurable error term is on the same order as that which your
iteration is supposed to cure, so you are at best changing only the coefficient in front
of the error term by a fractional amount. So dubious an improvement is certainly not
worth the effort. Your extra effort would be better spent in taking a smaller stepsize.

As described so far, you might think it desirable or necessary to predict several
intervals ahead at each step, then to use all these intervals, with various weights, in
a Simpson-like corrector step. That is not a good idea. Extrapolation is the least
stable part of the procedure, and it is desirable to minimize its effect. Therefore, the
integration steps of a predictor-corrector method are overlapping, each one involving
several stepsize intervalsh, but extending just one such interval farther than the
previous ones. Only that one extended interval is extrapolated by each predictor step.

The most popular predictor-corrector methods are probably the Adams-
Bashforth-Moulton schemes, which have good stability properties. The Adams-
Bashforth part is the predictor. For example, the third-order case is

predictor: yn+1 = yn +
h

12
(23y′

n − 16y′
n−1 + 5y′

n−2) + O(h4) (16.7.3)

Here information at the current pointxn, together with the two previous pointsxn−1

andxn−2 (assumed equally spaced), is used to predict the valueyn+1 at the next
point,xn+1. The Adams-Moulton part is the corrector. The third-order case is

corrector: yn+1 = yn +
h

12
(5y′

n+1 + 8y′
n − y′

n−1) + O(h4) (16.7.4)

Without the trial value ofyn+1 from the predictor step to insert on the right-hand
side, the corrector would be a nasty implicit equation foryn+1.

There are actually three separate processes occurring in a predictor-corrector
method: the predictor step, which we call P, the evaluation of the derivativey ′

n+1

from the latest value ofy, which we call E, and the corrector step, which we call
C. In this notation, iteratingm times with the corrector (a practice we inveighed
against earlier) would be written P(EC)m. One also has the choice of finishing with
a C or an E step. The lore is that a final E is superior, so the strategy usually
recommended is PECE.

Notice that a PC method with a fixed number of iterations (say, one) is an
explicit method! When we fix the number of iterations in advance, then the final
value ofyn+1 can be written as some complicated function of known quantities. Thus
fixed iteration PC methods lose the strong stability properties of implicit methods
and should only be used for nonstiff problems.
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For stiff problems wemust use an implicit method if we want to avoid having
tiny stepsizes. (Not all implicit methods are good for stiff problems, but fortunately
some good ones such as the Gear formulas are known.) We then appear to have two
choices for solving the implicit equations: functional iteration to convergence, or
Newton iteration. However, it turns out that for stiff problems functional iteration will
not even converge unless we use tiny stepsizes, no matter how close our prediction
is! Thus Newton iteration is usually an essential part of a multistep stiff solver. For
convergence, Newton’s method doesn’t particularly care what the stepsize is, as long
as the prediction is accurate enough.

Multistep methods, as we have described them so far, suffer from two serious
difficulties when one tries to implement them:

• Since the formulas require results from equally spaced steps, adjusting
the stepsize is difficult.

• Starting and stopping present problems. For starting, we need the initial
values plus several previous steps to prime the pump. Stopping is a
problem because equal steps are unlikely to land directly on the desired
termination point.

Older implementations of PC methods have various cumbersome ways of
dealing with these problems. For example, they might use Runge-Kutta to start
and stop. Changing the stepsize requires considerable bookkeeping to do some
kind of interpolation procedure. Fortunately both these drawbacks disappear with
the multivalue approach.

For multivalue methods the basic data available to the integrator are the first
few terms of the Taylor series expansion of the solution at the current pointx n. The
aim is to advance the solution and obtain the expansion coefficients at the next point
xn+1. This is in contrast to multistep methods, where the data are the values of
the solution atxn, xn−1, . . . . We’ll illustrate the idea by considering a four-value
method, for which the basic data are

yn ≡




yn

hy′
n

(h2/2)y′′
n

(h3/6)y′′′
n


 (16.7.5)

It is also conventional to scale the derivatives with the powers ofh = xn+1 − xn as
shown. Note that here we use the vector notationy to denote the solution and its
first few derivatives at a point, not the fact that we are solving a system of equations
with many componentsy.

In terms of the data in (16.7.5), we can approximate the value of the solution
y at some pointx:

y(x) = yn + (x − xn)y′
n +

(x − xn)2

2
y′′

n +
(x − xn)3

6
y′′′

n (16.7.6)

Setx = xn+1 in equation (16.7.6) to get an approximation toyn+1. Differentiate
equation (16.7.6) and setx = xn+1 to get an approximation toy ′

n+1, and similarly for
y′′

n+1 andy′′′
n+1. Call the resulting approximatioñyn+1, where the tilde is a reminder
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that all we have done so far is a polynomial extrapolation of the solution and its
derivatives; we have not yet used the differential equation. You can easily verify that

ỹn+1 = B · yn (16.7.7)

where the matrixB is

B =




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 (16.7.8)

We now write the actual approximation toyn+1 that we will use by adding a
correction to ỹn+1:

yn+1 = ỹn+1 + αr (16.7.9)

Herer will be a fixed vector of numbers, in the same way thatB is a fixed matrix.
We fix α by requiring that the differential equation

y′
n+1 = f(xn+1, yn+1) (16.7.10)

be satisfied. The second of the equations in (16.7.9) is

hy′
n+1 = hỹ ′

n+1 + αr2 (16.7.11)

and this will be consistent with (16.7.10) provided

r2 = 1, α = hf(xn+1, yn+1) − hỹ ′
n+1 (16.7.12)

The values ofr1, r3, andr4 are free for the inventor of a given four-value method to
choose. Different choices give different orders of method (i.e., through what order
in h the final expression 16.7.9 actually approximates the solution), and different
stability properties.

An interesting result, not obvious from our presentation, is that multivalue and
multistep methods are entirely equivalent. In other words, the valuey n+1 given by
a multivalue method with givenB andr is exactly the same value given by some
multistep method with givenβ’s in equation (16.7.2). For example, it turns out
that the Adams-Bashforth formula (16.7.3) corresponds to a four-value method with
r1 = 0, r3 = 3/4, andr4 = 1/6. The method is explicit becauser1 = 0. The
Adams-Moulton method (16.7.4) corresponds to the implicit four-value method with
r1 = 5/12, r3 = 3/4, andr4 = 1/6. Implicit multivalue methods are solved the
same way as implicit multistep methods: either by a predictor-corrector approach
using an explicit method for the predictor, or by Newton iteration for stiff systems.

Why go to all the trouble of introducing a whole new method that turns out
to be equivalent to a method you already knew? The reason is that multivalue
methods allow an easy solution to the two difficulties we mentioned above in actually
implementing multistep methods.

Consider first the question of stepsize adjustment. To change stepsize fromh
to h′ at some pointxn, simply multiply the components ofyn in (16.7.5) by the
appropriate powers ofh′/h, and you are ready to continue toxn + h′.
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Multivalue methods also allow a relatively easy change in theorder of the
method: Simply changer. The usual strategy for this is first to determine the new
stepsize with the current order from the error estimate. Then check what stepsize
would be predicted using an order one greater and one smaller than the current
order. Choose the order that allows you to take the biggest next step. Being able to
change order also allows an easy solution to the starting problem: Simply start with
a first-order method and let the order automatically increase to the appropriate level.

For low accuracy requirements, a Runge-Kutta routine likerkqs is almost
always the most efficient choice. For high accuracy,bsstep is both robust and
efficient. For very smooth functions, a variable-order PC method can invoke very
high orders. If the right-hand side of the equation is relatively complicated, so that
the expense of evaluating it outweighs the bookkeeping expense, then the best PC
packages can outperform Bulirsch-Stoer on such problems. As you can imagine,
however, such a variable-stepsize, variable-order method is not trivial to program. If
you suspect that your problem is suitable for this treatment, we recommend use of a
canned PC package. For further details consult Gear[1] or Shampine and Gordon[2].

Our prediction, nevertheless, is that, as extrapolation methods like Bulirsch-
Stoer continue to gain sophistication, they will eventually beat out PC methods in
all applications. We are willing, however, to be corrected.

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Shampine, L.F., and Gordon, M.K. 1975, Computer Solution of Ordinary Differential Equations.
The Initial Value Problem. (San Francisco: W.H Freeman). [2]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 8.

Hamming, R.W. 1962, Numerical Methods for Engineers and Scientists; reprinted 1986 (New
York: Dover), Chapters 14–15.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.
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Chapter 17. Two Point Boundary
Value Problems

17.0 Introduction

When ordinary differential equations are required to satisfy boundary conditions
at more than one value of the independent variable, the resulting problem is called a
two point boundary value problem. As the terminology indicates, the most common
case by far is where boundary conditions are supposed to be satisfied at two points —
usually the starting and ending values of the integration. However, the phrase “two
point boundary value problem” is also used loosely to include more complicated
cases, e.g., where some conditions are specified at endpoints, others at interior
(usually singular) points.

The crucial distinction between initial value problems (Chapter 16) and two
point boundary value problems (this chapter) is that in the former case we are able
to start an acceptable solution at its beginning (initial values) and just march it along
by numerical integration to its end (final values); while in the present case, the
boundary conditions at the starting point do not determine a unique solution to start
with — and a “random” choice among the solutions that satisfy these (incomplete)
starting boundary conditions is almost certain not to satisfy the boundary conditions
at the other specified point(s).

It should not surprise you that iteration is in general required to meld these
spatially scattered boundary conditions into a single global solution of the differential
equations. For this reason, two point boundary value problems require considerably
more effort to solve than do initial value problems. You have to integrate your dif-
ferential equations over the interval of interest, or perform an analogous “relaxation”
procedure (see below), at least several, and sometimes very many, times. Only in
the special case of linear differential equations can you say in advance just how
many such iterations will be required.

The “standard” two point boundary value problem has the following form: We
desire the solution to a set of N coupled first-order ordinary differential equations,
satisfying n1 boundary conditions at the starting point x1, and a remaining set of
n2 = N − n1 boundary conditions at the final point x2. (Recall that all differential
equations of order higher than first can be written as coupled sets of first-order
equations, cf. §16.0.)

The differential equations are

dyi(x)
dx

= gi(x, y1, y2, . . . , yN) i = 1, 2, . . . , N (17.0.1)

745
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required
boundary
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desired
boundary
value

1

3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN ) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In the shooting method (§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions for that boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate the ODEs by initial value methods, arriving at the other boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in §9.6 and §9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a common midpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methods use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of
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required
boundary
value

required
boundary
value

initial guess
1st iteration

2nd iteration

true solution

Figure 17.0.2. Relaxation method (schematic). An initial solution is guessed that approximately satisfies
the differential equation and boundary conditions. An iterative process adjusts the function to bring it
into close agreement with the true solution.

the integration. A trial solution consists of values for the dependent variables at each
mesh point, not satisfying the desired finite-difference equations, nor necessarily even
satisfying the required boundary conditions. The iteration, now called relaxation,
consists of adjusting all the values on the mesh so as to bring them into successively
closer agreement with the finite-difference equations and, simultaneously, with the
boundary conditions (see Figure 17.0.2). For example, if the problem involves three
coupled equations and a mesh of one hundred points, we must guess and improve
three hundred variables representing the solution.

With all this adjustment, you may be surprised that relaxation is ever an efficient
method, but (for the right problems) it really is! Relaxation works better than
shooting when the boundary conditions are especially delicate or subtle, or where
they involve complicated algebraic relations that cannot easily be solved in closed
form. Relaxation works best when the solution is smooth and not highly oscillatory.
Such oscillations would require many grid points for accurate representation. The
number and position of required points may not be known a priori. Shooting methods
are usually preferred in such cases, because their variable stepsize integrations adjust
naturally to a solution’s peculiarities.

Relaxation methods are often preferred when the ODEs have extraneous
solutions which, while not appearing in the final solution satisfying all boundary
conditions, may wreak havoc on the initial value integrations required by shooting.
The typical case is that of trying to maintain a dying exponential in the presence
of growing exponentials.

Good initial guesses are the secret of efficient relaxation methods. Often one
has to solve a problem many times, each time with a slightly different value of some
parameter. In that case, the previous solution is usually a good initial guess when
the parameter is changed, and relaxation will work well.

Until you have enough experience to make your own judgment between the two
methods, you might wish to follow the advice of your authors, who are notorious
computer gunslingers: We always shoot first, and only then relax.
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Problems Reducible to the Standard Boundary Problem

There are two important problems that can be reduced to the standard boundary
value problem described by equations (17.0.1) – (17.0.3). The first is the eigenvalue
problem for differential equations. Here the right-hand side of the system of
differential equations depends on a parameter λ,

dyi(x)
dx

= gi(x, y1, . . . , yN , λ) (17.0.4)

and one has to satisfy N + 1 boundary conditions instead of just N . The problem
is overdetermined and in general there is no solution for arbitrary values of λ. For
certain special values of λ, the eigenvalues, equation (17.0.4) does have a solution.

We reduce this problem to the standard case by introducing a new dependent
variable

yN+1 ≡ λ (17.0.5)

and another differential equation

dyN+1

dx
= 0 (17.0.6)

An example of this trick is given in §17.4.
The other case that can be put in the standard form is a free boundary problem.

Here only one boundary abscissa x1 is specified, while the other boundary x2 is to
be determined so that the system (17.0.1) has a solution satisfying a total of N + 1
boundary conditions. Here we again add an extra constant dependent variable:

yN+1 ≡ x2 − x1 (17.0.7)

dyN+1

dx
= 0 (17.0.8)

We also define a new independent variable t by setting

x − x1 ≡ t yN+1, 0 ≤ t ≤ 1 (17.0.9)

The system of N + 1 differential equations for dy i/dt is now in the standard form,
with t varying between the known limits 0 and 1.

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3–7.4.
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17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero n 2 functions
of n2 variables. The functions are obtained by integrating N differential equations
from x1 to x2. Let us see how this works:

At the starting point x1 there are N starting values yi to be specified, but
subject to n1 conditions. Therefore there are n2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vector V that lives in a vector space of dimension n2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting values y, satisfying the boundary conditions
at x1, from an arbitrary vector value of V in which there are no restrictions on the n 2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be called load.
Notice that the components of V might be exactly the values of certain “free”

components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the y i, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of y i’s. It makes no difference
which way you go, as long as your vector space of V’s generates (through 17.1.1)
all allowed starting vectors y.

Given a particular V, a particular y(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 16’s odeint). Now, at x2, let us define a discrepancy vector F, also of
dimension n2, whose components measure how far we are from satisfying the n 2

boundary conditions at x2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written subroutine score which uses (17.0.3) to convert an N -vector of ending
values y(x2) into an n2-vector of discrepancies F.
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17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zeron 2 functions
of n2 variables. The functions are obtained by integratingN differential equations
from x1 to x2. Let us see how this works:

At the starting pointx1 there areN starting valuesyi to be specified, but
subject ton1 conditions. Therefore there aren2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vectorV that lives in a vector space of dimensionn2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set ofN starting valuesy, satisfying the boundary conditions
atx1, from an arbitrary vector value ofV in which there are no restrictions on then 2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be calledload.
Notice that the components ofV might be exactly the values of certain “free”

components ofy, with the other components ofy determined by the boundary
conditions. Alternatively, the components ofV might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among they i, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set ofy i’s. It makes no difference
which way you go, as long as your vector space ofV’s generates (through 17.1.1)
all allowed starting vectorsy.

Given a particularV, a particulary(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs tox2 as an initial value problem (e.g., using
Chapter 16’sodeint). Now, atx2, let us define adiscrepancy vector F, also of
dimensionn2, whose components measure how far we are from satisfying then 2

boundary conditions atx2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case ofV, however, you can use any other convenient parametrization,
as long as your space ofF’s spans the space of possible discrepancies from the
desired boundary conditions, with all components ofF equal to zero if and only if
the boundary conditions atx2 are satisfied. Below, you will be asked to supply a
user-written subroutinescore which uses (17.0.3) to convert anN -vector of ending
valuesy(x2) into ann2-vector of discrepanciesF.
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Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value ofV that zeros the vector value ofF. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrixJ has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires aseparate integration of theN ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj , . . .) − Fi(V1, . . . , Vj , . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routinefdjac that comes withnewt. The
only input tonewt that you have to provide is the routinefuncv that calculatesF
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)
INTEGER n2,nvar,kmax,kount,KMAXX,NMAX
REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.
COMMON /caller/ x1,x2,nvar
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions f are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions f are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok
REAL h1,hmin,y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load(x1,v,y)
call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(x2,y,f)
return
END
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For some problems the initial stepsize∆V might depend sensitively upon the
initial conditions. It is straightforward to alterload to include a suggested stepsize
h1 as another returned argument and feed it tofdjac via a common block.

A complete cycle of the shooting method thus requiresn 2 + 1 integrations of
theN coupled ODEs: one integration to evaluate the current degree of mismatch,
andn2 for the partial derivatives. Each new cycle requires a new round ofn 2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with initial value problems.

If the differential equations arelinear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here,shoot uses the quality controlled Runge-Kutta method of§16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supplyshoot with: (i) a subroutineload(x1,v,y) which
returns then-vectory(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables ofv(1:n2) at the initial pointx1; (ii) a
subroutinescore(x2,y,f) which returns the discrepancy vectorf(1:n2) of the
ending boundary conditions, given the vectory(1:n) at the endpointx2; (iii) a
starting vectorv(1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to useshoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in§17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get fromx 1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directionaway from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrateinto
a singular point, if only because one has not usually expended the same analytic
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For some problems the initial stepsize∆V might depend sensitively upon the
initial conditions. It is straightforward to alterload to include a suggested stepsize
h1 as another returned argument and feed it tofdjac via a common block.

A complete cycle of the shooting method thus requiresn 2 + 1 integrations of
theN coupled ODEs: one integration to evaluate the current degree of mismatch,
andn2 for the partial derivatives. Each new cycle requires a new round ofn 2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with initial value problems.

If the differential equations arelinear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here,shoot uses the quality controlled Runge-Kutta method of§16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supplyshoot with: (i) a subroutineload(x1,v,y) which
returns then-vectory(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables ofv(1:n2) at the initial pointx1; (ii) a
subroutinescore(x2,y,f) which returns the discrepancy vectorf(1:n2) of the
ending boundary conditions, given the vectory(1:n) at the endpointx2; (iii) a
starting vectorv(1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to useshoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in§17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get fromx 1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directionaway from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrateinto
a singular point, if only because one has not usually expended the same analytic
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effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties isshooting to a fitting point.
Instead of integrating fromx1 to x2, we integrate first fromx1 to some pointxf that
is between x1 andx2; and second fromx2 (in the opposite direction) toxf .

If (as before) the number of boundary conditions imposed atx 1 is n1, and the
number imposed atx2 is n2, then there aren2 freely specifiable starting values at
x1 andn1 freely specifiable starting values atx2. (If you are confused by this, go
back to§17.1.) We can therefore define ann2-vectorV(1) of starting parameters
at x1, and a prescriptionload1(x1,v1,y) for mappingV(1) into a y that satisfies
the boundary conditions atx1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2) i = 1, . . . , N (17.2.1)

Likewise we can define ann1-vector V(2) of starting parameters atx2, and a
prescriptionload2(x2,v2,y) for mappingV(2) into ay that satisfies the boundary
conditions atx2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1) i = 1, . . . , N (17.2.2)

We thus have a total ofN freely adjustable parameters in the combination of
V(1) andV(2). TheN conditions that must be satisfied are that there be agreement
in N components ofy at xf between the values obtained integrating from one side
and from the other,

yi(xf ; V(1)) = yi(xf ; V(2)) i = 1, . . . , N (17.2.3)

In some problems, theN matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsF i, i = 1 . . .N , each
possibly depending on theN componentsy i. In those cases, (17.2.3) is replaced by

Fi[y(xf ; V(1))] = Fi[y(xf ; V(2))] i = 1, . . . , N (17.2.4)

In the programbelow, the user-suppliedsubroutinescore(xf,y,f) is supposed
to map an inputN -vectory into an outputN -vectorF. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in§17.1. Comparing closely with the routineshoot of the previous section, you
should have no difficulty in understanding the following routineshootf. The main
differences in use are that you have to supply bothload1 andload2. Also, in the
calling program you must supply initial guesses forv1(1:n2) andv2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in§17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)
INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX
REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.
COMMON /caller/ x1,x2,xf,nvar,nn2
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-
pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar
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ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)) . The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximatefinite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two pointsk, k − 1:

yk − yk−1 − (xk − xk−1) g
[
1
2
(xk + xk−1),

1
2
(yk + yk−1)

]
= 0 (17.3.2)
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ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)) . The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
[
1
2
(xk + xk−1),

1
2
(yk + yk−1)

]
= 0 (17.3.2)
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The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involves N coupled first-order ODEs
represented by FDEs on a mesh of M points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N × M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we had
N coupled first-order equations that satisfy n1 boundary conditions at x1 and n2 = N − n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ..., M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set of N first-order ODEs by algebraic relations of the form

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . , M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k−1. There
are M − 1 points, k = 2, 3, . . . , M , at which difference equations of the form (17.3.3) apply.
Thus the FDEs provide a total of (M −1)N equations for the MN unknowns. The remaining
N equations come from the boundary conditions.

At the first boundary we have

0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary

0 = EM+1 ≡ C(xM , yM ) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes ∆yk. At an interior point, k = 2, 3, . . . , M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+

N∑
n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N∑
n=1

∂Ek

∂yn,k
∆yn,k

(17.3.6)

For a solution we want the updated value E(y +∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N∑
n=1

Sj,n∆yn,k−1 +

2N∑
n=N+1

Sj,n∆yn−N,k = −Ej,k, j = 1, 2, . . . , N (17.3.7)
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where

Sj,n =
∂Ej,k

∂yn,k−1
, Sj,n+N =

∂Ej,k

∂yn,k
, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block of N equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N∑
n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1

∂yn,1
, n = 1, 2, . . . , N (17.3.10)

At the second boundary,

N∑
n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reduced MN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first
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Figure 17.3.1. Matrix structure of a set of linear finite-difference equations (FDEs) with boundary
conditions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a
component of the unknown solution vector, and B is a component of the known right-hand side. Empty
spaces represent zeros. The matrix equation is to be solved by a special form of Gaussian elimination.
(See text for details.)
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Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.
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block so that its left-hand n1 × n1 square section becomes unity along the diagonal, and zero
in off-diagonal elements. Figure 17.3.3 shows the original and final form of the first block
of the matrix. In the figure we designate matrix elements that are subject to diagonalization
by “D”, and elements that will be altered by “A”; in the final block, elements that are stored
are labeled by “S”. We get from start to finish by selecting in turn n1 “pivot” elements from
among the first n1 columns, normalizing the pivot row so that the value of the “pivot” element
is unity, and adding appropriate multiples of this row to the remaining rows so that they
contain zeros in the pivot column. In its final form, the reduced block expresses values for the
corrections to the first n1 variables at mesh point 1 in terms of values for the remaining n2

unknown corrections at point 1, i.e., we now know what the first n1 elements are in terms of
the remaining n2 elements. We store only the final set of n2 nonzero columns from the initial
block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in the s
matrix of derivatives be such that pivot elements can be found among the first n1 rows of
the matrix. This means that the n1 boundary conditions at the first point must contain some
dependence on the first j=1,2,...,n1 dependent variables, y(j,1). If not, then the original
square n1 × n1 subsection of the first block will appear to be singular, and the method will
fail. Alternatively, we would have to allow the search for pivot elements to involve all N
columns of the block, and this would require column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of the s
matrix, so that this can be done easily. End of important detail.

Next consider the block of N equations representing the FDEs that describe the relation
between the 2N corrections at points 2 and 1. The elements of that block, together with results
from the previous step, are illustrated in Figure 17.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the first n1 columns of the block (labeled
by “Z”), and, to do so, we will need to alter only the columns from n1 + 1 to N and the
vector element on the right-hand side. Of the remaining columns we can diagonalize a square
subsection of N × N elements, labeled by “D” in the figure. In the process we alter the final
set of n2 + 1 columns, denoted “A” in the figure. The second half of the figure shows the
block when we finish operating on it, with the stored (n2 + 1) × N elements labeled by “S.”

If we operate on the next set of equations corresponding to the FDEs coupling corrections
at points 3 and 2, we see that the state of available results and new equations exactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through block M . Finally on block M + 1 we encounter the remaining
boundary conditions.

Figure 17.3.5 shows the final block of n2 FDEs relating the N corrections for variables
at mesh point M , together with the result of reducing the previous block. Again, we can first
use the prior results to zero the first n1 columns of the block. Now, when we diagonalize
the remaining square section, we strike gold: We get values for the final n2 corrections
at mesh point M .

With the final block reduced, the matrix has the desired form shown previously in
Figure 17.3.2, and the matrix is ripe for backsubstitution. Starting with the bottom row and
working up towards the top, at each stage we can simply determine one unknown correction
in terms of known quantities.

The subroutine solvde organizes the steps described above. The principal procedures
used in the algorithm are performed by subroutines called internally by solvde. The
subroutine red eliminates leading columns of the s matrix using results from prior blocks.
pinvs diagonalizes the square subsection of s and stores unreduced coefficients. bksub carries
out the backsubstitution step. The user of solvde must understand the calling arguments,
as described below, and supply a subroutine difeq, called by solvde, that evaluates the
s matrix for each block.

Most of the arguments in the call to solvde have already been described, but some
require discussion. Array y(j,k) contains the initial guess for the solution, with j labeling
the dependent variables at mesh points k. The problem involves ne FDEs spanning points
k=1,..., m. nb boundary conditions apply at the first point k=1. The array indexv(j)
establishes the correspondence between columns of the s matrix, equations (17.3.8), (17.3.10),
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Figure 17.3.3. Reduction process for the first (upper left) block of the matrix in Figure 17.3.1. (a)
Original form of the block, (b) final form. (See text for explanation.)
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Figure 17.3.4. Reduction process for intermediate blocks of the matrix in Figure 17.3.1. (a) Original
form, (b) final form. (See text for explanation.)

(a) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
Z
Z

0
0
0
1
0
Z
Z

0
0
0
0
1
Z
Z

S
S
S
S
S
D
D

S
S
S
S
S
D
D

V
V
V
V
V
V
V

S
S
S
S
S
A
A

(b) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

S
S
S
S
S
1
0

S
S
S
S
S
0
1

V
V
V
V
V
V
V

S
S
S
S
S
S
S

Figure 17.3.5. Reduction process for the last (lower right) block of the matrix in Figure 17.3.1. (a)
Original form, (b) final form. (See text for explanation.)
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and (17.3.12), and the dependent variables. As described above it is essential that the nb
boundary conditions at k=1 involve the dependent variables referenced by the first nb columns
of the s matrix. Thus, columns j of the s matrix can be ordered by the user in difeq to refer
to derivatives with respect to the dependent variable indexv(j).

The subroutine only attempts itmax correction cycles before returning, even if the
solution has not converged. The parameters conv, slowc, scalv relate to convergence.
Each inversion of the matrix produces corrections for ne variables at m mesh points. We want
these to become vanishingly small as the iterations proceed, but we must define a measure for
the size of corrections. This error “norm” is very problem specific, so the user might wish
to rewrite this section of the code as appropriate. In the program below we compute a value
for the average correction err by summing the absolute value of all corrections, weighted by
a scale factor appropriate to each type of variable:

err =
1

m× ne

m∑

k=1

ne∑

j=1

|∆Y (j,k)|
scalv(j)

(17.3.13)

When err≤conv, the method has converged. Note that the user gets to supply an array scalv
which measures the typical size of each variable.

Obviously, if err is large, we are far from a solution, and perhaps it is a bad idea
to believe that the corrections generated from a first-order Taylor series are accurate. The
number slowc modulates application of corrections. After each iteration we apply only a
fraction of the corrections found by matrix inversion:

Y (j,k) → Y (j,k) +
slowc

max(slowc,err)
∆Y (j,k) (17.3.14)

Thus, when err>slowc only a fraction of the corrections are used, but when err≤slowc
the entire correction gets applied.

The call statement also supplies solvde with the array y(1:nyj,1:nyk) containing
the initial trial solution, and workspace arrays c(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj).
The array c is the blockbuster: It stores the unreduced elements of the matrix built up for the
backsubstitution step. If there are m mesh points, then there will be nck=m+1 blocks, each
requiring nci=ne rows and ncj=ne-nb+1 columns. Although large, this is small compared
with (ne×m)2 elements required for the whole matrix if we did not break it into blocks.

We now describe the workings of the user-supplied subroutine difeq. The parameters
of the subroutine are given by

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)

The only information returned from difeq to solvde is the matrix of derivatives
s(i,j); all other arguments are input to difeq and should not be altered. k indicates the
current mesh point, or block number. k1,k2 label the first and last point in the mesh. If k=k1
or k>k2, the block involves the boundary conditions at the first or final points; otherwise the
block acts on FDEs coupling variables at points k-1, k.

The convention on storing information into the array s(i,j) follows that used in
equations (17.3.8), (17.3.10), and (17.3.12): Rows i label equations, columns j refer to
derivatives with respect to dependent variables in the solution. Recall that each equation will
depend on the ne dependent variables at either one or two points. Thus, j runs from 1 to
either ne or 2*ne. The column ordering for dependent variables at each point must agree
with the list supplied in indexv(j). Thus, for a block not at a boundary, the first column
multiplies ∆Y (l=indexv(1),k-1), and the column ne+1 multiplies ∆Y (l=indexv(1),k).
is1,isf give the numbers of the starting and final rows that need to be filled in the s matrix
for this block. jsf labels the column in which the difference equations Ej,k of equations
(17.3.3)–(17.3.5) are stored. Thus, −s(i,jsf) is the vector on the right-hand side of the
matrix. The reason for the minus sign is that difeq supplies the actual difference equation,
Ej,k, not its negative. Note that solvde supplies a value for jsf such that the difference
equation is put in the column just after all derivatives in the s matrix. Thus, difeq expects to
find values entered into s(i,j) for rows is1 ≤ i ≤ isf and 1 ≤ j ≤ jsf.
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Finally, s(1:nsi,1:nsj) and y(1:nyj,1:nyk) supply difeq with storage for s and
the solution variables y for this iteration. An example of how to use this routine is given
in the next section.

Many ideas in the following code are due to Eggleton [1].

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,ne,nb,m,
* y,nyj,nyk,c,nci,ncj,nck,s,nsi,nsj)

INTEGER itmax,m,nb,nci,ncj,nck,ne,nsi,nsj,
* nyj,nyk,indexv(nyj),NMAX

REAL conv,slowc,c(nci,ncj,nck),s(nsi,nsj),
* scalv(nyj),y(nyj,nyk)

PARAMETER (NMAX=10) Largest expected value of ne.
C USES bksub,difeq,pinvs,red

Driver routine for solution of two point boundary value problems by relaxation. itmax is the
maximum number of iterations. conv is the convergence criterion (see text). slowc con-
trols the fraction of corrections actually used after each iteration. scalv(1:nyj) contains
typical sizes for each dependent variable, used to weight errors. indexv(1:nyj) lists the
column ordering of variables used to construct the matrix s of derivatives. (The nb boundary
conditions at the first mesh point must contain some dependence on the first nb variables
listed in indexv.) The problem involves ne equations for ne adjustable dependent variables
at each point. At the first mesh point there are nb boundary conditions. There are a total
of m mesh points. y(1:nyj,1:nyk) is the two-dimensional array that contains the initial
guess for all the dependent variables at each mesh point. On each iteration, it is updated by
the calculated correction. The arrays c(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj) sup-
ply dummy storage used by the relaxation code; the minimum dimensions must satisfy:
nci=ne, ncj=ne-nb+1, nck=m+1, nsi=ne, nsj=2*ne+1.

INTEGER ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,
* j9,jc1,jcf,jv,k,k1,k2,km,kp,nvars,kmax(NMAX)

REAL err,errj,fac,vmax,vz,ermax(NMAX)
k1=1 Set up row and column markers.
k2=m
nvars=ne*m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+j1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcf=ic3
do 16 it=1,itmax Primary iteration loop.

k=k1 Boundary conditions at first point.
call difeq(k,k1,k2,j9,ic3,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call pinvs(ic3,ic4,j5,j9,jc1,k1,c,nci,ncj,nck,s,nsi,nsj)
do 11 k=k1+1,k2 Finite difference equations at all point pairs.

kp=k-1
call difeq(k,k1,k2,j9,ic1,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic4,j3,j9,jc1,k,c,nci,ncj,nck,s,nsi,nsj)

enddo 11

k=k2+1 Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,nci,ncj,nck,s,nsi,nsj)
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call bksub(ne,nb,jcf,k1,k2,c,nci,ncj,nck) Backsubstitution.
err=0.
do 13 j=1,ne Convergence check, accumulate average error.

jv=indexv(j)
errj=0.
km=0
vmax=0.
do 12 k=k1,k2 Find point with largest error, for each dependent variable.

vz=abs(c(jv,1,k))
if(vz.gt.vmax) then

vmax=vz
km=k

endif
errj=errj+vz

enddo 12

err=err+errj/scalv(j) Note weighting for each dependent variable.
ermax(j)=c(jv,1,km)/scalv(j)
kmax(j)=km

enddo 13

err=err/nvars
fac=slowc/max(slowc,err) Reduce correction applied when error is large.
do 15 j=1,ne Apply corrections.

jv=indexv(j)
do 14 k=k1,k2

y(j,k)=y(j,k)-fac*c(jv,1,k)
enddo 14

enddo 15

write(*,100) it,err,fac Summary of corrections for this step. Point with largest
error for each variable can be monitored by writ-
ing out kmax and ermax.

if(err.lt.conv) return
enddo 16

pause ’itmax exceeded in solvde’ Convergence failed.
100 format(1x,i4,2f12.6)

return
END

SUBROUTINE bksub(ne,nb,jf,k1,k2,c,nci,ncj,nck)
INTEGER jf,k1,k2,nb,nci,ncj,nck,ne
REAL c(nci,ncj,nck)

Backsubstitution, used internally by solvde.
INTEGER i,im,j,k,kp,nbf
REAL xx
nbf=ne-nb
im=1
do 13 k=k2,k1,-1 Use recurrence relations to eliminate remaining dependences.

if (k.eq.k1) im=nbf+1 Special handling of first point.
kp=k+1
do 12 j=1,nbf

xx=c(j,jf,kp)
do 11 i=im,ne

c(i,jf,k)=c(i,jf,k)-c(i,j,k)*xx
enddo 11

enddo 12

enddo 13

do 16 k=k1,k2 Reorder corrections to be in column 1.
kp=k+1
do 14 i=1,nb

c(i,1,k)=c(i+nbf,jf,k)
enddo 14

do 15 i=1,nbf
c(i+nb,1,k)=c(i,jf,kp)

enddo 15

enddo 16

return
END
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SUBROUTINE pinvs(ie1,ie2,je1,jsf,jc1,k,c,nci,ncj,nck,s,nsi,nsj)
INTEGER ie1,ie2,jc1,je1,jsf,k,nci,ncj,nck,nsi,nsj,NMAX
REAL c(nci,ncj,nck),s(nsi,nsj)
PARAMETER (NMAX=10)

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in
c; used internally by solvde.

INTEGER i,icoff,id,ipiv,irow,j,jcoff,je2,jp,jpiv,js1,indxr(NMAX)
REAL big,dum,piv,pivinv,pscl(NMAX)
je2=je1+ie2-ie1
js1=je2+1
do 12 i=ie1,ie2 Implicit pivoting, as in §2.1.

big=0.
do 11 j=je1,je2

if(abs(s(i,j)).gt.big) big=abs(s(i,j))
enddo 11

if(big.eq.0.) pause ’singular matrix, row all 0 in pinvs’
pscl(i)=1./big
indxr(i)=0

enddo 12

do 18 id=ie1,ie2
piv=0.
do 14 i=ie1,ie2 Find pivot element.

if(indxr(i).eq.0) then
big=0.
do 13 j=je1,je2

if(abs(s(i,j)).gt.big) then
jp=j
big=abs(s(i,j))

endif
enddo 13

if(big*pscl(i).gt.piv) then
ipiv=i
jpiv=jp
piv=big*pscl(i)

endif
endif

enddo 14

if(s(ipiv,jpiv).eq.0.) pause ’singular matrix in pinvs’
indxr(ipiv)=jpiv In place reduction. Save column ordering.
pivinv=1./s(ipiv,jpiv)
do 15 j=je1,jsf Normalize pivot row.

s(ipiv,j)=s(ipiv,j)*pivinv
enddo 15

s(ipiv,jpiv)=1.
do 17 i=ie1,ie2 Reduce nonpivot elements in column.

if(indxr(i).ne.jpiv) then
if(s(i,jpiv).ne.0.) then

dum=s(i,jpiv)
do 16 j=je1,jsf

s(i,j)=s(i,j)-dum*s(ipiv,j)
enddo 16

s(i,jpiv)=0.
endif

endif
enddo 17

enddo 18

jcoff=jc1-js1 Sort and store unreduced coefficients.
icoff=ie1-je1
do 21 i=ie1,ie2

irow=indxr(i)+icoff
do 19 j=js1,jsf

c(irow,j+jcoff,k)=s(i,j)
enddo 19

enddo 21
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return
END

SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,
* c,nci,ncj,nck,s,nsi,nsj)

INTEGER ic1,iz1,iz2,jc1,jcf,jm1,jm2,jmf,jz1,jz2,kc,nci,ncj,
* nck,nsi,nsj

REAL c(nci,ncj,nck),s(nsi,nsj)
Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by
solvde.

INTEGER i,ic,j,l,loff
REAL vx
loff=jc1-jm1
ic=ic1
do 14 j=jz1,jz2 Loop over columns to be zeroed.

do 12 l=jm1,jm2 Loop over columns altered.
vx=c(ic,l+loff,kc)
do 11 i=iz1,iz2 Loop over rows.

s(i,l)=s(i,l)-s(i,j)*vx
enddo 11

enddo 12

vx=c(ic,jcf,kc)
do 13 i=iz1,iz2 Plus final element.

s(i,jmf)=s(i,jmf)-s(i,j)*vx
enddo 13

ic=ic+1
enddo 14

return
END

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables yj,k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y, g, B, C that
are used to construct the FDEs from the ODEs. In some problems g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which both y, g and the boundary conditions can be obtained
directly. A typical example occurs in physical problems where the equations require solution
of a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:
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17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval −1 ≤ x ≤ 1:

d

dx

[
(1 − x2)

dS

dx

]
+
(

λ − c2x2 − m2

1 − x2

)
S = 0 (17.4.1)

Here m is an integer, c is the “oblateness parameter,” and λ is the eigenvalue. Despite
the notation, c2 can be positive or negative. For c2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
at x = ±1 and is to be solved subject to the boundary conditions that the solution be
regular at x = ±1. Only for certain values of λ, the eigenvalues, will this be possible.

If we consider first the spherical case, where c = 0, we recognize the differential
equation for Legendre functions P m

n (x). In this case the eigenvalues are λmn =
n(n + 1), n = m, m + 1, . . . . The integer n labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval −1 < x < 1; when n = m + 1 we have
the next eigenvalue, and the eigenfunction has one node inside (−1, 1); and so on.

A similar situation holds for the general case c2 �= 0. We write the eigenvalues
of (17.4.1) as λmn(c) and the eigenfunctions as Smn(x; c). For fixed m, n =
m, m + 1, . . . labels the successive eigenvalues.

The computation of λmn(c) and Smn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references [1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
points x = ±1. Substituting a power series expansion of the form

S = (1 ± x)α
∞∑

k=0

ak(1 ± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution has α = m/2. (Without loss
of generality we can take m ≥ 0 since m → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) that y satisfies the equation

(1 − x2)
d2y

dx2
− 2(m + 1)x

dy

dx
+ (µ − c2x2)y = 0 (17.4.4)
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17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval −1 ≤ x ≤ 1:

d

dx

[
(1 − x2)

dS

dx

]
+
(

λ − c2x2 − m2

1 − x2

)
S = 0 (17.4.1)

Here m is an integer, c is the “oblateness parameter,” and λ is the eigenvalue. Despite
the notation, c2 can be positive or negative. For c2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
at x = ±1 and is to be solved subject to the boundary conditions that the solution be
regular at x = ±1. Only for certain values of λ, the eigenvalues, will this be possible.

If we consider first the spherical case, where c = 0, we recognize the differential
equation for Legendre functions P m

n (x). In this case the eigenvalues are λmn =
n(n + 1), n = m, m + 1, . . . . The integer n labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval −1 < x < 1; when n = m + 1 we have
the next eigenvalue, and the eigenfunction has one node inside (−1, 1); and so on.

A similar situation holds for the general case c2 �= 0. We write the eigenvalues
of (17.4.1) as λmn(c) and the eigenfunctions as Smn(x; c). For fixed m, n =
m, m + 1, . . . labels the successive eigenvalues.

The computation of λmn(c) and Smn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references [1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
points x = ±1. Substituting a power series expansion of the form

S = (1 ± x)α
∞∑

k=0

ak(1 ± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution has α = m/2. (Without loss
of generality we can take m ≥ 0 since m → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) that y satisfies the equation

(1 − x2)
d2y

dx2
− 2(m + 1)x

dy

dx
+ (µ − c2x2)y = 0 (17.4.4)
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where

µ ≡ λ − m(m + 1) (17.4.5)

Both equations (17.4.1) and (17.4.4) are invariant under the replacement
x → −x. Thus the functions S and y must also be invariant, except possibly for an
overall scale factor. (Since the equations are linear, a constant multiple of a solution
is also a solution.) Because the solutions will be normalized, the scale factor can
only be ±1. If n−m is odd, there are an odd number of zeros in the interval (−1, 1).
Thus we must choose the antisymmetric solution y(−x) = −y(x) which has a zero
at x = 0. Conversely, if n − m is even we must have the symmetric solution. Thus

ymn(−x) = (−1)n−mymn(x) (17.4.6)

and similarly for Smn.
The boundary conditions on (17.4.4) require that y be regular at x = ±1. In

other words, near the endpoints the solution takes the form

y = a0 + a1(1 − x2) + a2(1 − x2)2 + . . . (17.4.7)

Substituting this expansion in equation (17.4.4) and letting x → 1, we find that

a1 = − µ − c2

4(m + 1)
a0 (17.4.8)

Equivalently,

y′(1) =
µ − c2

2(m + 1)
y(1) (17.4.9)

A similar equation holds at x = −1 with a minus sign on the right-hand side.
The irregular solution has a different relation between function and derivative at
the endpoints.

Instead of integrating the equation from −1 to 1, we can exploit the symmetry
(17.4.6) to integrate from 0 to 1. The boundary condition at x = 0 is

y(0) = 0, n − m odd

y′(0) = 0, n − m even
(17.4.10)

A third boundary condition comes from the fact that any constant multiple
of a solution y is a solution. We can thus normalize the solution. We adopt the
normalization that the function Smn has the same limiting behavior as P m

n at x = 1:

lim
x→1

(1 − x2)−m/2Smn(x; c) = lim
x→1

(1 − x2)−m/2Pm
n (x) (17.4.11)

Various normalization conventions in the literature are tabulated by Flammer [1].
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Imposing three boundary conditions for the second-order equation (17.4.4)
turns it into an eigenvalue problem for λ or equivalently for µ. We write it in the
standard form by setting

y1 = y (17.4.12)
y2 = y′ (17.4.13)
y3 = µ (17.4.14)

Then

y′
1 = y2 (17.4.15)

y′
2 =

1
1 − x2

[
2x(m + 1)y2 − (y3 − c2x2)y1

]
(17.4.16)

y′
3 = 0 (17.4.17)

The boundary condition at x = 0 in this notation is

y1 = 0, n − m odd

y2 = 0, n − m even
(17.4.18)

At x = 1 we have two conditions:

y2 =
y3 − c2

2(m + 1)
y1 (17.4.19)

y1 = lim
x→1

(1 − x2)−m/2Pm
n (x) =

(−1)m(n + m)!
2mm!(n − m)!

≡ γ (17.4.20)

We are now ready to illustrate the use of the methods of previous sections
on this problem.

Relaxation

If we just want a few isolated values of λ or S, shooting is probably the quickest
method. However, if we want values for a large sequence of values of c, relaxation
is better. Relaxation rewards a good initial guess with rapid convergence, and the
previous solution should be a good initial guess if c is changed only slightly.

For simplicity, we choose a uniform grid on the interval 0 ≤ x ≤ 1. For a
total of M mesh points, we have

h =
1

M − 1
(17.4.21)

xk = (k − 1)h, k = 1, 2, . . . , M (17.4.22)

At interior points k = 2, 3, . . . , M , equation (17.4.15) gives

E1,k = y1,k − y1,k−1 − h

2
(y2,k + y2,k−1) (17.4.23)
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Equation (17.4.16) gives

E2,k = y2,k − y2,k−1 − βk

×
[
(xk + xk−1)(m + 1)(y2,k + y2,k−1)

2
− αk

(y1,k + y1,k−1)
2

] (17.4.24)

where

αk =
y3,k + y3,k−1

2
− c2(xk + xk−1)2

4
(17.4.25)

βk =
h

1 − 1
4 (xk + xk−1)2

(17.4.26)

Finally, equation (17.4.17) gives

E3,k = y3,k − y3,k−1 (17.4.27)

Now recall that the matrix of partial derivatives Si,j of equation (17.3.8) is
defined so that i labels the equation and j the variable. In our case, j runs from 1 to
3 for yj at k − 1 and from 4 to 6 for yj at k. Thus equation (17.4.23) gives

S1,1 = −1, S1,2 = −h

2
, S1,3 = 0

S1,4 = 1, S1,5 = −h

2
, S1,6 = 0

(17.4.28)

Similarly equation (17.4.24) yields

S2,1 = αkβk/2, S2,2 = −1 − βk(xk + xk−1)(m + 1)/2,

S2,3 = βk(y1,k + y1,k−1)/4 S2,4 = S2,1,

S2,5 = 2 + S2,2, S2,6 = S2,3

(17.4.29)
while from equation (17.4.27) we find

S3,1 = 0, S3,2 = 0, S3,3 = −1
S3,4 = 0, S3,5 = 0, S3,6 = 1

(17.4.30)

At x = 0 we have the boundary condition

E3,1 =
{

y1,1, n − m odd

y2,1, n − m even
(17.4.31)

Recall the convention adopted in the solvde routine that for one boundary condition
at k = 1 only S3,j can be nonzero. Also, j takes on the values 4 to 6 since the
boundary condition involves only yk, not yk−1. Accordingly, the only nonzero
values of S3,j at x = 0 are

S3,4 = 1, n − m odd

S3,5 = 1, n − m even
(17.4.32)
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At x = 1 we have

E1,M+1 = y2,M − y3,M − c2

2(m + 1)
y1,M (17.4.33)

E2,M+1 = y1,M − γ (17.4.34)

Thus

S1,4 = −y3,M − c2

2(m + 1)
, S1,5 = 1, S1,6 = − y1,M

2(m + 1)
(17.4.35)

S2,4 = 1, S2,5 = 0, S2,6 = 0 (17.4.36)

Here now is the sample program that implements the above algorithm. We need
a main program, sfroid, that calls the routine solvde, and we must supply the
subroutine difeq called by solvde. For simplicity we choose an equally spaced
mesh of m = 41 points, that is, h = .025. As we shall see, this gives good accuracy
for the eigenvalues up to moderate values of n − m.

Since the boundary condition at x = 0 does not involve y 1 if n − m is even,
we have to use the indexv feature of solvde. Recall that the value of indexv(j)
describes which column of s(i,j) the variable y(j) has been put in. If n − m
is even, we need to interchange the columns for y1 and y2 so that there is not a
zero pivot element in s(i,j).

The program prompts for values of m and n. It then computes an initial guess
for y based on the Legendre function P m

n . It next prompts for c2, solves for y,
prompts for c2, solves for y using the previous values as an initial guess, and so on.

PROGRAM sfroid
INTEGER NE,M,NB,NCI,NCJ,NCK,NSI,NSJ,NYJ,NYK
COMMON /sfrcom/ x,h,mm,n,c2,anorm Communicates with difeq.
PARAMETER (NE=3,M=41,NB=1,NCI=NE,NCJ=NE-NB+1,NCK=M+1,NSI=NE,

* NSJ=2*NE+1,NYJ=NE,NYK=M)
C USES plgndr,solvde

Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20)
is anorm.

INTEGER i,itmax,k,mm,n,indexv(NE)
REAL anorm,c2,conv,deriv,fac1,fac2,h,q1,slowc,

* c(NCI,NCJ,NCK),s(NSI,NSJ),scalv(NE),x(M),y(NE,M),plgndr
itmax=100
conv=5.e-6
slowc=1.
h=1./(M-1)
c2=0.
write(*,*)’ENTER M,N’
read(*,*)mm,n
if(mod(n+mm,2).eq.1)then No interchanges necessary.

indexv(1)=1
indexv(2)=2
indexv(3)=3

else Interchange y1 and y2.
indexv(1)=2
indexv(2)=1
indexv(3)=3

endif
anorm=1. Compute γ.
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if(mm.NE.0)then
q1=n
do 11 i=1,mm

anorm=-.5*anorm*(n+i)*(q1/i)
q1=q1-1.

enddo 11

endif
do 12 k=1,M-1 Initial guess.

x(k)=(k-1)*h
fac1=1.-x(k)**2
fac2=fac1**(-mm/2.)
y(1,k)=plgndr(n,mm,x(k))*fac2 P m

n from §6.8.
deriv=-((n-mm+1)*plgndr(n+1,mm,x(k))-(n+1)*

* x(k)*plgndr(n,mm,x(k)))/fac1 Derivative of P m
n from a recurrence re-

lation.y(2,k)=mm*x(k)*y(1,k)/fac1+deriv*fac2
y(3,k)=n*(n+1)-mm*(mm+1)

enddo 12

x(M)=1. Initial guess at x = 1 done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.*(mm+1.))
scalv(1)=abs(anorm)
scalv(2)=max(abs(anorm),y(2,M))
scalv(3)=max(1.,y(3,M))

1 continue
write (*,*) ’ENTER C**2 OR 999 TO END’
read (*,*) c2
if (c2.eq.999.) stop
call solvde(itmax,conv,slowc,scalv,indexv,NE,NB,M,y,NYJ,NYK,

* c,NCI,NCJ,NCK,s,NSI,NSJ)
write (*,*) ’ M = ’,mm,’ N = ’,n,

* ’ C**2 = ’,c2,’ LAMBDA = ’,y(3,1)+mm*(mm+1)
goto 1 for another value of c2.
END

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)
INTEGER is1,isf,jsf,k,k1,k2,ne,nsi,nsj,nyj,nyk,indexv(nyj),M
REAL s(nsi,nsj),y(nyj,nyk)
COMMON /sfrcom/ x,h,mm,n,c2,anorm
PARAMETER (M=41)

Returns matrix s(i,j) for solvde.
INTEGER mm,n
REAL anorm,c2,h,temp,temp2,x(M)
if(k.eq.k1) then Boundary condition at first point.

if(mod(n+mm,2).eq.1)then
s(3,3+indexv(1))=1. Equation (17.4.32).
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=0.
s(3,jsf)=y(1,1) Equation (17.4.31).

else
s(3,3+indexv(1))=0. Equation (17.4.32).
s(3,3+indexv(2))=1.
s(3,3+indexv(3))=0.
s(3,jsf)=y(2,1) Equation (17.4.31).

endif
else if(k.gt.k2) then Boundary conditions at last point.

s(1,3+indexv(1))=-(y(3,M)-c2)/(2.*(mm+1.)) Equation (17.4.35).
s(1,3+indexv(2))=1.
s(1,3+indexv(3))=-y(1,M)/(2.*(mm+1.))
s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.*(mm+1.)) Equation (17.4.33).
s(2,3+indexv(1))=1. Equation (17.4.36).
s(2,3+indexv(2))=0.
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s(2,3+indexv(3))=0.
s(2,jsf)=y(1,M)-anorm Equation (17.4.34).

else Interior point.
s(1,indexv(1))=-1. Equation (17.4.28).
s(1,indexv(2))=-.5*h
s(1,indexv(3))=0.
s(1,3+indexv(1))=1.
s(1,3+indexv(2))=-.5*h
s(1,3+indexv(3))=0.
temp=h/(1.-(x(k)+x(k-1))**2*.25)
temp2=.5*(y(3,k)+y(3,k-1))-c2*.25*(x(k)+x(k-1))**2
s(2,indexv(1))=temp*temp2*.5 Equation (17.4.29).
s(2,indexv(2))=-1.-.5*temp*(mm+1.)*(x(k)+x(k-1))
s(2,indexv(3))=.25*temp*(y(1,k)+y(1,k-1))
s(2,3+indexv(1))=s(2,indexv(1))
s(2,3+indexv(2))=2.+s(2,indexv(2))
s(2,3+indexv(3))=s(2,indexv(3))
s(3,indexv(1))=0. Equation (17.4.30).
s(3,indexv(2))=0.
s(3,indexv(3))=-1.
s(3,3+indexv(1))=0.
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=1.
s(1,jsf)=y(1,k)-y(1,k-1)-.5*h*(y(2,k)+y(2,k-1)) Equation (17.4.23).
s(2,jsf)=y(2,k)-y(2,k-1)-temp*((x(k)+x(k-1)) Equation (17.4.24).

* *.5*(mm+1.)*(y(2,k)+y(2,k-1))-temp2*
* .5*(y(1,k)+y(1,k-1)))

s(3,jsf)=y(3,k)-y(3,k-1) Equation (17.4.27).
endif
return
END

You can run the program and check it against values of λmn(c) given in
the tables at the back of Flammer’s book [1] or in Table 21.1 of Abramowitz and
Stegun [2]. Typically it converges in about 3 iterations. The table below gives a
few comparisons.

Selected Output of sfroid

m n c2 λexact λsfroid

2 2 0.1 6.01427 6.01427
1.0 6.14095 6.14095
4.0 6.54250 6.54253

2 5 1.0 30.4361 30.4372
16.0 36.9963 37.0135

4 11 −1.0 131.560 131.554

Shooting

To solve the same problem via shooting (§17.1), we supply a subroutine derivs
that implements equations (17.4.15)–(17.4.17). We will integrate the equations over
the range −1 ≤ x ≤ 0. We provide the subroutine load which sets the eigenvalue
y3 to its current best estimate, v(1). It also sets the boundary values of y1 and
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y2 using equations (17.4.20) and (17.4.19) (with a minus sign corresponding to
x = −1). Note that the boundary condition is actually applied a distance dx from
the boundary to avoid having to evaluate y ′

2 right on the boundary. The subroutine
score follows from equation (17.4.18).

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shoot (§17.1).

INTEGER i,m,n,nvar,N2
PARAMETER (N2=1)
REAL c2,dx,gamma,q1,x1,x2,v(N2)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n Communicates with load, score, and derivs.
COMMON /caller/ x1,x2,nvar Communicates with shoot.

C USES newt
dx=1.e-4 Avoid evaluating derivatives exactly at x = −1.
nvar=3 Number of equations.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue.
x1=-1.0+dx Set range of integration.
x2=0.0
call newt(v,N2,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shoot failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v(1)
goto 1

endif
END

SUBROUTINE load(x1,v,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE score(x2,y,f)
INTEGER m,n
REAL c2,dx,gamma,x2,f(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether boundary condition at x = 0 is satisfied.
if (mod(n-m,2).eq.0) then

f(1)=y(2)
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else
f(1)=y(1)

endif
return
END

SUBROUTINE derivs(x,y,dydx)
INTEGER m,n
REAL c2,dx,gamma,x,dydx(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Evaluates derivatives for odeint.
dydx(1)=y(2)
dydx(2)=(2.0*x*(m+1.0)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0-x*x)
dydx(3)=0.0
return
END

Shooting to a Fitting Point

For variety we illustrate shootf from §17.2 by integrating over the whole
range −1 + dx ≤ x ≤ 1 − dx, with the fitting point chosen to be at x = 0. The
routine derivs is identical to the one for shoot. Now, however, there are two load
routines. The routine load1 for x = −1 is essentially identical to load above. At
x = 1, load2 sets the function value y1 and the eigenvalue y3 to their best current
estimates, v2(1) and v2(2), respectively. If you quite sensibly make your initial
guess of the eigenvalue the same in the two intervals, then v1(1) will stay equal to
v2(2) during the iteration. The subroutine score simply checks whether all three
function values match at the fitting point.

PROGRAM sphfpt
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.

INTEGER i,m,n,nvar,nn2,N1,N2,NTOT
REAL DXX
PARAMETER (N1=2,N2=1,NTOT=N1+N2,DXX=1.e-4)
REAL c2,dx,gamma,q1,x1,x2,xf,v1(N2),v2(N1),v(NTOT)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n

Communicates with load1, load2, score, and derivs.
COMMON /caller/ x1,x2,xf,nvar,nn2 Communicates with shootf.
EQUIVALENCE (v1(1),v(1)),(v2(1),v(N2+1))

C USES newt
nvar=NTOT Number of equations.
nn2=N2
dx=DXX Avoid evaluating derivatives exactly at x = ±1.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v1(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue and function value.
v2(2)=v1(1)
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v2(1)=gamma*(1.-(v2(2)-c2)*dx/(2*(m+1)))
x1=-1.0+dx Set range of integration.
x2=1.0-dx
xf=0. Fitting point.
call newt(v,NTOT,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shootf failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v1(1)
goto 1

endif
END

SUBROUTINE load1(x1,v1,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v1(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v1(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE load2(x2,v2,y)
INTEGER m,n
REAL c2,dx,gamma,x2,v2(2),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = 1 − dx.
y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
return
END

SUBROUTINE score(xf,y,f)
INTEGER i,m,n
REAL c2,gamma,dx,xf,f(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether solutions match at fitting point x = 0.
do 12 i=1,3

f(i)=y(i)
enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Flammer, C. 1957, Spheroidal Wave Functions (Stanford, CA: Stanford University Press). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §21. [2]

Morse, P.M., and Feshbach, H. 1953, Methods of Theoretical Physics, Part II (New York: McGraw-
Hill), pp. 1502ff. [3]
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17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is called allocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how to accomplish
the automatic allocation.

We want to focus attention on the independent variable x, and consider two alternative
reparametrizations of it. The first, we term q; this is just the coordinate corresponding to the
mesh points themselves, so that q = 1 at k = 1, q = 2 at k = 2, and so on. Between any two
mesh points we have ∆q = 1. In the change of independent variable in the ODEs from x to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms of q, equation (17.5.2) as an FDE might be written

yk − yk−1 − 1
2

[(
g
dx

dq

)

k

+

(
g
dx

dq

)

k−1

]
= 0 (17.5.3)

or some related version. Note that dx/dq should accompany g. The transformation between
x and q depends only on the Jacobian dx/dq. Its reciprocal dq/dx is proportional to the
density of mesh points.

Now, given the function y(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might want dq/dx to be larger where y is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range of x so as to make q vary from 1 to M , according to its definition. To solve this problem
we introduce a second reparametrization Q(q), where Q is a new independent variable. The
relation between Q and q is taken to be linear, so that a mesh spacing formula for dQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

where ψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=

dQ

dq

dq

dx
(17.5.6)
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17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is calledallocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how to accomplish
the automatic allocation.

We want to focus attention on the independent variablex, and consider two alternative
reparametrizations of it. The first, we termq; this is just the coordinate corresponding to the
mesh points themselves, so thatq = 1 atk = 1, q = 2 atk = 2, and so on. Between any two
mesh points we have∆q = 1. In the change of independent variable in the ODEs fromx to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms ofq, equation (17.5.2) as an FDE might be written

yk − yk−1 − 1
2

[(
g
dx

dq

)

k

+

(
g
dx

dq

)

k−1

]
= 0 (17.5.3)

or some related version. Note thatdx/dq should accompanyg. The transformation between
x and q depends only on theJacobian dx/dq. Its reciprocaldq/dx is proportional to the
density of mesh points.

Now, given the functiony(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might wantdq/dx to be larger wherey is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range ofx so as to makeq vary from1 to M , according to its definition. To solve this problem
we introduce a second reparametrizationQ(q), whereQ is a new independent variable. The
relation betweenQ andq is taken to belinear, so that a mesh spacing formula fordQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

whereψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=

dQ

dq

dq

dx
(17.5.6)
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whereφ(x) is chosen by us. Written in terms of the mesh variableq, this equation is

dx

dq
=

ψ

φ(x)
(17.5.7)

Notice thatφ(x) should be chosen to be positive definite, so that the density of mesh points
is everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the arrayy(j,k). Now x becomes a dependent variable!Q andψ
also become new dependent variables. Normally, evaluatingφ requires little extra work since
it will be composed from pieces of theg’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing functionQ can be found
analytically, i.e.,dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variablesx, ψ.)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variabley(x). We could set

dQ =
dx

∆
+

|d ln y|
δ

(17.5.8)
or

φ(x) =
dQ

dx
=

1

∆
+

∣∣∣∣
dy/dx

yδ

∣∣∣∣ (17.5.9)

where∆ andδ are constants that we choose. The first term would give a uniform spacing
in x if it alone were present. The second term forces more grid points to be used wherey is
changing rapidly. The constants act to make every logarithmic change iny of an amountδ
about as “attractive” to a grid point as a change inx of amount∆. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing inx, replacing
dx in the first term withd ln x.

CITED REFERENCES AND FURTHER READING:

Eggleton, P. P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two point boundary value problems. Typically,
there is a pointxs at which a derivative must be evaluated by an expression of the form

S(xs) =
N(xs, y)

D(xs, y)
(17.6.1)

where the denominatorD(xs, y) = 0. In physical problems with finite answers, singular
points usually come with their own cure: WhereD → 0, there the physical solutiony must
be such as to makeN → 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solutiony is often called aregularity condition. The condition
thatD(xs, y) satisfy some special constraint atxs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in§17.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other.
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where φ(x) is chosen by us. Written in terms of the mesh variable q, this equation is

dx

dq
=

ψ

φ(x)
(17.5.7)

Notice that φ(x) should be chosen to be positive definite, so that the density of mesh points
is everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the array y(j,k). Now x becomes a dependent variable! Q and ψ
also become new dependent variables. Normally, evaluating φ requires little extra work since
it will be composed from pieces of the g’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing function Q can be found
analytically, i.e., dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variables x, ψ.)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variable y(x). We could set

dQ =
dx

∆
+

|d ln y|
δ

(17.5.8)

or

φ(x) =
dQ

dx
=

1

∆
+

∣∣∣∣
dy/dx

yδ

∣∣∣∣ (17.5.9)

where ∆ and δ are constants that we choose. The first term would give a uniform spacing
in x if it alone were present. The second term forces more grid points to be used where y is
changing rapidly. The constants act to make every logarithmic change in y of an amount δ
about as “attractive” to a grid point as a change in x of amount ∆. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing in x, replacing
dx in the first term with d ln x.

CITED REFERENCES AND FURTHER READING:

Eggleton, P. P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two point boundary value problems. Typically,
there is a point xs at which a derivative must be evaluated by an expression of the form

S(xs) =
N(xs, y)

D(xs, y)
(17.6.1)

where the denominator D(xs, y) = 0. In physical problems with finite answers, singular
points usually come with their own cure: Where D → 0, there the physical solution y must
be such as to make N → 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solution y is often called a regularity condition. The condition
that D(xs, y) satisfy some special constraint at xs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in §17.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other.
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Figure 17.6.1. FDE matrix structure with an internal boundary condition. The internal condition
introduces a special block. (a) Original form, compare with Figure 17.3.1; (b) final form, compare
with Figure 17.3.2.

However, the ODEs do have well-behaved derivatives and solutions in the neighborhood of
the singularity, so it is readily possible to integrate away from the point. Both the relaxation
method and the method of “shooting” to a fitting point handle such problems easily. Also,
in those problems the presence of singular behavior served to isolate some special boundary
values that had to be satisfied to solve the equations.

The difference here is that we are concerned with singularities arising at intermediate
points, where the location of the singular point depends on the solution, so is not known a
priori. Consequently, we face a circular task: The singularity prevents us from finding a
numerical solution, but we need a numerical solution to find its location. Such singularities
are also associated with selecting a special value for some variable which allows the solution
to satisfy the regularity condition at the singular point. Thus, internal singularities take on
aspects of being internal boundary conditions.

One way of handling internal singularities is to treat the problem as a free boundary
problem, as discussed at the end of §17.0. Suppose, as a simple example, we consider
the equation

dy

dx
=

N(x, y)

D(x, y)
(17.6.2)

where N and D are required to pass through zero at some unknown point xs. We add
the equation

z ≡ xs − x1
dz

dx
= 0 (17.6.3)
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where xs is the unknown location of the singularity, and change the independent variable
to t by setting

x − x1 = tz, 0 ≤ t ≤ 1 (17.6.4)

The boundary conditions at t = 1 become

N(x, y) = 0, D(x, y) = 0 (17.6.5)

Use of an adaptive mesh as discussed in the previous section is another way to overcome
the difficulties of an internal singularity. For the problem (17.6.2), we add the mesh spacing
equations

dQ

dq
= ψ (17.6.6)

dψ

dq
= 0 (17.6.7)

with a simple mesh spacing function that maps x uniformly into q, where q runs from 1 to
M , the number of mesh points:

Q(x) = x − x1,
dQ

dx
= 1 (17.6.8)

Having added three first-order differential equations, we must also add their corresponding
boundary conditions. If there were no singularity, these could simply be

at q = 1 : x = x1, Q = 0 (17.6.9)

at q = M : x = x2 (17.6.10)

and a total of N values yi specified at q = 1. In this case the problem is essentially an
initial value problem with all boundary conditions specified at x1 and the mesh spacing
function is superfluous.

However, in the actual case at hand we impose the conditions

at q = 1 : x = x1, Q = 0 (17.6.11)

at q = M : N(x, y) = 0, D(x, y) = 0 (17.6.12)

and N − 1 values yi at q = 1. The “missing” yi is to be adjusted, in other words, so as
to make the solution go through the singular point in a regular (zero-over-zero) rather than
irregular (finite-over-zero) manner. Notice also that these boundary conditions do not directly
impose a value for x2, which becomes an adjustable parameter that the code varies in an
attempt to match the regularity condition.

In this example the singularity occurred at a boundary, and the complication arose
because the location of the boundary was unknown. In other problems we might wish to
continue the integration beyond the internal singularity. For the example given above, we
could simply integrate the ODEs to the singular point, then as a separate problem recommence
the integration from the singular point on as far we care to go. However, in other cases the
singularity occurs internally, but does not completely determine the problem: There are still
some more boundary conditions to be satisfied further along in the mesh. Such cases present
no difficulty in principle, but do require some adaptation of the relaxation code given in §17.3.
In effect all you need to do is to add a “special” block of equations at the mesh point where
the internal boundary conditions occur, and do the proper bookkeeping.

Figure 17.6.1 illustrates a concrete example where the overall problem contains 5
equations with 2 boundary conditions at the first point, one “internal” boundary condition, and
two final boundary conditions. The figure shows the structure of the overall matrix equations
along the diagonal in the vicinity of the special block. In the middle of the domain, blocks
typically involve 5 equations (rows) in 10 unknowns (columns). For each block prior to the
special block, the initial boundary conditions provided enough information to zero the first
two columns of the blocks. The five FDEs eliminate five more columns, and the final three
columns need to be stored for the backsubstitution step (as described in §17.3). To handle the
extra condition we break the normal cycle and add a special block with only one equation:
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the internal boundary condition. This effectively reduces the required storage of unreduced
coefficients by one column for the rest of the grid, and allows us to reduce to zero the first three
columns of subsequent blocks. The subroutines red, pinvs, bksub can readily handle
these cases with minor recoding, but each problem makes for a special case, and you will
have to make the modifications as required.

CITED REFERENCES AND FURTHER READING:

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.
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Chapter 18. Integral Equations

and Inverse Theory

18.0 Introduction

Many people, otherwise numerically knowledgable, imagine that the numerical
solution of integral equations must be an extremely arcane topic, since, until recently,
it was almost never treated in numerical analysis textbooks. Actually there is a
large and growing literature on the numerical solution of integral equations; several
monographs have by now appeared [1-3]. One reason for the sheer volume of this
activity is that there are many different kinds of equations, each with many different
possible pitfalls; often many different algorithms have been proposed to deal with
a single case.

There is a close correspondencebetween linear integral equations, which specify
linear, integral relations among functions in an infinite-dimensional function space,
and plain old linear equations, which specify analogous relations among vectors
in a finite-dimensional vector space. Because this correspondence lies at the heart
of most computational algorithms, it is worth making it explicit as we recall how
integral equations are classified.

Fredholm equations involve definite integrals with fixed upper and lower limits.
An inhomogeneous Fredholm equation of the first kind has the form

g(t) =
∫ b

a

K(t, s)f(s) ds (18.0.1)

Here f(t) is the unknown function to be solved for, while g(t) is a known “right-hand
side.” (In integral equations, for some odd reason, the familiar “right-hand side” is
conventionally written on the left!) The function of two variables, K(t, s) is called
the kernel. Equation (18.0.1) is analogous to the matrix equation

K · f = g (18.0.2)

whose solution is f = K−1·g, where K−1 is the matrix inverse. Like equation (18.0.2),
equation (18.0.1) has a unique solution whenever g is nonzero (the homogeneous
case with g = 0 is almost never useful) and K is invertible. However, as we shall
see, this latter condition is as often the exception as the rule.

The analog of the finite-dimensional eigenvalue problem

(K − σ1) · f = g (18.0.3)

779
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is called a Fredholm equation of the second kind, usually written

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.0.4)

Again, the notational conventions do not exactly correspond: λ in equation (18.0.4)
is 1/σ in (18.0.3), while g is −g/λ. If g (or g) is zero, then the equation is said
to be homogeneous. If the kernel K(t, s) is bounded, then, like equation (18.0.3),
equation (18.0.4) has the property that its homogeneous form has solutions for
at most a denumerably infinite set λ = λn, n = 1, 2, . . . , the eigenvalues. The
corresponding solutions fn(t) are the eigenfunctions. The eigenvalues are real if
the kernel is symmetric.

In the inhomogeneous case of nonzero g (or g), equations (18.0.3) and (18.0.4)
are soluble except when λ (or σ) is an eigenvalue — because the integral operator
(or matrix) is singular then. In integral equations this dichotomy is called the
Fredholm alternative.

Fredholm equations of the first kind are often extremely ill-conditioned. Ap-
plying the kernel to a function is generally a smoothing operation, so the solution,
which requires inverting the operator, will be extremely sensitive to small changes
or errors in the input. Smoothing often actually loses information, and there is no
way to get it back in an inverse operation. Specialized methods have been developed
for such equations, which are often called inverse problems. In general, a method
must augment the information given with some prior knowledge of the nature of the
solution. This prior knowledge is then used, in one way or another, to restore lost
information. We will introduce such techniques in §18.4.

Inhomogeneous Fredholm equations of the second kind are much less often
ill-conditioned. Equation (18.0.4) can be rewritten as

∫ b

a

[K(t, s) − σδ(t − s)]f(s) ds = −σg(t) (18.0.5)

where δ(t − s) is a Dirac delta function (and where we have changed from λ to its
reciprocal σ for clarity). If σ is large enough in magnitude, then equation (18.0.5)
is, in effect, diagonally dominant and thus well-conditioned. Only if σ is small do
we go back to the ill-conditioned case.

Homogeneous Fredholm equations of the second kind are likewise not partic-
ularly ill-posed. If K is a smoothing operator, then it will map many f ’s to zero,
or near-zero; there will thus be a large number of degenerate or nearly degenerate
eigenvalues around σ = 0 (λ → ∞), but this will cause no particular computational
difficulties. In fact, we can now see that the magnitude of σ needed to rescue the
inhomogeneous equation (18.0.5) from an ill-conditioned fate is generally much less
than that required for diagonal dominance. Since the σ term shifts all eigenvalues,
it is enough that it be large enough to shift a smoothing operator’s forest of near-
zero eigenvalues away from zero, so that the resulting operator becomes invertible
(except, of course, at the discrete eigenvalues).

Volterra equations are a special case of Fredholm equations with K(t, s) = 0
for s > t. Chopping off the unnecessary part of the integration, Volterra equations are
written in a form where the upper limit of integration is the independent variable t.
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The Volterra equation of the first kind

g(t) =
∫ t

a

K(t, s)f(s) ds (18.0.6)

has as its analog the matrix equation (now written out in components)

k∑
j=1

Kkjfj = gk (18.0.7)

Comparing with equation (18.0.2), we see that the Volterra equation corresponds to
a matrix K that is lower (i.e., left) triangular, with zero entries above the diagonal.
As we know from Chapter 2, such matrix equations are trivially soluble by forward
substitution. Techniques for solving Volterra equations are similarly straightforward.
When experimental measurement noise does not dominate, Volterra equations of the
first kind tend not to be ill-conditioned; the upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel.

The Volterra equation of the second kind is written

f(t) =
∫ t

a

K(t, s)f(s) ds + g(t) (18.0.8)

whose matrix analog is the equation

(K − 1) · f = g (18.0.9)

with K lower triangular. The reason there is no λ in these equations is that (i) in
the inhomogeneous case (nonzero g) it can be absorbed into K , while (ii) in the
homogeneous case (g = 0), it is a theorem that Volterra equations of the second kind
with bounded kernels have no eigenvalues with square-integrable eigenfunctions.

We have specialized our definitions to the case of linear integral equations.
The integrand in a nonlinear version of equation (18.0.1) or (18.0.6) would be
K(t, s, f(s)) instead of K(t, s)f(s); a nonlinear version of equation (18.0.4) or
(18.0.8) would have an integrand K(t, s, f(t), f(s)). Nonlinear Fredholm equations
are considerably more complicated than their linear counterparts. Fortunately, they
do not occur as frequently in practice and we shall by and large ignore them in this
chapter. By contrast, solving nonlinear Volterra equations usually involves only a
slight modification of the algorithm for linear equations, as we shall see.

Almost all methods for solving integral equations numerically make use of
quadrature rules, frequently Gaussian quadratures. This would be a good time
for you to go back and review §4.5, especially the advanced material towards the
end of that section.

In the sections that follow, we first discuss Fredholm equations of the second kind
with smooth kernels (§18.1). Nontrivial quadrature rules come into the discussion,
but we will be dealing with well-conditioned systems of equations. We then return
to Volterra equations (§18.2), and find that simple and straightforward methods are
generally satisfactory for these equations.

In §18.3 we discuss how to proceed in the case of singular kernels, focusing
largely on Fredholm equations (both first and second kinds). Singularities require
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special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §§18.4–18.7 we face up to the issues of inverse problems. §18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in §13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review §13.10 as part of reading this chapter.

Some subjects, such as integro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner [4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.

CITED REFERENCES AND FURTHER READING:
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution for f(t) in the equation

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.1.1)

The method we describe, a very basic one, is called the Nystrom method. It requires
the choice of some approximate quadrature rule:

∫ b

a

y(s) ds =
N∑

j=1

wjy(sj) (18.1.2)

Here the set {wj} are the weights of the quadrature rule, while the N points {s j}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s
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special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §§18.4–18.7 we face up to the issues of inverse problems.§18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in§13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review§13.10 as part of reading this chapter.

Some subjects, such asintegro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner[4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution forf(t) in the equation

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.1.1)

The method we describe, a very basic one, is called theNystrom method. It requires
the choice of some approximatequadrature rule:

∫ b

a

y(s) ds =
N∑

j=1

wjy(sj) (18.1.2)

Here the set{wj} are the weights of the quadrature rule, while theN points{s j}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s
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rules. We will see, however, that the solution method involvesO(N 3) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrature,§4.5). (For non-smooth or singular
kernels, see§18.3.)

Delves and Mohamed[1] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, they
concluded “. . . the clear winner of this contest has been the Nystrom routine. . . with
theN -point Gauss-Legendre rule. This routine is extremely simple. . . . Such results
are enough to make a numerical analyst weep.”

If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

f(t) = λ

N∑
j=1

wjK(t, sj)f(sj) + g(t) (18.1.3)

Evaluate equation (18.1.3) at the quadrature points:

f(ti) = λ

N∑
j=1

wjK(ti, sj)f(sj) + g(ti) (18.1.4)

Let fi be the vectorf(ti), gi the vectorg(ti), Kij the matrixK(ti, sj), and define

K̃ij = Kijwj (18.1.5)

Then in matrix notation equation (18.1.4) becomes

(1 − λK̃) · f = g (18.1.6)

This is a set ofN linear algebraic equations inN unknowns that can be solved
by standard triangular decomposition techniques (§2.3) — that is where theO(N 3)
operations count comes in. The solution is usually well-conditioned, unlessλ is
very close to an eigenvalue.

Having obtained the solution at the quadrature points{t i}, how do you get the
solution at some other pointt? You donot simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s key
observation was that you should use equation (18.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routinefred2 sets up equation (18.1.6) and then solves it byLU
decomposition with calls to the routinesludcmp andlubksb. The Gauss-Legendre
quadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routinefred2 requires that you provide an external function that returns
g(t) and another that returnsλKij . It then returns the solutionf at the quadrature
points. It also returns the quadrature points and weights. These are used by the
second routinefredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value off at any point in the interval[a, b].
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SUBROUTINE fred2(n,a,b,t,f,w,g,ak)
INTEGER n,NMAX
REAL a,b,f(n),t(n),w(n),g,ak
EXTERNAL ak,g
PARAMETER (NMAX=200)

C USES ak,g,gauleg,lubksb,ludcmp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s). The routine
returns arrays t(1:n) and f(1:n) containing the abscissas ti of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin.

INTEGER i,j,indx(NMAX)
REAL d,omk(NMAX,NMAX)
if(n.gt.NMAX) pause ’increase NMAX in fred2’
call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using

Gauss-Legendre quadrature.do 12 i=1,n
do 11 j=1,n Form 1 − λK̃.

if(i.eq.j)then
omk(i,j)=1.

else
omk(i,j)=0.

endif
omk(i,j)=omk(i,j)-ak(t(i),t(j))*w(j)

enddo 11

f(i)=g(t(i))
enddo 12

call ludcmp(omk,n,NMAX,indx,d) Solve linear equations.
call lubksb(omk,n,NMAX,indx,f)
return
END

FUNCTION fredin(x,n,a,b,t,f,w,g,ak)
INTEGER n
REAL fredin,a,b,x,f(n),t(n),w(n),g,ak
EXTERNAL ak,g

C USES ak,g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array f(1:n) from fred2, this function returns the
value of f at x using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s).

INTEGER i
REAL sum
sum=0.
do 11 i=1,n

sum=sum+ak(x,t(i))*w(i)*f(i)
enddo 11

fredin=g(x)+sum
return
END

One disadvantage of a method based on Gaussian quadrature is that there is no
simple way to obtain an estimate of the error in the result. The best practical method
is to increaseN by 50%, say, and treat the difference between the two estimates as a
conservative estimate of the error in the result obtained with the larger value ofN .
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Turn now to solutions of the homogeneous equation. If we setλ = 1/σ and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K̃ · f = σf (18.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the matrixK
is symmetric. However, since the weightswj are not equal for most quadrature
rules, the matrixK̃ (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weights are positive (which they are for Gaussian
quadrature), we can define the diagonal matrixD = diag(w j) and its square root,
D1/2 = diag(√wj). Then equation (18.1.7) becomes

K · D · f = σf

Multiplying by D1/2, we get

(
D1/2 · K · D1/2

)
· h = σh (18.1.8)

whereh = D1/2 · f. Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general giveN eigenvalues,
whereN is the number of quadrature points used. For square-integrable kernels,
these will provide good approximations to the lowestN eigenvalues of the integral
equation. Kernels offinite rank (also calleddegenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvaluesσ that are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you increaseN to improve
their accuracy. Some care is required here: A nondegenerate kernel can have an
infinite number of eigenvalues that have an accumulation point atσ = 0. You
distinguish the two cases by the behavior of the solution as you increaseN . If you
suspect a degenerate kernel, you will usually be able to solve the problem by analytic
techniques described in all the textbooks.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.I.A.M.).
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18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t) =
∫ t

a

K(t, s)f(s) ds + g(t) (18.2.1)

Most algorithms for Volterra equations march out fromt = a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti = a + ih, i = 0, 1, . . . , N, h ≡ b − a

N
(18.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

∫ ti

a

K(ti, s)f(s) ds = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj + 1
2Kiifi


 (18.2.3)

Thus the trapezoidal method for equation (18.2.1) is:

f0 = g0

(1 − 1
2hKii)fi = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj


+ gi, i = 1, . . . , N

(18.2.4)

(For a Volterra equation of the first kind, the leading1 on the left would be absent,
andg would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution inO(N 2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact thatsystems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) as avector equation for the vector ofm functionsf(t),
then the kernelK(t, s) is anm × m matrix. Equation (18.2.4) must now also be
understood as a vector equation. For eachi, we have to solve them × m set of
linear algebraic equations by Gaussian elimination.

The routinevoltra below implements this algorithm. You must supply an
external function that returns thekth function of the vectorg(t) at the pointt, and
another that returns the(k, l) element of the matrixK(t, s) at (t, s). The routine
voltra then returns the vectorf(t) at the regularly spaced pointst i.
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18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t) =
∫ t

a

K(t, s)f(s) ds + g(t) (18.2.1)

Most algorithms for Volterra equations march out from t = a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti = a + ih, i = 0, 1, . . . , N, h ≡ b − a

N
(18.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

∫ ti

a

K(ti, s)f(s) ds = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj + 1
2Kiifi


 (18.2.3)

Thus the trapezoidal method for equation (18.2.1) is:

f0 = g0

(1 − 1
2hKii)fi = h


 1

2Ki0f0 +
i−1∑
j=1

Kijfj


+ gi, i = 1, . . . , N

(18.2.4)

(For a Volterra equation of the first kind, the leading 1 on the left would be absent,
and g would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution in O(N 2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact that systems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) as a vector equation for the vector of m functions f(t),
then the kernel K(t, s) is an m × m matrix. Equation (18.2.4) must now also be
understood as a vector equation. For each i, we have to solve the m × m set of
linear algebraic equations by Gaussian elimination.

The routine voltra below implements this algorithm. You must supply an
external function that returns the kth function of the vector g(t) at the point t, and
another that returns the (k, l) element of the matrix K(t, s) at (t, s). The routine
voltra then returns the vector f(t) at the regularly spaced points t i.
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SUBROUTINE voltra(n,m,t0,h,t,f,g,ak)
INTEGER m,n,MMAX
REAL h,t0,f(m,n),t(n),g,ak
EXTERNAL ak,g
PARAMETER (MMAX=5)

C USES ak,g,lubksb,ludcmp
Solves a set of m linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration and n-1 is the number of steps
of size h to be taken. g(k,t) is a user-supplied external function that returns gk(t), while
ak(k,l,t,s) is another user-supplied external function that returns the (k, l) element
of the matrix K(t, s). The solution is returned in f(1:m,1:n), with the corresponding
abscissas in t(1:n).

INTEGER i,j,k,l,indx(MMAX)
REAL d,sum,a(MMAX,MMAX),b(MMAX)
t(1)=t0
do 11 k=1,m Initialize.

f(k,1)=g(k,t(1))
enddo 11

do 16 i=2,n Take a step h.
t(i)=t(i-1)+h
do 14 k=1,m

sum=g(k,t(i)) Accumulate right-hand side of linear equations in
sum.do 13 l=1,m

sum=sum+0.5*h*ak(k,l,t(i),t(1))*f(l,1)
do 12 j=2,i-1

sum=sum+h*ak(k,l,t(i),t(j))*f(l,j)
enddo 12

if(k.eq.l)then Left-hand side goes in matrix a.
a(k,l)=1.

else
a(k,l)=0.

endif
a(k,l)=a(k,l)-0.5*h*ak(k,l,t(i),t(i))

enddo 13

b(k)=sum
enddo 14

call ludcmp(a,m,MMAX,indx,d) Solve linear equations.
call lubksb(a,m,MMAX,indx,b)
do 15 k=1,m

f(k,i)=b(k)
enddo 15

enddo 16

return
END

For nonlinear Volterra equations, equation (18.2.4) holds with the product K iifi

replaced by Kii(fi), and similarly for the other two products of K’s and f ’s. Thus
for each i we solve a nonlinear equation for f i with a known right-hand side.
Newton’s method (§9.4 or §9.6) with an initial guess of f i−1 usually works very
well provided the stepsize is not too big.

Higher-order methods for solving Volterra equations are, in our opinion, not as
important as for Fredholm equations, since Volterra equations are relatively easy to
solve. However, there is an extensive literature on the subject. Several difficulties
arise. First, any method that achieves higher order by operating on several quadrature
points simultaneously will need a special method to get started, when values at the
first few points are not yet known.

Second, stable quadrature rules can give rise to unexpected instabilities in
integral equations. For example, suppose we try to replace the trapezoidal rule in
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the algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over
an interval 2h, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of trapezoidal rule
followed by all Simpson’s rule, or Simpson’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsize h and h/2. Then,
assuming the error scales with h2, compute

fE =
4f(h/2)− f(h)

3
(18.2.5)

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher order methods is the

block-by-block method (see [1]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp features in K or
f . Variable stepsize methods are quite a bit more complicated than their counterparts
for differential equations; we refer you to the literature [1,2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, then look to §18.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.
A simple quadrature method will show poor convergence with N if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:
1. Integrable singularities can often be removed by a change of variable. For example, the

singular behavior K(t, s) ∼ s1/2 or s−1/2 near s = 0 can be removed by the transformation
z = s1/2. Note that we are assuming that the singular behavior is confined to K, whereas
the quadrature actually involves the product K(t, s)f(s), and it is this product that must be
“fixed.” Ideally, you must deduce the singular nature of the product before you try a numerical
solution, and take the appropriate action. Commonly, however, a singular kernel does not
produce a singular solution f(t). (The highly singular kernel K(t, s) = δ(t − s) is simply
the identity operator, for example.)

2. If K(t, s) can be factored as w(s)K(t, s), where w(s) is singular and K(t, s) is
smooth, then a Gaussian quadrature based on w(s) as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replace gauleg in the routine fred2 by another quadrature routine. Section
4.5 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard references [1,2]. You must of course supply K instead of K.
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the algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over
an interval2h, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of trapezoidal rule
followed by all Simpson’s rule, or Simpson’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsizeh andh/2. Then,
assuming the error scales withh2, compute

fE =
4f(h/2)− f(h)

3
(18.2.5)

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher order methods is the

block-by-block method (see[1]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp features inK or
f . Variable stepsize methods are quite a bit more complicated than their counterparts
for differential equations; we refer you to the literature[1,2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, then look to§18.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.
A simple quadrature method will show poor convergence withN if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:
1. Integrable singularities can often be removed by a change of variable. For example, the

singular behaviorK(t, s) ∼ s1/2 or s−1/2 nears = 0 can be removed by the transformation
z = s1/2. Note that we are assuming that the singular behavior is confined toK, whereas
the quadrature actually involves the productK(t, s)f(s), and it is this product that must be
“fixed.” Ideally, you must deduce the singular nature of the product before you try a numerical
solution, and take the appropriate action. Commonly, however, a singular kernel doesnot
produce a singular solutionf(t). (The highly singular kernelK(t, s) = δ(t − s) is simply
the identity operator, for example.)

2. If K(t, s) can be factored asw(s)K(t, s), wherew(s) is singular andK(t, s) is
smooth, then a Gaussian quadrature based onw(s) as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replacegauleg in the routinefred2 by another quadrature routine. Section
4.5 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard references[1,2]. You must of course supplyK instead ofK.
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This method is a special case of theproduct Nystrom method [3,4], where one factors out
a singular termp(t, s) depending on botht ands from K and constructs suitable weights for
its Gaussian quadrature. The calculations in the general case are quite cumbersome, because
the weights depend on the chosen{ti} as well as the form ofp(t, s).

We prefer to implement the product Nystrom method on a uniform grid, with a quadrature
scheme that generalizes the extended Simpson’s 3/8 rule (equation 4.1.5) to arbitrary weight
functions. We discuss this in the subsections below.

3. Special quadrature formulas are also useful when the kernel is not strictly singular,
but is “almost” so. One example is when the kernel is concentrated neart = s on a scale much
smaller than the scale on which the solutionf(t) varies. In that case, a quadrature formula
can be based on locally approximatingf(s) by a polynomial or spline, while calculating the
first few moments of the kernelK(t, s) at the tabulation pointsti. In such a scheme the
narrow width of the kernel becomes an asset, rather than a liability: The quadrature becomes
exact as the width of the kernel goes to zero.

4. An infinite range of integration is also a form of singularity. Truncating the range at a
large finite value should be used only as a last resort. If the kernel goes rapidly to zero, then
a Gauss-Laguerre [w ∼ exp(−αs)] or Gauss-Hermite [w ∼ exp(−s2)] quadrature should
work well. Long-tailed functions often succumb to the transformation

s =
2α

z + 1
− α (18.3.1)

which maps0 < s < ∞ to 1 > z > −1 so that Gauss-Legendre integration can be used.
Hereα > 0 is a constant that you adjust to improve the convergence.

5. A common situation in practice is thatK(t, s) is singular along the diagonal line
t = s. Here the Nystrom method fails completely because the kernel gets evaluated at(ti, si).
Subtraction of the singularity is one possible cure:

∫ b

a

K(t, s)f(s) ds =

∫ b

a

K(t, s)[f(s) − f(t)] ds +

∫ b

a

K(t, s)f(t) ds

=

∫ b

a

K(t, s)[f(s) − f(t)] ds + r(t)f(t)

(18.3.2)

wherer(t) =
∫ b

a
K(t, s) ds is computed analytically or numerically. If the first term on

the right-hand side is now regular, we can use the Nystrom method. Instead of equation
(18.1.4), we get

fi = λ
N∑

j=1
j �=i

wjKij [fj − fi] + λrifi + gi (18.3.3)

Sometimes the subtraction process must be repeated before the kernel is completely regularized.
See[3] for details. (And read on for a different, we think better, way to handle diagonal
singularities.)

Quadrature on a Uniform Mesh with Arbitrary Weight

It is possible in general to findn-point linear quadrature rules that approximate the
integral of a functionf(x), times an arbitrary weight functionw(x), over an arbitrary range
of integration(a, b), as the sum of weights timesn evenly spaced values of the functionf(x),
say atx = kh, (k +1)h, . . . , (k +n− 1)h. The general scheme for deriving such quadrature
rules is to write down then linear equations that must be satisfied if the quadrature rule is
to be exact for then functionsf(x) = const, x, x2, . . . , xn−1, and then solve these for the
coefficients. This can be done analytically, once and for all, if the moments of the weight
function over the same range of integration,

Wn ≡ 1

hn

∫ b

a

xnw(x)dx (18.3.4)
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are assumed to be known. Here the prefactorh−n is chosen to makeWn scale ash if (as
in the usual case)b − a is proportional toh.

Carrying out this prescription for the four-point case gives the result
∫ b

a
w(x)f(x)dx =

1

6
f(kh)

[
(k + 1)(k + 2)(k + 3)W0 − (3k2 + 12k + 11)W1 + 3(k + 2)W2 − W3

]

+
1

2
f([k + 1]h)

[
− k(k + 2)(k + 3)W0 + (3k2 + 10k + 6)W1 − (3k + 5)W2 + W3

]

+
1

2
f([k + 2]h)

[
k(k + 1)(k + 3)W0 − (3k2 + 8k + 3)W1 + (3k + 4)W2 − W3

]

+
1

6
f([k + 3]h)

[
− k(k + 1)(k + 2)W0 + (3k2 + 6k + 2)W1 − 3(k + 1)W2 + W3

]

(18.3.5)
While the terms in brackets superficially appear to scale ask2, there is typically cancellation
at both O(k2) and O(k).

Equation (18.3.5) can be specialized to various choices of(a, b). The obvious choice
is a = kh, b = (k + 3)h, in which case we get a four-point quadrature rule that generalizes
Simpson’s 3/8 rule (equation 4.1.5). In fact, we can recover this special case by setting
w(x) = 1, in which case (18.3.4) becomes

Wn =
h

n + 1
[(k + 3)n+1 − kn+1] (18.3.6)

The four terms in square brackets equation (18.3.5) each become independent ofk, and
(18.3.5) in fact reduces to
∫ (k+3)h

kh

f(x)dx =
3h

8
f(kh)+

9h

8
f([k+1]h)+

9h

8
f([k+2]h)+

3h

8
f([k+3]h) (18.3.7)

Back to the case of generalw(x), some other choices fora andb are also useful. For
example, we may want to choose(a, b) to be([k + 1]h, [k + 3]h) or ([k + 2]h, [k + 3]h),
allowing us to finish off an extended rule whose number of intervals is not a multiple
of three, without loss of accuracy: The integral will be estimated using the four values
f(kh), . . . , f([k + 3]h). Even more useful is to choose(a, b) to be([k + 1]h, [k + 2]h), thus
using four points to integrate a centered single interval. These weights, when sewed together
into an extended formula, give quadrature schemes that have smooth coefficients, i.e., without
the Simpson-like2, 4, 2, 4, 2 alternation. (In fact, this was the technique that we used to derive
equation 4.1.14, which you may now wish to reexamine.)

All these rules are of the same order as the extended Simpson’s rule, that is, exact
for f(x) a cubic polynomial. Rules of lower order, if desired, are similarly obtained. The
three point formula is

∫ b

a

w(x)f(x)dx =
1

2
f(kh)

[
(k + 1)(k + 2)W0 − (2k + 3)W1 + W2

]

+ f([k + 1]h)

[
− k(k + 2)W0 + 2(k + 1)W1 − W2

]

+
1

2
f([k + 2]h)

[
k(k + 1)W0 − (2k + 1)W1 + W2

]
(18.3.8)

Here the simple special case is to take,w(x) = 1, so that

Wn =
h

n + 1
[(k + 2)n+1 − kn+1] (18.3.9)

Then equation (18.3.8) becomes Simpson’s rule,
∫ (k+2)h

kh

f(x)dx =
h

3
f(kh) +

4h

3
f([k + 1]h) +

h

3
f([k + 2]h) (18.3.10)
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For nonconstant weight functionsw(x), however, equation (18.3.8) gives rules of one order
less than Simpson, since they do not benefit from the extra symmetry of the constant case.

The two point formula is simply
∫ (k+1)h

kh

w(x)f(x)dx = f(kh)[(k +1)W0 −W1] + f([k +1]h)[−kW0 + W1] (18.3.11)

Here is a routinewwghts that uses the above formulas to return an extendedN -point
quadrature rule for the interval(a, b) = (0, [N − 1]h). Input towwghts is a user-supplied
routine,kermom, that is called to get the first fourindefinite-integral moments ofw(x), namely

Fm(y) ≡
∫ y

smw(s)ds m = 0, 1, 2, 3 (18.3.12)

(The lower limit is arbitrary and can be chosen for convenience.) Cautionary note: When
called withN < 4, wwghts returns a rule of lower order than Simpson; you should structure
your problem to avoid this.

SUBROUTINE wwghts(wghts,n,h,kermom)
INTEGER n
REAL wghts(n),h
EXTERNAL kermom

C USES kermom
Constructs in wghts(1:n) weights for the n-point equal-interval quadrature from 0 to
(n−1)h of a function f(x) times an arbitrary (possibly singular) weight function w(x) whose
indefinite-integral moments Fn(y) are provided by the user-supplied subroutine kermom.

INTEGER j,k
DOUBLE PRECISION wold(4),wnew(4),w(4),hh,hi,c,fac,a,b
hh=h Double precision on internal calculations even though

the interface is in single precision.hi=1.d0/hh
do 11 j=1,n Zero all the weights so we can sum into them.

wghts(j)=0.
enddo 11

call kermom(wold,0.d0,4) Evaluate indefinite integrals at lower end.
if (n.ge.4) then Use highest available order.

b=0.d0 For another problem, you might change this lower
limit.do 14 j=1,n-3

c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=a+hh
if (j.eq.n-3) b=(n-1)*hh Last interval: go all the way to end.
call kermom(wnew,b,4)
fac=1.d0
do 12 k=1,4 Equation (18.3.4).

w(k)=(wnew(k)-wold(k))*fac
fac=fac*hi

enddo 12

wghts(j)=wghts(j)+ Equation (18.3.5).
* ((c+1.d0)*(c+2.d0)*(c+3.d0)*w(1)
* -(11.d0+c*(12.d0+c*3.d0))*w(2)
* +3.d0*(c+2.d0)*w(3)-w(4))/6.d0

wghts(j+1)=wghts(j+1)+
* (-c*(c+2.d0)*(c+3.d0)*w(1)
* +(6.d0+c*(10.d0+c*3.d0))*w(2)
* -(3.d0*c+5.d0)*w(3)+w(4))*.5d0

wghts(j+2)=wghts(j+2)+
* (c*(c+1.d0)*(c+3.d0)*w(1)
* -(3.d0+c*(8.d0+c*3.d0))*w(2)
* +(3.d0*c+4.d0)*w(3)-w(4))*.5d0

wghts(j+3)=wghts(j+3)+
* (-c*(c+1.d0)*(c+2.d0)*w(1)
* +(2.d0+c*(6.d0+c*3.d0))*w(2)
* -3.d0*(c+1.d0)*w(3)+w(4))/6.d0

do 13 k=1,4 Reset lower limits for moments.
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wold(k)=wnew(k)
enddo 13

enddo 14

else if (n.eq.3) then Lower-order cases; not recommended.
call kermom(wnew,hh+hh,3)
w(1)=wnew(1)-wold(1)
w(2)=hi*(wnew(2)-wold(2))
w(3)=hi**2*(wnew(3)-wold(3))
wghts(1)=w(1)-1.5d0*w(2)+0.5d0*w(3)
wghts(2)=2.d0*w(2)-w(3)
wghts(3)=0.5d0*(w(3)-w(2))

else if (n.eq.2) then
call kermom(wnew,hh,2)
wghts(2)=hi*(wnew(2)-wold(2))
wghts(1)=wnew(1)-wold(1)-wghts(2)

endif
END

We will now give an example of how to applywwghts to a singular integral equation.

Worked Example: A Diagonally Singular Kernel

As a particular example, consider the integral equation

f(x) +

∫ π

0

K(x, y)f(y)dy = sin x (18.3.13)

with the (arbitrarily chosen) nasty kernel

K(x, y) = cos x cos y ×
{− ln(x − y) y < x√

y − x y ≥ x
(18.3.14)

which has a logarithmic singularity on the left of the diagonal, combined with a square-root
discontinuity on the right.

The first step is to do (analytically, in this case) the required moment integrals over
the singular part of the kernel, equation (18.3.12). Since these integrals are done at a fixed
value of x, we can usex as the lower limit. For any specified value ofy, the required
indefinite integral is then either

Fm(y; x) =

∫ y

x

sm(s − x)1/2ds =

∫ y−x

0

(x + t)mt1/2dt if y > x (18.3.15)

or

Fm(y; x) = −
∫ y

x

sm ln(x − s)ds =

∫ x−y

0

(x − t)m ln t dt if y < x (18.3.16)

(where a change of variable has been made in the second equality in each case). Doing these
integrals analytically (actually, we used a symbolic integration package!), we package the
resulting formulas in the following routine. Note thatw(j + 1) returnsFj(y; x).

SUBROUTINE kermom(w,y,m)
Returns in w(1:m) the first m indefinite-integral moments of one row of the singular part
of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels the
column, while x (in COMMON) is the row.

INTEGER m
DOUBLE PRECISION w(m),y,x,d,df,clog,x2,x3,x4
COMMON /momcom/ x

We can take x as the lower limit of integration. Thus, we return the moment integrals either
purely to the left or purely to the right of the diagonal.

if (y.ge.x) then
d=y-x
df=2.d0*sqrt(d)*d
w(1)=df/3.d0
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w(2)=df*(x/3.d0+d/5.d0)
w(3)=df*((x/3.d0 + 0.4d0*d)*x + d**2/7.d0)
w(4)=df*(((x/3.d0 + 0.6d0*d)*x + 3.d0*d**2/7.d0)*x

* + d**3/9.d0)
else

x2=x**2
x3=x2*x
x4=x2*x2
d=x-y
clog=log(d)
w(1)=d*(clog-1.d0)
w(2)=-0.25d0*(3.d0*x+y-2.d0*clog*(x+y))*d
w(3)=(-11.d0*x3+y*(6.d0*x2+y*(3.d0*x+2.d0*y))

* +6.d0*clog*(x3-y**3))/18.d0
w(4)=(-25.d0*x4+y*(12.d0*x3+y*(6.d0*x2+y*

* (4.d0*x+3.d0*y)))+12.d0*clog*(x4-y**4))/48.d0
endif
return
END

Next, we write a routine that constructs the quadrature matrix.

SUBROUTINE quadmx(a,n,np)
INTEGER n,np,NMAX
REAL a(np,np),PI
DOUBLE PRECISION xx
PARAMETER (PI=3.14159265,NMAX=257)
COMMON /momcom/ xx
EXTERNAL kermom

C USES wwghts,kermom
Constructs in a(1:n,1:n) the quadrature matrix for an example Fredholm equation of the
second kind. The nonsingular part of the kernel is computed within this routine, while the
quadrature weights which integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER j,k
REAL h,wt(NMAX),x,cx,y
h=PI/(n-1)
do 12 j=1,n

x=(j-1)*h
xx=x Put x in COMMON for use by kermom.
call wwghts(wt,n,h,kermom)
cx=cos(x) Part of nonsingular kernel.
do 11 k=1,n

y=(k-1)*h
a(j,k)=wt(k)*cx*cos(y) Put together all the pieces of the kernel.

enddo 11

a(j,j)=a(j,j)+1. Since equation of the second kind, there is diagonal
piece independent of h.enddo 12

return
END

Finally, we solve the linear system for any particular right-hand side, heresin x.

PROGRAM fredex
INTEGER NMAX
REAL PI
PARAMETER (NMAX=100,PI=3.14159265)
INTEGER indx(NMAX),j,n
REAL a(NMAX,NMAX),g(NMAX),x,d

C USES quadmx,ludcmp,lubksb
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32.521.51.50
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x
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n = 20
n = 40

Figure 18.3.1. Solution of the example integral equation (18.3.14) with grid sizes N = 10, 20, and 40.
The tabulated solution values have been connected by straight lines; in practice one would interpolate
a small N solution more smoothly.

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.

n=40 Here the size of the grid is specified.
call quadmx(a,n,NMAX) Make the quadrature matrix; all the action is here.
call ludcmp(a,n,NMAX,indx,d) Decompose the matrix.
do 11 j=1,n Construct the right hand side, here sinx.

x=(j-1)*PI/(n-1)
g(j)=sin(x)

enddo 11

call lubksb(a,n,NMAX,indx,g) Backsubstitute.
do 12 j=1,n Write out the solution.

x=(j-1)*PI/(n-1)
write (*,*) j,x,g(j)

enddo 12

write (*,*) ’normal completion’
END

With N = 40, this program gives accuracy at about the 10−5 level. The accuracy
increases as N4 (as it should for our Simpson-order quadrature scheme) despite the highly
singular kernel. Figure 18.3.1 shows the solution obtained, also plotting the solution for
smaller values of N , which are themselves seen to be remarkably faithful. Notice that the
solution is smooth, even though the kernel is singular, a common occurrence.
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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let A[u] > 0 and B[u] > 0 be two
positive functionals of u, so that we can try to determine u by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers for u.) As another possibility,
now suppose that we want to minimize A[u] subject to the constraint that B[u] have
some particular value, say b. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u] − b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

where λ1 is a Lagrange multiplier. Notice that b is absent in the second equality,
since it doesn’ t depend on u.

Next, suppose that we change our minds and decide to minimize B[u] subject
to the constraint that A[u] have a particular value, a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u] − a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time, λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant 1/λ2, and identifying 1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say, u(λ1). As λ1 varies from 0 to ∞, the solution u(λ1)
varies along a so-called trade-off curve between the problem of minimizing A and
the problem of minimizing B. Any solution along this curve can equally well
be thought of as either (i) a minimization of A for some constrained value of B,
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
minimization of the sum A + λ1B.

The second preliminary point has to do with degenerate minimization principles.
In the example above, now suppose that A[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrix A and vector c. If A has fewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace, see §2.6, especially Figure 2.6.1), then
minimizing A[u] will not give a unique solution for u. (To see why, review §15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple λ times a nondegenerate quadratic form B[u], for example u · H · u with H
a positive definite matrix, then minimization of A[u] + λB[u] will lead to a unique
solution for u. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)
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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose thatu is an “unknown” vector that we plan to
determine by some minimization principle. LetA[u] > 0 andB[u] > 0 be two
positive functionals ofu, so that we can try to determineu by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers foru.) As another possibility,
now suppose that we want to minimizeA[u] subject to theconstraint thatB[u] have
some particular value, sayb. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u] − b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

whereλ1 is a Lagrange multiplier. Notice thatb is absent in the second equality,
since it doesn’t depend onu.

Next, suppose that we change our minds and decide to minimizeB[u] subject
to the constraint thatA[u] have a particular value,a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u] − a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time,λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant1/λ2, and identifying1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say,u(λ1). As λ1 varies from0 to ∞, the solutionu(λ1)
varies along a so-calledtrade-off curve between the problem of minimizingA and
the problem of minimizingB. Any solution along this curve can equally well
be thought of as either (i) a minimization ofA for some constrained value ofB,
or (ii) a minimization ofB for some constrained value ofA, or (iii) a weighted
minimization of the sumA + λ1B.

The second preliminary point has to do withdegenerate minimization principles.
In the example above, now suppose thatA[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrixA and vectorc. If A has fewer rows than columns, or ifA is square
but degenerate (has a nontrivial nullspace, see§2.6, especially Figure 2.6.1), then
minimizingA[u] will not give a unique solution foru. (To see why, review§15.4,
and note that for a “design matrix”A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.)However, if we add any
multipleλ times a nondegenerate quadratic formB[u], for exampleu · H · u with H
a positive definite matrix, then minimization ofA[u] + λB[u] will lead to a unique
solution foru. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)
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We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are positive,
only one of the two need be nondegenerate for the overall problem to be well-posed.
We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose thatu(x) is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set ofN
measurementsci, i = 1, 2, . . . , N . The relation betweenu(x) and theci’s is that
eachci measures a (hopefully distinct) aspect ofu(x) through its own linear response
kernelri, and with its own measurement errorni. In other words,

ci ≡ si + ni =
∫

ri(x)u(x)dx + ni (18.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. Theci’s might approximate values ofu(x) at
certain locationsxi, in which caseri(x) would have the form of a more or less
narrow instrumental response centered aroundx = x i. Or, theci’s might “live” in an
entirely different function space fromu(x), measuring different Fourier components
of u(x) for example.

Theinverse problem is, given theci’s, theri(x)’s, and perhaps some information
about the errorsni such as their covariance matrix

Sij ≡ Covar[ni, nj ] (18.4.6)

how do we find a good statistical estimator ofu(x), call it û(x)?
It should be obvious that this is an ill-posed problem. After all, how can we

reconstruct a whole function̂u(x) from only a finite number of discrete valuesc i?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying functionu(x), or about
the nature of the response functionsri(x), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every pointx of the functionû(x). We do want some
large numberM of discrete pointsxµ, µ = 1, 2, . . . , M , whereM is sufficiently
large, and thexµ’s are sufficiently evenly spaced, that neitheru(x) nor r i(x) varies
much between anyxµ andxµ+1. (Here and following we will use Greek letters like
µ to denote values in the space of the underlying process, and Roman letters likei
to denote values of immediate observables.) For such a dense set ofxµ’s, we can
replace equation (18.4.5) by a quadrature like

ci =
∑

µ

Riµu(xµ) + ni (18.4.7)

where theN × M matrix R has components

Riµ ≡ ri(xµ)(xµ+1 − xµ−1)/2 (18.4.8)
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(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(xµ)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form aχ2 measure of how well a model̂u(x) agrees with the measured data,

χ2 =
N∑

i=1

N∑
j=1

[
ci −

M∑
µ=1

Riµû(xµ)

]
S−1

ij

[
cj −

M∑
µ=1

Rjµû(xµ)

]

≈
N∑

i=1

[
ci −

∑M
µ=1 Riµû(xµ)

σi

]2
(18.4.9)

(compare with equation 15.1.5). HereS−1 is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with σi ≡ (Covar[i, i])1/2.

Now you can use the method of singular value decomposition (SVD) in§15.4
to find the vector̂u that minimizes equation (18.4.9). Don’t try to use the method
of normal equations; sinceM is greater thanN they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily largeû(xµ)’s) SVD will
select the one with smallest|û| in the sense of

∑
µ

[û(xµ)]2 a minimum (18.4.10)

(look at Figure 2.6.1). This solution is often called theprincipal solution. It
is a limiting case of what is calledzeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: χ2[û] + λ(û · û) (18.4.11)

in the limit of smallλ. Below, we will learn how to do such minimizations, as well
as more general ones, without thead hoc use of SVD.

What happens if we determinêu by equation (18.4.11) with a non-infinitesimal
value ofλ? First, note that ifM 
 N (many more unknowns than equations), then
u will often have enough freedom to be able to makeχ 2 (equation 18.4.9) quite
unrealistically small, if not zero. In the language of§15.1, the number of degrees of
freedomν = N − M , which is approximately the expected value ofχ 2 whenν is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for thetrue underlying functionu(x), which has no adjustable parameters, the
number of degrees of freedom and the expected value ofχ 2 should be aboutν ≈ N .

Increasingλ pulls the solution away from minimizingχ2 in favor of minimizing
û · û. From the preliminary discussion above, we can view this as minimizingû · û
subject to theconstraint that χ2 have some constant nonzero value. A popular
choice, in fact, is to find that value ofλ which yieldsχ2 = N , that is, to get about as
much extra regularization as a plausible value ofχ2 dictates. The resultinĝu(x) is
calledthe solution of the inverse problem with zeroth-order regularization.
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Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations:
agreement between data and solution, or “sharpness” of mapping between true and estimated solution (here
denoted A), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2N)1/2 (the asymptotic χ2

distribution). One might equally plausibly try two values of λ, one giving χ 2 =
N + (2N)1/2, the other N − (2N)1/2.

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g., χ2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that A alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional or regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “ smooth” or “stable” or “ likely” — and that has nothing
at all to do with the measured data.
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The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of 0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value of λ by one or another criterion, ranging
from fairly objective (e.g., making χ2 = N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a final λ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do with a priori expectation, or knowledge, of a solution, while
A has something to do with a posteriori knowledge. The constant λ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.

CITED REFERENCES AND FURTHER READING:

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64.

Frieden, B.R. 1975, in Picture Processing and Digital Filtering, T.S. Huang, ed. (New York:
Springer-Verlag).

Tarantola, A. 1987, Inverse Problem Theory (Amsterdam: Elsevier).

Baumeister, J. 1987, Stable Solution of Inverse Problems (Braunschweig, Germany: Friedr. Vieweg
& Sohn) [mathematically oriented].

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, pp. 381–387.

Jeffrey, W., and Rosner, R. 1986, Astrophysical Journal, vol. 310, pp. 463–472.

18.5 Linear Regularization Methods

What we will call linear regularization is also called the Phillips-Twomey
method [1,2], the constrained linear inversion method [3], the method of regulariza-
tion [4], and Tikhonov-Miller regularization [5-7]. (It probably has other names also,
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The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value ofλ by one or another criterion, ranging
from fairly objective (e.g., makingχ2 = N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices ofA and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a finalλ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do witha priori expectation, or knowledge, of a solution, while
A has something to do witha posteriori knowledge. The constantλ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.

CITED REFERENCES AND FURTHER READING:

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64.

Frieden, B.R. 1975, in Picture Processing and Digital Filtering, T.S. Huang, ed. (New York:
Springer-Verlag).

Tarantola, A. 1987, Inverse Problem Theory (Amsterdam: Elsevier).

Baumeister, J. 1987, Stable Solution of Inverse Problems (Braunschweig, Germany: Friedr. Vieweg
& Sohn) [mathematically oriented].

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, pp. 381–387.

Jeffrey, W., and Rosner, R. 1986, Astrophysical Journal, vol. 310, pp. 463–472.

18.5 Linear Regularization Methods

What we will call linear regularization is also called thePhillips-Twomey
method [1,2], theconstrained linear inversion method [3], themethod of regulariza-
tion [4], andTikhonov-Miller regularization [5-7]. (It probably has other names also,
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since it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 18.4.11, above). As before,
the functionalA is taken to be theχ2 deviation, equation (18.4.9), but the functional
B is replaced by more sophisticated measures of smoothness that derive from first
or higher derivatives.

For example, suppose that youra priori belief is that a credibleu(x) is not too
different from a constant. Then a reasonable functional to minimize is

B ∝
∫

[û′(x)]2dx ∝
M−1∑
µ=1

[ûµ − ûµ+1]2 (18.5.1)

since it is nonnegative and equal to zero only whenû(x) is constant. Here
ûµ ≡ û(xµ), and the second equality (proportionality) assumes that thexµ’s are
uniformly spaced. We can write the second form ofB as

B = |B · û|2 = û · (BT · B) · û ≡ û · H · û (18.5.2)

whereû is the vector of componentŝuµ, µ = 1, . . . ,M , B is the (M − 1) × M
first difference matrix

B =




−1 1 0 0 0 0 0 · · · 0
0 −1 1 0 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 0 −1 1 0
0 · · · 0 0 0 0 0 −1 1




(18.5.3)

and H is the M × M matrix

H = BT · B =




1 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1




(18.5.4)

Note thatB has one fewer row than column. It follows that the symmetricH
is degenerate; it has exactly one zero eigenvalue corresponding to thevalue of a
constant function, any one of which makesB exactly zero.

If, just as in §15.4, we write

Aiµ ≡ Riµ/σi bi ≡ ci/σi (18.5.5)

then, using equation (18.4.9), the minimization principle (18.4.12) is

minimize: A + λB = |A · û − b|2 + λû · H · û (18.5.6)

This can readily be reduced to a linear set ofnormal equations, just as in§15.4: The
componentŝuµ of the solution satisfy the set ofM equations inM unknowns,

∑
ρ

[(∑
i

AiµAiρ

)
+ λHµρ

]
ûρ =

∑
i

Aiµbi µ = 1, 2, . . . ,M (18.5.7)



18.5 Linear Regularization Methods 801

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

or, in vector notation,

(AT · A + λH) · û = AT · b (18.5.8)

Equations (18.5.7) or (18.5.8) can be solved by the standard techniques of
Chapter 2, e.g.,LU decomposition. The usual warnings about normal equations
being ill-conditioned do not apply, since the whole purpose of theλ term is to cure
that same ill-conditioning. Note, however, that theλ termby itself is ill-conditioned,
since it does not select a preferred constant value. You hope your data can at
least do that!

Although inversion of the matrix(AT ·A +λH) is not generally the best way to
solve forû, let us digress to write the solution to equation (18.5.8) schematically as

û =
(

1
AT · A + λH

· AT · A
)

A−1 · b (schematic only!) (18.5.9)

where the identity matrix in the formA · A−1 has been inserted. This is schematic
not only because the matrix inverse is fancifully written as a denominator, but
also because, in general, the inverse matrixA−1 does not exist. However, it is
illuminating to compare equation (18.5.9) with equation (13.3.6) for optimal or
Wiener filtering, or with equation (13.6.6) for general linear prediction. One sees
that AT · A plays the role ofS2, the signal power or autocorrelation, whileλH
plays the role ofN 2, the noise power or autocorrelation. The term in parentheses
in equation (18.5.9) is something like an optimal filter, whose effect is to pass the
ill-posed inverseA−1 · b through unmodified whenAT · A is sufficiently large, but
to suppress it whenAT · A is small.

The above choices ofB andH are only the simplest in an obvious sequence of
derivatives. If youra priori belief is that alinear function is a good approximation
to u(x), then minimize

B ∝
∫

[û′′(x)]2dx ∝
M−2∑
µ=1

[−ûµ + 2ûµ+1 − ûµ+2]2 (18.5.10)

implying

B =




−1 2 −1 0 0 0 0 · · · 0
0 −1 2 −1 0 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1




(18.5.11)

and

H = BT · B =




1 −2 1 0 0 0 0 · · · 0
−2 5 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0
0 1 −4 6 −4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 −4 6 −4 1 0
0 · · · 0 0 1 −4 6 −4 1
0 · · · 0 0 0 1 −4 5 −2
0 · · · 0 0 0 0 1 −2 1




(18.5.12)
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ThisH has two zero eigenvalues, corresponding to the two undetermined parameters
of a linear function.

If your a priori belief is that aquadratic function is preferable, then minimize

B ∝
∫

[û′′′(x)]2dx ∝
M−3∑
µ=1

[−ûµ + 3ûµ+1 − 3ûµ+2 + ûµ+3]2 (18.5.13)

with

B =




−1 3 −3 1 0 0 0 · · · 0
0 −1 3 −3 1 0 0 · · · 0
...

. . .
...

0 · · · 0 0 −1 3 −3 1 0
0 · · · 0 0 0 −1 3 −3 1




(18.5.14)

and now

H =




1 −3 3 −1 0 0 0 0 0 · · · 0
−3 10 −12 6 −1 0 0 0 0 · · · 0

3 −12 19 −15 6 −1 0 0 0 · · · 0
−1 6 −15 20 −15 6 −1 0 0 · · · 0

0 −1 6 −15 20 −15 6 −1 0 · · · 0
...

. . .
...

0 · · · 0 −1 6 −15 20 −15 6 −1 0
0 · · · 0 0 −1 6 −15 20 −15 6 −1
0 · · · 0 0 0 −1 6 −15 19 −12 3
0 · · · 0 0 0 0 −1 6 −12 10 −3
0 · · · 0 0 0 0 0 −1 3 −3 1




(18.5.15)
(We’ll leave the calculation of cubics and above to the compulsive reader.)

Notice that you can regularize with “closeness to a differential equation,” if
you want. Just pickB to be the appropriate sum of finite-difference operators (the
coefficients can depend onx), and calculateH = BT · B. You don’t need to know
the values of your boundary conditions, sinceB can have fewer rows than columns,
as above; hopefully, your data will determine them. Of course, if you do know some
boundary conditions, you can build these intoB too.

With all the proportionality signs above, you may have lost track of what actual
value ofλ to try first. A simple trick for at least getting “on the map” is to first try

λ = Tr(AT · A)/Tr(H) (18.5.16)

where Tr is the trace of the matrix (sum of diagonal components). This choice
will tend to make the two parts of the minimization have comparable weights, and
you can adjust from there.

As for what is the “correct” value ofλ, an objective criterion, if you know
your errorsσi with reasonable accuracy, is to makeχ2 (that is,|A · û − b|2) equal
to N , the number of measurements. We remarked above on the twin acceptable
choicesN ± (2N)1/2. A subjective criterion is to pick any value that you like in the
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range0 < λ < ∞, depending on your relative degree of belief in thea priori anda
posteriori evidence. (Yes, people actually do that. Don’t blame us.)

Two-Dimensional Problems and Iterative Methods

Up to now our notation has been indicative of a one-dimensional problem,
finding û(x) or ûµ = û(xµ). However, all of the discussion easily generalizes to the
problem of estimating a two-dimensional set of unknownsûµκ, µ = 1, . . . ,M, κ =
1, . . . ,K, corresponding, say, to the pixel intensities of a measured image. In this
case, equation (18.5.8) is still the one we want to solve.

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, so the matricesR andA (equation 18.5.5) are square and of sizeMK×MK.
A is typically much too large to represent as a full matrix, but often it is either (i)
sparse, with coefficients blurring an underlying pixel(i, j) only into measurements
(i±few, j±few), or (ii) translationally invariant, so thatA(i,j)(µ,ν) = A(i−µ, j−ν).
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are the
obvious method of choice. The general linear relation between underlying function
and measured values (18.4.7) now becomes a discrete convolution like equation
(13.1.1). Ifk denotes a two-dimensional wave-vector, then the two-dimensional FFT
takes us back and forth between the transform pairs

A(i−µ, j− ν) ⇐⇒ Ã(k) b(i,j) ⇐⇒ b̃(k) û(i,j) ⇐⇒ ũ(k) (18.5.17)

We also need a regularization or smoothing operatorB and the derivedH = B T · B.
One popular choice forB is the five-point finite-difference approximation of the
Laplacian operator, that is, the difference between the value of each point and the
average of its four Cartesian neighbors. In Fourier space, this choice implies,

B̃(k) ∝ sin2(πk1/M) sin2(πk2/K)

H̃(k) ∝ sin4(πk1/M) sin4(πk2/K)
(18.5.18)

In Fourier space, equation (18.5.7) is merely algebraic, with solution

ũ(k) =
Ã*(k)̃b(k)

|Ã(k)|2 + λH̃(k)
(18.5.19)

where asterisk denotes complex conjugation. You can make use of the FFT routines
for real data in§12.5.

Turn now to the case whereA is not translationally invariant. Direct solution
of (18.5.8) is now hopeless, since the matrixA is just too large. We need some
kind of iterative scheme.

One way to proceed is to use the full machinery of the conjugate gradient
method in§10.6 to find the minimum ofA + λB, equation (18.5.6). Of the various
methods in Chapter 10, conjugate gradient is the unique best choice because (i)
it does not require storage of a Hessian matrix, which would be infeasible here,
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and (ii) it does exploit gradient information, which we can readily compute: The
gradient of equation (18.5.6) is

∇(A + λB) = 2[(AT · A + λH) · û − AT · b] (18.5.20)

(cf. 18.5.8). Evaluation of both the function and the gradient should of course take
advantage of the sparsity ofA, for example via the routinessprsax andsprstx
in §2.7. We will discuss the conjugate gradient technique further in§18.7, in the
context of the (nonlinear) maximum entropy method. Some of that discussion can
apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (see§10.6) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the
solution afterk iterations is denoted̂u(k), then afterk + 1 iterations we have

û(k+1) = [1 − ε(AT · A + λH)] · û(k) + εAT · b (18.5.21)

Hereε is a parameter that dictates how far to move in the downhill gradient direction.
The method converges whenε is small enough, in particular satisfying

0 < ε <
2

max eigenvalue(AT · A + λH)
(18.5.22)

There exist complicated schemes for finding optimal values or sequences forε,
see[7]; or, one can adopt an experimental approach, evaluating (18.5.6) to be sure
that downhill steps are in fact being taken.

In those image processing problems where the final measure of success is
somewhat subjective (e.g., “how good does the picture look?”), iteration (18.5.21)
sometimes produces significantly improved images long before convergence is
achieved. This probably accounts for much of its use, since its mathematical
convergence is extremely slow. In fact, (18.5.21) can be used withH = 0, in which
case the solution is not regularized at all, and full convergence would be disastrous!
This is calledVan Cittert’s method and goes back to the 1930s. A number of
iterations the order of 1000 is not uncommon[7].

Deterministic Constraints: Projections onto Convex Sets

A set of possible underlying functions (or images){ û} is said to beconvex if,
for any two elementŝua andûb in the set, all the linearly interpolated combinations

(1 − η)ûa + ηûb 0 ≤ η ≤ 1 (18.5.23)

are also in the set. Manydeterministic constraints that one might want to impose on
the solution̂u to an inverse problem in fact define convex sets, for example:

• positivity
• compact support (i.e., zero value outside of a certain region)
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• known bounds (i.e.,uL(x) ≤ û(x) ≤ uU (x) for specified functionsuL

and uU ).
(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g., û0(x) ± γσ(x), whereγ is of order 1 or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or (in
fact) in the space of any linear transformation ofû.

If Ci is a convex set, thenPi is called anonexpansive projection operator onto
that set if (i)Pi leaves unchanged anŷu already inCi, and (ii)Pi maps anŷu outside
Ci to the closest element ofCi, in the sense that

|Piû − û| ≤ |ûa − û| for all ûa in Ci (18.5.24)

While this definition sounds complicated, examples are very simple: A nonexpansive
projection onto the set of positivêu’s is “set all negative components of̂u equal
to zero.” A nonexpansive projection onto the set ofû(x)’s bounded byu L(x) ≤
û(x) ≤ uU (x) is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equal tothat bound.” A nonexpansive
projection onto functions with compact support is “zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorem: LetC
be the intersection ofm convex setsC1, C2, . . . , Cm. Then the iteration

û(k+1) = (P1P2 · · · Pm)û(k) (18.5.25)

will converge toC from all starting points, ask → ∞. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called themethod of projections onto convex sets or sometimesPOCS [7].

A generalization of the POCS theorem is that thePi’s can be replaced by
a set ofTi’s,

Ti ≡ 1 + βi(Pi − 1) 0 < βi < 2 (18.5.26)

A well-chosen set ofβi’s can accelerate the convergence to the intersection setC.
Some inverse problems can be completely solved by iteration (18.5.25) alone!

For example, a problem that occurs in both astronomical imaging and X-ray
diffraction work is to recover an image given only themodulus of its Fourier
transform (equivalent to its power spectrum or autocorrelation) and not thephase.
Here three convex sets can be utilized: the set of all images whose Fourier transform
has the specified modulus to within specified error bounds; the set of all positive
images; and the set of all images with zero intensity outside of some specified region.
In this case the POCS iteration (18.5.25) cycles among these three, imposing each
constraint in turn; FFTs are used to get in and out of Fourier space each time the
Fourier constraint is imposed.

The specific application of POCS to constraints alternately in the spatial and
Fourier domains is also known as theGerchberg-Saxton algorithm [8]. While this
algorithm is non-expansive, and is frequently convergent in practice, it has not been
proved to converge in all cases[9]. In the phase-retrieval problem mentioned above,
the algorithm often “gets stuck” on a plateau for many iterations before making
sudden, dramatic improvements. As many as104 to 105 iterations are sometimes
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necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = (1 − ελH) · û(k) + εAT · (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[(1 − ελH) · û(k) + εAT · (b − A · û(k))] (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.

CITED REFERENCES AND FURTHER READING:

Phillips, D.L. 1962, Journal of the Association for Computing Machinery, vol. 9, pp. 84–97. [1]

Twomey, S. 1963, Journal of the Association for Computing Machinery, vol. 10, pp. 97–101. [2]

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier). [3]

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).
[4]

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley). [5]

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Miller, K. 1970, SIAM Journal on Mathematical Analysis, vol. 1, pp. 52–74. [6]

Schafer, R.W., Mersereau, R.M., and Richards, M.A. 1981, Proceedings of the IEEE, vol. 69,
pp. 432–450.

Biemond, J., Lagendijk, R.L., and Mersereau, R.M. 1990, Proceedings of the IEEE, vol. 78,
pp. 856–883. [7]

Gerchberg, R.W., and Saxton, W.O. 1972, Optik, vol. 35, pp. 237–246. [8]

Fienup, J.R. 1982, Applied Optics, vol. 15, pp. 2758–2769. [9]

Fienup, J.R., and Wackerman, C.C. 1986, Journal of the Optical Society of America A, vol. 3,
pp. 1897–1907. [10]

18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. ForB, the
method seeks to maximize thestability of the solutionû(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)
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necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = (1 − ελH) · û(k) + εAT · (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[(1 − ελH) · û(k) + εAT · (b − A · û(k))] (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.
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18.6 Backus-Gilbert Method

TheBackus-Gilbert method [1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. ForB, the
method seeks to maximize thestability of the solutionû(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)
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is used as a measure of how much the solutionû(x) varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
û(x) from the trueu(x) — that will be constrained byA — but rather measures
the expected experiment-to-experiment scatter among estimatesû(x) if the whole
experiment were to be repeated many times.

ForA the Backus-Gilbert method looks at the relationship between the solution
û(x) and the true functionu(x), and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method is
linear, so the relationship betweenû(x) andu(x) can be written as

û(x) =
∫

δ̂(x, x′)u(x′)dx′ (18.6.2)

for some so-calledresolution function or averaging kernel δ̂(x, x′). The Backus-
Gilbert method seeks to minimize the width orspread of δ̂ (that is, maximize the
resolving power).A is chosen to be some positive measure of the spread.

While Backus-Gilbert’s philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods are
less than one might think. Astable solution is almost inevitably bound to be
smooth: The wild, unstable oscillations that result from an unregularized solution
are always exquisitely sensitive to small changes in the data. Likewise, making
û(x) close tou(x) inevitably will bring error-free data into agreement with the
model. ThusA andB play roles closely analogous to their corresponding roles
in the previous two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability and
resolving power. Moreover, in the Backus-Gilbert method, the choice ofλ (playing
its usual role of compromise betweenA andB) is conventionally made, or at least
can easily be made,before any actual data are processed. One’s uneasiness at making
apost hoc, and therefore potentially subjectively biased, choice ofλ is thus removed.
Backus-Gilbert is often recommended as the method of choice for designing, and
predicting the performance of, experiments that require data inversion.

Let’s see how this all works. Starting with equation (18.4.5),

ci ≡ si + ni =
∫

ri(x)u(x)dx + ni (18.6.3)

and building in linearity from the start, we seek a set ofinverse response kernels
qi(x) such that

û(x) =
∑

i

qi(x)ci (18.6.4)

is the desired estimator ofu(x). It is useful to define the integrals of the response
kernels for each data point,

Ri ≡
∫

ri(x)dx (18.6.5)



808 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Substituting equation (18.6.4) into equation (18.6.3), and comparing with equation
(18.6.2), we see that

δ̂(x, x′) =
∑

i

qi(x)ri(x′) (18.6.6)

We can require this averaging kernel to have unit area at everyx, giving

1 =
∫

δ̂(x, x′)dx′ =
∑

i

qi(x)
∫

ri(x′)dx′ =
∑

i

qi(x)Ri ≡ q(x) · R (18.6.7)

whereq(x) andR are each vectors of lengthN , the number of measurements.
Standard propagation of errors, and equation (18.6.1), give

B = Var[û(x)] =
∑

i

∑
j

qi(x)Sijqj(x) = q(x) · S · q(x) (18.6.8)

whereSij is the covariance matrix (equation 18.4.6). If one can neglect off-diagonal
covariances (as when the errors on theci’s are independent), thenSij = δijσ

2
i

is diagonal.
We now need to define a measure of the width or spread ofδ̂(x, x′) at each

value ofx. While many choices are possible, Backus and Gilbert choose the second
moment of its square. This measure becomes the functionalA,

A ≡ w(x) =
∫

(x′ − x)2[δ̂(x, x′)]2dx′

=
∑

i

∑
j

qi(x)Wij(x)qj(x) ≡ q(x) · W(x) · q(x)
(18.6.9)

where we have here used equation (18.6.6) and defined thespread matrix W(x) by

Wij(x) ≡
∫

(x′ − x)2ri(x′)rj(x′)dx′ (18.6.10)

The functionsqi(x) are now determined by the minimization principle

minimize: A + λB = q(x) · [W(x) + λS
] · q(x) (18.6.11)

subject to the constraint (18.6.7) thatq(x) · R = 1.
The solution of equation (18.6.11) is

q(x) =
[W(x) + λS]−1 · R

R · [W(x) + λS]−1 · R
(18.6.12)

(Reference[4] gives an accessible proof.) For any particular data setc (set of
measurementsci), the solutionû(x) is thus

û(x) =
c · [W(x) + λS]−1 · R
R · [W(x) + λS]−1 · R

(18.6.13)
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(Don’t let this notation mislead you into inverting the full matrixW(x) + λS. You
only need to solve for somey the linear system(W(x) + λS) · y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variablex, soM does not come into play at all. One solves a different
N × N set of linear equations for each desired value ofx. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one chooseλ within the Backus-Gilbert scheme? As already
mentioned, you can (in some casesshould) make the choicebefore you see any actual
data. For a given trial value ofλ, and for a sequence ofx’s, use equation (18.6.12)
to calculateq(x); then use equation (18.6.6) to plot the resolution functionsδ̂(x, x′)
as a function ofx′. These plots will exhibit the amplitude with which different
underlying valuesx′ contribute to the point̂u(x) of your estimate. For the same
value ofλ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You need an

estimate of your measurement covariance matrix for this.)
As you changeλ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even chooseλ to be a
function ofx, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for eachx.) For
the chosen value or values ofλ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, Geophysical Journal of the Royal Astronomical Society,
vol. 16, pp. 169–205. [1]

Backus, G.E., and Gilbert, F. 1970, Philosophical Transactions of the Royal Society of London
A, vol. 266, pp. 123–192. [2]

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64. [3]

Loredo, T.J., and Epstein, R.I. 1989, Astrophysical Journal, vol. 336, pp. 896–919. [4]

18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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(Don’t let this notation mislead you into inverting the full matrixW(x) + λS. You
only need to solve for somey the linear system(W(x) + λS) · y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variablex, soM does not come into play at all. One solves a different
N ×N set of linear equations for each desired value ofx. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one chooseλ within the Backus-Gilbert scheme? As already
mentioned, you can (in some casesshould) make the choicebefore you see any actual
data. For a given trial value ofλ, and for a sequence ofx’s, use equation (18.6.12)
to calculateq(x); then use equation (18.6.6) to plot the resolution functionsδ̂(x, x′)
as a function ofx′. These plots will exhibit the amplitude with which different
underlying valuesx′ contribute to the point̂u(x) of your estimate. For the same
value ofλ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You need an

estimate of your measurement covariance matrix for this.)
As you changeλ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even chooseλ to be a
function ofx, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for eachx.) For
the chosen value or values ofλ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, Geophysical Journal of the Royal Astronomical Society,
vol. 16, pp. 169–205. [1]

Backus, G.E., and Gilbert, F. 1970, Philosophical Transactions of the Royal Society of London
A, vol. 266, pp. 123–192. [2]

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64. [3]

Loredo, T.J., and Epstein, R.I. 1989, Astrophysical Journal, vol. 336, pp. 896–919. [4]

18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
namedmaximum entropy method or MEM, are unrelated.

Bayes’ Theorem, which follows from the standard axioms of probability, relates
the conditional probabilities of two events, sayA andB:

Prob(A|B) = Prob(A)
Prob(B|A)
Prob(B)

(18.7.1)

Here Prob(A|B) is the probability ofA given thatB has occurred, and similarly for
Prob(B|A), while Prob(A) and Prob(B) are unconditional probabilities.

“Bayesians” (so-called) adopt a broader interpretation of probabilities than do
so-called “frequentists.” To a Bayesian,P (A|B) is a measure of the degree of
plausibility ofA (givenB) on a scale ranging from zero to one. In this broader view,
A andB need not be repeatable events; they can be propositions or hypotheses.
The equations of probability theory then become a set of consistent rules for
conducting inference[1,2]. Since plausibility is itself always conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilities are viewed as
conditional on some collective background informationI.

SupposeH is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign toH some degree of plausibility Prob(H |I), called the
“Bayesian prior.” Now, when some dataD1 comes along, Bayes theorem tells how
to reassess the plausibility ofH ,

Prob(H |D1I) = Prob(H |I)Prob(D1|HI)
Prob(D1|I) (18.7.2)

The factor in the numerator on the right of equation (18.7.2) is calculable as the
probability of a data setgiven the hypothesis (compare with “likelihood” in§15.1).
The denominator, called the “prior predictive probability” of the data, is in this case
merely a normalization constant which can be calculated by the requirement that
the probability of all hypotheses should sum to unity. (In other Bayesian contexts,
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additional dataD2 comes along tomorrow, we can further refine our
estimate ofH ’s probability, as

Prob(H |D2D1I) = Prob(H |D1I)
Prob(D2|HD1I)
Prob(D2|D1I)

(18.7.3)

Using the product rule for probabilities, Prob(AB|C) = Prob(A|C)Prob(B|AC),
we find that equations (18.7.2) and (18.7.3) imply

Prob(H |D2D1I) = Prob(H |I)Prob(D2D1|HI)
Prob(D2D1|I) (18.7.4)

which shows that we would have gotten the same answer if all the dataD1D2

had been taken together.
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From a Bayesian perspective, inverse problems are inference problems[3,4]. The
underlying parameter setu is a hypothesis whose probability, given the measured
data valuesc, and the Bayesian prior Prob(u|I) can be calculated. We might want
to report a single “best” inverseu, the one that maximizes

Prob(u|cI) = Prob(c|uI)Prob(u|I)
Prob(c|I) (18.7.5)

over all possible choices ofu. Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possibleu’s with
high relative probability, the so-called “posterior bubble” inu.

The calculation of the probability of the datac, given the hypothesisu proceeds
exactly as in the maximum likelihood method. For Gaussian errors, e.g., it is given by

Prob(c|uI) = exp(−1
2
χ2)∆u1∆u2 · · ·∆uM (18.7.6)

whereχ2 is calculated fromu and c using equation (18.4.9), and the∆u µ’s are
constant, small ranges of the components ofu whose actual magnitude is irrelevant,
because they do not depend onu (compare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Prob(u|I) to
be constant. That was a luxury that we could afford when estimating a small number
of parameters from a large amount of data. Here, the number of “parameters”
(components ofu) is comparable to or larger than the number of measured values
(components ofc); we need to have a nontrivial prior, Prob(u|I), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is whereentropy comes in. The
entropy of a physical system in some macroscopic state, usually denotedS, is the
logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables (i.e., consistent with the observed macroscopic
state). Actually, we will find it useful to denote thenegative of the entropy, also
called thenegentropy, by H ≡ −S (a notation that goes back to Boltzmann). In
situations where there is reason to believe that thea priori probabilities of the
microscopic configurations are all the same (these situations are calledergodic), then
the Bayesian prior Prob(u|I) for a macroscopic state with entropyS is proportional
to exp(S) or exp(−H).

MEM uses this concept to assign a prior probability to any given underlying
functionu. For example[5-7], suppose that the measurement of luminance in each
pixel is quantized to (in some units) an integer value. Let

U =
M∑

µ=1

uµ (18.7.7)

be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an equala priori chance of
being in any pixel. (See[8] for a more abstract justification of this idea.) The number
of ways of getting a particular configurationu is

U !
u1!u2! · · ·uM !

∝ exp

[
−
∑

µ

uµ ln(uµ/U) +
1
2

(
lnU −

∑
µ

lnuµ

)]
(18.7.8)
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Here the left side can be understood as the number of distinct orderings of all
the luminance quanta, divided by the numbers of equivalent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factorial
function. Taking the negative of the logarithm, and neglecting terms of orderlogU
in the presence of terms of orderU , we get the negentropy

H(u) =
M∑

µ=1

uµ ln(uµ/U) (18.7.9)

From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize

Prob(u|c) ∝ exp
[
−1

2
χ2

]
exp[−H(u)] (18.7.10)

or, equivalently,

minimize: − ln [ Prob(u|c) ] =
1
2
χ2[u] + H(u) =

1
2
χ2[u] +

M∑
µ=1

uµ ln(uµ/U)

(18.7.11)

This ought to remind you of equation (18.4.11), or equation (18.5.6), or in fact any of
our previous minimization principles along the lines ofA + λB, whereλB = H(u)
is a regularizing operator. Where isλ? We need to put it in for exactly the reason
discussed following equation (18.4.11): Degenerate inversions are likely to be able
to achieve unrealistically small values ofχ2. We need an adjustable parameter to
bringχ2 into its expected narrow statistical range ofN ± (2N)1/2. The discussion at
the beginning of§18.4 showed that it makes no difference which term we attach the
λ to. For consistency in notation, we absorb a factor 2 intoλ and put it on the entropy
term. (Another way to see the necessity of an undeterminedλ factor is to note that it
is necessary if our minimization principle is to be invariant under changing the units
in which u is quantized, e.g., if an 8-bit analog-to-digital converter is replaced by a
12-bit one.) We can now also put “hats” back to indicate that this is the procedure
for obtaining our chosen statistical estimator:

minimize: A + λB = χ2[û] + λH(û) = χ2[û] + λ

M∑
µ=1

ûµ ln(ûµ) (18.7.12)

(Formally, we might also add a second Lagrange multiplierλ ′U , to constrain the
total intensityU to be constant.)

It is not hard to see that the negentropy,H( û), is in fact a regularizing operator,
similar to û · û (equation 18.4.11) or̂u · H · û (equation 18.5.6). The following of
its properties are noteworthy:

1. WhenU is held constant,H(û) is minimized forûµ = U/M = constant, so it
smooths in the sense of trying to achieve a constant solution, similar to equation
(18.5.4). The fact that the constant solution is a minimum follows from the fact
that the second derivative ofu lnu is positive.
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2. Unlike equation (18.5.4), however,H( û) is local, in the sense that it does not
difference neighboring pixels. It simply sums some functionf , here

f(u) = u lnu (18.7.13)

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels
in an image. This form implies thatH(û) is not seriously increased by the
occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H(û) goes to infinite slope as any one pixel goes to zero. This causes it to
enforce positivity of the image, without the necessity of additional deterministic
constraints.

4. The biggest difference betweenH(û) and the other regularizing operators that
we have met is thatH(û) is not a quadratic functional of̂u, so the equations
obtained by varying equation (18.7.12) arenonlinear. This fact is itself worthy
of some additional discussion.
Nonlinear equations are harder to solve than linear equations. For image

processing, however, the large number of equations usually dictates an iterative
solution procedure, even for linear equations, so the practical effect of the nonlinearity
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
inversion can be, in part, traced to the nonlinearity ofH( û). One way to see this[5]

is to consider the limit of perfect measurementsσi → 0. In this case theχ2 term in
the minimization principle (18.7.12) gets replaced by a set of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize:
∑

j

λj

[
cj −

∑
µ

Rjµûµ

]
+ H(û) (18.7.14)

(cf. equation 18.4.7). Setting the formal derivative with respect toû µ to zero gives

∂H

∂ûµ
= f ′(ûµ) =

∑
j

λjRjµ (18.7.15)

or defining a functionG as the inverse function off ′,

ûµ = G


∑

j

λjRjµ


 (18.7.16)

This solution is only formal, since theλj ’s must be found by requiring that equation
(18.7.16) satisfy all the constraints built into equation (18.7.14). However, equation
(18.7.16) does show the crucial fact that ifG is linear, then the solution̂u containsonly
a linear combination of basis functionsRjµ corresponding to actual measurements
j. This is equivalent to setting unmeasuredcj ’s to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a linearG.
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In the problem of incomplete Fourier image reconstruction, the typicalR jµ

has the formexp(−2πikj · xµ), wherexµ is a two-dimensional vector in the image
space andkµ is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of setting unmeasuredcj ’s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for small values of its argument, larger for large values, then ripples
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution”). This behavior on the slope
of G is equivalent to requiringf ′′′(u) < 0. For f(u) = u lnu, we in fact have
f ′′′(u) = −1/u2 < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero values
for the unmeasuredci’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)? Recall that that equation is
based on the assumption that luminance elements area priori distributed over the
pixels uniformly. If we instead had some other preferreda priori image in mind, one
with pixel intensitiesmµ, then it is easy to show that the negentropy becomes

H(u) =
M∑

µ=1

uµ ln(uµ/mµ) + constant (18.7.17)

(the constant can then be ignored). All the rest of the discussion then goes through.
More fundamentally, and despite statements by zealots to the contrary[7], there

is actually nothing universal about the functional formf(u) = u lnu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functional is actuallyf(u) = − lnu (see[5] for other examples). In general, the
question, “Entropy of what?” is not uniquely answerable in any particular situation.
(See reference[9] for an attempt at articulating a more general principle that reduces
to one or another entropy functional under appropriate circumstances.)

The four numbered properties summarized above, plus the desirable sign for
nonlinearity,f ′′′(u) < 0, are all as true forf(u) = − lnu as forf(u) = u lnu. In
fact these properties are shared by a nonlinear function as simple asf(u) = −√

u,
which has no information theoretic justification at all (no logarithms!). MEM
reconstructions of test images using any of these entropy forms are virtually
indistinguishable[5].

By all available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of the general regularization schemeA+λB that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which also contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason to suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.
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Algorithms for MEM

The goal is to find the vector̂u that minimizesA + λB where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

A = |b − A · û|2 B =
∑

µ

f(ûµ) (18.7.18)

Compared with a “general” minimization problem, we have the advantage that
we can compute the gradients and the second partial derivative matrices (Hessian
matrices) explicitly,

∇A = 2(AT · A · û − AT · b) ∂2A
∂ûµ∂ûρ

= [2AT · A]µρ

[∇B]µ = f ′(ûµ) ∂2B
∂ûµ∂ûρ

= δµρf
′′(ûµ)

(18.7.19)

It is important to note that whileA’s second partial derivative matrix cannot be stored
(its size is the square of the number of pixels), it can be applied to any vector by
first applyingA, thenAT . In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a translation invariant point spread function,
these applications will typically involve several FFTs. Likewise, the calculation of
the gradient∇A will involve FFTs in the application ofA andAT .

While some success has been achieved with the classical conjugate gradient
method (§10.6), it is often found that the nonlinearity inf(u) = u lnu causes
problems. Attempted steps that giveû with even one negative value must be cut in
magnitude, sometimes so severely as to slow the solution to a crawl. The underlying
problem is that the conjugate gradient method develops its information about the
inverse of the Hessian matrix a bit at a time, while changing its location in the search
space. When a nonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skilling and collaborators[6,7,10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single search
direction, but in a small- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew at each landing point. The subspace basis vectors are
chosen in such a way as to avoid directions leading to negative values. One of the
most successful choices is the three-dimensional subspace spanned by the vectors
with components given by

e(1)
µ = ûµ[∇A]µ

e(2)
µ = ûµ[∇B]µ

e(3)
µ =

ûµ

∑
ρ(∂

2A/∂ûµ∂ûρ)ûρ[∇B]ρ√∑
ρ ûρ ([∇B]ρ)

2
− ûµ

∑
ρ(∂

2A/∂ûµ∂ûρ)ûρ[∇A]ρ√∑
ρ ûρ ([∇A]ρ)

2

(18.7.20)

(In these equations there is no sum overµ.) The form of thee (3) has some justification
if one views dot products as occurring in a space with the metricgµν = δµν/uµ,
chosen to make zero values “far away”; see[6].
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Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as in§10.7, equation (10.7.4). The size of a step∆ û is required
to be limited by the inequality

∑
µ

(∆ûµ)2/ûµ < (0.1 to 0.5)U (18.7.21)

Because the gradient directions∇A and∇B are separately available, it is possible
to combine the minimum search with a simultaneous adjustment ofλ so as finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Cornwell and Evans[12]. Here, noting thatB’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation to
A’s Hessian, namely2AT · A. If Λµ denotes the diagonal components of such an
approximation, then a useful step in̂u would be

∆ûµ = − 1
Λµ + λf ′′(ûµ)

(∇A + λ∇B) (18.7.22)

(again compare equation 10.7.4). Even more extreme, one might seek an approx-
imation with constant diagonal elements,Λµ = Λ, so that

∆ûµ = − 1
Λ + λf ′′(ûµ)

(∇A + λ∇B) (18.7.23)

SinceAT · A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp
central peak, even the more extreme of these approximations is often fruitful. One
starts with a rough estimate ofΛ obtained from theA iµ’s, e.g.,

Λ ∼
〈∑

i

[Aiµ]2
〉

(18.7.24)

An accurate value is not important, since in practiceΛ is adjusted adaptively: IfΛ
is too large, then equation (18.7.23)’s steps will be too small (that is, larger steps in
the same direction will produce even greater decrease inA + λB). If Λ is too small,
then attempted steps will land in an unfeasible region (negative values ofû µ), or will
result in an increasedA+λB. There is an obvious similarity between the adjustment
of Λ here and the Levenberg-Marquardt method of§15.5; this should not be too
surprising, since MEM is closely akin to the problem of nonlinear least-squares
fitting. Reference[12] also discusses how the value ofΛ + λf ′′(ûµ) can be used to
adjust the Lagrange multiplierλ so as to converge to the desired value ofχ 2.

All practical MEM algorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
go under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. See[13] for details and references.
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• Better priors: We already noted that the entropy functional (equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “intrinsic correlation function” (ICF) model
(Ref. [13], where it is called “New MaxEnt”) is similar enough to the
entropy functional to allow similar algorithms, but it makes the values of
neighboring pixels correlated, enforcing smoothness.

• Better estimation ofλ: Above we choseλ to bringχ2 into its expected
narrow statistical range ofN ± (2N)1/2. This in effect overestimatesχ2,
however, since some effective numberγ of parameters are being “fitted” in
doing the reconstruction. A Bayesian approach leads to a self-consistent
estimate of thisγ and an objectively better choice forλ.
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Chapter 19. Partial Differential

Equations

19.0 Introduction

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipesdealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)

In most mathematics books, partial differential equations (PDEs) are classified
into the three categories, hyperbolic, parabolic,and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical example of
a hyperbolic equation is the one-dimensional waveequation

∂2u

∂t2
= v2 ∂2u

∂x2
(19.0.1)

where v = constant is the velocity of wave propagation. The prototypical parabolic
equation is the diffusion equation

∂u

∂t
=

∂

∂x

(
D

∂u

∂x

)
(19.0.2)

where D is the diffusion coefficient. The prototypical elliptic equation is the
Poissonequation

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y) (19.0.3)

where the source term ρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (19.0.1) and (19.0.2) both define initial value or Cauchy
problems: If information on u (perhaps including time derivative information) is

818
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boundary
conditions

initial values
(a)

boundary
values

(b)

Figure 19.0.1. Initial value problem (a) and boundary value problem (b) are contrasted. In (a) initial
values are given on one “time slice,” and it is desired to advance the solution in time, computing successive
rows of open dots in the direction shown by the arrows. Boundary conditions at the left and right edges
of each row (⊗) must also be supplied, but only one row at a time. Only one, or a few, previous rows
need be maintained in memory. In (b), boundary values are specified around the edge of a grid, and an
iterative process is employed to find the values of all the internal points (open circles). All grid points
must be maintained in memory.

given at some initial time t0 for all x, then the equations describe how u(x, t)
propagates itself forward in time. In other words, equations (19.0.1) and (19.0.2)
describe time evolution. The goal of a numerical code should be to track that time
evolution with some desired accuracy.

By contrast, equation (19.0.3) directs us to find a single “static” function u(x, y)
which satisfies the equation within some (x, y) region of interest, and which — one
must also specify — has some desired behavior on the boundary of the region of
interest. These problems are called boundary value problems. In general it is not
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possible stably to just “integrate in from the boundary” in the same sense that an
initial value problem can be “integrated forward in time.” Therefore, the goal of a
numerical code is somehow to converge on the correct solution everywhere at once.

This, then, is the most important classification from a computational point
of view: Is the problem at hand an initial value (time evolution) problem? or
is it a boundary value(static solution) problem? Figure 19.0.1 emphasizes the
distinction. Notice that while the italicized terminology is standard, the terminology
in parentheses is a much better description of the dichotomy from a computational
perspective. The subclassification of initial value problems into parabolic and
hyperbolic is much less important because (i) many actual problems are of a mixed
type, and (ii) as we will see, most hyperbolic problems get parabolic pieces mixed
into them by the time one is discussing practical computational schemes.

Initial Value Problems

An initial value problem is defined by answers to the following questions:
• What are the dependent variables to be propagated forward in time?
• What is the evolution equation for each variable? Usually the evolution

equations will all be coupled, with more than one dependent variable
appearing on the right-hand side of each equation.

• What is the highest time derivative that occurs in each variable’s evolution
equation? If possible, this time derivative should be put alone on the
equation’s left-hand side. Not only the value of a variable, but also the
value of all its time derivatives — up to the highest one — must be
specified to define the evolution.

• What special equations (boundary conditions) govern the evolution in time
of points on the boundary of the spatial region of interest? Examples:
Dirichlet conditionsspecify the values of the boundary points as a function
of time; Neumann conditionsspecify the values of the normal gradients on
the boundary; outgoing-wave boundary conditionsare just what they say.

Sections 19.1–19.3 of this chapter deal with initial value problems of several
different forms. We make no pretence of completeness, but rather hope to convey a
certain amount of generalizable information through a few carefully chosen model
examples. These examples will illustrate an important point: One’s principal
computationalconcern must be the stability of the algorithm. Many reasonable-
looking algorithms for initial value problems just don’t work — they are numerically
unstable.

Boundary Value Problems

The questions that define a boundary value problem are:
• What are the variables?
• What equations are satisfied in the interior of the region of interest?
• What equations are satisfied by points on the boundary of the region of

interest? (Here Dirichlet and Neumann conditions are possible choices for
elliptic second-order equations, but more complicated boundary conditions
can also be encountered.)
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In contrast to initial value problems, stability is relatively easy to achieve
for boundary value problems. Thus, the efficiencyof the algorithms, both in
computational load and storage requirements, becomes the principal concern.

Because all the conditions on a boundary value problem must be satisfied
“simultaneously,” these problems usually boil down, at least conceptually, to the
solution of large numbers of simultaneous algebraic equations. When such equations
are nonlinear, they are usually solved by linearization and iteration; so without much
loss of generality we can view the problem as being the solution of special, large
linear sets of equations.

As an example, one which we will refer to in §§19.4–19.6 as our “model
problem,” let us consider the solution of equation (19.0.3) by the finite-difference
method. We represent the function u(x, y) by its values at the discrete set of points

xj = x0 + j∆, j = 0, 1, ..., J

yl = y0 + l∆, l = 0, 1, ..., L
(19.0.4)

where ∆ is the grid spacing. From now on, we will write uj,l for u(xj , yl), and
ρj,l for ρ(xj , yl). For (19.0.3) we substitute a finite-difference representation (see
Figure 19.0.2),

uj+1,l − 2uj,l + uj−1,l

∆2
+

uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (19.0.5)

or equivalently

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (19.0.6)

To write this system of linear equations in matrix form we need to make a
vector out of u. Let us number the two dimensions of grid points in a single
one-dimensional sequence by defining

i ≡ j(L + 1) + l for j = 0, 1, ..., J, l = 0, 1, ..., L (19.0.7)

In other words, i increases most rapidly along the columns representing y values.
Equation (19.0.6) now becomes

ui+L+1 + ui−(L+1) + ui+1 + ui−1 − 4ui = ∆2ρi (19.0.8)

This equation holds only at the interior points j = 1, 2, ..., J − 1; l = 1, 2, ...,
L − 1.

The points where

j = 0

j = J

l = 0

l = L

[i.e., i = 0, ..., L]

[i.e., i = J(L + 1), ..., J(L + 1) + L]

[i.e., i = 0, L + 1, ..., J(L + 1)]

[i.e., i = L, L + 1 + L, ..., J(L + 1) + L]

(19.0.9)
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yL

∆

y1

y0
x0 xJx1 . . .

∆

A

B

Figure 19.0.2. Finite-difference representation of a second-order elliptic equation on a two-dimensional
grid. The second derivatives at the point A are evaluated using the points to which A is shown connected.
The second derivatives at point B are evaluated using the connected points and also using “right-hand
side” boundary information, shown schematically as ⊗.

are boundary points where either u or its derivative has been specified. If we pull
all this “known” information over to the right-hand side of equation (19.0.8), then
the equation takes the form

A · u = b (19.0.10)

where A has the form shown in Figure 19.0.3. The matrix A is called “tridiagonal
with fringes.” A general linear second-order elliptic equation

a(x, y)
∂2u

∂x2
+ b(x, y)

∂u

∂x
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂y

+ e(x, y)
∂2u

∂x∂y
+ f(x, y)u = g(x, y)

(19.0.11)

will lead to a matrix of similar structure except that the nonzero entries will not
be constants.

As a rough classification, there are three different approaches to the solution
of equation (19.0.10), not all applicable in all cases: relaxation methods, “rapid”
methods (e.g., Fourier methods), and direct matrix methods.
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Figure 19.0.3. Matrix structure derived from a second-order elliptic equation (here equation 19.0.6). All
elements not shown are zero. The matrix has diagonal blocks that are themselves tridiagonal, and sub-
and super-diagonal blocks that are diagonal. This form is called “tridiagonal with fringes.” A matrix this
sparse would never be stored in its full form as shown here.

Relaxation methods make immediate use of the structure of the sparse matrix
A. The matrix is split into two parts

A = E − F (19.0.12)

where E is easily invertible and F is the remainder. Then (19.0.10) becomes

E · u = F · u + b (19.0.13)

The relaxation method involves choosing an initial guess u (0) and then solving
successively for iterates u(r) from

E · u(r) = F · u(r−1) + b (19.0.14)

Since E is chosen to be easily invertible, each iteration is fast. We will discuss
relaxation methods in some detail in §19.5 and §19.6.
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So-called rapid methods [5] apply for only a rather special class of equations:
those with constant coefficients, or, more generally, those that are separable in the
chosen coordinates. In addition, the boundaries must coincide with coordinate lines.
This special class of equations is met quite often in practice. We defer detailed
discussion to §19.4. Note, however, that the multigrid relaxation methods discussed
in §19.6 can be faster than “rapid” methods.

Matrix methods attempt to solve the equation

A · x = b (19.0.15)

directly. The degree to which this is practical depends very strongly on the exact
structure of the matrix A for the problem at hand, so our discussion can go no farther
than a few remarks and references at this point.

Sparseness of the matrix must be the guiding force. Otherwise the matrix
problem is prohibitively large. For example, the simplest problem on a 100 × 100
spatial grid would involve 10000 unknown u j,l’s, implying a 10000× 10000 matrix
A, containing 108 elements!

As we discussed at the end of §2.7, if A is symmetric and positive definite
(as it usually is in elliptic problems), the conjugate-gradient algorithm can be
used. In practice, rounding error often spoils the effectiveness of the conjugate
gradient algorithm for solving finite-difference equations. However, it is useful when
incorporated in methods that first rewrite the equations so that A is transformed to a
matrix A′ that is close to the identity matrix. The quadratic surface defined by the
equations then has almost spherical contours, and the conjugate gradient algorithm
works very well. In §2.7, in the routine linbcg, an analogous preconditioner
was exploited for non-positive definite problems with the more general biconjugate
gradient method. For the positive definite case that arises in PDEs, an example of
a successful implementation is the incomplete Cholesky conjugate gradient method
(ICCG) (see [6-8]).

Another method that relies on a transformation approach is the strongly implicit
procedure of Stone [9]. A program called SIPSOL that implements this routine has
been published [10].

A third class of matrix methods is the Analyze-Factorize-Operate approach as
described in §2.7.

Generally speaking, when you have the storage available to implement these
methods — not nearly as much as the 108 above, but usually much more than is
required by relaxation methods — then you should consider doing so. Only multigrid
relaxation methods (§19.6) are competitive with the best matrix methods. For grids
larger than, say, 300 × 300, however, it is generally found that only relaxation
methods, or “rapid” methods when they are applicable, are possible.

There Is More to Life than Finite Differencing

Besides finite differencing, there are other methods for solving PDEs. Most
important are finite element, Monte Carlo, spectral, and variational methods. Unfor-
tunately, we shall barely be able to do justice to finite differencing in this chapter,
and so shall not be able to discuss these other methods in this book. Finite element
methods [11-12] are often preferred by practitioners in solid mechanics and structural
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engineering; these methods allow considerable freedom in putting computational
elements where you want them, important when dealing with highly irregular geome-
tries. Spectral methods [13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf. §19.4), but
they do not work well for problems with discontinuities.
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19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)
∂x

(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂2u

∂x2
(19.1.2)
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19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)
∂x

(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂2u

∂x2
(19.1.2)
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can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =
(

0 −v
−v 0

)
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v

∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . . , N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

∣∣∣∣
j,n

=
un+1

j − un
j

∆t
+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate
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t or n

x or j

FTCS

Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired; filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives; the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n + 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:

∂u

∂x

∣∣∣∣
j,n

=
un

j+1 − un
j−1

2∆x
+ O(∆x2) (19.1.10)

The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),

un+1
j − un

j

∆t
= −v

(
un

j+1 − un
j−1

2∆x

)
(19.1.11)

which can easily be rearranged to be a formula for un+1
j in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that un+1
j for each

j can be calculated explicitly from the quantities that are already known. Later we
shall meet implicit schemes, which require us to solve implicit equations coupling
the un+1

j for various j. (Explicit and implicit methods for ordinary differential
equations were discussed in §16.6.) The FTCS algorithm is also an example of
a single-level scheme, since only values at time level n have to be stored to find
values at time level n + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an unstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce the von Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the difference
equations are all of the form

un
j = ξneikj∆x (19.1.12)
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t or n

x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1 − i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write v n

j in equation
(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid answers
and is much easier to apply than more careful methods. We accordingly adopt it
exclusively. (See, for example, [1] for a discussion of other methods of stability
analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term un

j in the time derivative term by its average (Figure 19.1.2):

un
j → 1

2
(
un

j+1 + un
j−1

)
(19.1.14)

This turns (19.1.11) into

un+1
j =

1
2
(
un

j+1 + un
j−1

)− v∆t

2∆x

(
un

j+1 − un
j−1

)
(19.1.15)
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t or n

∆t

x or j

∆t

∆x∆x

unstablestable

(a) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x − i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the FTCS
and Lax schemes by rewriting equation (19.1.15) so that it is in the form of equation
(19.1.11) with a remainder term:

un+1
j − un

j

∆t
= −v

(
un

j+1 − un
j−1

2∆x

)
+

1
2

(
un

j+1 − 2un
j + un

j−1

∆t

)
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v

∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)
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where ∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to ∆x, |ξ| < 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x 	 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

[
r
s

]
=

∂

∂x

[
vs
vr

]
(19.1.20)

The Lax method for this equation is

rn+1
j =

1
2
(rn

j+1 + rn
j−1) +

v∆t

2∆x
(sn

j+1 − sn
j−1)

sn+1
j =

1
2
(sn

j+1 + sn
j−1) +

v∆t

2∆x
(rn

j+1 − rn
j−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

[
rn
j

sn
j

]
= ξneikj∆x

[
r0

s0

]
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξ n, gives the homogeneous vector equation


 (cos k∆x) − ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x) − ξ


 ·

 r0

s0


 =


 0

0


 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x ± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).
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Other Varieties of Error

Thus far we have been concerned with amplitude error, because of its intimate
connection with the stability or instability of a differencing scheme. Other varieties
of error are relevant when we shift our concern to accuracy, rather than stability.

Finite-difference schemes for hyperbolic equations can exhibit dispersion, or
phase errors. For example, equation (19.1.16) can be rewritten as

ξ = e−ik∆x + i

(
1 − v∆t

∆x

)
sin k∆x (19.1.25)

An arbitrary initial wave packet is a superposition of modes with different k’s.
At each timestep the modes get multiplied by different phase factors (19.1.25),
depending on their value of k. If ∆t = ∆x/v, then the exact solution for each mode
of a wave packet f(x−vt) is obtained if each mode gets multiplied by exp(−ik∆x).
For this value of ∆t, equation (19.1.25) shows that the finite-difference solution
gives the exact analytic result. However, if v∆t/∆x is not exactly 1, the phase
relations of the modes can become hopelessly garbled and the wave packet disperses.
Note from (19.1.25) that the dispersion becomes large as soon as the wavelength
becomes comparable to the grid spacing ∆x.

A third type of error is one associated with nonlinear hyperbolic equations and
is therefore sometimes called nonlinear instability. For example, a piece of the Euler
or Navier-Stokes equations for fluid flow looks like

∂v

∂t
= −v

∂v

∂x
+ . . . (19.1.26)

The nonlinear term in v can cause a transfer of energy in Fourier space from
long wavelengths to short wavelengths. This results in a wave profile steepening
until a vertical profile or “shock” develops. Since the von Neumann analysis
suggests that the stability can depend on k∆x, a scheme that was stable for shallow
profiles can become unstable for steep profiles. This kind of difficulty arises in
a differencing scheme where the cascade in Fourier space is halted at the shortest
wavelength representable on the grid, that is, at k ∼ 1/∆x. If energy simply
accumulates in these modes, it eventually swamps the energy in the long wavelength
modes of interest.

Nonlinear instability and shock formation is thus somewhat controlled by
numerical viscosity such as that discussed in connection with equation (19.1.18)
above. In some fluid problems,however, shock formation is not merely an annoyance,
but an actual physical behavior of the fluid whose detailed study is a goal. Then,
numerical viscosity alone may not be adequate or sufficiently controllable. This is a
complicated subject which we discuss further in the subsection on fluid dynamics,
below.

For wave equations, propagation errors (amplitude or phase) are usually most
worrisome. For advective equations, on the other hand, transport errors are usually
of greater concern. In the Lax scheme, equation (19.1.15), a disturbance in the
advected quantity u at mesh point j propagates to mesh points j + 1 and j − 1 at
the next timestep. In reality, however, if the velocity v is positive then only mesh
point j + 1 should be affected.
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t or n

x or j

v

upwind

v

Figure 19.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constant v is negative, as shown; the lower scheme is stable when the advection constant v is
positive, also as shown. The Courant condition must, of course, also be satisfied.

The simplest way to model the transport properties “better” is to use upwind
differencing (see Figure 19.1.4):

un+1
j − un

j

∆t
= −vn

j





un
j − un

j−1

∆x
, vn

j > 0

un
j+1 − un

j

∆x
, vn

j < 0
(19.1.27)

Note that this scheme is only first-order, not second-order, accurate in the
calculation of the spatial derivatives. How can it be “better”? The answer is
one that annoys the mathematicians: The goal of numerical simulations is not
always “accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the
underlying physics in a sense that is looser and more pragmatic. In such contexts,
some kinds of error are much more tolerable than others. Upwind differencing
generally adds fidelity to problems where the advected variables are liable to undergo
sudden changes of state, e.g., as they pass through shocks or other discontinuities.
You will have to be guided by the specific nature of your own problem.

For the differencing scheme (19.1.27), the amplification factor (for constant v) is

ξ = 1 −
∣∣∣∣
v∆t

∆x

∣∣∣∣ (1 − cos k∆x) − i
v∆t

∆x
sink∆x (19.1.28)

|ξ|2 = 1 − 2
∣∣∣∣
v∆t

∆x

∣∣∣∣
(

1 −
∣∣∣∣
v∆t

∆x

∣∣∣∣
)

(1 − cos k∆x) (19.1.29)

So the stability criterion |ξ|2 ≤ 1 is (again) simply the Courant condition (19.1.17).
There are various ways of improving the accuracy of first-order upwind

differencing. In the continuum equation, material originally a distance v∆t away
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staggered
leapfrog

t or n

x or j

Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note that information
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval ∆t. In the first-order method, the
material always arrives from ∆x away. If v∆t 	 ∆x (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolate u between j − 1
and j before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in [2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to take v∆t significantly smaller than ∆x to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values of u n at time tn,
compute the fluxes F n

j . Then compute new values un+1 using the time-centered
values of the fluxes:

un+1
j − un−1

j = − ∆t

∆x
(Fn

j+1 − Fn
j−1) (19.1.30)

The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that un−1 and un be stored to compute un+1.

For our simple model equation (19.1.6), staggered leapfrog takes the form

un+1
j − un−1

j = −v∆t

∆x
(un

j+1 − un
j−1) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation for ξ, rather than
a linear one, because of the occurrence of three consecutive powers of ξ when the
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form (19.1.12) for an eigenmode is substituted into equation (19.1.31),

ξ2 − 1 = −2iξ
v∆t

∆x
sink∆x (19.1.32)

whose solution is

ξ = −i
v∆t

∆x
sin k∆x ±

√
1 −

(
v∆t

∆x
sin k∆x

)2

(19.1.33)

Thus the Courant condition is again required for stability. In fact, in equation
(19.1.33), |ξ|2 = 1 for any v∆t ≤ ∆x. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (19.1.20) is most transparent
if the variables are centered on appropriate half-mesh points:

rn
j+1/2 ≡ v

∂u

∂x

∣∣∣∣
n

j+1/2

= v
un

j+1 − un
j

∆x

s
n+1/2
j ≡ ∂u

∂t

∣∣∣∣
n+1/2

j

=
un+1

j − un
j

∆t

(19.1.34)

This is purely a notational convenience: we can think of the mesh on which r and
s are defined as being twice as fine as the mesh on which the original variable u is
defined. The leapfrog differencing of equation (19.1.20) is

rn+1
j+1/2 − rn

j+1/2

∆t
=

s
n+1/2
j+1 − s

n+1/2
j

∆x

s
n+1/2
j − s

n−1/2
j

∆t
= v

rn
j+1/2 − rn

j−1/2

∆x

(19.1.35)

If you substitute equation (19.1.22) in equation (19.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (19.1.34) in equation (19.1.35), we find that equation
(19.1.35) is equivalent to

un+1
j − 2un

j + un−1
j

(∆t)2
= v2

un
j+1 − 2un

j + un
j−1

(∆x)2
(19.1.36)

This is just the “usual” second-order differencing of the wave equation (19.1.2). We
see that it is a two-level scheme, requiring both un and un−1 to obtain un+1. In
equation (19.1.35) this shows up as both sn−1/2 and rn being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown
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Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (	 1) times un

j+1 − 2un
j + un

j−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].

The Two-Step Lax-Wendroff scheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
values uj+1/2 at the half timesteps tn+1/2 and the half mesh points xj+1/2. These
are calculated by the Lax scheme:

u
n+1/2
j+1/2 =

1
2
(un

j+1 + un
j ) − ∆t

2∆x
(Fn

j+1 − Fn
j ) (19.1.37)

Using these variables, one calculates the fluxes F
n+1/2
j+1/2 . Then the updated values

un+1
j are calculated by the properly centered expression

un+1
j = un

j − ∆t

∆x

(
F

n+1/2
j+1/2 − F

n+1/2
j−1/2

)
(19.1.38)

The provisional values u
n+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F = vu. Substitute (19.1.37) in (19.1.38) to get

un+1
j = un

j − α

[
1
2
(un

j+1 + un
j ) − 1

2
α(un

j+1 − un
j )

−1
2
(un

j + un
j−1) +

1
2
α(un

j − un
j−1)

] (19.1.39)
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t or n

x or j

halfstep points

two-step Lax Wendroff

Figure 19.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Two halfstep points
(⊗) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Halfstep points are used only temporarily and do not require storage allocation on the
grid. This scheme is second-order accurate in both space and time.

where

α ≡ v∆t

∆x
(19.1.40)

Then

ξ = 1 − iα sink∆x − α2(1 − cos k∆x) (19.1.41)
so

|ξ|2 = 1 − α2(1 − α2)(1 − cos k∆x)2 (19.1.42)

The stability criterion |ξ|2 ≤ 1 is therefore α2 ≤ 1, or v∆t ≤ ∆x as usual.
Incidentally, you should not think that the Courant condition is the only stability
requirement that ever turns up in PDEs. It keeps doing so in our model examples
just because those examples are so simple in form. The method of analysis is,
however, general.

Except when α = 1, |ξ|2 < 1 in (19.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size ∆x. If we expand (19.1.42) for small k∆x, we find

|ξ|2 = 1 − α2(1 − α2)
(k∆x)4

4
+ . . . (19.1.43)

The departure from unity occurs only at fourth order in k. This should be contrasted
with equation (19.1.16) for the Lax method, which shows that

|ξ|2 = 1 − (1 − α2)(k∆x)2 + . . . (19.1.44)

for small k∆x.
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In summary, our recommendation for initial value problems that can be cast in
flux-conservative form, and especially problems related to the wave equation, is to use
the staggered leapfrog method when possible. We have personally had better success
with it than with the Two-Step Lax-Wendroff method. For problems sensitive to
transport errors, upwind differencing or one of its refinements should be considered.

Fluid Dynamics with Shocks

As we alluded to earlier, the treatment of fluid dynamics problems with shocks
has become a very complicated and very sophisticated subject. All we can attempt
to do here is to guide you to some starting points in the literature.

There are basically three important general methods for handling shocks. The
oldest and simplest method, invented by von Neumann and Richtmyer, is to add
artificial viscosity to the equations, modeling the way Nature uses real viscosity
to smooth discontinuities. A good starting point for trying out this method is the
differencing scheme in §12.11 of [1]. This scheme is excellent for nearly all problems
in one spatial dimension.

The second method combines a high-order differencing scheme that is accurate
for smooth flows with a low order scheme that is very dissipative and can smooth
the shocks. Typically, various upwind differencing schemes are combined using
weights chosen to zero the low order scheme unless steep gradients are present, and
also chosen to enforce various “monotonicity” constraints that prevent nonphysical
oscillations from appearing in the numerical solution. References [2-3,5] are a good
place to start with these methods.

The third, and potentially most powerful method, is Godunov’s approach. Here
one gives up the simple linearization inherent in finite differencing based on Taylor
series and includes the nonlinearity of the equations explicitly. There is an analytic
solution for the evolution of two uniform states of a fluid separated by a discontinuity,
the Riemann shock problem. Godunov’s idea was to approximate the fluid by a
large number of cells of uniform states, and piece them together using the Riemann
solution. There have been many generalizations of Godunov’s approach, of which
the most powerful is probably the PPM method [6].

Readable reviews of all these methods, discussing the difficulties arising when
one-dimensional methods are generalized to multidimensions, are given in [7-9].
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Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(
D

∂u

∂x

)
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D
∂u

∂x
(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − un

j

∆t
= D

[
un

j+1 − 2un
j + un

j−1

(∆x)2

]
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The FTCS
scheme was unstable for the hyperbolic equation; however, a quick calculation shows
that the amplification factor for equation (19.2.4) is

ξ = 1 − 4D∆t

(∆x)2
sin2

(
k∆x

2

)
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)
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Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 115–173. [8]

Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(
D

∂u

∂x

)
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D
∂u

∂x
(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − un

j

∆t
= D

[
un

j+1 − 2un
j + un

j−1

(∆x)2

]
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The FTCS
scheme was unstable for the hyperbolic equation; however, a quick calculation shows
that the amplification factor for equation (19.2.4) is

ξ = 1 − 4D∆t

(∆x)2
sin2

(
k∆x

2

)
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)
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The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼ λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generally makes the best physical sense; but, as we will see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicolson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − un

j

∆t
= D

[
un+1

j+1 − 2un+1
j + un+1

j−1

(∆x)2

]
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n + 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for the un+1

j . Fortunately, this is a simple problem because
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = un

j , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t

(∆x)2
(19.2.10)
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Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α → ∞ (∆t → ∞). Dividing by α, we see that
the difference equations are just the finite-difference form of the equilibrium equation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

(
k∆x

2

) (19.2.12)

Clearly |ξ| < 1 for any stepsize ∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicit method with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − un

j

∆t
=

D

2

[
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (un
j+1 − 2un

j + un
j−1)

(∆x)2

]

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =
1 − 2α sin2

(
k∆x

2

)

1 + 2α sin2

(
k∆x

2

) (19.2.14)

so the method is stable for any size ∆t. This scheme is called the Crank-Nicolson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficient D is not constant, say D = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =
∫

dx

D(x)
(19.2.15)
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t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicolson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps. (b) Fully
Implicit is stable for arbitrarily large timesteps, but is still only first-order accurate. (c) Crank-Nicolson
is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1
D(y)

∂2u

∂y2
(19.2.17)

and we evaluate D at the appropriate yj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

[
(∆y)2

2D−1
j

]
(19.2.18)

Note that constant spacing ∆y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1
j − un

j

∆t
=

Dj+1/2(un
j+1 − un

j ) − Dj−1/2(un
j − un

j−1)
(∆x)2

(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)
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and the heuristic stability criterion is

∆t ≤ min
j

[
(∆x)2

2Dj+1/2

]
(19.2.21)

The Crank-Nicolson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1
2
[
D(un

j+1) + D(un
j )
]

(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n → n + 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂ 2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(un
j ) + (un+1

j − un
j )

∂z

∂u

∣∣∣∣
j,n

= z(un
j ) + (un+1

j − un
j )D(un

j )
(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantity ψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary
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conditions that ψ → 0 at x → ±∞. Suppose we content ourselves with first-
order accuracy in time, but want to use an implicit scheme, for stability. A slight
generalization of (19.2.8) leads to

i

[
ψn+1

j − ψn
j

∆t

]
= −

[
ψn+1

j+1 − 2ψn+1
j + ψn+1

j−1

(∆x)2

]
+ Vjψ

n+1
j (19.2.27)

for which

ξ =
1

1 + i

[
4∆t

(∆x)2
sin2

(
k∆x

2

)
+ Vj∆t

] (19.2.28)

This is unconditionally stable, but unfortunately is not unitary. The underlying
physical problem requires that the total probability of finding the particle somewhere
remains unity. This is represented formally by the modulus-square norm of ψ
remaining unity:

∫ ∞

−∞
|ψ|2dx = 1 (19.2.29)

The initial wave function ψ(x, 0) is normalized to satisfy (19.2.29). The Schr ödinger
equation (19.2.26) then guarantees that this condition is satisfied at all later times.

Let us write equation (19.2.26) in the form

i
∂ψ

∂t
= Hψ (19.2.30)

where the operator H is

H = − ∂2

∂x2
+ V (x) (19.2.31)

The formal solution of equation (19.2.30) is

ψ(x, t) = e−iHtψ(x, 0) (19.2.32)

where the exponential of the operator is defined by its power series expansion.
The unstable explicit FTCS scheme approximates (19.2.32) as

ψn+1
j = (1 − iH∆t)ψn

j (19.2.33)

where H is represented by a centered finite-difference approximation in x. The
stable implicit scheme (19.2.27) is, by contrast,

ψn+1
j = (1 + iH∆t)−1ψn

j (19.2.34)

These are both first-order accurate in time, as can be seen by expanding equation
(19.2.32). However, neither operator in (19.2.33) or (19.2.34) is unitary.
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The correct way to difference Schrödinger’s equation [1,2] is to use Cayley’s
form for the finite-difference representation of e−iHt, which is second-order accurate
and unitary:

e−iHt � 1 − 1
2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words,

(
1 + 1

2 iH∆t
)
ψn+1

j =
(
1 − 1

2 iH∆t
)
ψn

j (19.2.36)

On replacing H by its finite-difference approximation in x, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicolson method once again!

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, American Journal of Physics, vol. 35,
pp. 177–186. [1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, American Journal of Physics, vol. 52, pp. 60–
68. [2]

19.3 Initial Value Problems in Multidimensions

The methods described in §19.1 and §19.2 for problems in 1 + 1 dimension
(one space and one time dimension) can easily be generalized to N + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100 × 100 mesh points requires at least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs on very
small grids, e.g., 8 × 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stable, then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up on larger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you
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The correct way to difference Schrödinger’s equation[1,2] is to useCayley’s
form for the finite-difference representation ofe−iHt, which is second-order accurate
and unitary:

e−iHt � 1 − 1
2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words,

(
1 + 1

2 iH∆t
)
ψn+1

j =
(
1 − 1

2 iH∆t
)
ψn

j (19.2.36)

On replacingH by its finite-difference approximation inx, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicolson method once again!

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, American Journal of Physics, vol. 35,
pp. 177–186. [1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, American Journal of Physics, vol. 52, pp. 60–
68. [2]

19.3 Initial Value Problems in Multidimensions

The methods described in§19.1 and§19.2 for problems in1 + 1 dimension
(one space and one time dimension) can easily be generalized toN + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100× 100 mesh points requiresat least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs onvery
small grids, e.g.,8 × 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stable,then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up onlarger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

(
∂Fx

∂x
+

∂Fy

∂y

)
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1
4
(un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1)

− ∆t

2∆
(Fn

j+1,l − Fn
j−1,l + Fn

j,l+1 − Fn
j,l−1)

(19.3.3)

Note that as an abbreviated notationFj+1 andFj−1 refer toFx, while Fl+1 and
Fl−1 refer to Fy .

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers ofξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1
2
(cos kx∆ + cos ky∆) − iαx sin kx∆ − iαy sin ky∆ (19.3.6)

where

αx =
vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)
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The expression for|ξ|2 can be manipulated into the form

|ξ|2 = 1 − (sin2 kx∆ + sin2 ky∆)
[
1
2
− (α2

x + α2
y)
]

− 1
4
(cos kx∆ − cos ky∆)2 − (αy sin kx∆ − αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement|ξ|2 ≤ 1 becomes

1
2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or

∆t ≤ ∆√
2(v2

x + v2
y)1/2

(19.3.10)

This is an example of the general result for theN -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v| (19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicolson scheme in
two dimensions. This would give us

un+1
j,l = un

j,l +
1
2
α
(
δ2
xun+1

j,l + δ2
xun

j,l + δ2
yun+1

j,l + δ2
yun

j,l

)
(19.3.13)

Here

α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xun

j,l ≡ un
j+1,l − 2un

j,l + un
j−1,l (19.3.15)

and similarly forδ2
yun

j,l. This is certainly a viable scheme; the problem arises in
solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see§2.7 and§19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicolson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than
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(19.3.13). Called thealternating-direction implicit method (ADI), this embodies the
powerful concept ofoperator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size∆t/2.
In each substep, a different dimension is treated implicitly:

u
n+1/2
j,l = un

j,l +
1
2
α
(
δ2
xu

n+1/2
j,l + δ2

yun
j,l

)

un+1
j,l = u

n+1/2
j,l +

1
2
α
(
δ2
xu

n+1/2
j,l + δ2

yun+1
j,l

) (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also calledtime splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

whereL is some operator. WhileL is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively onu,

Lu = L1u + L2u + · · · + Lmu (19.3.18)

Finally, suppose that foreach of the pieces, you already know a differencing scheme
for updating the variableu from timestepn to timestepn + 1, valid if that piece
of the operator were theonly one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(un, ∆t)

un+1 = U2(un, ∆t)

· · ·
un+1 = Um(un, ∆t)

(19.3.19)

Now, one form of operator splitting would be to get fromn to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(un, ∆t)

un+(2/m) = U2(un+(1/m), ∆t)

· · ·
un+1 = Um(un+(m−1)/m, ∆t)

(19.3.20)



848 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: LetU 1 now denote an updating method that
includes algebraicallyall the pieces of the total operatorL, but which is desirably
stable only for theL1 piece; likewiseU2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(un, ∆t/m)

un+2/m = U2(un+1/m, ∆t/m)

· · ·
un+1 = Um(un+(m−1)/m, ∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operatorL. In fact, as a rule of thumb, it is often sufficient to have stableU i’s
only for the operator pieces having the highest number of spatial derivatives — the
otherUi’s can beunstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in§19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.
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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U 1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(un, ∆t/m)

un+2/m = U2(un+1/m, ∆t/m)

· · ·
un+1 = Um(un+(m−1)/m, ∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only 1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stable U i’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1∑
m=0

L−1∑
n=0

ûmne−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1∑
m=0

L−1∑
n=0

ρ̂mne−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

ûmn

(
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

)
= ρ̂mn∆2 (19.4.4)

or

ûmn =
ρ̂mn∆2

2
(

cos
2πm

J
+ cos

2πn

L
− 2
) (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute ρ̂mn as the Fourier transform

ρ̂mn =
J−1∑
j=0

L−1∑
l=0

ρjl e2πimj/Je2πinl/L (19.4.6)

• Compute ûmn from equation (19.4.5).
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider a Dirichlet boundary condition u = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2
J

2
L

J−1∑
m=1

L−1∑
n=1

ûmn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρ jl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute ρ̂mn by the sine transform

ρ̂mn =
J−1∑
j=1

L−1∑
l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute ûmn from the expression analogous to (19.4.5),

ûmn =
∆2ρ̂mn

2
(
cos

πm

J
+ cos

πn

L
− 2
) (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
∑

n

An sinh
nπx

L∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl =

2
L

L−1∑
n=1

An sinh
πnj

L
sin

πnl

L
(19.4.13)
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If f(y = l∆) ≡ fl, then we get An from the inverse formula

An =
1

sinh (πnJ/L)

L−1∑
l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uH
jl (19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore ρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u′ + uB (19.4.16)

where u′ = 0 on the boundary, while uB vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of uB would be

uB
J,l = fl (19.4.17)

The model equation (19.0.3) becomes

∇2u′ = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u′
j+1,l + u′

j−1,l + u′
j,l+1 + u′

j,l−1 − 4u′
j,l =

− (uB
j+1,l + uB

j−1,l + uB
j,l+1 + uB

j,l−1 − 4uB
j,l) + ∆2ρj,l

(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u′
J,l + u′

J−2,l + u′
J−1,l+1 + u′

J−1,l−1 − 4u′
J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions ∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2
J

2
L

J∑′′

m=0

L∑′′

n=0

ûmn cos
πjm

J
cos

πln

L
(19.4.22)
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Here the double prime notation means that the terms for m = 0 and m = J should
be multiplied by 1

2 , and similarly for n = 0 and n = L. Inhomogeneous terms
∇u = g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side. For
example, the condition

∂u

∂x
= g(y) at x = 0 (19.4.23)

becomes
u1,l − u−1,l

2∆
= gl (19.4.24)

where gl ≡ g(y = l∆). Once again we write the solution in the form (19.4.16),
where now ∇u′ = 0 on the boundary. This time ∇uB takes on the prescribed
value on the boundary, but uB vanishes everywhere except just outside the boundary.
Thus equation (19.4.24) gives

uB
−1,l = −2∆gl (19.4.25)

All the uB terms in equation (19.4.19) vanish except when j = 0:

u′
1,l + u′

−1,l + u′
0,l+1 + u′

0,l−1 − 4u′
0,l = 2∆gl + ∆2ρ0,l (19.4.26)

Thus u′ is the solution of a zero-gradient problem, with the source term modified
by the replacement

∆2ρ0,l → ∆2ρ0,l + 2∆gl (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the u’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the alternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

∂2u

∂x2
+

∂2u

∂y2
+ b(y)

∂u

∂y
+ c(y)u = g(x, y) (19.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in [1].



19.4 Fourier and Cyclic Reduction Methods 853

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B − 21 (19.4.30)

where the 21 comes from the x-differencing and the matrix B from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21 − T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for u J/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve u J/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].
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FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

ûk
j−2r + λ

(r)
k ûk

j + ûk
j+2r = ∆2g

(r)k
j (19.4.35)

Here λ
(r)
k is the eigenvalue of T(r) corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that λ
(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems for ûk
j at the levels

j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128×128
mesh, the optimal level is r = 2; asymptotically, r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r = 2 gives another factor
of two gain in speed.

CITED REFERENCES AND FURTHER READING:
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19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)
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FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

ûk
j−2r + λ

(r)
k ûk

j + ûk
j+2r = ∆2g

(r)k
j (19.4.35)

Here λ
(r)
k is the eigenvalue of T(r) corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that λ
(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems for ûk
j at the levels

j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128×128
mesh, the optimal level is r = 2; asymptotically, r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r = 2 gives another factor
of two gain in speed.
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19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu − ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all the machinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

(
un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1 − 4un

j,l

)− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1
4
(
un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1

)− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigrid methods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1
4

(
un

j+1,l + un+1
j−1,l + un

j,l+1 + un+1
j,l−1

)
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)
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we can consider splitting A as

A = L + D + U (19.5.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal.

In the Jacobi method we write for the rth step of iteration

D · x(r) = −(L + U) · x(r−1) + b (19.5.9)

For our model problem (19.5.5), D is simply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix −D−1 · (L + U) is
the iteration matrix which, apart from an additive term, maps one set of x’s into the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus < 1 for
the relaxation to work at all! The rate of convergence of the method is set by the
rate for the slowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted ρs.

The number of iterations r required to reduce the overall error by a factor
10−p is thus estimated by

r ≈ p ln 10
(− ln ρs)

(19.5.10)

In general, the spectral radius ρs goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on a J × J grid with
Dirichlet boundary conditions on all four sides, the asymptotic formula for large
J turns out to be

ρs 
 1 − π2

2J2
(19.5.11)

The number of iterations r required to reduce the error by a factor of 10 −p is thus

r 
 2pJ2 ln 10
π2


 1
2
pJ2 (19.5.12)

In other words, the number of iterations is proportional to the number of mesh points,
J2. Since 100 × 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.
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The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L + D) · x(r) = −U · x(r−1) + b (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

ρs 
 1 − π2

J2
(19.5.14)

r 
 pJ2 ln 10
π2


 1
4
pJ2 (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)

We get a better algorithm — one that was the standard algorithm until the 1970s
— if we make an overcorrection to the value of x(r) at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x (r), add and
subtract x(r−1) on the right-hand side, and hence write the Gauss-Seidel method as

x(r) = x(r−1) − (L + D)−1 · [(L + D + U) · x(r−1) − b] (19.5.16)

The term in square brackets is just the residual vector ξ (r−1), so

x(r) = x(r−1) − (L + D)−1 · ξ(r−1) (19.5.17)

Now overcorrect, defining

x(r) = x(r−1) − ω(L + D)−1 · ξ(r−1) (19.5.18)

Here ω is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:
• The method is convergent only for 0 < ω < 2. If 0 < ω < 1, we speak

of underrelaxation.
• Under certain mathematical restrictions generally satisfied by matrices

arising from finite differencing, only overrelaxation (1 < ω < 2 ) can give
faster convergence than the Gauss-Seidel method.

• If ρJacobi is the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then the optimal
choice for ω is given by

ω =
2

1 +
√

1 − ρ2
Jacobi

(19.5.19)
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• For this optimal choice, the spectral radius for SOR is

ρSOR =

(
ρJacobi

1 +
√

1 − ρ2
Jacobi

)2

(19.5.20)

As an application of the above results, consider our model problem for which
ρJacobi is given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

ω 
 2
1 + π/J

(19.5.21)

ρSOR 
 1 − 2π

J
for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 10−p,

r 
 pJ ln 10
2π


 1
3
pJ (19.5.23)

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J 2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose ω for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value of ω. It is better to take ω
slightly too large, rather than slightly too small, but best to get it right.

One way to choose ω is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of ρ Jacobi for our model
problem on a rectangular J × L grid, allowing for the possibility that ∆x �= ∆y:

ρJacobi =
cos

π

J
+
(

∆x

∆y

)2

cos
π

L

1 +
(

∆x

∆y

)2 (19.5.24)

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement π → 2π.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value ω empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of ω are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.
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Consider a general second-order elliptic equation in x and y, finite differenced on
a square as for our model equation. Corresponding to each row of the matrix A
is an equation of the form

aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l = fj,l (19.5.25)

For our model equation, we had a = b = c = d = 1, e = −4. The quantity
f is proportional to the source term. The iterative procedure is defined by solving
(19.5.25) for uj,l:

u*j,l =
1

ej,l
(fj,l − aj,luj+1,l − bj,luj−1,l − cj,luj,l+1 − dj,luj,l−1) (19.5.26)

Then unew
j,l is a weighted average

unew
j,l = ωu*j,l + (1 − ω)uold

j,l (19.5.27)

We calculate it as follows: The residual at any stage is

ξj,l = aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l − fj,l (19.5.28)

and the SOR algorithm (19.5.18) or (19.5.27) is

unew
j,l = uold

j,l − ω
ξj,l

ej,l
(19.5.29)

This formulation is very easy to program, and the norm of the residual vector ξ j,l

can be used as a criterion for terminating the iteration.
Another practical point concerns the order in which mesh points are processed.

The obvious strategy is simply to proceed in order down the rows (or columns).
Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black squares of a checkerboard. Then equation (19.5.26) shows that the
odd points depend only on the even mesh values and vice versa. Accordingly,
we can carry out one half-sweep updating the odd points, say, and then another
half-sweep updating the even points with the new odd values. For the version of
SOR implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence
in SOR is not attained until of order J iterations. The error often grows by a
factor of 20 before convergence sets in. A trivial modification to SOR resolves this
problem. It is based on the observation that, while ω is the optimum asymptotic
relaxation parameter, it is not necessarily a good initial choice. In SOR with
Chebyshev acceleration, one uses odd-even ordering and changes ω at each half-
sweep according to the following prescription:

ω(0) = 1

ω(1/2) = 1/(1 − ρ2
Jacobi/2)

ω(n+1/2) = 1/(1 − ρ2
Jacobiω

(n)/4), n = 1/2, 1, ...,∞
ω(∞) → ωoptimal

(19.5.30)
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The beauty of Chebyshev acceleration is that the norm of the error always decreases
with each iteration. (This is the norm of the actual error in u j,l. The norm of
the residual ξj,l need not decrease monotonically.) While the asymptotic rate of
convergence is the same as ordinary SOR, there is never any excuse for not using
Chebyshev acceleration to reduce the total number of iterations required.

Here we give a routine for SOR with Chebyshev acceleration.

SUBROUTINE sor(a,b,c,d,e,f,u,jmax,rjac)
INTEGER jmax,MAXITS
DOUBLE PRECISION rjac,a(jmax,jmax),b(jmax,jmax),

* c(jmax,jmax),d(jmax,jmax),e(jmax,jmax),
* f(jmax,jmax),u(jmax,jmax),EPS

PARAMETER (MAXITS=1000,EPS=1.d-5)
Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a,
b, c, d, e, and f are input as the coefficients of the equation, each dimensioned to the
grid size JMAX × JMAX. u is input as the initial guess to the solution, usually zero, and
returns with the final value. rjac is input as the spectral radius of the Jacobi iteration,
or an estimate of it.

INTEGER ipass,j,jsw,l,lsw,n
DOUBLE PRECISION anorm,anormf,

* omega,resid Double precision is a good idea for JMAX bigger than about 25.
anormf=0.d0 Compute initial norm of residual and terminate iteration when

norm has been reduced by a factor EPS.do 12 j=2,jmax-1
do 11 l=2,jmax-1

anormf=anormf+abs(f(j,l)) Assumes initial u is zero.
enddo 11

enddo 12

omega=1.d0
do 16 n=1,MAXITS

anorm=0.d0
jsw=1
do 15 ipass=1,2 Odd-even ordering.

lsw=jsw
do 14 j=2,jmax-1

do 13 l=lsw+1,jmax-1,2
resid=a(j,l)*u(j+1,l)+b(j,l)*u(j-1,l)+

* c(j,l)*u(j,l+1)+d(j,l)*u(j,l-1)+
* e(j,l)*u(j,l)-f(j,l)

anorm=anorm+abs(resid)
u(j,l)=u(j,l)-omega*resid/e(j,l)

enddo 13

lsw=3-lsw
enddo 14

jsw=3-jsw
if(n.eq.1.and.ipass.eq.1) then

omega=1.d0/(1.d0-.5d0*rjac**2)
else

omega=1.d0/(1.d0-.25d0*rjac**2*omega)
endif

enddo 15

if(anorm.lt.EPS*anormf)return
enddo 16

pause ’MAXITS exceeded in sor’
END

The main advantage of SOR is that it is very easy to program. Its main
disadvantage is that it is still very inefficient on large problems.



19.5 Relaxation Methods for Boundary Value Problems 861

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

ADI (Alternating-Direction Implicit) Method

The ADI method of §19.3 for diffusion equations can be turned into a relaxation
method for elliptic equations [1-4]. In §19.3, we discussed ADI as a method for
solving the time-dependent heat-flow equation

∂u

∂t
= ∇2u − ρ (19.5.31)

By letting t → ∞ one also gets an iterative method for solving the elliptic equation

∇2u = ρ (19.5.32)

In either case, the operator splitting is of the form

L = Lx + Ly (19.5.33)

where Lx represents the differencing in x and Ly that in y.
For example, in our model problem (19.0.6) with ∆x = ∆y = ∆, we have

Lxu = 2uj,l − uj+1,l − uj−1,l

Lyu = 2uj,l − uj,l+1 − uj,l−1

(19.5.34)

More complicated operators may be similarly split, but there is some art involved.
A bad choice of splitting can lead to an algorithm that fails to converge. Usually
one tries to base the splitting on the physical nature of the problem. We know for
our model problem that an initial transient diffuses away, and we set up the x and
y splitting to mimic diffusion in each dimension.

Having chosen a splitting, we difference the time-dependent equation (19.5.31)
implicitly in two half-steps:

un+1/2 − un

∆t/2
= −Lxun+1/2 + Lyun

∆2
− ρ

un+1 − un+1/2

∆t/2
= −Lxun+1/2 + Lyun+1

∆2
− ρ

(19.5.35)

(cf. equation 19.3.16). Here we have suppressed the spatial indices (j, l). In matrix
notation, equations (19.5.35) are

(Lx + r1) · un+1/2 = (r1 − Ly) · un − ∆2ρ (19.5.36)

(Ly + r1) · un+1 = (r1 − Lx) · un+1/2 − ∆2ρ (19.5.37)
where

r ≡ 2∆2

∆t
(19.5.38)

The matrices on the left-hand sides of equations (19.5.36) and (19.5.37) are
tridiagonal (and usually positive definite), so the equations can be solved by the



862 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

standard tridiagonal algorithm. Given un, one solves (19.5.36) for un+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for u n+1. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If this is done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature [1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g., 20 × 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§8.3–8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid points in O(N) operations.
The “rapid” direct elliptic solvers discussed in §19.4 solve special kinds of elliptic
equations in O(N log N) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief
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standard tridiagonal algorithm. Given un, one solves (19.5.36) for un+1/2, substitutes
on the right-hand side of (19.5.37), and then solves for u n+1. The key question
is how to choose the iteration parameter r, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If this is done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature [1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g., 20 × 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of §2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§8.3–8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized on N grid points in O(N) operations.
The “rapid” direct elliptic solvers discussed in §19.4 solve special kinds of elliptic
equations in O(N log N) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief
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introduction to the subject here. In particular, we will give two sample multigrid
routines, one linear and one nonlinear. By following these prototypes and by
perusing the references [1-4], you should be able to develop routines to solve your
own problems.

There are two related, but distinct, approaches to the use of multigrid techniques.
The first, termed “the multigrid method,” is a means for speeding up the convergence
of a traditional relaxation method, as defined by you on a grid of pre-specified
fineness. In this case, you need define your problem (e.g., evaluate its source terms)
only on this grid. Other, coarser, grids defined by the method can be viewed as
temporary computational adjuncts.

The second approach, termed (perhaps confusingly) “the full multigrid (FMG)
method,” requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite-
difference equations). In this approach, the method obtains successive solutions on
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when
it is tolerably small.

In this section we will first discuss the “multigrid method,” then use the concepts
developed to introduce the FMG method. The latter algorithm is the one that we
implement in the accompanying programs.

From One-Grid, through Two-Grid, to Multigrid

The key idea of the multigrid method can be understood by considering the
simplest case of a two-grid method. Suppose we are trying to solve the linear
elliptic problem

Lu = f (19.6.1)

where L is some linear elliptic operator and f is the source term. Discretize equation
(19.6.1) on a uniform grid with mesh size h. Write the resulting set of linear
algebraic equations as

Lhuh = fh (19.6.2)

Let ũh denote some approximate solution to equation (19.6.2). We will use the
symbol uh to denote the exact solution to the difference equations (19.6.2). Then
the error in ũh or the correction is

vh = uh − ũh (19.6.3)

The residual or defect is

dh = Lhũh − fh (19.6.4)

(Beware: some authors define residual as minus the defect, and there is not universal
agreement about which of these two quantities 19.6.4 defines.) Since L h is linear,
the error satisfies

Lhvh = −dh (19.6.5)
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At this point we need to make an approximation to Lh in order to find vh. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

L̂hv̂h = −dh (19.6.6)

where L̂h is a “simpler” operator than Lh. For example, L̂h is the diagonal part of
Lh for Jacobi iteration, or the lower triangle for Gauss-Seidel iteration. The next
approximation is generated by

ũnew
h = ũh + v̂h (19.6.7)

Now consider, as an alternative, a completely different type of approximation
for Lh, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximation LH of Lh on a coarser grid with mesh size H (we will
always take H = 2h, but other choices are possible). The residual equation (19.6.5)
is now approximated by

LHvH = −dH (19.6.8)

Since LH has smaller dimension, this equation will be easier to solve than equation
(19.6.5). To define the defect dH on the coarse grid, we need a restriction operator
R that restricts dh to the coarse grid:

dH = Rdh (19.6.9)

The restriction operator is also called the fine-to-coarse operator or the injection
operator. Once we have a solution ṽH to equation (19.6.8), we need a prolongation
operator P that prolongates or interpolates the correction to the fine grid:

ṽh = P ṽH (19.6.10)

The prolongation operator is also called the coarse-to-fine operator or the inter-
polation operator. Both R and P are chosen to be linear operators. Finally the
approximation ũh can be updated:

ũnew
h = ũh + ṽh (19.6.11)

One step of this coarse-grid correction scheme is thus:

Coarse-Grid Correction

• Compute the defect on the fine grid from (19.6.4).
• Restrict the defect by (19.6.9).
• Solve (19.6.8) exactly on the coarse grid for the correction.
• Interpolate the correction to the fine grid by (19.6.10).
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• Compute the next approximation by (19.6.11).

Let’s contrast the advantages and disadvantages of relaxation and the coarse-grid
correction scheme. Consider the error vh expanded into a discrete Fourier series. Call
the components in the lower half of the frequency spectrum the smooth components
and the high-frequency components the nonsmooth components. We have seen that
relaxation becomes very slowly convergent in the limit h → 0, i.e., when there are a
large number of mesh points. The reason turns out to be that the smooth components
are only slightly reduced in amplitude on each iteration. However, many relaxation
methods reduce the amplitude of the nonsmooth components by large factors on
each iteration: They are good smoothing operators.

For the two-grid iteration, on the other hand, components of the error with
wavelengths <∼ 2H are not even representable on the coarse grid and so cannot be
reduced to zero on this grid. But it is exactly these high-frequency components that
can be reduced by relaxation on the fine grid! This leads us to combine the ideas
of relaxation and coarse-grid correction:

Two-Grid Iteration

• Pre-smoothing: Compute ūh by applying ν1 ≥ 0 steps of a relaxation
method to ũh.

• Coarse-grid correction: As above, using ūh to give ūnew
h .

• Post-smoothing: Compute ũnew
h by applying ν2 ≥ 0 steps of the relaxation

method to ūnew
h .

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (19.6.8) exactly, we can get an
approximate solution of it by introducing an even coarser grid and using the two-grid
iteration method. If the convergence factor of the two-grid method is small enough,
we will need only a few steps of this iteration to get a good enough approximate
solution. We denote the number of such iterations by γ. Obviously we can apply
this idea recursively down to some coarsest grid. There the solution is found
easily, for example by direct matrix inversion or by iterating the relaxation scheme
to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called a cycle. The exact structure of a cycle depends on the
value of γ, the number of two-grid iterations at each intermediate stage. The case
γ = 1 is called a V-cycle, while γ = 2 is called a W-cycle (see Figure 19.6.1). These
are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the error v. This
should be taken to be zero.

Smoothing, Restriction, and Prolongation Operators

The most popular smoothing method, and the one you should try first, is
Gauss-Seidel, since it usually leads to a good convergence rate. If we order the mesh
points from 1 to N , then the Gauss-Seidel scheme is

ui = −
( N∑

j=1
j �=i

Lijuj − fi

) 1
Lii

i = 1, . . . , N (19.6.12)
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Figure 19.6.1. Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution
on the coarsest grid. Each descending line \ denotes restriction (R) and each ascending line / denotes
prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (γ = 1) the E
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. For the
W-cycles (γ = 2), each E step gets replaced by two 2-grid iterations.

where new values of u are used on the right-hand side as they become available. The
exact form of the Gauss-Seidel method depends on the ordering chosen for the mesh
points. For typical second-order elliptic equations like our model problem equation
(19.0.3), as differenced in equation (19.0.8), it is usually best to use red-black
ordering, making one pass through the mesh updating the “even” points (like the red
squares of a checkerboard) and another pass updating the “odd” points (the black
squares). When quantities are more strongly coupled along one dimension than
another, one should relax a whole line along that dimension simultaneously. Line
relaxation for nearest-neighbor coupling involves solving a tridiagonal system, and
so is still efficient. Relaxing odd and even lines on successive passes is called zebra
relaxation and is usually preferred over simple line relaxation.

Note that SOR should not be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operators is to give their
symbol. The symbol of P is found by considering vH to be 1 at some mesh point
(x, y), zero elsewhere, and then asking for the values of PvH . The most popular
prolongation operator is simple bilinear interpolation. It gives nonzero values at the
9 points (x, y), (x + h, y), . . . , (x − h, y − h), where the values are 1, 1

2 , . . . , 1
4 .
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Its symbol is therefore



1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4


 (19.6.13)

The symbol of R is defined by considering vh to be defined everywhere on the
fine grid, and then asking what is Rvh at (x, y) as a linear combination of these
values. The simplest possible choice for R is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbol is “[1].” However, difficulties can arise in practice with this choice. It
turns out that a safe choice for R is to make it the adjoint operator to P . To define the
adjoint, define the scalar product of two grid functions uh and vh for mesh size h as

〈uh|vh〉h ≡ h2
∑
x,y

uh(x, y)vh(x, y) (19.6.14)

Then the adjoint of P , denoted P †, is defined by

〈uH |P†vh〉H = 〈PuH |vh〉h (19.6.15)

Now takeP to be bilinear interpolation, and choose uH = 1 at (x, y), zero elsewhere.
Set P† = R in (19.6.15) and H = 2h. You will find that

(Rvh)(x,y) = 1
4vh(x, y) + 1

8vh(x + h, y) + 1
16vh(x + h, y + h) + · · · (19.6.16)

so that the symbol of R is



1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16


 (19.6.17)

Note the simple rule: The symbol of R is 1
4 the transpose of the matrix defining the

symbol ofP , equation (19.6.13). This rule is general wheneverR = P † and H = 2h.
The particular choice of R in (19.6.17) is called full weighting. Another popular

choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is




0 1
8 0

1
8

1
2

1
8

0 1
8 0


 (19.6.18)

A similar notation can be used to describe the difference operator Lh. For
example, the standard differencing of the model problem, equation (19.0.6), is
represented by the five-point difference star

Lh =
1
h2




0 1 0
1 −4 1
0 1 0


 (19.6.19)
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If you are confronted with a new problem and you are not sure what P and R
choices are likely to work well, here is a safe rule: Suppose mp is the order of the
interpolation P (i.e., it interpolates polynomials of degree m p − 1 exactly). Suppose
mr is the order of R, and that R is the adjoint of some P (not necessarily the P you
intend to use). Then if m is the order of the differential operator L h, you should
satisfy the inequality mp + mr > m. For example, bilinear interpolation and its
adjoint, full weighting, for Poisson’s equation satisfy mp + mr = 4 > m = 2.

Of course the P and R operators should enforce the boundary conditions for
your problem. The easiest way to do this is to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. §19.4). Enforcing homogeneous boundary conditions simply requires the P
operator to produce zeros at the appropriate boundary points. The corresponding
R is then found by R = P †.

Full Multigrid Algorithm

So far we have described multigrid as an iterative scheme, where one starts
with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . . ) to achieve convergence. This is the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can be improved by using the Full Multigrid Algorithm (FMG),
also known as nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g.,
uh = 0), the first approximation is obtained by interpolating from a coarse-grid
solution:

uh = PuH (19.6.20)

The coarse-grid solution itself is found by a similar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 19.6.1, then, FMG gets to its solution by a series of increasingly tall “N’s,”
each taller one probing a finer grid (see Figure 19.6.2).

Note that P in (19.6.20) need not be the same P used in the multigrid cycles.
It should be at least of the same order as the discretization Lh, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles at each
level before proceeding down to the next finer grid. While there is theoretical
guidance on the required number of cycles (e.g., [2]), you can easily determine it
empirically. Fix the finest level and study the solution values as you increase the
number of cycles per level. The asymptotic value of the solution is the exact solution
of the difference equations. The difference between this exact solution and the
solution for a small number of cycles is the iteration error. Now fix the number of
cycles to be large, and vary the number of levels, i.e., the smallest value of h used. In
this way you can estimate the truncation error for a given h. In your final production
code, there is no point in using more cycles than you need to get the iteration error
down to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand side f only at the
finest level. FMG needs f at all levels. If the boundary conditions are homogeneous,
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Figure 19.6.2. Structure of cycles for the full multigrid (FMG) method. This method starts on the
coarsest grid, interpolates, and then refines (by “V’s”), the solution onto grids of increasing fineness.

you can use fH = Rfh. This prescription is not always safe for inhomogeneous
boundary conditions. In that case it is better to discretize f on each coarse grid.

Note that the FMG algorithm produces the solution on all levels. It can therefore
be combined with techniques like Richardson extrapolation.

We now give a routine mglin that implements the Full Multigrid Algorithm
for a linear equation, the model problem (19.0.6). It uses red-black Gauss-Seidel
as the smoothing operator, bilinear interpolation for P , and half-weighting for R.
To change the routine to handle another linear problem, all you need do is modify
the subroutines relax, resid, and slvsml appropriately. A feature of the routine
is the dynamical allocation of storage for variables defined on the various grids.
The subroutine maloc emulates the C function malloc. It allows you to write
subroutines that operate on two-dimensional arrays in the usual way, but to allocate
storage for these arrays in the calling program “on the fly” out of a single long
one-dimensional array.

SUBROUTINE mglin(u,n,ncycle)
INTEGER n,ncycle,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n)
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3)
PARAMETER (NPRE=1,NPOST=1)

C USES addint,copy,fill0,interp,maloc,relax,resid,rstrct,slvsml
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u(1:n,1:n) contains the right-hand side ρ, while on output it returns
the solution. The dimension n is related to the number of grid levels used in the solution,
NG below, by n = 2**NG + 1. ncycle is the number of V-cycles to be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed.

INTEGER j,jcycle,jj,jpost,jpre,mem,nf,ngrid,nn,ires(NG),
* irho(NG),irhs(NG),iu(NG),maloc

DOUBLE PRECISION z
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COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc
from array z.mem=0

nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG − 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
call slvsml(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
ires(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,ncycle V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call resid(z(ires(jj)),z(iu(jj)),z(irhs(jj)),nf)
nf=nf/2+1
call rstrct(z(irhs(jj-1)),z(ires(jj)),nf)

Restriction of the residual is the next r.h.s.
call fill0(z(iu(jj-1)),nf) Zero for initial guess in next relaxation.

enddo 12

call slvsml(z(iu(1)),z(irhs(1))) Bottom of V: solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

nf=2*nf-1
call addint(z(iu(jj)),z(iu(jj-1)),z(ires(jj)),nf)

Use res for temporary storage inside addint.
do 13 jpost=1,NPOST Post-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

enddo 15

enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE rstrct(uc,uf,nc)
INTEGER nc
DOUBLE PRECISION uc(nc,nc),uf(2*nc-1,2*nc-1)

Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input
in uf(1:2*nc-1,1:2*nc-1), the coarse-grid solution is returned in uc(1:nc,1:nc).

INTEGER ic,if,jc,jf
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do 12 jc=2,nc-1 Interior points.
jf=2*jc-1
do 11 ic=2,nc-1

if=2*ic-1
uc(ic,jc)=.5d0*uf(if,jf)+.125d0*(uf(if+1,jf)+

* uf(if-1,jf)+uf(if,jf+1)+uf(if,jf-1))
enddo 11

enddo 12

do 13 ic=1,nc Boundary points.
uc(ic,1)=uf(2*ic-1,1)
uc(ic,nc)=uf(2*ic-1,2*nc-1)

enddo 13

do 14 jc=1,nc
uc(1,jc)=uf(1,2*jc-1)
uc(nc,jc)=uf(2*nc-1,2*jc-1)

enddo 14

return
END

SUBROUTINE interp(uf,uc,nf)
INTEGER nf
DOUBLE PRECISION uc(nf/2+1,nf/2+1),uf(nf,nf)
INTEGER ic,if,jc,jf,nc

Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf).

nc=nf/2+1
do 12 jc=1,nc Do elements that are copies.

jf=2*jc-1
do 11 ic=1,nc

uf(2*ic-1,jf)=uc(ic,jc)
enddo 11

enddo 12

do 14 jf=1,nf,2 Do odd-numbered columns, interpolating ver-
tically.do 13 if=2,nf-1,2

uf(if,jf)=.5d0*(uf(if+1,jf)+uf(if-1,jf))
enddo 13

enddo 14

do 16 jf=2,nf-1,2 Do even-numbered columns, interpolating hor-
izontally.do 15 if=1,nf

uf(if,jf)=.5d0*(uf(if,jf+1)+uf(if,jf-1))
enddo 15

enddo 16

return
END

SUBROUTINE addint(uf,uc,res,nf)
INTEGER nf
DOUBLE PRECISION res(nf,nf),uc(nf/2+1,nf/2+1),uf(nf,nf)

C USES interp
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf). res(1:nf,1:nf) is used for temporary storage.

INTEGER i,j
call interp(res,uc,nf)
do 12 j=1,nf

do 11 i=1,nf
uf(i,j)=uf(i,j)+res(i,j)

enddo 11

enddo 12

return
END
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SUBROUTINE slvsml(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of the model problem on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION h
call fill0(u,3)
h=.5d0
u(2,2)=-h*h*rhs(2,2)/4.d0
return
END

SUBROUTINE relax(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION h,h2
h=1.d0/(n-1)
h2=h*h
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2 Gauss-Seidel formula.
u(i,j)=0.25d0*(u(i+1,j)+u(i-1,j)+u(i,j+1)

* +u(i,j-1)-h2*rhs(i,j))
enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE resid(res,u,rhs,n)
INTEGER n
DOUBLE PRECISION res(n,n),rhs(n,n),u(n,n)

Returns minus the residual for the model problem. Input quantities are u(1:n,1:n) and
rhs(1:n,1:n), while res(1:n,1:n) is returned.

INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
res(i,j)=-h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+rhs(i,j)
enddo 11

enddo 12

do 13 i=1,n Boundary points.
res(i,1)=0.d0
res(i,n)=0.d0
res(1,i)=0.d0
res(n,i)=0.d0

enddo 13

return
END
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SUBROUTINE copy(aout,ain,n)
INTEGER n
DOUBLE PRECISION ain(n,n),aout(n,n)

Copies ain(1:n,1:n) to aout(1:n,1:n).
INTEGER i,j
do 12 i=1,n

do 11 j=1,n
aout(j,i)=ain(j,i)

enddo 11

enddo 12

return
END

SUBROUTINE fill0(u,n)
INTEGER n
DOUBLE PRECISION u(n,n)

Fills u(1:n,1:n) with zeros.
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
u(i,j)=0.d0

enddo 11

enddo 12

return
END

FUNCTION maloc(len)
INTEGER maloc,len,NG,MEMLEN
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3) for mglin

C PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3) for mgfas, N.B.!
INTEGER mem
DOUBLE PRECISION z
COMMON /memory/ z(MEMLEN),mem

Dynamical storage allocation. Returns integer pointer to the starting position for len array
elements in the array z. The preceding array element is filled with the value of len, and
the variable mem is updated to point to the last element of z that has been used.

if (mem+len+1.gt.MEMLEN) pause ’insufficient memory in maloc’
z(mem+1)=len
maloc=mem+2
mem=mem+len+1
return
END

The routine mglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:

• The defect dh vanishes identically at all black mesh points after a red-black
Gauss-Seidel step. Thus dH = Rdh for half-weighting reduces to simply
copying half the defect from the fine grid to the corresponding coarse-grid
point. The calls to resid followed by rstrct in the first part of the
V-cycle can be replaced by a routine that loops only over the coarse grid,
filling it with half the defect.

• Similarly, the quantity ũnew
h = ũh + P ṽH need not be computed at red

mesh points, since they will immediately be redefined in the subsequent
Gauss-Seidel sweep. This means that addint need only loop over black
points.
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• You can speed up relax in several ways. First, you can have a special
form when the initial guess is zero, and omit the routine fill0. Next,
you can store h2fh on the various grids and save a multiplication. Finally,
it is possible to save an addition in the Gauss-Seidel formula by rewriting
it with intermediate variables.

• On typical problems, mglin with ncycle = 1 will return a solution with
the iteration error bigger than the truncation error for the given size of h.
To knock the error down to the size of the truncation error, you have to
set ncycle = 2 or, more cheaply, npre = 2. A more efficient way turns
out to be to use a higher-order P in (19.6.20) than the linear interpolation
used in the V-cycle.

Implementing all the above features typically gives up to a factor of two
improvement in execution time and is certainly worthwhile in a production code.

Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolically as

L(u) = 0 (19.6.21)

Any explicit source term has been moved to the left-hand side. Suppose equation (19.6.21)
is suitably discretized:

Lh(uh) = 0 (19.6.22)

We will see below that in the multigrid algorithm we will have to consider equations where a
nonzero right-hand side is generated during the course of the solution:

Lh(uh) = fh (19.6.23)

One way of solving nonlinear problems with multigrid is to use Newton’s method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applied directly to nonlinear problems. All we need is a suitable nonlinear relaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt’s Full Approximation Storage Algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector as we did in the linear case. Then we can seek a smooth correction
vh to solve (19.6.23):

Lh(ũh + vh) = fh (19.6.24)

To find vh, note that

Lh(ũh + vh) − Lh(ũh) = fh − Lh(ũh)

= −dh

(19.6.25)

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

LH(uH) − LH(Rũh) = −Rdh (19.6.26)

that is, we solve

LH(uH) = LH(Rũh) −Rdh (19.6.27)

on the coarse grid. (This is how nonzero right-hand sides appear.) Suppose the approximate
solution is ũH . Then the coarse-grid correction is

ṽH = ũH −Rũh (19.6.28)
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and
ũnew

h = ũh + P(ũH −Rũh) (19.6.29)

Note that PR �= 1 in general, so ũnew
h �= PũH . This is a key point: In equation (19.6.29) the

interpolation error comes only from the correction, not from the full solution ũH .
Equation (19.6.27) shows that one is solving for the full approximation uH , not just the

error as in the linear algorithm. This is the origin of the name FAS.
The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.

The only differences are that both the defect dh and the relaxed approximation uh have to
be restricted to the coarse grid, where now it is equation (19.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-called dual viewpoint, which leads to a powerful alternative way
of looking at the multigrid idea.

The dual viewpoint considers the local truncation error, defined as

τ ≡ Lh(u) − fh (19.6.30)

where u is the exact solution of the original continuum equation. If we rewrite this as

Lh(u) = fh + τ (19.6.31)

we see that τ can be regarded as the correction to fh so that the solution of the fine-grid
equation will be the exact solution u.

Now consider the relative truncation error τh, which is defined on the H-grid relative
to the h-grid:

τh ≡ LH(Ruh) −RLh(uh) (19.6.32)

Since Lh(uh) = fh, this can be rewritten as

LH(uH) = fH + τh (19.6.33)

In other words, we can think of τh as the correction to fH that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot compute τh, but we
do have an approximation to it from using ũh in equation (19.6.32):

τh � τ̃h ≡ LH(Rũh) −RLh(ũh) (19.6.34)

Replacing τh by τ̃h in equation (19.6.33) gives

LH(uH) = LH(Rũh) −Rdh (19.6.35)

which is just the coarse-grid equation (19.6.27)!
Thus we see that there are two complementary viewpoints for the relation between

coarse and fine grids:

• Coarse grids are used to accelerate the convergence of the smooth components
of the fine-grid residuals.

• Fine grids are used to compute correction terms to the coarse-grid equations,
yielding fine-grid accuracy on the coarse grids.

One benefit of this new viewpoint is that it allows us to derive a natural stopping criterion
for a multigrid iteration. Normally the criterion would be

‖dh‖ ≤ ε (19.6.36)

and the question is how to choose ε. There is clearly no benefit in iterating beyond the
point when the remaining error is dominated by the local truncation error τ . The computable
quantity is τ̃h. What is the relation between τ and τ̃h? For the typical case of a second-order
accurate differencing scheme,

τ = Lh(u) −Lh(uh) = h2τ2(x, y) + · · · (19.6.37)
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Assume the solution satisfies uh = u + h2u2(x, y) + · · · . Then, assuming R is of high
enough order that we can neglect its effect, equation (19.6.32) gives

τh � LH(u + h2u2) −Lh(u + h2u2)

= LH(u) − Lh(u) + h2[L′
H(u2) − L′

h(u2)] + · · ·
= (H2 − h2)τ2 + O(h4)

(19.6.38)

For the usual case of H = 2h we therefore have

τ � 1
3
τh � 1

3
τ̃h (19.6.39)

The stopping criterion is thus equation (19.6.36) with

ε = α‖τ̃h‖, α ∼ 1
3

(19.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (19.6.23) is written with
some choice of ordering as

Li(u1, . . . , uN ) = fi, i = 1, . . . , N (19.6.41)

then the nonlinear Gauss-Seidel schemes solves

Li(u1, . . . , ui−1, u
new
i , ui+1, . . . , uN ) = fi (19.6.42)

for unew
i . As usual new u’s replace old u’s as soon as they have been computed. Often equation

(19.6.42) is linear in unew
i , since the nonlinear terms are discretized by means of its neighbors.

If this is not the case, we replace equation (19.6.42) by one step of a Newton iteration:

unew
i = uold

i − Li(u
old
i ) − fi

∂Li(uold
i )/∂ui

(19.6.43)

For example, consider the simple nonlinear equation

∇2u + u2 = ρ (19.6.44)

In two-dimensional notation, we have

L(ui,j) = (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)/h2 + u2
i,j − ρi,j = 0 (19.6.45)

Since

∂L
∂ui,j

= −4/h2 + 2ui,j (19.6.46)

the Newton Gauss-Seidel iteration is

unew
i,j = ui,j − L(ui,j)

−4/h2 + 2ui,j
(19.6.47)

Here is a routine mgfas that solves equation (19.6.44) using the Full Multigrid Algorithm
and the FAS scheme. Restriction and prolongation are done as in mglin. We have included
the convergence test based on equation (19.6.40). A successful multigrid solution of a problem
should aim to satisfy this condition with the maximum number of V-cycles, maxcyc, equal
to 1 or 2. The routine mgfas uses the same subroutines copy, interp, maloc, and rstrct
as mglin, but with a larger storage requirement MEMLEN in maloc (be sure to change the
PARAMETER statement in that routine, as indicated by the commented line).
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SUBROUTINE mgfas(u,n,maxcyc)
INTEGER maxcyc,n,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n),ALPHA
PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3)
PARAMETER (NPRE=1,NPOST=1,ALPHA=.33d0)

C USES anorm2,copy,interp,lop,maloc,matadd,matsub,relax2,rstrct,slvsm2
Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u(1:n,1:n) contains the right-hand side ρ, while on output it re-
turns the solution. The dimension n is related to the number of grid levels used in the
solution, NG below, by n = 2**NG + 1. maxcyc is the maximum number of V-cycles to
be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed; ALPHA relates
the estimated truncation error to the norm of the residual.

INTEGER j,jcycle,jj,jm1,jpost,jpre,mem,nf,ngrid,nn,irho(NG),
* irhs(NG),itau(NG),itemp(NG),iu(NG),maloc

DOUBLE PRECISION res,trerr,z,anorm2
COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc

from array z.mem=0
nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG − 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
itau(1)=maloc(nn**2)
itemp(1)=maloc(nn**2)
call slvsm2(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
itau(j)=maloc(nn**2)
itemp(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,maxcyc V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call lop(z(itemp(jj)),z(iu(jj)),nf) Lh(ũh).
nf=nf/2+1
jm1=jj-1
call rstrct(z(itemp(jm1)),z(itemp(jj)),nf) RLh(ũh).
call rstrct(z(iu(jm1)),z(iu(jj)),nf) Rũh.
call lop(z(itau(jm1)),z(iu(jm1)),nf) LH(Rũh) stored temporarily in τ̃h.
call matsub(z(itau(jm1)),z(itemp(jm1)),z(itau(jm1)),nf) Form τ̃h.
if(jj.eq.j)trerr=ALPHA*anorm2(z(itau(jm1)),nf) Estimate truncation error τ .
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call rstrct(z(irhs(jm1)),z(irhs(jj)),nf) fH .
call matadd(z(irhs(jm1)),z(itau(jm1)),z(irhs(jm1)),nf) fH + τ̃h.

enddo 12

call slvsm2(z(iu(1)),z(irhs(1))) Bottom of V: Solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

jm1=jj-1
call rstrct(z(itemp(jm1)),z(iu(jj)),nf) Rũh.
call matsub(z(iu(jm1)),z(itemp(jm1)),z(itemp(jm1)),nf) ũH −Rũh.
nf=2*nf-1
call interp(z(itau(jj)),z(itemp(jm1)),nf) P(ũH−Rũh) stored in τ̃h.
call matadd(z(iu(jj)),z(itau(jj)),z(iu(jj)),nf) Form ũnew

h .
do 13 jpost=1,NPOST Post-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

call lop(z(itemp(j)),z(iu(j)),nf) Form residual ‖dh‖.
call matsub(z(itemp(j)),z(irhs(j)),z(itemp(j)),nf)
res=anorm2(z(itemp(j)),nf)
if(res.lt.trerr)goto 2 No more V-cycles needed if residual small

enough.enddo 15

2 continue
enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE relax2(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION foh2,h,h2i,res
h=1.d0/(n-1)
h2i=1.d0/(h*h)
foh2=-4.d0*h2i
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2
res=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2-rhs(i,j)
u(i,j)=u(i,j)-res/(foh2+2.d0*u(i,j)) Newton Gauss-Seidel formula.

enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE slvsm2(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of equation (19.6.44) on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION disc,fact,h
call fill0(u,3)
h=.5d0
fact=2.d0/h**2
disc=sqrt(fact**2+rhs(2,2))
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u(2,2)=-rhs(2,2)/(fact+disc)
return
END

SUBROUTINE lop(out,u,n)
INTEGER n
DOUBLE PRECISION out(n,n),u(n,n)

Given u(1:n,1:n), returns Lh(ũh) for equation (19.6.44) in out(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
out(i,j)=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2
enddo 11

enddo 12

do 13 i=1,n Boundary points.
out(i,1)=0.d0
out(i,n)=0.d0
out(1,i)=0.d0
out(n,i)=0.d0

enddo 13

return
END

SUBROUTINE matadd(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Adds a(1:n,1:n) to b(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)+b(i,j)

enddo 11

enddo 12

return
END

SUBROUTINE matsub(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Subtracts b(1:n,1:n) from a(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)-b(i,j)

enddo 11

enddo 12

return
END

DOUBLE PRECISION FUNCTION anorm2(a,n)
INTEGER n
DOUBLE PRECISION a(n,n)

Returns the Euclidean norm of the matrix a(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION sum
sum=0.d0
do 12 j=1,n

do 11 i=1,n
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sum=sum+a(i,j)**2
enddo 11

enddo 12

anorm2=sqrt(sum)/n
return
END
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Chapter 20. Less-Numerical

Algorithms

20.0 Introduction

You can stop reading now. You are done with Numerical Recipes, as such. This
final chapter is an idiosyncratic collection of “less-numerical recipes” which, for one
reason or another, we have decided to include between the covers of an otherwise
more-numerically oriented book. Authors of computer science texts, we’ve noticed,
like to throw in a token numerical subject (usually quite a dull one — quadrature, for
example). We find that we are not free of the reverse tendency.

Our selection of material is not completely arbitrary. One topic, Gray codes, was
already used in the construction of quasi-random sequences (§7.7), and here needs
only some additional explication. Two other topics, on diagnosing a computer’s
floating-point parameters, and on arbitrary precision arithmetic, give additional
insight into the machinery behind the casual assumption that computers are useful
for doing things with numbers (as opposed to bits or characters). The latter of these
topics also shows a very different use for Chapter 12’s fast Fourier transform.

The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle a large
amount of data — numerical data, even — then a passing familiarity with these
subjects might at some point come in handy. In §13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is “accurate
enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.2) stands between you and a perfect
calculation. Sounds rather naive, doesn’t it?

Yes, it is naive. Notwithstanding, it is a fiction necessarily adopted throughout
most of this book. To do a good job of answering the question of how roundoff error

881
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for doing things with numbers (as opposed to bits or characters). The latter of these
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The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle a large
amount of data — numerical data, even — then a passing familiarity with these
subjects might at some point come in handy. In §13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is “accurate
enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.2) stands between you and a perfect
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propagates, or can be bounded, for every algorithm that we have discussed would be
impractical. In fact, it would not be possible: Rigorous analysis of many practical
algorithms has never been made, by us or anyone.

Proper numerical analysts cringe when they hear a user say, “I was getting
roundoff errors with single precision, so I switched to double.” The actual meaning
is, “for this particular algorithm, and my particular data, double precision seemed
able to restore my erroneous belief in the ‘convenient fiction’.” We admit that most
of the mentions of precision or roundoff in Numerical Recipes are only slightly more
quantitative in character. That comes along with our trying to be “practical.”

It is important to know what the limitations of your machine’s floating-point
arithmetic actually are — the more so when your treatment of floating-point roundoff
error is going to be intuitive, experimental, or casual. Methods for determining
useful floating-point parameters experimentally have been developed by Cody [1],
Malcolm [2], and others, and are embodied in the routine machar, below, which
follows Cody’s implementation.

All of machar’s arguments are returned values. Here is what they mean:
• ibeta (called B in §1.2) is the radix in which numbers are represented,

almost always 2, but occasionally 16, or even 10.
• it is the number of base-ibeta digits in the floating-point mantissa M

(see Figure 1.2.1).
• machep is the exponent of the smallest (most negative) power of ibeta

that, added to 1.0, gives something different from 1.0.
• eps is the floating-point number ibetamachep, loosely referred to as the

“floating-point precision.”
• negep is the exponent of the smallest power of ibeta that, subtracted

from 1.0, gives something different from 1.0.
• epsneg is ibetanegep, another way of defining floating-point precision.

Not infrequently epsneg is 0.5 times eps; occasionally eps and epsneg
are equal.

• iexp is the number of bits in the exponent (including its sign or bias).
• minexp is the smallest (most negative) power of ibeta consistent with

there being no leading zeros in the mantissa.
• xmin is the floating-point number ibetaminexp, generally the smallest

(in magnitude) useable floating value.
• maxexp is the smallest (positive) power of ibeta that causes overflow.
• xmax is (1−epsneg)×ibetamaxexp, generally the largest (in magnitude)

useable floating value.
• irnd returns a code in the range 0 . . . 5, giving information on what kind of

rounding is done in addition, and on how underflow is handled. See below.
• ngrd is the number of “guard digits” used when truncating the product of

two mantissas to fit the representation.
There is a lot of subtlety in a program like machar, whose purpose is to ferret

out machine properties that are supposed to be transparent to the user. Further, it must
do so avoiding error conditions, like overflow and underflow, that might interrupt
its execution. In some cases the program is able to do this only by recognizing
certain characteristics of “standard” representations. For example, it recognizes
the IEEE standard representation [3] by its rounding behavior, and assumes certain
features of its exponent representation as a consequence. We refer you to [1] and
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Sample Results Returned by machar

typical IEEE-compliant machine DEC VAX

precision single double single

ibeta 2 2 2

it 24 53 24

machep −23 −52 −24

eps 1.19 × 10−7 2.22 × 10−16 5.96 × 10−8

negep −24 −53 −24

epsneg 5.96 × 10−8 1.11 × 10−16 5.96 × 10−8

iexp 8 11 8

minexp −126 −1022 −128

xmin 1.18 × 10−38 2.23 × 10−308 2.94 × 10−39

maxexp 128 1024 127

xmax 3.40 × 1038 1.79 × 10308 1.70 × 1038

irnd 5 5 1

ngrd 0 0 0

references therein for details. Be aware that machar can give incorrect results on
some nonstandard machines.

The parameter irnd needs some additional explanation. In the IEEE standard,
bit patterns correspond to exact, “representable” numbers. The specified method
for rounding an addition is to add two representable numbers “exactly,” and then
round the sum to the closest representable number. If the sum is precisely halfway
between two representable numbers, it should be rounded to the even one (low-order
bit zero). The same behavior should hold for all the other arithmetic operations,
that is, they should be done in a manner equivalent to infinite precision, and then
rounded to the closest representable number.

If irnd returns 2 or 5, then your computer is compliant with this standard. If it
returns 1 or 4, then it is doing some kind of rounding, but not the IEEE standard. If
irnd returns 0 or 3, then it is truncating the result, not rounding it — not desirable.

The other issue addressed by irnd concerns underflow. If a floating value is
less than xmin, many computers underflow its value to zero. Values irnd = 0, 1,
or 2 indicate this behavior. The IEEE standard specifies a more graceful kind of
underflow: As a value becomes smaller than xmin, its exponent is frozen at the
smallest allowed value, while its mantissa is decreased, acquiring leading zeros and
“gracefully” losing precision. This is indicated by irnd = 3, 4, or 5.
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SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,
* maxexp,eps,epsneg,xmin,xmax)

INTEGER ibeta,iexp,irnd,it,machep,maxexp,minexp,negep,ngrd
REAL eps,epsneg,xmax,xmin

Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits
in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is not
equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not equal to
1.0; xmin, the smallest representable positive number; and xmax, the largest representable
positive number. See text for description of other returned parameters.

INTEGER i,itemp,iz,j,k,mx,nxres
REAL a,b,beta,betah,betain,one,t,temp,temp1,tempa,two,y,z

* ,zero,CONV
CONV(i)=float(i) Change to dble(i), and change REAL declaration above to

DOUBLE PRECISION to find double precision parameters.one=CONV(1)
two=one+one
zero=one-one
a=one Determine ibeta and beta by the method of M. Malcolm.

1 continue
a=a+a
temp=a+one
temp1=temp-a

if (temp1-one.eq.zero) goto 1
b=one

2 continue
b=b+b
temp=a+b
itemp=int(temp-a)

if (itemp.eq.0) goto 2
ibeta=itemp
beta=CONV(ibeta)
it=0 Determine it and irnd.
b=one

3 continue
it=it+1
b=b*beta
temp=b+one
temp1=temp-b

if (temp1-one.eq.zero) goto 3
irnd=0
betah=beta/two
temp=a+betah
if (temp-a.ne.zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd.eq.0).and.(temp-tempa.ne.zero)) irnd=2
negep=it+3 Determine negep and epsneg.
betain=one/beta
a=one
do 11 i=1, negep

a=a*betain
enddo 11

b=a
4 continue

temp=one-a
if (temp-one.ne.zero) goto 5
a=a*beta
negep=negep-1

goto 4
5 negep=-negep

epsneg=a
machep=-it-3 Determine machep and eps.
a=b

6 continue
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temp=one+a
if (temp-one.ne.zero) goto 7
a=a*beta
machep=machep+1

goto 6
7 eps=a

ngrd=0 Determine ngrd.
temp=one+eps
if ((irnd.eq.0).and.(temp*one-one.ne.zero)) ngrd=1
i=0 Determine iexp.
k=1
z=betain
t=one+eps
nxres=0

8 continue Loop until an underflow occurs, then exit.
y=z
z=y*y
a=z*one Check here for the underflow.
temp=z*t
if ((a+a.eq.zero).or.(abs(z).ge.y)) goto 9
temp1=temp*betain
if (temp1*beta.eq.z) goto 9
i=i+1
k=k+k

goto 8
9 if (ibeta.ne.10) then

iexp=i+1
mx=k+k

else For decimal machines only.
iexp=2
iz=ibeta

10 if (k.ge.iz) then
iz=iz*ibeta
iexp=iexp+1

goto 10
endif
mx=iz+iz-1

endif
20 xmin=y To determine minexp and xmin, loop until an underflow oc-

curs, then exit.y=y*betain
a=y*one Check here for the underflow.
temp=y*t
if (((a+a).ne.zero).and.(abs(y).lt.xmin)) then

k=k+1
temp1=temp*betain
if ((temp1*beta.ne.y).or.(temp.eq.y)) then

goto 20
else

nxres=3
xmin=y

endif
endif
minexp=-k Determine maxexp, xmax.
if ((mx.le.k+k-3).and.(ibeta.ne.10)) then

mx=mx+mx
iexp=iexp+1

endif
maxexp=mx+minexp
irnd=irnd+nxres Adjust irnd to reflect partial underflow.
if (irnd.ge.2) maxexp=maxexp-2 Adjust for IEEE-style machines.
i=maxexp+minexp
Adjust for machines with implicit leading bit in binary mantissa, and machines with radix
point at extreme right of mantissa.

if ((ibeta.eq.2).and.(i.eq.0)) maxexp=maxexp-1
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if (i.gt.20) maxexp=maxexp-1
if (a.ne.y) maxexp=maxexp-2
xmax=one-epsneg
if (xmax*one.ne.xmax) xmax=one-beta*epsneg
xmax=xmax/(beta*beta*beta*xmin)
i=maxexp+minexp+3
do 12 j=1,i

if (ibeta.eq.2) xmax=xmax+xmax
if (ibeta.ne.2) xmax=xmax*beta

enddo 12

return
END

Some typical values returned by machar are given in the table, above. IEEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh IIs. IBM PCs with floating co-processors
are generally IEEE-compliant, except that some compilers underflow intermediate
results ungracefully, yielding irnd = 2 rather than 5. Notice, as in the case of a VAX
(fourth column), that representations with a “phantom” leading 1 bit in the mantissa
achieve a smaller eps for the same wordlength, but cannot underflow gracefully.

CITED REFERENCES AND FURTHER READING:

Goldberg, D. 1991, ACM Computing Surveys, vol. 23, pp. 5–48.

Cody, W.J. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 303–311. [1]

Malcolm, M.A. 1972, Communications of the ACM, vol. 15, pp. 949–951. [2]

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985). [3]

20.2 Gray Codes

A Gray code is a function G(i) of the integers i, that for each integer N ≥ 0
is one-to-one for 0 ≤ i ≤ 2N − 1, and that has the following remarkable property:
The binary representation of G(i) and G(i+1) differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001,
and 1000, for i = 0, . . . , 15. The algorithm for generating this code is simply to
form the bitwise exclusive-or (XOR) of i with i/2 (integer part). Think about how
the carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see that G(i) and G(i + 1) differ in the bit position of
the rightmost zero bit of i (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel with
concentric coded stripes each of which is “read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on half the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,
and 7; and so on. The brushes together then read a direct binary code for the
position of the wheel.
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if (i.gt.20) maxexp=maxexp-1
if (a.ne.y) maxexp=maxexp-2
xmax=one-epsneg
if (xmax*one.ne.xmax) xmax=one-beta*epsneg
xmax=xmax/(beta*beta*beta*xmin)
i=maxexp+minexp+3
do 12 j=1,i

if (ibeta.eq.2) xmax=xmax+xmax
if (ibeta.ne.2) xmax=xmax*beta

enddo 12

return
END

Some typical values returned by machar are given in the table, above. IEEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh IIs. IBM PCs with floating co-processors
are generally IEEE-compliant, except that some compilers underflow intermediate
results ungracefully, yielding irnd = 2 rather than 5. Notice, as in the case of a VAX
(fourth column), that representations with a “phantom” leading 1 bit in the mantissa
achieve a smaller eps for the same wordlength, but cannot underflow gracefully.

CITED REFERENCES AND FURTHER READING:

Goldberg, D. 1991, ACM Computing Surveys, vol. 23, pp. 5–48.

Cody, W.J. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 303–311. [1]

Malcolm, M.A. 1972, Communications of the ACM, vol. 15, pp. 949–951. [2]

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985). [3]

20.2 Gray Codes

A Gray code is a function G(i) of the integers i, that for each integer N ≥ 0
is one-to-one for 0 ≤ i ≤ 2N − 1, and that has the following remarkable property:
The binary representation of G(i) and G(i+1) differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001,
and 1000, for i = 0, . . . , 15. The algorithm for generating this code is simply to
form the bitwise exclusive-or (XOR) of i with i/2 (integer part). Think about how
the carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see that G(i) and G(i + 1) differ in the bit position of
the rightmost zero bit of i (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel with
concentric coded stripes each of which is “read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on half the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,
and 7; and so on. The brushes together then read a direct binary code for the
position of the wheel.
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Figure 20.2.1. Single-bit operations for calculating the Gray code G(i) from i (a), or the inverse (b).
LSB and MSB indicate the least and most significant bits, respectively. XOR denotes exclusive-or.

The reason this method is bad, is that there is no way to guarantee that all the
brushes will make or break contact exactly simultaneously as the wheel turns. Going
from position 7 (0111) to 8 (1000), one might pass spuriously and transiently through
6 (0110), 14 (1110), and 10 (1010), as the different brushes make or break contact.
Use of a Gray code on the encoding stripes guarantees that there is no transient state
between 7 (0100 in the sequence above) and 8 (1100).

Of course we then need circuitry, or algorithmics, to translate from G(i) to i.
Figure 20.2.1 (b) shows how this is done by a cascade of XOR gates. The idea is
that each output bit should be the XOR of all more significant input bits. To do
N bits of Gray code inversion requires N − 1 steps (or gate delays) in the circuit.
(Nevertheless, this is typically very fast in circuitry.) In a register with word-wide
binary operations, we don’t have to do N consecutive operations, but only ln 2 N .
The trick is to use the associativity of XOR and group the operations hierarchically.
This involves sequential right-shifts by 1, 2, 4, 8, . . . bits until the wordlength is
exhausted. Here is a piece of code for doing both G(i) and its inverse.
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FUNCTION igray(n,is)
INTEGER igray,is,n

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER idiv,ish
if (is.ge.0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n

1 continue
idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if(idiv.le.1.or.ish.eq.-16)return
ish=ish+ish Double the amount of shift on the next cycle.

goto 1
endif
return
END

In numerical work, Gray codes can be useful when you need to do some task
that depends intimately on the bits of i, looping over many values of i. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in §7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCII characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or always odd (“odd parity”). Any single bit error in a character
will thereby be detected. When errors are sufficiently rare, and do not occur closely
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, a single noise “event” is likely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a 50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols [1] use a multibit generalization of the parity bit
called a “cyclic redundancy check” or CRC. In typical applications the CRC is 16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in 216 = 65536. Moreover, M -bit CRCs have the mathematical
property of detecting all errors that occur in M or fewer consecutive bits, for any
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FUNCTION igray(n,is)
INTEGER igray,is,n

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER idiv,ish
if (is.ge.0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n

1 continue
idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if(idiv.le.1.or.ish.eq.-16)return
ish=ish+ish Double the amount of shift on the next cycle.

goto 1
endif
return
END

In numerical work, Gray codes can be useful when you need to do some task
that depends intimately on the bits ofi, looping over many values ofi. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in§7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCII characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or always odd (“odd parity”). Anysingle bit error in a character
will thereby be detected. When errors are sufficiently rare, and do not occur closely
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, a single noise “event” is likely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a 50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols[1] use a multibit generalization of the parity bit
called a “cyclic redundancy check” or CRC. In typical applications the CRC is16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in216 = 65536. Moreover,M -bit CRCs have the mathematical
property of detectingall errors that occur inM or fewerconsecutive bits, for any
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length of message. (We prove this below.) Since noise in communication channels
tends to be “bursty,” with short sequences of adjacent bits getting corrupted, this
consecutive-bit property is highly desirable.

Normally CRCs lie in the province of communications software experts and
chip-level hardware designers — people with bits under their fingernails. However,
there are at least two kinds of situations where some understanding of CRCs can be
useful to the rest of us. First, we sometimes need to be able to communicate with
a lower-level piece of hardware or software that expects a valid CRC as part of its
input. For example, it can be convenient to have a program generate XMODEM
or Kermit [2] packets directly into the communications line rather than having to
store the data in a local file.

Second, in the manipulation of large quantities of (e.g., experimental) data, it
is useful to be able to tag aggregates of data (whether numbers, records, lines, or
whole files) with a statistically unique “key,” its CRC. Aggregates of any size can
then be compared for identity by comparing only their short CRC keys. Differing
keys imply nonidentical records. Identical keys imply, to high statistical certainty,
identical records. If you can’t tolerate the very small probability of being wrong, you
can do a full comparison of the records when the keys are identical. When there is a
possibility of files or data records being inadvertently or irresponsibly modified (for
example, by a computer virus), it is useful to have their prior CRCs stored externally
on a physically secure medium, like a floppy disk.

Sometimes CRCs can be used to compress data as it is recorded. If identical data
records occur frequently, one can keep sorted in memory the CRCs of previously
encountered records. A new record is archived in full if its CRC is different,
otherwise only a pointer to a previous record need be archived. In this application
one might desire a 4- or 8-byte CRC, to make the odds of mistakenly discarding
a different data record be tolerably small; or, if previous records can be randomly
accessed, a full comparison can be made to decide whether records with identical
CRCs are in fact identical.

Now let us briefly discuss the theory of CRCs. After that, we will give
implementations of various (related) CRCs that are used by the official or de facto
standard protocols[1-3] listed in the accompanying table.

The mathematics underlying CRCs is “polynomials over the integers modulo
2.” Any binary message can be thought of as a polynomial with coefficients 0 and 1.
For example, the message “1100001101” is the polynomialx 9 + x8 + x3 + x2 + 1.
Since 0 and 1 are the only integers modulo 2, a power ofx in the polynomial is
either present (1) or absent (0). A polynomial over the integers modulo 2 may be
irreducible, meaning that it can’t be factored. A subset of the irreducible polynomials
are the “primitive” polynomials. These generate maximum length sequences when
used in shift registers, as described in§7.4. The polynomialx2 +1 is not irreducible:
x2+1 = (x+1)(x+1), so it is also not primitive. The polynomialx4+x3+x2+x+1
is irreducible, but it turns out not to be primitive. The polynomialx 4 + x + 1 is
both irreducible and primitive.

An M -bit long CRC is based on a primitive polynomial of degreeM , called the
generator polynomial. Alternatively, the generator is chosen to be a primitive polyno-
mial times(1+x) (this finds all parity errors). For 16-bit CRC’s, the CCITT (Comité
Consultatif International T́elégraphique et T́eléphonique) has anointed the “CCITT
polynomial,” which isx16 + x12 + x5 + 1. This polynomial is used by all of the
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Conventions and Test Values for Various CRC Protocols

icrc args Test Values(C2C1 in hex) Packet

Protocol jinit jrev T CatMouse987654321 Format CRC

XMODEM 0 1 1A71 E556 S1S2 . . . SN C2C1 0

X.25 255 −1 1B26 F56E S1S2 . . . SN C1C2 F0B8

(no name) 255 −1 1B26 F56E S1S2 . . . SN C1C2 0

SDLC (IBM) same as X.25

HDLC (ISO) same as X.25

CRC-CCITT 0 −1 14A1 C28D S1S2 . . . SN C1C2 0

(no name) 0 −1 14A1 C28D S1S2 . . . SN C1C2 F0B8

Kermit same as CRC-CCITT see Notes

Notes: Overbar denotes bit complement.S1 . . . SN are character data.C1 is CRC’s least
significant 8 bits,C2 is its most significant 8 bits, soCRC = 256 C2 + C1 (shown
in hex). Kermit (block check level 3) sends the CRC as 3 printable ASCII characters
(sends value+32). These contain, respectively, 4 most significant bits, 6 middle bits,
6 least significant bits.

protocols listed in the table. Another common choice is the “CRC-16” polynomial
x16 + x15 + x2 + 1, which is used for EBCDIC messages in IBM’s BISYNCH[1].
A common 12-bit choice, “CRC-12,” isx12 + x11 + x3 + x + 1. A common 32-bit
choice, “AUTODIN-II,” is x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 +x5 +x4 +x2 +x+1. For a table of some other primitive polynomials, see§7.4.

Given the generator polynomialG of degreeM (which can be written either in
polynomial form or as a bit-string, e.g., 10001000000100001 for CCITT), here is
how you compute the CRC for a sequence of bitsS: First, multiplyS by xM , that is,
appendM zero bits to it. Second divide — by long division —G into SxM . Keep
in mind that the subtractions in the long division are done modulo 2, so that there
are never any “borrows”: Modulo 2 subtraction is the same as logical exclusive-or
(XOR). Third, ignore the quotient you get. Fourth, when you eventually get to a
remainder, it is the CRC, call itC. C will be a polynomial of degreeM − 1 or less,
otherwise you would not have finished the long division. Therefore, in bit string
form, it hasM bits, which may include leading zeros. (C might even be all zeros,
see below.) See[3] for a worked example.

If you work through the above steps in an example, you will see that most of
what you write down in the long-division tableau is superfluous. You are actually just
left-shifting sequential bits ofS, from the right, into anM -bit register. Every time a 1
bit gets shifted off the left end of this register, you zap the register by an XOR with the
M low order bits ofG (that is, all the bits ofG except its leading 1). When a 0 bit is
shifted off the left end you don’t zap the register. When the last bit that was originally
part ofS gets shifted off the left end of the register, what remains is the CRC.

You can immediately recognize how efficiently this procedure can be imple-
mented in hardware. It requires only a shift register with a few hard-wired XOR
taps into it. That is how CRCs are computed in communications devices, by a single
chip (or small part of one). In software, the implementation is not so elegant, since
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bit-shifting is not generally very efficient. One therefore typically finds (as in our
implementation below) table-driven routines that pre-calculate the result of a bunch
of shifts and XORs, say for each of 256 possible 8-bit inputs[4].

We can now see how the CRC gets its ability to detect all errors inM consec-
utive bits. Suppose two messages,S andT , differ only within a frame ofM bits.
Then their CRCs differ by an amount that is the remainder whenG is divided into
(S − T )xM ≡ D. Now D has the form of leading zeros (which can be ignored),
followed by some 1’s in anM -bit frame, followed by trailing zeros (which are just
multiplicative factors ofx): D = xnF whereF is a polynomial of degree at most
M − 1 andn > 0. SinceG is always primitive or primitive times(1 + x), it is not
divisible byx. SoG cannot divideD. ThereforeS andT must have different CRCs.

In most protocols, a transmitted block of data consists of someN data bits,
directly followed by theM bits of their CRC (or the CRC XORed with a constant,
see below). There are two equivalent ways of validating a block at the receiving end.
Most obviously, the receiver can compute the CRC of the data bits, and compare it to
the transmitted CRC bits. Less obviously, but more elegantly, the receiver can simply
compute the CRC of the total block, withN +M bits, and verify that a result of zero
is obtained. Proof: The total block is the polynomialSxM + C (data left-shifted to
make room for the CRC bits). The definition ofC is thatSxm = QG + C, where
Q is the discarded quotient. But thenSxM + C = QG + C + C = QG (remember
modulo 2), which is a perfect multiple ofG. It remains a multiple ofG when it gets
multiplied by an additionalxM on the receiving end, so it has a zero CRC, q.e.d.

A couple of small variations on the basic procedure need to be mentioned[1,3]:
First, when the CRC is computed, theM -bit register need not be initialized to zero.
Initializing it to some otherM -bit value (e.g., all 1’s) in effect prefaces all blocks by
a phantom message that would have given the initialization value as its remainder.
It is advantageous to do this, since the CRC described thus far otherwise cannot
detect the addition or removal of any number of initial zero bits. (Loss of an initial
bit, or insertion of zero bits, are common “clocking errors.”) Second, one can add
(XOR) anyM -bit constantK to the CRC before it is transmitted. This constant
can either be XORed away at the receiving end, or else it just changes the expected
CRC of the whole block by a known amount, namely the remainder of dividingG
into KxM . The constantK is frequently “all bits,” changing the CRC into its ones
complement. This has the advantage of detecting another kind of error that the CRC
would otherwise not find: deletion of an initial 1 bit in the message with spurious
insertion of a 1 bit at the end of the block.

The accompanying functionicrc implements the above CRC calculation,
including the possibility of the mentioned variations. Input to the function is the
starting address of an array of characters, and the length of that array. (In practice,
FORTRAN allows you to use the address ofany data structure;icrc will treat it
as a byte array.) Output is in both of two formats. The function value returns
the CRC as a 4-byte integer in the range 0 to 65535. The character arraycrc, of
length 2, returns the CRC as two 8-bit characters.icrc has two “switch” arguments
that specify variations in the CRC calculation. A zero or positive value ofjinit
causes the 16-bit register to have each byte initialized with the valuejinit. A
negative value ofjrev causes each input character to be interpreted as its bit-reverse
image, and a similar bit reversal to be done on the output CRC. You do not have
to understand this; just use the values ofjinit andjrev specified in the table.
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(If you insist on knowing, the explanation is that serial data ports send characters
least-significant bit first (!), and many protocols shift bits into the CRC register in
exactly the order received.) The table shows how to construct a block of characters
from the input array and output CRC oficrc. You should not need to do any
additional bit-reversal outside oficrc.

The switchjinit has one additional use: When negative it causes the input
value of the arraycrc to be used as initialization of the register. Ifcrc is unmodified
since the last call toicrc, this in effect appends the current input array to that of the
previous call or calls. Use this feature, for example, to build up the CRC of a whole
file a line at a time, without keeping the whole file in memory.

At initialization, the routineicrc figures out the order in which the bytes occur
when a 4-byte character array is equivalenced to a 4-byte integer. This is not strictly
portableFORTRAN, but it should work on all machines with 32-bit word lengths.
icrc is loosely based on a more portable C function in[4], a good place to turn if
you have trouble running the program here.

Here is how to understand the operation oficrc: First look at the function
icrc1. This incorporates one input character into a 16-bit CRC register. The only
trick used is that character bits are XORed into the most significant bits, eight at a
time, instead of being fed into the least significant bit, one bit at a time, at the time
of the register shift. This works because XOR is associative and commutative — we
can feed in character bitsany time before they will determine whether to zap with
the generator polynomial. (The decimal constant 4129 has the generator’s bits in it.)

FUNCTION icrc1(crc,onech,ib1,ib2,ib3)
INTEGER icrc1,ib1,ib2,ib3

Given a remainder up to now, return the new CRC after one character is added. This routine
is functionally equivalent to icrc(,,1,-1,1), but slower. It is used by icrc to initialize
its table.

INTEGER i,ichr,ireg
CHARACTER*1 onech,crc(4),creg(4)
EQUIVALENCE (creg,ireg)
ireg=0
creg(ib1)=crc(ib1) Here is where the character is folded into the register.
creg(ib2)=char(ieor(ichar(crc(ib2)),ichar(onech)))
do 11 i=1,8 Here is where 8 one-bit shifts, and some XORs with the gen-

erator polynomial, are done.ichr=ichar(creg(ib2))
ireg=ireg+ireg
creg(ib3)=char(0)
if(ichr.gt.127)ireg=ieor(ireg,4129)

enddo 11

icrc1=ireg
return
END

Now look aticrc. There are two parts to understand, how it builds a table
when it initializes, and how it uses that table later on. Go back to thinking about a
character’s bits being shifted into the CRC register from the least significant end. The
key observation is that while 8 bits are being shifted into the register’s low end, all
the generator zapping is being determined by the bits already in the high end. Since
XOR is commutative and associative, all we need is a table of the result of all this
zapping, for each of 256 possible high-bit configurations. Then we can play catch-up
and XOR an input character into the result of a lookup into this table. The routine
makes repeated use of an equivalenced 4-byte integer and 4-byte character array to



20.3 Cyclic Redundancy and Other Checksums 893

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

get at different 8-bit chunks.The only other content toicrc is the construction at
initialization time of an 8-bit bit-reverse table from the 4-bit table stored init, and
the logic associated with doing the bit reversals. References[4-6] give further details
on table-driven CRC computations.

FUNCTION icrc(crc,bufptr,len,jinit,jrev)
INTEGER icrc,jinit,jrev,len
CHARACTER*1 bufptr(*),crc(2)

C USES icrc1
Computes a 16-bit Cyclic Redundancy Check for an array bufptr of length len bytes,
using any of several conventions as determined by the settings of jinit and jrev (see
accompanying table). The result is returned both as an integer icrc and as a 2-byte array
crc. If jinit is negative, then crc is used on input to initialize the remainder register, in
effect concatenating bufptr to the previous call.

INTEGER ich,init,ireg,j,icrctb(0:255),it(0:15),icrc1,ib1,ib2,ib3
CHARACTER*1 creg(4),rchr(0:255)
SAVE icrctb,rchr,init,it,ib1,ib2,ib3
EQUIVALENCE (creg,ireg) Used to get at the 4 bytes in an integer.
DATA it/0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15/, init /0/
Table of 4-bit bit-reverses, and flag for initialization.

if (init.eq.0) then Do we need to initialize tables?
init=1
ireg=256*(256*ichar(’3’)+ichar(’2’))+ichar(’1’)
do 11 j=1,4 Figure out which component of creg addresses which

byte of ireg.if (creg(j).eq.’1’) ib1=j
if (creg(j).eq.’2’) ib2=j
if (creg(j).eq.’3’) ib3=j

enddo 11

do 12 j=0,255 The two tables are: CRCs of all characters, and bit-reverses
of all characters.ireg=j*256

icrctb(j)=icrc1(creg,char(0),ib1,ib2,ib3)
ich=it(mod(j,16))*16+it(j/16)
rchr(j)=char(ich)

enddo 12

endif
if (jinit.ge.0) then Initialize the remainder register.

crc(1)=char(jinit)
crc(2)=char(jinit)

else if (jrev.lt.0) then If not initializing, do we reverse the register?
ich=ichar(crc(1))
crc(1)=rchr(ichar(crc(2)))
crc(2)=rchr(ich)

endif
do 13 j=1,len Main loop over the characters in the array.

ich=ichar(bufptr(j))
if(jrev.lt.0)ich=ichar(rchr(ich))
ireg=icrctb(ieor(ich,ichar(crc(2))))
crc(2)=char(ieor(ichar(creg(ib2)),ichar(crc(1))))
crc(1)=creg(ib1)

enddo 13

if (jrev.ge.0) then Do we need to reverse the output?
creg(ib1)=crc(1)
creg(ib2)=crc(2)

else
creg(ib2)=rchr(ichar(crc(1)))
creg(ib1)=rchr(ichar(crc(2)))
crc(1)=creg(ib1)
crc(2)=creg(ib2)

endif
icrc=ireg
return
END
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What if you need a 32-bit checksum? For a true 32-bit CRC, you will need to
rewrite the routines given to work with a longer generating polynomial. For example,
x32 +x7 +x5 +x3 +x2 +x+1 is primitive modulo 2, and has nonleading, nonzero
bits only in its least significant byte (which makes for some simplification). The idea
of table lookup on only the most significant byte of the CRC register goes through
unchanged. Pay attention to the fact thatFORTRAN does not have unsigned integers,
so half of your CRCs will appear to be negative in integer format.

If you do not care about theM -consecutive bit property of the checksum, but
rather only need a statistically random 32 bits, then you can useicrc as given
here: Call it once withjrev = 1 to get 16 bits, andagain with jrev = −1 to get
another 16 bits. The internal bit reversals make these two 16-bit CRCs in effect
totally independent of each other.

Other Kinds of Checksums

Quite different from CRCs are the various techniques used to append a decimal
“check digit” to numbers that are handled by human beings (e.g., typed into a
computer). Check digits need to be proof against the kinds of highly structured
errors that humans tend to make, such as transposing consecutive digits. Wagner and
Putter[7] give an interesting introduction to this subject, including specific algorithms.

Checksums now in widespread use vary from fair to poor. The 10-digit ISBN
(International Standard Book Number) that you find on most books, including this
one, uses the check equation

10d1 + 9d2 + 8d3 + · · · + 2d9 + d10 = 0 (mod 11) (20.3.1)

whered10 is the right-hand check digit. The character “X” is used to represent a
check digit value of 10. Another popular scheme is the so-called “IBM check,” often
used for account numbers (including, e.g., MasterCard). Here, the check equation is

2#d1 + d2 + 2#d3 + d4 + · · · = 0 (mod 10) (20.3.2)

where2#d means, “multiplyd by two and add the resulting decimal digits.” United
States banks code checks with a 9-digit processing number whose check equation is

3a1 + 7a2 + a3 + 3a4 + 7a5 + a6 + 3a7 + 7a8 + a9 = 0 (mod 10) (20.3.3)

The bar code put on many envelopes by the U.S. Postal Service is decoded by
removing the single tall marker bars at each end, and breaking the remaining bars
into 6 or 10 groups of five. In each group the five bars signify (from left to right)
the values 7,4,2,1,0. Exactly two of them will be tall. Their sum is the represented
digit, except that zero is represented as7 + 4. The 5- or 9-digit Zip Code is followed
by a check digit, with the check equation

∑
di = 0 (mod 10) (20.3.4)

None of these schemes is close to optimal. An elegant scheme due to Verhoeff
is described in[7]. The underlying idea is to use the ten-elementdihedral group D 5,
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which corresponds to the symmetries of a pentagon, instead of the cyclic group of
the integers modulo 10. The check equation is

a1*f(a2)*f2(a3)* · · · *fn−1(an) = 0 (20.3.5)

where* is (noncommutative) multiplication inD5, andf i denotes theith iteration
of a certain fixed permutation. Verhoeff’s method findsall single errors in a string,
andall adjacent transpositions. It also finds about 95% of twin errors (aa → bb),
jump transpositions (acb → bca), and jump twin errors (aca → bcb). Here is an
implementation:

LOGICAL FUNCTION decchk(string,n,ch)
INTEGER n
CHARACTER string*(*),ch*1

Decimal check digit computation or verification. Returns as ch a check digit for appending
to string(1:n), that is, for storing into string(n+1:n+1). In this mode, ignore the
returned logical value. If string(1:n) already ends with a check digit (string(n:n)),
returns the function value .true. if the check digit is valid, otherwise .false. In this
mode, ignore the returned value of ch. Note that string and ch contain ASCII characters
corresponding to the digits 0-9, not byte values in that range. Other ASCII characters are
allowed in string, and are ignored in calculating the check digit.

INTEGER ij(10,10),ip(10,8),i,j,k,m
SAVE ij,ip Group multiplication and permutation tables.
DATA ip/0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,

* 5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,
* 4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8/,
* ij/0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,
* 7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,5,6,7,8,9,0,1,2,3,
* 4,6,7,8,9,5,4,0,1,2,3,7,8,9,5,6,3,4,0,1,2,8,9,5,6,7,2,3,4,0,
* 1,9,5,6,7,8,1,2,3,4,0/

k=0
m=0
do 11 j=1,n Look at successive characters.

i=ichar(string(j:j))
if (i.ge.48.and.i.le.57)then Ignore everything except digits.

k=ij(k+1,ip(mod(i+2,10)+1,mod(m,8)+1)+1)
m=m+1

endif
enddo 11

decchk=(k.eq.0)
do 12 i=0,9 Find which appended digit will check properly.

if (ij(k+1,ip(i+1,mod(m,8)+1)+1).eq.0) goto 1
enddo 12

1 ch=char(i+48) Convert to ASCII.
return
end
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20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translates itreversibly into another string, one that is
on the average of shorter length. The words “on the average” are crucial; it is obvious
that no reversible algorithm can make all strings shorter — there just aren’t enough
short strings to be in one-to-one correspondence with longer strings. Compression
algorithms are possible only when, on the input side, some strings, or some input
symbols, are more common than others. These can then be encoded in fewer bits
than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider onlyvariable length codes with defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding[1], discussed in this section. Another
example,arithmetic compression, is discussed in§20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up theinput into units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The most
widely used code of this type is the Ziv-Lempel code[2]. References[3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make this idea quantitative by considering the concept
of entropy. Suppose the input alphabet hasNch characters, and that these occur in
the input string with respective probabilitiespi, i = 1, . . . , Nch, so that

∑
pi = 1.

Then the fundamental theorem of information theory says that strings consisting of
independently random sequences of these characters (a conservative, but not always
realistic assumption) require, on the average, at least

H = −
∑

pi log2 pi (20.4.1)

bits per character. HereH is the entropy of the probability distribution. Moreover,
coding schemes exist which approach the bound arbitrarily closely. For the case of
equiprobable characters, with allpi = 1/Nch, one easily sees thatH = log2 Nch,
which is the case of no compression at all. Any other set ofp i’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (20.4.1)would be achieved if we could encode character
i with a code of lengthLi = − log2 pi bits: Equation (20.4.1) would then be the
average

∑
piLi. The trouble with such a scheme is that− log2 pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilitiesp i by integer powers
of 1/2, so that all theLi’s are integral. If all thepi’s are in fact of this form, then
a Huffman code does achieve the entropy boundH .

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with theNch = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish is accomplished in the following table:
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20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translates itreversibly into another string, one that is
on the average of shorter length. The words “on the average” are crucial; it is obvious
that no reversible algorithm can make all strings shorter — there just aren’t enough
short strings to be in one-to-one correspondence with longer strings. Compression
algorithms are possible only when, on the input side, some strings, or some input
symbols, are more common than others. These can then be encoded in fewer bits
than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider onlyvariable length codes with defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding[1], discussed in this section. Another
example,arithmetic compression, is discussed in§20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up theinput into units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The most
widely used code of this type is the Ziv-Lempel code[2]. References[3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make this idea quantitative by considering the concept
of entropy. Suppose the input alphabet hasNch characters, and that these occur in
the input string with respective probabilitiespi, i = 1, . . . , Nch, so that

∑
pi = 1.

Then the fundamental theorem of information theory says that strings consisting of
independently random sequences of these characters (a conservative, but not always
realistic assumption) require, on the average, at least

H = −
∑

pi log2 pi (20.4.1)

bits per character. HereH is the entropy of the probability distribution. Moreover,
coding schemes exist which approach the bound arbitrarily closely. For the case of
equiprobable characters, with allpi = 1/Nch, one easily sees thatH = log2 Nch,
which is the case of no compression at all. Any other set ofp i’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (20.4.1)would be achieved if we could encode character
i with a code of lengthLi = − log2 pi bits: Equation (20.4.1) would then be the
average

∑
piLi. The trouble with such a scheme is that− log2 pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilitiesp i by integer powers
of 1/2, so that all theLi’s are integral. If all thepi’s are in fact of this form, then
a Huffman code does achieve the entropy boundH .

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with theNch = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish is accomplished in the following table:
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Node Stage: 1 2 3 4 5

1 A: 0.12 0.12

2 E: 0.42 0.42 0.42 0.42

3 I: 0.09

4 O: 0.30 0.30 0.30

5 U: 0.07

6 UI: 0.16

7 AUI: 0.28

8 AUIO: 0.58

9 EAUIO: 1.00

Here is how it works, proceeding in sequence throughN ch stages, represented
by the columns of the table. The first stage starts withNch nodes, one for each
letter of the alphabet, containing their respective relative frequencies. At each stage,
the two smallest probabilities are found, summed to make a new node, and then
dropped from the list of active nodes. (A “block” denotes the stage where a node is
dropped.) All active nodes (including the new composite) are then carried over to
the next stage (column). In the table, the names assigned to new nodes (e.g., AUI)
are inconsequential. In the example shown, it happens that (after stage 1) the two
smallest nodes are always an original node and a composite one; this need not be
true in general: The two smallest probabilities might be both original nodes, or both
composites, or one of each. At the last stage, all nodes will have been collected into
one grand composite of total probability 1.

Now, to see the code, you redraw the data in the above table as a tree (Figure
20.4.1). As shown, each node of the tree corresponds to a node (row) in the table,
indicated by the integer to its left and probability value to its right. Terminal nodes,
so called, are shown as circles; these are single alphabetic characters. The branches
of the tree are labeled 0 and 1. The code for a character is the sequence of zeros and
ones that lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequence.
Consider, for example, the string 1011111010. Starting at the top of the tree we
descend through 1011 to I, the first character. Since we have reached a terminal
node, we reset to the top of the tree, next descending through 11 to O. Finally 1010
gives U. The string thus decodes to IOU.

These ideas are embodied in the following routines. Input to the first routine
hufmak is an integer vector of the frequency of occurrence of thenchin ≡ N ch

alphabetic characters, i.e., a set of integers proportional to thep i’s. hufmak, along
with hufapp, which it calls, performs the construction of the above table, and also the
tree of Figure 20.4.1. The routine utilizes a heap structure (see§8.3) for efficiency;
for a detailed description, see Sedgewick[7].
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E

EAUIO
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I

O

1.00

0.58

0.28 0.30

0.090.07 35

0.1660.12

0.422

9
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7 4

1

10

10
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Figure 20.4.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, I,
O, or U) is encoded or decoded by traversing the tree from the top down; the code is the sequence of
0’s and 1’s on the branches. The value to the right of each node is its probability; to the left, its node
number in the accompanying table.

SUBROUTINE hufmak(nfreq,nchin,ilong,nlong)
INTEGER ilong,nchin,nlong,nfreq(nchin),MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

C USES hufapp
Given the frequency of occurrence table nfreq(1:nchin) of nchin characters, construct
in the common block /hufcom/ the Huffman code. Returned values ilong and nlong
are the character number that produced the longest code symbol, and the length of that
symbol. You should check that nlong is not larger than your machine’s word length.

INTEGER ibit,j,k,n,nch,node,nodemx,nused,ibset,index(MQ),
* iup(MQ),icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)

COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
nch=nchin Initialization.
nused=0
do 11 j=1,nch

nprob(j)=nfreq(j)
icod(j)=0
ncod(j)=0
if(nfreq(j).ne.0)then

nused=nused+1
index(nused)=j

endif
enddo 11

do 12 j=nused,1,-1 Sort nprob into a heap structure in index.
call hufapp(index,nprob,nused,j)

enddo 12

k=nch
1 if(nused.gt.1)then Combine heap nodes, remaking the heap at each stage.

node=index(1)
index(1)=index(nused)
nused=nused-1
call hufapp(index,nprob,nused,1)
k=k+1
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nprob(k)=nprob(index(1))+nprob(node)
left(k)=node Store left and right children of a node.
iright(k)=index(1)
iup(index(1)) = -k Indicate whether a node is a left or right child of its parent.
iup(node)=k
index(1)=k
call hufapp(index,nprob,nused,1)

goto 1
endif
nodemx=k
iup(nodemx)=0
do 13 j=1,nch Make the Huffman code from the tree.

if(nprob(j).ne.0)then
n=0
ibit=0
node=iup(j)

2 if(node.ne.0)then
if(node.lt.0)then

n=ibset(n,ibit)
node = -node

endif
node=iup(node)
ibit=ibit+1

goto 2
endif
icod(j)=n
ncod(j)=ibit

endif
enddo 13

nlong=0
do 14 j=1,nch

if(ncod(j).gt.nlong)then
nlong=ncod(j)
ilong=j-1

endif
enddo 14

return
END

SUBROUTINE hufapp(index,nprob,m,l)
INTEGER m,l,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)
INTEGER index(MQ),nprob(MQ)

Used by hufmak to maintain a heap structure in the array index(1:l).
INTEGER i,j,k,n
n=m
i=l
k=index(i)

2 if(i.le.n/2)then
j=i+i
if (j.lt.n.and.nprob(index(j)).gt.nprob(index(j+1))) j=j+1
if (nprob(k).le.nprob(index(j))) goto 3
index(i)=index(j)
i=j

goto 2
endif

3 index(i)=k
return
END
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Once the code is constructed, one encodes a string of characters by repeated
calls tohufenc, which simply does a table lookup of the code and appends it to
the output message.

SUBROUTINE hufenc(ich,code,lcode,nb)
INTEGER ich,lcode,nb,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

Huffman encode the single character ich (in the range 0..nch-1), write the result to the
character array code(1:lcode) starting at bit nb (whose smallest valid value is zero),
and increment nb appropriately. This routine is called repeatedly to encode consecutive
characters in a message, but must be preceded by a single initializing call to hufmak.

INTEGER k,l,n,nc,nch,nodemx,ntmp,ibset
INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)
LOGICAL btest
CHARACTER*1 code(*)
COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
k=ich+1 Convert character range 0..nch-1 to array index range 1..nch.
if(k.gt.nch.or.k.lt.1)pause ’ich out of range in hufenc.’
do 11 n=ncod(k),1,-1 Loop over the bits in the stored Huffman code for ich.

nc=nb/8+1
if (nc.gt.lcode) pause ’lcode too small in hufenc.’
l=mod(nb,8)
if (l.eq.0) code(nc)=char(0)
if(btest(icod(k),n-1))then Set appropriate bits in code.

ntmp=ibset(ichar(code(nc)),l)
code(nc)=char(ntmp)

endif
nb=nb+1

enddo 11

return
END

Decoding a Huffman-encoded message is slightly more complicated. The
coding tree must be traversed from the top down, using up a variable number of bits:

SUBROUTINE hufdec(ich,code,lcode,nb)
INTEGER ich,lcode,nb,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

Starting at bit number nb in the character array code(1:lcode), use the Huffman code
stored in common block /hufcom/ to decode a single character (returned as ich in the
range 0..nch-1) and increment nb appropriately. Repeated calls, starting with nb = 0
will return successive characters in a compressed message. The returned value ich=nch
indicates end-of-message. This routine must be preceded by a single initializing call to
hufmak.
Parameters: MC is the maximum value of nch, the input alphabet size.

INTEGER l,nc,nch,node,nodemx
INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)
LOGICAL btest
CHARACTER*1 code(lcode)
COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
node=nodemx Set node to the top of the decoding tree.

1 continue Loop until a valid character is obtained.
nc=nb/8+1
if (nc.gt.lcode)then Ran out of input; with ich=nch indicating end of message.

ich=nch
return

endif
l=mod(nb,8) Now decoding this bit.
nb=nb+1
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if(btest(ichar(code(nc)),l))then Branch left or right in tree, depending on its
value.node=iright(node)

else
node=left(node)

endif
if(node.le.nch)then If we reach a terminal node, we have a complete character

and can return.ich=node-1
return

endif
goto 1
END

For simplicity, hufdec quits when it runs out of code bytes; if your coded
message is not an integral number of bytes, and ifN ch is less than 256,hufdec can
return a spurious final character or two, decoded from the spurious trailing bits in
your last code byte. If you have independent knowledge of the number of characters
sent, you can readily discard these. Otherwise, you can fix this behavior by providing
a bit, not byte, count, and modifying the routine accordingly. (WhenN ch is 256 or
larger,hufdec will normally run out of code in the middle of a spurious character,
and it will be discarded.)

Run-Length Encoding

For the compression of highly correlated bit-streams (for example the black or
white values along a facsimile scan line), Huffman compression is often combined
with run-length encoding: Instead of sending each bit, the input stream is converted to
a series of integers indicating how many consecutive bits have the same value. These
integers are then Huffman-compressed. The Group 3 CCITT facsimile standard
functions in this manner, with a fixed, immutable, Huffman code, optimized for a
set of eight standard documents[8,9].
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20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useLi = − log2 pi bits to encode characteri (in the range1 ≤ i ≤ Nch),
if pi is its probability of occurrence. Huffman coding gives a way of rounding the
Li’s to close integer values and constructing a code with those lengths.Arithmetic
coding [1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
numberR in the range0 ≤ R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious
language, Vowellish, of the previous section. Recall that Vowellish has a 5 character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded:
The interval [0, 1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingp i. We see that the first
message character, “I”, narrows the range ofR to 0.37 ≤ R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional to thep i’s. The
second message character, “O”, narrows the range ofR to 0.3763 ≤ R < 0.4033.
The “U” character further narrows the range to0.37630 ≤ R < 0.37819. Any value
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see§20.4.)

Of course there is the problem of knowing when to stop decoding. The fraction
.011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses represent
an infinite string of successor characters. To resolve this ambiguity, arithmetic
coding generally assumes the existence of a specialNch + 1th character, EOM
(end of message), which occurs only once at the end of the input. Since EOM
has a low probability of occurrence, it gets allocated only a very tiny piece of
the number line.

In the above example, we gaveR as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is thatR is never actually represented
all at once. At any give stage we have upper and lower bounds forR represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a parameterNWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.
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20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useLi = − log2 pi bits to encode characteri (in the range1 ≤ i ≤ Nch),
if pi is its probability of occurrence. Huffman coding gives a way of rounding the
Li’s to close integer values and constructing a code with those lengths.Arithmetic
coding [1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
numberR in the range0 ≤ R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious
language, Vowellish, of the previous section. Recall that Vowellish has a 5 character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded:
The interval [0, 1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingp i. We see that the first
message character, “I”, narrows the range ofR to 0.37 ≤ R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional to thep i’s. The
second message character, “O”, narrows the range ofR to 0.3763 ≤ R < 0.4033.
The “U” character further narrows the range to0.37630 ≤ R < 0.37819. Any value
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see§20.4.)

Of course there is the problem of knowing when to stop decoding. The fraction
.011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses represent
an infinite string of successor characters. To resolve this ambiguity, arithmetic
coding generally assumes the existence of a specialNch + 1th character, EOM
(end of message), which occurs only once at the end of the input. Since EOM
has a low probability of occurrence, it gets allocated only a very tiny piece of
the number line.

In the above example, we gaveR as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is thatR is never actually represented
all at once. At any give stage we have upper and lower bounds forR represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a parameterNWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.
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0.42

0.41

0.37

0.385

0.380

0.4033

0.3763

0.37819

0.37630

0.3780

0.3764

0.44

0.43

0.390

0.395

0.400

0.3766

0.3768

0.3772

0.3774

0.3778

0.3776

0.45

0.40

0.39

0.38

0.3770

Figure 20.5.1. Arithmetic coding of the message “ IOU...” in the fictitious language Vowellish.
Successive characters give successively finer subdivisions of the initial interval between 0 and 1. The final
value can be output as the digits of a fraction in any desired radix. Note how the subinterval allocated
to a character is proportional to its probability of occurrence.

The routine arcmak constructs the cumulative frequency distribution table used
to partition the interval at each stage. In the principal routine arcode, when an
interval of size jdif is to be partitioned in the proportions of some n to some ntot,
say, then we must compute (n*jdif)/ntot. With integer arithmetic, the numerator
is likely to overflow; and, unfortunately, an expression like jdif/(ntot/n) is not
equivalent. In the implementation below, we resort to double precision floating
arithmetic for this calculation. Not only is this inefficient, but different roundoff
errors can (albeit very rarely) make different machines encode differently, though any
one type of machine will decode exactly what it encoded, since identical roundoff
errors occur in the two processes. For serious use, one needs to replace this floating
calculation with an integer computation in a double register (not available to the
FORTRAN programmer).

The internally set variable minint, which is the minimum allowed number
of discrete steps between the upper and lower bounds, determines when new low-
significance digits are added. minint must be large enough to provide resolution of
all the input characters. That is, we must have pi × minint > 1 for all i. A value
of 100Nch, or 1.1/ min pi, whichever is larger, is generally adequate. However, for
safety, the routine below takes minint to be as large as possible, with the product
minint*nradd just smaller than overflow. This results in some time inefficiency,
and in a few unnecessary characters being output at the end of a message. You can
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decrease minint if you want to live closer to the edge.
A final safety feature in arcmak is its refusal to believe zero values in the table

nfreq; a 0 is treated as if it were a 1. If this were not done, the occurrence in a
message of a single character whose nfreq entry is zero would result in scrambling
the entire rest of the message. If you want to live dangerously, with a very slightly
more efficient coding, you can delete the max( ,1) operation.

SUBROUTINE arcmak(nfreq,nchh,nradd)
INTEGER nchh,nradd,nfreq(nchh),MC,NWK,MAXINT
PARAMETER (MC=512,NWK=20,MAXINT=2147483647)

Given a table nfreq(1:nchh) of the frequency of occurrence of nchh symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables
for arithmetic compression.
Parameters: MC is largest anticipated value of nchh; NWK is the number of working digits
(see text); MAXINT is a large positive integer that does not overflow.

INTEGER j,jdif,minint,nc,nch,nrad,ncum,
* ncumfq(MC+2),ilob(NWK),iupb(NWK)

COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum
SAVE /arccom/
if(nchh.gt.MC)pause ’MC too small in arcmak’
if(nradd.gt.256)pause ’nradd may not exceed 256 in arcmak’
minint=MAXINT/nradd
nch=nchh
nrad=nradd
ncumfq(1)=0
do 11 j=2,nch+1

ncumfq(j)=ncumfq(j-1)+max(nfreq(j-1),1)
enddo 11

ncumfq(nch+2)=ncumfq(nch+1)+1
ncum=ncumfq(nch+2)
return
END

Individual characters in a message are coded or decoded by the routine arcode,
which in turn uses the utility arcsum.

SUBROUTINE arcode(ich,code,lcode,lcd,isign)
INTEGER ich,isign,lcd,lcode,MC,NWK
CHARACTER*1 code(lcode)
PARAMETER (MC=512,NWK=20)

C USES arcsum
Compress (isign = 1) or decompress (isign = −1) the single character ich into or out
of the character array code(1:lcode), starting with byte code(lcd) and (if necessary)
incrementing lcd so that, on return, lcd points to the first unused byte in code. Note
that this routine saves the result of previous calls until a new byte of code is produced, and
only then increments lcd. An initializing call with isign=0 is required for each different
array code. The routine arcmak must have previously been called to initialize the common
block /arccom/. A call with ich=nch (as set in arcmak) has the reserved meaning “end
of message.”

INTEGER ihi,j,ja,jdif,jh,jl,k,m,minint,nc,nch,nrad,ilob(NWK),
* iupb(NWK),ncumfq(MC+2),ncum,JTRY

COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum
SAVE /arccom/

The following statement function is used to calculate (k*j)/m without overflow. Program
efficiency can be improved by substituting an assembly language routine that does integer
multiply to a double register.

JTRY(j,k,m)=int((dble(k)*dble(j))/dble(m))
if (isign.eq.0) then Initialize enough digits of the upper and lower bounds.

jdif=nrad-1
do 11 j=NWK,1,-1
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iupb(j)=nrad-1
ilob(j)=0
nc=j
if(jdif.gt.minint)return Initialization complete.
jdif=(jdif+1)*nrad-1

enddo 11

pause ’NWK too small in arcode’
else

if (isign.gt.0) then If encoding, check for valid input character.
if(ich.gt.nch.or.ich.lt.0)pause ’bad ich in arcode’

else If decoding, locate the character ich by bisection.
ja=ichar(code(lcd))-ilob(nc)
do 12 j=nc+1,NWK

ja=ja*nrad+(ichar(code(j+lcd-nc))-ilob(j))
enddo 12

ich=0
ihi=nch+1

1 if(ihi-ich.gt.1) then
m=(ich+ihi)/2
if (ja.ge.JTRY(jdif,ncumfq(m+1),ncum)) then

ich=m
else

ihi=m
endif

goto 1
endif
if(ich.eq.nch)return Detected end of message.

endif
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb).

jh=JTRY(jdif,ncumfq(ich+2),ncum)
jl=JTRY(jdif,ncumfq(ich+1),ncum)
jdif=jh-jl
call arcsum(ilob,iupb,jh,NWK,nrad,nc)
call arcsum(ilob,ilob,jl,NWK,nrad,nc) How many leading digits to output

(if encoding) or skip over?do 13 j=nc,NWK
if(ich.ne.nch.and.iupb(j).ne.ilob(j))goto 2
if(lcd.gt.lcode)pause ’lcode too small in arcode’
if(isign.gt.0) code(lcd)=char(ilob(j))
lcd=lcd+1

enddo 13

return Ran out of message. Did someone forget to encode
a terminating ncd?2 nc=j

j=0 How many digits to shift?
3 if (jdif.lt.minint) then

j=j+1
jdif=jdif*nrad

goto 3
endif
if (nc-j.lt.1) pause ’NWK too small in arcode’
if(j.ne.0)then Shift them.

do 14 k=nc,NWK
iupb(k-j)=iupb(k)
ilob(k-j)=ilob(k)

enddo 14

endif
nc=nc-j
do 15 k=NWK-j+1,NWK

iupb(k)=0
ilob(k)=0

enddo 15

endif
return Normal return.
END
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SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
INTEGER ja,nc,nrad,nwk,iin(*),iout(*)

Used by arcode. Add the integer ja to the radix nrad multiple-precision integer iin(nc..nwk).
Return the result in iout(nc..nwk).

INTEGER j,jtmp,karry
karry=0
do 11 j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j).ge.nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

endif
enddo 11

iout(nc)=iin(nc)+ja+karry
return
END

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set all the components of nfreq equal, say, to 1.

CITED REFERENCES AND FURTHER READING:

Bell, T.C., Cleary, J.G., and Witten, I.H. 1990, Text Compression (Englewood Cliffs, NJ: Prentice-
Hall).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, Communications of the ACM, vol. 30, pp. 520–
540. [1]

20.6 Arithmetic at Arbitrary Precision

Let’s compute the number π to a couple of thousand decimal places. In doing
so, we’ ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm for π. Useful algorithms
are quadratically convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms for π are based on the AGM
(arithmetic geometric mean) method, which also finds application to the calculation
of elliptic integrals (cf. §6.11) and in advanced implementations of the ADI method
for elliptic partial differential equations (§19.5). Borwein and Borwein [1] treat this
subject, which is beyond our scope here. One of their algorithms for π starts with
the initializations

X0 =
√

2

π0 = 2 +
√

2

Y0 = 4
√

2

(20.6.1)
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SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
INTEGER ja,nc,nrad,nwk,iin(*),iout(*)

Used by arcode. Add the integer ja to the radix nradmultiple-precision integer iin(nc..nwk).
Return the result in iout(nc..nwk).

INTEGER j,jtmp,karry
karry=0
do 11 j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j).ge.nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

endif
enddo 11

iout(nc)=iin(nc)+ja+karry
return
END

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set all the components of nfreq equal, say, to 1.

CITED REFERENCES AND FURTHER READING:

Bell, T.C., Cleary, J.G., and Witten, I.H. 1990, Text Compression (Englewood Cliffs, NJ: Prentice-
Hall).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, Communications of the ACM, vol. 30, pp. 520–
540. [1]

20.6 Arithmetic at Arbitrary Precision

Let’s compute the number π to a couple of thousand decimal places. In doing
so, we’ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm for π. Useful algorithms
are quadratically convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms for π are based on the AGM
(arithmetic geometric mean) method, which also finds application to the calculation
of elliptic integrals (cf. §6.11) and in advanced implementations of the ADI method
for elliptic partial differential equations (§19.5). Borwein and Borwein [1] treat this
subject, which is beyond our scope here. One of their algorithms for π starts with
the initializations

X0 =
√

2

π0 = 2 +
√

2

Y0 = 4
√

2

(20.6.1)
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and then, for i = 0, 1, . . . , repeats the iteration

Xi+1 =
1
2

(√
Xi +

1√
Xi

)

πi+1 = πi

(
Xi+1 + 1
Yi + 1

)

Yi+1 =
Yi

√
Xi+1 + 1√

Xi+1

Yi + 1

(20.6.2)

The value π emerges as the limit π∞.
Now, to the question of how to do arithmetic to arbitrary precision: In a

high-level language like FORTRAN, a natural choice is to work in radix (base) 256, so
that character arrays can be directly interpreted as strings of digits. At the very end of
our calculation, we will want to convert our answer to radix 10, but that is essentially
a frill for the benefit of human ears, accustomed to the familiar chant, “three point
one four one five nine. . . .” For any less frivolous calculation, we would likely never
leave base 256 (or the thence trivially reachable hexadecimal, octal, or binary bases).

We will adopt the convention of storing digit strings in the “human” ordering,
that is, with the first stored digit in an array being most significant, the last stored
digit being least significant. The opposite convention would, of course, also be
possible. “Carries,” where we need to partition a number larger than 255 into a
low-order byte and a high-order carry, present a minor programming annoyance,
solved, in the routines below, by the use of FORTRAN’s EQUIVALENCE facility, and
some initial testing of the order in which bytes are stored in a FORTRAN integer.

It is easy at this point, following Knuth [2], to write a routine for the “fast”
arithmetic operations: short addition (adding a single byte to a string), addition,
subtraction, short multiplication (multiplying a string by a single byte), short
division, ones-complement negation; and a couple of utility operations, copying and
left-shifting strings.

SUBROUTINE mpops(w,u,v)
CHARACTER*1 w(*),u(*),v(*)

Multiple precision arithmetic operations done on character strings, interpreted as radix 256
numbers. This routine collects the simpler operations.

INTEGER i,ireg,j,n,ir,is,iv,ii1,ii2
CHARACTER*1 creg(4)
SAVE ii1,ii2
EQUIVALENCE (ireg,creg)

It is assumed that with the above equivalence, creg(ii1) addresses the low-order byte of
ireg, and creg(ii2) addresses the next higher order byte. The values ii1 and ii2 are
set by an initial call to mpinit.

ENTRY mpinit
ireg=256*ichar(’2’)+ichar(’1’)
do 11 j=1,4 Figure out the byte ordering.

if (creg(j).eq.’1’) ii1=j
if (creg(j).eq.’2’) ii2=j

enddo 11

return
ENTRY mpadd(w,u,v,n)

Adds the unsigned radix 256 integers u(1:n) and v(1:n) yielding the unsigned integer
w(1:n+1).
ireg=0
do 12 j=n,1,-1
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ireg=ichar(u(j))+ichar(v(j))+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 12

w(1)=creg(ii2)
return
ENTRY mpsub(is,w,u,v,n)

Subtracts the unsigned radix 256 integer v(1:n) from u(1:n) yielding the unsigned integer
w(1:n). If the result is negative (wraps around), is is returned as −1; otherwise it is
returned as 0.
ireg=256
do 13 j=n,1,-1

ireg=255+ichar(u(j))-ichar(v(j))+ichar(creg(ii2))
w(j)=creg(ii1)

enddo 13

is=ichar(creg(ii2))-1
return
ENTRY mpsad(w,u,n,iv)

Short addition: the integer iv (in the range 0 ≤ iv ≤ 255) is added to the unsigned radix
256 integer u(1:n), yielding w(1:n+1).
ireg=256*iv
do 14 j=n,1,-1

ireg=ichar(u(j))+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 14

w(1)=creg(ii2)
return
ENTRY mpsmu(w,u,n,iv)

Short multiplication: the unsigned radix 256 integer u(1:n) is multiplied by the integer iv
(in the range 0 ≤ iv ≤ 255), yielding w(1:n+1).
ireg=0
do 15 j=n,1,-1

ireg=ichar(u(j))*iv+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 15

w(1)=creg(ii2)
return
ENTRY mpsdv(w,u,n,iv,ir)

Short division: the unsigned radix 256 integer u(1:n) is divided by the integer iv (in the
range 0 ≤ iv ≤ 255), yielding a quotient w(1:n) and a remainder ir (with 0 ≤ ir ≤ 255).
ir=0
do 16 j=1,n

i=256*ir+ichar(u(j))
w(j)=char(i/iv)
ir=mod(i,iv)

enddo 16

return
ENTRY mpneg(u,n)

Ones-complement negate the unsigned radix 256 integer u(1:n).
ireg=256
do 17 j=n,1,-1

ireg=255-ichar(u(j))+ichar(creg(ii2))
u(j)=creg(ii1)

enddo 17

return
ENTRY mpmov(u,v,n)

Move v(1:n) onto u(1:n).
do 18 j=1,n

u(j)=v(j)
enddo 18

return
ENTRY mplsh(u,n)

Left shift u(2..n+1) onto u(1:n).
do 19 j=1,n

u(j)=u(j+1)
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enddo 19

return
END

Full multiplication of two digit strings, if done by the traditional hand method,
is not a fast operation: In multiplying two strings of length N , the multiplicand
would be short-multiplied in turn by each byte of the multiplier, requiring O(N 2)
operations in all. We will see, however, that all the arithmetic operations on numbers
of length N can in fact be done in O(N × log N × log log N) operations.

The trick is to recognize that multiplication is essentially a convolution (§13.1)
of the digits of the multiplicand and multiplier, followed by some kind of carry
operation. Consider, for example, two ways of writing the calculation 456 × 789:

456
× 789

4104
3648

3192
359784

4 5 6
× 7 8 9

36 45 54
32 40 48

28 35 42
28 67 118 93 54

3 5 9 7 8 4

The tableau on the left shows the conventional method of multiplication, in which
three separate short multiplications of the full multiplicand (by 9, 8, and 7) are
added to obtain the final result. The tableau on the right shows a different method
(sometimes taught for mental arithmetic), where the single-digit cross products are
all computed (e.g. 8 × 6 = 48), then added in columns to obtain an incompletely
carried result (here, the list 28, 67, 118, 93, 54). The final step is a single pass from
right to left, recording the single least-significant digit and carrying the higher digit
or digits into the total to the left (e.g. 93 + 5 = 98, record the 8, carry 9).

You can see immediately that the column sums in the right-hand method are
components of the convolution of the digit strings, for example 118 = 4 × 9 + 5 ×
8 + 6 × 7. In §13.1 we learned how to compute the convolution of two vectors by
the fast Fourier transform (FFT): Each vector is FFT’d, the two complex transforms
are multiplied, and the result is inverse-FFT’d. Since the transforms are done with
floating arithmetic, we need sufficient precision so that the exact integer value of
each component of the result is discernible in the presence of roundoff error. We
should therefore allow a (conservative) few times log2(log2 N) bits for roundoff
in the FFT. A number of length N bytes in radix 256 can generate convolution
components as large as the order of (256)2N , thus requiring 16 + log2 N bits of
precision for exact storage. If it is the number of bits in the floating mantissa
(cf. §20.1), we obtain the condition

16 + log2 N + few × log2 log2 N < it (20.6.3)

We see that single precision, say with it = 24, is inadequate for any interesting
value of N , while double precision, say with it = 53, allows N to be greater
than 106, corresponding to some millions of decimal digits. The following routine
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therefore presumes double precision versions of realft (§12.3) and four1 (§12.2),
here called drealft and dfour1. (These routines are included on the Numerical
Recipes diskettes.)

SUBROUTINE mpmul(w,u,v,n,m)
INTEGER m,n,NMAX
CHARACTER*1 w(n+m),u(n),v(m)
DOUBLE PRECISION RX
PARAMETER (NMAX=8192,RX=256.D0)

C USES drealft DOUBLE PRECISION version of realft.
Uses Fast Fourier Transform to multiply the unsigned radix 256 integers u(1:n) and
v(1:m), yielding a product w(1:n+m).

INTEGER j,mn,nn
DOUBLE PRECISION cy,t,a(NMAX),b(NMAX)
mn=max(m,n)
nn=1 Find the smallest useable power of two for the transform.

1 if(nn.lt.mn) then
nn=nn+nn

goto 1
endif
nn=nn+nn
if(nn.gt.NMAX)pause ’NMAX too small in fftmul’
do 11 j=1,n Move U to a double precision floating array.

a(j)=ichar(u(j))
enddo 11

do 12 j=n+1,nn
a(j)=0.D0

enddo 12

do 13 j=1,m Move V to a double precision floating array.
b(j)=ichar(v(j))

enddo 13

do 14 j=m+1,nn
b(j)=0.D0

enddo 14 Perform the convolution: First, the two Fourier transforms.
call drealft(a,nn,1)
call drealft(b,nn,1)
b(1)=b(1)*a(1) Then multiply the complex results (real and imaginary parts).
b(2)=b(2)*a(2)
do 15 j=3,nn,2

t=b(j)
b(j)=t*a(j)-b(j+1)*a(j+1)
b(j+1)=t*a(j+1)+b(j+1)*a(j)

enddo 15

call drealft(b,nn,-1) Then do the inverse Fourier transform.
cy=0. Make a final pass to do all the carries.
do 16 j=nn,1,-1

t=b(j)/(nn/2)+cy+0.5D0 The 0.5 allows for roundoff error.
b(j)=mod(t,RX)
cy=int(t/RX)

enddo 16

if (cy.ge.RX) pause ’cannot happen in fftmul’
w(1)=char(int(cy)) Copy answer to output.
do 17 j=2,n+m

w(j)=char(int(b(j-1)))
enddo 17

return
END

With multiplication thus a “fast” operation, division is best performed by
multiplying the dividend by the reciprocal of the divisor. The reciprocal of a value
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V is calculated by iteration of Newton’s rule,

Ui+1 = Ui(2 − V Ui) (20.6.4)

which results in the quadratic convergence of U∞ to 1/V , as you can easily
prove. (Many supercomputers and RISC machines actually use this iteration to
perform divisions.) We can now see where the operations count N log N log log N ,
mentioned above, originates: N log N is in the Fourier transform, with the iteration
to converge Newton’s rule giving an additional factor of log log N .

SUBROUTINE mpinv(u,v,n,m)
INTEGER m,n,MF,NMAX
CHARACTER*1 u(n),v(m)
REAL BI
PARAMETER (MF=4,BI=1./256.,NMAX=8192)

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
(nonzero) v(1); u(1:n) is set to the most significant digits of its reciprocal, with the radix
point after u(1).

C USES mpmov,mpmul,mpneg
INTEGER i,j,mm
REAL fu,fv
CHARACTER*1 rr(2*NMAX+1),s(NMAX)
if(max(n,m).gt.NMAX)pause ’NMAX too small in mpinv’
mm=min(MF,m)
fv=ichar(v(mm)) Use ordinary floating arithmetic to get an initial ap-

proximation.do 11 j=mm-1,1,-1
fv=fv*BI+ichar(v(j))

enddo 11

fu=1./fv
do 12 j=1,n

i=int(fu)
u(j)=char(i)
fu=256.*(fu-i)

enddo 12

1 continue Iterate Newton’s rule to convergence.
call mpmul(rr,u,v,n,m) Construct 2 − UV in S.
call mpmov(s,rr(2),n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-254) Multiply SU into U .
call mpmul(rr,s,u,n,n)
call mpmov(u,rr(2),n)
do 13 j=2,n-1 If fractional part of S is not zero, it has not converged

to 1.if(ichar(s(j)).ne.0)goto 1
enddo 13

continue
return
END

Division now follows as a simple corollary, with only the necessity of calculating
the reciprocal to sufficient accuracy to get an exact quotient and remainder.

SUBROUTINE mpdiv(q,r,u,v,n,m)
INTEGER m,n,NMAX,MACC
CHARACTER*1 q(n-m+1),r(m),u(n),v(m)
PARAMETER (NMAX=8192,MACC=6)

Divides unsigned radix 256 integers u(1:n) by v(1:m) (with m ≤ n required), yielding a
quotient q(1:n-m+1) and a remainder r(1:m).

C USES mpinv,mpmov,mpmul,mpsad,mpsub
INTEGER is
CHARACTER*1 rr(2*NMAX),s(2*NMAX)
if(n+MACC.gt.NMAX)pause ’NMAX too small in mpdiv’
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call mpinv(s,v,n+MACC,m) Set S = 1/V .
call mpmul(rr,s,u,n+MACC,n) Set Q = SU .
call mpsad(s,rr,n+MACC-1,1)
call mpmov(q,s(3),n-m+1)
call mpmul(rr,q,v,n-m+1,m) Multiply and subtract to get the remainder.
call mpsub(is,rr(2),u,rr(2),n)
if (is.ne.0) pause ’MACC too small in mpdiv’
call mpmov(r,rr(n-m+2),m)
return
END

Square roots are calculated by a Newton’s rule much like division. If

Ui+1 =
1
2
Ui(3 − V U2

i ) (20.6.5)

then U∞ converges quadratically to 1/
√

V . A final multiplication by V gives
√

V .

SUBROUTINE mpsqrt(w,u,v,n,m)
INTEGER m,n,NMAX,MF
CHARACTER*1 w(*),u(*),v(*)
REAL BI
PARAMETER (NMAX=2048,MF=3,BI=1./256.)

C USES mplsh,mpmov,mpmul,mpneg,mpsdv
Character string v(1:m) is interpreted as a radix 256 number with the radix point after
v(1); w(1:n) is set to its square root (radix point after w(1)), and u(1:n) is set to the
reciprocal thereof (radix point before u(1)). w and u need not be distinct, in which case
they are set to the square root.

INTEGER i,ir,j,mm
REAL fu,fv
CHARACTER*1 r(NMAX),s(NMAX)
if(2*n+1.gt.NMAX)pause ’NMAX too small in mpsqrt’
mm=min(m,MF)
fv=ichar(v(mm)) Use ordinary floating arithmetic to get an initial approx-

imation.do 11 j=mm-1,1,-1
fv=BI*fv+ichar(v(j))

enddo 11

fu=1./sqrt(fv)
do 12 j=1,n

i=int(fu)
u(j)=char(i)
fu=256.*(fu-i)

enddo 12

1 continue Iterate Newton’s rule to convergence.
call mpmul(r,u,u,n,n) Construct S = (3 − V U2)/2.
call mplsh(r,n)
call mpmul(s,r,v,n,m)
call mplsh(s,n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-253)
call mpsdv(s,s,n,2,ir)
do 13 j=2,n-1 If fractional part of S is not zero, it has not converged

to 1.if(ichar(s(j)).ne.0)goto 2
enddo 13

call mpmul(r,u,v,n,m) Get square root from reciprocal and return.
call mpmov(w,r(2),n)
return

2 continue
call mpmul(r,s,u,n,n) Replace U by SU .
call mpmov(u,r(2),n)

goto 1
END
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We already mentioned that radix conversion to decimal is a merely cosmetic
operation that should normally be omitted. The simplest way to convert a fraction to
decimal is to multiply it repeatedly by 10, picking off (and subtracting) the resulting
integer part. This, has an operations count of O(N 2), however, since each liberated
decimal digit takes an O(N) operation. It is possible to do the radix conversion as
a fast operation by a “divide and conquer” strategy, in which the fraction is (fast)
multiplied by a large power of 10, enough to move about half the desired digits
to the left of the radix point. The integer and fractional pieces are now processed
independently, each further subdivided. If our goal were a few billion digits of π,
instead of a few thousand, we would need to implement this scheme. For present
purposes, the following lazy routine is adequate:

SUBROUTINE mp2dfr(a,s,n,m)
INTEGER m,n,IAZ
CHARACTER*1 a(*),s(*)
PARAMETER (IAZ=48)

C USES mplsh,mpsmu
Converts a radix 256 fraction a(1:n) (radix point before a(1)) to a decimal fraction
represented as an ascii string s(1:m), where m is a returned value. The input array a(1:n)
is destroyed. NOTE: For simplicity, this routine implements a slow (∝ N2) algorithm. Fast
(∝ N ln N), more complicated, radix conversion algorithms do exist.

INTEGER j
m=2.408*n
do 11 j=1,m

call mpsmu(a,a,n,10)
s(j)=char(ichar(a(1))+IAZ)
call mplsh(a,n)

enddo 11

return
END

Finally, then, we arrive at a routine implementing equations (20.6.1) and (20.6.2):

SUBROUTINE mppi(n)
INTEGER n,IAOFF,NMAX
PARAMETER (IAOFF=48,NMAX=8192)

C USES mpinit,mp2dfr,mpadd,mpinv,mplsh,mpmov,mpmul,mpsdv,mpsqrt
Demonstrate multiple precision routines by calculating and printing the first n bytes of π.

INTEGER ir,j,m
CHARACTER*1 x(NMAX),y(NMAX),sx(NMAX),sxi(NMAX),t(NMAX),s(3*NMAX),

* pi(NMAX)
call mpinit
t(1)=char(2) Set T = 2.
do 11 j=2,n

t(j)=char(0)
enddo 11

call mpsqrt(x,x,t,n,n) Set X0 =
√

2.

call mpadd(pi,t,x,n) Set π0 = 2 +
√

2.
call mplsh(pi,n)

call mpsqrt(sx,sxi,x,n,n) Set Y0 = 21/4.
call mpmov(y,sx,n)

1 continue
call mpadd(x,sx,sxi,n) Set Xi+1 = (X

1/2
i + X

−1/2
i )/2.

call mpsdv(x,x(2),n,2,ir)

call mpsqrt(sx,sxi,x,n,n) Form the temporary T = YiX
1/2
i+1 + X

−1/2
i+1 .

call mpmul(t,y,sx,n,n)
call mpadd(t(2),t(2),sxi,n)
x(1)=char(ichar(x(1))+1) Increment Xi+1 and Yi by 1.
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3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
480744623799627495673518857527248912279381830119491298336733624406566430860
213949463952247371907021798609437027705392171762931767523846748184676694051
320005681271452635608277857713427577896091736371787214684409012249534301465
495853710507922796892589235420199561121290219608640344181598136297747713099
605187072113499999983729780499510597317328160963185950244594553469083026425
223082533446850352619311881710100031378387528865875332083814206171776691473
035982534904287554687311595628638823537875937519577818577805321712268066130
019278766111959092164201989380952572010654858632788659361533818279682303019
520353018529689957736225994138912497217752834791315155748572424541506959508
295331168617278558890750983817546374649393192550604009277016711390098488240
128583616035637076601047101819429555961989467678374494482553797747268471040
475346462080466842590694912933136770289891521047521620569660240580381501935
112533824300355876402474964732639141992726042699227967823547816360093417216
412199245863150302861829745557067498385054945885869269956909272107975093029
553211653449872027559602364806654991198818347977535663698074265425278625518
184175746728909777727938000816470600161452491921732172147723501414419735685
481613611573525521334757418494684385233239073941433345477624168625189835694
855620992192221842725502542568876717904946016534668049886272327917860857843
838279679766814541009538837863609506800642251252051173929848960841284886269
456042419652850222106611863067442786220391949450471237137869609563643719172
874677646575739624138908658326459958133904780275900994657640789512694683983
525957098258226205224894077267194782684826014769909026401363944374553050682
034962524517493996514314298091906592509372216964615157098583874105978859597
729754989301617539284681382686838689427741559918559252459539594310499725246
808459872736446958486538367362226260991246080512438843904512441365497627807
977156914359977001296160894416948685558484063534220722258284886481584560285

Figure 20.6.1. The first 2398 decimal digits of π, computed by the routines in this section.

y(1)=char(ichar(y(1))+1)
call mpinv(s,y,n,n) Set Yi+1 = T/(Yi + 1).
call mpmul(y,t(3),s,n,n)
call mplsh(y,n)
call mpmul(t,x,s,n,n) Form temporary T = (Xi+1 + 1)/(Yi + 1).
continue If T = 1 then we have converged.

m=mod(255+ichar(t(2)),256)
do 12 j=3,n

if(ichar(t(j)).ne.m)goto 2
enddo 12

if (abs(ichar(t(n+1))-m).gt.1)goto 2
write (*,*) ’pi=’
s(1)=char(ichar(pi(1))+IAOFF)
s(2)=’.’
call mp2dfr(pi(2),s(3),n-1,m)
Convert to decimal for printing. NOTE: The conversion routine, for this demonstra-
tion only, is a slow (∝ N2) algorithm. Fast (∝ N lnN), more complicated, radix
conversion algorithms do exist.

write (*,’(1x,64a1)’) (s(j),j=1,m+1)
return

2 continue
call mpmul(s,pi,t(2),n,n) Set πi+1 = Tπi.
call mpmov(pi,s(2),n)

goto 1
END
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Figure 20.6.1 gives the result, computed with n = 1000. As an exercise, you
might enjoy checking the first hundred digits of the figure against the first 12 terms
of Ramanujan’s celebrated identity [3]

1
π

=
√

8
9801

∞∑
n=0

(4n)! (1103 + 26390n)
(n! 396n)4

(20.6.6)

using the above routines. You might also use the routines to verify that the
number 2512 + 1 is not a prime, but has factors 2,424,833 and
7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (which are
in fact prime; the remaining prime factor being about 7.416 × 10 98) [4].

CITED REFERENCES AND FURTHER READING:

Borwein, J.M., and Borwein, P.B. 1987, Pi and the AGM: A Study in Analytic Number Theory and
Computational Complexity (New York: Wiley). [1]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.3. [2]

Ramanujan, S. 1927, Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar,
and B.M. Wilson, eds. (Cambridge, U.K.: Cambridge University Press), pp. 23–39. [3]

Kolata, G. 1990, June 20, The New York Times. [4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).
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Index of Programs and Dependencies

The following table lists, in alphabetical order, all the routines in Numerical
Recipes. When a routine requires subsidiary routines, either from this book or else
user-supplied, the full dependency tree is shown: A routine calls directly all routines
to which it is connected by a solid line in the column immediately to its right; it
calls indirectly the connected routines in all columns to its right. Typographical
conventions: Routines from this book are in typewriter font (e.g., eulsum, gammln).
The smaller, slanted font is used for the second and subsequent occurences of a routine
in a single dependency tree. (When you are getting routines from the Numerical
Recipes diskettes, or their archive files, you need only specify names in the larger,
upright font.) User-supplied routines are indicated by the use of text font and square
brackets, e.g., [funcv]. Consult the text for individual specifications of these routines.
The right-hand side of the table lists section and page numbers for each program.

addint interp . . . . . . . . . . . . §19.6 (p. 871)

airy bessik . . . . . . . . . . . §6.7 (p. 244)
bessjy beschb chebev

amebsa ran1 . . . . . . . . . . . . . §10.9 (p. 445)
amotsa [funk]

ran1

[funk]

amoeba amotry [funk] . . . . . . . . . §10.4 (p. 404)
[funk]

amotry [funk] . . . . . . . . . . . . §10.4 (p. 405)

amotsa [funk] . . . . . . . . . . . . §10.9 (p. 446)
ran1

anneal ran3 . . . . . . . . . . . . . §10.9 (p. 439)
irbit1
trncst
metrop ran3

trnspt
revcst
revers

anorm2 . . . . . . . . . . . . . . . §19.6 (p. 879)

arcmak . . . . . . . . . . . . . . . §20.5 (p. 904)

arcode arcsum . . . . . . . . . . . . §20.5 (p. 904)

arcsum . . . . . . . . . . . . . . . §20.5 (p. 906)

avevar . . . . . . . . . . . . . . . §14.2 (p. 611)

badluk julday . . . . . . . . . . . . §1.1 (p. 14)
flmoon

balanc . . . . . . . . . . . . . . . §11.5 (p. 477)

920
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banbks . . . . . . . . . . . . . . . §2.4 (p. 46)

bandec . . . . . . . . . . . . . . . §2.4 (p. 45)

banmul . . . . . . . . . . . . . . . §2.4 (p. 44)

bcucof . . . . . . . . . . . . . . . §3.6 (p. 119)

bcuint bcucof . . . . . . . . . . . . §3.6 (p. 120)

beschb chebev . . . . . . . . . . . . §6.7 (p. 239)

bessi bessi0 . . . . . . . . . . . . §6.6 (p. 233)

bessi0 . . . . . . . . . . . . . . . §6.6 (p. 230)

bessi1 . . . . . . . . . . . . . . . §6.6 (p. 231)

bessik beschb chebev . . . . . . . . §6.7 (p. 241)

bessj bessj0 . . . . . . . . . . . . §6.5 (p. 228)
bessj1

bessj0 . . . . . . . . . . . . . . . §6.5 (p. 225)

bessj1 . . . . . . . . . . . . . . . §6.5 (p. 226)

bessjy beschb chebev . . . . . . . . §6.7 (p. 236)

bessk bessk0 bessi0 . . . . . . . . . §6.6 (p. 232)
bessk1 bessi1

bessk0 bessi0 . . . . . . . . . . . . §6.6 (p. 231)

bessk1 bessi1 . . . . . . . . . . . . §6.6 (p. 232)

bessy bessy1 bessj1 . . . . . . . . . §6.5 (p. 227)
bessy0 bessj0

bessy0 bessj0 . . . . . . . . . . . . §6.5 (p. 226)

bessy1 bessj1 . . . . . . . . . . . . §6.5 (p. 227)

beta gammln . . . . . . . . . . . . . §6.1 (p. 209)

betacf . . . . . . . . . . . . . . . §6.4 (p. 221)

betai gammln . . . . . . . . . . . . §6.4 (p. 220)
betacf

bico factln gammln . . . . . . . . . §6.1 (p. 208)

bksub . . . . . . . . . . . . . . . . §17.3 (p. 761)

bnldev ran1 . . . . . . . . . . . . . §7.3 (p. 285)
gammln

brent [func] . . . . . . . . . . . . . §10.2 (p. 397)

broydn fmin . . . . . . . . . . . §9.7 (p. 383)
fdjac [funcv]
qrdcmp
qrupdt rotate
rsolv
lnsrch fmin [funcv]

bsstep mmid [derivs] . . . . . . . . . §16.4 (p. 722)
pzextr

caldat . . . . . . . . . . . . . . . §1.1 (p. 16)
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chder . . . . . . . . . . . . . . . . §5.9 (p. 189)

chebev . . . . . . . . . . . . . . . §5.8 (p. 187)

chebft [func] . . . . . . . . . . . . §5.8 (p. 186)

chebpc . . . . . . . . . . . . . . . §5.10 (p. 191)

chint . . . . . . . . . . . . . . . . §5.9 (p. 189)

chixy . . . . . . . . . . . . . . . . §15.3 (p. 663)

choldc . . . . . . . . . . . . . . . §2.9 (p. 90)

cholsl . . . . . . . . . . . . . . . §2.9 (p. 90)

chsone gammq gser . . . . . . . . §14.3 (p. 615)
gcf gammln

chstwo gammq gser . . . . . . . . §14.3 (p. 616)
gcf gammln

cisi . . . . . . . . . . . . . . . . §6.9 (p. 251)

cntab1 gammq gser . . . . . . . . §14.4 (p. 625)
gcf gammln

cntab2 . . . . . . . . . . . . . . . §14.4 (p. 629)

convlv twofft . . . . . . . . . . §13.1 (p. 536)
realft four1

copy . . . . . . . . . . . . . . . . §19.6 (p. 873)

correl twofft . . . . . . . . . . §13.2 (p. 539)
realft four1

cosft1 realft four1 . . . . . . . . . §12.3 (p. 512)

cosft2 realft four1 . . . . . . . . . §12.3 (p. 514)

covsrt . . . . . . . . . . . . . . . §15.4 (p. 669)

crank . . . . . . . . . . . . . . . . §14.6 (p. 636)

cyclic tridag . . . . . . . . . . . . §2.7 (p. 68)

daub4 . . . . . . . . . . . . . . . . §13.10 (p. 588)

dawson . . . . . . . . . . . . . . . §6.10 (p. 253)

dbrent [func] . . . . . . . . . . . . §10.3 (p. 400)
[dfunc]

ddpoly . . . . . . . . . . . . . . . §5.3 (p. 168)

decchk . . . . . . . . . . . . . . . §20.3 (p. 895)

df1dim [dfunc] . . . . . . . . . . . . §10.6 (p. 417)

dfour1 . . . . . . . DOUBLE PRECISION version of four1, q.v.

dfpmin [func] . . . . . . . . . . . . §10.7 (p. 421)
[dfunc]
lnsrch [func]

dfridr [func] . . . . . . . . . . . . §5.7 (p. 182)

dftcor . . . . . . . . . . . . . . . §13.9 (p. 580)
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dftint [func] . . . . . . . . . . . . §13.9 (p. 581)
realft four1
polint
dftcor

difeq . . . . . . . . . . . . . . . . §17.4 (p. 769)

dpythag . . . . . . . DOUBLE PRECISION version of pythag, q.v.

drealft . . . . . . . DOUBLE PRECISION version of realft, q.v.

dsprsax . . . . . . . DOUBLE PRECISION version of sprsax, q.v.

dsprstx . . . . . . . DOUBLE PRECISION version of sprstx, q.v.

dsvbksb . . . . . . . DOUBLE PRECISION version of svbksb, q.v.

dsvdcmp . . . . . . . DOUBLE PRECISION version of svdcmp, q.v.

eclass . . . . . . . . . . . . . . . §8.6 (p. 338)

eclazz [equiv] . . . . . . . . . . . . §8.6 (p. 339)

ei . . . . . . . . . . . . . . . . . §6.3 (p. 218)

eigsrt . . . . . . . . . . . . . . . §11.1 (p. 462)

elle rf . . . . . . . . . . . . . . §6.11 (p. 261)
rd

ellf rf . . . . . . . . . . . . . . §6.11 (p. 260)

ellpi rf . . . . . . . . . . . . . . §6.11 (p. 261)
rj rc

rf

elmhes . . . . . . . . . . . . . . . §11.5 (p. 479)

erf gammp gser . . . . . . . . . §6.2 (p. 213)
gcf gammln

erfc gammp gser . . . . . . . . . §6.2 (p. 214)
gcf gammln

gammq gser

gcf gammln

erfcc . . . . . . . . . . . . . . . . §6.2 (p. 214)

eulsum . . . . . . . . . . . . . . . §5.1 (p. 161)

evlmem . . . . . . . . . . . . . . . §13.7 (p. 567)

expdev ran1 . . . . . . . . . . . . . §7.2 (p. 278)

expint . . . . . . . . . . . . . . . §6.3 (p. 217)

f1dim [func] . . . . . . . . . . . . . §10.5 (p. 413)

factln gammln . . . . . . . . . . . . §6.1 (p. 208)

factrl gammln . . . . . . . . . . . . §6.1 (p. 207)

fasper avevar . . . . . . . . . . . . §13.8 (p. 575)
spread
realft four1

fdjac [funcv] . . . . . . . . . . . . §9.7 (p. 381)

fgauss . . . . . . . . . . . . . . . §15.5 (p. 683)

fill0 . . . . . . . . . . . . . . . . §19.6 (p. 873)
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fit gammq gser . . . . . . . . . §15.2 (p. 659)
gcf gammln

fitexy avevar . . . . . . . . . . . . §15.3 (p. 662)
fit gammq gser

gcf gammln
chixy
mnbrak
brent
gammq gser

gcf gammln

zbrent chixy

fixrts zroots laguer . . . . . . . . §13.6 (p. 562)

fleg . . . . . . . . . . . . . . . . §15.4 (p. 674)

flmoon . . . . . . . . . . . . . . . §1.0 (p. 1)

fmin [funcv] . . . . . . . . . . . . . §9.7 (p. 381)

four1 . . . . . . . . . . . . . . . . §12.2 (p. 501)

fourew . . . . . . . . . . . . . . . §12.6 (p. 528)

fourfs fourew . . . . . . . . . . . . §12.6 (p. 525)

fourn . . . . . . . . . . . . . . . . §12.4 (p. 518)

fpoly . . . . . . . . . . . . . . . . §15.4 (p. 674)

fred2 gauleg . . . . . . . . . . . . §18.1 (p. 784)
[ak]
[g]
ludcmp
lubksb

fredex quadmx wwghts kermom . . . . . §18.3 (p. 793)
ludcmp
lubksb

fredin [ak] . . . . . . . . . . . . . §18.1 (p. 784)
[g]

frenel . . . . . . . . . . . . . . . §6.9 (p. 249)

frprmn [func] . . . . . . . . . . . . §10.6 (p. 416)
[dfunc]
linmin mnbrak

brent f1dim [func]

ftest avevar . . . . . . . . . . . . §14.2 (p. 613)
betai gammln

betacf

gamdev ran1 . . . . . . . . . . . . . §7.3 (p. 283)

gammln . . . . . . . . . . . . . . . §6.1 (p. 207)

gammp gser . . . . . . . . . . . §6.2 (p. 211)
gcf gammln
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gammq gser . . . . . . . . . . . §6.2 (p. 211)
gcf gammln

gasdev ran1 . . . . . . . . . . . . . §7.2 (p. 280)

gaucof tqli pythag . . . . . . . . . §4.5 (p. 151)
eigsrt

gauher . . . . . . . . . . . . . . . §4.5 (p. 147)

gaujac gammln . . . . . . . . . . . . §4.5 (p. 148)

gaulag gammln . . . . . . . . . . . . §4.5 (p. 146)

gauleg . . . . . . . . . . . . . . . §4.5 (p. 145)

gaussj . . . . . . . . . . . . . . . §2.1 (p. 30)

gcf gammln . . . . . . . . . . . . . §6.2 (p. 212)

golden [func] . . . . . . . . . . . . §10.1 (p. 394)

gser gammln . . . . . . . . . . . . . §6.2 (p. 212)

hpsel sort . . . . . . . . . . . . . §8.5 (p. 336)

hpsort . . . . . . . . . . . . . . . §8.3 (p. 329)

hqr . . . . . . . . . . . . . . . . §11.6 (p. 484)

hufapp . . . . . . . . . . . . . . . §20.4 (p. 899)

hufdec . . . . . . . . . . . . . . . §20.4 (p. 900)

hufenc . . . . . . . . . . . . . . . §20.4 (p. 900)

hufmak hufapp . . . . . . . . . . . . §20.4 (p. 898)

hunt . . . . . . . . . . . . . . . . §3.4 (p. 112)

hypdrv . . . . . . . . . . . . . . . §6.12 (p. 265)

hypgeo hypser . . . . . . . . . . . . §6.12 (p. 264)
odeint bsstep mmid

pzextr
hypdrv

hypser . . . . . . . . . . . . . . . §6.12 (p. 264)

icrc icrc1 . . . . . . . . . . . . . §20.3 (p. 893)

icrc1 . . . . . . . . . . . . . . . . §20.3 (p. 892)

igray . . . . . . . . . . . . . . . . §20.2 (p. 888)

iindexx . . . . . . . . . . INTEGER version of indexx, q.v.

indexx . . . . . . . . . . . . . . . §8.4 (p. 330)

interp . . . . . . . . . . . . . . . §19.6 (p. 871)

irbit1 . . . . . . . . . . . . . . . §7.4 (p. 288)

irbit2 . . . . . . . . . . . . . . . §7.4 (p. 290)

jacobi . . . . . . . . . . . . . . . §11.1 (p. 460)

jacobn . . . . . . . . . . . . . . . §16.6 (p. 734)

julday . . . . . . . . . . . . . . . §1.1 (p. 13)

kendl1 erfcc . . . . . . . . . . . . §14.6 (p. 638)

kendl2 erfcc . . . . . . . . . . . . §14.6 (p. 639)

kermom . . . . . . . . . . . . . . . §18.3 (p. 792)
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ks2d1s quadct . . . . . . . . . . . . §14.7 (p. 642)
quadvl
pearsn betai gammln

betacf
probks

ks2d2s quadct . . . . . . . . . . . . §14.7 (p. 643)
pearsn betai gammln

betacf
probks

ksone sort . . . . . . . . . . . . . §14.3 (p. 619)
[func]
probks

kstwo sort . . . . . . . . . . . . . §14.3 (p. 619)
probks

laguer . . . . . . . . . . . . . . . §9.5 (p. 366)

lfit [funcs] . . . . . . . . . . . . . §15.4 (p. 668)
gaussj
covsrt

linbcg atimes . . . . . . . . . . . . §2.7 (p. 79)
snrm
asolve

linmin mnbrak . . . . . . . . . . §10.5 (p. 412)
brent f1dim [func]

lnsrch [func] . . . . . . . . . . . . §9.7 (p. 378)

locate . . . . . . . . . . . . . . . §3.4 (p. 111)

lop . . . . . . . . . . . . . . . . §19.6 (p. 879)

lubksb . . . . . . . . . . . . . . . §2.3 (p. 39)

ludcmp . . . . . . . . . . . . . . . §2.3 (p. 38)

machar . . . . . . . . . . . . . . . §20.1 (p. 884)

maloc . . . . . . . . . . . . . . . . §19.6 (p. 873)

matadd . . . . . . . . . . . . . . . §19.6 (p. 879)

matsub . . . . . . . . . . . . . . . §19.6 (p. 879)

medfit rofunc select . . . . . . . . §15.7 (p. 699)

memcof . . . . . . . . . . . . . . . §13.6 (p. 561)

metrop ran3 . . . . . . . . . . . . . §10.9 (p. 443)

mgfas maloc . . . . . . . . . . . . . §19.6 (p. 877)
rstrct
slvsm2 fill0
interp
copy
relax2
lop
matsub
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anorm2
matadd

mglin maloc . . . . . . . . . . . . . §19.6 (p. 869)
rstrct
slvsml fill0
interp
copy
relax
resid
fill0

addint interp

midinf [func] . . . . . . . . . . . . §4.4 (p. 138)

midpnt [func] . . . . . . . . . . . . §4.4 (p. 136)

miser ranpt ran1 . . . . . . . . . . §7.8 (p. 316)
[func]

mmid [derivs] . . . . . . . . . . . §16.3 (p. 717)

mnbrak [func] . . . . . . . . . . . . §10.1 (p. 393)

mnewt [usrfun] . . . . . . . . . . . §9.6 (p. 374)
ludcmp
lubksb

moment . . . . . . . . . . . . . . . §14.1 (p. 607)

mp2dfr mpops . . . . . . . . . . . . §20.6 (p. 913)

mpdiv mpinv mpmul drealft dfour1 . . §20.6 (p. 911)
mpops

mpmul drealft dfour1

mpops

mpinv mpmul drealft dfour1 . . . . . §20.6 (p. 911)
mpops

mpmul drealft dfour1 . . . . . . . . §20.6 (p. 910)

mpops . . . . . . . . . . . . . . . . §20.6 (p. 907)

mppi mpsqrt mpmul drealft dfour1 . . §20.6 (p. 913)
mpops

mpops

mpmul drealft dfour1

mpinv mpmul drealft dfour1

mp2dfr mpops

mprove lubksb . . . . . . . . . . . . §2.5 (p. 48)

mpsqrt mpmul drealft dfour1 . . . . . §20.6 (p. 912)
mpops

mrqcof [funcs] . . . . . . . . . . . . §15.5 (p. 681)

mrqmin mrqcof [funcs] . . . . . . . . . §15.5 (p. 680)
gaussj
covsrt
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newt fmin . . . . . . . . . . . . §9.7 (p. 379)
fdjac [funcv]
ludcmp
lubksb
lnsrch fmin [funcv]

odeint [derivs] . . . . . . . . . . §16.2 (p. 714)
rkqs [derivs]

rkck [derivs]

orthog . . . . . . . . . . . . . . . §4.5 (p. 153)

pade ludcmp . . . . . . . . . . . . . §5.12 (p. 196)
lubksb
mprove lubksb

pccheb . . . . . . . . . . . . . . . §5.11 (p. 193)

pcshft . . . . . . . . . . . . . . . §5.10 (p. 192)

pearsn betai gammln . . . . . . . . . §14.5 (p. 632)
betacf

period avevar . . . . . . . . . . . . §13.8 (p. 572)

piksr2 . . . . . . . . . . . . . . . §8.1 (p. 322)

piksrt . . . . . . . . . . . . . . . §8.1 (p. 321)

pinvs . . . . . . . . . . . . . . . . §17.3 (p. 762)

plgndr . . . . . . . . . . . . . . . §6.8 (p. 247)

poidev ran1 . . . . . . . . . . . . . §7.3 (p. 284)
gammln

polcoe . . . . . . . . . . . . . . . §3.5 (p. 114)

polcof polint . . . . . . . . . . . . §3.5 (p. 115)

poldiv . . . . . . . . . . . . . . . §5.3 (p. 169)

polin2 polint . . . . . . . . . . . . §3.6 (p. 118)

polint . . . . . . . . . . . . . . . §3.1 (p. 103)

powell [func] . . . . . . . . . . . . §10.5 (p. 411)
linmin mnbrak

brent f1dim [func]

predic . . . . . . . . . . . . . . . §13.6 (p. 562)

probks . . . . . . . . . . . . . . . §14.3 (p. 620)

psdes . . . . . . . . . . . . . . . . §7.5 (p. 293)

pwt . . . . . . . . . . . . . . . . §13.10 (p. 589)

pwtset . . . . . . . . . . . . . . . §13.10 (p. 589)

pythag . . . . . . . . . . . . . . . §2.6 (p. 62)

pzextr . . . . . . . . . . . . . . . §16.4 (p. 724)

qgaus [func] . . . . . . . . . . . . . §4.5 (p. 141)

qrdcmp . . . . . . . . . . . . . . . §2.10 (p. 92)
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qromb trapzd [func] . . . . . . . . . §4.3 (p. 134)
polint

qromo midpnt [func] . . . . . . . . . §4.4 (p. 137)
polint

qroot poldiv . . . . . . . . . . . . §9.5 (p. 371)

qrsolv rsolv . . . . . . . . . . . . §2.10 (p. 93)

qrupdt rotate . . . . . . . . . . . . §2.10 (p. 94)

qsimp trapzd [func] . . . . . . . . . §4.2 (p. 133)

qtrap trapzd [func] . . . . . . . . . §4.2 (p. 131)

quad3d qgaus [func] . . . . . . . . . §4.6 (p. 157)
[y1]
[y2]
[z1]
[z2]

quadct . . . . . . . . . . . . . . . §14.7 (p. 642)

quadmx wwghts kermom . . . . . . . . §18.3 (p. 793)

quadvl . . . . . . . . . . . . . . . §14.7 (p. 643)

ran0 . . . . . . . . . . . . . . . . §7.1 (p. 270)

ran1 . . . . . . . . . . . . . . . . §7.1 (p. 271)

ran2 . . . . . . . . . . . . . . . . §7.1 (p. 272)

ran3 . . . . . . . . . . . . . . . . §7.1 (p. 273)

ran4 psdes . . . . . . . . . . . . . §7.5 (p. 294)

rank . . . . . . . . . . . . . . . . §8.4 (p. 333)

ranpt ran1 . . . . . . . . . . . . . §7.8 (p. 318)

ratint . . . . . . . . . . . . . . . §3.2 (p. 106)

ratlsq [fn] . . . . . . . . . . . . . §5.13 (p. 200)
dsvdcmp dpythag
dsvbksb
ratval

ratval . . . . . . . . . . . . . . . §5.3 (p. 170)

rc . . . . . . . . . . . . . . . . . §6.11 (p. 259)

rd . . . . . . . . . . . . . . . . . §6.11 (p. 257)

realft four1 . . . . . . . . . . . . §12.3 (p. 507)

rebin . . . . . . . . . . . . . . . . §7.8 (p. 314)

red . . . . . . . . . . . . . . . . §17.3 (p. 763)

relax . . . . . . . . . . . . . . . . §19.6 (p. 872)

relax2 . . . . . . . . . . . . . . . §19.6 (p. 878)

resid . . . . . . . . . . . . . . . . §19.6 (p. 872)

revcst . . . . . . . . . . . . . . . §10.9 (p. 441)

revers . . . . . . . . . . . . . . . §10.9 (p. 442)

rf . . . . . . . . . . . . . . . . . §6.11 (p. 257)
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rj rc . . . . . . . . . . . . . . . §6.11 (p. 258)
rf

rk4 [derivs] . . . . . . . . . . . . §16.1 (p. 706)

rkck [derivs] . . . . . . . . . . . §16.2 (p. 713)

rkdumb [derivs] . . . . . . . . . . §16.1 (p. 707)
rk4 [derivs]

rkqs rkck [derivs] . . . . . . . . §16.2 (p. 712)

rlft3 fourn . . . . . . . . . . . . . §12.5 (p. 522)

rofunc select . . . . . . . . . . . . §15.7 (p. 700)

rotate . . . . . . . . . . . . . . . §2.10 (p. 95)

rsolv . . . . . . . . . . . . . . . . §2.10 (p. 93)

rstrct . . . . . . . . . . . . . . . §19.6 (p. 870)

rtbis [func] . . . . . . . . . . . . . §9.1 (p. 347)

rtflsp [func] . . . . . . . . . . . . §9.2 (p. 349)

rtnewt [funcd] . . . . . . . . . . . . §9.4 (p. 358)

rtsafe [funcd] . . . . . . . . . . . . §9.4 (p. 359)

rtsec [func] . . . . . . . . . . . . . §9.2 (p. 350)

rzextr . . . . . . . . . . . . . . . §16.4 (p. 725)

savgol ludcmp . . . . . . . . . . . . §14.8 (p. 646)
lubksb

scrsho [func] . . . . . . . . . . . . §9.0 (p. 342)

select . . . . . . . . . . . . . . . §8.5 (p. 334)

selip shell . . . . . . . . . . . . . §8.5 (p. 335)

sfroid plgndr . . . . . . . . . . . . §17.4 (p. 768)
solvde difeq

pinvs
red
bksub

shell . . . . . . . . . . . . . . . . §8.1 (p. 323)

shoot [load] . . . . . . . . . . . . . §17.1 (p. 750)
odeint [derivs]

rkqs rkck [derivs]
[score]

shootf [load1] . . . . . . . . . . . . §17.2 (p. 752)
odeint [derivs]

rkqs rkck [derivs]
[score]
[load2]

simp1 . . . . . . . . . . . . . . . . §10.8 (p. 434)

simp2 . . . . . . . . . . . . . . . . §10.8 (p. 434)

simp3 . . . . . . . . . . . . . . . . §10.8 (p. 435)
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simplx simp1 . . . . . . . . . . . . §10.8 (p. 432)
simp2
simp3

simpr ludcmp . . . . . . . . . . . . §16.6 (p. 736)
lubksb
[derivs]

sinft realft four1 . . . . . . . . . §12.3 (p. 511)

slvsm2 fill0 . . . . . . . . . . . . §19.6 (p. 878)

slvsml fill0 . . . . . . . . . . . . §19.6 (p. 872)

sncndn . . . . . . . . . . . . . . . §6.11 (p. 262)

snrm . . . . . . . . . . . . . . . . §2.7 (p. 81)

sobseq . . . . . . . . . . . . . . . §7.7 (p. 302)

solvde difeq . . . . . . . . . . . . §17.3 (p. 760)
pinvs
red
bksub

sor . . . . . . . . . . . . . . . . §19.5 (p. 860)

sort . . . . . . . . . . . . . . . . §8.2 (p. 324)

sort2 . . . . . . . . . . . . . . . . §8.2 (p. 326)

sort3 indexx . . . . . . . . . . . . §8.4 (p. 332)

spctrm four1 . . . . . . . . . . . . §13.4 (p. 550)

spear sort2 . . . . . . . . . . . . . §14.6 (p. 635)
crank
erfcc
betai gammln

betacf

sphbes bessjy beschb chebev . . . . . §6.7 (p. 245)

sphfpt newt fdjac shootf (q.v.) . . . . §17.4 (p. 772)
lnsrch
fmin shootf (q.v.)
ludcmp
lubksb

sphoot newt fdjac shoot (q.v.) . . . . . §17.4 (p. 771)
lnsrch
fmin shoot (q.v.)
ludcmp
lubksb

splie2 spline . . . . . . . . . . . . §3.6 (p. 121)

splin2 splint . . . . . . . . . . . . §3.6 (p. 121)
spline

spline . . . . . . . . . . . . . . . §3.3 (p. 109)

splint . . . . . . . . . . . . . . . §3.3 (p. 110)

spread . . . . . . . . . . . . . . . §13.8 (p. 576)



932 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

sprsax . . . . . . . . . . . . . . . §2.7 (p. 72)

sprsin . . . . . . . . . . . . . . . §2.7 (p. 72)

sprspm . . . . . . . . . . . . . . . §2.7 (p. 75)

sprstm . . . . . . . . . . . . . . . §2.7 (p. 76)

sprstp iindexx . . . . . . . . . . . . §2.7 (p. 73)

sprstx . . . . . . . . . . . . . . . §2.7 (p. 73)

stifbs jacobn . . . . . . . . . . . . §16.6 (p. 737)
simpr ludcmp

lubksb
[derivs]

pzextr

stiff jacobn . . . . . . . . . . . . §16.6 (p. 732)
ludcmp
lubksb
[derivs]

stoerm [derivs] . . . . . . . . . . §16.5 (p. 726)

svbksb . . . . . . . . . . . . . . . §2.6 (p. 56)

svdcmp pythag . . . . . . . . . . . . §2.6 (p. 59)

svdfit [funcs] . . . . . . . . . . . . §15.4 (p. 672)
svdcmp pythag
svbksb

svdvar . . . . . . . . . . . . . . . §15.4 (p. 673)

toeplz . . . . . . . . . . . . . . . §2.8 (p. 88)

tptest avevar . . . . . . . . . . . . §14.2 (p. 612)
betai gammln

betacf

tqli pythag . . . . . . . . . . . . . §11.3 (p. 473)

trapzd [func] . . . . . . . . . . . . §4.2 (p. 131)

tred2 . . . . . . . . . . . . . . . . §11.2 (p. 467)

tridag . . . . . . . . . . . . . . . §2.4 (p. 43)

trncst . . . . . . . . . . . . . . . §10.9 (p. 442)

trnspt . . . . . . . . . . . . . . . §10.9 (p. 442)

ttest avevar . . . . . . . . . . . . §14.2 (p. 610)
betai gammln

betacf

tutest avevar . . . . . . . . . . . . §14.2 (p. 611)
betai gammln

betacf

twofft four1 . . . . . . . . . . . . §12.3 (p. 505)

vander . . . . . . . . . . . . . . . §2.8 (p. 84)
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vegas rebin . . . . . . . . . . . . . §7.8 (p. 311)
ran2
[fxn]

voltra [g] . . . . . . . . . . . . . §18.2 (p. 787)
[ak]
ludcmp
lubksb

wt1 daub4 . . . . . . . . . . . . . §13.10 (p. 587)

wtn daub4 . . . . . . . . . . . . . §13.10 (p. 595)

wwghts kermom . . . . . . . . . . . . §18.3 (p. 791)

zbrac [func] . . . . . . . . . . . . . §9.1 (p. 345)

zbrak [func] . . . . . . . . . . . . . §9.1 (p. 345)

zbrent [func] . . . . . . . . . . . . §9.3 (p. 354)

zrhqr balanc . . . . . . . . . . . . §9.5 (p. 368)
hqr

zriddr [func] . . . . . . . . . . . . §9.2 (p. 351)

zroots laguer . . . . . . . . . . . . §9.5 (p. 367)
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Abstract data types 2/xiii, 1030
Accelerated convergence of series 160ff.,

1070
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achievable in minimization 392, 397, 404
achievable in root finding 346f.
contrasted with fidelity 832, 840
CPU different from memory 181
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Acknowledgments 1/xvi, 2/ix
Ada 2/x
Adams-Bashford-Moulton method 741
Adams’ stopping criterion 366
Adaptive integration 123, 135, 703, 708ff.,
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Monte Carlo 306ff., 1161ff.
Addition, multiple precision 907, 1353
Addition theorem, elliptic integrals 255
ADI (alternating direction implicit) method

847, 861f., 906
Adjoint operator 867
Adobe Illustrator 1/xvi, 2/xx
Advective equation 826
AGM (arithmetic geometric mean) 906
Airy function 204, 234, 243f.

routine for 244f., 1121
Aitken’s delta squared process 160
Aitken’s interpolation algorithm 102
Algol 2/x, 2/xiv
Algorithms, non-numerical 881ff., 1343ff.
Aliasing 495, 569

see also Fourier transform
all() intrinsic function 945, 948
All-poles model 566

see also Maximum entropy method (MEM)
All-zeros model 566

see also Periodogram
Allocatable array 938, 941, 952ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
Allocation status 938, 952ff., 961, 1197,

1266, 1293

Alpha AXP 2/xix
Alternating-direction implicit method (ADI)

847, 861f., 906
Alternating series 160f., 1070
Alternative extended Simpson’s rule 128
American National Standards Institute (ANSI)

2/x, 2/xiii
Amoeba 403

see also Simplex, method of Nelder and
Mead

Amplification factor 828, 830, 832, 840, 845f.
Amplitude error 831
Analog-to-digital converter 812, 886
Analyticity 195
Analyze/factorize/operate package 64, 824
Anderson-Darling statistic 621
Andrew’s sine 697
Annealing, method of simulated 387f., 436ff.,

1219ff.
assessment 447
for continuous variables 437, 443ff., 1222
schedule 438
thermodynamic analogy 437
traveling salesman problem 438ff., 1219ff.

ANSI (American National Standards Institute)
2/x, 2/xiii

Antonov-Saleev variant of Sobol’ sequence
300, 1160

any() intrinsic function 945, 948
APL (computer language) 2/xi
Apple 1/xxiii

Macintosh 2/xix, 4, 886
Approximate inverse of matrix 49
Approximation of functions 99, 1043

by Chebyshev polynomials 185f., 513,
1076ff.

Padé approximant 194ff., 1080f.
by rational functions 197ff., 1081f.
by wavelets 594f., 782
see also Fitting

Argument
keyword 2/xiv, 947f., 1341
optional 2/xiv, 947f., 1092, 1228, 1230,

1256, 1272, 1275, 1340
Argument checking 994f., 1086, 1090, 1092,

1370f.
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arbitrary precision 881, 906ff., 1352ff.
floating point 881, 1343
IEEE standard 276, 882, 1343
rounding 882, 1343

Arithmetic coding 881, 902ff., 1349ff.
Arithmetic-geometric mean (AGM) method

906
Arithmetic-if statement 2/xi
Arithmetic progression 971f., 996, 1072,

1127, 1365, 1371f.
Array 953ff.

allocatable 938, 941, 952ff., 1197, 1212,
1266, 1293, 1306, 1336

allocated with pointer 941
allocation 953
array manipulation functions 950
array sections 939, 941, 943ff.
of arrays 2/xii, 956, 1336
associated pointer 953f.
assumed-shape 942
automatic 938, 954, 1197, 1212, 1336
centered subarray of 113
conformable to a scalar 942f., 965, 1094
constructor 2/xii, 968, 971, 1022, 1052,

1055, 1127
copying 991, 1034, 1327f., 1365f.
cumulative product 997f., 1072, 1086,

1375
cumulative sum 997, 1280f., 1365, 1375
deallocation 938, 953f., 1197, 1266, 1293
disassociated pointer 953
extents 938, 949
in Fortran 90 941
increasing storage for 955, 1070, 1302
index loss 967f.
index table 1173ff.
indices 942
inquiry functions 948ff.
intrinsic procedures 2/xiii, 948ff.
of length 0 944
of length 1 949
location of first “true” 993, 1041, 1369
location of maximum value 993, 1015,

1017, 1365, 1369
location of minimum value 993, 1369f.
manipulation functions 950, 1247
masked swapping of elements in two arrays

1368
operations on 942, 949, 964ff., 969, 1026,

1040, 1050, 1200, 1326
outer product 949, 1076
parallel features 941ff., 964ff., 985
passing variable number of arguments to

function 1022
of pointers forbidden 956, 1337
rank 938, 949
reallocation 955, 992, 1070f., 1365, 1368f.
reduction functions 948ff.
shape 938, 944, 949
size 938
skew sections 945, 985
stride 944
subscript bounds 942
subscript triplet 944

swapping elements of two arrays 991,
1015, 1365ff.

target 938
three-dimensional, in Fortran 90 1248
transformational functions 948ff.
unary and binary functions 949
undefined status 952ff., 961, 1266, 1293
zero-length 944

Array section 2/xiii, 943ff., 960
matches by shape 944
pointer alias 939, 944f., 1286, 1333
skew 2/xii, 945, 960, 985, 1284
vs. eoshift 1078

array copy() utility function 988, 991, 1034,
1153, 1278, 1328

arth() utility function 972, 974, 988, 996,
1072, 1086, 1127

replaces do-list 968
Artificial viscosity 831, 837
Ascending transformation, elliptic integrals

256
ASCII character set 6, 888, 896, 902
Assembly language 269
assert() utility function 988, 994, 1086, 1090,

1249
assert eq() utility function 988, 995, 1022
associated() intrinsic function 952f.
Associated Legendre polynomials 246ff., 764,

1122f., 1319
recurrence relation for 247
relation to Legendre polynomials 246

Association, measures of 604, 622ff., 1275
Assumed-shape array 942
Asymptotic series 161

exponential integral 218
Attenuation factors 583, 1261
Autocorrelation 492

in linear prediction 558
use of FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

AUTODIN-II polynomial 890
Automatic array 938, 954, 1197, 1212, 1336

specifying size of 938, 954
Automatic deallocation 2/xv, 961
Autonomous differential equations 729f.
Autoregressive model (AR) see Maximum en-

tropy method (MEM)
Average deviation of distribution 605, 1269
Averaging kernel, in Backus-Gilbert method

807

Backsubstitution 33ff., 39, 42, 92, 1017
in band diagonal matrix 46, 1021
in Cholesky decomposition 90, 1039
complex equations 41
direct for computing A−1 · B 40
with QR decomposition 93, 1040
relaxation solution of boundary value prob-

lems 755, 1316
in singular value decomposition 56, 1022f.

Backtracking 419
in quasi-Newton methods 376f., 1195

Backus-Gilbert method 806ff.
Backus, John 2/x
Backward deflation 363
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Bader-Deuflhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476f., 1230f.
Band diagonal matrix 42ff., 1019

backsubstitution 46, 1021
LU decomposition 45, 1020
multiply by vector 44, 1019
storage 44, 1019

Band-pass filter 551, 554f.
wavelets 584, 592f.

Bandwidth limited function 495
Bank accounts, checksum for 894
Bar codes, checksum for 894
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2/x, 2/xviii
Basis functions in general linear least squares

665
Bayes’ Theorem 810
Bayesian

approach to inverse problems 799, 810f.,
816f.

contrasted with frequentist 810
vs. historic maximum entropy method

816f.
views on straight line fitting 664

Bays’ shuffle 270
Bernoulli number 132
Bessel functions 223ff., 234ff., 936, 1101ff.

asymptotic form 223f., 229f.
complex 204
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalization formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 232, 234
reflection formulas 236
reflection formulas, modified functions

241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff.,

1118
series for 160, 223
series for Kν 241
series for Yν 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239

Best-fit parameters 650, 656, 660, 698, 1285ff.
see also Fitting

Beta function 206ff., 1089
incomplete see Incomplete beta function

BFGS algorithm see Broyden-Fletcher-Goldfarb-
Shanno algorithm

Bias, of exponent 19
Bias, removal in linear prediction 563
Biconjugacy 77

Biconjugate gradient method
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.

Bicubic interpolation 118f., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087f.

recurrences for 209
Binomial probability function 208

cumulative 222f.
deviates from 281, 285f., 1155

Binormal distribution 631, 690
Biorthogonality 77
Bisection 111, 359, 1045f.

compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346f., 352f., 390, 469,

1184f.
BISYNCH 890
Bit 18

manipulation functions see Bitwise logical
functions

reversal in fast Fourier transform (FFT)
499f., 525

bit size() intrinsic function 951
Bitwise logical functions 2/xiii, 17, 287,

890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method for π 906,

1357
Boundary 155f., 425f., 745
Boundary conditions

for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff.,

848ff.
for spheroidal harmonics 764
two-point boundary value problems 702,

745ff., 1314ff.
Boundary value problems see Differential

equations; Elliptic partial differential
equations; Two-point boundary value
problems

Box-Muller algorithm for normal deviate 279f.,
1152

Bracketing
of function minimum 343, 390ff., 402,

1201f.
of roots 341, 343ff., 353f., 362, 364, 369,

390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517
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Brent’s method
minimization 389, 395ff., 660f., 1204ff.,

1286
minimization, using derivative 389, 399,

1205
root finding 341, 349, 660f., 1188f., 1286

Broadcast (parallel capability) 965ff.
Broyden-Fletcher-Goldfarb-Shanno algorithm

390, 418ff., 1215
Broyden’s method 373, 382f., 386, 1199f.

singular Jacobian 386
btest() intrinsic function 951
Bubble sort 321, 1168
Bugs 4

in compilers 1/xvii
how to report 1/iv, 2/iv

Bulirsch-Stoer
algorithm for rational function interpolation

105f., 1043
method (differential equations) 202, 263,

702f., 706, 716, 718ff., 726, 740, 1138,
1303ff.

method (differential equations), stepsize
control 719, 726

for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18

C (programming language) 13, 2/viii
and case construct 1010
Numerical Recipes in 1, 2/x, 2/xvii

C++ 1/xiv, 2/viii, 2/xvi, 7f.
class templates 1083, 1106

Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals 255f., 1128ff.
case construct 2/xiv, 1010

trapping errors 1036
Cash-Karp parameters 710, 1299f.
Cauchy probability distribution see Lorentzian

probability distribution
Cauchy problem for partial differential equa-

tions 818f.
Cayley’s representation of exp(−iHt) 844
CCITT (Comité Consultatif International Télé-

graphique et Téléphonique) 889f., 901
CCITT polynomial 889f.
ceiling() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652f.
Central tendency, measures of 604ff., 1269
Change of variable

in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279

Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial

digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175

Characteristics of partial differential equations
818

Chebyshev acceleration in successive over-
relaxation (SOR) 859f., 1332

Chebyshev approximation 84, 124, 183, 184ff.,
1076ff.

Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185f., 1076
contrasted with Padé approximation 195
derivative of approximated function 183,

189, 1077f.
economization of series 192f., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189,

1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081f.
Remes exchange algorithm for filter 553

Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula for xk in terms of 193, 1080

Check digit 894, 1345f.
Checksum 881, 888

cyclic redundancy (CRC) 888ff., 1344f.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fitting see Fitting; Least squares

fitting
Chi-square probability function 209ff., 215,

615, 654, 798, 1272
as boundary of confidence region 688f.
related to incomplete gamma function 215

Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688f.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting 653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coor-

dinates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617

Chip rate 290
Chirp signal 556
Cholesky decomposition 89f., 423, 455, 1038

backsubstitution 90, 1039
operation count 90
pivoting 90
solution of normal equations 668

Circulant 585
Class, data type 7
Clenshaw-Curtis quadrature 124, 190, 512f.
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Clenshaw’s recurrence formula 176f., 191,
1078

for Chebyshev polynomials 187, 1076
stability 176f.

Clocking errors 891
CM computers (Thinking Machines Inc.) 964
CM Fortran 2/xv
cn function 261, 1137f.
Coarse-grid correction 864f.
Coarse-to-fine operator 864, 1337
Coding

arithmetic 902ff., 1349ff.
checksums 888, 1344
decoding a Huffman-encoded message

900, 1349
Huffman 896f., 1346ff.
run-length 901
variable length code 896, 1346ff.
Ziv-Lempel 896
see also Arithmetic coding; Huffman cod-

ing
Coefficients

binomial 208, 1087f.
for Gaussian quadrature 140ff., 1059ff.
for Gaussian quadrature, nonclassical weight

function 151ff., 788f., 1064
for quadrature formulas 125ff., 789, 1328

Cohen, Malcolm 2/xiv
Column degeneracy 22
Column operations on matrix 29, 31f.
Column totals 624
Combinatorial minimization see Annealing
Comité Consultatif International Télégraphique

et Téléphonique (CCITT) 889f., 901
Common block

obsolescent 2/xif.
superseded by internal subprogram 957,

1067
superseded by module 940, 953, 1298,

1320, 1322, 1324, 1330
Communication costs, in parallel processing

969, 981, 1250
Communication theory, use in adaptive integra-

tion 721
Communications protocol 888
Comparison function for rejection method

281
Compilers 964, 1364

CM Fortran 968
DEC (Digital Equipment Corp.) 2/viii
IBM (International Business Machines)

2/viii
Microsoft Fortran PowerStation 2/viii
NAG (Numerical Algorithms Group) 2/viii,

2/xiv
for parallel supercomputers 2/viii

Complementary error function 1094f.
see Error function

Complete elliptic integral see Elliptic integrals
Complex arithmetic 171f.

avoidance of in path integration 203
cubic equations 179f.
for linear equations 41
quadratic equations 178

Complex error function 252

Complex plane
fractal structure for Newton’s rule 360f.
path integration for function evaluation

201ff., 263, 1138
poles in 105, 160, 202f., 206, 554, 566,

718f.
Complex systems of linear equations 41f.
Compression of data 596f.
Concordant pair for Kendall’s tau 637, 1281
Condition number 53, 78
Confidence level 687, 691ff.
Confidence limits

bootstrap method 687f.
and chi-square 688f.
confidence region, confidence interval 687
on estimated model parameters 684ff.
by Monte Carlo simulation 684ff.
from singular value decomposition (SVD)

693f.
Confluent hypergeometric function 204, 239
Conformable arrays 942f., 1094
Conjugate directions 408f., 414ff., 1210
Conjugate gradient method

biconjugate 77, 1034
compared to variable metric method 418
elliptic partial differential equations 824
for minimization 390, 413ff., 804, 815,

1210, 1214
minimum residual method 78
preconditioner 78f., 1037
for sparse system 77ff., 599, 1034
and wavelets 599

Conservative differential equations 726, 1307
Constrained linear inversion method 799ff.
Constrained linear optimization see Linear pro-

gramming
Constrained optimization 387
Constraints, deterministic 804ff.
Constraints, linear 423
CONTAINS statement 954, 957, 1067, 1134,

1202
Contingency coefficient C 625, 1275
Contingency table 622ff., 638, 1275f.

statistics based on chi-square 623ff., 1275
statistics based on entropy 626ff., 1275f.

Continued fraction 163ff.
Bessel functions 234
convergence criterion 165
equivalence transformation 166
evaluation 163ff.
evaluation along with normalization condi-

tion 240
even and odd parts 166, 211, 216
even part 249, 251
exponential integral 216
Fresnel integral 248f.
incomplete beta function 219f., 1099f.
incomplete gamma function 211, 1092f.
Lentz’s method 165, 212
modified Lentz’s method 165
Pincherle’s theorem 175
ratio of Bessel functions 239
rational function approximation 164, 211,

219f.
recurrence for evaluating 164f.
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and recurrence relation 175
sine and cosine integrals 250f.
Steed’s method 164f.
tangent function 164
typography for 163

Continuous variable (statistics) 623
Control structures 7ff., 2/xiv

bad 15
named 959, 1219, 1305

Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679,

759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409f., 419, 906
rate 346f., 353, 356
recurrence relation 175
of Ridders’ method 351
series vs. continued fraction 163f.
and spectral radius 856ff., 862

Conversion intrinsic functions 946f.
Convex sets, use in inverse problems 804
Convolution

denoted by asterisk 492
finite impulse response (FIR) 531
of functions 492, 503f.
of large data sets 536f.
for multiple precision arithmetic 909,

1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536f.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorem, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533

Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.

Co-processor, floating point 886
Copyright rules 1/xx, 2/xix
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 1276
Correlation function 492

autocorrelation 492, 539, 558
and Fourier transforms 492
theorem 492, 538
treatment of end effects 538f.
using FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

Correlation, statistical 603f., 622
Kendall’s tau 634, 637ff., 1279

linear correlation coefficient 630ff., 658,
1276

linear related to least square fitting 630,
658

nonparametric or rank statistical 633ff.,
1277

among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f.,

1277
sum squared difference of ranks 634,

1277
Cosine function, recurrence 172
Cosine integral 248, 250ff., 1125f.

continued fraction 250
routine for 251f., 1125
series 250

Cosine transform see Fast Fourier transform
(FFT); Fourier transform

Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836

multidimensional 846
Courant-Friedrichs-Lewy stability criterion see

Courant condition
Covariance

a priori 700
in general linear least squares 667, 671,

1288ff.
matrix, by Cholesky decomposition 91,

667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD)

693f.
in straight line fitting 657

cpu time() intrinsic function (Fortran 95) 961
CR method see Cyclic reduction (CR)
Cramer’s V 625, 1275
Crank-Nicolson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344f.
CRC-12 890
CRC-16 polynomial 890
CRC-CCITT 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Crosstabulation analysis 623

see also Contingency table
Crout’s algorithm 36ff., 45, 1017
cshift() intrinsic function 950

communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f.

see also Spline
cumprod() utility function 974, 988, 997,

1072, 1086
cumsum() utility function 974, 989, 997,

1280, 1305
Cumulant, of a polynomial 977, 999, 1071f.,

1192
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Cumulative binomial distribution 222f.
Cumulative Poisson function 214

related to incomplete gamma function 214
Curvature matrix see Hessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.

linear recurrences 974
tridiagonal systems 976, 1018

Cyclic redundancy check (CRC) 888ff., 1344f.
Cyclic tridiagonal systems 67, 1030

D .C. (direct current) 492
Danielson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/xi
Data

assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fraudulent 655
glitches in 653
iid (independent and identically distributed)

686
modeling 650ff., 1285ff.
serial port 892
smoothing 604, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574,

648f., 1258ff.
use of CRCs in manipulating 889
windowing 545ff., 1254
see also Statistical tests

Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896

Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156ff.

Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959

for binary, octal, hexadecimal constants
959

repeat count feature 959
superseded by initialization expression

943, 959, 1127
Data type 18, 936

accuracy parameters 1362f.
character 1183
derived 2/xiii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xv
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361

intrinsic 937
LGT (default logical type) 1361
nrtype.f90 1361f.
passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346

DAUB4 584ff., 588, 590f., 594, 1264f.
DAUB6 586
DAUB12 598
DAUB20 590f., 1265
Daubechies wavelet coefficients 584ff., 588,

590f., 594, 598, 1264ff.
Davidon-Fletcher-Powell algorithm 390, 418ff.,

1215
Dawson’s integral 252ff., 600, 1127f.

approximation for 252f.
routine for 253f., 1127

dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,

1293
Deallocation, of allocatable array 938, 953f.,

1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,

886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quadruple precision option 1362
VAX 4

Decomposition see Cholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)

Deconvolution 535, 540, 1253
see also Convolution; Fast Fourier trans-

form (FFT); Fourier transform
Defect, in multigrid method 863
Deferred approach to the limit see Richard-

son’s deferred approach to the limit
Deflation

of matrix 471
of polynomials 362ff., 370f., 977

Degeneracy of linear algebraic equations 22,
53, 57, 670

Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features

common block 2/xif., 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330

dble() intrinsic function 947
EQUIVALENCE statement 2/xif., 1161,

1286
statement function 1057, 1256

Derivatives
computation via Chebyshev approximation

183, 189, 1077f.
computation via Savitzky-Golay filters

183, 645
matrix of first partial see Jacobian determi-

nant
matrix of second partial see Hessian ma-

trix
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numerical computation 180ff., 379, 645,
732, 750, 771, 1075, 1197, 1309

of polynomial 167, 978, 1071f.
use in optimization 388f., 399, 1205ff.

Derived data type see Data type, derived
DES see Data Encryption Standard
Descending transformation, elliptic integrals

256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.

see also Statistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, random see Random deviates
DFP algorithm see Davidon-Fletcher-Powell

algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004,

1294
Diagonal dominance 43, 679, 780, 856
Difference equations, finite see Finite differ-

ence equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.

accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719,

726, 731, 737, 742f., 1298ff., 1303ff.,
1308f., 1311ff.

algebraically difficult sets 763
backward Euler’s method 729
Bader-Deuflhard method for stiff 730,

735, 1310f.
boundary conditions 701f., 745ff., 749,

751f., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706,

716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative

equations 726, 1307
comparison of methods 702f., 739f., 743
conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff.,

1319ff.
embedded Runge-Kutta method 709f.,

731, 1298, 1308
equivalence of multistep and multivalue

methods 743
Euler’s method 702, 704, 728f.
forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
implicit differencing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716f., 719,

1302f.
multistep methods 740ff.
multivalue methods 740
order of method 704f., 719

path integration for function evaluation
201ff., 263, 1138

predictor-corrector methods 702, 730,
740ff.

reduction to first-order sets 701, 745
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319ff.
r.h.s. independent of x 729f.
Rosenbrock methods for stiff 730, 1308f.
Runge-Kutta method 702, 704ff., 708ff.,

731, 740, 1297f., 1308
Runge-Kutta method, high-order 705,

1297
Runge-Kutta-Fehlberg method 709ff.,

1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735f.
semi-implicit extrapolation method 730,

735f., 1311ff.
semi-implicit midpoint rule 735f., 1310f.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Volterra integral equations

786
singular points 718f., 751, 775ff., 1315f.,

1323ff.
step doubling 708f.
stepsize control 703, 708ff., 719, 726,

731, 737, 742f., 1298, 1303ff., 1308f.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see also Partial differential equations; Two-

point boundary value problems
Diffusion equation 818, 838ff., 855

Crank-Nicolson method 840, 844, 846
Forward Time Centered Space (FTCS)

839ff., 855
implicit differencing 840
multidimensional 846

Digamma function 216
Digital filtering see Filter
Dihedral group D5 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct method see Periodogram
Direct methods for linear algebraic equations

26, 1014
Direct product see Outer product of matrices
Direction of largest decrease 410f.
Direction numbers, Sobol’s sequence 300
Direction-set methods for minimization 389,

406f., 1210ff.
Dirichlet boundary conditions 820, 840, 850,

856, 858
Disclaimer of warranty 1/xx, 2/xvii
Discordant pair for Kendall’s tau 637, 1281
Discrete convolution theorem 531ff.
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Discrete Fourier transform (DFT) 495ff.,
1235ff.

as approximate continuous transform 497
see also Fast Fourier transform (FFT)

Discrete optimization 436ff., 1219ff.
Discriminant 178, 457
Diskettes

are ANSI standard 3
how to order 1/xxi, 2/xvii

Dispersion 831
DISPO see Savitzky-Golay filters
Dissipation, numerical 830
Divergent series 161
Divide and conquer algorithm 1226, 1229
Division

complex 171
multiple precision 910f., 1356
of polynomials 169, 362, 370, 1072

dn function 261, 1137f.
Do-list, implied 968, 971, 1127
Do-loop 2/xiv
Do-until iteration 14
Do-while iteration 13
Dogleg step methods 386
Domain of integration 155f.
Dominant solution of recurrence relation 174
Dot (denotes matrix multiplication) 23
dot product() intrinsic function 945, 949,

969, 1216
Double exponential error distribution 696
Double precision

converting to 1362
as refuge of scoundrels 882
use in iterative improvement 47, 1022

Double root 341
Downhill simplex method see Simplex, method

of Nelder and Mead
DP, defined 937
Driver programs 3
Dual viewpoint, in multigrid method 875
Duplication theorem, elliptic integrals 256
DWT (discrete wavelet transform) see Wavelet

transform
Dynamical allocation of storage 2/xiii, 869,

938, 941f., 953ff., 1327, 1336
garbage collection 956
increasing 955, 1070, 1302

E ardley, D.M. 338
EBCDIC 890
Economization of power series 192f., 195,

1080
Eigensystems 449ff., 1225ff.

balancing matrix 476f., 1230f.
bounds on eigenvalues 50
calculation of few eigenvalues 454, 488
canned routines 454f.
characteristic polynomial 449, 469
completeness 450
defective 450, 476, 489
deflation 471
degenerate eigenvalues 449ff.
elimination method 453, 478, 1231
factorization method 453

fast Givens reduction 463
generalized eigenproblem 455
Givens reduction 462f.
Hermitian matrix 475
Hessenberg matrix 453, 470, 476ff., 488,

1232
Householder transformation 453, 462ff.,

469, 473, 475, 478, 1227f., 1231
ill-conditioned eigenvalues 477
implicit shifts 472ff., 1228f.
and integral equations 779, 785
invariance under similarity transform 452
inverse iteration 455, 469, 476, 487ff.,

1230
Jacobi transformation 453, 456ff., 462,

475, 489, 1225f.
left eigenvalues 451
list of tasks 454f.
multiple eigenvalues 489
nonlinear 455
nonsymmetric matrix 476ff., 1230ff.
operation count of balancing 476
operation count of Givens reduction 463
operation count of Householder reduction

467
operation count of inverse iteration 488
operation count of Jacobi method 460
operation count of QL method 470, 473
operation count of QR method for Hessen-

berg matrices 484
operation count of reduction to Hessenberg

form 479
orthogonality 450
parallel algorithms 1226, 1229
polynomial roots and 368, 1193
QL method 469ff., 475, 488f.
QL method with implicit shifts 472ff.,

1228f.
QR method 52, 453, 456, 469ff., 1228
QR method for Hessenberg matrices 480ff.,

1232ff.
real, symmetric matrix 150, 467, 785,

1225, 1228
reduction to Hessenberg form 478f., 1231
right eigenvalues 451
shifting eigenvalues 449, 470f., 480
special matrices 454
termination criterion 484, 488
tridiagonal matrix 453, 469ff., 488, 1228

Eigenvalue and eigenvector, defined 449
Eigenvalue problem for differential equations

748, 764ff., 770ff., 1319ff.
Eigenvalues and polynomial root finding 368,

1193
EISPACK 454, 475
Electromagnetic potential 519
ELEMENTAL attribute (Fortran 95) 961,

1084
Elemental functions 2/xiii, 2/xv, 940, 942,

946f., 961, 986, 1015, 1083, 1097f.
Elimination see Gaussian elimination
Ellipse in confidence limit estimation 688
Elliptic integrals 254ff., 906

addition theorem 255
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Carlson’s forms and algorithms 255f.,
1128ff.

Cauchy principal value 256f.
duplication theorem 256
Legendre 254ff., 260f., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255

Elliptic partial differential equations 818,
1332ff.

alternating-direction implicit method (ADI)
861f., 906

analyze/factorize/operate package 824
biconjugate gradient method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848f., 852ff.
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
incomplete Cholesky conjugate gradient

method (ICCG) 824
Jacobi’s method 855f., 864
matrix methods 824
multigrid method 824, 862ff., 1009, 1334ff.
rapid (Fourier) method 824, 848ff.
relaxation method 823, 854ff., 1332
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff.,

862, 866, 1332
elsewhere construct 943
Emacs, GNU 1/xvi
Embedded Runge-Kutta method 709f., 731,

1298, 1308
Encapsulation, in programs 7
Encryption 290, 1156
enddo statement 12, 17
Entropy 896

of data 626ff., 811, 1275
EOM (end of message) 902
eoshift() intrinsic function 950

communication bottleneck 969
vector shift argument 1019f.
vs. array section 1078

epsilon() intrinsic function 951, 1189
Equality constraints 423
Equations

cubic 178ff., 360
normal (fitting) 645, 666ff., 800, 1288
quadratic 20, 178
see also Differential equations; Partial dif-

ferential equations; Root finding
Equivalence classes 337f., 1180
EQUIVALENCE statement 2/xif., 1161, 1286
Equivalence transformation 166
Error

checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 875
Lorentzian distribution 696f.
in multigrid method 863
nonnormal 653, 690, 694ff.

relative truncation 875
roundoff 180f., 881, 1362
series, advantage of an even 132f., 717,

1362
systematic vs. statistical 653, 1362
truncation 20f., 180, 399, 709, 881, 1362
varieties found by check digits 895
varieties of, in PDEs 831ff.
see also Roundoff error

Error function 213f., 601, 1094f.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
relation to Dawson’s integral 252, 1127
relation to Fresnel integrals 248
relation to incomplete gamma function

213
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635,

1277
Error handling in programs 2/xii, 2/xvi, 3,

994f., 1036, 1370f.
Estimation of parameters see Fitting; Maxi-

mum likelihood estimate
Estimation of power spectrum 542ff., 565ff.,

1254ff., 1258
Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s method for differential equations 702,

704, 728f.
Euler’s transformation 160f., 1070

generalized form 162f.
Evaluation of functions see Function
Even and odd parts, of continued fraction

166, 211, 216
Even parity 888
Exception handling in programs see Error han-

dling in programs
exit statement 959, 1219
Explicit differencing 827
Exponent in floating point format 19, 882,

1343
exponent intrinsic function 1107
Exponential deviate 278, 1151f.
Exponential integral 215ff., 1096f.

asymptotic expansion 218
continued fraction 216
recurrence relation 172
related to incomplete gamma function 215
relation to cosine integral 250
routine for Ei(x) 218, 1097
routine for En(x) 217, 1096
series 216

Exponential probability distribution 570
Extended midpoint rule 124f., 129f., 135,

1054f.
Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff.,

135, 786, 1052ff., 1326
roundoff error 132

Extirpolation (so-called) 574, 1261
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Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726,

1305ff.
differential equations 702
by linear prediction 557ff., 1256f.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305f.
rational function 718ff., 726, 1306f.
relation to interpolation 101
for Romberg integration 134
see also Interpolation

Extremization see Minimization

F -distribution probability function 222
F-test for differences of variances 611, 613,

1271
FACR see Fourier analysis and cyclic reduc-

tion (FACR)
Facsimile standard 901
Factorial

double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207f., 1086ff.

False position 347ff., 1185f.
Family tree 338
FAS (full approximation storage algorithm)

874, 1339ff.
Fast Fourier transform (FFT) 498ff., 881, 981,

1235f.
alternative algorithms 503f.
as approximation to continuous transform

497
Bartlett window 547, 1254
bit reversal 499f., 525
and Clenshaw-Curtis quadrature 190
column-parallel algorithm 981, 1237ff.
communication bottleneck 969, 981, 1250
convolution 503f., 523, 531ff., 909, 1253,

1354
convolution of large data sets 536f.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239f.
correlation 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
Danielson-Lanczos lemma 498f., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
endpoint corrections 578f., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551ff.
FIR filter 553
four-step framework 983, 1239

Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236f., 1241,

1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909,

1354
number-theoretic transforms 503f.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254ff.
for quadrature 124
of real data in 2D and 3D 519ff., 1248f.
of real functions 504ff., 519ff., 1242f.,

1248f.
related algorithms 503f.
row-parallel algorithm 981, 1235f.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
treatment of end effects in convolution

533
treatment of end effects in correlation

538f.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544f.,

549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see also Discrete Fourier transform (DFT);

Fourier transform; Spectral density
Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424
FFT see Fast Fourier transform (FFT)
Field, in data record 329
Figure-of-merit function 650
Filon’s method 583
Filter 551ff.

acausal 552
bilinear transformation method 554
causal 552, 644
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characteristic polynomial 554
data smoothing 644f., 1283f.
digital 551ff.
DISPO 644
by fast Fourier transform (FFT) 523,

551ff.
finite impulse response (FIR) 531, 552
homogeneous modes of 554
infinite impulse response (IIR) 552ff., 566
Kalman 700
linear 552ff.
low-pass for smoothing 644ff., 1283f.
nonrecursive 552
optimal (Wiener) 535, 539ff., 558, 644
quadrature mirror 585, 593
realizable 552, 554f.
recursive 552ff., 566
Remes exchange algorithm 553
Savitzky-Golay 183, 644ff., 1283f.
stability of 554f.
in the time domain 551ff.

Fine-to-coarse operator 864, 1337
Finite difference equations (FDEs) 753, 763,

774
alternating-direction implicit method (ADI)

847, 861f.
art not science 829
Cayley’s form for unitary operator 844
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicolson method 840, 844, 846
eigenmodes of 827f.
explicit vs. implicit schemes 827
forward Euler 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
implicit scheme 840
Lax method 828ff., 836
Lax method (multidimensional) 845f.
mesh drifting instability 834f.
numerical derivatives 181
partial differential equations 821ff.
in relaxation methods 753ff.
staggered leapfrog method 833f.
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
see also Partial differential equations

Finite element methods, partial differential
equations 824

Finite impulse response (FIR) 531
Finkelstein, S. 1/xvi, 2/ix
FIR (finite impulse response) filter 552
Fisher’s z-transformation 631f., 1276
Fitting 650ff., 1285ff.

basis functions 665
by Chebyshev approximation 185f., 1076
chi-square 653ff., 1285ff.
confidence levels related to chi-square val-

ues 691ff.
confidence levels from singular value de-

composition (SVD) 693f.
confidence limits on fitted parameters 684ff.
covariance matrix not always meaningful

651, 690
degeneracy of parameters 674

an exponential 674
freezing parameters in 668, 700
Gaussians, a sum of 682, 1294
general linear least squares 665ff., 1288,

1290f.
Kalman filter 700
K–S test, caution regarding 621f.
least squares 651ff., 1285
Legendre polynomials 674, 1291f.
Levenberg-Marquardt method 678ff., 816,

1292f.
linear regression 655ff., 1285ff.
maximum likelihood estimation 652f.,

694ff.
Monte Carlo simulation 622, 654, 684ff.
multidimensional 675
nonlinear models 675ff., 1292f.
nonlinear models, advanced methods 683
nonlinear problems that are linear 674
nonnormal errors 656, 690, 694ff.
polynomial 83, 114, 191, 645, 665, 674,

1078, 1291
by rational Chebyshev approximation 197ff.,

1081f.
robust methods 694ff., 1294
of sharp spectral features 566
standard (probable) errors on fitted pa-

rameters 657f., 661, 667, 671, 684ff.,
1285f., 1288, 1290

straight line 655ff., 667f., 698, 1285ff.,
1294ff.

straight line, errors in both coordinates
660ff., 1286ff.

see also Error; Least squares fitting; Max-
imum likelihood estimate; Robust esti-
mation

Five-point difference star 867
Fixed point format 18
Fletcher-Powell algorithm see Davidon-Fletcher-

Powell algorithm
Fletcher-Reeves algorithm 390, 414ff., 1214
Floating point co-processor 886
Floating point format 18ff., 882, 1343

care in numerical derivatives 181
IEEE 276, 882, 1343

floor() intrinsic function 948
Flux-conservative initial value problems 825ff.
FMG (full multigrid method) 863, 868, 1334ff.
FOR iteration 9f., 12
forall statement 2/xii, 2/xv, 960, 964, 986

access to associated index 968
skew array sections 985, 1007

Formats of numbers 18ff., 882, 1343
Fortran 9

arithmetic-if statement 2/xi
COMMON block 2/xif., 953, 957
deprecated features 2/xif., 947, 1057,

1161, 1256, 1286
dynamical allocation of storage 869, 1336
EQUIVALENCE statement 2/xif., 1161,

1286
evolution of 2/xivff.
exception handling 2/xii, 2/xvi
filenames 935
Fortran 2000 (planned) 2/xvi
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Fortran 95 2/xv, 945, 947, 1084, 1100,
1364

HPF (High-Performance Fortran) 2/xvf.
Numerical Recipes in 2/x, 2/xvii, 1
obsolescent features 2/xif.
side effects 960
see also Fortran 90

Fortran D 2/xv
Fortran 77 1/xix

bit manipulation functions 17
hexadecimal constants 17

Fortran 8x 2/xi, 2/xiii
Fortran 90 3

abstract data types 2/xiii, 1030
all() intrinsic function 945, 948
allocatable array 938, 941, 953ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
any() intrinsic function 945, 948
array allocation and deallocation 953
array of arrays 2/xii, 956, 1336
array constructor 2/xii, 968, 971, 1022,

1052, 1055, 1127
array constructor with implied do-list 968,

971
array extents 938, 949
array features 941ff., 953ff.
array intrinsic procedures 2/xiii, 948ff.
array of length 0 944
array of length 1 949
array manipulation functions 950
array parallel operations 964f.
array rank 938, 949
array reallocation 955
array section 2/xiif., 2/xiii, 939, 941ff.,

960, 1078, 1284, 1286, 1333
array shape 938, 949
array size 938, 942
array transpose 981f.
array unary and binary functions 949
associated() intrinsic function 952f.
associated pointer 953f.
assumed-shape array 942
automatic array 938, 954, 1197, 1212,

1336
backwards-compatibility 935, 946
bit manipulation functions 2/xiii, 951
bit size() intrinsic function 951
broadcasts 965f.
btest() intrinsic function 951
case construct 1010, 1036
case insensitive 937
ceiling() intrinsic function 947
character functions 952
character variables 1183
cmplx function 1125
communication bottlenecks 969, 981,

1250
compatibility with Fortran 77 935, 946
compilers 2/viii, 2/xiv, 1364
compiling 936
conformable arrays 942f., 1094

CONTAINS statement 954, 957, 985,
1067, 1134, 1202

control structure 2/xiv, 959, 1219, 1305
conversion elemental functions 946
count() intrinsic function 948
cshift() intrinsic function 950, 969
cycle statement 959, 1219
data hiding 956ff., 1209
data parallelism 964
DATA statement 959
data types 937, 1336, 1346, 1361
deallocate statement 938f., 953f., 1197,

1266, 1293
deallocating array 938, 953f., 1197, 1266,

1293
defined types 956
deprecated features 947, 1057, 1161,

1256, 1286
derived types 937, 955
dimensional expansion 965ff.
do-loop 2/xiv
dot product() intrinsic function 945, 949,

969, 1216
dynamical allocation of storage 2/xiii,

938, 941f., 953ff., 1327, 1336
elemental functions 940, 942, 946f., 951,

1015, 1083, 1364
elsewhere construct 943
eoshift() intrinsic function 950, 969, 1019f.,

1078
epsilon() intrinsic function 951, 1189
evolution 2/xivff., 959, 987f.
example 936
exit statement 959, 1219
exponent() intrinsic function 1107
floor() intrinsic function 948
Fortran tip icon 1009
garbage collection 956
gather-scatter operations 2/xiif., 969, 981,

984, 1002, 1032, 1034, 1250
generic interface 2/xiii, 1083
generic procedures 939, 1015, 1083, 1094,

1096, 1364
global variables 955, 957, 1210
history 2/xff.
huge() intrinsic function 951
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
ibset() intrinsic function 951
ieor() intrinsic function 951
IMPLICIT NONE statement 2/xiv, 936
implied do-list 968, 971, 1127
index loss 967f.
initialization expression 943, 959, 1012,

1127
inquiry functions 948
integer model 1144, 1149, 1156
INTENT attribute 1072, 1092
interface 939, 942, 1067, 1084, 1384
internal subprogram 2/xii, 2/xiv, 957,

1057, 1067, 1202f., 1256, 1302
interprocessor communication 969, 981,

1250
intrinsic data types 937
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intrinsic procedures 939, 945ff., 987, 1016
ior() intrinsic function 951
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiiif.
keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144,

1192, 1254, 1261, 1284, 1361
language features 935ff.
lbound() intrinsic function 949
lexical comparison 952
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/viii, 1009
mask 948, 967f., 1006f., 1038, 1102,

1200, 1226, 1305, 1333f., 1368, 1378,
1382

matmul() intrinsic function 945, 949, 969,
1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961,

992f., 1015
maxval() intrinsic function 945, 948, 961,

1016, 1273
memory leaks 953, 956, 1327
memory management 938, 953ff.
merge() intrinsic function 945, 950, 1010,

1094f., 1099f.
Metcalf and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992f.
minval() intrinsic function 948, 961
missing language features 983ff., 987ff.
modularization 956f.
MODULE facility 2/xiii, 936f., 939f.,

953f., 957, 1067, 1298, 1320, 1322,
1324, 1330, 1346

MODULE subprograms 940
modulo() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953f., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiif.
operator, user-defined 2/xii
optional argument 2/xiv, 947f., 1092,

1228, 1230, 1256, 1272, 1275, 1340
outer product 969f.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964,

969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981,

984, 987, 1002, 1032
parallel programming 963ff.
PARAMETER attribute 1012

pointer 2/xiiif., 938f., 941, 944f., 952ff.,
1067, 1070, 1197, 1210, 1212, 1266,
1302, 1327, 1336

pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 1231
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
real() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065,

1067, 1166
reduction functions 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953f., 958f., 1052, 1070,

1266, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function)

984
scope 956ff.
scoping units 939
select case statement 2/xiv, 1010, 1036
shape() intrinsic function 938, 949
size() intrinsic function 938, 942, 945,

948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff.,

969, 1000, 1094, 1290f.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subscript triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960,

969, 981, 1247
tricks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
ubound() intrinsic function 949
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939f., 954, 957, 1067,

1384
utility functions 987ff.
vector subscripts 2/xiif., 969, 981, 984,

1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
WG5 technical committee 2/xi, 2/xiii,

2/xvf.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/viii, 2/xff., 2/xv, 947,

959, 964, 968, 990
zero-length array 944
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see also Intrinsic procedures
see also Fortran

Fortran 95 947, 959ff.
allocatable variables 961
blocks 960
cpu time() intrinsic function 961
elemental functions 2/xiii, 2/xv, 940, 961,

986, 1015, 1083f., 1097f.
forall statement 2/xii, 2/xv, 960, 964, 968,

986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960f., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see also Fortran

Fortran 2000 2/xvi
Forward deflation 363
Forward difference operator 161
Forward Euler differencing 826f.
Forward Time Centered Space see FTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR)

848f., 854
Fourier integrals

attenuation factors 583, 1261
endpoint corrections 578f., 1261
tail integration by parts 583
use of fast Fourier transform (FFT) 577ff.,

1261ff.
Fourier transform 99, 490ff., 1235ff.

aliasing 495, 569
approximation of Dawson’s integral 253
autocorrelation 492
basis functions compared 508f.
contrasted with wavelet transform 584,

594
convolution 492, 503f., 531ff., 909, 1253,

1354
correlation 492, 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
critical sampling 494, 543, 545
definition 490
discrete Fourier transform (DFT) 184,

495ff.
Gaussian function 600
image processing 803, 805
infinite range 583
inverse of discrete Fourier transform 497
method for partial differential equations

848ff.
missing data 569
missing data, fast algorithm 574f., 1259
Nyquist frequency 494ff., 520, 543, 545,

569, 571
optimal (Wiener) filtering 539ff., 558
Parseval’s theorem 492, 498, 544

power spectral density (PSD) 492f.
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by maximum

entropy method 565ff., 1258
properties of 491f.
sampling theorem 495, 543, 545, 600
scalings of 491
significance of a peak in 570
sine transform 508ff., 850, 1245
symmetries of 491
uneven sampling, fast algorithm 574f.,

1259
unevenly sampled data 569ff., 574, 1258
and wavelets 592f.
Wiener-Khinchin theorem 492, 558, 566f.
see also Fast Fourier transform (FFT);

Spectral density
Fractal region 360f.
Fractional step methods 847f.
Fredholm alternative 780
Fredholm equations 779f.

eigenvalue problems 780, 785
error estimate in solution 784
first kind 779
Fredholm alternative 780
homogeneous, second kind 785, 1325
homogeneous vs. inhomogeneous 779f.
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779f.
nonlinear 781
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
second kind 779f., 782ff., 1325, 1331
with singularities 788, 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
see also Inverse problems

Frequency domain 490
Frequency spectrum see Fast Fourier transform

(FFT)
Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.

asymptotic form 249
continued fraction 248f.
routine for 249f., 1123
series 248

Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff.,

839ff., 843
stability of 827ff., 839ff., 855

Full approximation storage (FAS) algorithm
874, 1339ff.

Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares

683
Full pivoting 29, 1014
Full weighting 867
Function

Airy 204, 243f., 1121
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approximation 99ff., 184ff., 1043, 1076ff.
associated Legendre polynomial 246ff.,

764, 1122f., 1319
autocorrelation of 492
bandwidth limited 495
Bessel 172, 204, 223ff., 234, 1101ff.,

1115ff.
beta 209, 1089
binomial coefficients 208f., 1087f.
branch cuts of 202f.
chi-square probability 215, 798
complex 202
confluent hypergeometric 204, 239
convolution of 492
correlation of 492
cosine integral 250f., 1123f.
Coulomb wave 204, 234
cumulative binomial probability 222f.
cumulative Poisson 209ff.
Dawson’s integral 252ff., 600, 1127f.
digamma 216
elliptic integrals 254ff., 906, 1128ff.
error 213f., 248, 252, 601, 631, 635,

1094f., 1127, 1276f.
evaluation 159ff., 1070ff.
evaluation by path integration 201ff., 263,

1138
exponential integral 172, 215ff., 250,

1096f.
F-distribution probability 222
Fresnel integral 248ff., 1123
gamma 206, 1085
hypergeometric 202f., 263ff., 1138ff.
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657f.,

1089ff., 1272, 1285
inverse hyperbolic 178, 255
inverse trigonometric 255
Jacobian elliptic 261, 1137f.
Kolmogorov-Smirnov probability 618f.,

640, 1274, 1281
Legendre polynomial 172, 246, 674, 1122,

1291
logarithm 255
modified Bessel 229ff., 1109ff.
modified Bessel, fractional order 239ff.,

1118ff.
overloading 1083
parallel evaluation 986, 1009, 1084, 1087,

1090, 1102, 1128, 1134
path integration to evaluate 201ff.
pathological 99f., 343
Poisson cumulant 214
representations of 490
routine for plotting a 342, 1182
sine and cosine integrals 248, 250ff.,

1125f.
sn, dn, cn 261, 1137f.
spherical harmonics 246ff., 1122
spheroidal harmonic 764ff., 770ff., 1319ff.,

1323ff.
Student’s probability 221f.
variable number of arguments 1022
Weber 204

Functional iteration, for implicit equations
740f.

FWHM (full width at half maximum) 548f.

Gamma deviate 282f., 1153f.
Gamma function 206ff., 1085

incomplete see Incomplete gamma func-
tion

Garbage collection 956
Gather-scatter operations 2/xiif., 984, 1002,

1032, 1034
communication bottleneck 969, 981, 1250
many-to-one 984, 1002, 1032, 1034

Gauss-Chebyshev integration 141, 144, 512f.
Gauss-Hermite integration 144, 789

abscissas and weights 147, 1062
normalization 147

Gauss-Jacobi integration 144
abscissas and weights 148, 1063

Gauss-Jordan elimination 27ff., 33, 64, 1014f.
operation count 34, 39
solution of normal equations 667, 1288
storage requirements 30

Gauss-Kronrod quadrature 154
Gauss-Laguerre integration 144, 789, 1060
Gauss-Legendre integration 145f., 1059

see also Gaussian integration
Gauss-Lobatto quadrature 154, 190, 512
Gauss-Radau quadrature 154
Gauss-Seidel method (relaxation) 855, 857,

864ff., 1338
nonlinear 876, 1341

Gauss transformation 256
Gaussian (normal) distribution 267, 652, 798

central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 606
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
integral equations 786, 1326
operation count 34
outer product variant 1017
in reduction to Hessenberg form 478,

1231
relaxation solution of boundary value prob-

lems 753ff., 777, 1316
Gaussian function

Hardy’s theorem on Fourier transforms
600

see also Gaussian (normal) distribution
Gaussian integration 127, 140ff., 789, 1059ff.

calculation of abscissas and weights 142ff.,
1009, 1059ff.

error estimate in solution 784
extensions of 153f.
Golub-Welsch algorithm for weights and

abscissas 150, 1064
for integral equations 781, 783, 1325
from known recurrence relation 150, 1064
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nonclassical weight function 151ff., 788f.,
1064f., 1328f.

and orthogonal polynomials 142, 1009,
1061

parallel calculation of formulas 1009,
1061

preassigned nodes 153f.
weight function log x 153
weight functions 140ff., 788f., 1059ff.,

1328f.
Gear’s method (stiff ODEs) 730
Geiger counter 266
Generalized eigenvalue problems 455
Generalized minimum residual method (GM-

RES) 78
Generic interface see Interface, generic
Generic procedures 939, 1083, 1094, 1096,

1364
elemental 940, 942, 946f., 1015, 1083

Geometric progression 972, 996f., 1365,
1372ff.

geop() utility function 972, 974, 989, 996,
1127

Geophysics, use of Backus-Gilbert method
809

Gerchberg-Saxton algorithm 805
get diag() utility function 985, 989, 1005,

1226
Gilbert and Sullivan 714
Givens reduction 462f., 473

fast 463
operation count 463

Glassman, A.J. 180
Global optimization 387f., 436ff., 650, 1219ff.

continuous variables 443f., 1222
Global variables 940, 953f., 1210

allocatable array method 954, 1197, 1212,
1266, 1287, 1298

communicated via internal subprogram
954, 957f., 1067, 1226

danger of 957, 1209, 1293, 1296
pointer method 954, 1197, 1212, 1266,

1287, 1302
Globally convergent

minimization 418ff., 1215
root finding 373, 376ff., 382, 749f., 752,

1196, 1314f.
GMRES (generalized minimum residual method)

78
GNU Emacs 1/xvi
Godunov’s method 837
Golden mean (golden ratio) 21, 349, 392f.,

399
Golden section search 341, 389ff., 395, 1202ff.
Golub-Welsch algorithm, for Gaussian quadra-

ture 150, 1064
Goodness-of-fit 650, 654, 657f., 662, 690,

1285
GOTO statements, danger of 9, 959
Gram-Schmidt

biorthogonalization 415f.
orthogonalization 94, 450f., 1039
SVD as alternative to 58

Graphics, function plotting 342, 1182f.
Gravitational potential 519

Gray code 300, 881, 886ff., 1344
Greenbaum, A. 79
Gregorian calendar 13, 16, 1011, 1013
Grid square 116f.
Group, dihedral 894, 1345
Guard digits 882, 1343

Half weighting 867, 1337
Halton’s quasi-random sequence 300
Hamming window 547
Hamming’s motto 341
Hann window 547
Harmonic analysis see Fourier transform
Hashing 293, 1144, 1148, 1156

for random number seeds 1147f.
HDLC checksum 890
Heap (data structure) 327f., 336, 897, 1179
Heapsort 320, 327f., 336, 1171f., 1179
Helmholtz equation 852
Hermite polynomials 144, 147

approximation of roots 1062
Hermitian matrix 450ff., 475
Hertz (unit of frequency) 490
Hessenberg matrix 94, 453, 470, 476ff., 488,

1231
see also Matrix

Hessian matrix 382, 408, 415f., 419f., 676ff.,
803, 815

is inverse of covariance matrix 667, 679
second derivatives in 676

Hexadecimal constants 17f., 276, 293
initialization 959

Hierarchically band diagonal matrix 598
Hierarchy of program structure 6ff.
High-order not same as high-accuracy 100f.,

124, 389, 399, 705, 709, 741
High-pass filter 551
High-Performance Fortran (HPF) 2/xvf., 964,

981, 984
scatter-with-add 1032

Hilbert matrix 83
Home page, Numerical Recipes 1/xx, 2/xvii
Homogeneous linear equations 53
Hook step methods 386
Hotelling’s method for matrix inverse 49, 598
Householder transformation 52, 453, 462ff.,

469, 473, 475, 478, 481ff., 1227f.
operation count 467
in QR decomposition 92, 1039

HPF see High-Performance Fortran
Huffman coding 564, 881, 896f., 902, 1346ff.
huge() intrinsic function 951
Hyperbolic functions, explicit formulas for

inverse 178
Hyperbolic partial differential equations 818

advective equation 826
flux-conservative initial value problems

825ff.
Hypergeometric function 202f., 263ff.

routine for 264f., 1138
Hypothesis, null 603

I2B, defined 937
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I4B, defined 937
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/xxiii, 2/xix

bad random number generator 268
Fortran 90 compiler 2/viii
PC 4, 276, 293, 886
PC-RT 4
radix base for floating point arithmetic

476
RS6000 2/viii, 4

IBM checksum 894
ibset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient

method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ieor() intrinsic function 951
if statement, arithmetic 2/xi
if structure 12f.
ifirstloc() utility function 989, 993, 1041,

1346
IIR (infinite impulse response) filter 552ff.,

566
Ill-conditioned integral equations 780
Image processing 519, 803

cosine transform 513
fast Fourier transform (FFT) 519, 523,

803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.

imaxloc() utility function 989, 993, 1017
iminloc() utility function 989, 993, 1046,

1076
Implicit

function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.

Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308

IMPLICIT NONE statement 2/xiv, 936
Implied do-list 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL 1/xxiii, 2/xx, 26, 64, 205, 364, 369,

454
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.

for F-test 613, 1271
routine for 220f., 1097
for Student’s t 610, 613, 1269

Incomplete Cholesky conjugate gradient method
(ICCG) 824

Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657f., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089

Increment of linear congruential generator
268

Indentation of blocks 9
Index 934ff., 1446ff.

this entry 1464
Index loss 967f., 1038
Index table 320, 329f., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.

see also Differential equations;
Partial differential equations

Initialization of derived data type 2/xv
Initialization expression 943, 959, 1012, 1127
Injection operator 864, 1337
Instability see Stability
Integer model, in Fortran 90 1144, 1149,

1156
Integer programming 436
Integral equations 779ff.

adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-

tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779f., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 786ff., 1326f.
wavelets 782
see also Inverse problems

Integral operator, wavelet approximation of
597, 782

Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Fresnel integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Jacobi 148, 1063
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see also Quadrature

Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067
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for communication between program parts
957, 1209, 1293, 1296

explicit 939, 942, 1067, 1384
generic 2/xiii, 940, 1015, 1083, 1094,

1096
implicit 939
for Numerical Recipes 1384ff.

Interface block 939, 1084, 1384
Interface, in programs 2, 8
Intermediate value theorem 343
Internal subprogram (Fortran 90) 2/xiv, 954,

957, 1067, 1202f., 1226
nesting of 2/xii
resembles C macro 1302
supersedes statement function 1057, 1256

International Standards Organization (ISO)
2/xf., 2/xiii

Internet, availability of code over 1/xx, 2/xvii
Interpolation 99ff.

Aitken’s algorithm 102
avoid 2-stage method 100
avoid in Fourier analysis 569
bicubic 118f., 1049f.
bilinear 117
caution on high-order 100
coefficients of polynomial 100, 113ff.,

191, 575, 1047f., 1078
for computing Fourier integrals 578
error estimates for 100
of functions with poles 104ff., 1043f.
inverse quadratic 353, 395ff., 1204
multidimensional 101f., 116ff., 1049ff.
in multigrid method 866, 1337
Neville’s algorithm 102f., 182, 1043
Nystrom 783, 1326
offset arrays 104, 113
operation count for 100
operator 864, 1337
order of 100
and ordinary differential equations 101
oscillations of polynomial 100, 116, 389,

399
parabolic, for minimum finding 395, 1204
polynomial 99, 102ff., 182, 1043
rational Chebyshev approximation 197ff.,

1081
rational function 99, 104ff., 194ff., 225,

718ff., 726, 1043f., 1080, 1306
reverse (extirpolation) 574, 1261
spline 100, 107ff., 120f., 1044f., 1050f.
trigonometric 99
see also Fitting

Interprocessor communication 969, 981
Interval variable (statistics) 623
Intrinsic correlation function (ICF) model 817
Intrinsic data types 937
Intrinsic procedures

array inquiry 938, 942, 948ff.
array manipulation 950
array reduction 948
array unary and binary functions 949
backwards-compatibility 946
bit manipulation 2/xiii, 951
character 952
cmplx 1254

conversion elemental 946
elemental 940, 942, 946f., 951, 1083,

1364
generic 939, 1083f., 1364
lexical comparison 952
numeric inquiry 2/xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
see also Fortran 90

Inverse hyperbolic function 178, 255
Inverse iteration see Eigensystems
Inverse problems 779, 795ff.

Backus-Gilbert method 806ff.
Bayesian approach 799, 810f., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
in geophysics 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
and integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810,

815f.
MEM demystified 814
Phillips-Twomey method 799ff.
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method

809
two-dimensional regularization 803
use of conjugate gradient minimization

804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804

Inverse quadratic interpolation 353, 395ff.,
1204

Inverse response kernel, in Backus-Gilbert
method 807

Inverse trigonometric function 255
ior() intrinsic function 951
ISBN (International Standard Book Number)

checksum 894
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiii
Iterated integrals 155
Iteration 9f.

functional 740f.
to improve solution of linear algebraic

equations 47ff., 195, 1022
for linear algebraic equations 26
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required for two-point boundary value
problems 745

in root finding 340f.
Iteration matrix 856
ITPACK 71
Iverson, John 2/xi

Jacobi matrix, for Gaussian quadrature 150,
1064

Jacobi polynomials, approximation of roots
1064

Jacobi transformation (or rotation) 94, 453,
456ff., 462, 475, 489, 1041, 1225

Jacobian determinant 279, 774
Jacobian elliptic functions 261, 1137f.
Jacobian matrix 374, 376, 379, 382, 731,

1197f., 1309
singular in Newton’s rule 386

Jacobi’s method (relaxation) 855ff., 864
Jenkins-Traub method 369
Julian Day 1, 13, 16, 936, 1010ff.
Jump transposition errors 895

K -S test see Kolmogorov-Smirnov test
Kalman filter 700
Kanji 2/xii
Kaps-Rentrop method 730, 1308
Kendall’s tau 634, 637ff., 1279
Kennedy, Ken 2/xv
Kepler’s equation 1061
Kermit checksum 889
Kernel 779

averaging, in Backus-Gilbert method 807
degenerate 785
finite rank 785
inverse response 807
separable 785
singular 788f., 1328
symmetric 785

Keys used in sorting 329, 889
Keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 946, 1261, 1284

and cmplx() intrinsic function 1125, 1192,
1254

default 937
for Numerical Recipes 1361
for random numbers 1144
and real() intrinsic function 1125

Kolmogorov-Smirnov test 614, 617ff., 694,
1273f.

two-dimensional 640, 1281ff.
variants 620ff., 640, 1281

Kuiper’s statistic 621
Kurtosis 606, 608, 1269

L-estimate 694
Labels, statement 9
Lag 492, 538, 553
Lagged Fibonacci generator 1142, 1148ff.
Lagrange multiplier 795
Lagrange’s formula for polynomial interpola-

tion 84, 102f., 575, 578

Laguerre polynomials, approximation of roots
1061

Laguerre’s method 341, 365f., 1191f.
Lanczos lemma 498f.
Lanczos method for gamma function 206,

1085
Landen transformation 256
LAPACK 26, 1230
Laplace’s equation 246, 818

see also Poisson equation
Las Vegas 625
Latin square or hypercube 305f.
Laurent series 566
Lax method 828ff., 836, 845f.

multidimensional 845f.
Lax-Wendroff method 835ff.
lbound() intrinsic function 949
Leakage in power spectrum estimation 544,

548
Leakage width 548f.
Leapfrog method 833f.
Least squares filters see Savitzky-Golay filters
Least squares fitting 645, 651ff., 655ff., 660ff.,

665ff., 1285f., 1288f.
contrasted to general minimization prob-

lems 684ff.
degeneracies in 671f., 674
Fourier components 570
as M-estimate for normal errors 696
as maximum likelihood estimator 652
as method for smoothing data 645, 1283
Fourier components 1258
freezing parameters in 668, 700
general linear case 665ff., 1288, 1290f.
Levenberg-Marquardt method 678ff., 816,

1292f.
Lomb periodogram 570, 1258
multidimensional 675
nonlinear 386, 675ff., 816, 1292
nonlinear, advanced methods 683
normal equations 645, 666f., 800, 1288
normal equations often singular 670, 674
optimal (Wiener) filtering 540f.
QR method in 94, 668
for rational Chebyshev approximation 199f.,

1081f.
relation to linear correlation 630, 658
Savitzky-Golay filter as 645, 1283
singular value decomposition (SVD) 25f.,

51ff., 199f., 670ff., 1081, 1290
skewed by outliers 653
for spectral analysis 570, 1258
standard (probable) errors on fitted parame-

ters 667, 671
weighted 652
see also Fitting

L’Ecuyer’s long period random generator 271,
273

Least squares fitting
standard (probable) errors on fitted parame-

ters 1288, 1290
weighted 1285

Left eigenvalues or eigenvectors 451
Legal matters 1/xx, 2/xvii
Legendre elliptic integral see Elliptic integrals



Index to Volumes 1 and 2

Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see also Associated Legendre polynomials;

Spherical harmonics
Lehmer-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165,

212
Lepage, P. 309
Leptokurtic distribution 606
Levenberg-Marquardt algorithm 386, 678ff.,

816, 1292
advanced implementation 683

Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimization see Minimization, along a

ray
Line search see Minimization, along a ray
Linear algebra, intrinsic functions for paral-

lelization 969f., 1026, 1040, 1200,
1326

Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.
Cholesky decomposition 89f., 423, 455,

668, 1038f.
complex 41
computing A−1 · B 40
conjugate gradient method 77ff., 599,

1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f.,

671, 1081, 1290
LU decomposition 34ff., 195, 386, 732,

783, 786, 801, 1016, 1022, 1325f.
nonsingular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f., 382, 386, 668,

1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff.,

199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f.,

1030

summary of tasks 25f.
Toeplitz 82, 85ff., 195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see also Eigensystems

Linear congruential random number generator
267ff., 1142

choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency

constructing orthonormal basis 58, 94
of directions in N -dimensional space 409
in linear algebraic equations 22f.

Linear equations see Differential equations; In-
tegral equations; Linear algebraic equa-
tions

Linear inversion method, constrained 799ff.
Linear prediction 557ff.

characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method

558
compared with regularization 801
contrasted to polynomial extrapolation

560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257

Linear predictive coding (LPC) 563ff.
Linear programming 387, 423ff., 1216ff.

artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426ff.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426
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Linear recurrence see Recurrence relation
Linear regression 655ff., 660ff., 1285ff.

see also Fitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387f., 437
Localization of roots see Bracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis

569f., 1258f.
fast algorithm 574f., 1259

Loops 9f.
Lorentzian probability distribution 282, 696f.
Low-pass filter 551, 644f., 1283f.
Lower subscript 944
lower triangle() utility function 989, 1007,

1200
LP coefficients see Linear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47f., 51, 55, 64, 97,

374, 667, 732, 1016, 1022
for A−1 · B 40
backsubstitution 39, 1017
band diagonal matrix 43ff., 1020
complex equations 41f.
Crout’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325f.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386,

1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37f., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40,

1017
solution of normal equations 667
for Toeplitz matrix 87

Lucifer 290

M&R (Metcalf and Reid) 935
M-estimates 694ff.

how to compute 697f.
local 695ff.
see also Maximum likelihood estimate

Machine accuracy 19f., 881f., 1189, 1343
Macintosh, see Apple Macintosh
Maehly’s procedure 364, 371
Magic

in MEM image restoration 814
in Padé approximation 195

Mantissa in floating point format 19, 882,
909, 1343

Marginals 624
Marquardt method (least squares fitting) 678ff.,

816, 1292f.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149

mask 1006f., 1102, 1200, 1226, 1305, 1333f.,
1368, 1378, 1382

optional argument 948
optional argument, facilitates parallelism

967f., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathematical intrinsic functions 946, 951f.
matmul() intrinsic function 945, 949, 969,

1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

Matrix 23ff.
add vector to diagonal 1004, 1234, 1366,

1381
approximation of 58f., 598f.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidiagonal 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89f., 423, 455,

668, 1038f.
column augmented 28, 1014
complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
of derivatives see Hessian matrix; Jacobian

determinant
design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations

28f.
finite differencing of partial differential

equations 821ff.
get diagonal 985, 1005, 1226f., 1366,

1381f.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessenberg 94, 453, 470, 476ff., 488,

1231ff.
Hessian see Hessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71f., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff.,

1014, 1016f.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schultz’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598
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Jacobi transformation 453, 456ff., 462,
1225f.

Jacobian 731, 1309
logical dimension 24
lower triangular 34f., 89, 781, 1016
lower triangular mask 1007, 1200, 1382
multiplication denoted by dot 23
multiplication, intrinsic function 949, 969,

1026, 1040, 1050, 1200, 1326
norm 50
normal 450ff.
nullity 53
nullspace 25, 53f., 449, 795
orthogonal 91, 450, 463ff., 587
orthogonal transformation 452, 463ff.,

469, 1227
orthonormal basis 58, 94
outer product denoted by cross 66, 420
partitioning for determinant 70
partitioning for inverse 70
pattern multiply of sparse 74
physical dimension 24
positive definite 26, 89f., 668, 1038
QR decomposition 91f., 382, 386, 668,

1039, 1199
range 53
rank 53
residual 49
row and column indices 23
row vs. column operations 31f.
self-adjoint 450
set diagonal elements 1005, 1200, 1366,

1382
similarity transform 452ff., 456, 476, 478,

482
singular 53f., 58, 449
singular value decomposition 26, 51ff.,

797
sparse 23, 63ff., 71, 598, 732, 754, 804,

1030ff.
special forms 26
splitting in relaxation method 856f.
spread 808
square root of 423, 455
symmetric 26, 89, 450, 454, 462ff., 668,

785, 1038, 1225, 1227
threshold multiply of sparse 74, 1031
Toeplitz 82, 85ff., 195, 1038
transpose() intrinsic function 950
transpose of sparse 73f., 1033
triangular 453
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

tridiagonal with fringes 822
unitary 450
updating 94, 382, 386, 1041, 1199
upper triangular 34f., 91, 1016
upper triangular mask 1006, 1226, 1305,

1382
Vandermonde 82ff., 114, 1037, 1047
see also Eigensystems

Matrix equations see Linear algebraic equa-
tions

Matterhorn 606

maxexponent() intrinsic function 1107
Maximization see Minimization
Maximum entropy method (MEM) 565ff.,

1258
algorithms for image restoration 815f.
Bayesian 816f.
Cornwell-Evans algorithm 816
demystified 814
historic vs. Bayesian 816f.
image restoration 809ff.
intrinsic correlation function (ICF) model

817
for inverse problems 809ff.
operation count 567
see also Linear prediction

Maximum likelihood estimate (M-estimates)
690, 694ff.

and Bayes’ Theorem 811
chi-square test 690
defined 652
how to compute 697f.
mean absolute deviation 696, 698, 1294
relation to least squares 652

maxloc() intrinsic function 949, 992f., 1015
modified in Fortran 95 961

maxval() intrinsic function 945, 948, 961,
1016, 1273

Maxwell’s equations 825f.
Mean(s)

of distribution 604f., 608f., 1269
statistical differences between two 609ff.,

1269f.
Mean absolute deviation of distribution 605,

696, 1294
related to median 698

Measurement errors 650
Median 320

calculating 333
of distribution 605, 608f.
as L-estimate 694
role in robust straight line fitting 698
by selection 698, 1294

Median-of-three, in Quicksort 324
MEM see Maximum entropy method (MEM)
Memory leak 953, 956, 1071, 1327
Memory management 938, 941f., 953ff.,

1327, 1336
merge construct 945, 950, 1099f.

for conditional scalar expression 1010,
1094f.

contrasted with where 1023
parallelization 1011

Merge-with-dummy-values idiom 1090
Merit function 650

in general linear least squares 665
for inverse problems 797
nonlinear models 675
for straight line fitting 656, 698
for straight line fitting, errors in both coor-

dinates 660, 1286
Mesh-drift instability 834f.
Mesokurtic distribution 606
Metcalf, Michael 2/viii

see also M&R
Method of regularization 799ff.
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Metropolis algorithm 437f., 1219
Microsoft 1/xxii, 2/xix
Microsoft Fortran PowerStation 2/viii
Midpoint method see Modified midpoint method;

Semi-implicit midpoint rule
Mikado, or Town of Titipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple

Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.

along a ray 77, 376f., 389, 406ff., 412f.,
415f., 418, 1195f., 1211, 1213

annealing, method of simulated 387f.,
436ff., 1219ff.

bracketing of minimum 390ff., 402, 1201f.
Brent’s method 389, 395ff., 399, 660f.,

1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algo-

rithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388f.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff.,

804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390,

418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402ff., 444,

697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff.,

1214
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418,

1215
golden section search 390ff., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff.,

1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418ff.,

1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77ff.
using derivatives 389f., 399ff., 1205ff.
variable metric methods 390, 418ff., 1215
see also Linear programming

Minimum residual method, for sparse system
78

minloc() intrinsic function 949, 992f.
modified in Fortran 95 961

MINPACK 683
minval() intrinsic function 948, 961

MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines

965ff., 974, 981, 984, 1016ff., 1021,
1045, 1226ff., 1250

Mode of distribution 605, 609
Modeling of data see Fitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functions see Bessel func-

tions
Modified Lentz’s method, for continued frac-

tions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269,

271, 275
Modular programming 2/xiii, 7f., 956ff.,

1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957,

1067, 1298, 1320, 1322, 1324, 1330,
1346

initializing random number generator 1144ff.
in nr.f90 936, 941f., 1362, 1384ff.
in nrtype.f90 936f., 1361f.
in nrutil.f90 936, 1070, 1362, 1364ff.
sparse matrix 1031
undefined variables on exit 953, 1266

Module subprogram 940
modulo() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments

of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608

Monic polynomial 142f.
Monotonicity constraint, in upwind differenc-

ing 837
Monte Carlo 155ff., 267

adaptive 306ff., 1161ff.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff.,

1161
integration, recursive 314ff., 1164ff.
integration, using Sobol’ sequence 304
integration, VEGAS algorithm 309ff.,

1161
and Kolmogorov-Smirnov statistic 622,

640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306ff., 314ff., 1161, 1164ff.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164



Index to Volumes 1 and 2

Moon, calculate phases of 1f., 14f., 936,
1010f.

Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xxii, 2/xix
Muller’s method 364, 372
Multidimensional

confidence levels of fitting 688f.
data, use of binning 623
Fourier transform 515ff., 1241, 1246,

1251
Fourier transform, real data 519ff., 1248f.
initial value problems 844ff.
integrals 124, 155ff., 295ff., 306ff., 1065ff.,

1161ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff.,

1214f., 1222ff.
Monte Carlo integration 295ff., 306ff.,

1161ff.
normal (Gaussian) distribution 690
optimization 388f.
partial differential equations 844ff.
root finding 340ff., 358, 370, 372ff., 746,

749f., 752, 754, 1194ff., 1314ff.
search using quasi-random sequence 300
secant method 373, 382f., 1199f.
wavelet transform 595, 1267f.

Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868f.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864f.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm

874, 1339ff.
full multigrid method (FMG) 863, 868,

1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339ff.
nonlinear Gauss-Seidel relaxation 876,

1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1009, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337

speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866f.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866

Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909,

1353f.
Multiplier of linear congruential generator

268
Multistep and multivalue methods (ODEs)

740ff.
see also Differential Equations; Predictor-

corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

NAG 1/xxiii, 2/xx, 26, 64, 205, 454
Fortran 90 compiler 2/viii, 2/xiv

Named constant 940
initialization 1012
for Numerical Recipes 1361

Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii,

1/xix, 2/ix
Natural cubic spline 109, 1044f.
Navier-Stokes equation 830f.
nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 403
Negation, multiple precision 907, 1353f.
Negentropy 811, 896
Nelder-Mead minimization method 389, 402,

1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851,

858
Neutrino 640
Neville’s algorithm 102f., 105, 134, 182,

1043
Newton-Cotes formulas 125ff., 140
Newton-Raphson method see Newton’s rule
Newton’s rule 143f., 180, 341, 355ff., 362,

364, 469, 1059, 1189
with backtracking 376, 1196
caution on use of numerical derivatives

356ff.
fractal domain of convergence 360f.
globally convergent multidimensional 373,

376ff., 382, 749f., 752, 1196, 1199,
1314f.

for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f.,

752, 754, 1194ff., 1314ff.
in nonlinear multigrid 874, 876, 1339,

1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381
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singular Jacobian 386
solving stiff ODEs 740
for square root of number 912, 1356

Niederreiter sequence 300
NL2SOL 683
Noise

bursty 889
effect on maximum entropy method 567
equivalent bandwidth 548
fitting data which contains 647f., 650
model, for optimal filtering 541

Nominal variable (statistics) 623
Nonexpansive projection operator 805
Non-interfering directions see Conjugate direc-

tions
Nonlinear eigenvalue problems 455
Nonlinear elliptic equations, multigrid method

874ff., 1339ff.
Nonlinear equations, in MEM inverse problems

813
Nonlinear equations, roots of 340ff.
Nonlinear instability 831
Nonlinear integral equations 781, 787
Nonlinear programming 436
Nonnegativity constraints 423
Nonparametric statistics 633ff., 1277ff.
Nonpolynomial complete (NP-complete) 438
Norm, of matrix 50
Normal (Gaussian) distribution 267, 652, 682,

798, 1294
central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 607
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Normal equations (fitting) 26, 645, 666ff.,
795, 800, 1288

often are singular 670
Normalization

of Bessel functions 175
of floating-point representation 19, 882,

1343
of functions 142, 765
of modified Bessel functions 232

not() intrinsic function 951
Notch filter 551, 555f.
NP-complete problem 438
nr.f90 (module file) 936, 1362, 1384ff.
nrerror() utility function 989, 995
nrtype.f90 (module file) 936f.

named constants 1361
nrutil.f90 (module file) 936, 1070, 1362,

1364ff.
table of contents 1364

Null hypothesis 603
nullify statement 953f., 1070, 1302
Nullity 53
Nullspace 25, 53f., 449, 795
Number-theoretic transforms 503f.
Numeric inquiry functions 2/xiv, 1107, 1231,

1343
Numerical derivatives 180ff., 645, 1075

Numerical integration see Quadrature
Numerical intrinsic functions 946, 951f.
Numerical Recipes

compatibility with First Edition 4
Example Book 3
Fortran 90 types 936f., 1361
how to get programs 1/xx, 2/xvii
how to report bugs 1/iv, 2/iv
interface blocks (Fortran 90) 937, 941f.,

1084, 1384ff.
no warranty on 1/xx, 2/xvii
plan of two-volume edition 1/xiii
table of dependencies 921ff., 1434ff.
as trademark 1/xxiii, 2/xx
utility functions (Fortran 90) 936f., 945,

968, 970, 972ff., 977, 984, 987ff., 1015,
1071f., 1361ff.

Numerical Recipes Software 1/xv, 1/xxiiff.,
2/xviiff.

address and fax number 1/iv, 1/xxii, 2/iv,
2/xix

Web home page 1/xx, 2/xvii
Nyquist frequency 494ff., 520, 543, 545,

569ff.
Nystrom method 782f., 789, 1325

product version 789, 1331

Object extensibility 8
Objective function 424
Object-oriented programming 2/xvi, 2, 8
Oblateness parameter 764
Obsolete features see Fortran, Obsolescent fea-

tures
Octal constant, initialization 959
Odd-even ordering

allows parallelization 1333
in Gauss-Seidel relaxation 866, 869, 1338
in successive over-relaxation (SOR) 859,

1332
Odd parity 888
OEM information 1/xxii
One-sided power spectral density 492
ONLY option, for USE statement 941, 957,

1067
Operation count

balancing 476
Bessel function evaluation 228
bisection method 346
Cholesky decomposition 90
coefficients of interpolating polynomial

114f.
complex multiplication 97
cubic spline interpolation 109
evaluating polynomial 168
fast Fourier transform (FFT) 498
Gauss-Jordan elimination 34, 39
Gaussian elimination 34
Givens reduction 463
Householder reduction 467
interpolation 100
inverse iteration 488
iterative improvement 48
Jacobi transformation 460
Kendall’s tau 637
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linear congruential generator 268
LU decomposition 36, 39
matrix inversion 97
matrix multiplication 96
maximum entropy method 567
multidimensional minimization 413f.
multigrid method 862
multiplication 909
polynomial evaluation 97f., 168
QL method 470, 473
QR decomposition 92
QR method for Hessenberg matrices 484
reduction to Hessenberg form 479
selection by partitioning 333
sorting 320ff.
Spearman rank-order coefficient 638
Toeplitz matrix 83
Vandermonde matrix 83

Operator overloading 2/xiif., 7
Operator splitting 823, 847f., 861
Operator, user-defined 2/xii
Optimal feasible vector 424
Optimal (Wiener) filtering 535, 539ff., 558,

644
compared with regularization 801

Optimization see Minimization
Optimization of code 2/xiii
Optional argument 2/xiv, 947f., 1092, 1228,

1230, 1256, 1272, 1275, 1340
dim 948
mask 948, 968, 1038
testing for 952

Ordering Numerical Recipes 1/xxf., 2/xviif.
Ordinal variable (statistics) 623
Ordinary differential equations see Differential

equations
Orthogonal see Orthonormal functions; Or-

thonormal polynomials
Orthogonal transformation 452, 463ff., 469,

584, 1227
Orthonormal basis, constructing 58, 94, 1039
Orthonormal functions 142, 246
Orthonormal polynomials

Chebyshev 144, 184ff., 1076ff.
construct for arbitrary weight 151ff., 1064
in Gauss-Hermite integration 147, 1062
and Gaussian quadrature 142, 1009, 1061
Gaussian weights from recurrence 150,

1064
Hermite 144, 1062
Jacobi 144, 1063
Laguerre 144, 1060
Legendre 144, 1059
weight function log x 153

Orthonormality 51, 142, 463
Outer product Gaussian elimination 1017
Outer product of matrices (denoted by cross)

66, 420, 949, 969f., 989, 1000ff., 1017,
1026, 1040, 1076, 1200, 1216, 1275

outerand() utility function 989, 1002, 1015
outerdiff() utility function 989, 1001
outerdiv() utility function 989, 1001
outerprod() utility function 970, 989, 1000,

1017, 1026, 1040, 1076, 1200, 1216,
1275

outersum() utility function 989, 1001
Outgoing wave boundary conditions 820
Outlier 605, 653, 656, 694, 697

see also Robust estimation
Overcorrection 857
Overflow 882, 1343

how to avoid in modulo multiplication
269

in complex arithmetic 171
Overlap-add and overlap-save methods 536f.
Overloading

operator 2/xiif.
procedures 940, 1015, 1083, 1094, 1096

Overrelaxation parameter 857, 1332
choice of 858

Pack() intrinsic function 945, 950, 964, 991,
1031

communication bottleneck 969
for index table 1176
for partition-exchange 1170
for selection 1178
for selective evaluation 1087

Pack-unpack idiom 1087, 1134, 1153
Padé approximant 194ff., 1080f.
Padé approximation 105
Parabolic interpolation 395, 1204
Parabolic partial differential equations 818,

838ff.
Parallel axis theorem 308
Parallel programming 2/xv, 941, 958ff., 962ff.,

965f., 968f., 987
array operations 964f.
array ranking 1278f.
band diagonal linear equations 1021
Bessel functions 1107ff.
broadcasts 965ff.
C and C++ 2/viii
communication costs 969, 981, 1250
counting do-loops 1015
cyclic reduction 974
deflation 977ff.
design matrix 1082
dimensional expansion 965ff.
eigensystems 1226, 1229f.
fast Fourier transform (FFT) 981, 1235ff.,

1250
in Fortran 90 963ff.
Fortran 90 tricks 1009, 1274, 1278, 1280
function evaluation 986, 1009, 1084f.,

1087, 1090, 1102, 1128, 1134
Gaussian quadrature 1009, 1061
geometric progressions 972
index loss 967f., 1038
index table 1176f.
interprocessor communication 981
Kendall’s tau 1280
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 973f., 1073ff.
logo 2/viii, 1009
masks 967f., 1006f., 1038, 1102, 1200,

1226, 1305, 1333f., 1368, 1378, 1382
merge statement 1010
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MIMD (multiple instruction, multiple data)
964, 985f., 1084

MMP (massively multiprocessor) machines
965ff., 974, 984, 1016ff., 1226ff., 1250

nrutil.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982f.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178f.
polynomial coefficients from roots 980
polynomial evaluation 972f., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973f., 976f., 979, 988,

999, 1071ff.
scatter-with-combine 984, 1002f., 1032f.
second order recurrence 974f., 1074
SIMD (Single Instruction Multiple Data)

964, 985f., 1009, 1084f.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176f.
special functions 1009
SSP (small-scale parallel) machines 965ff.,

984, 1010ff., 1016ff., 1059f., 1226ff.,
1250

subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2/viii, 962
SVD algorithm 1026
synthetic division 977ff., 999, 1048, 1071f.,

1079, 1192
tridiagonal systems 975f., 1018, 1229f.
utilities 1364ff.
vector reduction 972f., 977, 998
vs. serial programming 965, 987

PARAMETER attribute 1012
Parameters in fitting function 651, 684ff.
Parity bit 888
Park and Miller minimal standard random gen-

erator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544

discrete form 498
Partial differential equations 818ff., 1332ff.

advective equation 826
alternating-direction implicit method (ADI)

847, 861f.
amplification factor 828, 834
analyze/factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818f.
caution on high-order methods 844f.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859f., 1332
classification of 818f.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicolson method 840, 842, 844,

846

cyclic reduction (CR) method 848f., 852ff.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820,

840, 850, 856, 858
elliptic, defined 818
error, varieties of 831ff.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finite element methods 824
flux-conservative initial value problems

825ff.
forward Euler differencing 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method (relaxation) 855,

864ff., 876, 1338, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825f.
implicit differencing 840
incomplete Cholesky conjugate gradient

method (ICCG) 824
inhomogeneous boundary conditions 850f.
initial value problems 818f.
initial value problems, recommendations on

838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplace’s equation 818
Lax method 828ff., 836, 845f.
Lax method (multidimensional) 845f.
matrix methods 824
mesh-drift instability 834f.
Monte Carlo methods 824
multidimensional initial value problems

844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820,

840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847f., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 508ff., 824, 848ff.
relaxation methods 823, 854ff., 1332f.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs. accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833f.
strongly implicit procedure 824
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successive over-relaxation (SOR) 857ff.,
862, 866, 1332f.

time splitting 847f., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis 827f.,

830, 833f., 840
wave equation 818, 825f.
see also Elliptic partial differential equa-

tions; Finite difference equations (FDEs)
Partial pivoting 29
Partition-exchange 323, 333

and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff.,

263, 1138
Pattern multiply of sparse matrices 74
PBCG (preconditioned biconjugate gradient

method) 78f., 824
PC methods see Predictor-corrector methods
PCGPACK 71
PDEs see Partial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.

Lomb’s normalized 569f., 574f., 1258ff.
variance of 544f.

Perl (programming language) 1/xvi
Perron’s theorems, for convergence of recur-

rence relations 174f.
Perturbation methods for matrix inversion

65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Phillips-Twomey method 799ff.
Pi, computation of 906ff., 1352ff., 1357f.
Piecewise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757

in linear programming 428f.
Pivoting 27, 29ff., 46, 66, 90, 1014

full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37f., 1017
partial 29, 33, 37f., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43

Pixel 519, 596, 803, 811
PL/1 2/x
Planck’s constant 842

Plane rotation see Givens reduction; Jacobi
transformation (or rotation)

Platykurtic distribution 606
Plotting of functions 342, 1182f.
POCS (projection onto convex sets) 805
Poetry 5f.
Pointer (Fortran 90) 2/xiiif., 938f., 944f.,

953ff., 1197, 1212, 1266
as alias 939, 944f., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938f., 944f., 952f.,

1197
in Fortran 95 961
to function, forbidden 1067, 1210
initialization to null 2/xv, 961
returning array of unknown size 955f.,

1184, 1259, 1261, 1327
undefined status 952f., 961, 1070, 1266,

1302
Poisson equation 519, 818, 852
Poisson probability function

cumulative 214
deviates from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653

Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
Poles see Complex plane, poles in
Polishing of roots 356, 363ff., 370f., 1193
poly() utility function 973, 977, 989, 998,

1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomial interpolation 99, 102ff., 1043

Aitken’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficients for 113ff., 1047f.
Lagrange’s formula 84, 102f.
multidimensional 116ff., 1049ff.
Neville’s algorithm 102f., 105, 134, 182,

1043
pathology in determining coefficients for

116
in predictor-corrector method 740
smoothing filters 645
see also Interpolation

Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials

1062
approximate roots of Jacobi polynomials

1064
approximate roots of Laguerre polynomials

1061
approximating modified Bessel functions

230
approximation from Chebyshev coefficients

191, 1078f.
AUTODIN-II 890
CCITT 889f.
characteristic 368, 1193
characteristic, for digital filters 554, 559,

1257
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characteristic, for eigenvalues of matrix
449, 469

Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071f., 1192,

1365, 1378f.
deflation 362ff., 370f., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 167, 972, 977, 998f., 1071,

1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method

724, 726, 1305f.
extrapolation in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1078f.,

1291
generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
minimax 186, 198, 1076
monic 142f.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998f., 1071f.,

1192
primitive modulo 2 287ff., 301f., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192f., 978, 1079
stopping criterion in root finding 366

poly term() utility function 974, 977, 989,
999, 1071f., 1192

Port, serial data 892
Portability 3, 963
Portable random number generator see Ran-

dom number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xxiii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492f.
Power series 159ff., 167, 195

economization of 192f., 1061, 1080
Padé approximant of 194ff., 1080f.

Power spectral density see Fourier transform;
Spectral density

Power spectrum estimation see Fourier trans-
form; Spectral density

PowerStation, Microsoft Fortran 2/xix
PPM (piecewise parabolic method) 837
Precision

converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362

Preconditioned biconjugate gradient method
(PBCG) 78f.

Preconditioning, in conjugate gradient methods
824

Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744

compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalue compared with multistep 742ff.
starting and stopping 742, 744
stepsize control 742f.

present() intrinsic function 952
Prime numbers 915
Primitive polynomials modulo 2 287ff., 301f.,

889
Principal directions 408f., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prize, $1000 offered 272, 1141, 1150f.
Probability see Random number generator;

Statistical tests
Probability density, change of variables in

278f.
Procedure see Program(s); Subprogram
Process loss 548
product() intrinsic function 948
Product Nystrom method 789, 1331
Program(s)

as black boxes 1/xviii, 6, 26, 52, 205,
341, 406

dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.

Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density) see Fourier

transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PURE attribute 2/xv, 960f., 964, 986
put diag() utility function 985, 990, 1005,

1200
Pyramidal algorithm 586, 1264
Pythagoreans 392

QL see Eigensystems
QR see Eigensystems
QR decomposition 91f., 382, 386, 1039f.,

1199
backsubstitution 92, 1040
and least squares 668
operation count 92
pivoting 92
updating 94, 382, 386, 1041, 1199
use for orthonormal basis 58, 94

Quadratic
convergence 49, 256, 351, 356, 409f.,

419, 906
equations 20, 178, 391, 457
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interpolation 353, 364
programming 436

Quadrature 123ff., 1052ff.
adaptive 123, 190, 788
alternative extended Simpson’s rule 128
arbitrary weight function 151ff., 789,

1064, 1328
automatic 154
Bode’s rule 126
change of variable in 137ff., 788, 1056ff.
by Chebyshev fitting 124, 189, 1078
classical formulas for 124ff.
Clenshaw-Curtis 124, 190, 512f.
closed formulas 125, 127f.
and computer science 881
by cubic splines 124
error estimate in solution 784
extended midpoint rule 129f., 135, 1054f.
extended rules 127ff., 134f., 786, 788ff.,

1326, 1328
extended Simpson’s rule 128
Fourier integrals 577ff., 1261ff.
Fourier integrals, infinite range 583
Gauss-Chebyshev 144, 512f.
Gauss-Hermite 144, 789, 1062
Gauss-Jacobi 144, 1063
Gauss-Kronrod 154
Gauss-Laguerre 144, 789, 1060
Gauss-Legendre 144, 783, 789, 1059,

1325
Gauss-Lobatto 154, 190, 512
Gauss-Radau 154
Gaussian integration 127, 140ff., 781,

783, 788f., 1009, 1059ff., 1325, 1328f.
Gaussian integration, nonclassical weight

function 151ff., 788f., 1064f., 1328f.
for improper integrals 135ff., 789, 1055,

1328
for integral equations 781f., 786, 1325ff.
Monte Carlo 124, 155ff., 295ff., 306ff.,

1161ff.
multidimensional 124, 155ff., 1052, 1065ff.
multidimensional, by recursion 1052,

1065
Newton-Cotes formulas 125ff., 140
open formulas 125ff., 129f., 135
related to differential equations 123
related to predictor-corrector methods 740
Romberg integration 124, 134f., 137, 182,

717, 788, 1054f., 1065, 1067
semi-open formulas 130
Simpson’s rule 126, 133, 136f., 583, 782,

788ff., 1053
Simpson’s three-eighths rule 126, 789f.
singularity removal 137ff., 788, 1057ff.,

1328ff.
singularity removal, worked example 792,

1328ff.
trapezoidal rule 125, 127, 130ff., 134f.,

579, 583, 782, 786, 1052ff., 1326f.
using FFTs 124
weight function log x 153
see also Integration of functions

Quadrature mirror filter 585, 593

Quantum mechanics, Uncertainty Principle
600

Quartile value 320
Quasi-Newton methods for minimization 390,

418ff., 1215
Quasi-random sequence 299ff., 318, 881, 888

Halton’s 300
for Monte Carlo integration 304, 309, 318
Sobol’s 300ff., 1160
see also Random number generator

Quicksort 320, 323ff., 330, 333, 1169f.
Quotient-difference algorithm 164

R-estimates 694
Radioactive decay 278
Radix base for floating point arithmetic 476,

882, 907, 913, 1231, 1343, 1357
Radix conversion 902, 906, 913, 1357
radix() intrinsic function 1231
Radix sort 1172
Ramanujan’s identity for π 915
Random bits, generation of 287ff., 1159f.
Random deviates 266ff., 1141ff.

binomial 285f., 1155
exponential 278, 1151f.
gamma distribution 282f., 1153
Gaussian 267, 279f., 571, 798, 1152f.
normal 267, 279f., 571, 1152f.
Poisson 283ff., 571, 1154f.
quasi-random sequences 299ff., 881, 888,

1160f.
uniform 267ff., 1158f., 1166
uniform integer 270, 274ff.

Random number generator 266ff., 1141ff.
bitwise operations 287
Box-Muller algorithm 279, 1152
Data Encryption Standard 290ff., 1144,

1156ff.
good choices for modulus, multiplier and

increment 274ff.
initializing 1144ff.
for integer-valued probability distribution

283f., 1154
integer vs. real implementation 273
L’Ecuyer’s long period 271f.
lagged Fibonacci generator 1142, 1148ff.
linear congruential generator 267ff., 1142
machine language 269
Marsaglia shift register 1142, 1148ff.
Minimal Standard, Park and Miller’s 269,

1142
nonrandomness of low-order bits 268f.
parallel 1009
perfect 272, 1141, 1150f.
planes, numbers lie on 268
portable 269ff., 1142
primitive polynomials modulo 2 287ff.
pseudo-DES 291, 1144, 1156ff.
quasi-random sequences 299ff., 881, 888,

1160f.
quick and dirty 274
quicker and dirtier 275
in Quicksort 324
random access to nth number 293
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random bits 287ff., 1159f.
recommendations 276f.
rejection method 281ff.
serial 1141f.
shuffling procedure 270, 272
in simulated annealing method 438
spectral test 274
state space 1143f.
state space exhaustion 1141
subtractive method 273, 1143
system-supplied 267f.
timings 276f., 1151
transformation method 277ff.
trick for trigonometric functions 280

Random numbers see Monte Carlo; Random
deviates

Random walk 20
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
RANDU, infamous routine 268
Range 53f.
Rank (matrix) 53

kernel of finite 785
Rank (sorting) 320, 332, 1176
Rank (statistics) 633ff., 694f., 1277

Kendall’s tau 637ff., 1279
Spearman correlation coefficient 634f.,

1277ff.
sum squared differences of 634, 1277

Ratio variable (statistics) 623
Rational Chebyshev approximation 197ff.,

1081f.
Rational function 99, 167ff., 194ff., 1080f.

approximation for Bessel functions 225
approximation for continued fraction 164,

211, 219f.
Chebyshev approximation 197ff., 1081f.
evaluation of 170, 1072f.
extrapolation in Bulirsch-Stoer method

718ff., 726, 1306f.
interpolation and extrapolation using 99,

104ff., 194ff., 718ff., 726
as power spectrum estimate 566
interpolation and extrapolation using 1043f.,

1080ff., 1306
minimax 198

Re-entrant procedure 1052
real() intrinsic function, ambiguity of 947
Realizable (causal) 552, 554f.
reallocate() utility function 955, 990, 992,

1070, 1302
Rearranging see Sorting
Reciprocal, multiple precision 910f., 1355f.
Record, in data file 329
Recurrence relation 172ff., 971ff.

arithmetic progression 971f., 996
associated Legendre polynomials 247
Bessel function 172, 224, 227f., 234
binomial coefficients 209
Bulirsch-Stoer 105f.
characteristic polynomial of tridiagonal

matrix 469
Clenshaw’s recurrence formula 176f.
and continued fraction 175

continued fraction evaluation 164f.
convergence 175
cosine function 172, 500
cyclic reduction 974
dominant solution 174
exponential integrals 172
gamma function 206
generation of random bits 287f.
geometric progression 972, 996
Golden Mean 21
Legendre polynomials 172
minimal vs. dominant solution 174
modified Bessel function 232
Neville’s 103, 182
orthonormal polynomials 142
Perron’s theorems 174f.
Pincherle’s theorem 175
for polynomial cumulants 977, 999, 1071f.
polynomial interpolation 103, 183
primitive polynomials modulo 2 287f.
random number generator 268
rational function interpolation 105f., 1043
recursive doubling 973, 977, 988, 999,

1071f., 1073
second order 974f., 1074
sequence of trig functions 173
sine function 172, 500
spherical harmonics 247
stability of 21, 173ff., 177, 224f., 227f.,

232, 247, 975
trig functions 572
weight of Gaussian quadrature 144f.

Recursion
in Fortran 90 958
in multigrid method 865, 1009, 1336

Recursive doubling 973f., 979
cumulants of polynomial 977, 999, 1071f.
linear recurrences 973, 988, 1073
tridiagonal systems 976

RECURSIVE keyword 958, 1065, 1067
Recursive Monte Carlo integration 306ff.,

1161
Recursive procedure 2/xiv, 958, 1065, 1067,

1166
as parallelization tool 958
base case 958
for multigrid method 1009, 1336
re-entrant 1052

Recursive stratified sampling 314ff., 1164ff.
Red-black see Odd-even ordering
Reduction functions 948ff.
Reduction of variance in Monte Carlo integra-

tion 299, 306ff.
References (explanation) 4f.
References (general bibliography) 916ff.,

1359f.
Reflection formula for gamma function 206
Regula falsi (false position) 347ff., 1185f.
Regularity condition 775
Regularization

compared with optimal filtering 801
constrained linear inversion method 799ff.
of inverse problems 796ff.
linear 799ff.
nonlinear 813
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objective criterion 802
Phillips-Twomey method 799ff.
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zeroth order 797
see also Inverse problems

Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number genera-

tor 281ff.
Relaxation method

for algebraically difficult sets 763
automated allocation of mesh points 774f.,

777
computation of spheroidal harmonics 764ff.,

1319ff.
for differential equations 746f., 753ff.,

1316ff.
elliptic partial differential equations 823,

854ff., 1332f.
example 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855f., 864
successive over-relaxation (SOR) 857ff.,

862, 866, 1332f.
see also Multigrid method

Remes algorithms
exchange algorithm 553
for minimax rational function 199

reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246

Residual 49, 54, 78
in multigrid method 863, 1338

Resolution function, in Backus-Gilbert method
807

Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward, $1000 offered 272, 1141, 1150f.
Richardson’s deferred approach to the limit

134, 137, 182, 702, 718ff., 726, 788,
869

see also Bulirsch-Stoer method
Richtmyer artificial viscosity 837
Ridders’ method, for numerical derivatives

182, 1075
Ridders’ method, root finding 341, 349, 351,

1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548f.
Robust estimation 653, 694ff., 700, 1294

Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696f.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697

use of a priori covariances 700
see also Statistical tests

Romberg integration 124, 134f., 137, 182,
717, 788, 1054f., 1065

Root finding 143, 340ff., 1009, 1059
advanced implementations of Newton’s rule

386
Bairstow’s method 364, 370, 1193
bisection 343, 346f., 352f., 359, 390, 469,

698, 1184f.
bracketing of roots 341, 343ff., 353f.,

362, 364, 369, 1183f.
Brent’s method 341, 349, 660f., 1188f.,

1286
Broyden’s method 373, 382f., 386, 1199
compared with multidimensional minimiza-

tion 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
deflation of polynomials 362ff., 370f.,

1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185f.
Jenkins-Traub method 369
Laguerre’s method 341, 366f., 1191f.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
Newton’s rule 143f., 180, 341, 355ff.,

362, 364, 370, 372ff., 376, 469, 740,
749f., 754, 787, 874, 876, 911f., 1059,
1189, 1194, 1196, 1314ff., 1339, 1341,
1355f.

pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191f.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 356, 363ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399,

1186f.
in shooting method 746, 749f., 1314f.
singular Jacobian in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see also Roots

Root polishing 356, 363ff., 369ff., 1193
Roots

Chebyshev polynomials 184
complex nth root of unity 999f., 1379
cubic equations 179f.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191f.
quadratic equations 178
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reflection in unit circle 560, 1257
square, multiple precision 912, 1356
see also Root finding

Rosenbrock method 730, 1308
compared with semi-implicit extrapolation

739
stepsize control 731, 1308f.

Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476,

479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
graceful 883, 1343
hardware aspects 882, 1343
Householder reduction 466
IEEE standard 882f., 1343
interpolation 100
least squares fitting 658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47,

56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 567
measuring 881f., 1343
multidimensional minimization 418, 422
multiple roots 362
numerical derivatives 180f.
recurrence relations 173
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607

Row degeneracy 22
Row-indexed sparse storage 71f., 1030

transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transi-

tive) 338
Runge-Kutta method 702, 704ff., 731, 740,

1297ff., 1308
Cash-Karp parameters 710, 1299f.
embedded 709f., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.

Run-length encoding 901
Runge-Kutta method

high-order 1297
stepsize control 1298f.

Rybicki, G.B. 84ff., 114, 145, 252, 522, 574,
600

S-box for Data Encryption Standard 1148
Sampling

importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
uneven or irregular 569, 648f., 1258

Sampling theorem 495, 543
for numerical approximation 600ff.

Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070,

1266, 1293
redundant use of 958f.

SAVE statements 3
Savitzky-Golay filters

for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645

scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f.,

1032, 1366, 1380f.
scatter add() utility function 984, 990, 1002,

1032
scatter max() utility function 984, 990, 1003
Schonfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching

with correlated values 111, 1046f.
an ordered table 110f., 1045f.
selection 333, 1177f.

Secant method 341, 347ff., 358, 364, 399,
1186f.

Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382f.,

1199
Second Euler-Maclaurin summation formula

135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.

find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange 333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609

Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730,

735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.

Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing

convergence of quadrature 1060
random numbers 1141
sorting 1167

Serial data port 892
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Series 159ff.
accelerating convergence of 159ff.
alternating 160f., 1070
asymptotic 161
Bessel function Kν 241
Bessel function Yν 235
Bessel functions 160, 223
cosine integral 250
divergent 161
economization 192f., 195, 1080
Euler’s transformation 160f., 1070
exponential integral 216, 218
Fresnel integral 248
hypergeometric 202, 263, 1138
incomplete beta function 219
incomplete gamma function 210, 1090f.
Laurent 566
relation to continued fractions 163f.
roundoff error in 164f.
sine and cosine integrals 250
sine function 160
Taylor 355f., 408, 702, 709, 754, 759
transformation of 160ff., 1070
van Wijngaarden’s algorithm 161, 1070

Shaft encoder 886
Shakespeare 9
Shampine’s Rosenbrock parameters 732, 1308
shape() intrinsic function 938, 949
Shell algorithm (Shell’s sort) 321ff., 1168
Sherman-Morrison formula 65ff., 83, 382
Shifting of eigenvalues 449, 470f., 480
Shock wave 831, 837
Shooting method

computation of spheroidal harmonics 772,
1321ff.

for differential equations 746, 749ff.,
770ff., 1314ff., 1321ff.

for difficult cases 753, 1315f.
example 770ff., 1321ff.
interior fitting point 752, 1315f., 1323ff.

Shuffling to improve random number generator
270, 272

Side effects
prevented by data hiding 957, 1209, 1293,

1296
and PURE subprograms 960

Sidelobe fall-off 548
Sidelobe level 548
sign() intrinsic function, modified in Fortran 95

961
Signal, bandwidth limited 495
Significance (numerical) 19
Significance (statistical) 609f.

one- vs. two-sided 632
peak in Lomb periodogram 570
of 2-d K-S test 640, 1281
two-tailed 613

SIMD machines (Single Instruction Multiple
Data) 964, 985f., 1009, 1084f.

Similarity transform 452ff., 456, 476, 478,
482

Simplex
defined 402
method in linear programming 389, 402,

423ff., 431ff., 1216ff.

method of Nelder and Mead 389, 402ff.,
444, 697f., 1208f., 1222ff.

use in simulated annealing 444, 1222ff.
Simpson’s rule 124ff., 128, 133, 136f., 583,

782, 788f., 1053f.
Simpson’s three-eighths rule 126, 789f.
Simulated annealing see Annealing, method of

simulated
Simulation see Monte Carlo
Sine function

evaluated from tan(θ/2) 173
recurrence 172
series 160

Sine integral 248, 250ff., 1123, 1125f.
continued fraction 250
series 250
see also Cosine integral

Sine transform see Fast Fourier transform
(FFT); Fourier transform

Singleton’s algorithm for FFT 525
Singular value decomposition (SVD) 23, 25,

51ff., 1022
approximation of matrices 58f.
backsubstitution 56, 1022f.
and bases for nullspace and range 53
confidence levels from 693f.
covariance matrix 693f.
fewer equations than unknowns 57
for inverse problems 797
and least squares 54ff., 199f., 668, 670ff.,

1081, 1290f.
in minimization 410
more equations than unknowns 57f.
parallel algorithms 1026
and rational Chebyshev approximation

199f., 1081f.
of square matrix 53ff., 1023
use for ill-conditioned matrices 56, 58,

449
use for orthonormal basis 58, 94

Singularities
of hypergeometric function 203, 263
in integral equations 788ff., 1328
in integral equations, worked example

792, 1328ff.
in integrands 135ff., 788, 1055, 1328ff.
removal in numerical integration 137ff.,

788, 1057ff., 1328ff.
Singularity, subtraction of the 789
SIPSOL 824
Six-step framework, for FFT 983, 1240
size() intrinsic function 938, 942, 945, 948
Skew array section 2/xii, 945, 960, 985, 1284
Skewness of distribution 606, 608, 1269
Smoothing

of data 114, 644ff., 1283f.
of data in integral equations 781
importance in multigrid method 865

sn function 261, 1137f.
Snyder, N.L. 1/xvi
Sobol’s quasi-random sequence 300ff., 1160f.
Sonata 9
Sonnet 9
Sorting 320ff., 1167ff.

bubble sort 1168
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bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461f., 1227
Heapsort 320, 327f., 336, 1171f., 1179
index table 320, 329f., 1170, 1173ff.,

1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171f., 1176
Quicksort 320, 323ff., 330, 333, 1169f.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell’s method 321ff., 1168
straight insertion 321f., 461f., 1167, 1227

SP, defined 937
SPARC or SPARCstation 1/xxii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030

band diagonal 43, 1019ff.
biconjugate gradient method 77, 599,

1034
data type for 1030
indexed storage 71f., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value prob-

lems 754, 1316
row-indexed storage 71f., 1030
wavelet transform 584, 598
see also Matrix

Spearman rank-order coefficient 634f., 694f.,
1277

Special functions see Function
Spectral analysis see Fourier transform; Peri-

odogram
Spectral density 541

and data windowing 545ff.
figures of merit for data windows 548f.
normalization conventions 542f.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by MEM 565ff.,

1258
two-sided PSD 493
variance reduction in spectral estimation

545
Spectral lines, how to smooth 644
Spectral methods for partial differential equa-

tions 825
Spectral radius 856ff., 862
Spectral test for random number generator

274
Spectrum see Fourier transform
Spherical Bessel functions 234

routine for 245, 1121
Spherical harmonics 246ff.

orthogonality 246

routine for 247f., 1122
stable recurrence for 247
table of 246
see also Associated Legendre polynomials

Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.

Spline 100
cubic 107ff., 1044f.
gives tridiagonal system 109
natural 109, 1044f.
operation count 109
two-dimensional (bicubic) 120f., 1050f.

spread() intrinsic function 945, 950, 969,
1000, 1094, 1290f.

and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision 912, 1356f.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff.,

972, 974, 984, 1011, 1016ff., 1021,
1059f., 1226ff., 1250

Stability 20f.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-drift in PDEs 834f.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation

787f.
of recurrence relations 173ff., 177, 224f.,

227f., 232, 247
and stiff differential equations 728f.
von Neumann analysis for PDEs 827f.,

830, 833f., 840
see also Accuracy

Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833f.
Standard (probable) errors 1288, 1290
Standard deviation

of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635,

1277
Standard (probable) errors 610, 656, 661,

667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal sub-

program 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1269ff.

Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686f.
chi-square 614f., 623ff., 1272, 1275f.
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contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff.,

1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631f., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640,

694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603ff., 608ff., 1269f.
measures of association 604, 622ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. for spread 620f.
significance 609f., 1269ff.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f.,

694f., 1277
standard deviation 605, 1269
strength vs. significance 609f., 622
Student’s t 610, 631, 1269
Student’s t, for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coefficient

634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635,

1277
Tukey’s trimean 694
two-dimensional 640, 1281ff.
variance 603ff., 607f., 612f., 1269ff.
Wilcoxon 694
see also Error; Robust estimation

Steak, without sizzle 809
Steed’s method

Bessel functions 234, 239
continued fractions 164f.

Steepest descent method 414
in inverse problems 804

Step
doubling 130, 708f., 1052
tripling 136, 1055

Stieltjes, procedure of 151

Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
r.h.s. independent of x 729f.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730,

1310f.
semi-implicit midpoint rule 735f., 1310f.

Stiff functions 100, 399
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multigrid method 875f.
Stopping criterion, in polynomial root finding

366
Storage

band diagonal matrix 44, 1019
sparse matrices 71f., 1030

Storage association 2/xiv
Straight injection 867
Straight insertion 321f., 461f., 1167, 1227
Straight line fitting 655ff., 667f., 1285ff.

errors in both coordinates 660ff., 1286ff.
robust estimation 698, 1294ff.

Strassen’s fast matrix algorithms 96f.
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944

communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structure constructor 2/xii
Structured programming 5ff.
Student’s probability distribution 221f.
Student’s t-test

for correlation 631
for difference of means 610, 1269
for difference of means (paired samples)

612, 1271
for difference of means (unequal variances)

611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634, 1277

Sturmian sequence 469
Sub-random sequences see Quasi-random se-

quence
Subprogram 938

for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961,

1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision 907, 1353
Subtractive method for random number genera-

tor 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862,

1332f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333

sum() intrinsic function 945, 948, 966
Sum squared difference of ranks 634, 1277
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Sums see Series
Sun 1/xxii, 2/xix, 886

SPARCstation 1/xxii, 2/xix, 4
Supernova 1987A 640
SVD see Singular value decomposition (SVD)
swap() utility function 987, 990f., 1015, 1210
Symbol, of operator 866f.
Synthetic division 84, 167, 362, 370

parallel algorithms 977ff., 999, 1048,
1071f., 1079, 1192

repeated 978f.
Systematic errors 653

T ableau (interpolation) 103, 183
Tangent function, continued fraction 163
Target, for pointer 938f., 945, 952f.
Taylor series 180, 355f., 408, 702, 709, 742,

754, 759
Test programs 3
Thermodynamics, analogy for simulated an-

nealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74,

1031
Tides 560f.
Tikhonov-Miller regularization 799ff.
Time domain 490
Time splitting 847f., 861
tiny() intrinsic function 952
Toeplitz matrix 82, 85ff., 195, 1038

LU decomposition 87
new, fast algorithms 88f.
nonsymmetric 86ff., 1038

Tongue twisters 333
Torus 297f., 304
Trade-off curve 795, 809
Trademarks 1/xxii, 2/xixf.
Transformation

Gauss 256
Landen 256
method for random number generator 277ff.

Transformational functions 948ff.
Transforms, number theoretic 503f.
Transport error 831ff.
transpose() intrinsic function 950, 960, 969,

981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134f., 579,

583, 782, 786, 1052, 1326f.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488,

839f., 1018f.
in alternating-direction implicit method

(ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff.,

470, 1227f.

serial algorithm 1018f.
see also Matrix

Trigonometric
functions, linear sequences 173
functions, recurrence relation 172, 572
functions, tan(θ/2) as minimal 173
interpolation 99
solution of cubic equation 179f.

Truncation error 20f., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180

Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensional see Multidimensional
Two-dimensional K–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702,

745ff., 1314ff.
automated allocation of mesh points 774f.,

777
boundary conditions 745ff., 749, 751f.,

771, 1314ff.
difficult cases 753, 1315f.
eigenvalue problem for differential equa-

tions 748, 764ff., 770ff., 1319ff.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774f., 777
internal boundary conditions 775ff.
internal singular points 775ff.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319
shooting to a fitting point 751ff., 1315f.,

1323ff.
shooting method 746, 749ff., 770ff., 1314ff.,

1321ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f.,

1319ff.
see also Elliptic partial differential equa-

tions
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-step Lax-Wendroff method 835ff.
Two-volume edition, plan of 1/xiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2

Ubound() intrinsic function 949
ULTRIX 1/xxiii, 2/xix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f.,

961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviates see Random deviates, uni-

form
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Unitary (function) 843f.
Unitary (matrix) see Matrix
unit matrix() utility function 985, 990, 1006,

1216, 1226, 1325
UNIX 1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293,

886
Upper Hessenberg matrix see Hessenberg ma-

trix
U.S. Postal Service barcode 894
unpack() intrinsic function 950, 964

communication bottleneck 969
Upper subscript 944
upper triangle() utility function 990, 1006,

1226, 1305
Upwind differencing 832f., 837
USE statement 936, 939f., 954, 957, 1067,

1384
USES keyword in program listings 2
Utility functions 987ff., 1364ff.

add vector to matrix diagonal 1004, 1234,
1366, 1381

alphabetical listing 988ff.
argument checking 994f., 1370f.
arithmetic progression 996, 1072, 1127,

1365, 1371f.
array reallocation 992, 1070f., 1365, 1368f.
assertion of numerical equality 995, 1022,

1365, 1370f.
compared to intrinsics 990ff.
complex nth root of unity 999f., 1379
copying arrays 991, 1034, 1327f., 1365f.
create unit matrix 1006, 1382
cumulative product of an array 997f.,

1072, 1086, 1375
cumulative sum of an array 997, 1280f.,

1365, 1375
data types 1361
elemental functions 1364
error handling 994f., 1036, 1370f.
generic functions 1364
geometric progression 996f., 1365, 1372ff.
get diagonal of matrix 1005, 1226f., 1366,

1381f.
length of a vector 1008, 1383
linear recurrence 996
location in an array 992ff., 1015, 1017ff.
location of first logical “true” 993, 1041,

1369
location of maximum array value 993,

1015, 1017, 1365, 1369
location of minimum array value 993,

1369f.
logical assertion 994, 1086, 1090, 1092,

1365, 1370
lower triangular mask 1007, 1200, 1382
masked polynomial evaluation 1378
masked swap of elements in two arrays

1368
moving data 990ff., 1015
multiply vector into matrix diagonal 1004f.,

1366, 1381
nrutil.f90 (module file) 1364ff.
outer difference of vectors 1001, 1366,

1380
outer logical and of vectors 1002

outer operations on vectors 1000ff., 1379f.
outer product of vectors 1000f., 1076,

1365f., 1379
outer quotient of vectors 1001, 1379
outer sum of vectors 1001, 1379f.
overloading 1364
partial cumulants of a polynomial 999,

1071, 1192f., 1365, 1378f.
polynomial evaluation 996, 998f., 1258,

1365, 1376ff.
scatter-with-add 1002f., 1032f., 1366,

1380f.
scatter-with-combine 1002f., 1032f., 1380f.
scatter-with-max 1003f., 1366, 1381
set diagonal elements of matrix 1005,

1200, 1366, 1382
skew operation on matrices 1004ff., 1381ff.
swap elements of two arrays 991, 1015,

1365ff.
upper triangular mask 1006, 1226, 1305,

1382

V -cycle 865, 1336
vabs() utility function 990, 1008, 1290
Validation of Numerical Recipes procedures

3f.
Valley, long or narrow 403, 407, 410
Van Cittert’s method 804
Van Wijngaarden-Dekker-Brent method see

Brent’s method
Vandermonde matrix 82ff., 114, 1037, 1047
Variable length code 896, 1346ff.
Variable metric method 390, 418ff., 1215

compared to conjugate gradient method
418

Variable step-size integration 123, 135, 703,
707ff., 720, 726, 731, 737, 742ff., 1298ff.,
1303, 1308f., 1311ff.

Variance(s)
correlation 605
of distribution 603ff., 608, 611, 613, 1269
pooled 610
reduction of (in Monte Carlo) 299, 306ff.
statistical differences between two 609,

1271
two-pass algorithm for computing 607,

1269
see also Covariance

Variational methods, partial differential equa-
tions 824

VAX 275, 293
Vector(s)

length 1008, 1383
norms 1036
outer difference 1001, 1366, 1380
outer operations 1000ff., 1379f.
outer product 1000f., 1076, 1365f., 1379

Vector reduction 972, 977, 998
Vector subscripts 2/xiif., 984, 1002, 1032,

1034
communication bottleneck 969, 981, 1250

VEGAS algorithm for Monte Carlo 309ff.,
1161

Verhoeff’s algorithm for checksums 894f.,
1345
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Viète’s formulas for cubic roots 179
Vienna Fortran 2/xv
Virus, computer 889
Viscosity

artificial 831, 837
numerical 830f., 837

Visibility 956ff., 1209, 1293, 1296
VMS 1/xxii, 2/xix
Volterra equations 780f., 1326

adaptive stepsize control 788
analogy with ODEs 786
block-by-block method 788
first kind 781, 786
nonlinear 781, 787
second kind 781, 786ff., 1326f.
unstable quadrature 787f.

von Neuman, John 963, 965
von Neumann-Richtmyer artificial viscosity

837
von Neumann stability analysis for PDEs 827f.,

830, 833f., 840
Vowellish (coding example) 896f., 902

W -cycle 865, 1336
Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.

appearance of wavelets 590ff.
approximation condition of order p 585
coefficient values 586, 589, 1265
contrasted with Fourier transform 584,

594
Daubechies wavelet filter coefficients 584ff.,

588, 590f., 594, 598, 1264ff.
detail information 585
discrete wavelet transform (DWT) 586f.,

1264
DWT (discrete wavelet transform) 586f.,

1264ff.
eliminating wrap-around 587
fast solution of linear equations 597ff.
filters 592f.
and Fourier domain 592f.
image processing 596f.
for integral equations 782
inverse 587
Lemarie’s wavelet 593
of linear operator 597ff.
mother-function coefficient 587
mother functions 584
multidimensional 595, 1267f.
nonsmoothness of wavelets 591
pyramidal algorithm 586, 1264
quadrature mirror filter 585
smooth information 585
truncation 594f.
wavelet filter coefficient 584, 587
wavelets 584, 590ff.

Wavelets see Wavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fitting see Least squares

fitting

Weighting, full vs. half in multigrid 867
Weights for Gaussian quadrature 140ff., 788f.,

1059ff., 1328f.
nonclassical weight function 151ff., 788f.,

1064f., 1328f.
Welch window 547, 1254ff.
WG5 (ISO/IEC JTC1/SC22/WG5 Committee)

2/xiff.
where construct 943, 1291

contrasted with merge 1023
for iteration of a vector 1060
nested 2/xv, 943, 960, 1100
not MIMD 985

While iteration 13
Wiener filtering 535, 539ff., 558, 644

compared to regularization 801
Wiener-Khinchin theorem 492, 558, 566f.
Wilcoxon test 694
Window function

Bartlett 547, 1254ff.
flat-topped 549
Hamming 547
Hann 547
Parzen 547
square 544, 546, 1254ff.
Welch 547, 1254ff.

Windowing for spectral estimation 1255f.
Windows 95 2/xix
Windows NT 2/xix
Winograd Fourier transform algorithms 503
Woodbury formula 68ff., 83
Wordlength 18
Workspace, reallocation in Fortran 90 1070f.
World Wide Web, Numerical Recipes site

1/xx, 2/xvii
Wraparound

in integer arithmetic 1146, 1148
order for storing spectrum 501
problem in convolution 533

Wronskian, of Bessel functions 234, 239

X .25 protocol 890
X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 959,

964, 968, 990
XMODEM checksum 889
X-ray diffraction pattern, processing of 805

Y ale Sparse Matrix Package 64, 71

Z -transform 554, 559, 565
Z-transformation, Fisher’s 631f., 1276
Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroth-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots unity() utility function 974, 990, 999


