
Oracle7� Server
Administrator’s
Guide
Release 7.3

February, 1996
Part No. A32535–1

Oracle7� Server Administrator’s Guide, Release 7.3

Part No. A32535–1
Copyright � Oracle Corporation 1993, 1996
All rights reserved. Printed in the U.S.A.

Author: Joyce Fee

Graphic Designer: Valarie Moore

Contributors: John Bellemore, Andrea Borr, Bill Bridge, Gray Clossman, Jeff Cohen,
Ahmed Ezzat, John Frazzini, Gary Hallmark, Bhaskar Himatsingka, Alex Ho, Ken
Jacobs, Sandeep Jain, Robert Jenkins Jr., Valerie Kane, Jonathan Klein, Phil Locke,
Brom Mahbod,William Maimone, Andrew Mendelsohn, Gary Ngai, Greg Pongracz,
Maria Pratt, Mary Rhodes, Hari Sankar, Marc Simon, Lynne Thieme, Alex
Tsukerman.

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error–free.

Oracle, SQL*Net, and SQL*Plus are registered Trademarks of Oracle Corpora-
tion. Oracle7, Server Manager, Oracle Parallel Server, and PL/SQL are
trademarks of Oracle Corporation.
All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

T

 iPreface

Preface

his Guide describes how to manage the Oracle7 Server, a relational
database management system (RDBMS).

Information in this Guide applies to the Oracle7 Server, running on all
operating systems. It provides information about the base Oracle7
Server. This Guide also refers to other manuals that describe special
options, including the following:

• Distributed Option

• Parallel Server Option

• Advanced Replication Option

Knowledge Assumed
of the Reader

Readers Interested in
Installation and
Migration Information

Readers Interested in
Application Design
Information

 ii Oracle7 Server Administrator’s Guide

Audience

This Guide is for people who administer the operation of an Oracle
database system. These people, referred to as “database administrators”
(DBAs), are assumed to be responsible for ensuring the smooth
operation of an Oracle database system and for monitoring its use. The
responsibilities of database administrators are described in Chapter 1.

Readers of this Guide are assumed to be familiar with relational
database concepts. They are also assumed to be familiar with the
operating system environment under which they are running Oracle.

As a prerequisite, all readers should read the first chapter of Oracle7
Server Concepts, “A Technical Introduction to the Oracle7 Server”. This
chapter is a comprehensive introduction to the concepts and
terminology used throughout this Guide.

Administrators frequently participate in installing the Oracle7 Server
software and migrating existing Oracle databases to newer formats (for
example, Version 6 databases to Oracle7 format). This Guide is not an
installation or migration manual.

If your primary interest is installation, see your operating
system–specific Oracle documentation.

If your primary interest is database or application migration, see the
Oracle7 Server Migration manual.

In addition to administrators, experienced users of Oracle and advanced
database application designers might also find information in this Guide
useful.

However, database application developers should also see the Oracle7
Server Application Developer’s Guide and the documentation for the
tool or language product they are using to develop Oracle
database applications.

Text of the Guide

Examples of the Server
Manager Interface

 iiiPreface

How to Use This Guide

Every reader of this Guide must read Chapter 1 of the Oracle7 Server
Concepts manual, “Introduction to the Oracle7 Server.” This overview of
the concepts and terminology related to Oracle7 provides a foundation
for the more detailed information in this Guide. The rest of the Oracle7
Server Concepts manual explains the Oracle7 architecture and features,
and how they operate in more detail.

Conventions Used in This Guide

The following sections explain the conventions used in this Guide.

The following section explains the conventions used within the text of
this Guide:

Uppercase text is used to call attention to command
keywords, object names, parameters, filenames, and
so on. For example:

If you create a private rollback segment, the name
of the rollback segment must be included in the
ROLLBACK_SEGMENTS parameter of the
parameter file.

Italicized words within text are used to indicate the
first occurrence and definition of a term, as in the
following example:

A database is a collection of data to be treated as a
unit. The general purpose of a database is to store
and retrieve related information, as needed.

Italicized words are also used to indicate emphasis,
book titles, and to highlight names of
performance statistics.

This Guide provides examples of the dialog boxes and menus of Server
Manager, your primary utility for managing an Oracle database.
Illustrations show the character mode Server Manager screen. However,
the actual appearance of your screen may differ, depending on your
system’s user interface.

For more information on Server Manager, see the Oracle Server Manager
User’s Guide.

UPPERCASE
WORDS

Italicized Words

Examples of
Commands and
Statements

 iv Oracle7 Server Administrator’s Guide

SQL, Server Manager, and SQL*Plus commands and statements appear
separated from the text of paragraphs in a fixed–width font:

ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation such
as commas or quotation marks. All punctuation
given in example statements is required. All
example statements are terminated with a
semicolon. Depending on the application being
used, a semicolon or other terminator may or may
not be required to end a statement.

Uppercase words in example statements are used to
indicate the keywords within Oracle SQL. However,
note that when issuing statements, keywords are
not case–sensitive.

Lowercase words in example statements are used to
indicate words supplied only for the context of the
example. For example, lowercase words may
indicate the name of a table, column, or file. Some
operating systems are case sensitive, so refer to
your installation or user’s guide to determine
whether you must pay attention to case.

Your Comments Are Welcome

We value and appreciate your comments as an Oracle user and reader of
the manuals. As we write, revise, and evaluate our documentation, your
opinions are the most important input we receive. At the back of our
printed manuals is a Reader’s Comment Form, which we encourage you
to use to tell us what you like and dislike about this manual or other
Oracle manuals. If the form is not available, please use the following
address or FAX number.

Oracle7 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.
FAX: 415–506–7200

Punctuation , ’ ”

Uppercase Words
INSERT, SIZE

Lowercase Words
emp, users2.ora

 vContents

Contents

PART I BASIC DATABASE ADMINISTRATION

Chapter 1 The Oracle7 Database Administrator 1 – 1.
Types of Oracle7 Users 1 – 2.

Database Administrators 1 – 2.
Security Officers 1 – 3.
Application Developers 1 – 3.
Application Administrators 1 – 3.
Database Users 1 – 3.
Network Administrators 1 – 3.

Database Administrator Security and Privileges 1 – 4.
The Database Administrator’s Operating System
Account 1 – 4.
Database Administrator Usernames 1 – 4.
The DBA Role 1 – 5.

Database Administrator Authentication 1 – 6.
Selecting an Authentication Method 1 – 6.
Using Operating System Authentication 1 – 7.
OSOPER and OSDBA 1 – 7.
Using an Authentication Password File 1 – 8.

Password File Administration 1 – 9.
Using ORAPWD 1 – 9.
Setting REMOTE_LOGIN_ PASSWORDFILE 1 – 11.
Adding Users to a Password File 1 – 12.
Connecting with Administrator Privileges 1 – 14.
Maintaining a Password File 1 – 15.

 vi Oracle7 Server Administrator’s Guide

Database Administrator Utilities 1 – 16.
Server Manager 1 – 16.
SQL*Loader 1 – 17.
Export and Import 1 – 17.

Initial Priorities of a Database Administrator 1 – 17.
Step 1: Install the Oracle7 Software 1 – 18.
Step 2: Evaluate the Database Server Hardware 1 – 18.
Step 3: Plan the Database 1 – 18.
Step 4: Create and Open the Database 1 – 19.
Step 5: Implement the Database Design 1 – 19.
Step 6: Back up the Database 1 – 19.
Step 7: Enroll System Users 1 – 20.
Step 8: Tune Database Performance 1 – 20.

Identifying Oracle Software Releases 1 – 20.
Release Number Format 1 – 20.
Versions of Other Oracle Software 1 – 21.
Checking Your Current Release Number 1 – 21.

Chapter 2 Creating a Database 2 – 1.
Considerations Before Creating a Database 2 – 2.

Creation Prerequisites 2 – 3.
Using an Initial Database 2 – 3.
Migrating an Older Version of the Database 2 – 3.

Creating an Oracle7 Database 2 – 4.
Steps for Creating an Oracle7 Database 2 – 4.
Creating a Database: Example 2 – 7.
Troubleshooting Database Creation 2 – 8.
Dropping a Database 2 – 8.

Parameters 2 – 9.
DB_NAME and DB_DOMAIN 2 – 9.
CONTROL_FILES 2 – 10.
DB_BLOCK_SIZE 2 – 11.
DB_BLOCK_BUFFERS 2 – 11.
PROCESSES 2 – 12.
ROLLBACK_SEGMENTS 2 – 12.
License Parameters 2 – 12.
LICENSE_MAX_
SESSIONS and LICENSE_SESSIONS_WARNING 2 – 12.
LICENSE_MAX_USERS 2 – 13.

Considerations After Creating a Database 2 – 14.
Initial Tuning Guidelines 2 – 14.

Allocating Rollback Segments 2 – 15.

 viiContents

Choosing the Number of DB_BLOCK_LRU_ LATCHES 2 – 15. . .
Distributing I/O 2 – 16.

Chapter 3 Starting Up and Shutting Down 3 – 1.
Startup Procedures 3 – 2.

Preparing to Start an Instance 3 – 2.
Starting an Instance: Scenarios 3 – 3.

Altering Database Availability 3 – 6.
Mounting a Database to an Instance 3 – 6.
Opening a Closed Database 3 – 7.
Restricting Access to an Open Database 3 – 7.

Shutdown Procedures 3 – 8.
Shutting Down a Database Under Normal Conditions 3 – 8.
Shutting Down a Database Immediately 3 – 9.
Aborting an Instance 3 – 9.

Using Parameter Files 3 – 10.
The Sample Parameter File 3 – 10.
The Number of Parameter Files 3 – 10.
The Location of the Parameter File in Distributed
Environments 3 – 11.

PART II ORACLE SERVER CONFIGURATION

Chapter 4 Managing Oracle7 Processes 4 – 1.
Configuring Oracle7 for Dedicated Server Processes 4 – 2.

When to Connect to a Dedicated Server Process 4 – 3.
Configuring Oracle7 for Multi–Threaded Server Processes 4 – 3. . . .

SHARED_POOL_ SIZE: Allocating Additional Space
in the Shared Pool for Shared Server 4 – 5.
MTS_LISTENER_ ADDRESS: Setting the Listener
Process Address 4 – 5.
MTS_SERVICE: Specifying Service Names for
Dispatchers 4 – 6.
MTS_DISPATCHERS: Setting the Initial Number of
Dispatchers 4 – 6.
MTS_MAX_ DISPATCHERS: Setting the Maximum
Number of Dispatchers 4 – 7.
MTS_SERVERS: Setting the Initial Number of
Shared Server Processes 4 – 7.
MTS_MAX_SERVERS: Setting the Maximum
Number of Shared Server Processes 4 – 8.

Modifying Server Processes 4 – 8.

 viii Oracle7 Server Administrator’s Guide

Changing the Minimum Number of Shared
Server Processes. 4 – 8.
Adding and Removing Dispatcher Processes 4 – 9.

Tracking Oracle7 Processes 4 – 10.
Monitoring the Processes of an Oracle7 Instance 4 – 10.
Trace Files, the ALERT File, and Background Processes 4 – 12. . . .
Starting the Checkpoint Process 4 – 15.

Managing Processes for the Parallel Query Option 4 – 15.
Managing the Query Servers 4 – 15.
Variations in the Number of Query Server Processes 4 – 15.

Terminating Sessions 4 – 16.
Identifying Which Session to Terminate 4 – 17.
Terminating an Active Session 4 – 17.
Terminating an Inactive Session 4 – 18.

Chapter 5 Managing the Online Redo Log 5 – 1.
Planning the Online Redo Log 5 – 2.

Multiplex the Online Redo Log 5 – 2.
Place Online Redo Log Members on Different Disks 5 – 3.
Set the Size of Online Redo Log Members 5 – 3.
Choose an Appropriate Number of Online Redo
Log Files 5 – 4.

Creating Online Redo Log Groups and Members 5 – 5.
Renaming and Relocating Online Redo Log Members 5 – 6.
Dropping Online Redo Log Groups 5 – 8.
Dropping Online Redo Log Members 5 – 9.
Controlling Checkpoints and Log Switches 5 – 10.

Setting Database Checkpoint Intervals 5 – 11.
Forcing a Log Switch 5 – 12.
Forcing a Fast Database Checkpoint Without a
Log Switch 5 – 13.

Verifying Blocks in Redo Log Files 5 – 14.
Clearing an Online Redo Log File 5 – 14.

Restrictions 5 – 14.
Listing Information about the Online Redo Log 5 – 15.

Chapter 6 Managing Control Files 6 – 1.
Guidelines for Control Files 6 – 2.

Name Control Files 6 – 2.
Multiplex Control Files on Different Disks 6 – 2.
Place Control Files Appropriately 6 – 3.
Manage the Size of Control Files 6 – 3.

 ixContents

Creating Control Files 6 – 3.
Creating Initial Control Files 6 – 4.
Creating Additional Copies of the Control File,
and Renaming and Relocating Control Files 6 – 4.
New Control Files 6 – 5.
Creating New Control Files 6 – 6.

Troubleshooting After Creating Control Files 6 – 8.
Checking for Missing or Extra Files 6 – 8.
Handling Errors During CREATE CONTROLFILE 6 – 9.

Dropping Control Files 6 – 9.

Chapter 7 Managing Job Queues 7 – 1.
SNP Background Processes 7 – 2.

Multiple SNP Processes 7 – 2.
Starting Up SNP Processes 7 – 3.

Managing Job Queues 7 – 3.
DBMS_JOB Package 7 – 4.
Submitting a Job to the Job Queue 7 – 4.
How Jobs Execute 7 – 8.
Removing a Job From the Job Queue 7 – 9.
Altering a Job 7 – 10.
Broken Jobs 7 – 11.
Forcing a Job to Execute 7 – 12.
Terminating a Job 7 – 13.

Viewing Job Queue Information 7 – 13.

PART III DATABASE STORAGE

Chapter 8 Managing Tablespaces 8 – 1.
Guidelines for Managing Tablespaces 8 – 2.

Using Multiple Tablespaces 8 – 2.
Specifying Tablespace Storage Parameters 8 – 2.
Assigning Tablespace Quotas to Users 8 – 3.

Creating Tablespaces 8 – 3.
Creating a Temporary Tablespace 8 – 4.

Managing Tablespace Allocation 8 – 5.
Altering Storage Settings for Tablespaces 8 – 5.
Coalescing Free Space 8 – 6.

Altering Tablespace Availability 8 – 7.
Bringing Tablespaces Online 8 – 7.
Taking Tablespaces Offline 8 – 8.

 x Oracle7 Server Administrator’s Guide

Making a Tablespace Read–Only 8 – 9.
Prerequisites 8 – 10.
Making a Read–Only Tablespace Writeable 8 – 11.
Creating a Read–Only Tablespace on a WORM Device 8 – 11. . . .

Dropping Tablespaces 8 – 12.
Viewing Information About Tablespaces 8 – 13.

Chapter 9 Managing Datafiles 9 – 1.
Guidelines for Managing Datafiles 9 – 2.

Number of Datafiles 9 – 2.
Set the Size of Datafiles 9 – 3.
Place Datafiles Appropriately 9 – 3.
Store Datafiles Separately From Redo Log Files 9 – 3.

Creating and Adding Datafiles to a Tablespace 9 – 4.
Changing a Datafile’s Size 9 – 4.

Enabling and Disabling Automatic Extension
for a Datafile 9 – 4.
Manually Resizing a Datafile 9 – 5.

Altering Datafile Availability 9 – 6.
Bringing Datafiles Online in ARCHIVELOG Mode 9 – 7.
Taking Datafiles Offline in NOARCHIVELOG Mode 9 – 7.

Renaming and Relocating Datafiles 9 – 7.
Renaming and Relocating Datafiles for a
Single Tablespace 9 – 8.
Renaming and Relocating Datafiles for
Multiple Tablespaces 9 – 9.

Verifying Data Blocks in Datafiles 9 – 11.
Viewing Information About Datafiles 9 – 12.

Listing Status Information About Datafiles: Example 9 – 12.

Chapter 10 Guidelines for Managing Schema Objects 10 – 1.
Managing Space in Data Blocks 10 – 2.

The PCTFREE Parameter 10 – 2.
The PCTUSED Parameter 10 – 4.
Selecting Associated PCTUSED and PCTFREE Values 10 – 6.

Setting Storage Parameters 10 – 7.
Storage Parameters You Can Specify 10 – 7.
Setting INITRANS and MAXTRANS 10 – 10.
Setting Default Storage Parameters for Segments
in a Tablespace 10 – 11.
Setting Storage Parameters for Data Segments 10 – 11.
Setting Storage Parameters for Index Segments 10 – 11.

 xiContents

Changing Values for Storage Parameters 10 – 11.
Understanding Precedence in Storage Parameters 10 – 12.

Deallocating Space 10 – 13.
Viewing the High Water Mark 10 – 13.
Issuing Space Deallocation Statements 10 – 14.

Understanding Space Use of Datatypes 10 – 17.
Summary of Oracle Datatypes 10 – 20.

Chapter 11 Managing Tables 11 – 1.
Guidelines for Managing Tables 11 – 2.

Design Tables Before Creating Them 11 – 2.
Specify How Data Block Space Is to Be Used 11 – 2.
Specify Transaction Entry Parameters 11 – 3.
Specify the Location of Each Table 11 – 3.
Parallelize Table Creation 11 – 3.
Consider Creating UNRECOVERABLE Tables 11 – 4.
Estimate Table Size and Set Storage Parameters 11 – 4.
Plan for Large Tables 11 – 5.

Creating Tables 11 – 6.
Altering Tables 11 – 7.
Manually Allocating Storage for a Table 11 – 8.
Dropping Tables 11 – 9.

Chapter 12 Managing Views, Sequences and Synonyms 12 – 1.
Managing Views 12 – 2.

Creating Views 12 – 2.
Modifying a Join View 12 – 4.
Replacing Views 12 – 8.
Dropping Views 12 – 9.

Managing Sequences 12 – 10.
Creating Sequences 12 – 10.
Altering Sequences 12 – 11.
Initialization Parameters Affecting Sequences 12 – 11.
Dropping Sequences 12 – 11.

Managing Synonyms 12 – 12.
Creating Synonyms 12 – 12.
Dropping Synonyms 12 – 12.

 xii Oracle7 Server Administrator’s Guide

Chapter 13 Managing Indexes 13 – 1.
Guidelines for Managing Indexes 13 – 2.

Create Indexes After Inserting Table Data 13 – 3.
Limit the Number of Indexes per Table 13 – 3.
Specify Transaction Entry Parameters 13 – 4.
Specify Index Block Space Use 13 – 4.
Specify the Tablespace for Each Index 13 – 4.
Parallelize Index Creation 13 – 4.
Consider Creating UNRECOVERABLE Indexes 13 – 5.
Estimate Index Size and Set Storage Parameters 13 – 5.
Considerations Before Disabling or Dropping Constraints 13 – 6.

Creating Indexes 13 – 6.
Creating an Index Associated with a Constraint 13 – 7.
Creating an Index Explicitly 13 – 7.
Re–Creating an Existing Index 13 – 7.

Altering Indexes 13 – 8.
Monitoring Space Use of Indexes 13 – 9.
Dropping Indexes 13 – 9.

Chapter 14 Managing Clusters 14 – 1.
Guidelines for Managing Clusters 14 – 2.

Cluster Appropriate Tables 14 – 4.
Choose Appropriate Columns for the Cluster Key 14 – 4.
Specify Data Block Space Use 14 – 4.
Specify the Space Required by an Average Cluster
Key and Its Associated Rows 14 – 5.
Specify the Location of Each Cluster and Cluster Index 14 – 5. . . .
Estimate Cluster Size and Set Storage Parameters 14 – 5.

Creating Clusters 14 – 6.
Creating Clustered Tables 14 – 7.
Creating Cluster Indexes 14 – 7.

Altering Clusters 14 – 8.
Altering Cluster Tables and Cluster Indexes 14 – 9.

Dropping Clusters 14 – 9.
Dropping Clustered Tables 14 – 10.
Dropping Cluster Indexes 14 – 10.

Chapter 15 Managing Hash Clusters 15 – 1.
Guidelines for Managing Hash Clusters 15 – 2.

Advantages of Hashing 15 – 2.
Disadvantages of Hashing 15 – 3.

 xiiiContents

Estimate Size Required by Hash Clusters and Set
Storage Parameters 15 – 4.

Creating Hash Clusters 15 – 5.
Controlling Space Use Within a Hash Cluster 15 – 5.

Altering Hash Clusters 15 – 8.
Dropping Hash Clusters 15 – 9.

Chapter 16 General Management of Schema Objects 16 – 1.
Creating Multiple Tables and Views in A Single Operation 16 – 2. . . .
Renaming Schema Objects 16 – 3.
Analyzing Tables, Indexes, and Clusters 16 – 3.

Using Statistics for Tables, Indexes, and Clusters 16 – 4.
Validating Tables, Indexes, and Clusters 16 – 7.
Listing Chained Rows of Tables and Clusters 16 – 8.

Truncating Tables and Clusters 16 – 9.
Enabling and Disabling Triggers 16 – 11.

Enabling Triggers 16 – 11.
Disabling Triggers 16 – 11.

Managing Integrity Constraints 16 – 12.
Managing Constraints That Have Associated
Indexes 16 – 13.
Enabling and Disabling Integrity Constraints Upon
Definition 16 – 14.
Enabling and Disabling Existing Integrity Constraints 16 – 15.
Dropping Integrity Constraints 16 – 15.
Reporting Constraint Exceptions 16 – 16.

Managing Object Dependencies 16 – 18.
Manually Recompiling Views 16 – 19.
Manually Recompiling Procedures and Functions 16 – 19.
Manually Recompiling Packages 16 – 19.

Managing Object Name Resolution 16 – 20.
Changing Storage Parameters for the Data Dictionary 16 – 21.

Structures in the Data Dictionary 16 – 21.
Errors that Require Changing Data Dictionary Storage 16 – 23. . . .

Displaying Information About Schema Objects 16 – 23.
Oracle Packages 16 – 24.

Chapter 17 Managing Rollback Segments 17 – 1.
Guidelines for Managing Rollback Segments 17 – 2.

Use Multiple Rollback Segments 17 – 2.
Choose Between Public and Private Rollback Segments 17 – 3. . . .
Specify Rollback Segments to Acquire Automatically 17 – 4.

 xiv Oracle7 Server Administrator’s Guide

Set Rollback Segment Sizes Appropriately 17 – 4.
Create Rollback Segments with Many
Equally–Sized Extents 17 – 5.
Set an Optimal Number of Extents for Each
Rollback Segment 17 – 6.
Set the Storage Location for Rollback Segments 17 – 7.

Creating Rollback Segments 17 – 8.
Bringing New Rollback Segments Online 17 – 8.

Specifying Storage Parameters for Rollback Segments 17 – 8.
Setting Storage Parameters When Creating a
Rollback Segment 17 – 9.
Changing Rollback Segment Storage Parameters 17 – 9.
Altering Rollback Segment Format 17 – 10.
Shrinking a Rollback Segment Manually 17 – 10.

Taking Rollback Segments Online and Offline 17 – 10.
Bringing Rollback Segments Online 17 – 11.
Taking Rollback Segments Offline 17 – 12.

Explicitly Assigning a Transaction to a Rollback Segment 17 – 13.
Dropping Rollback Segments 17 – 14.
Monitoring Rollback Segment Information 17 – 15.

Displaying Rollback Segment Information 17 – 15.

PART IV DATABASE SECURITY

Chapter 18 Establishing Security Policies 18 – 1.
System Security Policy 18 – 2.

Database User Management 18 – 2.
User Authentication 18 – 2.
Operating System Security 18 – 3.

Data Security Policy 18 – 3.
User Security Policy 18 – 4.

General User Security 18 – 4.
End–User Security 18 – 5.
Administrator Security 18 – 7.
Application Developer Security 18 – 8.
Application Administrator Security 18 – 10.

Auditing Policy 18 – 11.

 xvContents

Chapter 19 Managing Users and Resources 19 – 1.
Session and User Licensing 19 – 2.

Connecting Privileges 19 – 2.
Setting the Maximum Number of Sessions 19 – 3.
Setting the Session Warning Limit 19 – 4.
Changing Concurrent Usage Limits While the
Database is Running 19 – 4.

User Authentication 19 – 6.
Operating System Authentication 19 – 7.

Oracle Users 19 – 8.
Creating Users 19 – 9.
Altering Users 19 – 12.
Dropping Users 19 – 15.

Managing Resources with Profiles 19 – 16.
Creating Profiles 19 – 16.
Assigning Profiles 19 – 17.
Altering Profiles 19 – 17.
Using Composite Limits 19 – 18.
Dropping Profiles 19 – 19.
Enabling and Disabling Resource Limits 19 – 19.

Listing Information About Database Users and Profiles 19 – 20.
Listing Information about Users and Profiles: Examples 19 – 21. . .

Chapter 20 Managing User Privileges and Roles 20 – 1.
Identifying User Privileges 20 – 2.

System Privileges 20 – 2.
Object Privileges 20 – 6.

Managing User Roles 20 – 8.
Creating a Role 20 – 8.
Predefined Roles 20 – 9.
Role Authorization 20 – 9.
Dropping Roles 20 – 11.

Granting User Privileges and Roles 20 – 12.
Granting System Privileges and Roles 20 – 12.
Granting Object Privileges and Roles 20 – 13.
Granting Privileges on Columns 20 – 14.

Revoking User Privileges and Roles 20 – 15.
Revoking System Privileges and Roles 20 – 15.
Revoking Object Privileges and Roles 20 – 15.
Effects of Revoking Privileges 20 – 16.
Granting to and Revoking from the User Group PUBLIC 20 – 18. .

Granting Roles Using the Operating System or Network 20 – 18.

 xvi Oracle7 Server Administrator’s Guide

Using Operating System Role Identification 20 – 20.
Using Operating System Role Management 20 – 21.
Granting and Revoking Roles When OS_ROLES=TRUE 20 – 21. . .
Enabling and Disabling Roles When OS_ROLES=TRUE 20 – 21. . .
Using Network Connections with Operating
System Role Management 20 – 21.

Listing Privilege and Role Information 20 – 22.
Listing Privilege and Role Information: Examples 20 – 23.

Chapter 21 Auditing Database Use 21 – 1.
Guidelines for Auditing 21 – 2.

Audit via the Database or Operating System 21 – 2.
Keep Audited Information Manageable 21 – 2.

Creating and Deleting the Database Audit Trail Views 21 – 4.
Creating the Audit Trail Views 21 – 5.
Deleting the Audit Trail Views 21 – 5.

Managing Audit Trail Information 21 – 5.
Events Audited by Default 21 – 6.
Setting Auditing Options 21 – 7.
Enabling and Disabling Database Auditing 21 – 15.
Controlling the Growth and Size of the Audit Trail 21 – 16.
Protecting the Audit Trail 21 – 18.

Viewing Database Audit Trail Information 21 – 18.
Listing Active Statement Audit Options 21 – 21.
Listing Active Privilege Audit Options 21 – 21.
Listing Active Object Audit Options for Specific Objects 21 – 21. . .
Listing Default Object Audit Options 21 – 22.
Listing Audit Records 21 – 22.
Listing Audit Records for the AUDIT SESSION Option 21 – 22. . . .

Auditing Through Database Triggers 21 – 22.

PART V DATABASE BACKUP AND RECOVERY

Chapter 22 Archiving Redo Information 22 – 1.
Choosing Between NOARCHIVELOG and
ARCHIVELOG Mode 22 – 2.

Running a Database in NOARCHIVELOG Mode 22 – 2.
Running a Database in ARCHIVELOG Mode 22 – 2.

Turning Archiving On and Off 22 – 4.
Setting the Initial Database Archiving Mode 22 – 4.
Changing the Database Archiving Mode 22 – 5.

 xviiContents

Enabling Automatic Archiving 22 – 6.
Disabling Automatic Archiving 22 – 7.
Performing Manual Archiving 22 – 8.

Tuning Archiving 22 – 9.
Minimizing the Impact on System Performance 22 – 9.
Improving Archiving Speed 22 – 10.

Displaying Archiving Status Information 22 – 10.
Specifying the Archived Redo Log Filename
Format and Destination 22 – 11.

Chapter 23 Backing Up a Database 23 – 1.
Guidelines for Database Backups 23 – 2.

Test Backup and Recovery Strategies 23 – 2.
Perform Operating System Backups Frequently
and Regularly 23 – 2.
Backup Appropriate Portions of the Database
When Making Structural Changes 23 – 3.
Back Up Often–Used Tablespaces Frequently 23 – 3.
Keep Older Backups 23 – 3.
Export Database Data for Added Protection
and Flexibility 23 – 4.
Consider Distributed Database Backups 23 – 4.
Back Up after Creating Unrecoverable Objects 23 – 4.

Creating a Backup Strategy 23 – 5.
Backup Strategies in NOARCHIVELOG Mode 23 – 5.
Backup Strategies in ARCHIVELOG Mode 23 – 6.

Read–Only Tablespaces and Backup 23 – 7.
Performing Backups 23 – 7.

Listing Database Files Before Backup 23 – 8.
Performing Full Offline Backups 23 – 8.
Performing Partial Backups 23 – 10.
Performing Control File Backups 23 – 15.

Recovering From an Incomplete Online Tablespace
Backup 23 – 17.
Using the Export and Import Utilities for
Supplemental Database Protection 23 – 18.

Using Export 23 – 18.
Using Import 23 – 19.

 xviii Oracle7 Server Administrator’s Guide

Chapter 24 Recovering a Database 24 – 1.
Fundamental Recovery Concepts and Strategies 24 – 2.

Important Recovery Data Structures 24 – 2.
Recovery Operations 24 – 3.
Recovery Planning and Strategies 24 – 3.

Preparing for Media Recovery 24 – 7.
Media Recovery Commands 24 – 7.
Issues Common to All Media Recovery Operations 24 – 8.
Restoring a Full Backup, NOARCHIVELOG Mode 24 – 16.
Specifying Parallel Recovery 24 – 17.

Performing Complete Media Recovery 24 – 18.
Performing Closed Database Recovery 24 – 18.
Performing Open–Database, Offline–Tablespace
Recovery 24 – 20.
Performing Open–Database, Offline–Tablespace
Individual Recovery 24 – 22.

Performing Incomplete Media Recovery 24 – 24.
Performing Cancel–Based Recovery 24 – 24.
Performing Time–Based Recovery 24 – 28.
Performing Change–Based Recovery 24 – 33.

Preparing for Disaster Recovery 24 – 38.
Planning and Creating a Standby Database 24 – 38.
Altering the Physical Structure of the Primary
Database 24 – 41.

Unrecoverable Objects and Recovery 24 – 46.
Read–Only Tablespaces and Recovery 24 – 46.

Using a Backup Control File 24 – 46.
Re–Creating a Control File 24 – 47.

Examples of Recovery Procedures 24 – 47.
Types of Media Failures 24 – 47.
Loss of Datafiles 24 – 48.
Loss of Online Redo Log Files 24 – 49.
Loss of Archived Redo Log Files 24 – 52.
Loss of Control Files 24 – 53.
Recovery From User Errors 24 – 55.

PART VI REFERENCE

Appendix A Space Estimations for Schema Objects A – 1.

Index

P A R T

 I Basic Database
Administration

C H A P T E R

1
T

1 – 1The Oracle7 Database Administrator

The Oracle7 Database
Administrator

his chapter describes the responsibilities of the person who
administers the Oracle7 Server, the database administrator.

The following topics are included:

• Types of Oracle7 Users

• Database Administrator Security and Privileges

• Database Administrator Authentication

• Password File Administration

• Database Administrator Utilities

• Initial Priorities of a Database Administrator

• Identifying Oracle Software Releases

Database
Administrators

1 – 2 Oracle7 Server Administrator’s Guide

Types of Oracle7 Users

At your site, the types of users and their responsibilities may vary. For
example, at a large site the duties of a database administrator might be
divided among several people.

This section includes the following topics:

• Database Administrators

• Security Officers

• Application Developers

• Application Administrators

• Database Users

• Network Administrators

Because an Oracle7 database system can be quite large and have many
users, someone or some group of people must manage this system. The
database administrator (DBA) is this manager. Every database requires at
least one person to perform administrative duties.

A database administrator’s responsibilities can include the following
tasks:

• installing and upgrading the Oracle7 Server and application tools

• allocating system storage and planning future storage
requirements for the database system

• creating primary database storage structures (tablespaces) after
application developers have designed an application

• creating primary objects (tables, views, indexes) once application
developers have designed an application

• modifying the database structure, as necessary, from information
given by application developers

• enrolling users and maintaining system security

• ensuring compliance with your Oracle7 license agreement

• controlling and monitoring user access to the database

• monitoring and optimizing the performance of the database

Security Officers

Application
Developers

Application
Administrators

Database Users

Network
Administrators

1 – 3The Oracle7 Database Administrator

• planning for backup and recovery of database information

• maintaining archived data on tape

• backing up and restoring the database

• contacting Oracle Corporation for technical support

In some cases, a database might also have one or more security officers.
A security officer is primarily concerned with enrolling users, controlling
and monitoring user access to the database, and maintaining system
security. You might not be responsible for these duties if your site has a
separate security officer.

An application developer designs and implements database applications
An application developer’s responsibilities include the following tasks:

• designing and developing the database application

• designing the database structure for an application

• estimating storage requirements for an application

• specifying modifications of the database structure for an
application

• relaying the above information to a database administrator

• tuning the application during development

• establishing an application’s security measures during
development

An Oracle site might also have one or more application administrators.
An application administrator is responsible for the administration needs of
a particular application.

Database users interact with the database via applications or utilities. A
typical user’s responsibilities include the following tasks:

• entering, modifying, and deleting data, where permitted

• generating reports of data

At some sites there may be one or more network administrators.
Network administrators may be responsible for administering Oracle7
networking products, such as SQL*Net.

See Also: “Network Administration” in Oracle7 Server Distributed
Systems, Volume I.

The Database
Administrator’s
Operating System
Account

Database
Administrator
Usernames

1 – 4 Oracle7 Server Administrator’s Guide

Database Administrator Security and Privileges

To accomplish administrative tasks in Oracle7, you need extra privileges
both within the database and possibly in the operating system of the
server on which the database runs. Access to a database administrator’s
account should be tightly controlled.

This section includes the following topics:

• The Database Administrator’s Operating System Account

• Database Administrator Usernames

• The DBA Role

See Also: “Administrator Security” on page 18 – 7.

To perform many of the administrative duties for a database, you must
be able to execute operating system commands. Depending on the
operating system that executes Oracle7, you might need an operating
system account or ID to gain access to the operating system. If so, your
operating system account might require more operating system
privileges or access rights than many database users require (for
example, to perform Oracle7 software installation). Although you do not
need the Oracle7 files to be stored in your account, you should have
access to them.

In addition, the Server Manager program requires that your operating
system account or ID be distinguished in some way to allow you to use
operating system privileged Server Manager commands.

See Also: The method of distinguishing a database administrator’s
account is operating system–specific. See your operating system–specific
Oracle documentation for information.

Two user accounts are automatically created with the database and
granted the DBA role. These two user accounts are:

• SYS (initial password: CHANGE_ON_INSTALL)

• SYSTEM (initial password: MANAGER)

These two usernames are described in the following sections.

Note: To prevent inappropriate access to the data dictionary
tables, you must change the passwords for the SYS and SYSTEM
usernames immediately after creating an Oracle7 database.

You will probably want to create at least one additional administrator
username to use when performing daily administrative tasks.

SYS

SYSTEM

The DBA Role

1 – 5The Oracle7 Database Administrator

When any database is created, the user SYS, identified by the password
CHANGE_ON_INSTALL, is automatically created and granted the DBA
role.

All of the base tables and views for the database’s data dictionary are
stored in the schema SYS. These base tables and views are critical for the
operation of Oracle7. To maintain the integrity of the data dictionary,
tables in the SYS schema are manipulated only by Oracle7; they should
never be modified by any user or database administrator, and no one
should create any tables in the schema of the user SYS. (However, you
can change the storage parameters of the data dictionary settings if
necessary.)

Most database users should never be able to connect using the SYS
account. You can connect to the database using this account but should
do so only when instructed by Oracle personnel or documentation.

Also when a database is created, the user SYSTEM, identified by the
password MANAGER, is automatically created and granted all system
privileges for the database.

The SYSTEM username creates additional tables and views that display
administrative information, and internal tables and views used by
Oracle tools. Never create tables of interest to individual users in the
SYSTEM schema.

See Also: “Altering Users” on page 19 – 12.

“Changing Storage Parameters for the Data Dictionary” on page 16 – 21.

“Administrator Security” on page 18 – 7.

A predefined role, named “DBA”, is automatically created with every
Oracle7 database. This role contains all database system privileges.
Therefore, it is very powerful and should only be granted to fully
functional database administrators.

Selecting an
Authentication Method

1 – 6 Oracle7 Server Administrator’s Guide

Database Administrator Authentication

Database administrators must often perform special operations such as
shutting down or starting up a database. Because these operations
should not be performed by normal database users, the database
administrator usernames need a more secure authentication scheme.

This section includes the following topics:

• Selecting an Authentication Method

• Using Operating System Authentication

• OSOPER and OSDBA

• Using a Password File

The following methods for authenticating database administrators
replace the CONNECT INTERNAL syntax provided with earlier
versions of the Oracle7 Server (CONNECT INTERNAL continues to be
supported for backwards compatibility only):

• operating system authentication

• password files

Depending on whether you wish to administer your database locally on
the same machine that the database resides or if you wish to administer
many different databases from a single remote client, you can choose
between operating system authentication or password files to
authenticate database administrators. Figure 1 – 1 illustrates the choices
you have for database administrator authentication schemes.

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Use a password file

Do you
have a secure
connection?

Do you
want to use OS
authentication?

Figure 1 – 1 Database Administrator Authentication Methods

Using Operating
System Authentication

OSOPER and OSDBA

1 – 7The Oracle7 Database Administrator

On most operating systems, OS authentication for database
administrators involves placing the OS username of the database
administrator in a special group (on UNIX systems, this is the DBA
group) or giving that OS username a special process right.

The database uses password files to keep track of database usernames
that have been granted administrator privileges.

See Also: “User Authentication” in Oracle7 Server Concepts.

If you choose, you can have your operating system authenticate users
performing database administration operations.

To Use Operating System Authentication

1. Set up the user to be authenticated by the operating system.

2. Make sure that the initialization parameter,
REMOTE_LOGIN_PASSWORD, is set to NONE, which is the
default value for this parameter.

3. Authenticated users should now be able to connect to a local
database, or to connect to a remote database over a secure
connection, by typing one of the following commands:

CONNECT / AS SYSOPER

CONNECT / AS SYSDBA

If you successfully connect as INTERNAL using an earlier release of
Oracle7, you should be able to continue to connect successfully using
the new syntax shown in step 3.

Note: Note that to connect as SYSOPER or SYSDBA using OS
authentication you do not have to have been granted the
SYSOPER or SYSDBA system privileges. Instead, the server
verifies that you have been granted the appropriate OSDBA or
OSOPER roles at the operating system level.

See Also: “Operating System Authentication” on page 19 – 7.

Two special operating system roles control database administrator
logins when using operating system authentication: OSOPER and
OSDBA.

Permits the user to perform STARTUP,
SHUTDOWN, ALTER DATABASE
OPEN/MOUNT, ALTER DATABASE BACKUP,

OSOPER

Using an
Authentication
Password File

1 – 8 Oracle7 Server Administrator’s Guide

ARCHIVE LOG, and RECOVER, and includes the
RESTRICTED SESSION privilege.

Contains all system privileges with ADMIN
OPTION, and the OSOPER role; permits CREATE
DATABASE and time–based recovery.

OSOPER and OSDBA can have different names and functionality,
depending on your operating system.

The OSOPER and OSDBA roles can only be granted to a user through
the operating system. They cannot be granted through a GRANT
statement, nor can they be revoked or dropped. When a user logs on
with administrator privileges and REMOTE_LOGIN_PASSWORDFILE
is set to NONE, Oracle7 communicates with the operating system and
attempts to enable first OSDBA and then, if unsuccessful, OSOPER. If
both attempts fail, the connection fails. How you grant these privileges
through the operating system is operating system–specific.

If you are performing remote database administration, you should
consult your SQL*Net documentation to determine if you are using a
secure connection. Most popular connection protocols, such as TCP/IP
and DECnet, are not secure, regardless of which version of SQL*Net you
are using.

See Also: For information about OS authentication of database
administrators, see your operating system–specific Oracle
documentation.

If you have determined that you need to use a password file to
authenticate users performing database administration, you must
complete the steps outlined below. Each of these steps is explained in
more detail in the following sections of this chapter.

To Use a Password File to Authenticate Users

1. Create the password file using the ORAPWD utility.

ORAPWD FILE=filename PASSWORD=password ENTRIES= max_users

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter
to EXCLUSIVE.

3. Add users to the password file by using SQL to grant the
appropriate privileges to each user who needs to perform database
administration, as shown in the following examples.

GRANT SYSDBA TO scott

GRANT SYSOPER TO scott

OSDBA

Using ORAPWD

1 – 9The Oracle7 Database Administrator

The privilege SYSDBA permits the user to perform the same
operations as OSDBA. Likewise, the privilege SYSOPER permits the
user to perform the same operations as OSOPER.

4. Privileged users should now be able to connect to the database by
using a command similar to the one shown below.

CONNECT scott/tiger@acct.hq.com AS SYSDBA

See Also: “OSOPER and OSDBA” on page 1 – 7.

Some platforms provided support for password files before release 7.1.
If you are currently using such a password file, you should consult your
operating system–specific Oracle documentation for additional
information on migrating to the new password file utility.

Password File Administration

You can create a password file using the password file creation utility,
ORAPWD or, for selected operating systems, you can create this file as
part of your standard installation.

This section includes the following topics:

• Using ORAPWD

• Setting REMOTE_LOGIN_PASSWORDFILE

• Adding Users to a Password File

• Connecting with Administrator Privileges

• Maintaining a Password File

See Also: See your operating system–specific Oracle documentation for
information on using the installer utility to install the password file.

When you invoke the password file creation utility without supplying
any parameters, you receive a message indicating the proper use of the
command as shown in the following sample output:

1 – 10 Oracle7 Server Administrator’s Guide

> orapwd

Usage: orapwd file=<fname> password=<password> entries=<users>

 where

 file – name of password file (mand),

 password – password for SYS and INTERNAL (mand),

 entries – maximum number of distinct DBAs and OPERs (opt),

 There are no spaces around the equal–to (=) character.

For example, the following command creates a password file named
ACCT.PWD that allows up to 30 privileged users with different
passwords. The file is initially created with the password SECRET for
users connecting as INTERNAL or SYS:

> ORAPWD FILE=acct.pwd PASSWORD=secret ENTRIES=30

Following are descriptions of the parameters in the ORAPWD utility.

FILE This parameter sets the name of the
password file being created. You must
specify the full pathname for the file. The
contents of this file are encrypted, and the
file is not user–readable. This parameter is
mandatory.

On some platforms, the name of the
password file is derived from the system
identifier (SID). If so, you must specify this
predefined name when using the ORAPWD
utility. On other systems the name of the
password file is stored in an environment
variable, such as ORA_sid_PWFILE. If your
system uses an environment variable, you
must set this variable on the server
platform to match the pathname that you
specified for the file before starting the
instance.

If you are running multiple instances of
Oracle7 using the Oracle7 Parallel Server,
the environment variable for each instance
should point to the same password file.

Warning: It is critically important to the security of your
system that you protect your password file, and environment
variables that identify the location of the password file. Any
user with access to these could potentially compromise the
security of the connection.

Setting
REMOTE_LOGIN_
PASSWORDFILE

1 – 11The Oracle7 Database Administrator

PASSWORD This parameter sets the password for
INTERNAL and SYS. If you issue the
ALTER USER command to change the
password after connecting to the database,
both the password stored in the data
dictionary and the password stored in the
password file are updated. The INTERNAL
user is supported for backwards
compatibility only. This parameter is
mandatory.

ENTRIES This parameter sets the maximum number
of entries allowed in the password file. This
corresponds to the maximum number of
distinct users allowed to connect to the
database as SYSDBA or SYSOPER. Entries
can be reused as users are added to and
removed from the password file. This
parameter is required if you ever want this
password file to be EXCLUSIVE.

Warning: If you ever need to exceed this limit, you must create
a new password file. It is safest to select a number larger than
you think you will ever need.

See Also: Consult your operating system–specific Oracle documentation
for the exact name of the password file, or for the name of the
environment variable used to specify this name for your operating
system.

In addition to creating the password file, you must also set the
initialization parameter REMOTE_LOGIN_PASSWORDFILE to the
appropriate value. The values recognized are described below.

Note: To STARTUP an instance or database, you must use
Server Manager. You must specify a database name and a
parameter file to initialize the instance settings. You may specify
a fully–qualified remote database name using SQL*Net.
However, the initialization parameter file and any associated
files, such as a configuration file, must exist on the client
machine. That is, the parameter file must be on the machine
where you are running Server Manager.

Adding Users to a
Password File

1 – 12 Oracle7 Server Administrator’s Guide

NONE Setting this parameter to NONE causes
Oracle7 to behave as if the password file
does not exist. That is, no privileged
connections are allowed over non–secure
connections. NONE is the default value for
this parameter.

EXCLUSIVE An EXCLUSIVE password file can be used
with only one database. Only an
EXCLUSIVE file can contain the names of
users other than SYS and INTERNAL.
Using an EXCLUSIVE password file allows
you to grant SYSDBA and SYSOPER system
privileges to individual users and have
them connect as themselves.

SHARED A SHARED password file can be used by
multiple databases. However, the only
users recognized by a SHARED password
file are SYS and INTERNAL; you cannot
add users to a SHARED password file. All
users needing SYSDBA or SYSOPER system
privileges must connect using the same
name, SYS, and password. This option is
useful if you have a single DBA
administering multiple databases.

Suggestion: To achieve the greatest level of security, you
should set the REMOTE_LOGIN_PASSWORDFILE file
initialization parameter to EXCLUSIVE immediately after
creating the password file.

When you grant SYSDBA or SYSOPER privileges to a user, that user’s
name and privilege information is added to the password file. If the
server does not have an EXCLUSIVE password file, that is, if the
initialization parameter REMOTE_LOGIN_PASSWORDFILE is NONE
or SHARED, you receive an error message if you attempt to grant these
privileges.

A user’s name only remains in the password file while that user has at
least one of these two privileges. When you revoke the last of these
privileges from a user, that user is removed from the password file.

Granting and Revoking
SYSOPER and SYSDBA
Privileges

Listing Password File
Members

1 – 13The Oracle7 Database Administrator

To Create a Password File and Add New Users to It

1. Follow the instructions on page 1 – 9 for creating a password file.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter
to EXCLUSIVE.

3. Connect with SYSDBA privileges as shown in the following
example:

CONNECT SYS/change_on_install AS SYSDBA

4. Startup the instance and create the database if necessary, or mount
and open an existing database.

5. Create users as necessary. Grant SYSOPER or SYSDBA privileges to
yourself and other users as appropriate.

6. These users are now added to the password file and can connect to
the database as SYSOPER or SYSDBA with a username and
password (instead of using SYS). The use of a password file does not
prevent OS authenticated users from connecting if they meet the
criteria for OS authentication.

If your server is using an EXCLUSIVE password file, use the GRANT
command to grant the SYSDBA or SYSOPER system privilege to a user,
as shown in the following example:

GRANT SYSDBA TO scott

Use the REVOKE command to revoke the SYSDBA or SYSOPER system
privilege from a user, as shown in the following example:

REVOKE SYSDBA FROM scott

Because SYSDBA and SYSOPER are the most powerful database
privileges, the ADMIN OPTION is not used. Only users currently
connected as SYSDBA (or INTERNAL) can grant SYSDBA or SYSOPER
system privileges to another user. This is also true of REVOKE. These
privileges cannot be granted to roles, since roles are only available after
database startup. Do not confuse the SYSDBA and SYSOPER database
privileges with operating system roles, which are a completely
independent feature.

Use the V$PWFILE_USERS view to determine which users have been
granted SYSDBA and SYSOPER system privileges for a database. The
columns displayed by this view are as follows:

Connecting with
Administrator
Privileges

Connecting with
Administrator Privileges:
Example

Non–Secure Remote
Connections

Local and Secure Remote
Connections

1 – 14 Oracle7 Server Administrator’s Guide

The name of the user that is recognized by the
password file.

If the value of this column is TRUE, the user can log
on with SYSDBA system privileges.

If the value of this column is TRUE, the user can log
on with SYSOPER system privileges.

When you connect with SYSOPER or SYSDBA privileges using a
username and password, you are connecting with a default schema of
SYS, not the schema that is generally associated with your username.

Use the AS SYSDBA or AS SYSOPER clauses of the Server Manager
CONNECT command to connect with administrator privileges.

For example, assume user SCOTT has issued the following commands:

CONNECT scott/tiger

CREATE TABLE scott_test(name VARCHAR2(20));

Later, when SCOTT issues these commands:

CONNECT scott/tiger AS SYSDBA

SELECT * FROM scott_test;

He receives an error that SCOTT_TEST does not exist. That is because
SCOTT now references the SYS schema by default, whereas the table
was created in the SCOTT schema.

To connect to Oracle7 as a privileged user over a non–secure connection,
you must meet the following conditions:

• The server to which you are connecting must have a password
file.

• You must be granted the SYSOPER or SYSDBA system privilege.

• You must connect using a username and password.

To connect to Oracle7 as a privileged user over a local or a secure remote
connection, you must meet either of the following sets of conditions:

• You can connect using a password file, provided that you meet
the criteria outlined for non–secure connections in the previous
bulleted list.

• If the server is not using a password file, or you have not been
granted SYSOPER or SYSDBA privileges and are therefore not in
the password file, your operating system name must be
authenticated for a privileged connection by the operating
system. This form of authentication is operating system–specific.

USERNAME

SYSDBA

SYSOPER

Maintaining a
Password File

Expanding the Number of
Password File Users

Relocating the Password
File

Removing a Password File

1 – 15The Oracle7 Database Administrator

Consult your operating system–specific Oracle documentation for
details on operating system authentication.

See Also: “Password File Administration” on page 1 – 9.

This section describes how to expand, relocate, and remove the
password file, as well as how to avoid changing the state of the
password file.

If you receive the file full error (ORA–1996) when you try to grant
SYSDBA or SYSOPER system privileges to a user, you must create a
larger password file and re–grant the privileges to the users.

To Replace a Password File

1. Note which users have SYSDBA or SYSOPER privileges by querying
the V$PWFILE_USERS view.

2. Shut down the database.

3. Delete the existing password file.

4. Follow the instructions for creating a new password file using the
ORAPWD utility on page 1 – 9. Be sure to set the ENTRIES
parameter to a sufficiently large number.

5. Follow the instructions for adding users to the password file on
page 1 – 12.

After you have created the password file, you can relocate it as you
choose. After relocating the password file, you must reset the
appropriate environment variables to the new pathname. If your
operating system uses a predefined pathname, you cannot change the
password file location.

If you determine that you no longer need to use a password file to
authenticate users, you can delete the password file and reset the
REMOTE_LOGIN_PASSWORDFILE initialization parameter to NONE.
After removing this file, only users who can be authenticated by the
operating system can perform database administration operations.

Warning: Do not remove or modify the password file if you
have a database or instance mounted using
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE (or
SHARED). If you do, you will be unable to reconnect remotely
using the password file. Even if you replace it, you cannot use

Changing the Password
File State

Server Manager

1 – 16 Oracle7 Server Administrator’s Guide

the new password file, because the timestamp and checksums
will be wrong.

The password file state is stored in the password file. When you first
create a password file, its default state is SHARED. You can change the
state of the password file by setting the parameter
REMOTE_LOGIN_PASSWORDFILE. When you STARTUP an instance,
Oracle7 retrieves the value of this parameter from the initialization
parameter file stored on your client machine. When you mount the
database, Oracle7 compares the value of this parameter to the value
stored in the password file. If these values do not match, the value
stored in the file is overwritten.

Warning: You should use caution to ensure that an
EXCLUSIVE password file is not accidentally changed to
SHARED. If you plan to allow instance STARTUP from multiple
clients, each of those clients must have an initialization
parameter file, and the value of the parameter
REMOTE_LOGIN_PASSWORDFILE must be the same in each
of these files. Otherwise, the state of the password file could
change depending upon where the instance was started.

Database Administrator Utilities

Several utilities are available to help you maintain and control the
Oracle7 Server.

The following topics are included in this section:

• Server Manager

• SQL*Loader

• Export and Import

Server Manager allows you to monitor and control an Oracle7 database.
All administrative operations discussed in this book are executed using
Server Manager. Server Manager has both GUI (Graphical User
Interface) and line mode interfaces.

Server Manager uses a superset of ANSI/ISO standard SQL commands.
The most common administrative commands are available in the menus
of Server Manager/GUI. Commands used less frequently can be typed
into a Server Manager SQL Worksheet and executed.

See Also: Oracle Server Manager User’s Guide.

SQL*Loader

Export and Import

1 – 17The Oracle7 Database Administrator

SQL*Loader is used by both database administrators and users of
Oracle7. It loads data from standard operating system files (files in text
or C data format) into Oracle7 database tables.

See Also: Oracle7 Server Utilities.

The Export and Import utilities allow you to move existing data in
Oracle7 format to and from Oracle7 databases. For example, export files
can archive database data, or move data among different Oracle7
databases that run on the same or different operating systems.

See Also: Oracle7 Server Utilities.

Initial Priorities of a Database Administrator

In general, you must perform a series of steps to get the database system
up and running, and then maintain it.

The following steps are required to configure an Oracle7 Server and
database on any type of computer system. The following sections
include details about each step.

To Configure an Oracle7 Server

• Step 1: Install the Oracle7 Software

• Step 2: Evaluate the Database Server Hardware

• Step 3: Plan the Database

• Step 4: Create and Open the Database

• Step 5: Implement the Database Design

• Step 6: Back up the Database

• Step 7: Enroll System Users

• Step 8: Tune Database Performance

Note: If migrating to a new release, back up your existing
production database before installation. For more information
on preserving your existing production database, see Chapter 1
of the Oracle7 Server Migration.

Step 1: Install the
Oracle7 Software

Step 2: Evaluate the
Database Server
Hardware

Step 3: Plan the
Database

1 – 18 Oracle7 Server Administrator’s Guide

As the database administrator, you must install the Oracle7 Server
software and any front–end tools and database applications that access
the database. In some distributed processing installations, the database
is controlled by a central computer and the database tools and
applications are executed on remote machines; in this case, you must
also install the Oracle7 SQL*Net drivers necessary to connect the remote
machines to the computer that executes Oracle7.

See Also: “Identifying Oracle Software Releases” on page 1 – 20.

For specific requirements and instructions for installation, see your
operating system–specific Oracle documentation and your installation
guides for your front–end tools and SQL*Net drivers.

After installation, evaluate how Oracle7 and its applications can best use
the available computer resources. This evaluation should reveal the
following information:

• how many disk drives are available to Oracle7 and its databases

• how many, if any, dedicated tape drives are available to Oracle7
and its databases

• how much memory is available to the instances of Oracle7 you
will run (See your system’s configuration documentation)

As the database administrator, you must plan:

• the database’s logical storage structure

• the overall database design

• a backup strategy for the database

It is important to plan how the logical storage structure of the database
will affect system performance and various database management
operations. For example, before creating any tablespaces for your
database, you should know how many data files will make up the
tablespace, where the data files will be physically stored (on which disk
drives), and what type of information will be stored in each tablespace.
When planning the database’s overall logical storage structure, take into
account the effects that this structure will have when the database is
actually created and running. Such considerations include how the
database’s logical storage structure will affect the following items:

• the performance of the computer executing Oracle7

• the performance of the database during data access operations

• the efficiency of backup and recovery procedures for the database

Step 4: Create and
Open the Database

Step 5: Implement the
Database Design

Step 6: Back up the
Database

1 – 19The Oracle7 Database Administrator

Plan the relational design of the database’s objects and the storage
characteristics for each of these objects. By planning relationships
between objects and the physical storage of each object before creating it,
you can directly impact the performance of the database as a unit. Be
sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely
important. The physical location of highly accessed data can
dramatically affect application performance.

During the above planning phases, also plan a backup strategy for the
database. After developing this strategy, you might find that you want
to alter the database’s planned logical storage structure or database
design to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed
database design; if you are not familiar with such design issues, refer to
accepted industry–standard books that explain these studies. See
Chapters 9 through 17 for specific information on creating logical
storage structures, objects, and integrity constraints for your
database.

Once you have finalized the database design, you can create the
database and open it for normal use. Depending on your operating
system, a database may already have been created during the
installation procedure for Oracle7. If so, all you need to do is start an
instance, and mount and open the initial database.

To determine if your operating system creates an initial database during
the installation of Oracle7, check your installation or user’s guide. If no
database is created during installation or you want to create an
additional database, see Chapter 2 for this procedure. See Chapter 3 for
database and instance startup and shutdown procedures.

Once you have created and started the database, you can create the
database’s planned logical structure by creating all necessary rollback
segments and tablespaces. Once this is built, you can create the objects
for your database.

See Chapters 8 through 17 for instructions on creating logical storage
structures and objects for your database.

After you have created the database structure, carry out the planned
backup strategy for your database by creating any additional redo log
files, taking the first full database backup (online or offline), and
scheduling future database backups at regular intervals.

Step 7: Enroll System
Users

Step 8: Tune Database
Performance

Release Number
Format

1 – 20 Oracle7 Server Administrator’s Guide

See Chapters 22 through 24 for instructions on customizing your backup
operations and performing recovery procedures.

Once you have backed up the database structure, you can begin to enroll
the users of the database in accordance with your Oracle7 license
agreement, create roles for these users, and grant appropriate roles to
them.

See Chapters 18 through 20 for the procedures to create user accounts
and roles, and information on complying with your license agreement.

Optimizing the database system’s performance is one of your ongoing
responsibilities.

See Also: “Initial Tuning Guidelines” on page 2 – 14 describes steps you
can take to start tuning your database immediately after creation.

Oracle7 Server Tuning manual, for information about tuning your
database and applications.

Identifying Oracle Software Releases

Because Oracle products are always undergoing development and
change, several releases of the products can be in use at any one time. To
identify a software product fully, as many as five numbers may be
required.

This section includes the following topics:

• Release Number Format

• Versions of Other Oracle Software

• Checking Your Current Release Number

An Oracle7 Server distribution tape might be labeled “Release 7.0.4.1.”
The following sections translate this number.

7.0.4.1
Version Number

Maintenance Release
Number

Patch Release
Number

Port–Specific Patch
Release Number

Figure 1 – 2 Example of an Oracle7 Release Number

Version Number

Maintenance Release
Number

Patch Release Number

Port–Specific Patch
Release Number

Examples of Release
Numbers

Versions of Other
Oracle Software

Checking Your Current
Release Number

1 – 21The Oracle7 Database Administrator

The version number, such as 7, is the most general identifier. A version is
a major new edition of the software, which usually contains significant
new functionality.

The maintenance release number signifies different releases of the
general version, starting with 0, as in version 7.0. The maintenance
release number increases when bug fixes or new features to existing
programs become available.

The patch release number identifies a specific level of the object code,
such as 7.0.4. A patch release contains fixes for serious bugs that cannot
wait until the next maintenance release. The first distribution of a
maintenance release always has a patch number of 0.

A fourth number (and sometimes a fifth number) can be used to identify
a particular emergency patch release of a software product on that
operating system, such as 7.0.4.1. or 7.0.4.1.3. An emergency patch is not
usually intended for wide distribution; it usually fixes or works around
a particular, critical problem.

The following examples show possible release numbers for Oracle7:

7.0.0 the first distribution of Oracle7

7.1.0 the first maintenance release of Oracle7

7.2.0 the second maintenance release (the third release in all) of
Oracle7

7.2.2 the second patch release after the second maintenance re-
lease

As Oracle Corporation introduces new products and enhances existing
ones, the version numbers of the individual products increment
independently. Thus, you might have an Oracle7 Server Release 7.0.12.2
system working with Oracle Forms Version 4.0.3, SQL*Plus Version
3.1.9, and Pro*FORTRAN Version 1.5.2. (These numbers are used only
for illustration.)

To see which release of Oracle and its components you are using, query
the data dictionary view PRODUCT_COMPONENT_VERSION, as
shown below (This information is useful if you need to call Oracle
Support.):

SVRMGR> SELECT * FROM product_component_version;

PRODUCT VERSION STATUS

–––––––––––––––––––––––––– ––––––––––––––––––– ––––––––––––

CORE 3.4.1.0.0 Production

NLSRTL 3.1.3.0.0 Production

1 – 22 Oracle7 Server Administrator’s Guide

Oracle7 Server 7.2.1.0.0 Beta Release

PL/SQL 2.2.1.0.0 Beta

TNS for SunOS: 2.1.4.0.0 Production

5 rows selected.

C H A P T E R

2
T

2 – 1Creating a Database

Creating a Database

his chapter lists the steps necessary to create an Oracle7 database,
and includes the following topics:

• Considerations Before Creating a Database

• Creating an Oracle7 Database

• Parameters

• Considerations After Creating a Database

• Initial Tuning Guidelines

See Also: Trusted Oracle7 Server Administrator’s Guide.

Oracle Server Manager User’s Guide.

2 – 2 Oracle7 Server Administrator’s Guide

Considerations Before Creating a Database

This section includes the following topics:

• Creation Prerequisites

• Using an Initial Database

• Migrating an Older Version of the Database

Database creation prepares several operating system files so they can
work together as an Oracle7 database. You need only create a database
once, regardless of how many datafiles it has or how many instances
access it. Creating a database can also erase information in an existing
database and create a new database with the same name and physical
structure.

Creating a database includes the following operations:

• creating new datafiles or erasing data that existed in previous
datafiles

• creating structures that Oracle7 requires to access and use the
database (the data dictionary)

• creating and initializing the control files and redo log files for the
database

Consider the following issues before you create a database:

• Plan your database tables and indexes, and estimate how much
space they will require.

For information about tables, indexes, and space management,
see Chapters 9 through 16.

• Plan how to protect your new database, including the
configuration of its online and archived redo log (and how much
space it will require), and a backup strategy.

For information about the online and archive redo logs, see
Chapters 5 and 22 respectively.

For information about database backup and recovery, see
Chapters 23 and 24.

• Select the database character set. You must specify the database
character set when you create the database. If you create the
database with the wrong character set by mistake, you can update
the SYS.PROPS$ table with the new character set; however, you
cannot change characters already there. All character data,
including data in the data dictionary, is stored in the database
character set. If users access the database using a different

Creation Prerequisites

Using an Initial
Database

Migrating an Older
Version of the
Database

2 – 3Creating a Database

character set, the database character set should be the same as, or
a superset of, all character sets they use.

Also become familiar with the principles and options of starting up and
shutting down an instance, mounting and opening a database, and
using parameter files. For information about starting up and shutting
down, see Chapter 3.

See Also: “National Language Support” in the Oracle7 Server Reference.

To create a new database, you must have the following:

• the operating system privileges associated with a fully
operational database administrator

• sufficient memory to start the Oracle7 instance

• sufficient disk storage space for the planned database on the
computer that executes Oracle7

Depending on your operating system, a database might have been
created automatically as part of the installation procedure for Oracle7.
You can use this initial database and customize it to meet your
information management requirements, or discard it and create one or
more new databases to replace it.

If you are using a previous release of Oracle7, database creation is
required only if you want an entirely new database. Otherwise, you can
migrate your existing Oracle7 databases managed by a previous version
of Oracle7 and use them with the new version of the Oracle7 software.

See Also: Oracle7 Server Migration manual for information about
migrating an existing database.

For information about migrating to Trusted Oracle7, see the Trusted
Oracle7 Server Administrator’s Guide.

For more information about migrating an existing database, see your
operating system–specific Oracle documentation.

Steps for Creating an
Oracle7 Database

Step 1

Step 2

2 – 4 Oracle7 Server Administrator’s Guide

Creating an Oracle7 Database

This section includes the following topics:

• Steps for Creating an Oracle7 Database

• Creating a Database: Example

• Troubleshooting Database Creation

• Dropping a Database

These steps, which describe how to create an Oracle7 database, should
be followed in the order presented.

To Create a New Database and Make It Available for System Use

1. Back up any existing databases.

2. Create parameter files.

3. Edit new parameter files.

4. Check the instance identifier for your system.

5. Start Server Manager and connect to Oracle7 as an administrator.

6. Start an instance.

7. Create the database.

8. Back up the database.

See Also: These steps provide general information about database
creation on all operating systems. See your operating system–specific
Oracle documentation for information about creating databases on your
platform.

Back up any existing databases.

Oracle Corporation strongly recommends that you make complete
backups of all existing databases before creating a new database, in case
database creation accidentally affects some existing files. Backup should
include parameter files, datafiles, redo log files, and control files.

Create parameter files.

The instance (System Global Area and background processes) for any
Oracle7 database is started using a parameter file.

Step 3

2 – 5Creating a Database

Each database on your system should have at least one customized
parameter file that corresponds only to that database. Do not use the
same file for several databases.

To create a parameter file for the database you are about to make, use
your operating system to make a copy of the parameter file that Oracle7
provided on the distribution media. Give this copy a new filename. You
can then edit and customize this new file for the new database.

See Also: For more information about copying the parameter file, see
your operating system–specific Oracle documentation.

Note: In distributed processing environments, Server Manager
is often executed from a client machine of the network. If a
client machine is being used to execute Server Manager and
create a new database, you need to copy the new parameter file
(currently located on the computer executing Oracle7) to your
client workstation. This procedure is operating
system–dependent. For more information about copying files
among the computers of your network, see your operating
system–specific Oracle documentation.

Edit new parameter files.

To create a new database, inspect and edit the following parameters of
the new parameter file:

Parameter Described on

DB_NAME page 2 – 9

DB_DOMAIN page 2 – 9

CONTROL_FILES page 2 – 10

DB_BLOCK_SIZE page 2 – 11

DB_BLOCK_BUFFERS page 2 – 11

PROCESSES page 2 – 12

ROLLBACK_SEGMENTS page 2 – 12

Table 2 – 1 Suggested Initialization Parameters to Edit

You should also edit the appropriate license parameter(s):

Parameter Described on

LICENSE_MAX_SESSIONS page 2 – 12

LICENSE_SESSION_WARNING page 2 – 12

LICENSE_MAX_USERS page 2 – 13

Table 2 – 2 License Initialization Parameters

Step 4

Step 5

Step 6

Step 7

2 – 6 Oracle7 Server Administrator’s Guide

Check the instance identifier for your system.

If you have other databases, check the Oracle7 instance identifier. The
Oracle7 instance identifier should match the name of the database (the
value of DB_NAME) to avoid confusion with other Oracle7 instances
that are running concurrently on your system.

See your operating system–specific Oracle documentation for more
information.

Start Server Manager and connect to Oracle7 as an administrator.

Once Server Manager is running, connect to the database as an
administrator.

See Also: Starting Server Manager is operating system specific; see your
operating system–specific Oracle documentation for details.

Start an instance.

To start an instance (System Global Area and background processes) to
be used with the new database, use the Startup Database dialog box of
Server Manager. In the Startup Database dialog box, make sure that you
have selected the Startup Nomount radio button.

After selecting the Startup Nomount, the instance starts. At this point,
there is no database. Only an SGA and background processes are started
in preparation for the creation of a new database.

Create the database.

To create the new database, use the SQL command CREATE
DATABASE, optionally setting parameters within the statement to name
the database, establish maximum numbers of files, name the files and set
their sizes, and so on.

Step 8

Creating a Database:
Example

2 – 7Creating a Database

When you execute a CREATE DATABASE statement, Oracle performs
the following operations:

• creates the datafiles for the database

• creates the control files for the database

• creates the redo log files for the database

• creates the SYSTEM tablespace and the SYSTEM rollback segment

• creates the data dictionary

• creates the users SYS and SYSTEM

• specifies the character set that stores data in the database

• mounts and opens the database for use

Warning: Make sure that the datafiles and redo log files that
you specify do not conflict with files of another database.

Back up the database.

You should make a full backup of the database to ensure that you have a
complete set of files from which to recover if a media failure occurs. See
Chapter 23.

See Also: “Backing Up a Database,” Chapter 23.

“Using Parameter Files” on page 3 – 10 for more information about
parameter files.

Oracle7 Server SQL Reference for information about the CREATE
DATABASE command, character sets, and database creation.

The following statement is an example of a CREATE DATABASE
statement:

CREATE DATABASE test

LOGFILE

GROUP 1 (’test_log1a’, ’test_log1b’) SIZE 500K,

GROUP 2 (’test_log2a’, ’test_log2b’) SIZE 500K,

DATAFILE ’test_system’ SIZE 10M;

The values of the MAXLOGFILES, MAXLOGMEMBERS,
MAXDATAFILES, MAXLOGHISTORY, and MAXINSTANCES options
in this example assume the default values, which are operating
system–dependent. The database is mounted in the default modes
NOARCHIVELOG and EXCLUSIVE and then opened.

Troubleshooting
Database Creation

Dropping a Database

2 – 8 Oracle7 Server Administrator’s Guide

The items and information in the example statement above result in
creating a database with the following characteristics:

• The new database is named TEST.

• The SYSTEM tablespace of the new database is comprised of one
10 MB datafile named TEST_SYSTEM.

• The new database has two online redo log groups, each
containing two 500 KB members.

• The new database does not overwrite any existing files to create
the control files specified in the parameter file.

Note: You can set several limits during database creation. Some
of these limits are also subject to superseding limits of the
operating system and can affect each other. For example, if you
set MAXDATAFILES, Oracle7 allocates enough space in the
control file to store MAXDATAFILES filenames, even if the
database has only one datafile initially; because the maximum
control file size is limited and operating system–dependent, you
might not be able to set all CREATE DATABASE parameters at
their theoretical maximums.

See Also: For more information about setting limits during database
creation, see the Oracle7 Server SQL Reference.

See your operating system–specific Oracle documentation for
information about operating system limits.

If for any reason database creation fails, shut down the instance and
delete any files created by the CREATE DATABASE statement before
you attempt to create it once again.

After correcting the error that caused the failure of the database creation,
return to Step 6 of “Creating a Oracle7 Database.”

To drop a database, remove its datafiles, redo log files, and all other
associated files (control files, parameter files, archived log files).

To view the names of the database’s datafiles and redo log files, query
the data dictionary views V$DBFILE and V$LOGFILE.

See Also: For more information about these views, see the Oracle7 Server
Reference.

DB_NAME and
DB_DOMAIN

2 – 9Creating a Database

Parameters

As described in Step 3 of “Creating an Oracle7 Database”, Oracle
suggests you alter a minimum set of parameters. These parameters are
described in the following sections:

• DB_NAME and DB_DOMAIN

• CONTROL_FILES

• DB_BLOCK_SIZE

• DB_BLOCK_BUFFERS

• PROCESSES

• ROLLBACK_SEGMENTS

• License Parameters

• LICENSE_MAX_SESSIONS and
LICENSE_SESSIONS_WARNING

• LICENSE_MAX_USERS

A database’s global database name (name and location within a network
structure) is created by setting both the DB_NAME and DB_DOMAIN
parameters before database creation. After creation, the database’s name
cannot be easily changed. The DB_NAME parameter determines the
local name component of the database’s name, while the DB_DOMAIN
parameter indicates the domain (logical location) within a network
structure. The combination of the settings for these two parameters
should form a database name that is unique within a network. For
example, to create a database with a global database name of
TEST.US.ACME.COM, edit the parameters of the new parameter file as
follows:

DB_NAME = TEST

DB_DOMAIN = US.ACME.COM

DB_NAME must be set to a text string of no more than eight characters.
During database creation, the name provided for DB_NAME is recorded
in the datafiles, redo log files, and control file of the database. If during
database instance startup the value of the DB_NAME parameter (of the
parameter file) and the database name in the control file are not the
same, the database does not start.

DB_DOMAIN is a text string that specifies the network domain where
the database is created; this is typically the name of the organization that
owns the database. If the database you are about to create will ever be

CONTROL_FILES

2 – 10 Oracle7 Server Administrator’s Guide

part of a distributed database system, pay special attention to this
initialization parameter before database creation.

See Also: For more information about distributed databases, see Oracle7
Server Distributed Systems, Volume I.

Include the CONTROL_FILES parameter in your new parameter file
and set its value to a list of control filenames to use for the new
database. If you want Oracle7 to create new operating system files when
creating your database’s control files, make sure that the filenames listed
in the CONTROL_FILES parameter do not match any filenames that
currently exist on your system. If you want Oracle7 to reuse or
overwrite existing files when creating your database’s control files,
make sure that the filenames listed in the CONTROL_FILES parameter
match the filenames that currently exist.

Warning: Use extreme caution when setting this option. If you
inadvertently specify a file that you did not intend and execute
the CREATE DATABASE statement, the previous contents of
that file will be overwritten.

If no filenames are listed for the CONTROL_FILES parameter, Oracle7
uses a default filename.

Oracle Corporation strongly recommends you use at least two control
files stored on separate physical disk drives for each database.
Therefore, when specifying the CONTROL_FILES parameter of the new
parameter file, follow these guidelines:

• List at least two filenames for the CONTROL_FILES parameter.

• Place each control file on a separate physical disk drives by fully
specifying filenames that refer to different disk drives for each
filename.

Note: The file specification for control files is operating
system–dependent. Regardless of your operating system, always
fully specify filenames for your control files.

When you execute the CREATE DATABASE statement (in Step 7), the
control files listed in the CONTROL_FILES parameter of the parameter
file will be created.

See Also: The default filename for the CONTROL_FILES parameter is
operating system–dependent. See your operating system–specific Oracle
documentation for details.

DB_BLOCK_SIZE

DB_BLOCK_BUFFERS

2 – 11Creating a Database

The default data block size for every Oracle7 Server is operating
system–specific. The Oracle7 data block size is typically either 2K or 4K.
Generally, the default data block size is adequate. In some cases,
however, a larger data block size provides greater efficiency in disk and
memory I/O (access and storage of data). Such cases include:

• Oracle7 is on a large computer system with a large amount of
memory and fast disk drives. For example, databases controlled
by mainframe computers with vast hardware resources typically
use a data block size of 4K or greater.

• The operating system that runs Oracle7 uses a small operating
system block size. For example, if the operating system block size
is 1K and the data block size matches this, Oracle7 may be
performing an excessive amount of disk I/O during normal
operation. To correct for this, all databases created should have a
data block size that is larger than the operating system block size.

Each database’s block size is set during database creation by the
initialization parameter DB_BLOCK_SIZE. The block size cannot be
changed after database creation except by re–creating the database. If a
database’s block size is different from the operating system block size,
make the data block size a multiple of the operating system’s block size.

For example, if your operating system’s block size is 2K (2048 bytes), the
following setting for the DB_BLOCK_SIZE initialization parameter
would be valid:

DB_BLOCK_SIZE=4096

DB_BLOCK_SIZE also determines the size of the database buffers in the
buffer cache of the System Global Area (SGA).

See Also: For details about your default block size, see your operating
system–specific Oracle documentation.

This parameter determines the number of buffers in the buffer cache in
the System Global Area (SGA). The number of buffers affects the
performance of the cache. Larger cache sizes reduce the number of disk
writes of modified data. However, a large cache may take up too much
memory and induce memory paging or swapping.

Estimate the number of data blocks that your application accesses most
frequently, including tables, indexes, and rollback segments. This
estimate is a rough approximation of the minimum number of buffers
the cache should have. Typically, 1000 or 2000 buffers is sufficient.

See Also: For more information about tuning the buffer cache, see the
Oracle7 Server Tuning manual.

PROCESSES

ROLLBACK_
SEGMENTS

☞

License Parameters

LICENSE_MAX_
SESSIONS and
LICENSE_SESSIONS_
WARNING

2 – 12 Oracle7 Server Administrator’s Guide

This parameter determines the maximum number of operating system
processes that can be connected to Oracle7 concurrently. The value of
this parameter must include 5 for the background processes and 1 for
each user process. For example, if you plan to have 50 concurrent users,
set this parameter to at least 55.

This parameter is a list of the rollback segments an Oracle7 instance
acquires at database startup. List your rollback segments as the value of
this parameter.

Attention: After installation, you must create at least one
rollback segment in the SYSTEM tablespace in addition to the
SYSTEM rollback segment before you can create any schema
objects.

See Also: For more information about how many rollback segments you
need, see Oracle7 Server Tuning.

Oracle7 helps you ensure that your site complies with its Oracle7 license
agreement. If your site is licensed by concurrent usage, you can track
and limit the number of sessions concurrently connected to an instance.
If your site is licensed by named users, you can limit the number of
named users created in a database. To use this facility, you need to know
which type of licensing agreement your site has and what the maximum
number of sessions or named users is. Your site might use either type of
licensing (session licensing or named user licensing), but not both.

See Also: For more information about managing licensing, see page
19 – 2.

You can set a limit on the number of concurrent sessions that can
connect to a database on the specified computer. To set the maximum
number of concurrent sessions for an instance, set the parameter
LICENSE_MAX_SESSIONS in the parameter file that starts the instance,
as shown in the following example:

LICENSE_MAX_SESSIONS = 80

In addition to setting a maximum number of sessions, you can set a
warning limit on the number of concurrent sessions. Once this limit is
reached, additional users can continue to connect (up to the maximum
limit), but Oracle7 sends a warning for each connecting user. To set the
warning limit for an instance, set the parameter
LICENSE_SESSIONS_WARNING. Set the warning limit to a value
lower than LICENSE_MAX_SESSIONS.

LICENSE_MAX_
USERS

2 – 13Creating a Database

For instances running with the Parallel Server, each instance can have its
own concurrent usage limit and warning limit. However, the sum of the
instances’ limits must not exceed the site’s session license.

See Also: For more information about setting these limits when using
the Parallel Server, see Oracle7 Parallel Server Concepts & Administration.

You can set a limit on the number of users created in the database. Once
this limit is reached, you cannot create more users.

Note: This mechanism assumes that each person accessing the
database has a unique user name and that no people share a
user name. Therefore, so that named user licensing can help you
ensure compliance with your Oracle7 license agreement, do not
allow multiple users to log in using the same user name.

To limit the number of users created in a database, set the
LICENSE_MAX_USERS parameter in the database’s parameter file, as
shown in the following example:

LICENSE_MAX_USERS = 200

For instances running with the Parallel Server, all instances connected to
the same database should have the same named user limit.

See Also: For more information about setting this limit when using the
Parallel Server see the Oracle7 Parallel Server Concepts & Administration
manual.

2 – 14 Oracle7 Server Administrator’s Guide

Considerations After Creating a Database

After you create a database, the instance is left running, and the
database is open and available for normal database use. Use Server
Manager to subsequently start and stop the database. If more than one
database exists in your database system, specify the parameter file to
use with any subsequent database startup.

If you plan to install other Oracle products to work with this database,
see the installation instructions for those products; some products
require you to create additional data dictionary tables. See your
operating system–specific Oracle documentation for the additional
products. Usually, command files are provided to create and load these
tables into the database’s data dictionary.

The Oracle7 Server distribution media can include various SQL files that
let you experiment with the system, learn SQL, or create additional
tables, views, or synonyms.

A newly created database has only two users, SYS and SYSTEM. The
passwords for these two usernames should be changed soon after the
database is created.

See Also: For more information about the users SYS and SYSTEM see
“Database Administrator Usernames” on page 1 – 4.

For information about changing a user’s password see “Altering Users”
on page 19 – 12.

Initial Tuning Guidelines

You can make a few significant tuning alterations to Oracle7
immediately following installation. By following these instructions, you
can reduce the need to tune Oracle7 when it is running. This section
gives recommendations for the following installation issues:

• Allocating Rollback Segments

• Choosing Sizes for Rollback Segments

• Choosing the Number of DB_BLOCK_LRU_ LATCHES

• Distributing I/O

Allocating Rollback
Segments

Choosing Sizes for
Rollback Segments

Choosing the Number
of DB_BLOCK_LRU_
LATCHES

2 – 15Creating a Database

Proper allocation of rollback segments makes for optimal database
performance. The size and number of rollback segments required for
optimal performance depends on your application. The Oracle7 Server
Tuning manual contains some general guidelines for choosing how
many rollback segments to allocate based on the number of concurrent
transactions on your Oracle7 Server. These guidelines are appropriate
for most application mixes.

To create rollback segments, use the CREATE ROLLBACK SEGMENT
command.

See Also: For information about the CREATE ROLLBACK SEGMENT
command, see the Oracle7 Server SQL Reference.

The size of your rollback segment can also affect performance. Rollback
segment size is determined by the storage parameters in the CREATE
ROLLBACK SEGMENT statement. Your rollback segments must be
large enough to hold the rollback entries for your transactions.

See Also: For information about choosing sizes for your rollback
segments, see the Oracle7 Server Tuning manual.

Contention for the LRU latch can impede performance on symmetric
multiprocessor (SMP) machines with a large number of CPUs. The LRU
latch controls the replacement of buffers in the buffer cache. For SMP
systems, Oracle automatically sets the number of LRU latches to be one
half the number of CPUs on the system. For non–SMP systems, one LRU
latch is sufficient.

 You can specify the number of LRU latches on your system with the
initialization parameter DB_BLOCK_LRU_LATCHES. This parameter
sets the maximum value for the desired number of LRU latches. Each
LRU latch will control a set of buffers and Oracle balances allocation of
replacement buffers among the sets.

See Also: For more information on LRU latches, see the Oracle7 Server
Tuning manual.

Distributing I/O

2 – 16 Oracle7 Server Administrator’s Guide

Proper distribution of I/O can improve database performance
dramatically. I/O can be distributed during installation of Oracle7.
Distributing I/O during installation can reduce the need to distribute
I/O later when Oracle7 is running.

There are several ways to distribute I/O when you install Oracle7:

• redo log file placement

• datafile placement

• separation of tables and indexes

• density of data (rows per data block)

See Also: For information about ways to distribute I/O, see the Oracle7
Server Tuning manual.

C H A P T E R

3
T

3 – 1Starting Up and Shutting Down

Starting Up and
Shutting Down

his chapter describes the procedures for starting and stopping an
Oracle7 database, and includes the following topics:

• Startup Procedures

• Altering Database Availability

• Shutdown Procedures

• Using Parameter Files

See Also: Trusted Oracle7 Server Administrator’s Guide, for more
information about starting up and shutting down Trusted Oracle7.

Oracle Server Manager User’s Guide, for more information about
performing specific tasks using Server Manager/GUI or Server
Manager/LineMode.

☞

Preparing to Start an
Instance

3 – 2 Oracle7 Server Administrator’s Guide

Startup Procedures

This section includes the following topics:

• Preparing to Start an Instance

• Starting an Instance: Scenarios

To start up a database or instance, use either the Server Manager Startup
Database dialog box or the STARTUP command (after you connect to
Oracle7 with administrator privileges). You can start an instance and
database in a variety of ways:

• start the instance without mounting a database

• start the instance and mount the database, but leave it closed

• start the instance, and mount and open the database in:

– unrestricted mode (accessible to all users)

– RESTRICTED mode (accessible to DBAs only)

Attention: You cannot start a database instance if you are
connected to the database via a multi–threaded server process.

In addition, you can force the instance to start, or start the instance and
have complete media recovery begin immediately. If your operating
system supports the Oracle7 Parallel Server, you may start an instance
and mount the database in either exclusive or shared mode.

See Also: Trusted Oracle7 Server Administrator’s Guide, for more
information about database startup and Trusted Oracle7.

There are several tasks you need to perform before you attempt to start
an instance.

To Prepare to Start an Instance

1. Start Server Manager and connect with administrator privileges.

To start up a database or instance, you must start Server Manager.
You must also be connected with administrator privileges.

2. Specify a database name.

When starting a database instance, specify the name of the database
that will be mounted to the instance by either:

• using the STARTUP command and specifying the database
name

Starting an Instance:
Scenarios

Starting an Instance
Without Mounting a
Database

Starting an Instance and
Mounting a Database

3 – 3Starting Up and Shutting Down

• specifying DB_NAME in the parameter file that starts the
instance

3. Specify the parameter filename.

When starting a database instance, choose a parameter file to
initialize the instance’s settings:

• using the Startup Database dialog box and entering a
filename in the Parameter File text entry field

• using the STARTUP command with the PFILE option and a
fully specified filename

See Also: The specification of filenames is operating system–specific.
See your operating system–specific Oracle documentation. If no
filename is entered, Oracle7 uses the default filename.

The following scenarios describe the many ways in which you can start
up an instance.

Note: You may encounter problems starting up an instance if
control files, database files, or redo log files are not available. If
one or more of the files specified by the CONTROL_FILES
parameter do not exist or cannot be opened when you attempt
to mount a database, Oracle7 returns a warning message and
does not mount the database. If one or more of the datafiles or
redo log files is not available or cannot be opened when
attempting to open a database, Oracle7 returns a warning
message and does not open the database.

You might want to start an instance without mounting a database; this is
usually the case only during database creation. To do this, use one of the
following options of Server Manager:

• the Startup Database dialog box, selecting the Startup Nomount
radio button

• the STARTUP command with the NOMOUNT option

You might want to start an instance and mount a database, but not open
the database because you want to perform specific maintenance
operations. For example, the database must be mounted but not open
during the following tasks:

• renaming datafiles

• adding, dropping, or renaming redo log files

Starting an Instance, and
Mounting and Opening a
Database

Restricting Access to a
Database at Startup

3 – 4 Oracle7 Server Administrator’s Guide

• enabling and disabling redo log archiving options

• performing full database recovery

Start an instance and mount the database, but leave it closed using one
of the following options of Server Manager:

• the Startup database dialog box, selecting the Startup Mount
radio button

• the STARTUP command with the MOUNT option

Normal database operation means that an instance is started and the
database is mounted and open; this allows any valid user to connect to
the database and perform typical data access operations.

Start an instance, and mount and open the database, using one of the
following options of Server Manager:

• the Startup Database dialog box, selecting the Startup Open radio
button

• the STARTUP command with the OPEN option

You might want to start an instance, and mount and open a database in
restricted mode so that the database is available only to administrative
personnel (not general database users). Use this mode of database
startup when you need to accomplish one of the following tasks:

• perform structure maintenance, such as rebuilding indexes

• perform an export or import of database data

• perform a data load (with SQL*Loader)

• temporarily prevent typical users from using data

Typically, all users with the CREATE SESSION system privilege can
connect to an open database. Opening a database in restricted mode
allows database access only to users with both the CREATE SESSION
and RESTRICTED SESSION system privilege; only database
administrators should have the RESTRICTED SESSION system
privilege.

Start an instance (and, optionally, mount and open the database) in
restricted mode using one of the following options of Server Manager:

• the Startup Database dialog box, selecting the Restrict button

• the STARTUP command with the RESTRICT option

Later, you can make the database accessible to users who do not have
the RESTRICTED SESSION system privilege.

Forcing an Instance to
Start

Starting an Instance,
Mounting a Database, and
Starting Complete Media
Recovery

Starting in Exclusive or
Parallel Mode

Starting Up an Instance
and Database: Example

Automatic Database
Startup at Operating
System Start

Starting Remote Instances

3 – 5Starting Up and Shutting Down

In unusual circumstances, you might experience problems when
attempting to start a database instance. A database instance should not
be forced to start unless you are faced with the following:

• The current instance cannot be successfully shut down using
either the Normal or Immediate radio buttons of the Shutdown
Database dialog box (or an equivalent SHUTDOWN statement).

• You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by
starting a new instance (and optionally mounting and opening the
database) using either of the following options of Server Manager:

• the Startup Database dialog box with the Force button selected

• the STARTUP command with the FORCE option

If you know that media recovery is required, you can start an instance,
mount a database to the instance, and have the recovery process
automatically start by using the STARTUP command with the
RECOVER option.

If your Oracle7 Server allows multiple instances to access a single
database concurrently, you must choose whether to mount the database
exclusively or in parallel.

The following statement starts an instance using the parameter file
INITSALE.ORA, mounts and opens the database named SALES in
exclusive mode, and restricts access to administrative personnel. The
DBA is already connected with administrator privileges.

STARTUP OPEN sales PFILE=INITSALE.ORA EXCLUSIVE RESTRICT;

Many sites use procedures to enable automatic startup of one or more
Oracle7 instances and databases immediately following a system start.
The procedures for doing this are specific to each operating system.

If your local Oracle7 Server is part of a distributed database, you might
need to start a remote instance and database. Procedures for starting and
stopping remote instances vary widely depending on communication
protocol and operating system.

See Also: For more information about making a database available to
non–privileged users, see “Restricting Access to an Open Database” on
page 3 – 7.

For more information about recovering control files, database files and
redo logs, see Chapter 24.

Mounting a Database
to an Instance

3 – 6 Oracle7 Server Administrator’s Guide

For more information about the side effects of aborting the current
instance, see “Aborting an Instance” on page 3 – 9.

For more information about starting up in exclusive or parallel mode,
see the Oracle7 Parallel Server Concepts & Administration manual.

For more information about the restrictions that apply when combining
options of the STARTUP command, see the Oracle7 Server SQL Reference.

For more information about automatic startup procedure topics, see
your operating system–specific Oracle documentation.

Altering Database Availability

You can make a database partially available by opening a previously
mounted but closed database so that users can connect to and use the
database.

The following sections explain how to alter a database’s availability:

• Mounting a Database to an Instance

• Opening a Closed Database

• Restricting Access to an Open Database

When you need to perform specific administrative operations, the
database must be started and mounted to an instance, but closed. This
can be accomplished by starting the instance and mounting the
database.

When mounting the database, you can indicate whether to mount the
database exclusively to this instance or concurrently to other instances.

To mount a database to a previously started instance, use either of the
following options:

• the Mount menu item of Server Manager

• the SQL command ALTER DATABASE with the MOUNT option

Use the following statement when you want to mount a database in
exclusive mode:

ALTER DATABASE MOUNT;

See Also: For a list of operations that require the database to be
mounted and closed, (and procedures to start an instance and mount a
database in one step) see “Starting an Instance and Mounting a
Database” on page 3 – 3.

Opening a Closed
Database

Restricting Access to an
Open Database

3 – 7Starting Up and Shutting Down

You can make a mounted but closed database available for general use
by opening the database. To open a mounted database, use either of the
following options:

• the Open menu item of Server Manager

• the SQL command ALTER DATABASE with the OPEN option

Use the following statement to open a mounted database:

ALTER DATABASE OPEN;

After executing this statement, any valid Oracle7 user with the CREATE
SESSION system privilege can connect to the database.

Under normal conditions, all users with the CREATE SESSION system
privilege can connect to an instance. However, you can take an instance
in and out of restricted mode. When an instance is in restricted mode,
only users who have both the CREATE SESSION and RESTRICTED
SESSION system privileges can connect to it. Typically, only
administrators have the RESTRICTED SESSION system privilege.

Restricted mode is useful when you need to perform the following
tasks:

• perform structure maintenance, such as rebuilding indexes

• perform an export or import of database data

• perform a data load (with SQL*Loader)

• temporarily prevent non–administrator users from using data

To place an instance in restricted mode, use the Restrict menu item of
Server Manager or the SQL command ALTER SYSTEM with the
ENABLE RESTRICTED SESSION option. After placing an instance in
restricted mode, you might want to kill all current user sessions before
performing any administrative tasks.

To lift an instance from restricted mode, use the Allow All menu item of
Server Manager or the SQL command ALTER SYSTEM with the
DISABLE RESTRICTED SESSION option.

See Also: For more information about killing sessions, see “Terminating
Sessions” on page 4 – 16.

For more information about starting a database instance, and mounting
and opening the database in restricted mode, see “Restricting Access to
a Database at Startup” on page 3 – 4.

☞

Shutting Down a
Database Under
Normal Conditions

3 – 8 Oracle7 Server Administrator’s Guide

Shutdown Procedures

The following sections describe various shutdown procedures:

• Shutting Down a Database Under Normal Conditions

• Shutting Down a Database Immediately

• Aborting an Instance

To initiate database shutdown, use either the Shutdown Database dialog
box of Server Manager or the SQL command SHUTDOWN. Control is
not returned to the session that initiates a database shutdown until
shutdown is complete. Users who attempt connections while a
shutdown is in progress receive a message like the following:

ORA–01090: shutdown in progress – connection is not permitted

Attention: You cannot shut down a database if you are
connected to the database via a multi–threaded server process.

To shut down a database and instance, you must first be connected with
administrator privileges. This condition applies whether you are using
Server Manager/GUI or SQL commands.

See Also: Several special options and conditions of database shutdown
that apply when using Trusted Oracle7 in OS MAC mode are not
discussed in this section. For more information about database
shutdown and Trusted Oracle7, see the Trusted Oracle7 Server
Administrator’s Guide.

Normal database shutdown proceeds with the following conditions:

• No new connections are allowed after the statement is issued.

• Before the database is shut down, Oracle7 waits for all currently
connected users to disconnect from the database.

• The next startup of the database will not require any instance
recovery procedures.

To shut down a database in normal situations, use either of the
following options of Server Manager:

• the Normal radio button of the Shutdown Database dialog box

• the SHUTDOWN command with the NORMAL option (SHUTDOWN

NORMAL;)

Shutting Down a
Database Immediately

Aborting an Instance

3 – 9Starting Up and Shutting Down

Use immediate database shutdown only in the following situations:

• A power shutdown is going to occur soon.

• The database or one of its applications is functioning irregularly.

Immediate database shutdown proceeds with the following conditions:

• Current client SQL statements being processed by Oracle7 are
terminated immediately.

• Any uncommitted transactions are rolled back. (If long
uncommitted transactions exist, this method of shutdown might
not complete quickly, despite its name.)

• Oracle7 does not wait for users currently connected to the
database to disconnect; Oracle7 implicitly rolls back active
transactions and disconnects all connected users.

To shut down a database immediately, use either of the following
options of Server Manager:

• the Immediate radio button of the Shutdown database dialog box

• the SHUTDOWN command with the IMMEDIATE option

You can shutdown a database instantaneously by aborting the
database’s instance. If possible, perform this type of shutdown only
when in the following situations:

• The database or one of its applications is functioning irregularly
and neither of the other types of shutdown work.

• You need to shut down the database instantaneously (for
example, if you know a power shutdown is going to occur in one
minute).

• You experience problems when starting a database instance.

Aborting an instance shuts down a database and yields the following
results:

• Current client SQL statements being processed by Oracle7 are
immediately terminated.

• Uncommitted transactions are not rolled back.

• Oracle7 does not wait for users currently connected to the
database to disconnect; Oracle7 implicitly disconnects all
connected users.

The Sample Parameter
File

The Number of
Parameter Files

3 – 10 Oracle7 Server Administrator’s Guide

If both the normal and immediate shutdown options do not work, abort
the current database instance immediately by using either of the
following options of Server Manager:

• the Abort radio button of the Shutdown Database dialog box

• the SHUTDOWN command with the ABORT option

Using Parameter Files

The following sections include information about how to use parameter
files:

• The Sample Parameter File

• The Number of Parameter Files

• The Location of the Parameter File in Distributed Environments

To start an instance, Oracle7 must read a parameter file, which is a text file
containing a list of instance configuration parameters. Often, although
not always, this file is named INIT.ORA or INITsid.ORA, where sid is
operating system–specific.

You can edit parameter values in a parameter file with a basic text
editor; however, editing methods are operating system–specific.

Oracle7 treats string literals defined for National Language Support
(NLS) parameters in the file as if they are in the database character set.

See Also: For more information about INITsid.ORA, see your operating
system–specific Oracle documentation.

A sample parameter file (INIT.ORA or INITsid.ORA) is included in the
Oracle7 distribution set. This sample file’s parameters are adequate for
initial installations of an Oracle7 database. After your system is
operating and you have some experience with Oracle7, you will
probably want to change some parameter values.

See Also: For more information about optimizing a database’s
performance using the parameter file, see the Oracle7 Server Tuning
manual.

Each Oracle7 database has at least one parameter file that corresponds
only to that database. This way, database–specific parameters (such as
DB_NAME and CONTROL_FILES) in a given file always pertain to a
particular database. It is also possible to have several different
parameter files for a single database. For example, you can have several

The Location of the
Parameter File in
Distributed
Environments

3 – 11Starting Up and Shutting Down

different parameter files for a single database so you can optimize the
database’s performance in different situations.

Server Manager must be able to read a database’s parameter file to start
a database’s instance. Therefore, always store a database’s parameter file
on the computer executing Server Manager.

For example, in non–distributed processing installations, the same
computer executes Oracle7 and Server Manager; therefore, this
computer has the parameter file stored on one of its disk drives.

However, in distributed processing installations, local client
workstations can execute Server Manager to administer a database
stored on a remote machine. In this type of configuration, the local client
machines must each store a copy of the parameter file for the
corresponding databases.

See Also: For more information about using administering Oracle7 in a
distributed environment, see Oracle7 Server Distributed Systems, Volume I.

For information concerning the setup and implementation of Server
Manager, see your operating system–specific Oracle documentation.

3 – 12 Oracle7 Server Administrator’s Guide

P A R T

 II Oracle Server
Configuration

C H A P T E R

4
T

4 – 1Managing Oracle7 Processes

Managing Oracle7
Processes

his chapter describes how to manage the processes of an Oracle7
instance, and includes the following topics:

• Configuring Oracle7 for Dedicated Server Processes

• Configuring Oracle7 for Multi–Threaded Server Processes

• Modifying Server Processes

• Tracking Oracle7 Processes

• Managing Processes for the Parallel Query Option

• Terminating Sessions

See Also: For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

4 – 2 Oracle7 Server Administrator’s Guide

Configuring Oracle7 for Dedicated Server Processes

When a user process executes the database application on one machine,
and a server process executes the associated Oracle server on another
machine, you have separate, distinct processes. The separate server
process created on behalf of each user is a dedicated server process (see
Figure 4 – 1). Oracle7 is automatically installed for this configuration. If
your operating system can support Oracle7 in this configuration, it may
also support multi–threaded server processes.

User
Process

Application

System Global Area

User
Process

Application

Oracle

Program

Database Server

Client Workstation

Dedicated

Oracle

Interface

Server
Process

CodeCode

Server Code Server Code

Figure 4 – 1 Oracle Dedicated Server Processes

To start an instance in a dedicated server configuration, set the following
initialization parameters (in the parameter file) to ”null”, or omit them
from the file altogether:

• MTS_SERVICE

• MTS_DISPATCHERS

• MTS_SERVERS

• MTS_LISTENER_ADDRESS

When to Connect to a
Dedicated Server
Process

4 – 3Managing Oracle7 Processes

If possible, users should connect to an instance via a dispatcher. This
keeps the number of processes required for the running instance low. In
the following situations, however, users and administrators should
explicitly connect to an instance using a dedicated server process:

• to submit a batch job (for example, when a job can allow little or
no idle time for the server process)

• to use Server Manager to start up, shut down, or perform media
recovery on a database

To request a dedicated server connection, users must include the
SRVR=DEDICATED clause in their SQL*Net TNS connect string.

See Also: For a complete description of SQL*Net connect string syntax,
see your operating system–specific Oracle documentation and your
SQL*Net documentation.

For more information about initialization parameters and parameter
files, see the Oracle7 Server Reference.

Configuring Oracle7 for Multi–Threaded Server Processes

Consider an order entry system with dedicated server processes. A
customer places an order as a clerk enters the order into the database.
For most of the transaction, the clerk is on the telephone talking to the
customer and the server process dedicated to the clerk’s user process
remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders.

The multi–threaded server configuration eliminates the need for a
dedicated server process for each connection (see Figure 4 – 2). A small
number of shared server processes can perform the same amount of
processing as many dedicated server processes. Also, the amount of
memory required for each user is relatively small. Because less memory
and process management are required, more users can be supported.

4 – 4 Oracle7 Server Administrator’s Guide

Response
Queues

System Global Area

Application
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
Code

Application
Code

User
Process

Database Server

Client Workstation

Application
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

CodeApplication
CodeApplication

Code

Dispatcher Processes

Shared

1

2

3
4

5

6

7

Server
Processes

Response
QueuesResponse

Oracle
Server CodeOracle

Server Code
Oracle

Server CodeOracle
Server Code

Request
Queue

Queues

Figure 4 – 2 Oracle Multi–Threaded Sever Processes

To set up your system in a multi–threaded server configuration, start a
network listener process and set the following initialization parameters:

• SHARED_POOL_SIZE

• MTS_LISTENER_ADDRESS

• MTS_SERVICE

• MTS_DISPATCHERS

SHARED_POOL_
SIZE: Allocating
Additional Space in
the Shared Pool for
Shared Server

MTS_LISTENER_
ADDRESS: Setting the
Listener Process
Address

4 – 5Managing Oracle7 Processes

• MTS_MAX_DISPATCHERS

• MTS_SERVERS

• MTS_MAX_SERVERS

After setting these initialization parameters, restart the instance, which
at this point will use the multi–threaded server configuration. The
multi–threaded server architecture requires SQL*Net Version 2. User
processes targeting the multi–threaded server must connect through
SQL*Net, even if they are on the same machine as the Oracle7 instance.

See Also: For more information about starting and managing the
network listener process, see Oracle7 Server Distributed Systems, Volume I
and the Oracle Network Manager Administrator’s Guide.

When users connect through the multi–threaded server, Oracle7 needs
to allocate additional space in the shared pool for storing information
about the connections between the user processes, dispatchers, and
servers. For each user who will connect using the multi–threaded server,
add 1K to the setting of the parameter SHARED_POOL_SIZE.

See Also: For more information about this parameter, see the Oracle7
Server Reference.

For more information about tuning, see the Oracle7 Server Tuning
manual.

Within the database’s parameter file, set the initialization parameter
MTS_LISTENER_ADDRESS for each port to which the database will
connect. The parameter supports the following syntax:

MTS_LISTENER_ADDRESS = ”(addr)”

In the syntax above, addr is an address at which the listener will listen
for connection requests for a specific protocol. The parameter file may
contain multiple addresses.

The following examples specify listener addresses:

MTS_LISTENER_ADDRESS = ”(ADDRESS=(PROTOCOL=tcp)(PORT=5000)\

 (HOST=ZEUS)”

MTS_LISTENER_ADDRESS = ”(ADDRESS=(PROTOCOL=decnet)\

 (OBJECT=OUTA)(NODE=ZEUS)”

Each address specified in the database’s parameter file must also be
specified in the corresponding listener’s configuration file. You specify
addresses differently for various network protocols.

See Also: For more information about specifying addresses for the
network listener process, see your operating system–specific Oracle
documentation and your SQL*Net documentation.

MTS_SERVICE:
Specifying Service
Names for Dispatchers

MTS_DISPATCHERS:
Setting the Initial
Number of Dispatchers

4 – 6 Oracle7 Server Administrator’s Guide

Specify the name of the service associated with dispatchers using the
parameter MTS_SERVICE. A user requests the multi–threaded server by
specifying this service name in the connect string. A service name must
be unique; if possible, use the instance’s SID (system identifier).

If you do not set the MTS_SERVICE parameter, its value defaults to the
DB_NAME parameter. (If DB_NAME is also not set, Oracle7 returns the
error ORA–00114, “missing value for system parameter mts_service,”
when you start the database.)

If the dispatcher’s service name is TEST_DB, the parameter would be set
as follows:

MTS_SERVICE = ”test_db”

A connect string for connecting to this dispatcher looks like the
following:

SQLPLUS scott/tiger@\

 (DESCRIPTION=(ADDRESS=(PROTOCOL=decnet)(NODE=hq)\

 (OBJECT=mts7))(CONNECT_DATA=(SID=test_db)))

See Also: For more information about connect strings used with the
multi–threaded server configuration, see your operating system–specific
Oracle or SQL*Net documentation.

The number of dispatcher processes started at instance startup is
controlled by the parameter MTS_DISPATCHERS. Estimate the number
of dispatchers to start for each network protocol before instance startup.

When setting the MTS_DISPATCHERS parameter, you can include any
valid protocol.

The appropriate number of dispatcher processes for each instance
depends upon the performance you want from your database, the host
operating system’s limit on the number of connections per process,
(which is operating system–dependent) and the number of connections
required per network protocol.

The instance must be able to provide as many connections as there are
concurrent users on the database system; the more dispatchers you
have, the better potential database performance users will see, since they
will not have to wait as long for dispatcher service.

After instance startup, you can start more dispatcher processes if
needed; however, you can only start dispatchers that use protocols
mentioned in the database’s parameter file. For example, if the
parameter file starts dispatchers for protocol_A and protocol_B, you
cannot later start dispatchers for protocol_C without changing the
parameter file and restarting the instance.

Calculating the Initial
Number of Dispatcher
Processes

MTS_MAX_
DISPATCHERS:
Setting the Maximum
Number of Dispatchers

Estimating the Maximum
Number of Dispatches

MTS_SERVERS:
Setting the Initial
Number of Shared
Server Processes

4 – 7Managing Oracle7 Processes

See Also: For more information about dispatcher processes, see
“Adding and Removing Dispatcher Processes” on page 4 – 8.

Once you know the number of possible connections per process for your
operating system, calculate the initial number of dispatcher processes to
create during instance startup, per network protocol, using the
following formula Here, connections per dispatcher is operating
system–dependent:

number maximum number of concurrent sessions

of = CEIL (—————————————————————————————————————)

dispatchers connections per dispatcher

For example, assume that your system typically has 80 users
concurrently connected via TCP/IP and 40 users connected via DECNet.
In this case, the MTS_DISPATCHERS parameter should be set as
follows:

MTS_DISPATCHERS = ”TCP, 3”

MTS_DISPATCHERS = ”DECNET, 3”

The parameter MTS_MAX_DISPATCHERS sets the maximum number
of dispatcher processes (of all network protocols combined) that can be
started for the duration of an instance.

You can create as many dispatcher processes as you need, but the total
number of processes, including dispatchers, cannot exceed the host
operating system’s limit on the number of running processes.

To estimate the maximum number of dispatcher processes an instance
will require, use the following formula:

 maximum number of concurrent sessions

MTS_MAX_DISPATCHERS = _____________________________________

 connections per dispatcher

A number of shared server processes start at instance startup, as
determined by the parameter MTS_SERVERS. The appropriate number
of initial shared server processes for a database system depends on how
many users typically connect to it, and how much processing each user
requires. If each user makes relatively few requests over a period of
time, then each associated user process is idle for a large percentage of
time. In that case, one shared server process can serve 10 to 20 users. If
each user requires a significant amount of processing, a higher ratio of
server processes to user processes is needed to handle requests.

MTS_MAX_SERVERS:
Setting the Maximum
Number of Shared
Server Processes

Changing the
Minimum Number of
Shared Server
Processes.

4 – 8 Oracle7 Server Administrator’s Guide

If you want Oracle7 to use shared servers, you must set MTS_SERVERS
to at least 1. If you omit the parameter or set it to 0, Oracle7 does not
start any shared servers at all. However, you can subsequently set
MTS_SERVERS to a number greater than 0 while the instance is running.

It is best to estimate fewer initial shared server processes. Additional
shared servers start automatically when needed and are deallocated
automatically if they remain idle for too long. However, the initial
servers always remain allocated, even if they are idle. If you set the
initial number of servers high, your system might incur unnecessary
overhead. Experiment with the number of initial shared server processes
and monitor shared servers until you find the ideal system performance
for typical database activity.

See Also: For more information about changing the number of shared
servers, see “Changing the Minimum Number of Shared Server
Processes” on page 4 – 8.

The maximum number of shared server processes that can be started for
the duration of an instance is established during instance startup by the
parameter MTS_MAX_SERVERS. In general, set this parameter to allow
an appropriate number of shared server processes at times of highest
activity. Experiment with this limit and monitor shared servers to
determine an ideal setting for this parameter.

Modifying Server Processes

This section describes changes you can make after starting an instance,
and includes the following topics:

• Changing the Minimum Number of Shared Server Processes

• Adding and Removing Dispatcher Processes

After starting an instance, you can change the minimum number of
shared server processes by using the SQL command ALTER SYSTEM.

Oracle7 eventually terminates dispatchers and servers that are idle
longer than the minimum limit you specify.

If you set MTS_SERVERS to 0, Oracle7 will terminate all current servers
when they become idle and will not start any new servers until you
increase MTS_SERVERS. Thus, setting MTS_SERVERS to 0 effectively
disables the multi–threaded server temporarily.

To control the minimum number of shared server processes, you must
have the ALTER SYSTEM privilege.

Adding and Removing
Dispatcher Processes

4 – 9Managing Oracle7 Processes

The following statement sets the number of shared server processes to
two:

ALTER SYSTEM SET MTS_SERVERS = 2

You can control the number of dispatcher processes in the instance. If
the V$QUEUE and V$DISPATCHER views indicate that the load on the
dispatcher processes is consistently high, start additional dispatcher
processes to route user requests without waiting; you may start new
dispatchers until the number of dispatchers equals
MTS_MAX_DISPATCHER. In contrast, if the load on dispatchers is
consistently low, reduce the number of dispatchers.

To change the number of dispatcher processes, use the SQL command
ALTER SYSTEM. Changing the number of dispatchers for a specific
protocol has no effect on dispatchers for other protocols.

You can start new dispatcher processes for protocols specified in the
MTS_LISTENER_ADDRESS parameter and in the MTS_DISPATCHERS
parameter. Therefore, you can add dispatchers only for protocols for
which there are dispatchers; to start dispatchers for protocols for which
there are currently no dispatchers, shutdown the database, change the
parameter file, and restart the database.

If you reduce the number of dispatchers for a particular protocol, the
dispatchers are not immediately removed. Rather, Oracle7 eventually
terminates dispatchers that are idle for too long, down to the limit you
specify in MTS_DISPATCHERS.

To control the number of dispatcher processes, you must have the
ALTER SYSTEM privilege.

The following example adds a dispatcher process where the number of
dispatchers was previously three:

ALTER SYSTEM

SET MTS_DISPATCHERS = ’TCPIP,4’;

See Also: For more information about tuning the multi–threaded server,
see the Oracle7 Server Tuning manual.

Monitoring the
Processes of an Oracle7
Instance

Monitoring Locks

4 – 10 Oracle7 Server Administrator’s Guide

Tracking Oracle7 Processes

An Oracle7 instance can have many background processes, which you
should track if possible. This section describes how to track these
processes, and includes the following topics:

• Monitoring the Processes of an Oracle7 Instance

• Trace Files, the ALERT File, and Background Processes

• Starting the Checkpoint Process

See Also: For more information about tuning Oracle7 processes, see the
Oracle7 Server Tuning manual.

Monitors provide a means of tracking database activity and resource
usage. Selecting the Monitor feature of Server Manager/GUI displays
current information about the processes of your Oracle7 database. You
can operate several monitors simultaneously. Table 4 – 1 lists the Server
Manager monitors that can help you track Oracle7 processes:

Monitor Name Description

Process The Process monitor summarizes information about all
Oracle7 processes, including client–server, user, server, and
background processes, currently accessing the database via
the current database instance.

Session The Session monitor shows the session ID and status of each
connected Oracle7 session.

Table 4 – 1 Server Manager Monitors

Table 4 – 2 describes two methods of monitoring locking information for
ongoing transactions within an instance:

Monitor Name Description

Server Manager
Monitors

The Monitor feature of Server Manager/GUI provides two
monitors for displaying lock information for an instance: Lock
and Latch Monitors.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock
wait–for graph in tree–structured fashion. Using an ad hoc
query tool (such as Server Manager or SQL*Plus), the script
prints the sessions in the system that is waiting for locks and
the corresponding blocking locks. The location of this script file
is operating system–dependent; see your operating
system–specific Oracle documentation. (A second script,
CATBLOCK.SQL, creates the lock views that UTLLOCKT.SQL
needs, so you must run it before running UTLLOCKT.SQL.)

Table 4 – 2 Oracle7 Monitoring Facilities

Monitoring Dynamic
Performance Tables

Distinguishing Oracle7
Background Processes
from Operating System
Background Processes

4 – 11Managing Oracle7 Processes

The following views, created on the dynamic performance tables, are
useful for monitoring Oracle7 instance processes.

View (Monitor) Name Description

V$CIRCUIT Contains information about virtual circuits, which are user
connections through dispatchers and servers.

V$QUEUE Contains information about the multi–threaded message
queues.

V$DISPATCHER Contains information about dispatcher processes.

V$SHARED_SERVER Contains information about shared server processes.

V$SQLAREA Contains statistics about shared SQL area and contains one
row per SQL string. Also provides statistics about SQL
statements that are in memory, parsed, and ready for
execution.

V$SESS_IO Contains I/O statistics for each user session.

V$LATCH Contains statistics for non–parent latches and summary
statistics for parent latches.

V$SYSSTAT Contains system statistics.

Table 4 – 3 Views for Monitoring Oracle7 Instance Processes

Following is a typical query of one of the dynamic performance tables,
V$DISPATCHER. The output displays the processing load on each
dispatcher process in the system:

SELECT (busy/(busy + idle)) * 100 ”% OF TIME BUSY”

 FROM v$dispatcher;

When you run many Oracle7 databases concurrently on one computer,
Oracle7 provides a mechanism for naming the processes of an instance.
The background process names are prefixed by an instance identifier to
distinguish the set of processes for each instance.

Trace Files, the ALERT
File, and Background
Processes

4 – 12 Oracle7 Server Administrator’s Guide

For example, an instance named TEST might have background
processes with the following names:

• ORA_TEST_DBWR

• ORA_TEST_LGWR

• ORA_TEST_SMON

• ORA_TEST_PMON

• ORA_TEST_RECO

• ORA_TEST_LCK0

• ORA_TEST_ARCH

• ORA_TEST_D000

• ORA_TEST_S000

• ORA_TEST_S001

See Also: For more information about views and dynamic performance
tables see the Oracle7 Server Reference.

For more information about the instance identifier and the format of the
Oracle7 process names, see your operating system–specific Oracle
documentation.

Each server and background process can write to an associated trace file.
When an internal error is detected by a process, it dumps information
about the error to its trace file. Some of the information written to a trace
file is intended for the database administrator, while other information
is for Oracle WorldWide Support. Trace file information is also used to
tune applications and instances.

Using the Trace Files

4 – 13Managing Oracle7 Processes

The ALERT file is a special trace file. The ALERT file of a database is a
chronological log of messages and errors, which includes the following:

• all internal errors (ORA–600), block corruption errors
(ORA–1578), and deadlock errors (ORA–60) that occur

• administrative operations, such as CREATE/ALTER/DROP
DATABASE/TABLESPACE/ROLLBACK SEGMENT SQL
statements and STARTUP, SHUTDOWN, ARCHIVE LOG, and
RECOVER Server Manager statements

• several messages and errors relating to the functions of shared
server and dispatcher processes

• errors occurring during the automatic refresh of a snapshot

• the values of all initialization parameters at the time the database
and instance start

Oracle7 uses the ALERT file to keep a log of these special operations as
an alternative to displaying such information on an operator’s console
(although many systems display information on the console). If an
operation is successful, a “completed” message is written in the ALERT
file, along with a timestamp.

You can periodically check the ALERT file and other trace files of an
instance to see if the background processes have encountered errors. For
example, when the Log Writer process (LGWR) cannot write to a
member of a group, an error message indicating the nature of the
problem is written to the LGWR trace file and the database’s ALERT file.
If you see such error messages, a media or I/O problem has occurred,
and should be corrected immediately.

Oracle7 also writes values of initialization parameters to the ALERT file,
in addition to other important statistics. For example, when you
shutdown an instance normally or immediately (but do not abort),
Oracle7 writes the highest number of sessions concurrently connected to
the instance, since the instance started, to the ALERT file. You can use
this number to see if you need to upgrade your Oracle7 session license.

Specifying the Location of
Trace Files

Controlling the Size of
Trace Files

Controlling When Oracle7
Writes to Trace Files

4 – 14 Oracle7 Server Administrator’s Guide

All trace files for background processes and the ALERT file are written
to the destination specified by the initialization parameter
BACKGROUND_DUMP_DEST. All trace files for server processes are
written to the destination specified by the initialization parameter
USER_DUMP_DEST. The names of trace files are operating
system–specific, but usually include the name of the process writing the
file (such as LGWR and RECO).

You can control the maximum size of all trace files (excluding the
ALERT file) using the initialization parameter MAX_DUMP_FILE_SIZE.
This limit is set as a number of operating system blocks. To control the
size of an ALERT file, you must manually delete the file when you no
longer need it; otherwise Oracle7 continues to append to the file. You
can safely delete the ALERT file while the instance is running, although
you might want to make an archived copy of it first.

Background processes always write to a trace file when appropriate.
However, trace files are written on behalf of server processes (in
addition to being written to during internal errors) only if the
initialization parameter SQL_TRACE is set to TRUE.

Regardless of the current value of SQL_TRACE, each session can enable
or disable trace logging on behalf of the associated server process by
using the SQL command ALTER SESSION with the SET SQL_TRACE
parameter.

The following statement enables writing to a trace file for a particular
session:

ALTER SESSION SET SQL_TRACE TRUE;

For the multi–threaded server, each session using a dispatcher is routed
to a shared server process, and trace information is written to the
server’s trace file only if the session has enabled tracing (or if an error is
encountered). Therefore, to track tracing for a specific session that
connects using a dispatcher, you might have to explore several shared
server’s trace files. Because the SQL trace facility for server processes
can cause significant system overhead, enable this feature only when
collecting statistics.

See Also: See “Session and User Licensing” on page 19 – 2 for details
about upgrading your Oracle license.

For more information about messages, see the Oracle7 Server Messages
manual.

For information about the names of trace files, see your operating
system–specific Oracle documentation.

Starting the
Checkpoint Process

Managing the Query
Servers

Variations in the
Number of Query
Server Processes

4 – 15Managing Oracle7 Processes

For complete information about the ALTER SESSION command, see the
Oracle7 Server SQL Reference.

If the Checkpoint process (CKPT) is not enabled, the Log Writer process
(LGWR) is responsible for updating the headers of all control files and
data files to reflect the latest checkpoint. To reduce the time necessary to
complete a checkpoint, especially when a database is comprised of
many data files, enable the CKPT background process by setting the
CHECKPOINT_PROCESS parameter in the database’s parameter file to
TRUE. (The default is FALSE.)

Managing Processes for the Parallel Query Option

This section describes how, with the parallel query option, Oracle7 can
perform parallel processing. In this configuration Oracle7 can divide the
work of processing certain types of SQL statements among multiple
query server processes. The following topics are included:

• Managing the Query Servers

• Variations in the Number of Query Server Processes

See Also: For more information about the parallel query option, see the
Oracle7 Server Tuning manual.

When you start your instance, the Oracle7 Server creates a pool of query
server processes available for any query coordinator. Specify the number
of query server processes that the Oracle7 Server creates at instance
startup via the initialization parameter PARALLEL_MIN_SERVERS.

Query server processes remain associated with a statement throughout
its execution phase. When the statement is completely processed, its
query server processes become available to process other statements.
The query coordinator process returns any resulting data to the user
process issuing the statement.

If the volume of SQL statements processed concurrently by your
instance changes drastically, the Oracle7 Server automatically changes
the number of query server processes in the pool to accommodate this
volume.

If this volume increases, the Oracle7 Server automatically creates
additional query server processes to handle incoming statements. The
maximum number of query server processes for your instance is
specified by the initialization parameter PARALLEL_MAX_SERVERS.

4 – 16 Oracle7 Server Administrator’s Guide

If this volume subsequently decreases, the Oracle7 Server terminates a
query server process if it has been idle for the period of time specified
by the initialization parameter PARALLEL_SERVER_IDLE_TIME. The
Oracle7 Server does not reduce the size of the pool below the value of
PARALLEL_MIN_SERVERS, no matter how long the query server
processes have been idle.

If all query servers in the pool are occupied and the maximum number
of query servers has been started, a query coordinator processes the
statement sequentially.

See Also: For more information about monitoring an instance’s pool of
query servers and determining the appropriate values of the
initialization parameters, see the Oracle7 Server Tuning manual.

Terminating Sessions

In some situations, you might want to terminate current user sessions.
For example, you might want to perform an administrative operation
and need to terminate all non–administrative sessions.

This section describes the various aspects of terminating sessions, and
includes the following topics:

• Identifying Which Session to Terminate

• Terminating an Active Session

• Terminating an Inactive Session

When a session is terminated, the session’s transaction is rolled back and
resources (such as locks and memory areas) held by the session are
immediately released and available to other sessions.

Terminate a current session using either the Disconnect Session menu
item of Server Manager, or the SQL command ALTER SYSTEM...KILL
SESSION.

The following statement terminates the session whose SID is 7 and serial
number is 15:

ALTER SYSTEM KILL SESSION ’7,15’;

Identifying Which
Session to Terminate

Terminating an Active
Session

4 – 17Managing Oracle7 Processes

To identify which session to terminate, specify the session’s index
number and serial number. To identify the index (SID) and serial
numbers of a session, query the V$SESSION dynamic performance
table.

The following query identifies all sessions for the user JWARD:

SELECT sid, serial#

FROM v$session

WHERE username = ’JWARD’;

SID SERIAL# STATUS

––––––––– –––––––––– ––––––––

 7 15 ACTIVE

 12 63 INACTIVE

A session is ACTIVE when it is making an SQL call to Oracle. A session
is INACTIVE if it is not making an SQL call to Oracle.

See Also: For a complete description of the status values for a session,
see Oracle7 Server Tuning.

If a user session is making an SQL call to Oracle7 (is ACTIVE) when it is
terminated, the transaction is rolled back and the user immediately
receives the following message:

ORA–00028: your session has been killed

If, after receiving the ORA–00028 message, a user submits additional
statements before reconnecting to the database, Oracle7 returns the
following message:

ORA–01012: not logged on

If an active session cannot be interrupted (for example, it is performing
network I/O or rolling back a transaction), the session cannot be
terminated until the operation completes. In this case, the session holds
all resources until it is terminated. Additionally, the session that issues
the ALTER SYSTEM statement to terminate a session waits up to 60
seconds for the session to be terminated; if the operation that cannot be
interrupted continues past one minute, the issuer of the ALTER SYSTEM
statement receives a message indicating that the session has been
“marked” to be terminated. A session marked to be terminated is
indicated in V$SESSION with a status of “KILLED” and a server that is
something other than “PSEUDO.”

Terminating an
Inactive Session

4 – 18 Oracle7 Server Administrator’s Guide

If the session is not making an SQL call to Oracle7 (is INACTIVE) when
it is terminated, the ORA–00028 message is not returned immediately.
The message is not returned until the user subsequently attempts to use
the terminated session.

When an inactive session has been terminated, STATUS in the view
V$SESSION is “KILLED.” The row for the terminated session is
removed from V$SESSION after the user attempts to use the session
again and receives the ORA–00028 message.

In the following example, the DBA terminates an inactive session:

SVRMGR> SELECT sid, serial#, status, server

 2> FROM v$session

 3> WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER

–––––––––– ––––––– –––––––– –––––––––

 7 15 INACTIVE DEDICATED

 12 63 INACTIVE DEDICATED

2 rows selected.

SVRMGR> ALTER SYSTEM KILL SESSION ’7,15’;

Statement processed.

SVRMGR> SELECT sid, serial#, status, server

 2> FROM v$session

 3> WHERE username = ’JWARD’;

SID SERIAL# STATUS SERVER

–––––––––– ––––––– –––––––– –––––––––

 7 15 KILLED PSEUDO

 12 63 INACTIVE DEDICATED

2 rows selected.

C H A P T E R

5
T

5 – 1Managing the Online Redo Log

Managing the Online
Redo Log

his chapter explains how to manage the online redo log, and includes
the following topics:

• Planning the Online Redo Log

• Creating Online Redo Log Groups and Members

• Renaming and Relocating Online Redo Log Members

• Dropping Online Redo Log Groups

• Dropping Online Redo Log Members

• Controlling Checkpoints and Log Switches

• Verifying Blocks in Redo Log Files

• Clearing an Online Redo Log File

• Listing Information about the Online Redo Log

See Also: For more information about managing the online redo logs of
the instances when using Oracle7 Parallel Server, see the Oracle7 Parallel
Server manual.

For more information archiving the redo log, see Chapter 22.

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server

Multiplex the Online
Redo Log

5 – 2 Oracle7 Server Administrator’s Guide

Manager/GUI or Server Manager/LineMode, see the Oracle7 Server
Manager User’s Guide.

Planning the Online Redo Log

Every instance of an Oracle database has an associated online redo log,
which is a set of two or more online log files that record all committed
changes made to the database. Online redo logs serve to protect the
database in the event of an instance failure. Whenever a transaction is
committed, the corresponding redo entries temporarily stored in redo
log buffers of the system global area are written to an online redo log file
by the background process LGWR.

Online redo log files are used in a cyclical fashion; for example, if two
files constitute the online redo log, the first file is filled, the second file is
filled, the first file is reused and filled, the second file is reused and
filled, and so on. Each time a file is filled, it is assigned a log sequence
number to identify the set of redo entries.

This section describes guidelines you should consider when configuring
a database instance’s online redo log, and includes the following topics:

• Multiplexing the Online Redo Log

• Place Online Redo Log Members on Different Disks

• Set the Size of Online Redo Log Members

• Choose an Appropriate Number of Online Redo Log Files

The online redo log of a database instance should consist of multiplexed
groups of online redo log files. Furthermore, members in the same
group should be stored on separate disks so that no single disk failure
can cause LGWR and the database instance to fail.

To avoid losing a database due to a single point of failure, Oracle can
maintain multiple sets of online redo log files. A multiplex online redo log
consists of copies of online redo log files physically located on separate
disks; changes made to one member of the group are made to all
members. If a disk that contains an online redo log file fails, other copies
are still intact and available to Oracle. System operation is not
interrupted and the lost online redo log files can be easily recovered

Warning: Although the Oracle7 Server allows multiplexed
groups to contain different numbers of members, this state
should only be temporary, as the result of an abnormal situation
such as a disk failure damaging a member of a group. If any

Place Online Redo Log
Members on Different
Disks

Set the Size of Online
Redo Log Members

5 – 3Managing the Online Redo Log

group contains only one member, the failure of the disk
containing that member could cause Oracle7 to halt.

While multiplexed groups require extra storage space, the cost of this
space is usually insignificant compared to the potential cost of lost data
(if a disk failure destroys a non–multiplexed online redo log).

With a multiplex online redo log, place members of a group on different
disks. This way, if a single disk fails, only one member of a group
becomes unavailable to LGWR and other members remain accessible to
LGWR, so the instance can continue to function.

If you archive the redo log, spread online redo log members across disks
to eliminate contention between the LGWR and ARCH background
processes. For example, if you have two groups of duplexed online redo
log members, place each member on a different disk and set your
archiving destination to a fifth disk. This way, there is never contention
between LGWR (writing to the members) and ARCH (reading the
members).

Datafiles and online redo log files should also be on different disks to
reduce contention in writing data blocks and redo entries.

When setting the size of online redo log files, consider whether you will
be archiving the redo log. Online redo log files should be sized so that a
filled group can be archived to a single unit of offline storage media
(such as a tape or disk), with the least amount of space on the medium
left unused. For example, suppose only one filled online redo log group
can fit per tape and 49% of the tape’s storage capacity remains unused.
In this case, it would be better to decrease the size of the online redo log
files slightly, so that two log groups could be archived per tape.

With multiplex groups of online redo logs, all members of the same
group must be the same size. Members of different groups can have
different sizes; however, there is no advantage in varying file size
between groups. If checkpoints are not set to occur between log
switches, make all groups the same size to guarantee that checkpoints
occur at regular intervals.

See Also: The default size of online redo log files is operating
system–dependent; for more details see your operating system–specific
Oracle documentation.

Choose an Appropriate
Number of Online
Redo Log Files

5 – 4 Oracle7 Server Administrator’s Guide

The best way to determine the appropriate number of online redo log
files for a database instance is to test different configurations. The
optimum configuration has the fewest groups possible without
hampering LGWR’s writing redo log information.

In some cases, a database instance may require only two groups. In
other situations, a database instance may require additional groups to
guarantee that a recycled group is always available to LGWR. During
testing, the easiest way to determine if the current online redo log
configuration is satisfactory is to examine the contents of the LGWR
trace file and the database’s ALERT file. If messages indicate that LGWR
frequently has to wait for a group because a checkpoint has not
completed or a group has not been archived, add groups.

Consider the parameters that can limit the number of online redo log
files before setting up or altering the configuration of an instance’s
online redo log. The following three parameters limit the number of
online redo log files that you can add to a database:

• The MAXLOGFILES parameter used in the CREATE DATABASE
statement determines the maximum number of groups of online
redo log files per database; group values can range from 1 to
MAXLOGFILES. The only way to override this upper limit is to
re–create the database or its control file; thus, it is important to
consider this limit before creating a database. If MAXLOGFILES is
not specified for the CREATE DATABASE statement, Oracle7 uses
an operating system default value.

• The LOG_FILES parameter (in the parameter file) can temporarily
decrease the maximum number of groups of online redo log files
for the duration of the current instance. However, LOG_FILES
cannot override MAXLOGFILES to increase the limit. If
LOG_FILES is not set in the database’s parameter file, Oracle7
uses an operating system–specific default value.

• The MAXLOGMEMBERS parameter used in the CREATE
DATABASE statement determines the maximum number of
members per group. As with MAXLOGFILES, the only way to
override this upper limit is to re–create the database or control
file; thus, it is important to consider this limit before creating a
database. If no MAXLOGMEMBERS parameter is specified for
the CREATE DATABASE statement, Oracle7 uses an operating
system default value.

See Also: For the default and legal values of the MAXLOGFILES and
MAXLOGMEMBERS parameters, and the LOG_FILES initialization
parameter, see your operating system–specific Oracle documentation.

Creating Online Redo Log
Groups

Creating Online Redo Log
Members

5 – 5Managing the Online Redo Log

Creating Online Redo Log Groups and Members

You can create groups and members of online redo log files during or
after database creation. If you can, plan the online redo log of a database
and create all required groups and members of online redo log files
during database creation. To create new online redo log groups and
members, you must have the ALTER DATABASE system privilege.

In some cases, you might need to create additional groups or members
of online redo log files. For example, adding groups to an online redo
log can correct redo log group availability problems. A database can
have up to MAXLOGFILES groups.

To create a new group of online redo log files, use either the Add Logfile
Group property sheet of Server Manager, or the SQL command ALTER
DATABASE with the ADD LOGFILE parameter.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE

 ADD LOGFILE (’log1c’, ’log2c’) SIZE 500K;

Note: Fully specify filenames of new log members to indicate
where the operating system file should be created; otherwise,
the file is created in the default directory of the database server,
which is operating system–dependent. If you want to reuse an
existing operating system file, you do not have to indicate the
file size.

Using the ALTER DATABASE statement with the ADD LOGFILE
option, you can specify the number that identifies the group with the
GROUP option:

ALTER DATABASE

 ADD LOGFILE GROUP 10 (’log1c’, ’log2c’) SIZE 500K;

Using group numbers can make administering redo log groups easier.
However, the group number must be between 1 and MAXLOGFILES;
do not skip redo log file group numbers (that is, do not number your
groups 10, 20, 30, and so on), or you will consume unnecessary space in
the control files of the database.

In some cases, you might not need to create a complete group of online
redo log files; the group may already exist, but not be complete because
one or more members of the group were dropped (for example, because
of a disk failure). In this case, you can add new members to an existing
group.

5 – 6 Oracle7 Server Administrator’s Guide

To create new online redo log members for an existing group, use the
Add Logfile Member property sheet of Server Manager, or the SQL
command ALTER DATABASE with the ADD LOG MEMBER parameter.

The following statement adds a new redo log member to redo log group
number 2:

ALTER DATABASE

 ADD LOGFILE MEMBER ’log2b’ TO GROUP 2;

Notice that filenames must be specified, but sizes need not be; the size of
the new members is determined from the size of the existing members
of the group.

When using the ALTER DATABASE command, you can alternatively
identify the target group by specifying all of the other members of the
group in the TO parameter, as shown in the following example:

ALTER DATABASE

 ADD LOGFILE MEMBER ’log2c’ TO (’log2a’, ’log2b’);

Note: Fully specify the filenames of new log members to
indicate where the operating system files should be created;
otherwise, the files will be created in the default directory of the
database server.

Renaming and Relocating Online Redo Log Members

You can rename online redo log members to change their locations. This
procedure is necessary, for example, if the disk currently used for some
online redo log files is going to be removed, or if datafiles and a number
of online redo log files are stored on the same disk and should be
separated to reduce contention.

To rename online redo log members, you must have the ALTER
DATABASE system privilege. Additionally, you might also need
operating system privileges to copy files to the desired location and
privileges to open and back up the database.

5 – 7Managing the Online Redo Log

Before renaming any online redo log members, ensure that the new
online redo log files already exist.

Warning: The following steps only modify the internal file
pointers in a database’s control files; they do not physically
rename or create any operating system files. Use your
computer’s operating system to copy the existing online redo
log files to the new location.

Rename online redo log members with the Rename Logfile Member
property sheet of Server Manager, or the SQL command ALTER
DATABASE with the RENAME FILE parameter.

To Rename and Relocate Online Redo Log Members

1. Back up the database.

Before making any structural changes to a database, such as
renaming or relocating online redo log members, completely back
up the database (including the control file) in case you experience
any problems while performing this operation.

2. Copy the online redo log files to the new location.

Operating system files, such as online redo log members, must be
copied using the appropriate operating system commands. See your
operating system manual for more information about copying files.

Suggestion: You can execute an operating system command to
copy a file without exiting Server Manager. Use the Server
Manager HOST command.

3. Rename the online redo log members.

Use the Rename Online Redo Log Member dialog box, or the
ALTER DATABASE command with the RENAME FILE clause to
rename the database’s online redo log files.

4. Open the database for normal operation.

The online redo log alterations take effect the next time that the
database is opened. Opening the database may require shutting
down the current instance (if the database was previously opened
by the current instance) or just opening the database using the
current instance.

5 – 8 Oracle7 Server Administrator’s Guide

5. Back up the control file.

As a precaution, after renaming or relocating a set of online redo log
files, immediately back up the database’s control file.

The following example renames the online redo log members. However,
first assume that:

• The database is currently mounted by, but closed to, the instance.

• The online redo log is duplexed: one group consists of the
members LOG1A and LOG1B, and the second group consists of
the members LOG2A and LOG2B. The files LOG1A and LOG2A
are stored on Disk A, while LOG1B and LOG2B are stored on
Disk B.

• The online redo log files located on Disk A must be relocated to
Disk C. The new filenames will reflect the new location: LOG1C
and LOG2C.

The files LOG1A and LOG2A on Disk A must be copied to the new files
LOG1C and LOG2C on Disk C.

ALTER DATABASE

 RENAME FILE ’log1a’, ’log2a’

 TO ’log1c’, ’log2c’;

Dropping Online Redo Log Groups

In some cases, you might want to drop an entire group of online redo
log members. For example, you might want to reduce the number of
groups in an instance’s online redo log.

To drop an online redo log group, you must have the ALTER
DATABASE system privilege.

Before dropping an online redo log group, consider the following
restrictions and precautions:

• An instance requires at least two groups of online redo log files,
regardless of the number of members in the groups. (A group is
one or more members.)

• You can drop an online redo log group only if it is not the active
group. If you need to drop the active group, first force a log
switch to occur; see “Forcing A Log Switch” on page 5 – 12.

5 – 9Managing the Online Redo Log

• Make sure an online redo log group is archived (if archiving is
enabled) before dropping it. To see whether this has happened,
use the Server Manager ARCHIVE LOG command with the LIST
parameter.

Drop an online redo log group with either the Drop Logfile Group menu
item of Server Manager, or the SQL command ALTER DATABASE with
the DROP LOGFILE clause.

The following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, the
operating system files are not deleted from disk. Rather, the control files
of the associated database are updated to drop the members of the
group from the database structure. After dropping an online redo log
group, make sure that the drop completed successfully, and then use the
appropriate operating system command to delete the dropped online
redo log files.

Dropping Online Redo Log Members

In some cases, you might want to drop one or more specific online redo
log members. For example, if a disk failure occurs, you might need to
drop all the online redo log files on the failed disk so that Oracle7 does
not try to write to the inaccessible files. In other situations, particular
online redo log files become unnecessary; for example, a file might be
stored in an inappropriate location.

To drop an online redo log member, you must have the ALTER
DATABASE system privilege.

Consider the following restrictions and precautions before dropping
individual online redo log members:

• It is all right to drop online redo log files so that a multiplexed
online redo log becomes temporarily asymmetric. For example, if
you use duplexed groups of online redo log files, you can drop
one member of one group, even though all other groups have two
members each. However, you should rectify this situation
immediately so that all groups have at least two members, and
thereby eliminate the single point of failure possible for the online
redo log.

• An instance always requires at least two valid groups of online
redo log files, regardless of the number of members in the groups.

5 – 10 Oracle7 Server Administrator’s Guide

(A group is one or more members.) If the member you want to
drop is the last valid member of the group, you cannot drop the
member until the other members become valid; to see a redo log
file’s status, use the V$LOGFILE view. A redo log file becomes
INVALID if Oracle7 cannot access it. It becomes STALE if Oracle7
suspects that it is not complete or correct; a stale log file becomes
valid again the next time its group is made the active group.

• You can drop an online redo log member only if it is not part of an
active group. If you want to drop a member of an active group,
first force a log switch to occur.

• Make sure the group to which an online redo log member belongs
is archived (if archiving is enabled) before dropping the member.
To see whether this has happened, use the Server Manager
ARCHIVE LOG command with the LIST parameter.

To drop specific inactive online redo log members, use either the Drop
Logfile Member menu item of Server Manager, or the SQL command
ALTER DATABASE command with the DROP LOGFILE MEMBER
clause.

The following statement drops the redo log LOG3C:

ALTER DATABASE DROP LOGFILE MEMBER ’log3c’;

When an online redo log member is dropped from the database, the
operating system file is not deleted from disk. Rather, the control files of
the associated database are updated to drop the member from the
database structure. After dropping an online redo log file, make sure
that the drop completed successfully, and then use the appropriate
operating system command to delete the dropped online redo log file.

See Also: For information on dropping a member of an active group, see
“Forcing a Log Switch” on page 5 – 12.

Controlling Checkpoints and Log Switches

A checkpoint is the event during which the Database Writer process
(DBWR) writes all modified database buffers in the SGA to the
appropriate datafiles. A log switch is the event during which LGWR
stops writing to one online redo log group and starts writing to another.
The two events are often connected: an instance takes a checkpoint at
each log switch by default. A log switch, by default, takes place
automatically when the current online redo log file group fills.

Setting Database
Checkpoint Intervals

Setting
LOG_CHECK–POINT_
INTERVAL

5 – 11Managing the Online Redo Log

However, you can designate that checkpoints are taken more often than
when you have log switches, or you can have a checkpoint take place
ahead of schedule, without a log switch. You can also have a log switch
and checkpoint occur ahead of schedule, or without an accompanying
checkpoint.

This section includes the following checkpoint and log switch topics:

• Setting Database Checkpoint Intervals

• Forcing a Log Switch

• Forcing a Fast Database Checkpoint Without a Log Switch

When your database uses large online redo log files, you can set
additional database checkpoints to take place automatically at
predetermined intervals, between the checkpoints that automatically
occur at log switches. The time necessary to recover from an instance
failure decreases when more database checkpoints are set. However,
there may be a performance impact on the Oracle7 Server due to the
extra I/O necessary for the checkpoint to complete.

Generally, unless your database consistently requires instance recovery
on startup, set database checkpoint intervals so that checkpoints occur
only at log switches. If you use small online redo log files, checkpoints
already occur at frequent intervals (at each log switch).

You can control the frequency of automatic database checkpoints via the
values set in the LOG_CHECKPOINT_INTERVAL and
LOG_CHECKPOINT_TIMEOUT parameters.

To have database checkpoints only occur at log switches (the default),
set the value for the LOG_CHECKPOINT_INTERVAL parameter higher
than the size of the online redo log files in use. Alternatively, to force
additional checkpoints to occur at intervals between two log switches,
set the value for the LOG_CHECKPOINT_INTERVAL parameter lower
than the size of the online redo log files in use.

The value of the LOG_CHECKPOINT_INTERVAL is a number of
operating system blocks, not Oracle7 data blocks. Therefore, you must
know the size, in bytes, of your operating system’s blocks. Once you
know this, calculate the number of operating system blocks per online
redo log file.

As an example, assume the following conditions:

• All online redo log files of the database instance are 512K.

• The operating system block size is 512 bytes.

• Checkpoints should occur when an online redo log file is half full.

Setting
LOG_CHECK–POINT_
TIMEOUT

Forcing a Log Switch

5 – 12 Oracle7 Server Administrator’s Guide

Using this information, you can compute the number of blocks per redo
log file as follows:

512K/redo log file

__________________ = approximately 1000 blocks/redo log file

512 bytes/OS block

Now that the approximate number of blocks per online redo log file
(1000) is known, the LOG_CHECKPOINT_INTERVAL parameter can be
set accordingly in the instance’s parameter file:

LOG_CHECKPOINT_INTERVAL=500

To have database checkpoints only occur at log switches (the default),
set the value for the LOG_CHECKPOINT_TIMEOUT parameter to
zero. Alternatively, to force additional checkpoints to occur
at intervals between two log switches, set the value for the
LOG_CHECKPOINT_TIMEOUT parameter to a time interval (in
seconds) less than the average time it takes to fill an online redo log file.
To determine the average time it takes to fill online redo log files,
examine the LGWR trace file for messages that indicate the times of log
switches.

See Also: For information on how to determine operating system block
size, see your operating system–specific Oracle documentation.

For more information about tuning Oracle7 regarding checkpoints, see
the Oracle7 Server Tuning manual.

For more information about the LOG_CHECKPOINT_TIMEOUT
parameter when using the Oracle7 Parallel Server, see the Oracle7
Parallel Server Concepts & Administration manual.

For more information about setting LOG_CHECKPOINT_TIMEOUT
when using Trusted Oracle7 in OS MAC mode, see the Trusted Oracle7
Server Administrator’s Guide.

You can force a log switch to make the currently active group inactive
and available for online redo log maintenance operations. For example,
you want to drop the currently active group, but are not able to do so
until the group is inactive. You may also wish to force a log switch if the
currently active group needs to be archived at a specific time before the
members of the group are completely filled; this option is often useful in
configurations with large online redo log files that take a long time to
fill.

Forcing a Fast Database
Checkpoint Without a
Log Switch

5 – 13Managing the Online Redo Log

To force a log switch, you must have the Alter System privilege.To force a
log switch, use either the Switch Logfile menu item of Server Manager,
or the SQL command ALTER SYSTEM with the SWITCH LOGFILE
option.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

In some cases, you might want to force a fast database checkpoint. A fast
checkpoint is one which does not involve a log switch; LGWR continues
to write to the current online redo log file. A fast checkpoint allows
DBWR to write more modified database buffers to disk per I/O on
behalf of a checkpoint. Therefore, you need fewer I/O’s (thus less time)
to complete a fast checkpoint.

To force a database checkpoint, you must have the ALTER SYSTEM
system privilege. Force a fast database checkpoint with either the Force
Checkpoint menu item of Server Manager, or the SQL command ALTER
SYSTEM with the CHECKPOINT option.

The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Omitting the GLOBAL option allows you to force a checkpoint for only
the connected instance, while including it forces a checkpoint for all
instances of the database. Forcing a checkpoint for only the local
instance is useful only with the Oracle7 Parallel Server. In a non–parallel
server configuration, global and local checkpoints are identical.

See Also: For more information on forcing checkpoints with the Oracle7
Parallel Server, see the Oracle7 Parallel Server Concepts & Administration
manual.

Restrictions

5 – 14 Oracle7 Server Administrator’s Guide

Verifying Blocks in Redo Log Files

You can configure Oracle7 to use checksums to verify blocks in the redo
log files. Set the initialization parameter LOG_BLOCK_CHECKSUM to
TRUE to enable redo log block checking. The default value of
LOG_BLOCK_CHECKSUM is FALSE.

If you enable redo log block checking, Oracle7 computes a checksum for
each redo log block written to the current log. The checksums are
written in the header of the block.

Oracle7 uses the checksum to detect corruption in a redo log block.
Oracle7 tries to verify the redo log block when it writes the block to an
archive log file and when the block is read from an archived log during
recovery.

If Oracle7 detects a corruption in a redo log block while trying to archive
it, Oracle7 tries to read the block from another member in the group. If
the block is corrupted in all members the redo log group, then archiving
cannot proceed.

See Also: For information about archiving redo log files, see Chapter 22.

Clearing an Online Redo Log File

If you have enabled redo log block checking, Oracle7 verifies each block
before archiving it. If a particular redo log block is corrupted in all
members of a group, archiving stops. Eventually all the redo logs
become filled and database activity is halted, until archiving can resume.

In this situation, you can use the SQL command ALTER DATABASE...
CLEAR LOGFILE to clear the corrupted redo logs and avoid archiving
them. The cleared redo logs are available for use even though they were
not archived.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR UNARCHIVED LOGFILE

 GROUP 3;

You can clear a redo log file whether it is archived or not. However,
when it is not archived, you must include the keyword UNARCHIVED.

If you clear a log file that is needed for recovery of a backup, then you
can no longer recover from that backup. Oracle7 writes a message in the
alert log describing the backups from which you cannot recover.

☞

5 – 15Managing the Online Redo Log

Attention: If you clear an unarchived redo log file, you should
take another backup of the database.

If you want to clear an unarchived redo log that is needed to bring an
offline tablespace online, you must use the clause UNRECOVERABLE
DATAFILE in the ALTER DATABASE command.

If you clear a redo log needed to bring an offline tablespace online, you
will not be able to bring the tablespace online again. You will have to
drop the tablespace or perform an incomplete recovery.

See Also: For a complete description of the ALTER DATABASE
command, see the Oracle7 Server SQL Reference.

Listing Information about the Online Redo Log

Use the VLOG, VLOGFILE, and V$THREAD views to see information
about the online redo log of a database; the V$THREAD view is of
particular interest for Parallel Server administrators.

The following query returns information about the online redo log of a
database used without the Parallel Server:

SELECT group#, bytes, members

 FROM sys.v$log;

GROUP# BYTES MEMBERS

–––––––––– –––––––––– ––––––––––

 1 81920 2

 2 81920 2

To see the names of all of the member of a group, use a query similar to
the following:

SELECT *

 FROM sys.v$logfile

 WHERE group# = 2;

GROUP# STATUS MEMBER

–––––––––– ––––––––––– ––––––––––––––

 2 LOG2A

 2 STALE LOG2B

 2 LOG2C

If STATUS is blank for a member, the file is in use.

5 – 16 Oracle7 Server Administrator’s Guide

C H A P T E R

6
T

6 – 1Managing Control Files

Managing Control Files

his chapter explains how to create and maintain the control files for
your database, and includes the following topics:

• Guidelines for Control Files

• Creating Control Files

• Troubleshooting After Creating Control Files

• Dropping Control Files

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle7
Server Manager User’s Guide.

Name Control Files

Multiplex Control Files
on Different Disks

Behavior of Multiplexed
Control Files

☞

6 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Control Files

This section describes guidelines you can use to manage the control files
for a database, and includes the following topics:

• Name Control Files

• Multiplex Control Files on Different Disks

• Place Control Files Appropriately

• Manage the Size of Control Files

Assign control file names via the CONTROL_FILES initialization
parameter in the database’s parameter file. CONTROL_FILES indicates
one or more names of control files, separated by commas. The instance
startup procedure recognizes and opens all the listed files. The instance
maintains all listed control files during database operation.

During database operation, Oracle7 Server writes to all necessary files
listed for the CONTROL_FILES parameter.

Every Oracle7 database should have at least two control files, each
stored on a different disk. If a control file is damaged due to a disk
failure, the associated instance must be shut down. Once the disk drive
is repaired, the damaged control file can be restored using an intact copy
of the control file and the instance can be restarted; no media recovery is
required.

The following list describes the behavior of multiplexed control files:

• Two or more filenames are listed for the initialization parameter
CONTROL_FILES in the database’s parameter file.

• The first file listed in the CONTROL_FILES parameter is the only
file read by the Oracle7 Server during database operation.

• If any of the control files become unavailable during database
operation, the instance becomes inoperable and should be
aborted.

The only disadvantage of having multiple control files is that all
operations that update the control files (such as adding a datafile or
checkpointing the database) can take slightly longer. However, this
difference is usually insignificant (especially for operating systems that
can perform multiple, concurrent writes) and does not justify using only
a single control file.

Attention: Oracle strongly recommends that your database has
a minimum of two control files on different disks.

Place Control Files
Appropriately

Manage the Size of
Control Files

6 – 3Managing Control Files

Each copy of a control file should be stored on a different disk drive.
Furthermore, a control file copy should be stored on every disk drive
that stores members of online redo log groups, if the online redo log is
multiplexed. By storing control files in these locations, you minimize the
risk that all control files and all groups of the online redo log will be lost
in a single disk failure.

The main determinants of a control file’s size are the values set for the
MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS,
MAXLOGHISTORY, and MAXINSTANCES parameters in the CREATE
DATABASE statement that created the associated database. Increasing
the values of these parameters increases the size of a control file of the
associated database.

See Also: The maximum control file size is operating system–specific.
See your operating system–specific Oracle documentation for more
information.

Creating Control Files

Every Oracle7 database has a control file. A control files records the
physical structure of the database and contains:

• the database name

• names and locations of associated databases and online redo log
files

• the timestamp of the database creation

• the current log sequence number

• checkpoint information

The control file of an Oracle7 database is created at the same time as the
database. By default, at least one copy of the control file must be created
during database creation. On some operating systems, Oracle7 creates
multiple copies. You should create two or more copies of the control file
during database creation. You might also need to create control files
later, if you lose control files or want to change particular settings in the
control files.

This section describes ways to create control files, and includes the
following topics:

• Creating Initial Control Files

Creating Initial Control
Files

Creating Additional
Copies of the Control
File, and Renaming
and Relocating Control
Files

6 – 4 Oracle7 Server Administrator’s Guide

• Creating Additional Copies of the Control File, and Renaming
and Relocating Control Files

• New Control Files

• Creating New Control Files

You create the initial control files of an Oracle7 database by specifying
one or more control filenames in the CONTROL_FILES parameter in the
parameter file used during database creation. The filenames specified in
CONTROL_FILES should be fully specified. Filename specification is
operating system–specific.

If files with the specified names currently exist at the time of database
creation, you must specify the CONTROLFILE REUSE parameter in the
CREATE DATABASE command, or else an error occurs. Also, if the size
of the old control file differs from that of the new one, you cannot use
the REUSE option. The size of the control file changes between some
release of new version of Oracle, as well as when the number of files
specified in the control file changes; configuration parameters such as
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY,
MAXDATAFILES, and MAXINSTANCES affect control file size.

If you do not specify files for CONTROL_FILES before database
creation, Oracle7 uses a default filename. The default name is also
operating system–specific.

You can subsequently change the value of the CONTROL_FILES
parameter to add more control files or to change the names or locations
of existing control files.

See Also: For more information about specifying control files, see your
operating system–specific Oracle documentation.

You add a new control file by copying an existing file to a new location
and adding the file’s name to the list of control files.

Similarly, you rename an existing control file by copying the file to its
new name or location, and changing the file’s name in the control file
list.

In both cases, to guarantee that control files do not change during the
procedure, shut down the instance before copying the control file.

New Control Files

6 – 5Managing Control Files

To Multiplex or Move Additional Copies of the Current Control File

1. Shutdown the database.

2. Exit Server Manager.

3. Copy an existing control file to a different location, using operating
system commands.

4. Edit the CONTROL_FILES parameter in the database’s parameter
file to add the new control file’s name, or to change the existing
control filename.

5. Restart Server Manager.

6. Restart the database.

You can create a new control file for a database using the CREATE
CONTROLFILE command. This is recommended in the following
situations:

• All control files for the database have been permanently damaged
and you do not have a control file backup.

• You want to change one of the permanent database settings
originally specified in the CREATE DATABASE statement,
including the database’s name, MAXLOGFILES,
MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,
and MAXINSTANCES.

For example, you might need to change a database’s name if it
conflicts with another database’s name in a distributed
environment. As another example, you might need to change one
of the previously mentioned parameters if the original setting is
too low.

Creating New Control
Files

6 – 6 Oracle7 Server Administrator’s Guide

The following statement creates a new control file for the PROD
database (formerly a database that used a different database name):

CREATE CONTROLFILE

SET DATABASE prod

LOGFILE GROUP 1 (’logfile1A’, ’logfile1B’) SIZE 50K,

 GROUP 2 (’logfile2A’, ’logfile2B’) SIZE 50K

NORESETLOGS

DATAFILE ’datafile1’ SIZE 3M, ’datafile2’ SIZE 5M

MAXLOGFILES 50

MAXLOGMEMBERS 3

MAXDATAFILES 200

MAXINSTANCES 6

ARCHIVELOG;

Warning: The CREATE CONTROLFILE command can
potentially damage specified datafiles and online redo log files;
omitting a filename can cause loss of the data in that file, or loss
of access to the entire database. Employ caution when using this
command and be sure to follow the steps in the next section.

See Also: For more information about the CREATE CONTROLFILE
command, see the Oracle7 Server SQL Reference.

This section provides step–by–step instructions for creating new control
files.

To Create New Control Files

1. Make a list of all datafiles and online redo log files of the database.

If you followed the recommendations for database backups, you
should already have a list of datafiles and online redo log files that
reflect the current structure of the database.

If you have no such lists and your control file has been damaged so
that the database cannot be opened, try to locate all of the datafiles
and online redo log files that constitute the database. Any files not
specified in Step 5 are not recoverable once a new control file has
been created. Moreover, if you omit any of the files that make up the
SYSTEM tablespace, you might not be able to recover the database.

2. Shut down the database.

If the database is open, shut down the database with normal
priority, if possible. Use the immediate or abort options only as a
last resort.

3. Back up all datafiles and online redo log files of the database.

4. Start up an new instance, but do not mount or open the database.

6 – 7Managing Control Files

5. Create a new control file for the database using the CREATE
CONTROLFILE command.

When creating the new control file, select the RESETLOGS option if
you have lost any online redo log groups in addition to the control
files. In this case, you will need to recover from the loss of the redo
logs (Step 8). You must also specify the RESETLOGS option if you
have renamed the database. Otherwise, select the NORESETLOGS
option.

6. Store a backup of the new control file on an offline storage device.

7. Edit the parameter files of the database.

Edit the parameter files of the database to indicate all of the control
files created in Steps 5 and 6 (not including the backup control file)
in the CONTROL_FILES parameter.

8. Recover the database if necessary.

If you are creating the control file as part of recovery, recover the
database. If the new control file was created using the
NORESETLOGS option (Step 5), you can recover the database with
complete, closed database recovery.

If the new control file was created using the RESETLOGS option,
you must specify USING BACKUP CONTROL FILE . If you have
lost online or archived redo logs or datafiles, use the procedures for
recovering those files.

9. Open the database.

Open the database using one of the following methods:

• If you did not perform recovery, open the database normally.

• If you performed complete, closed database recovery in Step 8,
use the Startup Open radio button of the Startup Database dialog
box of Server Manager.

• If you specified RESETLOGS when creating the control file, use
the ALTER DATABASE command, indicating RESETLOGS.

The database is now open and available for use.

See Also: For more information about listing database files, see “Listing
Database Files Before Backup” on page 23 – 8.

For more information on backing up all datafiles and online redo log
files of the database, see “Performing a Full Backup” on page 23 – 9.

Checking for Missing
or Extra Files

6 – 8 Oracle7 Server Administrator’s Guide

For more information on recovering online or archived redo log files, see
“Loss of Online Redo Log Files” on page 24 – 49 and “Loss of Datafiles”
on page 24 – 48.

For more information on closed database recovery, see page 24 – 18.

Troubleshooting After Creating Control Files

After issuing the CREATE CONTROLFILE statement, you may
encounter some common errors. This section describes the most
common control file usage errors, and includes the following topics:

• Checking for Missing or Extra Files

• Handling Errors During CREATE CONTROLFILE

After creating a new control file and using it to open the database, check
the ALERT log to see if Oracle7 has detected inconsistencies between the
data dictionary and the control file, such as a datafile that the data
dictionary includes but the control file does not list.

If a datafile exists in the data dictionary but not in the new control file,
Oracle7 creates a placeholder entry in the control file under the name
MISSINGnnnn (where nnnn is the file number in decimal).
MISSINGnnnn is flagged in the control file as being offline and requiring
media recovery.

In the following two cases only, the actual datafile corresponding to
MISSINGnnnn can be made accessible by renaming MISSINGnnnn to
point to it.

Case 1: The new control file was created using the CREATE
CONTROLFILE command with the NORESETLOGS option, thus
allowing the database to be opened without using the RESETLOGS
option. This would be possible only if all online redo logs are available.

Case 2: It was necessary to use the RESETLOGS option on the CREATE
CONTROLFILE command, thus forcing the database to be opened using
the RESETLOGS option, but the actual datafile corresponding to
MISSINGnnnn was read–only or offline normal.

If, on the other hand, it was necessary to open the database using the
RESETLOGS option, and MISSINGnnnn corresponds to a datafile that
was not read–only or offline normal, then the rename operation cannot
be used to make the datafile accessible (since the datafile requires media
recovery that is precluded by the results of RESETLOGS). In this case,
the tablespace containing the datafile must be dropped.

Handling Errors
During CREATE
CONTROLFILE

6 – 9Managing Control Files

In contrast, if a datafile indicated in the control file is not present in the
data dictionary, Oracle7 removes references to it from the new control
file. In both cases, Oracle7 includes an explanatory message in the
ALERT file to let you know what it found.

If Oracle7 sends you an error (usually error ORA–01173, ORA–01176,
ORA–01177, ORA–01215, or ORA–01216) when you attempt to mount
and open the database after creating a new control file, the most likely
cause is that you omitted a file from the CREATE CONTROLFILE
statement or included one that should not have been listed. In this case,
you should restore the files you backed up in step 3 and repeat the
procedure from step 4, using the correct filenames.

Dropping Control Files

You can drop control files from the database. For example, you might
want to do so if the location of a control file is inappropriate. Remember
that the database must have at least two control files at all times.

To Drop a Control File from a Database

1. Shut down the database.

2. Exit Server Manager.

3. Edit the CONTROL_FILES parameter in the database’s parameter
file to delete the old control file’s name.

4. Restart Server Manager.

5. Restart the database.

Warning: This operation does not physically delete the
unwanted control file from the disk. Use operating system
commands to delete the unnecessary file after you have
dropped the control file from the database.

6 – 10 Oracle7 Server Administrator’s Guide

C H A P T E R

7
T

7 – 1Managing Job Queues

Managing Job Queues

his chapter describes how to use job queues to schedule periodic
execution of PL/SQL code, and includes the following topics:

• SNP Background Processes

• Managing Job Queues

• Viewing Job Queue Information

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

Multiple SNP
Processes

7 – 2 Oracle7 Server Administrator’s Guide

SNP Background Processes

This section describes SNP background processes and their role in
managing job queues, and includes the following topics:

• Multiple SNP Processes

• Starting SNP Processes

You can schedule routines to be performed periodically using the job
queue. A routine is any PL/SQL code. To schedule a job, you submit it
to the job queue and specify the frequency at which the job is to be run.
You can also alter, disable, or delete jobs you have submitted.

To maximize performance and accommodate many users, a
multi–process Oracle7 system uses some additional processes called
background processes. Background processes consolidate functions that
would otherwise be handled by multiple Oracle programs running for
each user process. Background processes asynchronously perform I/O
and monitor other Oracle processes to provide increased parallelism
for better performance and reliability.

SNP background processes execute job queues. SNP processes
periodically wake up and execute any queued jobs that are due to be
run. You must have at least one SNP process running to execute your
queued jobs in the background.

SNP background processes differ from other Oracle7 background
processes, in that the failure of an SNP process does not cause the
instance to fail. If an SNP process fails, Oracle7 restarts it.

See Also: For more information on background processes, see Oracle7
Server Concepts.

An instance can have up to ten SNP processes, named SNP0 to SNP9. If
an instance has multiple SNP processes, the task of executing queued
jobs can be shared across these processes, thus improving performance.
Note, however, that each job is run at any point in time by only one
process. A single job cannot be shared simultaneously by multiple SNP
processes.

Starting Up SNP
Processes

7 – 3Managing Job Queues

Job queue initialization parameters enable you to control the operation
of the SNP background processes. When you set these parameters in
the initialization parameter file for an instance, they take effect the next
time you start the instance.

Table 7 – 1 describes the job queue initialization parameters.

Parameter Name Description

JOB_QUEUE_PROCESSES Default: 0

Range of values: 0...10

Multiple instances: can have different
values

Sets the number of SNP background processes per
instance.

JOB_QUEUE_INTERVAL Default: 60 (seconds)

Range of values: 1...3600 (seconds)

Multiple instances: can have different
values

Sets the interval between wake–ups for the SNP
background processes of the instance.

Table 7 – 1 Job Queue Initialization Parameters

Managing Job Queues

This section describes the various aspects of managing job queues, and
includes the following topics:

• DBMS_JOB Package

• Submitting a Job to the Job Queue

• How Jobs Execute

• Removing a Job From the Job Queue

• Altering a Job

• Broken Jobs

• Forcing a Job to Execute

• Terminating a Job

DBMS_JOB Package

Submitting a Job to the
Job Queue

7 – 4 Oracle7 Server Administrator’s Guide

To schedule and manage jobs in the job queue, use the procedures in
the DBMS_JOB package. There are no database privileges associated
with using job queues. Any user who can execute the job queue
procedures can use the job queue. Table 7 – 2 lists the job queue
procedures in the DBMS_JOB package.

Procedure Description Described on

SUBMIT Submits a job to the job queue. page 7 – 4

REMOVE Removes specified job from the job
queue.

page 7 – 9

CHANGE Alters a specified job. You can alter the
job description, the time at which the job
will be run, or the interval between
executions of the job.

page 7 – 10

WHAT Alters the job description for a specified
job.

page 7 – 10

NEXT_DATE Alters the next execution time for a
specified job.

page 7 – 11

INTERVAL Alters the interval between executions for
a specified job.

page 7 – 11

BROKEN Disables job execution. If a job is marked
as broken, Oracle7 does not attempt to
execute it.

page 7 – 11

RUN Forces a specified job to run. page 7 – 12

Table 7 – 2 Procedures in the DBMS_JOB Package

To submit a new job to the job queue, use the SUBMIT procedure in the
DBMS_JOB package:

DBMS_JOB.SUBMIT(job OUT BINARY_INTEGER,

what IN VARCHAR2,

next_date IN DATE DEFAULT SYSDATE,

interval IN VARCHAR2 DEFAULT ’null’,

no_parse IN BOOLEAN DEFAULT FALSE)

The SUBMIT procedure returns the number of the job you submitted.
Table 7 – 3 describes the procedure’s parameters.

7 – 5Managing Job Queues

Parameter Description

job This is the identifier assigned to the job you created. You must
use the job number whenever you want to alter or remove the
job.

For more information about job numbers, see “Job Numbers”
on page 7 – 6.

what This is the PL/SQL code you want to have executed.

For more information about defining a job, see “Job
Definitions” on page 7 – 7.

next_date This is the next date when the job will be run. The default
value is SYSDATE.

interval This is the date function that calculates the next time to
execute the job. The default value is NULL. INTERVAL must
evaluate to a future point in time or NULL.

For more information on how to specify an execution interval,
see page 7 – 7.

no_parse This is a flag. The default value is FALSE.

If NO_PARSE is set to FALSE (the default), Oracle7 parses
the procedure associated with the job. If NO_PARSE is set to
TRUE, Oracle7 parses the procedure associated with the job
the first time that the job is executed. If, for example, you want
to submit a job before you have created the tables associated
with the job, set NO_PARSE to TRUE.

Table 7 – 3 Parameters for DBMS_JOB.SUBMIT

As an example, let’s submit a new job to the job queue. The job calls the
procedure DBMS_DDL.ANALYZE_OBJECT to generate optimizer
statistics for the table DQUON.ACCOUNTS. The statistics are based on
a sample of half the rows of the ACCOUNTS table. The job is run every
24 hours:

SVRMGR> VARIABLE jobno number;

SVRMGR> begin

 2> DBMS_JOB.SUBMIT(:jobno,

 3> ’dbms_ddl.analyze_object(’’TABLE’’,

 4> ’’DQUON’’, ’’ACCOUNTS’’,

 5> ’’ESTIMATE’’, NULL, 50);’

 6> SYSDATE, ’SYSDATE + 1’);

 7> end;

 8> /

Statement processed.

SVRMGR> print jobno

JOBNO

––––––––––

 14144

Job Environment

Jobs and Import/Export

Job Owners

Job Numbers

7 – 6 Oracle7 Server Administrator’s Guide

When you submit a job to the job queue or alter a job’s definition,
Oracle7 records the following environment characteristics:

• the current user

• the user submitting or altering a job

• the current schema

• MAC privileges (if appropriate)

Oracle also records the following NLS parameters:

• NLS_LANGUAGE

• NLS_TERRITORY

• NLS_CURRENCY

• NLS_ISO_CURRENCY

• NLS_NUMERIC_CHARACTERS

• NLS_DATE_FORMAT

• NLS_DATE_LANGUAGE

• NLS_SORT

Oracle restores these environment characteristics every time a job is
executed. NLS_LANGUAGE and NLS_TERRITORY parameters are
defaults for unspecified NLS parameters.

You can change a job’s environment by using the DBMS_SQL package
and the ALTER SESSION command.

Jobs can be exported and imported. Thus, if you define a job in one
database, you can transfer it to another database. When exporting and
importing jobs, the job’s number, environment, and definition remain
unchanged.

Note: If the job number of a job you want to import matches
the number of a job already existing in the database, you will
not be allowed to import that job. Submit the job as a new job
in the database.

When you submit a job to the job queue, Oracle7 identifies you as the
owner of the job. Only a job’s owner can alter the job, force the job to
run, or remove the job from the queue.

A queued job is identified by its job number. When you submit a job, its
job number is automatically generated from the sequence SYS.JOBSEQ.

Job Definitions

Job Execution Interval

7 – 7Managing Job Queues

Once a job is assigned a job number, that number does not change.
Even if the job is exported and imported, its job number remains the
same.

The job definition is the PL/SQL code specified in the WHAT parameter
of the SUBMIT procedure.

Normally the job definition is a single call to a procedure. The
procedure call can have any number of parameters.

Note: In the job definition, use two single quotation marks
around strings. Always include a semicolon at the end of the
job definition.

There are special parameter values that Oracle7 recognizes in a job
definition. Table 7 – 4 lists these parameters.

Parameter Mode Description

job IN The number of the current job.

next_date IN/OUT The date of the next execution of the
job. The default value is SYSDATE.

broken IN/OUT Status of job, broken or not broken.
The IN value is FALSE.

Table 7 – 4 Special Parameter Values for Job Definitions

The following are examples of valid job definitions:

’myproc(’’10–JAN–82’’, next_date, broken);’

’scott.emppackage.give_raise(’’JFEE’’, 3000.00);’

’dbms_job.remove(job);’

The INTERVAL date function is evaluated immediately before a job is
executed. If the job completes successfully, the date calculated from
INTERVAL becomes the new NEXT_DATE. If the INTERVAL date
function evaluates to NULL and the job completes successfully, the job
is deleted from the queue.

If a job should be executed periodically at a set interval, use a date
expression similar to ’SYSDATE + 7’ in the INTERVAL parameter. For
example, if you set the execution interval to ’SYSDATE + 7’ on Monday,
but for some reason (such as a network failure) the job is not executed
until Thursday, ’SYSDATE + 7’ then executes every Thursday, not
Monday.

If you always want to automatically execute a job at a specific time,
regardless of the last execution (for example, every Monday), the
INTERVAL and NEXT_DATE parameters should specify a date
expression similar to ’NEXT_DAY(TRUNC(SYSDATE), ’’MONDAY’’)’.

Database Links and Jobs

How Jobs Execute

Job Queue Locks

7 – 8 Oracle7 Server Administrator’s Guide

Table 7 – 5 lists some common date expressions used for job execution
intervals.

Date Expression Evaluation

’SYSDATE + 7’ exactly seven days
from the last
execution

’SYSDATE + 1/48’ every half hour

’NEXT_DAY(TRUNC(SYSDATE), ’’MONDAY’’) + 15/24’ every Monday at
3PM

’NEXT_DAY(ADD_MONTHS
(TRUNC(SYSDATE, ’’Q’’), 3), ’’THURSDAY’’)’

first Thursday of
each quarter

Table 7 – 5 Common Job Execution Intervals

Note: When specifying NEXT_DATE or INTERVAL,
remember that date literals and strings must be enclosed in
single quotation marks. Also, the value of INTERVAL must be
enclosed in single quotation marks.

If you submit a job that uses a database link, the link must include a
username and password. Anonymous database links will not succeed.

See Also: For more information about the ALTER SESSION command,
see Oracle7 Server SQL Reference.

For more information on the DBMS_SQL package, see the Oracle7
Server Application Developer’s Guide.

SNP background processes execute jobs. To execute a job, the process
creates a session to run the job.

When an SNP process runs a job, the job is run in the same
environment in which it was submitted and with the owner’s default
privileges.

When you force a job to run using the procedure DBMS_JOB.RUN, the
job is run by your user process. When your user process runs a job, it is
run with your default privileges only. Privileges granted to you
through roles are unavailable.

Oracle7 uses job queue locks to ensure that a job is executed one
session at a time. When a job is being run, its session acquires a job
queue (JQ) lock for that job.

Interpreting Information about JQ Locks You can use the Server
Manager Lock Monitor or the locking views in the data dictionary to
examine information about locks currently held by sessions.

Job Execution Errors

Removing a Job From
the Job Queue

7 – 9Managing Job Queues

The following query lists the session identifier, lock type, and lock
identifiers for all sessions holding JQ locks:

SVRMGR> SELECT sid, type, id1, id2

 2> FROM v$lock

 3> WHERE type = ’JQ’;

SID TY ID1 ID2

–––––––––– –– –––––––––– ––––––––––

 12 JQ 0 14144

1 row selected.

In the query above, the identifier for the session holding the lock is 12.
The ID1 lock identifier is always 0 for JQ locks. The ID2 lock identifier
is the job number of the job the session is running.

When a job fails, information about the failure is recorded in a trace file
and the alert log. Oracle7 writes message number ORA–12012 and
includes the job number of the failed job.

The following can prevent the successful execution of queued jobs:

• not having any SNP background processes to run the job

• a network or instance failure

• an exception when executing the job

Job Failure and Execution Times If a job returns an error while
Oracle7 is attempting to execute it, Oracle7 tries to execute it again. The
first attempt is made after one minute, the second attempt after two
minutes, the third after four minutes, and so on, with the interval
doubling between each attempt. When the retry interval exceeds the
execution interval, Oracle7 continues to retry the job at the normal
execution interval. However, if the job fails sixteen times, Oracle7
automatically marks the job as broken and no longer tries to execute it.

Thus, if you can correct the problem that is preventing a job from
running before the job has failed sixteen times, Oracle7 will eventually
run that job again.

See Also: For more information about the locking views, see the
Oracle7 Server Reference.

For more information about locking, see Oracle7 Server Concepts.

To remove a job from the job queue, use the REMOVE procedure in the
DBMS_JOB package:

DBMS_JOB.REMOVE(job IN BINARY_INTEGER)

The following statement removes job number 14144 from the job queue:

Restrictions

Altering a Job

Restrictions

Syntax for CHANGE

Syntax for WHAT

7 – 10 Oracle7 Server Administrator’s Guide

DBMS_JOB.REMOVE(14144);

You can remove currently executing jobs from the job queue. However,
the job will not be interrupted, and the current execution will be
completed.

You can only remove jobs you own. If you try to remove a job that you
do not own, you receive a message that states the job is not in the job
queue.

To alter a job that has been submitted to the job queue, use the
procedures CHANGE, WHAT, NEXT_DATE, or INTERVAL in the
DBMS_JOB package.

Here’s an example where the job identified as 14144 is now executed
every three days:

DBMS_JOB.CHANGE(14144, null, null, ’SYSDATE + 3’);

You can only alter jobs that you own. If you try to alter a job that you
do not own, you receive a message that states the job is not in the job
queue.

You can alter any of the user–definable parameters associated with a
job by calling the DBMS_JOB.CHANGE procedure. Table 7 – 3
describes the procedure’s parameters:

DBMS_JOB.CHANGE(job IN BINARY_INTEGER,

what IN VARCHAR2,

next_date IN DATE,

interval IN VARCHAR2)

If you specify NULL for WHAT, NEXT_DATE, or INTERVAL when you
call the procedure CHANGE, the current value remains unchanged.

Note: When you change a job’s definition using the WHAT
parameter in the procedure CHANGE, Oracle7 records your
current environment. This becomes the new environment for
the job.

You can alter the definition of a job by calling the DBMS_JOB.WHAT
procedure. Table 7 – 3 describes the procedure’s parameters:

DBMS_JOB.WHAT(job IN BINARY_INTEGER,

what IN VARCHAR2)

Note: When you execute procedure WHAT, Oracle7 records
your current environment. This becomes the new environment
for the job.

Syntax for NEXT_DATE

Syntax for INTERVAL

Broken Jobs

Restrictions

7 – 11Managing Job Queues

You can alter the next date that Oracle7 executes a job by calling the
DBMS_JOB.NEXT_DATE procedure. Table 7 – 3 describes the
procedure’s parameters:

DBMS_JOB.NEXT_DATE(job IN BINARY_INTEGER,

next_date IN DATE)

You can alter the execution interval of a job by calling the
DBMS_JOB.INTERVAL procedure. Table 7 – 3 describes the
procedure’s parameters:

DBMS_JOB.INTERVAL(job IN BINARY_INTEGER,

interval IN VARCHAR2)

A job is labeled as either broken or not broken. Oracle7 does not
attempt to run broken jobs. However, you can force a broken job to run
by calling the procedure DBMS_JOB.RUN.

When you submit a job it is considered not broken.

There are two ways a job can break:

• Oracle7 has failed to successfully execute the job after sixteen
attempts.

• You have marked the job as broken, using the procedure
DBMS_JOB.BROKEN.

To mark a job as broken or not broken, use the procedure BROKEN in
the DBMS_JOB package. Table 7 – 4 describes the procedure’s
parameters:

DBMS_JOB.BROKEN(job IN BINARY_INTEGER,

broken IN BOOLEAN,

next_date IN DATE DEFAULT SYSDATE)

The following example marks job 14144 as not broken and sets its next
execution date to the following Monday:

DBMS_JOB.BROKEN(14144, FALSE, NEXT_DAY(SYSDATE, ’MONDAY’));

Once a job has been marked as broken, Oracle7 will not attempt to
execute the job until you either mark the job as not broken, or force the
job to be executed by calling the procedure DBMS_JOB.RUN.

You can only mark jobs you own as broken. If you try to mark a job you
do not own, you receive a message that states the job is not in the job
queue.

Running Broken Jobs

Forcing a Job to
Execute

Restrictions

7 – 12 Oracle7 Server Administrator’s Guide

If a problem has caused a job to fail sixteen times, Oracle7 marks the
job as broken. Once you have fixed this problem, you can run the job by
either:

• forcing the job to run by calling DBMS_JOB.RUN

• marking the job as not broken by calling DBMS_JOB.BROKEN
and waiting for Oracle7 to execute the job

If you force the job to run by calling the procedure DBMS_JOB.RUN,
Oracle7 runs the job immediately. If the job succeeds, then Oracle7
labels the job as not broken and resets its count of the number of failed
executions for the job.

Once you reset a job’s broken flag (by calling either RUN or BROKEN),
job execution resumes according to the scheduled execution intervals
set for the job.

There may be times when you would like to manually execute a job.
For example, if you have fixed a broken job, you may want to test the
job immediately by forcing it to execute.

To force a job to be executed immediately, use the procedure RUN in
the DBMS_JOB package. Oracle7 attempts to run the job, even if the job
is marked as broken:

DBMS_JOB.RUN(job IN BINARY_INTEGER)

When you run a job using DBMS_JOB.RUN, Oracle7 recomputes the
next execution date. For example, if you create a job on a Monday with
a NEXT_DATE value of ’SYSDATE’ and an INTERVAL value of
’SYSDATE + 7’, the job is run every 7 days starting on Monday.
However, if you execute RUN on Wednesday, the next execution date
will be the next Wednesday.

Note: When you force a job to run, the job is executed in your
current session. Running the job reinitializes your session’s
packages.

You can only run jobs that you own. If you try to run a job that you do
not own, you receive a message that states the job is not in the job
queue.

The following statement runs job 14144 in your session and recomputes
the next execution date:

DBMS_JOB.RUN(14144);

The procedure RUN contains an implicit commit. Once you execute a
job using RUN, you cannot rollback.

Terminating a Job

7 – 13Managing Job Queues

You can terminate a running job by marking the job as broken,
identifying the session running the job, and disconnecting that session.
You should mark the job as broken, so that Oracle7 does not attempt to
run the job again.

After you have identified the session running the job (via V$SESSION),
you can disconnect the session using the Server Manager Disconnect
Session menu item, or the SQL command ALTER SYSTEM.

See Also: For examples of viewing information about jobs and
sessions, see “Viewing Job Queue Information” on page 7 – 13.

For more information on V$SESSION, see the Oracle7 Server Reference.

Viewing Job Queue Information

You can view information about jobs in the job queue via the data
dictionary views in Table 7 – 6:

View Description

DBA_JOBS Lists all the jobs in the database.

USER_JOBS Lists all jobs owned by the user.

DBA_JOBS_RUNNING Lists all jobs in the database that are currently running. This
view joins V$LOCK and JOB$.

Table 7 – 6 Views for Viewing Job Queue Information

For example, you can display information about a job’s status and
failed executions. The following sample query creates a listing of the
job number, next execution time, failures, and broken status for each
job you have submitted:

SVRMGR> SELECT job, next_date, next_sec, failures, broken

 2> FROM user_jobs;

JOB NEXT_DATE NEXT_SEC FAILURES B

–––––––––– ––––––––– –––––––– –––––––––– –

 9125 01–NOV–94 00:00:00 4 N

 14144 24–OCT–94 16:35:35 0 N

 41762 01–JAN–00 00:00:00 16 Y

3 rows selected.

You can also display information about jobs currently running. The
following sample query lists the session identifier, job number, user
who submitted the job, and the start times for all currently running
jobs:

7 – 14 Oracle7 Server Administrator’s Guide

SVRMGR> SELECT sid, r.job, log_user, r.this_date, r.this_sec

 2> FROM dba_jobs_running r, dba_jobs j

 3> WHERE r.job = j.job;

SID JOB LOG_USER THIS_DATE THIS_SEC

–––––––––– –––––––––– –––––––––––––––––––– ––––––––– ––––––––

 12 14144 JFEE 24–OCT–94 17:21:24

 25 8536 SCOTT 24–OCT–94 16:45:12

2 rows selected.

See Also: For more information on data dictionary views, see the
Oracle7 Server Reference.

P A R T

 III Database Storage

C H A P T E R

8
T

8 – 1Managing Tablespaces

Managing Tablespaces

his chapter describes the various aspects of tablespace management,
and includes the following topics:

• Guidelines for Managing Tablespaces

• Creating Tablespaces

• Managing Tablespace Allocation

• Altering Tablespace Availability

• Making a Tablespace Read–Only

• Dropping Tablespaces

• Viewing Information about Tablespaces

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server
Manager/GUI or Server Manager/LineMode, see the Oracle Server
Manager User’s Guide.

Using Multiple
Tablespaces

Specifying Tablespace
Storage Parameters

8 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Tablespaces

Before working with tablespaces of an Oracle7 database, consider the
guidelines in the following sections:

• Using Multiple Tablespaces

• Specifying Tablespace Storage Parameters

• Assigning Tablespace Quotas to Users

Using multiple tablespaces allows you more flexibility in performing
database operations. For example, when a database has multiple
tablespaces, you can perform the following tasks:

• Separate user data from data dictionary data.

• Separate one application’s data from another’s.

• Store different tablespaces’ datafiles on separate disk drives to
reduce I/O contention.

• Separate rollback segment data from user data, preventing a
single disk failure from causing permanent loss of data.

• Take individual tablespaces offline while others remain online.

• Reserve a tablespace for a particular type of database use, such
as high update activity, read–only activity, or temporary segment
storage.

• Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be
simultaneously open; these limits can affect the number of tablespaces
that can be simultaneously online. To avoid exceeding your operating
system’s limit, plan your tablespaces efficiently. Create only enough
tablespaces to fill your needs, and create these tablespaces with as few
files as possible. If you need to increase the size of a tablespace, add
one or two large datafiles, or create datafiles with the autoextend
option set on, rather than many small datafiles.

Review your data in light of these advantages and decide how many
tablespaces you will need for your database design.

When you create a new tablespace, you can specify default storage
parameters for objects that will be created in the tablespace. Storage
parameters specified when an object is created override the default
storage parameters of the tablespace containing the object. However, if
you do not specify storage parameters when creating an object, the

Assigning Tablespace
Quotas to Users

8 – 3Managing Tablespaces

object’s segment automatically uses the default storage parameters for
the tablespace.

Set the default storage parameters for a tablespace to account for the
size of a typical object that the tablespace will contain (you estimate
this size). You can specify different storage parameters for an unusual
or exceptional object when creating that object.

Note: If you do not specify the default storage parameters for
a new tablespace, the default storage parameters of Oracle7
become the tablespace’s default storage parameters.

See Also: For information about estimating the sizes of objects, see
Chapters 9 through 16.

Grant users who will be creating tables, clusters, snapshots, indexes,
and other objects, the privilege to create the object and a quota (space
allowance or limit) in the tablespace intended to hold the object’s
segment. The security administrator is responsible for granting the
required privileges to create objects to database users and for assigning
tablespace quotas, as necessary, to database users.

See Also: To learn more about assigning tablespace quotas to database
users, see page 19 – 11.

Creating Tablespaces

The steps for creating tablespaces vary by operating system. On most
operating systems, you indicate the size and fully specified filenames
when creating a creating a new tablespace, or altering a tablespace by
adding datafiles. In each situation, Oracle7 automatically allocates and
formats the datafiles as specified. However, on some operating
systems, you must create the datafiles before installation.

The first tablespace in any database is always the SYSTEM tablespace.
Therefore, the first datafiles of any database are automatically allocated
for the SYSTEM tablespace during database creation.

You might create a new tablespace for any of the following reasons:

• You want to allocate more disk storage space for the associated
database, thereby enlarging the database.

• You need to create a logical storage structure in which to store a
specific type of data separate from other database data.

To increase the total size of the database you can alternatively add a
datafile to an existing tablespace, rather than adding a new tablespace.

Creating a Temporary
Tablespace

8 – 4 Oracle7 Server Administrator’s Guide

Note: No data can be inserted into any tablespace until the
current instance has acquired at least two rollback segments
(including the SYSTEM rollback segment).

To create a new tablespace, use either the Create Tablespace property
sheet of Server Manager/GUI, or the SQL command CREATE
TABLESPACE. You must have the CREATE TABLESPACE system
privilege to create a tablespace.

As an example, let’s create the tablespace RB_SEGS (to hold rollback
segments for the database), with the following characteristics:

• The data of the new tablespace is contained in a single datafile,
50M in size.

• The default storage parameters for any segments created in this
tablespace are explicitly set.

• After the tablespace is created, it is left offline.

The following statement creates the tablespace RB_SEGS:

CREATE TABLESPACE rb_segs

 DATAFILE ’datafilers_1’ SIZE 50M

 DEFAULT STORAGE (

 INITIAL 50K

 NEXT 50K

 MINEXTENTS 2

 MAXEXTENTS 50

 PCTINCREASE 0)

 OFFLINE;

If you do not fully specify filenames when creating tablespaces, the
corresponding datafiles are created in the current directory of the
database server.

See Also: See your operating system–specific Oracle documentation for
information about initially creating a tablespace.

For more information about adding a datafile, see “Adding Datafiles to
a Tablespace” on page 9 – 4.

For more information about the CREATE TABLESPACE statement, see
the Oracle7 Server SQL Reference.

If you wish to improve the concurrency of multiple sort operations,
reduce their overhead, or avoid Oracle space management operations
altogether, you can create temporary tablespaces.

Within a temporary tablespace, all sort operations for a given instance
and tablespace share a single sort segment. Sort segments exist in every
instance that performs sort operations within a given tablespace. You

Altering Storage
Settings for
Tablespaces

8 – 5Managing Tablespaces

cannot store permanent objects in a temporary tablespace. You can
view the allocation and deallocation of space in a temporary tablespace
sort segment via the V$SORT_SEGMENTS table.

To identify a tablespace as temporary during tablespace creation, issue
the following statement:

CREATE TABLESPACE tablespace TEMPORARY

To identify a tablespace as temporary in an existing tablespace, issue
the following statement:

ALTER TABLESPACE tablespace TEMPORARY

Note: You can take temporary tablespaces offline. Returning
temporary tablespaces online does not affect their temporary
status.

See Also: For more information about the CREATE TABLESPACE and
ALTER TABLESPACE commands, see the Oracle7 Server SQL Reference.

For more information about V$SORT_SEGMENTS, see the Oracle7
Server Reference.

For more information about Oracle space management, see Oracle7
Server Concepts.

Managing Tablespace Allocation

This section describes aspects of managing tablespace allocation, and
includes the following topics:

• Altering Storage Settings for Tablespaces

• Coalescing Free Space

You can change the default storage parameters of a tablespace to
change the default specifications for future objects created in the
tablespace. To change the default storage parameters for objects
subsequently created in the tablespace, use either the Alter Tablespace
property sheet of Server Manager/GUI, or the SQL command ALTER
TABLESPACE. Also, to alter the default storage parameters of a
tablespace, you must have the ALTER TABLESPACE system privilege.

The following example alters the default storage parameters for the
tablespace USERS:

Coalescing Free Space

8 – 6 Oracle7 Server Administrator’s Guide

ALTER TABLESPACE users

 DEFAULT STORAGE (

 INITIAL 50K

 NEXT 50K

 MINEXTENTS 2

 MAXEXTENTS 20

 PCTINCREASE 50);

New values for the default storage parameters of a tablespace affect
only future extents allocated for the segments within the tablespace.

Space for tablespace segments is managed using extents, which are
comprised of a specific number of contiguous data blocks. The free
extent closest in size to the required extent is used when allocating new
extents to a tablespace segment. Thus, a larger free extent can be
fragmented, or smaller contiguous free extents can be coalesced into
one larger free extent (see Figure 8 – 1). However, continuous allocation
and deallocation of free space fragments your tablespace and makes
allocation of larger extents more difficult. By default, SMON (system
monitor) processes incrementally coalesce the free extents of
tablespaces in the background. If desired, you can disable SMON
coalescing.

U

U

U

U

U

U

U

U

F

F

FFF FF F

F

F

F F U F F F FF U

F U U FJFEE1.ORA

Input

Output
EXTENT 2

F
U

= free data block
= used data block

Input

Output
EXTENT 1

Figure 8 – 1 Coalescing Free Space

If you find that fragmentation of space is high (contiguous space on
your disk appears as non–contiguous), you can coalesce your free space
in a single space transaction. After every eight coalesces the space
transaction commits and other transactions can allocate or deallocate
space. You must have ALTER TABLESPACE privileges to coalesce
tablespaces. You can coalesce all available free space extents in a

Viewing Information
about Tablespaces

Bringing Tablespaces
Online

8 – 7Managing Tablespaces

tablespace into larger contiguous extents on a per tablespace basis by
using the following command:

ALTER TABLESPACE tablespace COALESCE;

You can also use this command to supplement SMON and extent
allocation coalescing, thereby improving space allocation performance
in severely fragmented tablespaces. Issuing this command does not
effect the performance of other users accessing the same tablespace.
Like other options of the ALTER TABLESPACE command, the
COALESCE option is exclusive; when specified, it should be the only
option.

To display statistics about coalesceable extents for tablespaces, you can
view the DBA_FREE_SPACE_COALESCED view. You can query this
view to determine if you need to coalesce space in a particular
tablespace.

See Also: For information about the contents of
DBA_FREE_SPACE_COALESCED, see the Oracle7 Server Reference.

Altering Tablespace Availability

You can bring an offline tablespace online to make the schema objects
within the tablespace available to database users. Alternatively, you can
take an online tablespace offline while the database is open, so that this
portion of the database is temporarily unavailable for general use but
the rest is open and available. This section includes the following
topics:

• Bringing Tablespaces Online

• Taking Tablespaces Offline

You can bring any tablespace in an Oracle database online whenever
the database is open. The only exception is that the SYSTEM tablespace
must always be online because the data dictionary must always be
available to Oracle. A tablespace is normally online so that the data
contained within it is available to database users.

To bring an offline tablespace online while the database is open, use
either the Place Online menu item of Server Manager/GUI, or the SQL
command ALTER TABLESPACE. You must have the MANAGE
TABLESPACE system privilege to bring a tablespace online.

Note: If a tablespace to be brought online was not taken offline
“cleanly” (that is, using the NORMAL option of the ALTER

Taking Tablespaces
Offline

8 – 8 Oracle7 Server Administrator’s Guide

TABLESPACE OFFLINE command), you must first perform
media recovery on the tablespace before bringing it online.
Otherwise, Oracle7 returns an error and the tablespace remains
offline.

The following statement brings the USERS tablespace online:

ALTER TABLESPACE users ONLINE;

You may wish to take a tablespace offline for any of the following
reasons:

• To make a portion of the database unavailable while allowing
normal access to the remainder of the database.

• To perform an offline tablespace backup (even though a
tablespace can be backed up while online and in use).

• To make an application and its group of tables temporarily
unavailable while updating or maintaining the application.

To take an online tablespace offline while the database is open, use
either the Take Offline menu item of Server Manager/GUI, or the SQL
command ALTER TABLESPACE. You must have the MANAGE
TABLESPACE system privilege to take a tablespace offline.

You can specify any of the following priorities when taking a tablespace
offline:

A tablespace can be taken offline normally if no
error conditions exist for any of the datafiles of the
tablespace. No datafile in the tablespace can be
currently offline as the result of a write error. With
normal offline priority, Oracle7 takes a checkpoint
for all datafiles of the tablespace as it takes them
offline.

A tablespace can be taken offline temporarily, even if
there are error conditions for one or more files of
the tablespace. With temporary offline priority,
Oracle7 takes offline the datafiles that are not
already offline, checkpointing them as it does so.

If no files are offline, but you use the temporary
option, media recovery is not required to bring the
tablespace back online. However, if one or more
files of the tablespace are offline because of write
errors, and you take the tablespace offline
temporarily, the tablespace will require recovery
before you can bring it back online.

normal offline

temporary offline

8 – 9Managing Tablespaces

A tablespace can be taken offline immediately,
without Oracle’s taking a checkpoint on any of the
datafiles. With immediate offline priority, media
recovery for the tablespace is required before the
tablespace can be brought online. You cannot take a
tablespace offline immediately if the database is
running in NOARCHIVELOG mode.

Warning: If you must take a tablespace offline, use the normal
option (the default) if possible; this guarantees that the
tablespace will not require recovery to come back online, even
if you reset the redo log sequence (using an ALTER
DATABASE OPEN RESETLOGS statement after incomplete
media recovery) before bringing the tablespace back online.

Take a tablespace offline temporarily only when you cannot take it
offline normally; in this case, only the files taken offline because of
errors need to be recovered before the tablespace can be brought online.
Take a tablespace offline immediately only after trying both the normal
and temporary options.

The following example takes the USERS tablespace offline normally:

ALTER TABLESPACE users OFFLINE NORMAL;

See Also: Before taking an online tablespace offline, verify that the
tablespace contains no active rollback segments. For more information
see “Taking Rollback Segments Offline” on page 17 – 12.

Making a Tablespace Read–Only

This section describes issues related to making tablespaces read–only,
and includes the following topics:

• Prerequisites

• Making a Read–Only Tablespace Writeable

• Creating a Read–Only Tablespace on a WORM Device

Making a tablespace read–only prevents further write operations on the
datafiles in the tablespace. After making the tablespace read–only, you
should back it up.

Use the SQL command ALTER TABLESPACE to change a tablespace to
read–only. You must have the ALTER TABLESPACE system privilege
to make a tablespace read–only. The following statement makes the
FLIGHTS tablespace read–only:

immediate offline

Prerequisites

8 – 10 Oracle7 Server Administrator’s Guide

ALTER TABLESPACE flights READ ONLY

After a tablespace is read–only, you can copy its files to read–only
media. You must then rename the datafiles in the control file to point to
the new location by using the SQL command ALTER DATABASE
RENAME.

A read–only tablespace is neither online nor offline. Issuing the ALTER
TABLESPACE command with the ONLINE or OFFLINE option does
not change the read–only state of the tablespace; rather, it causes all of
the datafiles in the tablespace to be brought online or offline.

Before you can make a tablespace read–only, the following conditions
must be met. It may be easiest to meet these restrictions by performing
this function in restricted mode, so that only users with the
RESTRICTED SESSION system privilege can be logged on.

• The tablespace must be online.

• There must not be any active transactions in the entire database.

This is necessary to ensure that there is no undo information that
needs to be applied to the tablespace.

• The tablespace must not contain any active rollback segments.

For this reason, the SYSTEM tablespace can never be made
read–only, since it contains the SYSTEM rollback segment.
Additionally, because the rollback segments of a read–only
tablespace are not accessible, it is recommended that you drop
the rollback segments before you make a tablespace read–only.

• The tablespace must not currently be involved in an online
backup, since the end of a backup updates the header file of all
datafiles in the tablespace.

• The COMPATIBLE initialization parameter must be set to 7.1.0
or greater.

For better performance while accessing data in a read–only tablespace,
you might want to issue a query that accesses all of the blocks of the
tables in the tablespace just before making it read–only. A simple query,
such as SELECT COUNT (*), executed against each table will ensure
that the data blocks in the tablespace can be subsequently accessed
most efficiently. This eliminates the need for Oracle7 to check the status
of the transactions that most recently modified the blocks.

Warning: You cannot rename or resize datafiles belonging to a
read–only tablespace.

Making a Read–Only
Tablespace Writeable

Prerequisites

Creating a Read–Only
Tablespace on a
WORM Device

8 – 11Managing Tablespaces

See Also: For more information about read–only tablespaces, see
Oracle7 Server Concepts.

Whenever you create a tablespace, it is both readable and writeable. To
change a read–only tablespace back to a read–write tablespace, use the
SQL command ALTER TABLESPACE. You must have the ALTER
TABLESPACE system privilege to change a read–only tablespace to a
read–write tablespace. The following command makes the FLIGHTS
tablespace writeable:

ALTER TABLESPACE flights READ WRITE;

Making a read–only tablespace writeable updates the control file for the
datafiles, so that you can use the read–only version of the datafiles as a
starting point for recovery.

To issue this command, all of the datafiles in the tablespace must be
online. Use the DATAFILE ONLINE option of the ALTER DATABASE
command to bring a datafile online. The V$DATAFILE view lists the
current status of a datafile.

You may wish to create a read–only tablespace on a WORM (Write
Once Read Many) device when you have read–only files that do not
require updating.

To Create a Read–Only Tablespace on a WORM Device

1. Create a writeable tablespace on another device. Create the objects
that belong in the tablespace and insert your data.

2. Issue the ALTER TABLESPACE command with the READ ONLY
option to change the tablespace to read–only.

3. Copy the datafiles of the tablespace onto the WORM device. Use
operating system commands to copy the files.

4. Take the tablespace offline.

5. Rename the datafiles to coincide with the names of the datafiles
you copied onto your WORM device. Renaming the datafiles
changes their names in the control file.

6. Bring the tablespace online.

8 – 12 Oracle7 Server Administrator’s Guide

Dropping Tablespaces

You can drop a tablespace and its contents (the segments contained in
the tablespace) from the database if the tablespace and its contents are
no longer required. Any tablespace in an Oracle7 database, except the
SYSTEM tablespace, can be dropped. You must have the DROP
TABLESPACE system privilege to drop a tablespace.

Warning: Once a tablespace has been dropped, the
tablespace’s data is not recoverable. Therefore, make sure that
all data contained in a tablespace to be dropped will not be
required in the future. Also, immediately before and after
dropping a tablespace from a database, back up the database
completely. This is strongly recommended so that you can recover
the database if you mistakenly drop a tablespace, or if the
database experiences a problem in the future after the
tablespace has been dropped.

When you drop a tablespace, only the file pointers in the control files of
the associated database are dropped. The datafiles that constituted the
dropped tablespace continue to exist. To free previously used disk
space, delete the datafiles of the dropped tablespace using the
appropriate commands of your operating system after completing this
procedure.

You cannot drop a tablespace that contains any active segments. For
example, if a table in the tablespace is currently being used or the
tablespace contains an active rollback segment, you cannot drop the
tablespace. For simplicity, take the tablespace offline before dropping it.

After a tablespace is dropped, the tablespace’s entry remains in the
data dictionary (see the DBA_TABLESPACES view), but the
tablespace’s status is changed to INVALID.

To drop a tablespace, use either the Drop tablespace menu item of
Server Manager/GUI, or the SQL command DROP TABLESPACE. The
following statement drops the USERS tablespace, including the
segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other
structures), you do not need to check the Including Contained Objects
checkbox. If the tablespace contains any tables with primary or unique
keys referenced by foreign keys of tables in other tablespaces and you
want to cascade the drop of the FOREIGN KEY constraints of the child
tables, select the Cascade Drop of Integrity Constraints checkbox to
drop the tablespace.

Listing Tablespaces and
Default Storage
Parameters: Example

8 – 13Managing Tablespaces

Use the CASCADE CONSTRAINTS option to cascade the drop of the
FOREIGN KEY constraints in the child tables.

See Also: For more information about taking tablespaces offline, see
“Taking Tablespaces Offline” on page 8 – 8.

For more information about the DROP TABLESPACE statement, see
the Oracle7 Server SQL Reference.

Viewing Information About Tablespaces

The following data dictionary views provide useful information about
tablespaces of a database:

• USER_EXTENTS, DBA_EXTENTS

• USER_SEGMENTS, DBA_SEGMENTS

• USER_FREE_SPACE, DBA_FREE_SPACE

• DBA_USERS

• DBA_TS_QUOTAS

• USER_TABLESPACES, DBA_TABLESPACES

• DBA_DATA_FILES

• V$DATAFILE

The following examples illustrate how to use the views not already
illustrated in other chapters of this manual. They assume you are using
a database that contains two tablespaces, SYSTEM and USERS. USERS
is made up of two files, FILE1 (100MB) and FILE2 (200MB); the
tablespace has been taken offline normally.

To list the names and default storage parameters of all tablespaces in a
database, use the following query on the DBA_TABLESPACES view:

SELECT tablespace_name ”TABLESPACE”,

 initial_extent ”INITIAL_EXT”,

 next_extent ”NEXT_EXT”,

 min_extents ”MIN_EXT”,

 max_extents ”MAX_EXT”,

 pct_increase

 FROM sys.dba_tablespaces;

TABLESPACE INITIAL_EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE

–––––––––– ––––––––––– –––––––– ––––––– ––––––– ––––––––––––

SYSTEM 10240000 10240000 1 99 50

Listing the Datafiles and
Associated Tablespaces of
a Database: Example

Listing the Free Space
(Extents) of Each
Tablespace: Example

8 – 14 Oracle7 Server Administrator’s Guide

USERS 10240000 10240000 1 99 50

To list the names, sizes, and associated tablespaces of a database, enter
the following query on the DBA_DATA_FILES view:

SELECT file_name, bytes, tablespace_name

 FROM sys.dba_data_files;

FILE_NAME BYTES TABLESPACE_NAME

–––––––––––– –––––––––– ––––––––––––––––––––

filename1 10240000 SYSTEM

filename2 10240000 USERS

filename3 20480000 USERS

To see the amount of space available in the free extents of each
tablespace in the database, enter the following query:

SELECT tablespace_name, file_id,

 COUNT(*) ”PIECES”,

 MAX(blocks) ”MAXIMUM”,

 MIN(blocks) ”MINIMUM”,

 AVG(blocks) ”AVERAGE”,

 SUM(blocks) ”TOTAL”

 FROM sys.dba_free_space

WHERE tablespace_name = ’SYSTEM’

GROUP BY tablespace_name, file_id;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE SUM

–––––––––– ––––––– –––––– ––––––– ––––––– ––––––– –––––––

SYSTEM 1 2 2928 115 1521.5 3043

SUM shows the amount of free space in each tablespace, PIECES shows
the amount of fragmentation in the datafiles of the tablespace, and
MAXIMUM shows the largest contiguous area of space. This query is
useful when you are going to create a new object or you know that a
segment is about to extend, and you want to make sure that there is
enough space in the containing tablespace.

C H A P T E R

9
T

9 – 1Managing Datafiles

Managing Datafiles

his chapter describes the various aspects of datafile management,
and includes the following topics:

• Guidelines for Managing Datafiles

• Creating and Adding Datafiles to a Tablespace

• Changing a Datafile’s Size

• Altering Datafile Availability

• Renaming and Relocating Datafiles

• Verifying Data Blocks in Datafiles

• Viewing Information About Datafiles

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

Datafiles can also be created as part of database recovery from a media
failure. For more information, see page 24 – 7.

For information on tablespaces and datafiles in Trusted Oracle7 Server,
see the Trusted Oracle7 Server Administrator’s Guide.

Number of Datafiles

9 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Datafiles

This section describes aspects of managing datafiles, and includes the
following topics:

• Number of Datafiles

• Set the Size of Datafiles

• Place Datafiles Appropriately

• Store Datafiles Separately From Redo Log FIles

At least one datafile is required for the SYSTEM tablespace of a
database; a small system might have a single datafile. In general,
keeping a few large datafiles is preferable to many small datafiles,
because you can keep fewer files open at the same time.

You can add datafiles to tablespaces, subject to the following operating
system–specific datafile limits:

Each operating system sets a limit on the maximum
number of files per process. Regardless of all other
limits, more datafiles cannot be created when the
operating system limit of open files is reached.

Oracle7 imposes a maximum limit on the number of
datafiles for any Oracle7 database opened by any
instance. This limit is port–specific.

At database creation, you must indicate the
maximum number of datafiles expected for the
database so that an adequate amount of space can
be reserved in the database’s control file. You set
this limit with the MAXDATAFILES parameter in
the CREATE DATABASE statement. This maximum
cannot exceed the Oracle7 system limit or any
operating system limit. If you are not sure how to
set this parameter, use a high number to avoid
unnecessary limitation. The default value is
operating system–specific.

Note: You can increase space in the database by
resizing datafiles. Resizing existing datafiles is
useful if you are nearing the MAXDATAFILES limit.

When starting an Oracle7 instance, the database’s
parameter file indicates the amount of SGA space to
reserve for datafile information; the maximum
number of datafiles is controlled by the DB_FILES

operating system
limit

Oracle7 system
limit

control file upper
bound

instance or SGA
upper bound

Set the Size of
Datafiles

Place Datafiles
Appropriately

Store Datafiles
Separately From Redo
Log Files

9 – 3Managing Datafiles

parameter. This limit applies only for the life of the
instance. DB_FILES can temporarily reduce the
control file upper bound, but cannot raise it. The
default value is the value of the control file upper
bound.

With the Oracle7 Parallel Server, all instances must set the instance
datafile upper bound to the same value.

The use of DB_FILES and MAXDATAFILES is optional. If neither is
used, the default maximum number of datafiles is the operating
system–specific Oracle7 system limit.

See Also: For more information on operating system limits, see your
operating system–specific Oracle documentation.

For information about Parallel Server operating system limits, see the
Oracle7 Parallel Server manual.

For more information about MAXDATAFILES, see the Oracle7 Server
SQL Reference.

The first datafile (in the original SYSTEM tablespace) must be at least
2M to contain the initial data dictionary and rollback segment. If you
install other Oracle7 products, they may require additional space in the
SYSTEM tablespace (for online help, for example); see the installation
instructions for these products.

Tablespace location is determined by the physical location of the
datafiles that constitute that tablespace. Use the hardware resources of
your computer appropriately.

For example, if several disk drives are available to store the database, it
might be helpful to store table data in a tablespace on one disk drive,
and index data in a tablespace on another disk drive. This way, when
users query table information, both disk drives can work
simultaneously, retrieving table and index data at the same time.

Datafiles should not be stored on the same disk drive that stores the
database’s redo log files. If the datafiles and redo log files are stored on
the same disk drive and that disk drive fails, the files cannot be used in
your database recovery procedures.

If you multiplex your redo log files, then the likelihood of your losing all
of your redo log files is low, so you can store datafiles on the same drive
as some redo log files.

Enabling and
Disabling Automatic
Extension for a
Datafile

9 – 4 Oracle7 Server Administrator’s Guide

Creating and Adding Datafiles to a Tablespace

You can create and add datafiles to a tablespace to increase the total
amount of disk space allocated for the tablespace, and consequently the
database.

To add datafiles to a tablespace, use either the Add Datafile dialog box
of Server Manager/GUI, or the SQL command ALTER TABLESPACE.
You must have the ALTER TABLESPACE system privilege to add
datafiles to a tablespace.

The following statement creates a new datafile for the RB_SEGS
tablespace:

ALTER TABLESPACE rb_segs

 ADD DATAFILE ’filename1’ SIZE 1M;

If you add new datafiles to a tablespace and do not fully specify the
filenames, Oracle7 creates the datafiles in the default directory of the
database server. Unless you want to reuse existing files, make sure the
new filenames do not conflict with other files; the old files that have
been previously dropped will be overwritten.

Changing a Datafile’s Size

This section describes the various ways to alter the size of a datafile, and
includes the following topics:

• Enabling and Disabling Automatic Extension for a Datafile

• Manually Resizing a Datafile

You can create datafiles or alter existing datafiles so that they
automatically increase in size when more space is needed in the
database. The files increase in specified increments up to a specified
maximum.

Setting your datafiles to extend automatically results in the following:

• reduces the need for immediate intervention when a tablespace
runs out of space

• ensures applications will not halt because of failures to allocate
extents

• creates FILEXT$, which contains information about the
autoextend characteristics of a datafile

Manually Resizing a
Datafile

9 – 5Managing Datafiles

Note: FILEXT$ is not created with the data dictionary scripts,
so there is no easy way to create database views on it. Thus,
catalog scripts will be unsuccessful if you attempt to create a
database view on FILEXT$. FILEXT$ is the only place you can
query where datafiles have autoextend turned on, and the
current settings of their parameter values.

You can specify automatic file extension when you create datafiles via
the following SQL commands:

• CREATE DATABASE

• CREATE TABLESPACE

• ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles,
or manually resize a datafile using the SQL command ALTER
DATABASE.

The following example enables automatic extension for a datafile,
FILENAME2, added to the USERS tablespace:

ALTER TABLESPACE users

 ADD DATAFILE ’filename2’ SIZE 10M

 AUTOEXTEND ON

 NEXT 512K

 MAXSIZE 250M

The value of NEXT is the minimum size of the increments added to the
file when it extends. The value of MAXSIZE is the maximum size to
which the file can automatically extend.

The next example disables automatic extension for the datafile
FILENAME2:

ALTER DATABASE DATAFILE ’filename2’

 AUTOEXTEND OFF

See Also: For more information about the SQL commands for creating
or altering datafiles, see the Oracle7 Server SQL Reference.

You can manually increase or decrease the size of a datafile using the
ALTER DATABASE command.

Because you can change the sizes of datafiles, you can add more space to
your database without adding more datafiles. This is beneficial if you
are concerned about reaching the maximum number of datafiles allowed
in your database.

9 – 6 Oracle7 Server Administrator’s Guide

Manually reducing the sizes of datafiles allows you to reclaim unused
space in the database. This is useful for correcting errors in estimates of
space requirements.

In this example, assume that the datafile FILENAME2 has extended up
to 250M. However, because its tablespace now stores smaller objects, the
datafile can be reduced in size.

The following command decreases the size of datafile FILENAME2:

ALTER DATABASE DATAFILE ’filename2’

 RESIZE 100M

Note: It is not always possible to decrease the size of a file to a
specific value.

See Also: For more information about the implications resizing files has
for downgrading, see the Oracle7 Server Migration.

For more information about the ALTER DATABASE command, see the
Oracle7 Server SQL Reference.

Altering Datafile Availability

This section describes ways to alter datafile availability, and includes the
following topics:

• Bringing Datafiles Online in ARCHIVELOG Mode

• Taking Datafiles Offline in NOARCHIVELOG Mode

In very rare situations, you might need to bring specific datafiles online
(make them available) or take specific files offline (make them
unavailable). For example, when Oracle7 has problems writing to a
datafile, it can automatically take the datafile offline. You might need to
take the damaged datafile offline or bring it online manually.

Note: You can make all datafiles in a tablespace, other than the
files in the SYSTEM tablespace, temporarily unavailable by
taking the tablespace offline. You must leave these files in the
tablespace to bring the tablespace back online.

Offline datafiles cannot be accessed. Bringing a datafile in a read–only
tablespace online makes the file readable. No one can write to the file
unless its associated tablespace is returned to the read–write state. The
files of a read–only tablespace can independently be taken online or
offline using the DATAFILE option of the ALTER DATABASE
command.

Bringing Datafiles
Online in
ARCHIVELOG Mode

Taking Datafiles
Offline in
NOARCHIVELOG
Mode

9 – 7Managing Datafiles

To bring a datafile online or take it offline, in either archiving mode, you
must have the ALTER DATABASE system privilege. You can perform
these operations only when the database is open in exclusive mode.

To bring an individual datafile online, issue the SQL command ALTER
DATABASE, and include the DATAFILE parameter.

Note: To use this option of the ALTER DATABASE command,
the database must be in ARCHIVELOG mode. This requirement
prevents you from accidentally losing the datafile, since taking
the datafile offline while in NOARCHIVELOG mode is likely to
result in losing the file.

The following statement brings the specified datafile online:

ALTER DATABASE DATAFILE ’filename’ ONLINE;

See Also: For more information about bringing datafiles online during
media recovery, see page 24 – 7.

To take a datafile offline when the database is in NOARCHIVELOG
mode, use the ALTER DATABASE command with the DATAFILE
parameter and the OFFLINE DROP option. This allows you to take the
datafile offline and drop it immediately. It is useful, for example, if the
datafile contains only data from temporary segments and has not been
backed up, and the database is in NOARCHIVELOG mode.

The following statement brings the specified datafile offline:

ALTER DATABASE DATAFILE ’filename’ OFFLINE DROP;

Renaming and Relocating Datafiles

This section describes the various aspects of renaming and relocating
datafiles, and includes the following topics:

• Renaming and Relocating Datafiles for a Single Tablespace

• Renaming and Relocating Datafiles for Multiple Tablespaces

You can rename datafiles to change either their names or locations.
Oracle7 provides options to make the following changes:

• Rename and relocate datafiles in a single offline tablespace (for
example, FILENAME1 and FILENAME2 in TBSPACE1) while the
rest of the database is open.

Renaming and
Relocating Datafiles
for a Single Tablespace

9 – 8 Oracle7 Server Administrator’s Guide

• Rename and relocate datafiles in several tablespaces
simultaneously (for example, FILE1 in TBSP1 and FILE2 in
TBSP2) while the database is mounted but closed.

Note: To rename or relocate datafiles of the SYSTEM
tablespace, you must use the second option, because you cannot
take the SYSTEM tablespace offline.

Renaming and relocating datafiles with these procedures only change
the pointers to the datafiles, as recorded in the database’s control file; it
does not physically rename any operating system files, nor does it copy
files at the operating system level. Therefore, renaming and relocating
datafiles involve several steps. Read the steps and examples carefully
before performing these procedures.

You must have the ALTER TABLESPACE system privilege to rename
datafiles of a single tablespace.

The following steps describe how to rename or relocate datafiles from a
single tablespace.

To Rename or Relocate Datafiles for a Single Tablespace

1. Take the non–SYSTEM tablespace that contains the datafiles offline.

2. Copy the datafiles to the new location or new names using the
operating system.

3. Make sure that the new, fully specified filenames are different from
the old filenames.

4. Use either the Rename Datafile dialog box of Server Manager/GUI
or the SQL command ALTER TABLESPACE with the RENAME
DATAFILE option to change the filenames within the database.

For example, the following statement renames the datafiles FILENAME1
and FILENAME2 to FILENAME3 and FILENAME4, respectively:

ALTER TABLESPACE users

 RENAME DATAFILE ’filename1’, ’filename2’

 TO ’filename3’, ’filename4’;

The new file must already exist; this command does not create a file.
Also, always provide complete filenames (including their paths) to
properly identify the old and new datafiles. In particular, specify the old
filename exactly as it appears in the DBA_DATA_FILE view of the data
dictionary.

Renaming and
Relocating Datafiles
for Multiple
Tablespaces

Relocating Datafiles:
Example

9 – 9Managing Datafiles

You can rename and relocate datafiles of one or more tablespaces with
the SQL command ALTER DATABASE with the RENAME FILE option.
This option is the only choice if you want to rename or relocate datafiles
of several tablespaces in one operation, or rename or relocate datafiles of
the SYSTEM tablespace. If the database must remain open, consider
instead the procedure outlined in the previous section.

To rename datafiles of several tablespaces in one operation or to rename
datafiles of the SYSTEM tablespace, you must have the ALTER
DATABASE system privilege.

To Rename and Relocate Datafiles for Multiple Tablespaces

1. Ensure that the database is mounted but closed.

2. Copy the datafiles to be renamed to their new locations and new
names, using the operating system.

3. Make sure the new copies of the datafiles have different fully
specified filenames from the datafiles currently in use.

4. Use the SQL command ALTER DATABASE to rename the file
pointers in the database’s control file.

For example, the following statement renames the datafiles FILENAME
1 and FILENAME2 to FILENAME3 and FILENAME4, respectively:

ALTER DATABASE

 RENAME FILE ’filename1’, ’filename2’

 TO ’filename3’, ’filename4’;

The new file must already exist; this command does not create a file.
Also, always provide complete filenames (including their paths) to
properly identify the old and new datafiles. In particular, specify the old
filename exactly as it appears in the DBA_DATA_FILE view of the data
dictionary.

For this example, assume the following conditions:

• An open database has a tablespace named USERS that is
comprised of datafiles located on the same disk of a computer.

• The datafiles of the USERS tablespace are to be relocated to a
different disk drive.

• You are currently connected with administrator privileges to the
open database while using Server Manager.

9 – 10 Oracle7 Server Administrator’s Guide

To Relocate Datafiles

1. Identify the datafile names of interest.

The following query of the data dictionary view DBA_DATA_FILES
lists the datafile names and respective sizes (in bytes) of the USERS
tablespace:

SELECT file_name, bytes FROM sys.dba_data_files

 WHERE tablespace_name = ’USERS’;

FILE_NAME BYTES

–––––––––––––––––––––––––––

FILENAME1 102400000

FILENAME2 102400000

Here, FILENAME1 and FILENAME2 are two fully specified
filenames, each 1MB in size.

2. Back up the database.

Before making any structural changes to a database, such as
renaming and relocating the datafiles of one or more tablespaces,
always completely back up the database.

3. Take the tablespace containing the datafile offline, or shut down the
database and restart and mount it, leaving it closed. Either option
closes the datafiles of the tablespace.

4. Copy the datafiles to their new locations using operating system
commands. For this example, the existing files FILENAME1 and
FILENAME2 are copied to FILENAME3 and FILENAME4.

Suggestion: You can execute an operating system command to
copy a file without exiting Server Manager/LineMode by using
the HOST command.

5. Rename the datafiles within Oracle.

The datafile pointers for the files that comprise the USERS
tablespace, recorded in the control file of the associated database,
must now be changed from FILENAME1 and FILENAME2 to
FILENAME3 and FILENAME4, respectively.

If the tablespace is offline but the database is open, use the Server
Manager Rename Datafiles dialog box or ALTER
TABLESPACE...RENAME DATAFILE command. If the database is
mounted but closed, use the ALTER DATABASE...RENAME FILE
command.

6. Bring the tablespace online, or shut down and restart the database.

If the USERS tablespace is offline and the database is open, bring the
tablespace back online. If the database is mounted but closed, open

9 – 11Managing Datafiles

the database.

7. Back up the database. After making any structural changes to a
database, always perform an immediate and complete backup.

See Also: For more information about the DBA_DATA_FILES data
dictionary view, see the Oracle7 Server Reference.

For more information about taking a tablespace offline, see “Taking
Tablespaces Offline” on page 8 – 8.

For more information about mounting a database without opening it,
see Chapter 3.

Verifying Data Blocks in Datafiles

If you want to configure Oracle7 to use checksums to verify data blocks,
set the initialization parameter DB_BLOCK_CHECKSUM to TRUE. The
default value of DB_BLOCK_CHECKSUM is FALSE.

When you enable block checking, Oracle7 computes a checksum for
each block written to disk. Checksums are computed for all data blocks,
including temporary blocks.

The DBWR process calculates the checksum for each block and stores it
in the block’s header. Checksums are also computed by the direct loader.

The next time Oracle7 reads a data block, it uses the checksum to detect
corruption in the block. If a corruption is detected, Oracle7 returns
message ORA–01578 and writes information about the corruption to a
trace file.

Warning: Setting DB_BLOCK_CHECKSUM to TRUE can cause
performance overhead. Set this parameter to TRUE only under
the advice of Oracle Support personnel to diagnose data
corruption problems.

Listing Status
Information About
Datafiles: Example

9 – 12 Oracle7 Server Administrator’s Guide

Viewing Information About Datafiles

The following data dictionary views provide useful information about
the datafiles of a database:

• USER_EXTENTS, DBA_EXTENTS

• USER_SEGMENTS, DBA_SEGMENTS

• USER_FREE_SPACE, DBA_FREE_SPACE

• DBA_USERS

• DBA_TS_QUOTAS

• USER_TABLESPACES, DBA_TABLESPACES

• DBA_DATA_FILES

• V$DATAFILE

The following example illustrates how to use a view not already
illustrated in other chapters of this manual. Assume you are using a
database that contains two tablespaces, SYSTEM and USERS. USERS is
made up of two files, FILE1 (100MB) and FILE2 (200MB); the tablespace
has been taken offline normally. Here, you query V$DATAFILE to view
status information about datafiles of a database:

SELECT name,

 file#,

 status,

 checkpoint_change# ”CHECKPOINT” FROM v$datafile;

NAME FILE# STATUS CHECKPOINT

––––––––––––––––––––––––––––––––––– ––––– ––––––– ––––––––––

filename1 1 SYSTEM 3839

filename2 2 OFFLINE 3782

filename3 3 OFFLINE 3782

FILE# lists the file number of each datafile; the first datafile in the
SYSTEM tablespace, created with the database, is always file 1. STATUS
lists other information about a datafile. If a datafile is part of the
SYSTEM tablespace, its status is SYSTEM (unless it requires recovery). If
a datafile in a non–SYSTEM tablespace is online, its status is ONLINE. If
a datafile in a non–SYSTEM tablespace is offline, its status can be either
OFFLINE or RECOVER. CHECKPOINT lists the final SCN written for a
datafile’s most recent checkpoint.

C H A P T E R

10

T

10 – 1Guidelines for Managing Schema Objects

Guidelines for
Managing Schema
Objects

his chapter describes guidelines for managing schema objects, and
includes the following topics:

• Managing Space in Data Blocks

• Setting Storage Parameters

• Deallocating Space

• Understanding Space Use of Datatypes

You should familiarize yourself with the concepts in this chapter before
attempting to manage specific schema objects, as described in chapters
11 – 16.

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

The PCTFREE
Parameter

10 – 2 Oracle7 Server Administrator’s Guide

Managing Space in Data Blocks

This section describes the various aspects of managing space in data
blocks, and includes the following topics:

• The PCTFREE Parameter

• The PCTUSED Parameter

• Selecting Associated PCTUSED and PCTFREE Values

You can use the PCTFREE and PCTUSED parameters to make the
following changes:

• increase the performance of writing and retrieving data

• decrease the amount of unused space in data blocks

• decrease the amount of row chaining between data blocks

The PCTFREE parameter is used to set the percentage of a block to be
reserved for possible updates to rows that already are contained in that
block. For example, assume that you specify the following parameter
within a CREATE TABLE statement:

PCTFREE 20

This indicates that 20% of each data block used for this table’s data
segment will be kept free and available for possible updates to the
existing rows already within each block. Figure 10 – 1 illustrates
PCTFREE.

Specifying PCTFREE

10 – 3Guidelines for Managing Schema Objects

PCTFREE = 20

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Database Block

Figure 10 – 1 PCTFREE

Notice that before the block reaches PCTFREE, the free space of the
data block is filled by both the insertion of new rows and by the growth
of the data block header.

The default for PCTFREE is 10 percent. You can use any integer
between 0 and 99, inclusive, as long as the sum of PCTFREE and
PCTUSED does not exceed 100.

A smaller PCTFREE has the following effects:

• reserves less room for updates to expand existing table rows

• allows inserts to fill the block more completely

• may save space, because the total data for a table or index is
stored in fewer blocks (more rows or entries per block)

A small PCTFREE might be suitable, for example, for a segment that is
rarely changed.

A larger PCTFREE has the following effects:

• reserves more room for future updates to existing table rows

• may require more blocks for the same amount of inserted data
(inserting fewer rows per block)

• may improve update performance, because Oracle does not need
to chain row pieces as frequently, if ever

The PCTUSED
Parameter

10 – 4 Oracle7 Server Administrator’s Guide

A large PCTFREE is suitable, for example, for segments that are
frequently updated.

Ensure that you understand the nature of the table or index data before
setting PCTFREE. Updates can cause rows to grow. New values might
not be the same size as values they replace. If there are many updates
in which data values get larger, PCTFREE should be increased. If
updates to rows do not affect the total row width, PCTFREE can be
low. Your goal is to find a satisfactory tradeoff between densely packed
data and good update performance.

PCTFREE for Non–Clustered Tables If the data in the rows of a
non–clustered table is likely to increase in size over time, reserve some
space for these updates. Otherwise, updated rows are likely to be
chained among blocks.

PCTFREE for Clustered Tables The discussion for non–clustered
tables also applies to clustered tables. However, if PCTFREE is reached,
new rows from any table contained in the same cluster key go into a
new data block that is chained to the existing cluster key.

PCTFREE for Indexes You can specify PCTFREE only when initially
creating an index.

After a data block becomes full, as determined by PCTFREE, Oracle
does not consider the block is for the insertion of new rows until the
percentage of the block being used falls below the parameter
PCTUSED. Before this value is achieved, Oracle uses the free space of
the data block only for updates to rows already contained in the data
block. For example, assume that you specify the following parameter
within a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is not
considered for the insertion of any new rows until the amount of used
space in the block falls to 39% or less (assuming that the block’s used
space has previously reached PCTFREE). Figure 10 – 2 illustrates this.

Specifying PCTUSED

10 – 5Guidelines for Managing Schema Objects

No new rows are
inserted until amount
of used space falls
below 40%

PCTFREE = 40
Database Block

61% Free
Space

Figure 10 – 2 PCTUSED

Once the free space in a data block reaches PCTFREE, no new rows are
inserted in that block until the percentage of space used falls below
PCTUSED. The percent value is for the block space available for data
after overhead is subtracted from total space.

The default for PCTUSED is 40 percent. You may specify any integer
between 0 and 99, inclusive, as long as the sum of PCTUSED and
PCTFREE does not exceed 100.

A smaller PCTUSED has the following effects:

• reduces processing costs incurred during UPDATE and DELETE
statements for moving a block to the free list when it has fallen
below that percentage of usage

• increases the unused space in a database

A larger PCTUSED has the following effects:

• improves space efficiency

• increases processing cost during INSERTs and UPDATEs

Selecting Associated
PCTUSED and
PCTFREE Values

Examples of Choosing
PCTFREE and PCTUSED
Values

Example 1

Example 2

10 – 6 Oracle7 Server Administrator’s Guide

If you decide not to use the default values for PCTFREE or PCTUSED,
keep the following guidelines in mind:

• The sum of PCTFREE and PCTUSED must be equal to or less
than 100.

• If the sum equals 100, then Oracle attempts to keep no more than
PCTFREE free space, and processing costs are highest.

• Block overhead is not included in the computation of PCTUSED
or PCTFREE.

• The smaller the difference between 100 and the sum of PCTFREE
and PCTUSED (as in PCTUSED of 75, PCTFREE of 20), the more
efficient space usage is, at some performance cost.

The following examples show how and why specific values for
PCTFREE and PCTUSED are specified for tables.

Scenario: Common activity includes UPDATE statements
that increase the size of the rows.

PCTFREE = 20
PCTUSED = 40

PCTFREE is set to 20 to allow enough room for
rows that increase in size as a result of updates.
PCTUSED is set to 40 so that less processing is
done during high update activity, thus improving
performance.

Scenario: Most activity includes INSERT and DELETE
statements, and UPDATE statements that do not
increase the size of affected rows.

PCTFREE = 5
PCTUSED = 60

PCTFREE is set to 5 because most UPDATE
statements do not increase row sizes. PCTUSED is
set to 60 so that space freed by DELETE statements
is used soon, yet processing is minimized.

Settings:

Explanation:

Settings:

Explanation:

Example 3

Storage Parameters
You Can Specify

10 – 7Guidelines for Managing Schema Objects

Scenario: The table is very large; therefore, storage is a
primary concern. Most activity includes read–only
transactions.

PCTFREE = 5
PCTUSED = 90

PCTFREE is set to 5 because this is a large table
and you want to completely fill each block.

Setting Storage Parameters

This section describes the storage parameters you can set for various
data structures, and includes the following topics:

• Storage Parameters You Can Specify

• Setting INITRANS and MAXTRANS

• Setting Default Storage Parameters for Segments in a Tablespace

• Setting Storage Parameters for Data Segments

• Setting Storage Parameters for Index Segments

• Changing Values for Storage Parameters

• Understanding Precedence in Storage Parameters

You can set storage parameters for the following types of logical
storage structures:

• tablespaces (defaults for any segment in the tablespace)

• tables, clusters, snapshots, and snapshot logs (data segments)

• indexes (index segments)

• rollback segments

Every database has default values for storage parameters. You can
specify defaults for a tablespace, which override the system defaults to
become the defaults for objects created in that tablespace only.
Furthermore, you can specify storage settings for each individual
object. The storage parameters you can set are listed below, along with
their system defaults.

Settings:

Explanation:

10 – 8 Oracle7 Server Administrator’s Guide

The size, in bytes, of the first extent allocated when
a segment is created.

Default: 5 data blocks
Minimum: 2 data blocks (rounded up)
Maximum: operating system–specific

Although the default system value is given in data
blocks, use bytes to set a value for this parameter.
You can use the abbreviations K and M to indicate
kilobytes and megabytes. Anything less than 2 data
blocks is rounded up to the next multiple of the
data block size, as determined by the parameter
DB_BLOCK_SIZE.

For example, if the data block size of a database is
2048 bytes, then the system default for the INITIAL
storage parameter of tablespaces is 10240 bytes. If
you create a tablespace in this database and specify
its default storage parameter INITIAL as 20000
(bytes), Oracle automatically rounds this value up
to 20480 (10 data blocks).

The size, in bytes, of the next incremental extent to
be allocated for a segment. The second extent is
equal to the original setting for NEXT. From there
forward, NEXT is set to the previous size of NEXT
multiplied by (1 + PCTINCREASE/100).

Default: 5 data blocks
Minimum: 1 data block
Maximum: operating system–specific

As with INITIAL, although the default system
value is given in data blocks, use bytes to set a
value for this parameter. You can use the
abbreviations K and M to indicate kilobytes and
megabytes. The value is rounded up to the next
multiple of the data block size, as determined by
the parameter DB_BLOCK_SIZE.

The total number of extents, including the first,
that can ever be allocated for the segment.

Default: dependent on the data block size and
operating system
Minimum: 1 (extent)
Maximum: unlimited

INITIAL

NEXT

MAXEXTENTS

10 – 9Guidelines for Managing Schema Objects

The total number of extents to be allocated when
the segment is created. This allows for a large
allocation of space at creation time, even if
contiguous space is not available.

Default: 1 (extent)
Minimum: 1 (extent)
Maximum: operating system–specific

If MINEXTENTS is greater than 1, then the
specified number of incremental extents are
allocated at creation time using the values
INITIAL, NEXT, and PCTINCREASE.

Note: The default and minimum values of MINEXTENTS for a
rollback segment are always 2. If you want to guarantee that
you have enough space to load all the data for one table, create
the table with a large MINEXTENTS value so that the LOAD
operation is successful even if your database is fragmented.

The percent by which each incremental extent
grows over the last incremental extent allocated for
a segment. If PCTINCREASE is 0, then all
incremental extents are the same size. If
PCTINCREASE is greater than zero, then each time
NEXT is calculated, it grows by PCTINCREASE.
PCTINCREASE cannot be negative.

The new NEXT equals 1 + PCTINCREASE/100,
multiplied by the size of the last incremental extent
(the old NEXT) and rounded up to the next
multiple of a block size.

Default: 50 (%)
Minimum: 0 (%)
Maximum: operating system–specific

Note: PCTINCREASE is always 0 for rollback segments.
PCTINCREASE cannot be specified for rollback segments.

By using PCTINCREASE correctly, you can reduce
the fragmentation of a segment by enlarging
incremental extents and reducing the number of
extents that need to be allocated for the segment.
The segment contains a few large extents, rather
than many smaller extents.

If you change PCTINCREASE for a segment, the
current value of NEXT for that segment does not
change. Only future values of NEXT are affected.

MINEXTENTS

PCTINCREASE

Setting INITRANS and
MAXTRANS

10 – 10 Oracle7 Server Administrator’s Guide

Reserves a pre–allocated amount of space for an
initial number of transaction entries to access rows
in the data block concurrently. Space is reserved in
the headers of all data blocks in the associated data
or index segment. The default value is 1 for tables
and 2 for clusters and indexes.

As multiple transactions concurrently access the
rows of the same data block, space is allocated for
each transaction’s entry in the block. Once the
space reserved by INITRANS is depleted, space for
additional transaction entries is allocated out of the
free space in a block, if available. Once allocated,
this space effectively becomes a permanent part of
the block header. The MAXTRANS parameter
limits the number of transaction entries that can
concurrently use data in a data block. Therefore,
you can limit the amount of free space that can be
allocated for transaction entries in a data block
using MAXTRANS. The default value is an
operating system–specific function of block size,
not exceeding 255.

If MAXTRANS is too low, transactions blocked by
this limit must wait until other transactions
complete and free transaction entry space. For
example, if MAXTRANS is 3 and a fourth
concurrent transaction attempts to access a block
already being accessed by three active transactions,
Oracle selects one of the three and waits until it
commits or rolls back, and then proceeds with the
fourth transaction.

See Also: Some defaults are operating system specific; see your
operating system–specific Oracle documentation.

Transaction entry settings for the data blocks allocated for a table,
cluster, or index should be set individually for each object based on the
following criteria:

• the space you would like to reserve for transaction entries
compared to the space you would reserve for database data

• the number of concurrent transactions that are likely to touch the
same data blocks at any given time

For example, if a table is very large and only a small number of users
simultaneously access the table, the chances of multiple concurrent

INITRANS

MAXTRANS

Setting Default Storage
Parameters for
Segments in a
Tablespace

Setting Storage
Parameters for Data
Segments

Setting Storage
Parameters for Index
Segments

Changing Values for
Storage Parameters

10 – 11Guidelines for Managing Schema Objects

transactions requiring access to the same data block is low. Therefore,
INITRANS can be set low, especially if space is at a premium in the
database.

Alternatively, assume that a table is usually accessed by many users at
the same time. In this case, you might consider pre–allocating
transaction entry space by using a high INITRANS (to eliminate the
overhead of having to allocate transaction entry space, as required
when the object is in use) and allowing a higher MAXTRANS so that
no user has to wait to access any necessary data blocks.

You can set default storage parameters for each tablespace of a
database. Any storage parameter that you do not explicitly set when
creating or subsequently altering a segment in a tablespace
automatically is set to the corresponding default storage parameter for
the tablespace in which the segment resides.

You can set the storage parameters for the data segment of a
non–clustered table, snapshot, or snapshot log using the STORAGE
clause of the CREATE or ALTER statement for tables, snapshots, or
snapshot logs.

In contrast, you set the storage parameters for the data segments of a
cluster using the STORAGE clause of the CREATE CLUSTER or
ALTER CLUSTER command, rather than the individual CREATE or
ALTER commands that put tables and snapshots into the cluster.
Storage parameters specified when creating or altering a clustered table
or snapshot are ignored. The storage parameters set for the cluster
override the table’s storage parameters.

Storage parameters for an index segment created for a table index can
be set using the STORAGE clause of the CREATE INDEX or ALTER
INDEX command. Storage parameters of an index segment created for
the index used to enforce a primary key or unique key constraint can be
set in the ENABLE clause of the CREATE TABLE or ALTER TABLE
commands or the STORAGE clause of the ALTER INDEX command.

A PCTFREE setting for an index only has an effect when the index is
created. You cannot specify PCTUSED for an index segment.

You can alter default storage parameters for tablespaces and specific
storage parameters for individual segments if the current settings are
incorrect. All default storage parameters can be reset for a tablespace.
However, changes affect only new objects created in the tablespace, or
new extents allocated for a segment.

Understanding
Precedence in Storage
Parameters

Storage Parameter
Example

10 – 12 Oracle7 Server Administrator’s Guide

The INITIAL and MINEXTENTS storage parameters cannot be altered
for an existing table, cluster, index, or rollback segment. If only NEXT
is altered for a segment, the next incremental extent is the size of the
new NEXT, and subsequent extents can grow by PCTINCREASE as
usual.

If both NEXT and PCTINCREASE are altered for a segment, the next
extent is the new value of NEXT, and from that point forward, NEXT is
calculated using PCTINCREASE as usual.

The storage parameters in effect at a given time are determined by the
following types of SQL statements, listed in order of precedence:

1. ALTER TABLE/CLUSTER/SNAPSHOT/SNAPSHOT
LOG/INDEX/ROLLBACK SEGMENT statement

2. CREATE TABLE/CLUSTER/SNAPSHOT/SNAPSHOT
LOG/CREATE INDEX/ROLLBACK SEGMENT statement

3. ALTER TABLESPACE statement

4. CREATE TABLESPACE statement

5. Oracle default statement

Any storage parameter specified at the object level overrides the
corresponding option set at the tablespace level. When storage
parameters are not explicitly set at the object level, they default to those
at the tablespace level. When storage parameters are not set at the
tablespace level, Oracle system defaults apply. If storage parameters
are altered, the new options apply only to the extents not yet allocated.

Note: The storage parameters for temporary segments always
use the default storage parameters set for the associated
tablespace.

Assume the following statement has been executed:

CREATE TABLE test_storage

 (. . .)

 STORAGE (INITIAL 100K NEXT 100K

 MINEXTENTS 2 MAXEXTENTS 5

 PCTINCREASE 50);

Also assume that the initialization parameter DB_BLOCK_SIZE is set
to 2K. The following table shows how extents are allocated for the
TEST_STORAGE table. Also shown is the value for the incremental
extent, as can be seen in the NEXT column of the USER_SEGMENTS or
DBA_SEGMENTS data dictionary views:

Viewing the High
Water Mark

10 – 13Guidelines for Managing Schema Objects

Extent# Extent Size Value for NEXT

1 100K or 50 blocks 100K

2 100K or 50 blocks CEIL(100K*1.5)=150K

3 150K or 75 blocks CEIL(150K*1.5)=228K

4 228K or 114 blocks CEIL(228K*1.5)=342K

5 342K or 171 blocks CEIL(342K*1.5)=516K

Table 10 – 1 Extent Allocations

If you change the NEXT or PCTINCREASE storage parameters with an
ALTER statement (such as ALTER TABLE), the specified value replaces
the current value stored in the data dictionary. For example, the
following statement modifies the NEXT storage parameter of the
TEST_STORAGE table before the third extent is allocated for the table:

ALTER TABLE test_storage STORAGE (NEXT 500K);

As a result, the third extent is 500K when allocated, the fourth is
(500K*1.5)=750K, and so on.

Deallocating Space

This section describes aspects of deallocating unused space, and
includes the following topics:

• Viewing the High Water Mark

• Issuing Space Deallocation Statements

It is not uncommon to allocate space to a segment, only to find out later
that it is not being used. For example, you may set PCTINCREASE to a
high value, which could create a large extent that is only partially used.
Or you could explicitly overallocate space by issuing the ALTER
TABLE ALLOCATE EXTENT statement. If you find that you have
unused or overallocated space, you can release it so that the unused
space can be used by other segments.

Prior to deallocation, you can use the DBMS_SPACE package, which
contains a procedure (UNUSED_SPACE) that returns information
about the position of the high water mark and the amount of unused
space in a segment.

Within a segment, the high water mark indicates the amount of used
space. You cannot release space below the high water mark (even if
there is no data in the space you wish to deallocate). However, if the

Issuing Space
Deallocation
Statements

Deallocating Space:
Examples

10 – 14 Oracle7 Server Administrator’s Guide

segment is completely empty, you can release space using the
TRUNCATE DROP STORAGE statement.

The following statements deallocate unused space in a segment (table,
index or cluster). The KEEP clause is optional.

ALTER TABLE table DEALLOCATE UNUSED KEEP integer;

ALTER INDEX index DEALLOCATE UNUSED KEEP integer;

ALTER CLUSTER cluster DEALLOCATE UNUSED KEEP integer;

When you explicitly identify an amount of unused space to KEEP, this
space is retained while the remaining unused space is deallocated. If
the remaining number of extents becomes smaller than MINEXTENTS,
the MINEXTENTS value changes to reflect the new number. If the
initial extent becomes smaller, the INITIAL value changes to reflect the
new size of the initial extent.

If you do not specify the KEEP clause, all unused space (everything
above the high water mark) is deallocated, as long as the size of the
initial extent and MINEXTENTS are preserved. Thus, even if the high
water mark occurs within the MINEXTENTS boundary, MINEXTENTS
remains and the initial extent size is not reduced.

See Also: For details on the syntax and options associated with
deallocating unused space, see the Oracle7 Server SQL Reference.

You can verify that deallocated space is freed by looking at the
DBA_FREE_SPACE view. For more information on this view, see the
Oracle7 Server Reference.

For details about the DBMS_SPACE package, see page 16 – 25.

This section includes various space deallocation scenarios. Prior to
reading it, you should familiarize yourself with the
ALTER...DEALLOCATE UNUSED statements in the Oracle7 Server SQL
Reference.

Example 1

Table dquon consists of three extents (see figure Figure 10 – 3). The first
extent is 10K, the second is 20K, and the third is 30K. The high water
mark is in the middle of the second extent, and there is 40K of unused
space. The following statement deallocates all unused space, leaving
table dquon with two remaining extents. The third extent disappears,
and the second extent size is 10K.

ALTER TABLE dquon DEALLOCATE UNUSED;

10 – 15Guidelines for Managing Schema Objects

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED;

High Water Mark

Table dquon

10K

Extent 1

10K

Extent 2

Figure 10 – 3 Deallocating All Unused Space

If you deallocate all unused space from dquon and KEEP 10K (see
Figure 10 – 4), the third extent is deallocated and the second extent
remains in tact.

10 – 16 Oracle7 Server Administrator’s Guide

Table dquon

Before

10K

Extent 1

After

30K

UNUSED SPACE = 40K

Extent 3

20K

Extent 2

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 10K;

High Water Mark

Table dquon

10K

Extent 1

20K

Extent 2

High Water Mark

Figure 10 – 4 Deallocating Unused Space, KEEP 10K

If you deallocate all unused space from dquon and KEEP 20K, the third
extent is cut to 10K, and the size of the second extent remains the same.

ALTER TABLE dquon DEALLOCATE UNUSED KEEP 20K;

Example 2

When you issue the ALTER TABLE dquon DEALLOCATE UNUSED
statement, you completely deallocate the third extent, and the second
extent is left with 10K. Note that the size of the next allocated extent
defaults to the size of the last completely deallocated extent, which in
this example, is 30K. However, if you can explicitly set the size of the
next extent using the ALTER ... STORAGE [NEXT] statement.

Example 3

To preserve the MINEXTENTS number of extents, DEALLOCATE can
retain extents that were originally allocated to an instance (added
below the high water mark), while deallocating extents that were
originally allocated to the segment.

10 – 17Guidelines for Managing Schema Objects

For example, table dquon has a MINEXTENTS value of 2. Examples 1
and 2 still yield the same results. However, if the MINEXTENTS value
is 3, then the ALTER TABLE dquon DEALLOCATE UNUSED
statement has no effect, while the ALTER TABLE dquon
DEALLOCATE UNUSED KEEP 10K statement removes the third
extent and changes the value of MINEXTENTS to 2.

Understanding Space Use of Datatypes

When creating tables and other data structures, you need to know how
much space they will require. Each datatype has different space
requirements, as described below.

The CHAR and VARCHAR2 datatypes store
alphanumeric data in strings of ASCII (American
Standard Code for Information Interchange) or
EBCDIC (Extended Binary Coded Decimal
Interchange Code) values, depending on the
character set used by the hardware that runs
Oracle. Character datatypes can also store data
using character sets supported by the National
Language Support (NLS) feature of Oracle.

The CHAR datatype stores fixed length character
strings. When a table is created with a CHAR
column, a column length (in bytes, not characters)
between 1 and 255 can be specified for the CHAR
column; the default is 1 byte. Extra blanks are used
to fill remaining space in the column for values less
than the column length.

The VARCHAR2 datatype stores variable length
character strings. When a table is created with a
VARCHAR2 column, a maximum column length
(in bytes, not characters) between 1 and 2000 is
specified for the VARCHAR2 column. For each
row, each value in the column is stored as a
variable length field. Extra blanks are not used to
fill remaining space in the column.

The NUMBER datatype stores fixed and floating
point numbers. Positive numbers in the range 1 x
10^–130 to 9.99...9 x 10^125 (with up to 38
significant digits), negative numbers in the range

Character
Datatypes

Number Datatype

10 – 18 Oracle7 Server Administrator’s Guide

 –1 x 10^–130 to –9.99..9 x 10^125 (with up to 38
significant digits), and zero. You can optionally
specify a precision (total number of digits) and scale
(number of digits to the right of the decimal point)
when defining a NUMBER column. If precision is
not specified, the column stores values as given. If
no scale is specified, the scale defaults to zero.

Oracle guarantees portability of numbers with a
precision equal to or less than 38 digits. You can
specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified
scale is maintained.

The DATE datatype stores point–in–time values,
such as dates and times. Date data is stored in
fixed length fields of seven bytes each.

Columns defined as LONG store variable length
character data containing up to two gigabytes of
information. LONG data is text data, and is
appropriately converted when moved between
different character sets. LONG data cannot be
indexed.

RAW is a variable length datatype like the
VARCHAR2 character datatype, except that
SQL*Net (which connects users sessions to the
instance) and the Import and Export utilities do not
perform character conversion when transmitting
RAW or LONG RAW data. In contrast, SQL*Net
and Export/Import automatically convert CHAR,
VARCHAR2, and LONG data between the
database character set and the user session
character set (set by the NLS_LANGUAGE
parameter of the ALTER SESSION command) if the
two character sets are different.

LONG RAW data cannot be indexed, while RAW
data can be indexed.

Every row in a non–clustered table of an Oracle
database is assigned a unique ROWID that
corresponds to the physical address of a row’s row
piece (or the initial row piece if the row is chained
among multiple row pieces).

DATE Datatype

LONG Datatype

RAW and LONG
RAW Datatypes

ROWIDs and the
ROWID Datatype

10 – 19Guidelines for Managing Schema Objects

Each table in an Oracle database internally has a
pseudo–column named ROWID. This
pseudo–column is not evident when listing the
structure of a table by executing a SELECT
statement, or a DESCRIBE statement using
SQL*Plus, but can be retrieved with a SQL query
using the reserved word ROWID as a column
name.

ROWIDs use a binary representation of the
physical address for each row selected. A
ROWID’s VARCHAR2 hexadecimal representation
is divided into three pieces: block.slot.file. Here,
block is the data block within a file that contains the
row, relative to its datafile; row is the row in the
block; and file is the datafile that contains the row.
A row’s assigned ROWID remains unchanged
usually. Exceptions occur when the row is exported
and imported (using the Import and Export
utilities). When a row is deleted from a table (and
the encompassing transaction is committed), the
deleted row’s associated ROWID can be assigned
to a row inserted in a subsequent transaction.

Trusted Oracle7 provides one special datatype,
called MLSLABEL. You can declare columns of this
datatype in standard Oracle, as well as Trusted
Oracle7, for compatibility with Trusted Oracle7
applications.

The MLSLABEL datatype stores a variable length
tag (two to five bytes) that represents a binary label
in the data dictionary. The ALL_LABELS data
dictionary view lists all of the labels ever stored in
the database.

See Also: For more information about NLS and support for different
character sets, see the Oracle7 Server Reference.

For more information about MLSLABEL datatypes, see the Trusted
Oracle7 Server Administrator’s Guide.

MLSLABEL
Datatype

Summary of Oracle
Datatypes

10 – 20 Oracle7 Server Administrator’s Guide

Table 10 – 2 summarizes important information about each Oracle
datatype.

Datatype Description Column Length (bytes)

CHAR (size) Fixed length character
data of length size.

Fixed for every row in the table (with
trailing spaces); maximum size is 255
bytes per row, default size is one byte
per row. Consider the character set
that is used before setting size. (Are
you using a one or two byte character
set?)

VARCHAR2 (size) Variable length charac-
ter data. A maximum
size must be specified.

Variable for each row, up to 2000
bytes per row. Consider the character
set that is used before setting size.
(Are you using a one or two byte
character set?)

NUMBER (p, s) Variable length numeric
data. Maximum preci-
sion p and/or scale s is
38.

Variable for each row. The maximum
space required for a given column is
21 bytes per row.

DATE Fixed length date and
time data, ranging from
January 1, 4712 B.C. to
December 31, 4712
A.D. Default format:
DD–MON–YY.

Fixed at seven bytes for each row in
the table.

LONG Variable length charac-
ter data.

Variable for each row in the table up to
2^31 bytes, or two gigabytes, per row.

RAW (size) Variable length raw
binary data. A maximum
size must be specified.

Variable for each row in the table, up to
255 bytes per row.

LONG RAW Variable length raw
binary data.

Variable for each row in the table, up to
2^31 bytes, or two gigabytes, per row.

ROWID Binary data representing
row addresses.

Fixed at six bytes for each row in the
table.

MLSLABEL Variable length binary
data representing OS la-
bels.

Variable for each row in the table, rang-
ing from two to five bytes per row.

Table 10 – 2 Summary of Oracle Datatype Information

C H A P T E R

11
T

11 – 1Managing Tables

Managing Tables

his chapter describes the various aspects of managing tables, and
includes the following topics:

• Guidelines for Managing Tables

• Creating Tables

• Altering Tables

• Manually Allocating Storage for a Table

• Dropping Tables

Before attempting tasks described in this chapter, familiarize yourself
with the concepts in Chapter 10, “Guidelines for Managing Schema
Objects.”

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
SNMP Support Reference Guide.

Design Tables Before
Creating Them

Specify How Data
Block Space Is to Be
Used

11 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Tables

This section describes guidelines to follow when managing tables, and
includes the following topics:

• Design Tables Before Creating Them

• Specify How Data Block Space Is to Be Used

• Specify Transaction Entry Parameters

• Specify the Location of Each Table

• Parallelize Table Creation

• Consider Creating UNRECOVERABLE Tables

• Estimate Table Size and Set Storage Parameters

• Plan for Large Tables

Use these guidelines to make managing tables as easy as possible.

Usually, the application developer is responsible for designing the
elements of an application, including the tables. A DBA is responsible
for setting storage parameters and defining clusters for tables, based on
information from the application developer about how the application
works and the types of data expected.

Working with your application developer, carefully plan each table so
that the following occurs:

• Tables are normalized.

• Each column is of the proper datatype.

• Columns that allow nulls are defined last, to conserve storage
space.

• Tables are clustered whenever appropriate, to conserve storage
space and optimize performance of SQL statements.

By specifying the PCTFREE and PCTUSED parameters during the
creation of each table, you can affect the efficiency of space utilization
and amount of space reserved for updates to the current data in the
data blocks of a table’s data segment.

See Also: For information about specifying PCTFREE and PCTUSED,
see “Managing the Space Usage of Data Blocks” on page 10 – 2.

Specify Transaction
Entry Parameters

Specify the Location of
Each Table

Parallelize Table
Creation

11 – 3Managing Tables

By specifying the INITRANS and MAXTRANS parameters during the
creation of each table, you can affect how much space is initially and
can ever be allocated for transaction entries in the data blocks of a
table’s data segment.

See Also: For information about specifying INITRANS and
MAXTRANS, see “Setting Storage Parameters” on page 10 – 7.

If you have the proper privileges and tablespace quota, you can create a
new table in any tablespace that is currently online. Therefore, you
should specify the TABLESPACE option in a CREATE TABLE
statement to identify the tablespace that will store the new table.

If you do not specify a tablespace in a CREATE TABLE statement, the
table is created in your default tablespace.

When specifying the tablespace to contain a new table, make sure that
you understand implications of your selection. By properly specifying a
tablespace during the creation of each table, you can:

• increase the performance of the database system

• decrease the time needed for database administration

The following examples show how incorrect storage locations of
schema objects can affect a database:

• If users’ objects are created in the SYSTEM tablespace, the
performance of Oracle can be reduced, since both data dictionary
objects and user objects must contend for the same datafiles.

• If an application’s associated tables are arbitrarily stored in
various tablespaces, the time necessary to complete
administrative operations (such as backup and recovery) for that
application’s data can be increased.

See Also: For information about specifying tablespaces, see “Assigning
Tablespace Quotas” on page 19 – 11.

If you have the parallel query option installed, you can parallelize the
creation of tables created with a subquery in the CREATE TABLE
command. Because multiple processes work together to create the
table, performance of the table creation can improve.

See Also: For more information about the parallel query option and
parallel table creation, see the Oracle7 Server Tuning guide.

For information about the CREATE TABLE command, see the Oracle7
Server SQL Reference.

Consider Creating
UNRECOVERABLE
Tables

Estimate Table Size
and Set Storage
Parameters

11 – 4 Oracle7 Server Administrator’s Guide

You can create a table unrecoverably by specifying UNRECOVERABLE
when you create a table with a subquery in the CREATE TABLE AS
SELECT statement. However, rows inserted afterwards are
recoverable. In fact, after the statement is completed, all future
statements are fully recoverable.

Creating a table unrecoverably has the following benefits:

• Space is saved in the redo log files.

• The time it takes to create the table is decreased.

• Performance improves for parallel creation of large tables.

In general when creating a table unrecoverably, the relative
performance improvement is greater for larger tables than for smaller
tables. Creating small tables unrecoverably has little affect on the time
it takes to create a table. However, for larger tables the performance
improvement can be significant, especially when you are also
parallelizing the table creation.

When you create a table unrecoverably the table cannot be recovered
from archived logs (because the needed redo log records are not
generated for the unrecoverable table creation). Thus, if you cannot
afford to lose the table, you should take a backup after the table is
created. In some situations, such as for tables that are created for
temporary use, this precaution may not be necessary.

Estimating the sizes of tables before creating them is useful for the
following reasons:

• You can use the combined estimated size of tables, along with
estimates for indexes, rollback segments, and redo log files, to
determine the amount of disk space that is required to hold an
intended database. From these estimates, you can make correct
hardware purchases and other decisions.

• You can use the estimated size of an individual table to better
manage the disk space that the table will use. When a table is
created, you can set appropriate storage parameters and improve
I/O performance of applications that use the table.

For example, assume that you estimate the maximum size of a
table before creating it. If you then set the storage parameters
when you create the table, fewer extents will be allocated for the
table’s data segment, and all of the table’s data will be stored in a
relatively contiguous section of disk space. This decreases the
time necessary for disk I/O operations involving this table.

Plan for Large Tables

11 – 5Managing Tables

Appendix A contains equations that help estimate the size of tables.
Whether or not you estimate table size before creation, you can
explicitly set storage parameters when creating each non–clustered
table. (Clustered tables automatically use the storage parameters of the
cluster.) Any storage parameter that you do not explicitly set when
creating or subsequently altering a table automatically uses the
corresponding default storage parameter set for the tablespace in
which the table resides.

If you explicitly set the storage parameters for the extents of a table’s
data segment, try to store the table’s data in a small number of large
extents rather than a large number of small extents.

There are no limits on the physical size of tables and extents. You can
specify the keyword UNLIMITED for MAXEXTENTS, thereby
simplifying your planning for large objects, reducing wasted space and
fragmentation, and improving space reuse. However, keep in mind that
while Oracle allows an unlimited number of extents, when the number
of extents in a table grows very large, you may see an impact on
performance when performing any operation requiring that table.

Note: You cannot alter data dictionary tables to have
MAXEXTENTS greater than the allowed block maximum.

If you have such tables in your database, consider the following
recommendations:

Separate the Table from Its Indexes Place indexes in separate
tablespaces from other objects, and on separate disks if possible. If you
ever need to drop and re–create an index on a very large table (such as
when disabling and enabling a constraint, or re–creating the table),
indexes isolated into separate tablespaces can often find contiguous
space more easily than those in tablespaces that contain other objects.

Allocate Sufficient Temporary Space If applications that access the
data in a very large table perform large sorts, ensure that enough space
is available for large temporary segments and that users have access to
this space. (Note that temporary segments always use the default
STORAGE settings for their tablespaces.)

11 – 6 Oracle7 Server Administrator’s Guide

Creating Tables

To create a new table in your schema, you must have the CREATE
TABLE system privilege. To create a table in another user’s schema,
you must have the CREATE ANY TABLE system privilege.
Additionally, the owner of the table must have a quota for the
tablespace that contains the table, or the UNLIMITED TABLESPACE
system privilege.

Create tables using the SQL command CREATE TABLE. When user
SCOTT issues the following statement, he creates a non–clustered table
named EMP in his schema and stores it in the USERS tablespace:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY,

 ename VARCHAR2(15) NOT NULL,

 job VARCHAR2(10),

 mgr NUMBER(5),

 hiredate DATE DEFAULT (sysdate),

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(3) NOT NULL

 CONSTRAINT dept_fkey REFERENCES dept)

 PCTFREE 10

 PCTUSED 40

 TABLESPACE users

 STORAGE (INITIAL 50K

 NEXT 50K

 MAXEXTENTS 10

 PCTINCREASE 25);

Notice that integrity constraints are defined on several columns of the
table and that several storage settings are explicitly specified for the
table.

See Also: For more information about system privileges, see Chapter
20. For more information about tablespace quotas, see Chapter 19.

11 – 7Managing Tables

Altering Tables

To alter a table, the table must be contained in your schema, or you
must have either the ALTER object privilege for the table or the ALTER
ANY TABLE system privilege.

A table in an Oracle database can be altered for the following reasons:

• to add one or more new columns to the table

• to add one or more integrity constraints to a table

• to modify an existing column’s definition (datatype, length,
default value, and NOT NULL integrity constraint)

• to modify data block space usage parameters (PCTFREE,
PCTUSED)

• to modify transaction entry settings (INITRANS, MAXTRANS)

• to modify storage parameters (NEXT, PCTINCREASE)

• to enable or disable integrity constraints or triggers associated
with the table

• to drop integrity constraints associated with the table

You can increase the length of an existing column. However, you
cannot decrease it unless there are no rows in the table. Furthermore, if
you are modifying a table to increase the length of a column of
datatype CHAR, realize that this may be a time consuming operation
and may require substantial additional storage, especially if the table
contains many rows. This is because the CHAR value in each row must
be blank–padded to satisfy the new column length.

When altering the data block space usage parameters (PCTFREE and
PCTUSED) of a table, note that new settings apply to all data blocks
used by the table, including blocks already allocated and subsequently
allocated for the table. However, the blocks already allocated for the
table are not immediately reorganized when space usage parameters
are altered, but as necessary after the change.

When altering the transaction entry settings (INITRANS, MAXTRANS)
of a table, note that a new setting for INITRANS only applies to data
blocks subsequently allocated for the table, while a new setting for
MAXTRANS applies to all blocks (already and subsequently allocated
blocks) of a table.

The storage parameters INITIAL and MINEXTENTS cannot be altered.
All new settings for the other storage parameters (for example, NEXT,
PCTINCREASE) affect only extents subsequently allocated for the
table. The size of the next extent allocated is determined by the current

11 – 8 Oracle7 Server Administrator’s Guide

values of NEXT and PCTINCREASE, and is not based on previous
values of these parameters.

You can alter a table using the SQL command ALTER TABLE. The
following statement alters the EMP table:

ALTER TABLE emp

 PCTFREE 30

 PCTUSED 60;

Warning: Before altering a table, familiarize yourself with the
consequences of doing so:

• If a new column is added to a table, the column is initially null.
You can add a column with a NOT NULL constraint to a table
only if the table does not contain any rows.

• If a view or PL/SQL program unit depends on a base table, the
alteration of the base table may affect the dependent object.

See Also: See page 16 – 18 for information about how Oracle manages
dependencies.

Manually Allocating Storage for a Table

Oracle dynamically allocates additional extents for the data segment of
a table, as required. However, you might want to allocate an additional
extent for a table explicitly. For example, when using the Oracle Parallel
Server, an extent of a table can be allocated explicitly for a specific
instance.

A new extent can be allocated for a table using the SQL command
ALTER TABLE with the ALLOCATE EXTENT option.

See Also: For information about the ALLOCATE EXTENT option, see
the Oracle7 Parallel Server Concepts & Administration guide.

11 – 9Managing Tables

Dropping Tables

To drop a table, the table must be contained in your schema or you
must have the DROP ANY TABLE system privilege.

To drop a table that is no longer needed, use the SQL command DROP
TABLE. The following statement drops the EMP table:

DROP TABLE emp;

If the table to be dropped contains any primary or unique keys
referenced by foreign keys of other tables and you intend to drop the
FOREIGN KEY constraints of the child tables, include the CASCADE
option in the DROP TABLE command, as shown below:

DROP TABLE emp CASCADE CONSTRAINTS;

Warning: Before dropping a table, familiarize yourself with
the consequences of doing so:

• Dropping a table removes the table definition from the data
dictionary. All rows of the table are no longer accessible.

• All indexes and triggers associated with a table are dropped.

• All views and PL/SQL program units dependent on a dropped
table remain, yet become invalid (not usable). See page 16 – 18
for information about how Oracle manages such dependencies.

• All synonyms for a dropped table remain, but return an error
when used.

• All extents allocated for a non–clustered table that is dropped are
returned to the free space of the tablespace and can be used by
any other object requiring new extents or new objects.

• All rows corresponding to a clustered table are deleted from the
blocks of the cluster.

11 – 10 Oracle7 Server Administrator’s Guide

C H A P T E R

12

T

12 – 1Managing Views, Sequences and Synonyms

Managing Views,
Sequences and
Synonyms

his chapter describes aspects of view management, and includes
the following topics:

• Managing Views

• Managing Sequences

• Managing Synonyms

Before attempting tasks described in this chapter, familiarize yourself
with the concepts in Chapter 10, “Guidelines for Managing Schema
Objects.”

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

Creating Views

12 – 2 Oracle7 Server Administrator’s Guide

Managing Views

A view is a tailored presentation of the data contained in one or more
tables (or other views), and takes the output of a query and treats it as
a table. You can think of a view as a “stored query” or a “virtual table.”
You can use views in most places where a table can be used.

This section describes aspects of managing views, and includes the
following topics:

• Creating Views

• Modifying a Join View

• Replacing Views

• Dropping Views

To create a view, you must fulfill the requirements listed below:

• To create a view in your schema, you must have the CREATE
VIEW privilege; to create a view in another user’s schema, you
must have the CREATE ANY VIEW system privilege. You may
acquire these privileges explicitly or via a role.

• The owner of the view (whether it is you or another user) must
have been explicitly granted privileges to access all objects
referenced in the view definition; the owner cannot have obtained
these privileges through roles. Also, the functionality of the view
is dependent on the privileges of the view’s owner. For example,
if the owner of the view has only the INSERT privilege for Scott’s
EMP table, the view can only be used to insert new rows into the
EMP table, not to SELECT, UPDATE, or DELETE rows from it.

• If the owner of the view intends to grant access to the view to
other users, the owner must have received the object privileges
to the base objects with the GRANT OPTION or the system
privileges with the ADMIN OPTION.

You can create views using the SQL command CREATE VIEW. Each
view is defined by a query that references tables, snapshots, or other
views. The query that defines a view cannot contain the ORDER BY or
FOR UPDATE clauses. For example, the following statement creates a
view on a subset of data in the EMP table:

CREATE VIEW sales_staff AS

 SELECT empno, ename, deptno

 FROM emp

 WHERE deptno = 10

 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Expansion of Defining
Queries at View Creation
Time

Creating Views with
Errors

12 – 3Managing Views, Sequences and Synonyms

The query that defines the SALES_STAFF view references only rows in
department 10. Furthermore, the CHECK OPTION creates the view
with the constraint that INSERT and UPDATE statements issued
against the view cannot result in rows that the view cannot select. For
example, the following INSERT statement successfully inserts a row
into the EMP table by means of the SALES_STAFF view, which contains
all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, ’OSTER’, 10);

However, the following INSERT statement is rolled back and returns an
error because it attempts to insert a row for department number 30,
which could not be selected using the SALES_STAFF view:

INSERT INTO sales_staff VALUES (7591, ’WILLIAMS’, 30);

The following statement creates a view that joins data from the EMP
and DEPT tables:

CREATE VIEW division1_staff AS

 SELECT ename, empno, job, dname

 FROM emp, dept

 WHERE emp.deptno IN (10, 30)

 AND emp.deptno = dept.deptno;

The DIVISION1_STAFF view joins information from the EMP and
DEPT tables. The CHECK OPTION is not specified in the CREATE
VIEW statement for this view.

In accordance with the ANSI/ISO standard, Oracle expands any
wildcard in a top–level view query into a column list when a view is
created, and stores the resulting query in the data dictionary; any
subqueries are left intact. The column names in an expanded column
list are enclosed in quote marks to account for the possibility that the
columns of the base object were originally entered with quotes and
require them for the query to be syntactically correct.

As an example, assume that the DEPT view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the DEPT view as:

SELECT ”DEPTNO”, ”DNAME”, ”LOC” FROM scott.dept

Views created with errors do not have wildcards expanded. However,
if the view is eventually compiled without errors, wildcards in the
defining query are expanded.

If there are no syntax errors in a CREATE VIEW statement, Oracle can
create the view even if the defining query of the view cannot be

Modifying a Join View

12 – 4 Oracle7 Server Administrator’s Guide

executed; the view is considered “created with errors.” For example,
when a view is created that refers to a non–existent table or an invalid
column of an existing table, or when the view owner does not have the
required privileges, the view can be created anyway and entered into
the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE option of the
CREATE VIEW command:

CREATE FORCE VIEW AS;

By default, views are not created with errors. When a view is created
with errors, Oracle returns a message indicating the view was created
with errors. The status of a view created with errors is INVALID. If
conditions later change so that the query of an invalid view can be
executed, the view can be recompiled and become valid (usable).

See Also: For information changing conditions and their impact on
views, see “Managing Object Dependencies” on page 16 – 18.

A modifiable join view is a view that contains more than one table in the
top–level FROM clause of the SELECT statement, and that does not
contain any of the following:

• DISTINCT operator

• aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV,
SUM, or VARIANCE

• set operations: UNION, UNION ALL, INTERSECT, MINUS

• GROUP BY or HAVING clauses

• START WITH or CONNECT BY clauses

• ROWNUM pseudocolumn

With some restrictions, you can modify views that involve joins. If a
view is a join on other nested views, then the other nested views must
be mergeable into the top level view.

Key–Preserved Tables

☞

12 – 5Managing Views, Sequences and Synonyms

The examples in following sections use the EMP and DEPT tables.
These examples work only if you explicitly define the primary and
foreign keys in these tables, or define unique indexes. Following are the
appropriately constrained table definitions for EMP and DEPT:

CREATE TABLE dept (

 deptno NUMBER(4) PRIMARY KEY,

 dname VARCHAR2(14),

 loc VARCHAR2(13));

CREATE TABLE emp (

 empno NUMBER(4) PRIMARY KEY,

 ename VARCHAR2(10),

 job varchar2(9),

 mgr NUMBER(4),

 hiredate DATE,

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(2),

 FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));.

You could also omit the primary and foreign key constraints listed
above, and create a UNIQUE INDEX on DEPT (DEPTNO) to make the
following examples work.

See Also: For more information about mergeable views see Chapter 5
in the Oracle7 Server Tuning manual.

The concept of a key–preserved table is fundamental to understanding the
restrictions on modifying join views. A table is key preserved if every
key of the table can also be a key of the result of the join. So, a
key–preserved table has its keys preserved through a join.

Note: It is not necessary that the key or keys of a table be
selected for it to be key preserved. It is sufficient that if the key
or keys were selected, then they would also be key(s) of the
result of the join.

Attention: The key–preserving property of a table does not
depend on the actual data in the table. It is, rather, a property
of its schema and not of the data in the table. For example, if in
the EMP table there was at most one employee in each
department, then DEPT.DEPTNO would be unique in the
result of a join of EMP and DEPT, but DEPT would still not be
a key–preserved table.

DML Statements and Join
Views

12 – 6 Oracle7 Server Administrator’s Guide

If you SELECT all rows from EMP_DEPT_VIEW, the results are:

EMPNO ENAME DEPTNO DNAME LOC

–––––––––– –––––––––– –––––––––– –––––––––––––– –––––

 7782 CLARK 10 ACCOUNTING NEW YORK

 7839 KING 10 ACCOUNTING NEW YORK

 7934 MILLER 10 ACCOUNTING NEW YORK

 7369 SMITH 20 RESEARCH DALLAS

 7876 ADAMS 20 RESEARCH DALLAS

 7902 FORD 20 RESEARCH DALLAS

 7788 SCOTT 20 RESEARCH DALLAS

 7566 JONES 20 RESEARCH DALLAS

8 rows selected.

In this view, EMP is a key–preserved table, because EMPNO is a key of
the EMP table, and also a key of the result of the join. DEPT is not a
key–preserved table, because although DEPTNO is a key of the DEPT
table, it is not a key of the join.

Any UPDATE, INSERT, or DELETE statement on a join view can
modify only one underlying base table.

UPDATE Statements The following example shows an UPDATE
statement that successfully modifies the EMP_DEPT view:

UPDATE emp_dept

 SET sal = sal * 1.10

 WHERE deptno = 10;

The following UPDATE statement would be disallowed on the
EMP_DEPT view:

UPDATE emp_dept

 SET loc = ’BOSTON’

 WHERE ename = ’SMITH’;

This statement fails with an ORA–01779 error (‘‘cannot modify a
column which maps to a non key–preserved table’’), because it
attempts to modify the underlying DEPT table, and the DEPT table is
not key preserved in the EMP_DEPT view.

In general, all modifiable columns of a join view must map to columns
of a key–preserved table. If the view is defined using the WITH
CHECK OPTION clause, then all join columns and all columns of
repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH
CHECK OPTION, the following UPDATE statement would fail:

12 – 7Managing Views, Sequences and Synonyms

UPDATE emp_dept

 SET deptno = 10

 WHERE ename = ’SMITH’;

The statement fails because it is trying to update a join column.

DELETE Statements You can delete from a join view provided there
is one and only one key–preserved table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM emp_dept

 WHERE ename = ’SMITH’;

This DELETE statement on the EMP_DEPT view is legal because it can
be translated to a DELETE operation on the base EMP table, and
because the EMP table is the only key–preserved table in the join.

In the following view, a DELETE operation cannot be performed on the
view because both E1 and E2 are key–preserved tables:

CREATE VIEW emp_emp AS

 SELECT e1.ename, e2.empno, deptno

 FROM emp e1, emp e2

 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the
key–preserved table is repeated, then rows cannot be deleted from such
a view:

CREATE VIEW emp_mgr AS

 SELECT e1.ename, e2.ename mname

 FROM emp e1, emp e2

 WHERE e1.mgr = e2.empno

 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a
self–join of the table that is key preserved.

INSERT Statements The following INSERT statement on the
EMP_DEPT view succeeds:

INSERT INTO emp_dept (ename, empno, deptno)

 VALUES (’KURODA’, 9010, 40);

This statement works because only one key–preserved base table is
being modified (EMP), and 40 is a valid DEPTNO in the DEPT table
(thus satisfying the FOREIGN KEY integrity constraint on the EMP
table).

An INSERT statement like the following would fail for the same reason
that such an UPDATE on the base EMP table would fail: the FOREIGN
KEY integrity constraint on the EMP table is violated.

Using the UPDATABLE_
COLUMNS Views

Replacing Views

12 – 8 Oracle7 Server Administrator’s Guide

INSERT INTO emp_dept (ename, empno, deptno)

 VALUES (’KURODA’, 9010, 77);

The following INSERT statement would fail with an ORA–01776 error
(‘‘cannot modify more than one base table through a view’’).

INSERT INTO emp_dept (empno, ename, loc)

 VALUES (9010, ’KURODA’, ’BOSTON’);

An INSERT cannot, implicitly or explicitly, refer to columns of a
non–key–preserved table. If the join view is defined using the WITH
CHECK OPTION clause, then you cannot perform an INSERT to it.

The views described in Table 12 – 1 can assist you when modifying join
views.

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the user’s schema that are modifiable.

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the DBA schema that are modifiable.

ALL_UPDATABLE_VIEWS Shows all columns in all tables and views
that are modifiable.

Table 12 – 1 UPDATABLE_COLUMNS Views

To replace a view, you must have all the privileges required to drop
and create a view. If the definition of a view must change, the view
must be replaced; you cannot alter the definition of a view. You can
replace views in the following ways:

• You can drop and re–create the view.

Warning: When a view is dropped, all grants of
corresponding object privileges are revoked from roles and
users. After the view is re–created, privileges must be
re–granted.

• You can redefine the view with a CREATE VIEW statement that
contains the OR REPLACE option. The OR REPLACE option
replaces the current definition of a view and preserves the
current security authorizations. For example, assume that you
create the SALES_STAFF view as given in the previous example,
and grant several object privileges to roles and other users.
However, now you need to redefine the SALES_STAFF view to
change the department number specified in the WHERE clause.
You can replace the current version of the SALES_STAFF view
with the following statement:

Dropping Views

12 – 9Managing Views, Sequences and Synonyms

CREATE OR REPLACE VIEW sales_staff AS

 SELECT empno, ename, deptno

 FROM emp

 WHERE deptno = 30

 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Before replacing a view, consider the following effects:

• Replacing a view replaces the view’s definition in the data
dictionary. All underlying objects referenced by the view are not
affected.

• If a constraint in the CHECK OPTION was previously defined
but not included in the new view definition, the constraint is
dropped.

• All views and PL/SQL program units dependent on a replaced
view become invalid (not usable). See page 16 – 18 for more
information on how Oracle manages such dependencies.

You can drop any view contained in your schema. To drop a view in
another user’s schema, you must have the DROP ANY VIEW system
privilege. Drop a view using the SQL command DROP VIEW. For
example, the following statement drops a view named SALES_STAFF:

DROP VIEW sales_staff;

Creating Sequences

12 – 10 Oracle7 Server Administrator’s Guide

Managing Sequences

This section describes various aspects of managing sequences, and
includes the following topics:

• Creating Sequences

• Altering Sequences

• Initialization Parameters Affecting Sequences

• Dropping Sequences

To create a sequence in your schema, you must have the CREATE
SEQUENCE system privilege; to create a sequence in another user’s
schema, you must have the CREATE ANY SEQUENCE privilege.
Create a sequence using the SQL command CREATE SEQUENCE. For
example, the following statement creates a sequence used to generate
employee numbers for the EMPNO column of the EMP table:

CREATE SEQUENCE emp_sequence

 INCREMENT BY 1

 START WITH 1

 NOMAXVALUE

 NOCYCLE

 CACHE 10;

The CACHE option pre–allocates a set of sequence numbers and keeps
them in memory so that sequence numbers can be accessed faster.
When the last of the sequence numbers in the cache has been used,
Oracle reads another set of numbers into the cache.

Oracle might skip sequence numbers if you choose to cache a set of
sequence numbers. For example, when an instance abnormally shuts
down (for example, when an instance failure occurs or a SHUTDOWN
ABORT statement is issued), sequence numbers that have been cached
but not used are lost. Also, sequence numbers that have been used but
not saved are lost as well. Oracle might also skip cached sequence
numbers after an export and import; see the Oracle7 Server Utilities
guide for details.

See Also: For information about how the Oracle Parallel Server affects
cached sequence numbers, see the Oracle7 Parallel Server Concepts &
Administration guide.

For performance information on caching sequence numbers, see the
Oracle7 Server Tuning manual.

Altering Sequences

Initialization
Parameters Affecting
Sequences

Dropping Sequences

12 – 11Managing Views, Sequences and Synonyms

To alter a sequence, your schema must contain the sequence, or you
must have the ALTER ANY SEQUENCE system privilege. You can
alter a sequence to change any of the parameters that define how it
generates sequence numbers except the sequence’s starting number. To
change the starting point of a sequence, drop the sequence and then
re–create it.

Alter a sequence using the SQL command ALTER SEQUENCE. For
example, the following statement alters the EMP_SEQUENCE:

ALTER SEQUENCE emp_sequence

 INCREMENT BY 10

 MAXVALUE 10000

 CYCLE

 CACHE 20;

The initialization parameter SEQUENCE_CACHE_ENTRIES sets the
number of sequences that may be cached at any time. If auditing is
enabled for your system, allow one additional sequence for the
sequence to identify audit session numbers.

If the value for SEQUENCE_CACHE_ENTRIES is too low, Oracle
might skip sequence values, as in the following scenario: assume you
are using five cached sequences, the cache is full, and
SEQUENCE_CACHE_ENTRIES = 4. If four sequences are currently
cached, then a fifth sequence replaces the least recently used sequence
in the cache and all remaining values (up to the last sequence number
cached) in the displaced sequence are lost.

You can drop any sequence in your schema. To drop a sequence in
another schema, you must have the DROP ANY SEQUENCE system
privilege. If a sequence is no longer required, you can drop the
sequence using the SQL command DROP SEQUENCE. For example,
the following statement drops the ORDER_SEQ sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data
dictionary. Any synonyms for the sequence remain, but return an error
when referenced.

Creating Synonyms

Dropping Synonyms

12 – 12 Oracle7 Server Administrator’s Guide

Managing Synonyms

You can create both public and private synonyms. A public synonym is
owned by the special user group named PUBLIC and is accessible to
every user in a database. A private synonym is contained in the schema
of a specific user and available only to the user and the user’s grantees.

This section includes the following synonym management information:

• Creating Synonyms

• Dropping Synonyms

To create a private synonym in your own schema, you must have the
CREATE SYNONYM privilege; to create a private synonym in another
user’s schema, you must have the CREATE ANY SYNONYM privilege.
To create a public synonym, you must have the CREATE PUBLIC
SYNONYM system privilege.

Create a synonym using the SQL command CREATE SYNONYM. For
example, the following statement creates a public synonym named
PUBLIC_EMP on the EMP table contained in the schema of JWARD:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;

You can drop any private synonym in your own schema. To drop a
private synonym in another user’s schema, you must have the DROP
ANY SYNONYM system privilege. To drop a public synonym, you
must have the DROP PUBLIC SYNONYM system privilege.

Drop a synonym that is no longer required using the SQL command
DROP SYNONYM. To drop a private synonym, omit the PUBLIC
keyword; to drop a public synonym, include the PUBLIC keyword.

For example, the following statement drops the private synonym
named EMP:

DROP SYNONYM emp;

The following statement drops the public synonym named
PUBLIC_EMP:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data
dictionary. All objects that reference a dropped synonym remain;
however, they become invalid (not usable).

See Also: For more information about how dropping synonyms can
affect other schema objects, see “Managing Object Dependencies” on
page 16 – 18.

C H A P T E R

13
T

13 – 1Managing Indexes

Managing Indexes

his chapter describes various aspects of index management, and
includes the following topics:

• Guidelines for Managing Indexes

• Creating Indexes

• Altering Indexes

• Monitoring Space Use of Indexes

• Dropping Indexes

Before attempting tasks described in this chapter, familiarize yourself
with the concepts in Chapter 10, “Guidelines for Managing Schema
Objects.”

13 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Indexes

This section describes guidelines to follow when managing indexes,
and includes the following topics:

• Create Indexes After Inserting Table Data

• Limit the Number of Indexes per Table

• Specify Transaction Entry Parameters

• Specify Index Block Space Use

• Specify the Tablespace for Each Index

• Parallelize Index Creation

• Consider Creating UNRECOVERABLE Indexes

• Estimate Index Size and Set Storage Parameters

An index is an optional structure associated with tables and clusters,
which you can create explicitly to speed SQL statement execution on a
table. Just as the index in this manual helps you locate information
faster than if there were no index, an Oracle index provides a faster
access path to table data.

The absence or presence of an index does not require a change in the
wording of any SQL statement. An index merely offers a fast access
path to the data; it affects only the speed of execution. Given a data
value that has been indexed, the index points directly to the location of
the rows containing that value.

Indexes are logically and physically independent of the data in the
associated table. You can create or drop an index at anytime without
effecting the base tables or other indexes. If you drop an index, all
applications continue to work; however, access of previously indexed
data might be slower. Indexes, as independent structures, require
storage space.

Oracle automatically maintains and uses indexes after they are created.
Oracle automatically reflects changes to data, such as adding new
rows, updating rows, or deleting rows, in all relevant indexes with no
additional action by users.

See Also: For information about performance implications of index
creation, see the Oracle7 Server Tuning manual.

For more information about indexes, see the Oracle7 Server Concepts
guide.

Create Indexes After
Inserting Table Data

Limit the Number of
Indexes per Table

13 – 3Managing Indexes

You should create an index for a table after inserting or loading data
(via SQL*Loader or Import) into the table. It is more efficient to insert
rows of data into a table that has no indexes and then create the
indexes for subsequent access. If you create indexes before table data is
loaded, every index must be updated every time a row is inserted into
the table. You should also create the index for a cluster before inserting
any data into the cluster.

When an index is created on a table that already has data, Oracle must
use sort space. Oracle uses the sort space in memory allocated for the
creator of the index (the amount per user is determined by the
initialization parameter SORT_AREA_SIZE), but must also swap sort
information to and from temporary segments allocated on behalf of the
index creation.

If the index is extremely large, you may want to perform the following
tasks:

To Manage a Large Index

1. Create a new temporary segment tablespace.

2. Alter the index creator’s temporary segment tablespace.

3. Create the index.

4. Remove the temporary segment tablespace and re–specify the
creator’s temporary segment tablespace, if desired.

See Also: Under certain conditions, data can be loaded into a table
with SQL*Loader’s “direct path load” and an index can be created as
data is loaded; see the Oracle7 Server Utilities guide for more
information.

A table can have any number of indexes. However, the more indexes
there are, the more overhead is incurred as the table is modified.
Specifically, when rows are inserted or deleted, all indexes on the table
must be updated as well. Also, when a column is updated, all indexes
that contain the column must be updated.

Thus, there is a tradeoff between the speed of retrieving data from a
table and the speed of updating the table. For example, if a table is
primarily read–only, having more indexes can be useful, but if a table is
heavily updated, having fewer indexes may be preferable.

Specify Transaction
Entry Parameters

Specify Index Block
Space Use

Specify the Tablespace
for Each Index

Parallelize Index
Creation

13 – 4 Oracle7 Server Administrator’s Guide

By specifying the INITRANS and MAXTRANS parameters during the
creation of each index, you can affect how much space is initially and
can ever be allocated for transaction entries in the data blocks of an
index’s segment.

See Also: For more information about setting these parameters, see
“Setting Storage Parameters” on page 10 – 7.

When an index is created for a table, data blocks of the index are filled
with the existing values in the table up to PCTFREE. The space
reserved by PCTFREE for an index block is only used when a new row
is inserted into the table and the corresponding index entry must be
placed in the correct index block (that is, between preceding and
following index entries); if no more space is available in the appropriate
index block, the indexed value is placed in another index block.
Therefore, if you plan on inserting many rows into an indexed table,
PCTFREE should be high to accommodate the new index values; if the
table is relatively static without many inserts, PCTFREE for an
associated index can be low so that fewer blocks are required to hold
the index data.

See Also: PCTUSED cannot be specified for indexes. See “Managing
the Space Usage of Data Blocks” on page 10 – 2 for information about
the PCTFREE parameter.

Indexes can be created in any tablespace. An index can be created in
the same or different tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then database
maintenance may be more convenient (such as tablespace or file
backup and application availability or update) and all the related data
will always be online together.

Using different tablespaces (on different disks) for a table and its index
produces better performance than storing the table and index in the
same tablespace, due to reduced disk contention.

If you use different tablespaces for a table and its index and one
tablespace is offline (containing either data or index), then the
statements referencing that table are not guaranteed to work.

If you have the parallel query option installed, you can parallelize
index creation. Because multiple processes work together to create the
index, Oracle can create the index more quickly than if a single server
process created the index sequentially.

When creating an index in parallel, storage parameters are used
separately by each query server process. Therefore, an index created

Consider Creating
UNRECOVERABLE
Indexes

Estimate Index Size
and Set Storage
Parameters

13 – 5Managing Indexes

with an INITIAL of 5M and a PARALLEL DEGREE of 12 consumes at
least 60M of storage during index creation.

See Also: For more information on the parallel query option and
parallel index creation, see the Oracle7 Server Tuning manual.

You can create an index without generating any redo log records by
specifying UNRECOVERABLE in the CREATE INDEX statement.

Note: Because indexes created unrecoverably are not archived,
you should perform a backup after you create the index.

Creating an index unrecoverably has the following benefits:

• Space is saved in the redo log files.

• The time it takes to create the index is decreased.

• Performance improves for parallel creation of large indexes.

In general when creating an index unrecoverably, the relative
performance improvement is greater for larger indexes than for smaller
ones. Creating small indexes unrecoverably has little affect on the time
it takes to create an index. However, for larger indexes the performance
improvement can be significant, especially when you are also
parallelizing the index creation.

Appendix A contains equations that help estimate the size of indexes.

Estimating the size of an index before creating one is useful for the
following reasons:

• You can use the combined estimated size of indexes, along with
estimates for tables, rollback segments, and redo log files, to
determine the amount of disk space that is required to hold an
intended database. From these estimates, you can make correct
hardware purchases and other decisions.

• You can use the estimated size of an individual index to better
manage the disk space that the index will use. When an index is
created, you can set appropriate storage parameters and improve
I/O performance of applications that use the index.

For example, assume that you estimate the maximum size of a
table before creating it. If you then set the storage parameters
when you create the table, fewer extents will be allocated for the
table’s data segment, and all of the table’s data will be stored in a
relatively contiguous section of disk space. This decreases the
time necessary for disk I/O operations involving this table.

Considerations Before
Disabling or Dropping
Constraints

13 – 6 Oracle7 Server Administrator’s Guide

The maximum size of a single index entry is roughly one–half the data
block size minus some overhead.

As with tables, you can explicitly set storage parameters when creating
an index. If you explicitly set the storage parameters for an index, try to
store the index’s data in a small number of large extents rather than a
large number of small extents.

See Also: For specific information about storage parameters, see
“Setting Storage Parameters” on page 10 – 7.

For specific information about estimating index size, see Appendix A.

Because unique and primary keys have associated indexes, you should
factor in the cost of dropping and creating indexes when considering
whether to disable or drop a UNIQUE or PRIMARY KEY constraint. If
the associated index for a UNIQUE key or PRIMARY KEY constraint is
extremely large, you may save time by leaving the constraint enabled
rather than dropping and re–creating the large index.

Creating Indexes

This section describes how to create an index, and includes the
following topics:

• Creating an Index Associated with a Constraint

• Creating an Index Explicitly

• Re–Creating an Existing Index

Before you can create a new index you must own or have the INDEX
object privilege for the corresponding table. The schema that contains
the index must also have a quota for the tablespace intended to contain
the index, or the UNLIMITED TABLESPACE system privilege. To
create an index in another user’s schema, you must have the CREATE
ANY INDEX system privilege.

To enable a UNIQUE key or PRIMARY KEY (which creates an
associated index), the owner of the table needs a quota for the
tablespace intended to contain the index, or the UNLIMITED
TABLESPACE system privilege.

LONG and LONG RAW columns cannot be indexed.

Oracle enforces a UNIQUE key or PRIMARY KEY integrity constraint
by creating a unique index on the unique key or primary key. This
index is automatically created by Oracle when the constraint is

Creating an Index
Associated with a
Constraint

Creating an Index
Explicitly

Re–Creating an
Existing Index

13 – 7Managing Indexes

enabled; no action is required by the issuer of the CREATE TABLE or
ALTER TABLE statement to create the index. This includes both when
a constraint is defined and enabled, and when a defined but disabled
constraint is enabled.

In general, it is better to create constraints to enforce uniqueness than it
is to use the CREATE UNIQUE INDEX syntax. A constraint’s
associated index always assumes the name of the constraint; you
cannot specify a specific name for a constraint index.

If you do not specify the storage options for an index, they are
automatically set to the default storage options of the host tablespace.

You can set the storage options for the indexes associated with
UNIQUE key and PRIMARY KEY constraints using the ENABLE
clause with the USING INDEX option. The following statement defines
a PRIMARY KEY constraint and specifies the associated index’s storage
option:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY, . . .)

 ENABLE PRIMARY KEY USING INDEX

 TABLESPACE users

 PCTFREE 0;

You can create indexes explicitly (outside of integrity constraints) using
the SQL command CREATE INDEX. The following statement creates
an index named EMP_ENAME for the ENAME column of the EMP
table:

CREATE INDEX emp_ename ON emp(ename)

 TABLESPACE users

 STORAGE (INITIAL 20K

 NEXT 20k

 PCTINCREASE 75)

 PCTFREE 0;

Notice that several storage settings are explicitly specified for the
index.

You can create an index using an existing index as the data source.
Creating an index in this manner allows you to change storage
characteristics, or move to a new tablespace. Re–creating an index
based on an existing data source also removes intra–block
fragmentation. In fact, compared to dropping the index and using the
CREATE INDEX command, re–creating an existing index offers better
performance.

Issue the following statement to re–create an existing index:

13 – 8 Oracle7 Server Administrator’s Guide

ALTER INDEX index name REBUILD;

The REBUILD clause must immediately follow the index name, and
precede any other options. Also, the REBUILD clause cannot be used in
conjunction with the DEALLOCATE STORAGE clause.

See Also: For more information on the ALTER INDEX command and
optional clauses, see the Oracle7 Server SQL Reference.

Altering Indexes

To alter an index, your schema must contain the index or you must
have the ALTER ANY INDEX system privilege. You can alter an index
only to change the transaction entry parameters or to change the
storage parameters; you cannot change its column structure.

Alter the storage parameters of any index, including those created by
Oracle to enforce primary and unique key integrity constraints, using
the SQL command ALTER INDEX. For example, the following
statement alters the EMP_ENAME index:

ALTER INDEX emp_ename

 INITRANS 5

 MAXTRANS 10

 STORAGE (PCTINCREASE 50);

When you alter the transaction entry settings (INITRANS,
MAXTRANS) of an index, a new setting for INITRANS only applies to
data blocks subsequently allocated, while a new setting for
MAXTRANS applies to all blocks (already and subsequently allocated
blocks) of an index.

The storage parameters INITIAL and MINEXTENTS cannot be altered.
All new settings for the other storage parameters affect only extents
subsequently allocated for the index.

For indexes that implement integrity constraints, you can also adjust
storage parameters by issuing an ALTER TABLE statement that
includes the ENABLE clause with the USING INDEX option. For
example, the following statement changes the storage options of the
index defined in the previous section:

ALTER TABLE emp

 ENABLE PRIMARY KEY USING INDEX

 PCTFREE 5;

13 – 9Managing Indexes

Monitoring Space Use of Indexes

If key values in an index are inserted, updated, and deleted frequently,
the index may or may not use its acquired space efficiently over time.
Monitor an index’s efficiency of space usage at regular intervals by first
analyzing the index’s structure and then querying the INDEX_STATS
view:

SELECT pct_used FROM sys.index_stats WHERE name = ’ indexname ’;

The percentage of an index’s space usage will vary according to how
often index keys are inserted, updated, or deleted. Develop a history of
an index’s average efficiency of space usage by performing the
following sequence of operations several times: validating the index,
checking PCT_USED, and dropping and re–creating the index. When
you find that an index’s space usage drops below its average, you can
condense the index’s space by dropping the index and re–creating or
re–building it.

See Also: For information about analyzing an index’s structure, see
“Analyzing Tables, Indexes, and Clusters” on page 16 – 3.

Dropping Indexes

To drop an index, the index must be contained in your schema, or you
must have the DROP ANY INDEX system privilege.

You might want to drop an index for any of the following reasons:

• The index is no longer required.

• The index is not providing anticipated performance
improvements for queries issued against the associated table.
(For example, the table might be very small, or there might be
many rows in the table but very few index entries.)

• Applications do not use the index to query the data.

• The index has become invalid and must be dropped before being
rebuilt.

• The index has become too fragmented and must be dropped
before being rebuilt.

When you drop an index, all extents of the index’s segment are
returned to the containing tablespace and become available for other
objects in the tablespace.

13 – 10 Oracle7 Server Administrator’s Guide

How you drop an index depends on whether you created the index
explicitly with a CREATE INDEX statement, or implicitly by defining a
key constraint on a table.

Note: If a table is dropped, all associated indexes are dropped
automatically.

You cannot drop only the index associated with an enabled UNIQUE
key or PRIMARY KEY constraint. To drop a constraint’s associated
index, you must disable or drop the constraint itself.

You can drop an explicitly created index with the SQL command DROP
INDEX. For example, to drop the EMP_ENAME index, you would
enter the following statement:

DROP INDEX emp_ename;

See Also: For information about analyzing indexes, see “Analyzing
Tables, Indexes, and Clusters” on page 16 – 3.

For more information about dropping a constraint’s associated index,
see “Managing Integrity Constraints” on page 16 – 11.

C H A P T E R

14
T

14 – 1Managing Clusters

Managing Clusters

his chapter describes aspects of managing clusters (including
clustered tables and indexes), and includes the following topics:

• Guidelines for Managing Clusters

• Creating Clusters

• Altering Clusters

• Dropping Clusters

Before attempting tasks described in this chapter, familiarize yourself
with the concepts in Chapter 10, “Guidelines for Managing Schema
Objects.”

14 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Clusters

A cluster provides an optional method of storing table data. A cluster is
comprised of a group of tables that share the same data blocks, which
are grouped together because they share common columns and are
often used together. For example, the EMP and DEPT table share the
DEPTNO column. When you cluster the EMP and DEPT tables (see
Figure 14 – 1), Oracle physically stores all rows for each department
from both the EMP and DEPT tables in the same data blocks. You
should not use clusters for tables that are frequently accessed
individually.

Because clusters store related rows of different tables together in the
same data blocks, properly used clusters offer two primary benefits:

• Disk I/O is reduced and access time improves for joins of
clustered tables.

• The cluster key is the column, or group of columns, that the
clustered tables have in common. You specify the columns of the
cluster key when creating the cluster. You subsequently specify
the same columns when creating every table added to the cluster.
Each cluster key value is stored only once each in the cluster and
the cluster index, no matter how many rows of different tables
contain the value.

Therefore, less storage might be required to store related
table and index data in a cluster than is necessary in
non–clustered table format. For example, notice how each
cluster key (each DEPTNO) is stored just once for many
rows that contain the same value in both the EMP and
DEPT tables.

After creating a cluster, you can create tables in the cluster. However,
before any rows can be inserted into the clustered tables, a cluster
index must be created. Using clusters does not affect the creation of
additional indexes on the clustered tables; they can be created and
dropped as usual.

14 – 3Managing Clusters

NEW YORK

Unclustered Tables
Related data stored

apart, taking up
more space

10 DNAME LOC

Cluster Key
(DEPTO) EMPNO ENAME DEPTNO . . .

EMP Table

EMPNO ENAME . . .

20 DNAME LOC

EMPNO ENAME . . .

Clustered Tables
Releate data stored

together, more
efficiently

DEPTNO DNAME LOC

DEPT Table

SALES BOSTON

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

ADMIN

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

932
100
1139
1277
1321
1841

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

10
20

SALES
ADMIN

BOSTON
NEW YORK

Figure 14 – 1 Clustered Table Data

The following sections describe guidelines to consider when managing
clusters, and includes the following topics:

• Cluster Appropriate Tables

• Choose Appropriate Columns for the Cluster Key

• Specify Data Block Space Use

• Specify the Space Required by an Average Cluster Key and Its
Associated Rows

Cluster Appropriate
Tables

Choose Appropriate
Columns for the
Cluster Key

Specify Data Block
Space Use

14 – 4 Oracle7 Server Administrator’s Guide

• Specify the Location of Each Cluster and Cluster Index

• Estimate Cluster Size and Set Storage Parameters

See Also: For more information about clusters, see the Oracle7 Server
Concepts manual.

Use clusters to store one or more tables that are primarily queried (not
predominantly inserted into or updated) and for which the queries
often join data of multiple tables in the cluster or retrieve related data
from a single table.

Choose cluster key columns carefully. If multiple columns are used in
queries that join the tables, make the cluster key a composite key. In
general, the characteristics that indicate a good cluster index are the
same as those for any index.

A good cluster key has enough unique values so that the group of rows
corresponding to each key value fills approximately one data block.
Having too few rows per cluster key value can waste space and result
in negligible performance gains. Cluster keys that are so specific that
only a few rows share a common value can cause wasted space in
blocks, unless a small SIZE was specified at cluster creation time (see
below).

Too many rows per cluster key value can cause extra searching to find
rows for that key. Cluster keys on values that are too general (for
example, MALE and FEMALE) result in excessive searching and can
result in worse performance than with no clustering.

A cluster index cannot be unique or include a column defined as
LONG.

See Also: For information about characteristics of a good index, see
“Guidelines for Managing Indexes” on page 13 – 2.

By specifying the PCTFREE and PCTUSED parameters during the
creation of a cluster, you can affect the space utilization and amount of
space reserved for updates to the current rows in the data blocks of a
cluster’s data segment. Note that PCTFREE and PCTUSED parameters
set for tables created in a cluster are ignored; clustered tables
automatically use the settings set for the cluster.

See Also: For more information about setting PCTFREE and
PCTUSED, see “Managing the Space Usage of Data Blocks” on page
10 – 2 .

Specify the Space
Required by an
Average Cluster Key
and Its Associated
Rows

Specify the Location of
Each Cluster and
Cluster Index

Estimate Cluster Size
and Set Storage
Parameters

14 – 5Managing Clusters

The CREATE CLUSTER command has an optional argument, SIZE,
which is the estimated number of bytes required by an average cluster
key and its associated rows. Oracle uses the SIZE parameter when
performing the following tasks:

• estimating the number of cluster keys (and associated rows) that
can fit in a clustered data block

• limiting the number of cluster keys placed in a clustered data
block; this maximizes the storage efficiency of keys within a
cluster

SIZE does not limit the space that can be used by a given cluster key.
For example, if SIZE is set such that two cluster keys can fit in one data
block, any amount of the available data block space can still be used by
either of the cluster keys.

By default, Oracle stores only one cluster key and its associated rows in
each data block of the cluster’s data segment. Although block size can
vary from one operating system to the next, the rule of one key per
block is maintained as clustered tables are imported to other databases
on other machines.

If all the rows for a given cluster key value cannot fit in one block, the
blocks are chained together to speed access to all the values with the
given key. The cluster index points to the beginning of the chain of
blocks, each of which contains the cluster key value and associated
rows. If the cluster SIZE is such that more than one key fits in a block,
blocks can belong to more than one chain.

If you have the proper privileges and tablespace quota, you can create a
new cluster and the associated cluster index in any tablespace that is
currently online. Always specify the TABLESPACE option in a
CREATE CLUSTER/INDEX statement to identify the tablespace to
store the new cluster or index.

The cluster and its cluster index can be created in different tablespaces.
In fact, creating a cluster and its index in different tablespaces that are
stored on different storage devices allows table data and index data to
be retrieved simultaneously with minimal disk contention.

The benefits of estimating a cluster’s size before creating one follow:

• You can use the combined estimated size of clusters, along with
estimates for indexes, rollback segments, and redo log files, to
determine the amount of disk space that is required to hold an
intended database. From these estimates, you can make correct
hardware purchases and other decisions.

14 – 6 Oracle7 Server Administrator’s Guide

• You can use the estimated size of an individual cluster to better
manage the disk space that the cluster will use. When a cluster is
created, you can set appropriate storage parameters and improve
I/O performance of applications that use the cluster.

Whether or not you estimate table size before creation, you can
explicitly set storage parameters when creating each non–clustered
table. Any storage parameter that you do not explicitly set when
creating or subsequently altering a table automatically uses the
corresponding default storage parameter set for the tablespace in
which the table resides. Clustered tables also automatically use the
storage parameters of the cluster.

See Also: For information about estimating the size of schema objects,
including clusters, see Appendix A.

Creating Clusters

This section describes how to create clusters, and includes the
following topics:

• Creating Clustered Tables

• Creating Cluster Indexes

To create a cluster in your schema, you must have the CREATE
CLUSTER system privilege and a quota for the tablespace intended to
contain the cluster or the UNLIMITED TABLESPACE system privilege.

To create a cluster in another user’s schema, you must have the
CREATE ANY CLUSTER system privilege and the owner must have a
quota for the tablespace intended to contain the cluster or the
UNLIMITED TABLESPACE system privilege.

You can create a cluster using the SQL command CREATE CLUSTER.
The following statement creates a cluster named EMP_DEPT, which
stores the EMP and DEPT tables, clustered by the DEPTNO column:

CREATE CLUSTER emp_dept (deptno NUMBER(3))

 PCTUSED 80

 PCTFREE 5

 SIZE 600

 TABLESPACE users

 STORAGE (INITIAL 200k

 NEXT 300K

 MINEXTENTS 2

 MAXEXTENTS 20

 PCTINCREASE 33);

Creating Clustered
Tables

Creating Cluster
Indexes

14 – 7Managing Clusters

To create a table in a cluster, you must have either the CREATE TABLE
or CREATE ANY TABLE system privilege. You do not need a
tablespace quota or the UNLIMITED TABLESPACE system privilege to
create a table in a cluster.

You can create a table in a cluster using the SQL command CREATE
TABLE with the CLUSTER option. The EMP and DEPT tables can be
created in the EMP_DEPT cluster using the following statements:

CREATE TABLE dept (

 deptno NUMBER(3) PRIMARY KEY, . . .)

 CLUSTER emp_dept (deptno);

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY,

 ename VARCHAR2(15) NOT NULL,

 . . .

 deptno NUMBER(3) REFERENCES dept)

 CLUSTER emp_dept (deptno);

Note: You can specify the schema for a clustered table in the
CREATE TABLE statement; a clustered table can be in a
different schema than the schema containing the cluster.

To create a cluster index, one of the following conditions must be true:

• Your schema contains the cluster and you have the CREATE
INDEX system privilege.

• You have the CREATE ANY INDEX system privilege.

In either case, you must also have either a quota for the tablespace
intended to contain the cluster index, or the UNLIMITED
TABLESPACE system privilege.

A cluster index must be created before any rows can be inserted into
any clustered table. The following statement creates a cluster index for
the EMP_DEPT cluster:

CREATE INDEX emp_dept_index

 ON CLUSTER emp_dept

 INITRANS 2

 MAXTRANS 5

 TABLESPACE users

 STORAGE (INITIAL 50K

 NEXT 50K

 MINEXTENTS 2

 MAXEXTENTS 10

 PCTINCREASE 33)

 PCTFREE 5;

14 – 8 Oracle7 Server Administrator’s Guide

The cluster key establishes the relationship of the tables in the cluster.
Several storage settings are explicitly specified for the cluster and
cluster index.

See Also: See Chapter 20 for more information about system privileges,
and Chapter 19 for information about tablespace quotas.

Altering Clusters

You can alter an existing cluster to change the following settings:

• data block space usage parameters (PCTFREE, PCTUSED)

• the average cluster key size (SIZE)

• transaction entry settings (INITRANS, MAXTRANS)

• storage parameters (NEXT, PCTINCREASE)

To alter a cluster, your schema must contain the cluster or you must
have the ALTER ANY CLUSTER system privilege.

When you alter data block space usage parameters (PCTFREE and
PCTUSED) or the cluster size parameter (SIZE) of a cluster, the new
settings apply to all data blocks used by the cluster, including blocks
already allocated and blocks subsequently allocated for the cluster.
Blocks already allocated for the table are reorganized when necessary
(not immediately).

When you alter the transaction entry settings (INITRANS,
MAXTRANS) of a cluster, a new setting for INITRANS applies only to
data blocks subsequently allocated for the cluster, while a new setting
for MAXTRANS applies to all blocks (already and subsequently
allocated blocks) of a cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered.
All new settings for the other storage parameters affect only extents
subsequently allocated for the cluster.

To alter a cluster, use the SQL command ALTER CLUSTER. The
following statement alters the EMP_DEPT cluster:

ALTER CLUSTER emp_dept

 PCTFREE 30

 PCTUSED 60;

Altering Cluster
Tables and Cluster
Indexes

Manually Allocating
Storage for a Cluster

14 – 9Managing Clusters

You can alter clustered tables using the SQL command ALTER TABLE.
However, any data block space parameters, transaction entry
parameters, or storage parameters you set in an ALTER TABLE
statement for a clustered table generate an error message (ORA–01771,
“illegal option for a clustered table”). Oracle uses the parameters of the
cluster for all clustered tables. Therefore, you can use the ALTER
TABLE command only to add or modify columns, or add, drop, enable,
or disable integrity constraints or triggers for a clustered table.

Note: When estimating the size of cluster indexes, remember
that the index is on each cluster key, not the actual rows;
therefore, each key will only appear once in the index.

Oracle dynamically allocates additional extents for the data segment of
a cluster as required. In some circumstances, however, you might want
to allocate an additional extent for a cluster explicitly. For example,
when using the Oracle Parallel Server, you can allocate an extent of a
cluster explicitly for a specific instance.

You allocate a new extent for a cluster using the SQL command ALTER
CLUSTER with the ALLOCATE EXTENT option.

See Also: For information about altering tables, see “Altering Tables”
on page 11 – 7.

You alter cluster indexes exactly as you do other indexes. For more
information, see “Altering an Index” on page 13 – 8.

For more information about the CLUSTER parameter in the ALTER
CLUSTER command, see the Oracle7 Parallel Server Concepts &
Administration guide.

Dropping Clusters

This section describes aspects of dropping clusters, and includes the
following topics:

• Dropping Clustered Tables

• Dropping Cluster Indexes

A cluster can be dropped if the tables within the cluster are no longer
necessary. When a cluster is dropped, so are the tables within the
cluster and the corresponding cluster index; all extents belonging to
both the cluster’s data segment and the index segment of the cluster
index are returned to the containing tablespace and become available
for other segments within the tablespace.

Dropping Clustered
Tables

Dropping Cluster
Indexes

14 – 10 Oracle7 Server Administrator’s Guide

To drop a cluster, your schema must contain the cluster or you must
have the DROP ANY CLUSTER system privilege. You do not have to
have additional privileges to drop a cluster that contains tables, even if
the clustered tables are not owned by the owner of the cluster.

Clustered tables can be dropped individually without affecting the
table’s cluster, other clustered tables, or the cluster index. A clustered
table is dropped just as a non–clustered table is dropped—with the
SQL command DROP TABLE.

Note: When you drop a single table from a cluster, Oracle
deletes each row of the table individually. To maximize
efficiency when you intend to drop an entire cluster, drop the
cluster including all tables by using the DROP CLUSTER
command with the INCLUDING TABLES option. Drop an
individual table from a cluster (using the DROP TABLE
command) only if you want the rest of the cluster to remain.

See Also: For information about dropping a table, see “Dropping
Tables” on page 11 – 9.

A cluster index can be dropped without affecting the cluster or its
clustered tables. However, clustered tables cannot be used if there is no
cluster index; you must re–create the cluster index to allow access to
the cluster. Cluster indexes are sometimes dropped as part of the
procedure to rebuild a fragmented cluster index.

To drop a cluster that contains no tables, and its cluster index, use the
SQL command DROP CLUSTER. For example, the following statement
drops the empty cluster named EMP_DEPT:

DROP CLUSTER emp_dept;

If the cluster contains one or more clustered tables and you intend to
drop the tables as well, add the INCLUDING TABLES option of the
DROP CLUSTER command, as follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

If the INCLUDING TABLES option is not included and the cluster
contains tables, an error is returned.

14 – 11Managing Clusters

If one or more tables in a cluster contain primary or unique keys that
are referenced by FOREIGN KEY constraints of tables outside the
cluster, the cluster cannot be dropped unless the dependent FOREIGN
KEY constraints are also dropped. This can be easily done using the
CASCADE CONSTRAINTS option of the DROP CLUSTER command,
as shown in the following example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Oracle returns an error if you do not use the CASCADE
CONSTRAINTS option and constraints exist.

See Also: For information about dropping an index, see “Dropping
Indexes” on page 13 – 9.

14 – 12 Oracle7 Server Administrator’s Guide

C H A P T E R

15
T

15 – 1Managing Hash Clusters

Managing Hash
Clusters

his chapter describes how to manage hash clusters, and includes
the following topics:

• Guidelines for Managing Hash Clusters

• Creating Hash Clusters

• Altering Hash Clusters

• Dropping Hash Clusters

See Also: Before attempting tasks described in this chapter, familiarize
yourself with the concepts in Chapter 10, “Guidelines for Managing
Schema Objects.”

Advantages of Hashing

15 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Hash Clusters

This section describes guidelines to consider before attempting to
manage hash clusters, and includes the following topics:

• Advantages of Hashing

• Disadvantages of Hashing

• Estimate Size Required by Hash Clusters and Set Storage
Parameters

Storing a table in a hash cluster is an optional way to improve the
performance of data retrieval. A hash cluster provides an alternative to
a non–clustered table with an index or an index cluster. With an
indexed table or index cluster, Oracle locates the rows in a table using
key values that Oracle stores in a separate index. To use hashing, you
create a hash cluster and load tables into it. Oracle physically stores the
rows of a table in a hash cluster and retrieves them according to the
results of a hash function.

Oracle uses a hash function to generate a distribution of numeric values,
called hash values, which are based on specific cluster key values. The
key of a hash cluster, like the key of an index cluster, can be a single
column or composite key (multiple column key). To find or store a row
in a hash cluster, Oracle applies the hash function to the row’s cluster
key value; the resulting hash value corresponds to a data block in the
cluster, which Oracle then reads or writes on behalf of the issued
statement.

To find or store a row in an indexed table or cluster, a minimum of two
(there are usually more) I/Os must be performed:

• one or more I/Os to find or store the key value in the index

• another I/O to read or write the row in the table or cluster

In contrast, Oracle uses a hash function to locate a row in a hash
cluster; no I/O is required. As a result, a minimum of one I/O
operation is necessary to read or write a row in a hash cluster.

If you opt to use indexing rather than hashing, consider whether to
store a table individually or as part of a cluster.

Hashing is most advantageous when you have the following
conditions:

• Most queries are equality queries on the cluster key:

SELECT . . . WHERE cluster_key = . . . ;

Disadvantages of
Hashing

15 – 3Managing Hash Clusters

In such cases, the cluster key in the equality condition is hashed,
and the corresponding hash key is usually found with a single
read. In comparison, for an indexed table the key value must
first be found in the index (usually several reads), and then the
row is read from the table (another read).

• The tables in the hash cluster are primarily static in size so that
you can determine the number of rows and amount of space
required for the tables in the cluster. If tables in a hash cluster
require more space than the initial allocation for the cluster,
performance degradation can be substantial because overflow
blocks are required.

Hashing is not advantageous in the following situations:

• Most queries on the table retrieve rows over a range of cluster
key values. For example, in full table scans, or queries like the
following, a hash function cannot be used to determine the
location of specific hash keys; instead, the equivalent of a full
table scan must be done to fetch the rows for the query:

SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key
values that satisfy the WHERE clause of a query can be found
with relatively few I/Os.

• The table is not static and continually growing. If a table grows
without limit, the space required over the life of the table (its
cluster) cannot be pre–determined.

• Applications frequently perform full–table scans on the table and
the table is sparsely populated. A full–table scan in this situation
takes longer under hashing.

• You cannot afford to pre–allocate the space that the hash cluster
will eventually need.

See Also: For more information about creating hash clusters and
specifying hash functions see the Oracle7 Server SQL Reference.

For information about hash functions and specifying user–defined hash
functions, see the Oracle7 Server Concepts manual.

Even if you decide to use hashing, a table can still have separate
indexes on any columns, including the cluster key. See the Oracle7
Server Application Developer’s Guide for additional recommendations.

Estimate Size Required
by Hash Clusters and
Set Storage Parameters

15 – 4 Oracle7 Server Administrator’s Guide

As with index clusters, it is important to estimate the storage required
for the data in a hash cluster.

Oracle guarantees that the initial allocation of space is sufficient to store
the hash table according to the settings SIZE and HASHKEYS. If
settings for the storage parameters INITIAL, NEXT, and MINEXTENTS
do not account for the hash table size, incremental (additional) extents
are allocated until at least SIZE*HASHKEYS is reached. For example,
assume that the data block size is 2K, the available data space per block
is approximately 1900 bytes (data block size minus overhead), and that
the STORAGE and HASH parameters are specified in the CREATE
CLUSTER command as follows:

STORAGE (INITIAL 100K

 NEXT 150K

 MINEXTENTS 1

 PCTINCREASE 0)

SIZE 1500

HASHKEYS 100

In this example, only one hash key can be assigned per data block.
Therefore, the initial space required for the hash cluster is at least
100*2K or 200K. The settings for the storage parameters do not account
for this requirement. Therefore, an initial extent of 100K and a second
extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore,
the initial space required for the hash cluster is at least 34*2K or 68K.
The initial settings for the storage parameters are sufficient for this
requirement (an initial extent of 100K is allocated to the hash cluster).

See Also: To estimate the size of a hash cluster, use the procedure given
in “Estimating Space Required by Clusters” on page A – 1, along with
the supplemental information in “Estimating Space Required by Hash
Clusters” on page A – 14.

Controlling Space Use
Within a Hash Cluster

Choosing the Key

15 – 5Managing Hash Clusters

Creating Hash Clusters

After a hash cluster is created, tables can be created in the cluster. A
hash cluster is created using the SQL command CREATE CLUSTER.
For example, the following statement creates a cluster named
TRIAL_CLUSTER that stores the TRIAL table, clustered by the
TRIALNO column:

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))

 PCTUSED 80

 PCTFREE 5

 TABLESPACE users

 STORAGE (INITIAL 250K NEXT 50K

 MINEXTENTS 1 MAXEXTENTS 3

 PCTINCREASE 0)

 SIZE 2K

 HASH IS trialno HASHKEYS 150;

CREATE TABLE trial (

 trialno NUMBER(5,0) PRIMARY KEY,

 ...)

 CLUSTER trial_cluster (trialno);

The following sections explain setting the parameters of the CREATE
CLUSTER command specific to hash clusters.

See Also: For additional information about creating tables in a cluster,
guidelines for setting other parameters of the CREATE CLUSTER
command, and the privileges required to create a hash cluster, see
“Creating Clusters” on page 14 – 6.

When creating a hash cluster, it is important to choose the cluster key
correctly and set the HASH IS, SIZE, and HASHKEYS parameters so
that performance and space use are optimal. The following guidelines
describe how to set these parameters.

Choosing the correct cluster key is dependent on the most common
types of queries issued against the clustered tables. For example,
consider the EMP table in a hash cluster. If queries often select rows by
employee number, the EMPNO column should be the cluster key; if
queries often select rows by department number, the DEPTNO column
should be the cluster key. For hash clusters that contain a single table,
the cluster key is typically the entire primary key of the contained table.

The key of a hash cluster, like that of an index cluster, can be a single
column or a composite key (multiple column key). A hash cluster with
a composite key must use Oracle’s internal hash function.

Setting HASH IS

Setting SIZE

15 – 6 Oracle7 Server Administrator’s Guide

Only specify the HASH IS parameter if the cluster key is a single
column of the NUMBER datatype, and contains uniformly distributed
integers. If the above conditions apply, you can distribute rows in the
cluster so that each unique cluster key value hashes, with no collisions,
to a unique hash value. If these conditions do not apply, omit this
option so that you use the internal hash function.

SIZE should be set to the average amount of space required to hold all
rows for any given hash key. Therefore, to properly determine SIZE,
you must be aware of the characteristics of your data:

• If the hash cluster is to contain only a single table and the hash
key values of the rows in that table are unique (one row per
value), SIZE can be set to the average row size in the cluster.

• If the hash cluster is to contain multiple tables, SIZE can be set to
the average amount of space required to hold all rows associated
with a representative hash value.

See Also: To estimate a preliminary value for SIZE, follow the
procedures given in “Estimating Space Required by Hash Clusters” on
page A – 14. If the preliminary value for SIZE is small (more than four
hash keys can be assigned per data block), you can use this value for
SIZE in the CREATE CLUSTER command.

However, if the value of SIZE is large (fewer than five hash keys can be
assigned per data block), you should also consider the expected
frequency of collisions and whether performance of data retrieval or
efficiency of space usage is more important to you:

• If the hash cluster does not use the internal hash function (if you
specified HASH IS) and you expect little or no collisions, you can
set SIZE as estimated; no collisions occur and space is used as
efficiently as possible.

• If you expect frequent collisions on inserts, the likelihood of
overflow blocks being allocated to store rows is high. To reduce
the possibility of overflow blocks and maximize performance
when collisions are frequent, you should increase SIZE according
to Table 15 – 1.

Setting HASHKEYS

Controlling Space in Hash
Clusters: Examples

Example 1

15 – 7Managing Hash Clusters

Available Space
per Block/Calc‘d
SIZE

Setting for SIZE

1 Calculated SIZE

2 Calculated SIZE + 15%

3 Calculated SIZE + 12%

4 Calculated SIZE + 8%

>4 Calculated SIZE

Table 15 – 1 SIZE Increase Chart

Overestimating the value of SIZE increases the amount of unused space
in the cluster. If space efficiency is more important than the
performance of data retrieval, disregard the above adjustments and use
the estimated value for SIZE.

For maximum distribution of rows in a hash cluster, HASHKEYS
should always be a prime number.

For example, suppose you cluster the EMP table by DEPTNO, and
there are 100 DEPTNOs, with values 10, 20, . . ., 1000. Assuming you
bypass the internal hash function and you create a cluster with
HASHKEYS of 100, then department 10 will hash to 10, department 20
to 20, . . ., department 110 to 10 (110 mod 100), department 120 to 20,
and so on. Notice that there are 10 entries for hash values of 10, 20, . . .,
but none for 1, 2, . . ., and so on. As a result, there is a lot of wasted
space and possibly a lot of overflow blocks because of collisions.
Alternatively, if HASHKEYS is set to 101, then each department
number hashes to a unique hash key value.

The following examples show how to correctly choose the cluster key
and set the HASH IS, SIZE, and HASHKEYS parameters. For all
examples, assume that the data block size is 2K and that on average,
1950 bytes of each block is available data space (block size minus
overhead).

You decide to load the EMP table into a hash cluster. Most queries
retrieve employee records by their employee number. You estimate that
the maximum number of rows in the EMP table at any given time is
10000 and that the average row size is 55 bytes.

In this case, EMPNO should be the cluster key. Since this column
contains integers that are unique, the internal hash function can be
bypassed. SIZE can be set to the average row size, 55 bytes; note that 34
hash keys are assigned per data block. HASHKEYS can be set to the
number of rows in the table, 10000, rounded up to the next highest
prime number, 10001:

Example 2

15 – 8 Oracle7 Server Administrator’s Guide

CREATE CLUSTER emp_cluster (empno NUMBER)

. . .

SIZE 55

HASH IS empno HASHKEYS 10001;

Conditions similar to the previous example exist. In this case, however,
rows are usually retrieved by department number. At most, there are
1000 departments with an average of 10 employees per department.
Note that department numbers increment by 10 (0, 10, 20, 30, . . .).

In this case, DEPTNO should be the cluster key. Since this column
contains integers that are uniformly distributed, the internal hash
function can be bypassed. A pre–estimated SIZE (the average amount
of space required to hold all rows per department) is 55 bytes * 10, or
550 bytes. Using this value for SIZE, only three hash keys can be
assigned per data block. If you expect some collisions and want
maximum performance of data retrieval, slightly alter your estimated
SIZE to prevent collisions from requiring overflow blocks. By adjusting
SIZE by 12%, to 620 bytes (see previous section about setting SIZE for
clarification), only three hash keys are assigned per data block, leaving
more space for rows from expected collisions.

HASHKEYS can be set to the number of unique department numbers,
1000, rounded up to the next highest prime number, 1009:

CREATE CLUSTER emp_cluster (deptno NUMBER)

. . .

SIZE 620

HASH IS deptno HASHKEYS 1009;

Altering Hash Clusters

You can alter a hash cluster with the SQL command ALTER CLUSTER:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for
altering an index cluster. However, note that the SIZE, HASHKEYS,
and HASH IS parameters cannot be specified in an ALTER CLUSTER
statement. You must re–create the cluster to change these parameters
and then copy the data from the original cluster.

See Also: For more information about altering an index cluster, see
“Altering Clusters” on page 14 – 8.

15 – 9Managing Hash Clusters

Dropping Hash Clusters

You can drop a hash cluster using the SQL command DROP CLUSTER:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the SQL command DROP
TABLE. The implications of dropping hash clusters and tables in hash
clusters are the same for index clusters.

See Also: For more information about dropping clusters, see
“Dropping Clusters” on page 14 – 9.

15 – 10 Oracle7 Server Administrator’s Guide

C H A P T E R

16
T

16 – 1General Management of Schema Objects

General Management
of Schema Objects

his chapter describes general schema object management issues
that fall outside the scope of chapters 10 through 15, and includes the
following topics:

• Creating Multiple Tables and Views in a Single Operation

• Renaming Schema Objects

• Analyzing Tables, Indexes, and Clusters

• Truncating Tables and Clusters

• Enabling and Disabling Triggers

• Managing Integrity Constraints

• Managing Object Dependencies

• Managing Object Name Resolution

• Changing Storage Parameters for the Data Dictionary

• Displaying Information About Schema Objects

16 – 2 Oracle7 Server Administrator’s Guide

Creating Multiple Tables and Views in A Single Operation

To create schema objects you must have the required privileges for any
included operation. For example, to create multiple tables using the
CREATE SCHEMA command, you must have the privileges required
to create tables.

You can create several tables and views and grant privileges in one
operation using the SQL command CREATE SCHEMA. The CREATE
SCHEMA command is useful if you want to guarantee the creation of
several tables and views and grants in one operation. If an individual
table, view or grant fails, the entire statement is rolled back. None of
the objects are created, nor are the privileges granted. The following
statement creates two tables and a view that joins data from the two
tables:

CREATE SCHEMA AUTHORIZATION scott

 CREATE TABLE dept (

 deptno NUMBER(3,0) PRIMARY KEY,

 dname VARCHAR2(15),

 loc VARCHAR2(25)

 CREATE TABLE emp (

 empno NUMBER(5,0) PRIMARY KEY,

 ename VARCHAR2(15) NOT NULL,

 job VARCHAR2(10),

 mgr NUMBER(5,0),

 hiredate DATE DEFAULT (sysdate),

 sal NUMBER(7,2),

 comm NUMBER(7,2),

 deptno NUMBER(3,0) NOT NULL

 CONSTRAINT dept_fkey REFERENCES dept)

 CREATE VIEW sales_staff AS

 SELECT empno, ename, sal, comm

 FROM emp

 WHERE deptno = 30

 WITH CHECK OPTION CONSTRAINT sales_staff_cnst

 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA command does not support Oracle extensions
to the ANSI CREATE TABLE and CREATE VIEW commands; this
includes the STORAGE clause.

16 – 3General Management of Schema Objects

Renaming Schema Objects

To rename an object, you must own it. You can rename schema objects
in either of the following ways:

• drop and re–create the object

• rename the object using the SQL command RENAME

If you drop and re–create an object, all privilege grants for that object
are lost. Privileges must be re–granted when the object is re–created.
Alternatively, a table, view, sequence, or a private synonym of a table,
view, or sequence can be renamed using the RENAME command.
When using the RENAME command, grants made for the object are
carried forward for the new name. For example, the following
statement renames the SALES_STAFF view:

RENAME sales_staff TO dept_30;

Note: You cannot rename a stored PL/SQL program unit,
public synonym, index, or cluster. To rename such an object,
you must drop and re–create it.

Before renaming a schema object, consider the following effects:

• All views and PL/SQL program units dependent on a renamed
object become invalid, and must be recompiled before next use.

• All synonyms for a renamed object return an error when used.

See Also: For more information about how Oracle manages object
dependencies, see page 16 – 18.

Analyzing Tables, Indexes, and Clusters

This section describes how to analyze tables, indexes, and clusters, and
includes the following topics:

• Using Statistics for Tables, Indexes, and Clusters

• Validating Tables, Indexes, and Clusters

• Listing Chained Rows of Tables and Clusters

You can analyze a table, index, or cluster to gather data about it, or to
verify the validity of its storage format. To analyze a table, cluster, or
index, you must own the table, cluster, or index or have the ANALYZE
ANY system privilege.

Using Statistics for
Tables, Indexes, and
Clusters

16 – 4 Oracle7 Server Administrator’s Guide

These schema objects can also be analyzed to collect or update statistics
about specific objects. When a DML statement is issued, the statistics
for the referenced objects are used to determine the most efficient
execution plan for the statement. This optimization is called
“cost–based optimization.“ The statistics are stored in the data
dictionary.

A table, index, or cluster can be analyzed to validate the structure of the
object. For example, in rare cases such as hardware or other system
failures, an index can become corrupted and not perform correctly.
When validating the index, you can confirm that every entry in the
index points to the correct row of the associated table. If a schema
object is corrupt, you can drop and re–create it.

A table or cluster can be analyzed to collect information about chained
rows of the table or cluster. These results are useful in determining
whether you have enough room for updates to rows. For example, this
information can show whether PCTFREE is set appropriately for the
table or cluster.

See Also: For more information about analyzing tables, indexes, and
clusters for performance statistics and the optimizer, see the Oracle7
Server Tuning guide.

Statistics about the physical storage characteristics of a table, index, or
cluster can be gathered and stored in the data dictionary using the SQL
command ANALYZE with the STATISTICS option. Oracle can use
these statistics when cost–based optimization is employed to choose
the most efficient execution plan for SQL statements accessing analyzed
objects. You can also use statistics generated by this command to write
efficient SQL statements that access analyzed objects.

You can compute or estimate statistics using the ANALYZE command,
with either the COMPUTE STATISTICS or ESTIMATE STATISTICS
option:

When computing statistics, an entire object is
scanned to gather data about the object. This data
is used by Oracle to compute exact statistics about
the object. Slight variances throughout the object
are accounted for in these computed statistics.
Because an entire object is scanned to gather
information for computed statistics, the larger the
size of an object, the more work that is required to
gather the necessary information.

When estimating statistics, Oracle gathers
representative information from portions of an

COMPUTE
STATISTICS

ESTIMATE
STATISTICS

Viewing Object Statistics

16 – 5General Management of Schema Objects

object. This subset of information provides
reasonable, estimated statistics about the object.
The accuracy of estimated statistics depends upon
how representative the sampling used by Oracle is.
Only parts of an object are scanned to gather
information for estimated statistics, so an object
can be analyzed quickly. You can optionally specify
the number or percentage of rows that Oracle
should use in making the estimate.

Note: When calculating statistics for tables or clusters, the
amount of temporary space required to perform the calculation
is related to the number of rows specified. For COMPUTE
STATISTICS, enough temporary space to hold and sort the
entire table plus a small overhead for each row is required. For
ESTIMATE STATISTICS, enough temporary space to hold and
sort the requested sample of rows plus a small overhead for
each row is required. For indexes, no temporary space is
required for analyzing.

Whether statistics for an object are computed or estimated, the
statistics are stored in the data dictionary. The statistics can be queried
using the following data dictionary views:

• USER_INDEXES, ALL_INDEXES, DBA_INDEXES

• USER_TABLES, ALL_TABLES, DBA_TABLES

• USER_TAB_COLUMNS, ALL_TAB_COLUMNS,
DBA_TAB_COLUMNS

Note: Rows in these views contain entries in the statistics
columns only for indexes, tables, and clusters for which you
have gathered statistics. The entries are updated for an object
each time you ANALYZE the object.

Table Statistics You can gather the following statistics on a table:

Note: The * symbol indicates that the numbers will always be
an exact value when computing statistics.

• number of rows

• number of blocks that have been used *

• number of blocks never used

• average available free space

• number of chained rows

• average row length

Computing Statistics

16 – 6 Oracle7 Server Administrator’s Guide

• number of distinct values per column

• the second smallest value per column *

• the second largest value per column *

Note: Statistics for all indexes associated with a table are
automatically gathered when the table is analyzed.

Index Statistics You can gather the following statistics on an index:

• index level *

• number of leaf blocks

• number of distinct keys

• average number of leaf blocks/key

• average number of data blocks/key

• clustering factor

• minimum key value *

• maximum key value*

Cluster Statistics The only statistic that can be gathered for a cluster is
the average cluster key chain length; this statistic can be estimated or
computed. Statistics for tables in a cluster and all indexes associated
with the cluster’s tables (including the cluster key index) are
automatically gathered when the cluster is analyzed for statistics.

Note: If the data dictionary currently contains statistics for the
specified object when an ANALYZE statement is issued, the
new statistics replace the old statistics in the data dictionary.

The following statement computes statistics for the EMP table:

ANALYZE TABLE emp COMPUTE STATISTICS;

The following query estimates statistics on the EMP table, using the
default statistical sample of 1064 rows:

ANALYZE TABLE emp ESTIMATE STATISTICS;

To specify the statistical sample that Oracle should use, include the
SAMPLE option with the ESTIMATE STATISTICS option. You can
specify an integer that indicates either a number of rows or index
values, or a percentage of the rows or index values in the table. The
following statements show examples of each option:

Removing Statistics for a
Schema Object

Shared SQL and
Analyzing Statistics

Validating Tables,
Indexes, and Clusters

16 – 7General Management of Schema Objects

ANALYZE TABLE emp

 ESTIMATE STATISTICS

 SAMPLE 2000 ROWS;

ANALYZE TABLE emp

 ESTIMATE STATISTICS

 SAMPLE 33 PERCENT;

In either case, if you specify a percentage greater than 50, or a number
of rows or index values that is greater than 50% of those in the object,
Oracle computes the exact statistics, rather than estimating.

You can remove statistics for a table, index, or cluster from the data
dictionary using the ANALYZE command with the DELETE
STATISTICS option. For example, you might want to delete statistics
for an object if you do not want cost–based optimization to be used for
statements regarding the object. The following statement deletes
statistics for the EMP table from the data dictionary:

ANALYZE TABLE emp DELETE STATISTICS;

Analyzing a table, cluster, or index can affect current shared SQL
statements, which are statements currently in the shared pool.
Whenever an object is analyzed to update or delete statistics, all shared
SQL statements that reference the analyzed object are flushed from
memory so that the next execution of the statement can take advantage
of the new statistics.

You can call the following procedures:

This procedure takes two arguments, the
name of a schema and an analysis method
(’COMPUTE’, ’ESTIMATE’, or ’DELETE’),
and gathers statistics on all of the objects in
the schema.

This procedure takes four arguments, the
type of an object (’CLUSTER’, ’TABLE’, or
’INDEX’), the schema of the object, the
name of the object, and an analysis method
(’COMPUTE’, ’ESTIMATE’, or ’DELETE’),
and gathers statistics on the object.

You should call these procedures periodically to update the statistics.

To verify the integrity of the structure of a table, index, cluster, or
snapshot, use the ANALYZE command with the VALIDATE
STRUCTURE option. If the structure is valid, no error is returned.
However, if the structure is corrupt, you receive an error message. If a
table, index, or cluster is corrupt, you should drop it and re–create it. If

DBMS_UTILITY.–
ANALYZE_SCHEMA()

DBMS_DDL.–
ANALYZE_OBJECT()

Listing Chained Rows
of Tables and Clusters

16 – 8 Oracle7 Server Administrator’s Guide

a snapshot is corrupt, perform a complete refresh and ensure that you
have remedied the problem; if not, drop and re–create the snapshot.

The following statement analyzes the EMP table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all related objects by including the
CASCADE option. The following statement validates the EMP table
and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

You can look at the chained and migrated rows of a table or cluster
using the ANALYZE command with the LIST CHAINED ROWS
option. The results of this command are stored in a specified table
created explicitly to accept the information returned by the LIST
CHAINED ROWS option.

To create an appropriate table to accept data returned by an
ANALYZE... LIST CHAINED ROWS statement, use the
UTLCHAIN.SQL script provided with Oracle. The UTLCHAIN.SQL
script creates a table named CHAINED_ROWS in the schema of the
user submitting the script.

After a CHAINED_ROWS table is created, you can specify it when
using the ANALYZE command. For example, the following statement
inserts rows containing information about the chained rows in the
EMP_DEPT cluster into the CHAINED_ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO chained_rows;

See Also: The name and location of the UTLCHAIN.SQL script are
operating system–dependent; see your operating system–specific
Oracle documentation.

For more information about reducing the number of chained and
migrated rows in a table or cluster, see Oracle7 Server Tuning.

Using DELETE

Using DROP and
CREATE

Using TRUNCATE

16 – 9General Management of Schema Objects

Truncating Tables and Clusters

You can delete all rows of a table or all rows in a group of clustered
tables so that the table (or cluster) still exists, but is completely empty.
For example, you may have a table that contains monthly data, and at
the end of each month, you need to empty it (delete all rows) after
archiving its data.

To delete all rows from a table, you have three options:

1. Using the DELETE command

You can delete the rows of a table using the DELETE command.
For example, the following statement deletes all rows from the
EMP table:

DELETE FROM emp;

2. Using the DROP and CREATE commands

You can drop a table and then re–create the table. For example,
the following statements drop and then re–create the EMP table:

DROP TABLE emp;

CREATE TABLE emp (. . .);

3. Using TRUNCATE

You can delete all rows of the table using the SQL command
TRUNCATE. For example, the following statement truncates the
EMP table:

TRUNCATE TABLE emp;

If there are many rows present in a table or cluster when using the
DELETE command, significant system resources are consumed as the
rows are deleted. For example, CPU time, redo log space, and rollback
segment space from the table and any associated indexes require
resources. Also, as each row is deleted, triggers can be fired. The space
previously allocated to the resulting empty table or cluster remains
associated with that object.

When dropping and re–creating a table or cluster, all associated
indexes, integrity constraints, and triggers are also dropped, and all
objects that depend on the dropped table or clustered table are
invalidated. Also, all grants for the dropped table or clustered table are
dropped.

Using the TRUNCATE command provides a fast, efficient method for
deleting all rows from a table or cluster. A TRUNCATE statement does
not generate any rollback information and it commits immediately; it is

16 – 10 Oracle7 Server Administrator’s Guide

a DDL statement and cannot be rolled back. A TRUNCATE statement
does not affect any structures associated with the table being truncated
(constraints and triggers) or authorizations. A TRUNCATE statement
also specifies whether space currently allocated for the table is returned
to the containing tablespace after truncation.

You can truncate any table or cluster in the user’s associated schema.
Also, any user that has the DELETE ANY TABLE system privilege can
truncate a table or cluster in any schema.

Before truncating a table or clustered table containing a parent key, all
referencing foreign keys in different tables must be disabled. A
self–referential constraint does not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers
associated with the table are not fired. Also, a TRUNCATE statement
does not generate any audit information corresponding to DELETE
statements if auditing is enabled. Instead, a single audit record is
generated for the TRUNCATE statement being issued.

A hash cluster cannot be truncated. Also, tables within a hash or index
cluster cannot be individually truncated; truncation of an index cluster
deletes all rows from all tables in the cluster. If all the rows must be
deleted from an individual clustered table, use the DELETE command
or drop and re–create the table.

The REUSE STORAGE or DROP STORAGE options of the TRUNCATE
command control whether space currently allocated for a table or
cluster is returned to the containing tablespace after truncation. The
default option, DROP STORAGE, reduces the number of extents
allocated to the resulting table to the original setting for MINEXTENTS.
Freed extents are then returned to the system and can be used by other
objects.

Alternatively, the REUSE STORAGE option specifies that all space
currently allocated for the table or cluster remains allocated to it. For
example, the following statement truncates the EMP_DEPT cluster,
leaving all extents previously allocated for the cluster available for
subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

The REUSE or DROP STORAGE option also applies to any associated
indexes. When a table or cluster is truncated, all associated indexes are
also truncated. Also note that the storage parameters for a truncated
table, cluster, or associated indexes are not changed as a result of the
truncation.

See Also: See Chapter 21 for information about auditing.

Enabling Triggers

Disabling Triggers

16 – 11General Management of Schema Objects

Enabling and Disabling Triggers

This section describes database trigger management, and includes the
following topics:

• Enabling Triggers

• Disabling Triggers

Oracle enables you to define procedures, called database triggers, that
are implicitly executed when an INSERT, UPDATE, or DELETE
statement is issued against an associated table.

A trigger can be in either of two distinct modes:

An enabled trigger executes its trigger body if a
triggering statement is issued and the trigger
restriction, if any, evaluates to TRUE.

A disabled trigger does not execute its trigger
body, even if a triggering statement is issued and
the trigger restriction (if any) evaluates to TRUE.

To enable or disable triggers using the ALTER TABLE command, you
must own the table, have the ALTER object privilege for the table, or
have the ALTER ANY TABLE system privilege. To enable or disable an
individual trigger using the ALTER TRIGGER command, you must
own the trigger or have the ALTER ANY TRIGGER system privilege.

You enable a disabled trigger using the ALTER TRIGGER command
with the ENABLE option. To enable the disabled trigger named
REORDER on the INVENTORY table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE
command with the ENABLE clause and ALL TRIGGERS option. To
enable all triggers defined for the INVENTORY table, enter the
following statement:

ALTER TABLE inventory

 ENABLE ALL TRIGGERS;

You may want to temporarily disable a trigger if one of the following
conditions is true:

• An object that the trigger references is not available.

• You have to perform a large data load and want it to proceed
quickly without firing triggers.

• You are loading data into the table to which the trigger applies.

enabled

disabled

16 – 12 Oracle7 Server Administrator’s Guide

By default, triggers are enabled when first created. You disable a
trigger using the ALTER TRIGGER command with the DISABLE
option. To disable the trigger REORDER on the INVENTORY table,
enter the following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time
using the ALTER TABLE command with the DISABLE clause and ALL
TRIGGERS option. For example, to disable all triggers defined for the
INVENTORY table, enter the following statement:

ALTER TABLE inventory

 DISABLE ALL TRIGGERS;

Managing Integrity Constraints

This section explains the mechanisms and procedures for managing
integrity constraints, and includes the following topics:

• Managing Constraints That Have Associated Indexes

• Enabling and Disabling Integrity Constraints Upon Definition

• Enabling and Disabling Existing Integrity Constraints

• Dropping Integrity Constraints

• Reporting Constraint Exceptions

An integrity constraint defined on a table can be in one of two modes:

When a constraint is enabled, the rule defined by
the constraint is enforced on the data values in the
columns that define the constraint. The definition
of the constraint is stored in the data dictionary.

When a constraint is disabled, the rule defined by
the constraint is not enforced on the data values in
the columns included in the constraint; however,
the definition of the constraint is retained in the
data dictionary.

You can think of an integrity constraint as a statement about the data in
a database. This statement is always not false when the constraint is
enabled. However, the statement may or may not be true when the
constraint is disabled because data in violation of the integrity
constraint can be in the database.

enabled

disabled

Managing Constraints
That Have Associated
Indexes

16 – 13General Management of Schema Objects

To enforce the rules defined by integrity constraints, the constraints
should always be enabled. In certain situations it is desirable to
temporarily disable the integrity constraints of a table for the following
performance reasons:

• when loading large amounts of data into a table using
SQL*Loader

• when performing batch operations that make massive changes to
a table (for example, changing every employee’s number by
adding 1000 to the existing number)

• when importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can
improve the performance of the operation.

While a constraint is enabled, no row violating the constraint can be
inserted into the table. While the constraint is disabled, though, such a
row can be inserted; this row is known as an exception to the constraint.
While exceptions to a constraint can exist in a table, the constraint cannot
be enabled. The rows that violate the constraint must be either updated
or deleted in order for the constraint to be enabled.

See Also: You can identify exceptions to a specific integrity constraint
while attempting to enable the constraint. See “Reporting Constraint
Exceptions” on page 16 – 16.

An index associated with a UNIQUE key or PRIMARY KEY constraint
is automatically created by Oracle when the constraint is enabled, and
dropped when the constraint is disabled or dropped. No action is
required by the user in either case to manage the index. However, these
associated indexes affect how you manage UNIQUE key and
PRIMARY KEY constraints.

When disabling or dropping UNIQUE key and PRIMARY KEY
integrity constraints, consider the following issues:

• The constraint’s associated index will be dropped when the
constraint is dropped or disabled.

• While enabled foreign keys reference a primary or unique key,
you cannot disable or drop the primary or unique key constraint.

If the constraint is subsequently enabled or redefined, Oracle creates
another index for the constraint.

Because unique and primary keys have associated indexes, you should
factor in the cost of dropping and creating indexes when considering
whether to disable or drop a UNIQUE or PRIMARY KEY constraint. If

Enabling and
Disabling Integrity
Constraints Upon
Definition

Enabling Constraints
Upon Definition

Disabling Constraints
Upon Definition

16 – 14 Oracle7 Server Administrator’s Guide

the associated index for a UNIQUE key or PRIMARY KEY constraint is
extremely large, you may save time by leaving the constraint enabled
rather than dropping and re–creating the large index.

When an integrity constraint is defined in a CREATE TABLE or ALTER
TABLE statement, it can be enabled by including the ENABLE clause in
the constraint’s definition, or disabled by including the DISABLE
clause in the constraint’s definition. If neither the ENABLE nor
DISABLE clause is included in a constraint’s definition, Oracle
automatically enables the constraint.

The following CREATE TABLE and ALTER TABLE statements both
define and enable integrity constraints:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY, . . . ;

ALTER TABLE emp

 ADD PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an
integrity constraint may fail because rows of the table may violate the
integrity constraint. In this case, the statement is rolled back and the
constraint definition is not stored and not enabled.

To enable a UNIQUE key or PRIMARY KEY, which creates an
associated index, the owner of the table also needs a quota for the
tablespace intended to contain the index, or the UNLIMITED
TABLESPACE system privilege.

The following CREATE TABLE and ALTER TABLE statements both
define and disable integrity constraints:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp

 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity
constraints never fails because of rows of the table that violate the
integrity constraint. The definition of the constraint is allowed because
its rule is not enforced.

See Also: For more information about constraint exceptions, see
“Reporting Constraint Exceptions” on page 16 – 16.

Enabling and
Disabling Existing
Integrity Constraints

Enabling Disabled
Constraints

Disabling Enabled
Constraints

Dropping Integrity
Constraints

16 – 15General Management of Schema Objects

You can use the ALTER TABLE command with the ENABLE clause to
enable a disabled constraint., or, with the DISABLE clause, to disable
an enabled constraint.

The following statements enable disabled integrity constraints:

ALTER TABLE dept

 ENABLE CONSTRAINT dname_ukey;

ALTER TABLE dept

 ENABLE PRIMARY KEY,

 ENABLE UNIQUE (dname, loc);

An ALTER TABLE statement that attempts to enable an integrity
constraint may fail because rows of the table may violate the integrity
constraint. In this case, the statement is rolled back and the constraint is
not enabled.

To enable a UNIQUE key or PRIMARY KEY (which creates an
associated index), the owner of the table also needs a quota for the
tablespace intended to contain the index, or the UNLIMITED
TABLESPACE system privilege.

The following statements disable integrity constraints:

ALTER TABLE dept

 DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept

 DISABLE PRIMARY KEY,

 DISABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all
dependent FOREIGN KEY constraints in a single step, use the
CASCADE option of the DISABLE or DROP clauses. For example, the
following statement disables a PRIMARY KEY constraint and any
FOREIGN KEY constraints that depend on it:

ALTER TABLE dept

 DISABLE PRIMARY KEY CASCADE;

See Also: For more information about constraint exceptions, see
“Reporting Constraint Exceptions” on page 16 – 16.

You can drop an integrity constraint if the rule that it enforces is no
longer true, or if the constraint is no longer needed. You can drop the
constraint using the ALTER TABLE command with the DROP clause.
The following two statements drop integrity constraints:

Reporting Constraint
Exceptions

16 – 16 Oracle7 Server Administrator’s Guide

ALTER TABLE dept

 DROP UNIQUE (dname, loc);

ALTER TABLE emp

 DROP PRIMARY KEY,

 DROP CONSTRAINT dept_fkey;

Dropping UNIQUE key and PRIMARY KEY constraints drops the
associated indexes. Also, if FOREIGN KEYs reference a UNIQUE or
PRIMARY KEY, you must include the CASCADE CONSTRAINTS
clause in the DROP statement, or you cannot drop the constraint.

If no exceptions are present when a CREATE TABLE. . . ENABLE. . . or
ALTER TABLE. . . ENABLE. . . statement is issued, the integrity
constraint is enabled and all subsequent DML statements are subject to
the enabled integrity constraints.

If exceptions exist when a constraint is enabled, an error is returned
and the integrity constraint remains disabled. When a statement is not
successfully executed because integrity constraint exceptions exist, the
statement is rolled back. If exceptions exist, you cannot enable the
constraint until all exceptions to the constraint are either updated or
deleted.

To determine which rows violate the integrity constraint, issue the
CREATE TABLE or ALTER TABLE statement with the EXCEPTIONS
option in the ENABLE clause. The EXCEPTIONS option places the
ROWID, table owner, table name, and constraint name of all exception
rows into a specified table. For example, the following statement
attempts to enable the PRIMARY KEY of the DEPT table, and if
exceptions exist, information is inserted into a table named
EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;

Note: You must create an appropriate exceptions report table
to accept information from the EXCEPTIONS option of the
ENABLE clause before enabling the constraint. You can create
an exception table by submitting the script UTLEXCPT.SQL,
which creates a table named EXCEPTIONS. You can create
additional exceptions tables with different names by modifying
and re–submitting the script.

If duplicate primary key values exist in the DEPT table and the name of
the PRIMARY KEY constraint on DEPT is SYS_C00301, the following
rows might be placed in the table EXCEPTIONS by the previous
statement:

16 – 17General Management of Schema Objects

SELECT * FROM exceptions;

ROWID OWNER TABLE_NAME CONSTRAINT

–––––––––––––––––– ––––––––– –––––––––––––– –––––––––––

000003A5.000C.0001 SCOTT DEPT SYS_C00301

000003A5.000D.0001 SCOTT DEPT SYS_C00301

A more informative query would be to join the rows in an exception
report table and the master table to list the actual rows that violate a
specific constraint, as shown in the following example:

SELECT deptno, dname, loc FROM dept, exceptions

 WHERE exceptions.constraint = ’SYS_C00301’

 AND dept.rowid = exceptions.row_id;

DEPTNO DNAME LOC

–––––––––– –––––––––––––– –––––––––––––

 10 ACCOUNTING NEW YORK

 10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted
from the table containing the constraint. When updating exceptions,
you must change the value violating the constraint to a value consistent
with the constraint or a null. After the row in the master table is
updated or deleted, the corresponding rows for the exception in the
exception report table should be deleted to avoid confusion with later
exception reports. The statements that update the master table and the
exception report table should be in the same transaction to ensure
transaction consistency.

To correct the exceptions in the previous examples, you might issue the
following transaction:

UPDATE dept SET deptno = 20 WHERE dname = ’RESEARCH’;

DELETE FROM exceptions WHERE constraint = ’SYS_C00301’;

COMMIT;

When managing exceptions, the goal is to eliminate all exceptions in
your exception report table.

Note: While you are correcting current exceptions for a table
with the constraint disabled, other users may issue statements
creating new exceptions.

See Also: The exact name and location of the UTLEXCPT.SQL script is
operating system–specific. For more information, see your operating
system–specific Oracle documentation.

16 – 18 Oracle7 Server Administrator’s Guide

Managing Object Dependencies

This section describes the various object dependencies, and includes
the following topics:

• Manually Recompiling Views

• Manually Recompiling Procedures and Functions

• Manually Recompiling Packages

First, review Table 16 – 1, which shows how objects are affected by
changes in other objects on which they depend.

Operation Resulting Status
of Object

Resulting Status
of Dependent
Objects

CREATE table, sequence, synonym VALID if there are no errors No change1

ALTER table (ADD column MODIFY
column)
RENAME table, sequence, syn-
onym, view

VALID if there no errors INVALID

DROP table, sequence, synonym,
view, procedure, function, package

None; the object is dropped INVALID

CREATE view, procedure2 VALID if there are no errors;
INVALID if there are syntax
or authorization errors

No change1

CREATE OR REPLACE
view or procedure2

VALID if there are no error;
INVALID if there are syntax
or authorization errors

INVALID

REVOKE object privilege3

ON object
TO/FROM user

No change All objects of user
that depend on ob-
ject are INVALID3

REVOKE object privilege3

ON object
TO/FROM PUBLIC

No change All objects in the
database that de-
pend on object are
INVALID3

REVOKE system privilege4

TO/FROM user
No change All objects of user

are INVALID4

REVOKE system privilege4

TO/FROM PUBLIC
No change All objects in the

database are IN-
VALID4

Table 16 – 1 Operations that Affect Object Status

1 May cause dependent objects to be made INVALID, if object did not exist earlier.
2 Stand–alone procedures and functions, packages, and triggers.
3 Only DML object privileges, including SELECT, INSERT, UPDATE, DELETE, and

EXECUTE; revalidation does not require recompiling.
4 Only DML system privileges, including SELECT, INSERT, UPDATE, DELETE ANY

TABLE, and EXECUTE ANY PROCEDURE; revalidation does not require recompiling.

Manually Recompiling
Views

Manually Recompiling
Procedures and
Functions

Manually Recompiling
Packages

16 – 19General Management of Schema Objects

Oracle automatically recompiles an invalid view or PL/SQL program
unit the next time it is used. In addition, a user can force Oracle to
recompile a view or program unit using the appropriate SQL command
with the COMPILE parameter. Forced compilations are most often
used to test for errors when a dependent view or program unit is
invalid, but is not currently being used. In these cases, automatic
recompilation would not otherwise occur until the view or program
unit was executed. To identify invalid dependent objects, query the
views USER_/ALL_/DBA_OBJECTS.

To recompile a view manually, the view must be contained in your
schema or you must have the ALTER ANY TABLE system privilege.
Use the ALTER VIEW command with the COMPILE parameter to
recompile a view. The following statement recompiles the view
EMP_DEPT contained in your schema:

ALTER VIEW emp_dept COMPILE;

To recompile a procedure manually, the procedure must be contained in
your schema, or you must have the ALTER ANY PROCEDURE system
privilege. Use the ALTER PROCEDURE/FUNCTION command with
the COMPILE parameter to recompile a stand–alone procedure or
function. The following statement recompiles the stored procedure
UPDATE_SALARY contained in your schema:

ALTER PROCEDURE update_salary COMPILE;

To recompile a package manually, the package must be contained in
your schema, or you must have the ALTER ANY PROCEDURE system
privilege. Use the ALTER PACKAGE command with the COMPILE
parameter to recompile either a package body or both a package
specification and body. The following statements recompile just the
body, and the body and specification of the package ACCT_MGMT,
respectively:

ALTER PACKAGE acct_mgmt COMPILE BODY;

ALTER PACKAGE acct_mgmt COMPILE PACKAGE;

16 – 20 Oracle7 Server Administrator’s Guide

Managing Object Name Resolution

Object names referenced in SQL statements can consist of several
pieces, separated by periods. Oracle resolves an object name using the
following algorithm:

1. Oracle attempts to qualify the first piece of the name referenced in
the SQL statement. For example, in SCOTT.EMP, SCOTT is the first
piece. If there is only one piece, the one piece is considered the first
piece.

1.1 In the current schema, Oracle searches for an object whose
name matches the first piece of the object name. If it does not
find such an object, it continues with Step 1.2.

1.2 If no schema object is found in the current schema, Oracle
searches for a public synonym that matches the first piece of
the name. If it does not find one, it continues with Step 1.3.

1.3 If no public synonym is found, Oracle searches for a schema
whose name matches the first piece of the object name. If it
finds one, it returns to Step 1.1, now using the second piece of
the name as the object to find in the qualified schema. If the
second piece does not correspond to a object in the previously
qualified schema or there is not a second piece, Oracle returns
an error.

If no schema is found in Step 1.3, the object cannot be qualified
and Oracle returns an error.

2. A schema object has been qualified. Any remaining pieces of the
name must match a valid part of the found object. For example, if
SCOTT.EMP.DEPTNO is the name, SCOTT is qualified as a
schema, EMP is qualified as a table, and DEPTNO must
correspond to a column (because EMP is a table). If EMP is
qualified as a package, DEPTNO must correspond to a public
constant, variable, procedure, or function of that package.

When global object names are used in a distributed database, either
explicitly or indirectly within a synonym, the local Oracle resolves the
reference locally. For example, it resolves a synonym to a remote table’s
global object name. The partially resolved statement is shipped to the
remote database, and the remote Oracle completes the resolution of the
object as described here.

Structures in the Data
Dictionary

16 – 21General Management of Schema Objects

Changing Storage Parameters for the Data Dictionary

This section describes aspects of changing data dictionary storage
parameters, and includes the following topics:

• Structures in the Data Dictionary

• Errors that Require Changing Data Dictionary Storage

If your database is very large or contains an unusually large number of
objects, columns in tables, constraint definitions, users, or other
definitions, the tables that make up the data dictionary might at some
point be unable to acquire additional extents. For example, a data
dictionary table may need an additional extent, but there is not enough
contiguous space in the SYSTEM tablespace. If this happens, you
cannot create new objects, even though the tablespace intended to hold
the objects seems to have sufficient space. To remedy this situation, you
can change the storage parameters of the underlying data dictionary
tables to allow them to be allocated more extents, in the same way that
you can change the storage settings for user–created segments. For
example, you can adjust the values of NEXT or PCTINCREASE for the
data dictionary table.

Warning: Exercise caution when changing the storage settings
for the data dictionary objects. If you choose inappropriate
settings, you could damage the structure of the data dictionary
and be forced to re–create your entire database. For example, if
you set PCTINCREASE for the data dictionary table USER$ to
0 and NEXT to 2K, that table will quickly reach the maximum
number of extents for a segment, and you will not be able to
create any more users or roles without exporting, re–creating,
and importing the entire database.

The following tables and clusters contain the definitions of all the
user–created objects in the database:

segments defined in the database (including
temporary segments)

user–defined objects in the database (including
clustered tables); indexed by I_OBJ1 and I_OBJ2

rollback segments defined in the database; indexed
by I_UNDO1

available free extents not allocated to any segment

extents allocated to segments

tablespaces defined in the database

SEG$

OBJ$

UNDO$

FET$

UET$

TS$

16 – 22 Oracle7 Server Administrator’s Guide

files that make up the database; indexed by
I_FILE1

datafiles with the AUTOEXTEND option set on

tables defined in the database (includes clustered
tables); indexed by I_TAB1

clusters defined in the database

indexes defined in the database; indexed by
I_IND1

columns that have indexes defined on them
(includes individual entries for each column in a
composite index); indexed by I_ICOL1

columns defined in tables in the database; indexed
by I_COL1 and I_COL2

constraints defined in the database (includes
information on constraint owner); indexed by
I_CON1 and I_CON2

definitions of constraints in CON$; indexed by
I_CDEF1, I_CDEF2, and I_CDEF3

columns that have constraints defined on them
(includes individual entries for each column in a
composite key); indexed by I_CCOL1

users and roles defined in the database; indexed by
I_USER1

tablespace quotas for users (contains one entry for
each tablespace quota defined for each user)

cluster containing TAB$, CLU$, ICOL$, IND$, and
COL$: indexed by I_OBJ#

cluster containing FET$, TS$, and FILE$; indexed
by I_TS#

cluster containing SEG$ and UET$; indexed by
I_FILE#_BLOCK#

cluster containing USER and TSQ$$; indexed by
I_USER#

cluster containing CDEF$ and CCOL$; indexed by
I_COBJ#

Of all of the data dictionary segments, the following are the most likely
to require changes:

FILE$

FILEXT$

TAB$

CLU$

IND$

ICOL$

COL$

CON$

CDEF$

CCOL$

USER$

TSQ$

C_OBJ#

C_TS#

C_FILE#_BLOCK#

C_USER#

C_COBJ#

Errors that Require
Changing Data
Dictionary Storage

16 – 23General Management of Schema Objects

if the free space in your database is very
fragmented

if you have many indexes or many columns in your
tables

if you use integrity constraints heavily

if you have a lot of users defined in your database

For the clustered tables, you must change the storage settings for the
cluster, not for the table.

Oracle returns an error if a user tries to create a new object that
requires Oracle to allocate an additional extent to the data dictionary
when it is unable to allocate an extent. The error message ORA–1547,
“failed to allocate extent of size num in tablespace ’name’” indicates this
kind of problem.

If you receive this error message and the segment you were trying to
change (such as a table or rollback segment) has not reached the limits
specified for it in its definition, check the storage settings for the object
that contains its definition.

For example, if you received an ORA–1547 while trying to define a new
PRIMARY KEY constraint on a table and there is sufficient space for the
index that Oracle must create for the key, check if CON$ or C_COBJ#
cannot be allocated another extent; to do this, query DBA_SEGMENTS
and consider changing the storage parameters for CON$ or C_COBJ#.

See Also: For more information, see “Displaying Segments that Cannot
Allocate Additional Extents” on page 16 – 27.

Displaying Information About Schema Objects

The data dictionary provides many views about the schema objects
described in chapters 10–16. The following list summarizes the views
associated with schema objects:

• ALL_OBJECTS, USER_OBJECTS, DBA_OBJECTS

• ALL_CATALOG, USER_CATALOG, DBA_CATALOG

• ALL_TABLES, USER_TABLES, DBA_TABLES

• ALL_TAB_COLUMNS, USER_TAB_COLUMNS,
DBA_TAB_COLUMNS

• ALL_TAB_COMMENTS, USER_TAB_COMMENTS

C_TS#

C_OBJ#

CON$, C_COBJ#

C_USER#

Oracle Packages

16 – 24 Oracle7 Server Administrator’s Guide

• ALL_COL_COMMENTS, USER_COL_COMMENTS,
DBA_COL_COMMENTS

• ALL_VIEWS, USER_VIEWS, DBA_VIEWS

• ALL_INDEXES, USER_INDEXES, DBA_INDEXES

• ALL_IND_COLUMNS, USER_IND_COLUMNS,
DBA_IND_COLUMNS

• USER_CLUSTERS, DBA_CLUSTERS

• USER_CLU_COLUMNS, DBA_CLU_COLUMNS

• ALL_SEQUENCES, USER_SEQUENCES, DBA_SEQUENCES

• ALL_SYNONYMS, USER_SYNONYMS, DBA_SYNONYMS

• ALL_DEPENDENCIES, USER_DEPENDENCIES,
DBA_DEPENDENCIES

The following data dictionary views contain information about the
segments of a database:

• USER_SEGMENTS

• DBA_SEGMENTS

The following data dictionary views contain information about a
database’s extents:

• USER_EXTENTS

• DBA_EXTENTS

• USER_FREE_SPACE

• DBA_FREE_SPACE

Table 16 – 2 describes packages that are supplied with Oracle to either
allow PL/SQL access to some SQL features, or to extend the
functionality of the database.

Procedure Description

dbms_space.unused_space Returns information about unused space in an
object (table, index, or cluster).

dbms_space.free_blocks Returns information about free blocks in an
object (table, index, or cluster).

Table 16 – 2 Supplied Packages: Additional Functionality

Example 1
Displaying Schema

Objects By Type

Example 2
Displaying Column

Information

16 – 25General Management of Schema Objects

Procedure Description

dbms_session.free_unused_
user_memory

Procedure for reclaiming unused memory after
performing operations requiring large amounts
of memory (where large>100K). This procedure
should only be used in cases where memory is
at a premium.

dbms_system.set_sql_trace_in
_session

Enables sql_trace in the session identified by
serial number and SID (these values are located
in v$session).

Table 16 – 2 Supplied Packages: Additional Functionality

The following examples demonstrate ways to display miscellaneous
schema objects.

The following query lists all of the objects owned by the user issuing
the query:

SELECT object_name, object_type FROM user_objects;

OBJECT_NAME OBJECT_TYPE

––––––––––––––––––––––––– –––––––––––––––––––

EMP_DEPT CLUSTER

EMP TABLE

DEPT TABLE

EMP_DEPT_INDEX INDEX

PUBLIC_EMP SYNONYM

EMP_MGR VIEW

Column information, such as name, datatype, length, precision, scale,
and default data values can be listed using one of the views ending
with the _COLUMNS suffix. For example, the following query lists all
of the default column values for the EMP and DEPT tables:

SELECT table_name, column_name, data_default

 FROM user_tab_columns

 WHERE table_name = ’DEPT’ OR table_name = ’EMP’;

TABLE_NAME COLUMN_NAME DATA_DEFAULT

–––––––––– ––––––––––––––– ––––––––––––––––––––

DEPT DEPTNO

DEPT DNAME

DEPT LOC ’NEW YORK’

EMP EMPNO

EMP ENAME

EMP JOB

EMP MGR

EMP HIREDATE SYSDATE

EMP SAL

EMP COMM

EMP DEPTNO

Example 3
Displaying

Dependencies of
Views and Synonyms

Example 4
Displaying General

Segment Information

Example 5
Displaying General
Extent Information

16 – 26 Oracle7 Server Administrator’s Guide

Notice that not all columns have user–specified defaults. These
columns automatically have NULL as the default.

When you create a view or a synonym, the view or synonym is based
on its underlying base object. The ALL/USER/DBA_DEPENDENCIES
data dictionary views can be used to reveal the dependencies for a
view and the ALL/USER/DBA_SYNONYMS data dictionary views
can be used to list the base object of a synonym. For example, the
following query lists the base objects for the synonyms created by the
user JWARD:

SELECT table_owner, table_name, synonym_name

 FROM sys.dba_synonyms

 WHERE owner = ’JWARD’;

TABLE_OWNER TABLE_NAME SYNONYM_NAME

––––––––––––––––––––––– –––––––––––– –––––––––––––––––

SCOTT DEPT DEPT

SCOTT EMP EMP

The following query returns the name of each rollback segment, the
tablespace that contains each, and the size of each rollback segment:

SELECT segment_name, tablespace_name, bytes, blocks, extents

 FROM sys.dba_segments

 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS

–––––––––––– ––––––––––––––– –––––––––– –––––––––– ––––––––––

RS1 SYSTEM 20480 10 2

RS2 TS1 40960 20 3

SYSTEM SYSTEM 184320 90 3

General information about the currently allocated extents in a database
is stored in the DBA_EXTENTS data dictionary view. For example, the
following query identifies the extents associated with rollback
segments and the size of each of those extents:

SELECT segment_name, bytes, blocks

 FROM sys.dba_extents

 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME BYTES BLOCKS

––––––––––––––– –––––––––– ––––––––––

RS1 10240 5

RS1 10240 5

SYSTEM 51200 25

SYSTEM 51200 25

SYSTEM 51200 25

Example 6
Displaying the Free
Space (Extents) of a

Database

Example 7
Displaying Segments
that Cannot Allocate

Additional Extents

16 – 27General Management of Schema Objects

Notice that the RS1 rollback segment is comprised of two extents, both
10K, while the SYSTEM rollback segment is comprised of three equally
sized extents of 50K.

Information about the free extents (extents not allocated to any
segment) in a database is stored in the DBA_FREE_SPACE data
dictionary view. For example, the following query reveals the amount
of free space available via free extents in each tablespace:

SELECT tablespace_name, file_id, bytes, blocks

 FROM sys.dba_free_space;

TABLESPACE_NAME FILE_ID BYTES BLOCKS

–––––––––––––––––––– –––––––––– –––––––––– ––––––––––

SYSTEM 1 8120320 3965

SYSTEM 1 10240 5

TS1 2 10432512 5094

You can also use DBA_FREE_SPACE, in combination with the views
DBA_SEGMENTS, DBA_TABLES, DBA_CLUSTERS, DBA_INDEXES,
and DBA_ROLLBACK_SEGS, to determine if any other segment is
unable to allocate additional extents for data dictionary objects only.

 A segment may not be allocated to an extent for any of the following
reasons:

• The tablespace containing the segment does not have enough
room for the next extent.

• The segment has the maximum number of extents, as recorded in
the data dictionary (in SEG.MAX_EXTENTS).

• The segment has the maximum number of extents allowed by
the data block size, which is operating system specific.

Note: While the STORAGE clause value for MAXEXTENTS
can be UNLIMITED, data dictionary tables cannot have
MAXEXTENTS greater than the allowed block maximum.
Thus, data dictionary tables cannot be converted to unlimited
format.

The following query returns the names, owners, and tablespaces of all
segments that fit any of the above criteria:

SELECT seg.owner, seg.segment_name,

 seg.segment_type, seg.tablespace_name,

 DECODE(seg.segment_type,

 ’TABLE’, t.next_extent,

 ’CLUSTER’, c.next_extent,

 ’INDEX’, i.next_extent,

 ’ROLLBACK’, r.next_extent)

16 – 28 Oracle7 Server Administrator’s Guide

FROM sys.dba_segments seg,

 sys.dba_tables t,

 sys.dba_clusters c,

 sys.dba_indexes i,

 sys.dba_rollback_segs r

WHERE ((seg.segment_type = ’TABLE’

 AND seg.segment_name = t.table_name

 AND seg.owner = t.owner

 AND NOT EXISTS (SELECT tablespace_name

 FROM dba_free_space free

 WHERE free.tablespace_name = t.tablespace_name

 AND free.bytes >= t.next_extent))

OR (seg.segment_type = ’CLUSTER’

 AND seg.segment_name = c.cluster_name

 AND seg.owner = c.owner

 AND NOT EXISTS (SELECT tablespace_name

 FROM dba_free_space free

 WHERE free.tablespace_name = c.tablespace_name

 AND free.bytes >= c.next_extent))

OR (seg.segment_type = ’INDEX’

 AND seg.segment_name = i.index_name

 AND seg.owner = i.owner

 AND NOT EXISTS (SELECT tablespace_name

 FROM dba_free_space free

 WHERE free.tablespace_name = i.tablespace_name

 AND free.bytes >= i.next_extent))

OR (seg.segment_type = ’ROLLBACK’

 AND seg.segment_name = r.segment_name

 AND seg.owner = r.owner

 AND NOT EXISTS (SELECT tablespace_name

 FROM dba_free_space free

 WHERE free.tablespace_name = r.tablespace_name

 AND free.bytes >= r.next_extent)))

OR seg.extents = seg.max_extents OR seg.extents = data_block_size ;

Note: When you use this query, replace data_block_size with the
data block size for your system.

Once you have identified a segment that cannot allocate additional
extents, you can solve the problem in either of two ways, depending on
its cause:

• If the tablespace is full, add datafiles to the tablespace.

• If the segment has too many extents, and you cannot increase
MAXEXTENTS for the segment, perform the following steps:
first, export the data in the segment; second, drop and recreate
the segment, giving it a larger INITIAL setting so that it does not
need to allocate so many extents; and third, import the data back
into the segment.

C H A P T E R

17
T

17 – 1Managing Rollback Segments

Managing Rollback
Segments

his chapter describes how to manage rollback segments, and includes
the following topics:

• Guidelines for Managing Rollback Segments

• Creating Rollback Segments

• Specifying Storage Parameters for Rollback Segments

• Taking Rollback Segments Online and Offline

• Explicitly Assigning a Transaction to a Rollback Segment

• Dropping Rollback Segments

• Monitoring Rollback Segment Information

See Also:If you are using Trusted Oracle7 in DBMS MAC mode, see the
Trusted Oracle7 Server Administrator’s Guide for additional information.

If you are using Oracle with the Parallel Server option, see the Oracle7
Parallel Server Concepts & Administration guide.

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server
Manager/GUI or Server Manager/LineMode, see the Oracle Server
Manager User’s Guide.

Use Multiple Rollback
Segments

17 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Managing Rollback Segments

This section describes guidelines to consider before creating or
managing the rollback segments of your databases, and includes the
following topics:

• Use Multiple Rollback Segments

• Choose Between Public and Private Rollback Segments

• Specify Rollback Segments to Acquire Automatically

• Set Rollback Segment Sizes Appropriately

• Create Rollback Segments with Many Equally–Sized Extents

• Set an Optimal Number of Extents for Each Rollback Segment

• Set the Storage Location for Rollback Segments

Every database contains one or more rollback segments, which are
portions of the database that record the actions of transactions in the
event that a transaction is rolled back. You use rollback segments to
provide read consistency, rollback transactions, and recover the
database.

See Also: For more information about rollback segments, see the Oracle7
Server Concepts manual.

Using multiple rollback segments distributes rollback segment
contention across many segments and improves system performance.
Multiple rollback segments are required in the following situations:

• When a database is created, a single rollback segment named
SYSTEM is created in the SYSTEM tablespace. If a database is to
have other tablespaces, it must have two or more rollback
segments in the SYSTEM tablespace. You cannot create any
objects in non–SYSTEM tablespaces (not even rollback segments)
until you have created and brought online at least one additional
rollback segment in the SYSTEM tablespace.

• When many transactions are concurrently proceeding, more
rollback information is generated at the same time. You can
indicate the number of concurrent transactions you expect for the
instance with the parameter TRANSACTIONS, and the number
of transactions you expect each rollback segment to have to
handle with the parameter TRANSACTIONS_PER_–
ROLLBACK_SEGMENT. Then, when an instance opens a
database, it attempts to acquire at least TRANSACTIONS/
TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback
segments to handle the maximum amount of transactions.

Add a Rollback Segment
to the SYSTEM Tablespace

Choose Between Public
and Private Rollback
Segments

17 – 3Managing Rollback Segments

Therefore, after setting the parameters, create
TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_–
SEGMENT rollback segments.

See Also: With the Oracle Parallel Server, in order to start, each instance
requires access to its own rollback segment, in addition to the SYSTEM
rollback segment. For additional details, see the Oracle7 Parallel Server
Concepts & Administration guide.

An initial rollback segment called SYSTEM is created when a database is
created. The SYSTEM rollback segment is created in the SYSTEM
tablespace using the default storage parameters associated with that
tablespace. You cannot drop this rollback segment.

An instance always acquires the SYSTEM rollback segment in addition
to any other rollback segments it needs. However, if there are multiple
rollback segments, Oracle tries to use the SYSTEM rollback segment
only for special system transactions and distributes user transactions
among other rollback segments; if there are too many transactions for
the non–SYSTEM rollback segments, Oracle uses the SYSTEM segment.
Therefore, after database creation, create at least one additional rollback
segment in the SYSTEM tablespace.

A private rollback segment is acquired explicitly by an instance when the
instance opens the database. Public rollback segments form a pool of
rollback segments that any instance requiring a rollback segment can
use.

If a database does not have the Parallel Server option, public and private
rollback segments are identical. Therefore, you can create all public
rollback segments. A database with the Parallel Server option can also
have only public segments, as long as the number of segments is high
enough that each instance opening the database can acquire at least one
rollback segment in addition to its SYSTEM rollback segment. You may
also use private rollback segments when using the Oracle Parallel
Server.

See Also: For more information about the Parallel Server option and
rollback segments, see the Oracle7 Parallel Server Concepts &
Administration guide.

For more information about public and private rollback segments, see
the Oracle7 Server Concepts guide.

Specify Rollback
Segments to Acquire
Automatically

Set Rollback Segment
Sizes Appropriately

17 – 4 Oracle7 Server Administrator’s Guide

By default, when an instance starts, it acquires
TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT
rollback segments. If you want to ensure that the instance acquires
particular rollback segments that have particular sizes or particular
tablespaces, specify the rollback segments by name in the
ROLLBACK_SEGMENTS parameter in the instance’s parameter file.

The instance acquires all the rollback segments listed in this parameter,
even if more than TRANSACTIONS/TRANSACTIONS_PER_ROLL–
BACK_SEGMENT segments are specified. The rollback segments can be
either private or public.

Total rollback segment size should be set based on the size of the most
common transactions issued against a database. In general, short
transactions experience better performance when the database has many
smaller rollback segments, while long running transactions, like batch
jobs, perform better with larger rollback segments. Generally, rollback
segments can handle transactions of any size easily; however, in extreme
cases when a transaction is either very short or very long, a user might
want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should
be small so that they are always cached in main memory. If the rollback
segments are small enough, they are more likely to be cached in the SGA
according to the LRU algorithm, and database performance is improved
because less disk I/O is necessary. The main disadvantage of small
rollback segments is the increased likelihood of the error “snapshot too
old” when running a long query involving records that are frequently
updated by other transactions. This error occurs because the rollback
entries needed for read consistency are overwritten as other update
entries wrap around the rollback segment. Consider this issue when
designing an application’s transactions, and make them short atomic
units of work so that you can avoid this problem.

In contrast, long running transactions work better with larger rollback
segments, because the rollback entries for a long running transaction can
fit in pre–allocated extents of a large rollback segment.

When a database system’s applications concurrently issue a mix of very
short and very long transactions, performance can be optimized if
transactions are explicitly assigned to a rollback segment based on the
transaction/rollback segment size. You can minimize dynamic extent
allocation and truncation for rollback segments. This is not required for
most systems and is intended for extremely large or small transactions.

To optimize performance when issuing a mix of extremely small and
large transactions, make a number of rollback segments of appropriate

Create Rollback
Segments with Many
Equally–Sized Extents

17 – 5Managing Rollback Segments

size for each type of transaction (such as small, medium, and large).
Most rollback segments should correspond to the typical transactions,
with a fewer number of rollback segments for the atypical transactions.
Then set OPTIMAL for each such rollback segment so that the rollback
segment returns to its intended size if it has to grow.

You should tell users about the different sets of rollback segments that
correspond to the different types of transactions. Often, it is not
beneficial to assign a transaction explicitly to a specific rollback segment;
however, you can assign an atypical transaction to an appropriate
rollback segment created for such transactions. For example, you can
assign a transaction that contains a large batch job to a large rollback
segment.

When a mix of transactions is not prevalent, each rollback segment
should be 10% of the size of the database’s largest table because most
SQL statements affect 10% or less of a table; therefore, a rollback
segment of this size should be sufficient to store the actions performed
by most SQL statements.

Generally speaking, you should set a high MAXEXTENTS for rollback
segments; this allows a rollback segment to allocate subsequent extents
as it needs them.

Each rollback segment’s total allocated space should be divided among
many equally–sized extents. In general, optimal rollback I/O
performance is observed if each rollback segment for an instance has 10
to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and
the number of initial extents for the segment, use the following formula
to calculate the size of each extent of the rollback segment:

T / n = s

where:

T = total initial rollback segment size, in bytes

n = number of extents initially allocate

s = calculated size, in bytes, of each extent initially allocated

After s is calculated, create the rollback segment and specify the storage
parameters INITIAL and NEXT as s, and MINEXTENTS to n.
PCTINCREASE cannot be specified for rollback segments and therefore
defaults to 0. Also, if the size s of an extent is not an exact multiple of the
data block size, it is rounded up to the next multiple.

Set an Optimal
Number of Extents for
Each Rollback Segment

17 – 6 Oracle7 Server Administrator’s Guide

You should carefully assess the kind of transactions the system runs
when setting the OPTIMAL parameter for each rollback segment. For a
system that executes long–running transactions frequently, OPTIMAL
should be large so that Oracle does not have to shrink and allocate
extents frequently. Also, for a system that executes long queries on
active data, OPTIMAL should be large to avoid “snapshot too old”
errors. OPTIMAL should be smaller for a system that mainly executes
short transactions and queries so that the rollback segments remain
small enough to be cached in memory, thus improving system
performance.

To obtain estimates and monitor the effectiveness of the OPTIMAL
settings for rollback segments, use the MONITOR ROLLBACK feature
of Server Manager/GUI. In this monitor, the following statistics are
given for each rollback segment:

the most space ever allocated for the rollback
segment, in bytes

the OPTIMAL size of the rollback segment, in bytes

the cumulative number of times a transaction
continues writing from one extent in a rollback
segment to another existing extent

the cumulative number of times a new extent is
allocated for a rollback segment

the cumulative number of times Oracle has
truncated extents from the rollback segment

the average size of the space Oracle truncated from
the rollback segment, in bytes

the average number of bytes in active extents in the
rollback segment, measured over time

Assuming that an instance has equally sized rollback segments with
comparably sized extents, the OPTIMAL parameter for a given rollback
segment should be set slightly higher than Average Sizes, Active.

Sizes, High Water

Sizes, Optimal

Occurrences, Wraps

Occurrences,
Extends

Shrinks

Average Sizes,
Shrunk

Average Sizes,
Active

Set the Storage
Location for Rollback
Segments

17 – 7Managing Rollback Segments

Table 17 – 1 provides additional information on how to interpret the
statistics given in this monitor.

Shrinks Average Sizes,
Shrunk

Analysis and Recommendation

Low Low If Average Sizes, active is close to Sizes,
Optimal, then the OPTIMAL setting is
correct. Otherwise, OPTIMAL is too large
(not many shrinks are being performed.)

Low High Excellent: a good setting for OPTIMAL.

High Low OPTIMAL is too small: too many shrinks
are being performed.

High High Periodic long transactions are probably
causing these statistics. Set the
OPTIMAL parameter higher until Shrinks
is low.

Table 17 – 1 Analyzing the Effectiveness of Current OPTIMAL Settings

If possible, create one tablespace specifically to hold all rollback
segments, in addition to the two required in the SYSTEM tablespace.
This way, all rollback segment data is stored separately from other types
of data. Creating this “rollback segment” tablespace can provide the
following benefits:

• A tablespace holding rollback segments can always be kept
online, thus maximizing the combined storage capacity of
rollback segments at all times. Note that if some rollback
segments are not available, the overall database operation can be
affected.

• Because tablespaces with active rollback segments cannot be
taken offline, designating a tablespace to hold all rollback
segments of a database ensures that the data stored in other
tablespaces can be taken offline without concern for the
database’s rollback segments.

• A tablespace’s free extents are likely to be more fragmented if the
tablespace contains rollback segments that frequently allocate and
deallocate extents.

Bringing New
Rollback Segments
Online

17 – 8 Oracle7 Server Administrator’s Guide

Creating Rollback Segments

To create rollback segments, you must have the CREATE ROLLBACK
SEGMENT system privilege. To create additional rollback segments for
a database, use either the Create Rollback Segment property sheet of
Server Manager, or the SQL command CREATE ROLLBACK
SEGMENT. The tablespace to contain the new rollback segment must be
online.

The following statement creates a public rollback segment named
USERS_RS in the USERS tablespace, using the default storage
parameters of the USERS tablespace:

CREATE PUBLIC ROLLBACK SEGMENT users_rs TABLESPACE users;

If you create a private rollback segment, you should add the name of
this new rollback segment to the ROLLBACK_SEGMENTS parameter in
the parameter file for the database. Doing so enables the private rollback
segment to be captured by the instance at instance startup. For example,
if two new private rollback segments are created and named RS1 and
RS2, the ROLLBACK_SEGMENTS parameter of the parameter file
should be similar to the following:

ROLLBACK SEGMENTS= (RS1, RS2)

See Also: Once a rollback segment is created, it is not available for use
by transactions of any instance until it is brought online. See “Taking
Rollback Segments Online and Offline” on page 17 – 10 for more
information.

Specifying Storage Parameters for Rollback Segments

This section describes aspects of specifying rollback segment storage
parameters, and includes the following topics:

• Setting Storage Parameters When Creating a Rollback Segment

• Changing Rollback Segment Storage Parameters

• Altering Rollback Segment Format

• Shrinking a Rollback Segment Manually

Setting Storage
Parameters When
Creating a Rollback
Segment

Changing Rollback
Segment Storage
Parameters

17 – 9Managing Rollback Segments

Suppose you wanted to create a public rollback segment DATA1_RS
with storage parameters and optimal size set as follows:

• The rollback segment is allocated an initial extent of 50K.

• The rollback segment is allocated the second extent of 50K.

• The optimal size of the rollback segment is 750K.

• The minimum number of extents and the number of extents
initially allocated when the segment is created is 15.

• The maximum number of extents that the rollback segment can
allocate, including the initial extent, is 100.

The following statement creates a rollback segment with these
characteristics:

CREATE PUBLIC ROLLBACK SEGMENT data1_rs

 TABLESPACE users

 STORAGE (

 INITIAL 50K

 NEXT 50K

 OPTIMAL 750K

 MINEXTENTS 15

 MAXEXTENTS 100);

You can also use the Create Rollback Segment property sheet of Server
Manager to set the rollback segment’s storage parameters.

You can change a rollback segment’s storage parameters after creating it.
However, you cannot alter the size of any extent currently allocated to a
rollback segment. You can only affect future extents.

Alter a rollback segment’s storage parameters using either the Alter
Rollback Segment property sheet of Server Manager, or the SQL
command ALTER ROLLBACK SEGMENT.

The following statement alters the maximum number of extents that the
DATA1_RS rollback segment can allocate.

ALTER PUBLIC ROLLBACK SEGMENT data1_rs

 STORAGE (MAXEXTENTS 120);

You can alter the settings for the SYSTEM rollback segment, including
the OPTIMAL parameter, just as you can alter those of any rollback
segment.

Note: If you are altering a public rollback segment, you must
include the keyword PUBLIC in the ALTER ROLLBACK
SEGMENT command.

Altering Rollback
Segment Format

Shrinking a Rollback
Segment Manually

17 – 10 Oracle7 Server Administrator’s Guide

See Also: For guidance on setting sizes and storage parameters
(including OPTIMAL) for rollback segments, see “Guidelines for
Managing Rollback segments” on page 17 – 2.

To alter rollback segments, you must have the ALTER ROLLBACK
SEGMENT system privilege.

You can define limited or unlimited format for rollback segments. When
converting to limited or unlimited format, you must take the rollback
segments offline. If you identify unlimited format for rollback segments,
extents for that segment must have a minimum of 4 data blocks. Thus, a
limited format rollback segment cannot be converted to unlimited
format if it has less than 4 data blocks in any extent. If you want to
convert from limited to unlimited format and have less than 4 data
blocks in an extent, your only choice is to drop and re–create the
rollback segment.

To shrink a rollback segment using you must have the ALTER
ROLLBACK SEGMENT system privilege.

You can manually decrease the size of a rollback segment using the SQL
command ALTER ROLLBACK SEGMENT. The rollback segment you
are trying shrink must be online.

The following statement shrinks rollback segment RBS1 to 100K:

ALTER ROLLBACK SEGMENT rbs1 SHRINK TO 100K;

See Also: For a complete description of the ALTER ROLLBACK
SEGMENT command, see the Oracle7 Server SQL Reference.

Taking Rollback Segments Online and Offline

This section describes aspects of taking rollback segments online and
offline, and includes the following topics:

• Bringing Rollback Segments Online

• Taking Rollback Segments Offline

A rollback segment is either online and available to transactions, or
offline and unavailable to transactions. Generally, rollback segments are
online and available for use by transactions.

To take a rollback segment online or offline, you must have the ALTER
ROLLBACK SEGMENT system privilege.

Bringing Rollback
Segments Online

Bringing a PARTLY
AVAILABLE Rollback
Segment Online

17 – 11Managing Rollback Segments

You may wish to take online rollback segments offline in the following
situations:

• When you want to take a tablespace offline, and the tablespace
contains rollback segments. You cannot take a tablespace offline if
it contains rollback segments that transactions are currently using.
To prevent associated rollback segments from being used, you can
take them offline before taking the tablespace offline.

• You want to drop a rollback segment, but cannot because
transactions are currently using it. To prevent the rollback
segment from being used, you can take it offline before
dropping it.

Note: You cannot take the SYSTEM rollback segment offline.

You might later want to bring an offline rollback segment back online so
that transactions can use it. When a rollback segment is created, it is
initially offline, and you must explicitly bring a newly created rollback
segment online before it can be used by an instance’s transactions. You
can bring an offline rollback segment online via any instance accessing
the database that contains the rollback segment.

You can bring online only a rollback segment whose current status (as
shown in the DBA_ROLLBACK_SEGS data dictionary view) is
OFFLINE or PARTLY AVAILABLE. To bring an offline rollback segment
online, use either the Place Online menu item of Server Manager or the
SQL command ALTER ROLLBACK SEGMENT with the ONLINE
option.

A rollback segment in the PARTLY AVAILABLE state contains data for
an in–doubt or recovered distributed transaction, and yet to be
recovered transactions. You can view its status in the data dictionary
view DBA_ROLLBACK_SEGS as PARTLY AVAILABLE. The rollback
segment usually remains in this state until the transaction is resolved
either automatically by RECO, or manually by a DBA. However, you
might find that all rollback segments are PARTLY AVAILABLE. In this
case, you can bring a PARTLY AVAILABLE segment online, as described
above.

Some resources used by the rollback segment for the in–doubt
transaction remain inaccessible until the transaction is resolved. As a
result, the rollback segment may have to grow if other transactions
assigned to it need additional space.

As an alternative to bringing a PARTLY AVAILABLE segment online,
you might find it easier to create a new rollback segment temporarily,
until the in–doubt transaction is resolved.

Bringing a Rollback
Segment Online
Automatically

Bringing Rollback
Segments Online:
Example

Taking Rollback
Segments Offline

Taking Public and Private
Rollback Segments Offline

17 – 12 Oracle7 Server Administrator’s Guide

If you would like a rollback segment to be automatically brought online
whenever you start up the database, add the segment’s name to the
ROLLBACK_SEGMENTS parameter in the database’s parameter file.

The following statement brings the rollback segment USER_RS_2 online:

ALTER ROLLBACK SEGMENT user_rs_2 ONLINE;

After you bring a rollback segment online, its status in the data
dictionary view DBA_ROLLBACK_SEGS is ONLINE.

See Also: For information about the ROLLBACK_SEGMENTS and
DBA_ROLLBACK_SEGS parameters, see the Oracle7 Server Reference.

To see a query for checking rollback segment state, see “Displaying
Rollback Segment Information” on page 17 – 15.

To take an online rollback segment offline, use either the Take Offline
menu item of Server Manager, or the ALTER ROLLBACK SEGMENT
command with the OFFLINE option. The rollback segment’s status in
the DBA_ROLLBACK_SEGS data dictionary view must be “ONLINE”,
and the rollback segment must be acquired by the current instance.

The following example takes the rollback segment USER_RS_2 offline:

ALTER ROLLBACK SEGMENT user_rs_2 OFFLINE;

If you try to take a rollback segment that does not contain active rollback
entries offline, Oracle immediately takes the segment offline and
changes its status to “OFFLINE”.

In contrast, if you try to take a rollback segment that contains rollback
data for active transactions (local, remote, or distributed) offline, Oracle
makes the rollback segment unavailable to future transactions and takes
it offline after all the active transactions using the rollback segment
complete. Until the transactions complete, the rollback segment cannot
be brought online by any instance other than the one that was trying to
take it offline. During this period, the rollback segment’s status in the
view DBA_ROLLBACK_SEGS remains ONLINE; however, the rollback
segment’s status in the view V$ROLLSTAT is PENDING OFFLINE.

The instance that tried to take a rollback segment offline and caused it to
change to PENDING OFFLINE can bring it back online at any time; if
the rollback segment is brought back online, it will function normally.

After you take a public or private rollback segment offline, it remains
offline until you explicitly bring it back online or you restart the
instance.

17 – 13Managing Rollback Segments

See Also: For information on viewing rollback segment status, see
“Displaying Rollback Segment Information” on page 17 – 15.

For information about the views DBA_ROLLBACK_SEGS and
V$ROLLSTAT, see the Oracle7 Server Reference.

Explicitly Assigning a Transaction to a Rollback Segment

A transaction can be explicitly assigned to a specific rollback segment
using the SET TRANSACTION command with the USE ROLLBACK
SEGMENT parameter. Transactions are explicitly assigned to rollback
segments for the following reasons:

• The anticipated amount of rollback information generated by a
transaction can fit in the current extents of the assigned rollback
segment.

• Additional extents do not have to be dynamically allocated (and
subsequently truncated) for rollback segments, which reduces
overall system performance.

No special privileges are required to assign a transaction to a specific
rollback segment explicitly.

To assign a transaction to a rollback segment explicitly, the rollback
segment must be online for the current instance, and the SET
TRANSACTION USE ROLLBACK SEGMENT statement must be the
first statement of the transaction. If a specified rollback segment is not
online or a SET TRANSACTION USE ROLLBACK SEGMENT statement
is not the first statement in a transaction, an error is returned.

For example, if you are about to begin a transaction that contains a
significant amount of work (more than most transactions), you can
assign the transaction to a large rollback segment, as follows:

SET TRANSACTION USE ROLLBACK SEGMENT large_rs1;

After the transaction is committed, Oracle will automatically assign the
next transaction to any available rollback segment unless the new
transaction is explicitly assigned to a specific rollback segment by the
user.

17 – 14 Oracle7 Server Administrator’s Guide

Dropping Rollback Segments

You can drop rollback segments when the extents of a segment become
too fragmented on disk, or the segment needs to be relocated in a
different tablespace.

Before dropping a rollback segment, make sure that status of the
rollback segment is OFFLINE. If the rollback segment that you want to
drop is currently ONLINE, PARTLY AVAILABLE, NEEDS RECOVERY,
or INVALID, you cannot drop it. If the status is INVALID, the segment
has already been dropped. Before you can drop it, you must take it
offline.

To drop a rollback segment, you must have the DROP ROLLBACK
SEGMENT system privilege.

If a rollback segment is offline, you can drop it using either the Drop
menu item of Server Manager, or the SQL command DROP ROLLBACK
SEGMENT.

The following statement drops the DATA1_RS rollback segment:

DROP PUBLIC ROLLBACK SEGMENT data1_rs;

If you use the DROP ROLLBACK SEGMENT command, indicate the
correct type of rollback segment to drop, public or private, by including
or omitting the PUBLIC keyword.

Note: If a rollback segment specified in
ROLLBACK_SEGMENTS is dropped, make sure to edit the
parameter files of the database to remove the name of the
dropped rollback segment from the list in the
ROLLBACK_SEGMENTS parameter. If this step is not
performed before the next instance startup, startup fails because
it cannot acquire the dropped rollback segment.

After a rollback segment is dropped, its status changes to INVALID. The
next time a rollback segment is created, it takes the row vacated by a
dropped rollback segment, if one is available, and the dropped rollback
segment’s row no longer appears in the DBA_ROLLBACK_SEGS view.

See Also: For more information about the view
DBA_ROLLBACK_SEGS, see the Oracle7 Server Reference.

Displaying Rollback
Segment Information

Displaying All Rollback
Segments

17 – 15Managing Rollback Segments

Monitoring Rollback Segment Information

Use the MONITOR ROLLBACK feature of Server Manager/GUI to
monitor a rollback segment’s size, number of extents, optimal number of
extents, activity concerning dynamic deallocation of extents, and current
usage by active transaction.

See Also: For a detailed description of how to use the MONITOR for the
corresponding operation, see “Set an Optimal Number of Extents for
Each Rollback Segment” on page 17 – 5.

The DBA_ROLLBACK_SEGS data dictionary view stores information
about the rollback segments of a database. For example, the following
query lists the name, associated tablespace, and status of each rollback
segment in a database:

SELECT segment_name, tablespace_name, status

 FROM sys.dba_rollback_segs;

SEGMENT_NAME TABLESPACE_NAME STATUS

––––––––––––– –––––––––––––––– ––––––

SYSTEM SYSTEM ONLINE

PUBLIC_RS SYSTEM ONLINE

USERS_RS USERS ONLINE

In addition, the following data dictionary views contain information
about the segments of a database, including rollback segments:

• USER_SEGMENTS

• DBA_SEGMENTS

The following query returns the name of each rollback segment, the
tablespace that contains it, and its size:

SELECT segment_name, tablespace_name, bytes, blocks, extents

 FROM sys.dba_segments

 WHERE segment_type = ’ROLLBACK’;

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS

–––––––––––– ––––––––––––––– ––––––––– –––––––––– ––––––––––

RS1 SYSTEM 20480 10 2

RS2 TS1 40960 20 3

SYSTEM SYSTEM 184320 90 3

Displaying Whether a
Rollback Segment Has
Gone Offline

Displaying Deferred
Rollback Segments

Displaying All Deferred
Rollback Segments

17 – 16 Oracle7 Server Administrator’s Guide

When you take a rollback segment offline, it does not actually go offline
until all active transactions in it have completed. Between the time when
you attempt to take it offline and when it actually is offline, its status in
DBA_ROLLBACK_SEGS remains ONLINE, but it is not used for new
transactions. To determine whether any rollback segments for an
instance are in this state, use the following query:

SELECT name, xacts ’ACTIVE TRANSACTIONS’

 FROM v$rollname, v$rollstat

WHERE status = ’PENDING OFFLINE’

 AND v$rollname.usn = v$rollstat.usn;

NAME ACTIVE TRANSACTIONS

–––––––––– –––––––––––––––––––

RS2 3

If your instance is part of a Parallel Server configuration, this query
displays information for rollback segments of the current instance only,
not those of other instances.

The following query shows which rollback segments are private and
which are public. Note that it only displays information about the
rollback segments that are currently online for the current instance:

SELECT segment_name, tablespace_name, owner

 FROM sys.dba_rollback_segs;

SEGMENT_NAME TABLESPACE_NAME OWNER

––––––––––––– –––––––––––––––– ––––––

SYSTEM SYSTEM SYS

PUBLIC_RS SYSTEM PUBLIC

USERS_RS USERS SYS

The following query shows all deferred rollback segments (rollback
segments that were created to hold rollback entries for tablespaces taken
offline until the tablespaces are brought back online):

SELECT segment_name, segment_type, tablespace_name

 FROM sys.dba_segments

WHERE segment_type = ’DEFERRED ROLLBACK’;

SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME

–––––––––––– –––––––––––– –––––––––––––––

USERS_RS DEFERRED ROLLBACK USERS

P A R T

 IV Database Security

C H A P T E R

18
T

18 – 1Establishing Security Policies

Establishing Security
Policies

his chapter provides guidelines for developing security policies for
database operation, and includes the following topics:

• System Security Policy

• Data Security Policy

• User Security Policy

• Auditing Policy

See Also: For information about additional security issues when you are
using Trusted Oracle7, see the Trusted Oracle7 Server Administrator’s
Guide.

Database User
Management

User Authentication

18 – 2 Oracle7 Server Administrator’s Guide

System Security Policy

This section describes aspects of system security policy, and includes the
following topics:

• Database User Management

• User Authentication

• Operating System Security

Each database has one or more administrators who are responsible for
maintaining all aspects of the security policy: the security
administrators. If the database system is small, the database
administrator may have the responsibilities of the security
administrator. However, if the database system is large, a special person
or group of people may have responsibilities limited to those of a
security administrator.

After deciding who will manage the security of the system, a security
policy must be developed for every database. A database’s security
policy should include several sub–policies, as explained in the following
sections.

Database users are the access paths to the information in an Oracle
database. Therefore, tight security should be maintained for the
management of database users. Depending on the size of a database
system and the amount of work required to manage database users, the
security administrator may be the only user with the privileges required
to create, alter, or drop database users. On the other hand, there may be
a number of administrators with privileges to manage database users.
Regardless, only trusted individuals should have the powerful
privileges to administer database users.

Database users can be authenticated (verified as the correct person) by
Oracle using the host operating system, network services, or the
database. Generally, user authentication via the host operating system is
preferred for the following reasons:

• Users can connect to Oracle faster and more conveniently without
specifying a username or password.

• Centralized control over user authorization in the operating
system: Oracle need not store or manage user passwords and
usernames if the operating system and database correspond.

• User entries in the database and operating system audit trails
correspond.

Operating System
Security

18 – 3Establishing Security Policies

User authentication by the database is normally used when the host
operating system cannot support user authentication.

See Also: For more information about network authentication, see
Oracle7 Server Distributed Systems, Volume I.

For more information about user authentication, see “Creating Users”
on page 19 – 9.

If applicable, the following security issues must also be considered for
the operating system environment executing Oracle and any database
applications:

• Database administrators must have the operating system
privileges to create and delete files.

• Typical database users should not have the operating system
privileges to create or delete files related to the database.

• If the operating system identifies database roles for users, the
security administrators must have the operating system
privileges to modify the security domain of operating system
accounts.

See Also: For more information about operating system security issues
for Oracle databases, see your operating system–specific Oracle
documentation.

Data Security Policy

Data security includes the mechanisms that control the access and use of
the database at the object level. Your data security policy determines
which users have access to a specific schema object, and the specific
types of actions allowed for each user on the object. For example, user
SCOTT can issue SELECT and INSERT statements but not DELETE
statements using the EMP table. Your data security policy should also
define the actions, if any, that are audited for each schema object.

Your data security policy will be determined primarily by the level of
security you wish to establish for the data in your database. For
example, it may be acceptable to have little data security in a database
when you wish to allow any user to create any schema object, or grant
access privileges for their objects to any other user of the system.
Alternatively, it might be necessary for data security to be very
controlled when you wish to make a database or security administrator
the only person with the privileges to create objects and grant access
privileges for objects to roles and users.

General User Security

Password Security

18 – 4 Oracle7 Server Administrator’s Guide

Overall data security should be based on the sensitivity of data. If
information is not sensitive, then the data security policy can be more
lax. However, if data is sensitive, a discreet security policy should be
developed to maintain tight control over access to objects.

User Security Policy

This section describes aspects of user security policy, and includes the
following topics:

• General User Security

• End–User Security

• Administrator Security

• Application Developer Security

• Application Administrator Security

For all types of database users, consider the following general user
security issues:

• Password Security

• Privilege Management

If user authentication is managed by the database, security
administrator’s should develop a password security policy to maintain
database access security. For example, database users should be required
to change their passwords at regular intervals, and of course, when their
passwords are revealed to others. By forcing a user to modify passwords
in such situations, unauthorized database access can be reduced.

Secure Connections with Encrypted Passwords

To better protect the confidentiality of your password, Oracle7 can be
configured to use encrypted passwords for client/server and
server/server connections.

You can require that the password used to verify a connection always be
encrypted by setting the following values:

• Set the ORA_ENCRYPT_LOGIN environment variable to TRUE
on the client machine.

• Set the DBLINK_ENCRYPT_LOGIN server initialization
parameter to TRUE.

Privilege Management

End–User Security

Using Roles for End–User
Privilege Management

18 – 5Establishing Security Policies

If enabled at both the client and server, passwords will not be sent across
the network “in the clear”, but will be encrypted using a modified DES
(Data Encryption Standard) algorithm.

The DBLINK_ENCRYPT_LOGIN parameter is used for connections
between two Oracle servers (for example, when performing distributed
queries). If you are connecting from a client, Oracle checks the
ORA_ENCRYPT_LOGIN environment variable.

Whenever you attempt to connect to a server using a password, Oracle
encrypts the password before sending it to the server. If the connection
fails and auditing is enabled, the failure is noted in the audit log. Oracle
then checks the appropriate DBLINK_ENCRYPT_LOGIN or
ORA_ENCRYPT_LOGIN value. If it set to FALSE, Oracle attempts the
connection again using an unencrypted version of the password. If the
connection is successful, the connection replaces the previous failure in
the audit log, and the connection proceeds. To prevent malicious users
from forcing Oracle to re–attempt a connection with an unencrypted
version of the password, you must set the appropriate values to TRUE.

Security administrators should consider issues related to privilege
management for all types of users. For example, in a database with
many usernames, it may be beneficial to use roles (which are named
groups of related privileges that you grant to users or other roles) to
manage the privileges available to users. Alternatively, in a database
with a handful of usernames, it may be easier to grant privileges
explicitly to users and avoid the use of roles.

Security administrators managing a database with many users,
applications, or objects should take advantage of the benefits offered by
roles. Roles greatly simplify the task of privilege management in
complicated environments.

Security administrators must also define a policy for end–user security.
If a database is large with many users, the security administrator can
decide what groups of users can be categorized, create user roles for
these user groups, grant the necessary privileges or application roles to
each user role, and assign the user roles to the users. To account for
exceptions, the security administrator must also decide what privileges
must be explicitly granted to individual users.

Roles are the easiest way to grant and manage the common privileges
needed by different groups of database users.

Consider a situation where every user in the accounting department of a
company needs the privileges to run the ACCTS_RECEIVABLE and
ACCTS_PAYABLE database applications. Roles are associated with both

18 – 6 Oracle7 Server Administrator’s Guide

applications, and contain the object privileges necessary to execute those
applications.

The following actions, performed by the database or security
administrator, address this simple security situation:

1. Create a role named ACCOUNTANT.

2. Grant the roles for the ACCTS_RECEIVABLE and
ACCTS_PAYABLE database applications to the ACCOUNTANT
role.

3. Grant each user of the accounting department the ACCOUNTANT
role.

This security model is illustrated in Figure 18 – 1.

Users

User Roles

Application Roles

Application Privileges

ACCOUNTING Role

ACCTS_PAY Role ACCTS_REC Role

Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Figure 18 – 1 User Roles

This plan addresses the following potential situations:

• If accountants subsequently need a role for a new database
application, that application’s role can be granted to the
ACCOUNTANT role, and all users in the accounting department
will automatically receive the privileges associated with the new
database application. The application’s role does not need to be
granted to individual users requiring use of the application.

• Similarly, if the accounting department no longer requires the
need for a specific application, the application’s role can be
dropped from the ACCOUNTANT role.

• If the privileges required by the ACCTS_RECEIVABLE or
ACCTS_PAYABLE applications change, the new privileges can be

Administrator Security

Protection for Connections
as SYS and SYSTEM

Protection for
Administrator
Connections

Using Roles for
Administrator Privilege
Management

18 – 7Establishing Security Policies

granted to, or revoked from, the application’s role. The security
domain of the ACCOUNTANT role, and all users granted the
ACCOUNTANT role automatically reflect the privilege
modification.

When possible, utilize roles in all possible situations to make end–user
privilege management efficient and simple.

Security administrators should have a policy addressing administrator
security. For example, when the database is large and there are several
types of database administrators, the security administrator may decide
to group related administrative privileges into several administrative
roles. The administrative roles can then be granted to appropriate
administrator users. Alternatively, when the database is small and has
only a few administrators, it may be more convenient to create one
administrative role and grant it to all administrators.

After database creation, immediately change the passwords for the
administrative SYS and SYSTEM usernames to prevent unauthorized
access to the database. Connecting as SYS and SYSTEM give a user the
powerful privileges to modify a database in many ways. Therefore,
privileges for these usernames are extremely sensitive, and should only
be available to select database administrators.

See Also: The passwords for these accounts can be modified using the
procedures described in “Altering Users” on page 19 – 12.

Only database administrators should have the capability to connect to a
database with administrator privileges. Connecting as SYSDBA or
SYSOPER gives a user unrestricted privileges to do anything to a
database (such as startup, shutdown, and recover) or the objects within
a database (such as create, drop, and delete from).

Roles are the easiest way to restrict the powerful system privileges and
roles required by personnel administrating of the database.

Consider a scenario where the database administrator responsibilities at
a large installation are shared among several database administrators,
each responsible for the following specific database management jobs:

• an administrator responsible for object creation and maintenance

• an administrator responsible for database tuning and
performance

• a security administrator responsible for creating new users,
granting roles and privileges to database users

Application Developer
Security

18 – 8 Oracle7 Server Administrator’s Guide

• a database administrator responsible for routine database
operation (for example, startup, shutdown, backup)

• an administrator responsible for emergency situations, such as
database recovery

• new, inexperienced database administrators needing limited
capabilities to experiment with database management

In this scenario, the security administrator should structure the security
for administrative personnel as follows:

1. Six roles should be defined to contain the distinct privileges
required to accomplish each type of job (for example,
DBA_OBJECTS, DBA_TUNE, DBA_SECURITY, DBA_MAINTAIN,
DBA_RECOV, DBA_NEW).

2. Each role is granted the appropriate privileges.

3. Each type of database administrator can be granted the
corresponding role.

This plan diminishes the likelihood of future problems in the following
ways:

• If a database administrator’s job description changes to include
more responsibilities, that database administrator can be granted
other administrative roles corresponding to the new
responsibilities.

• If a database administrator’s job description changes to include
fewer responsibilities, that database administrator can have the
appropriate administrative roles revoked.

• The data dictionary always stores information about each role
and each user, so information is available to disclose the task of
each administrator.

Security administrators must define a special security policy for the
application developers using a database. A security administrator may
grant the privileges to create necessary objects to application developers.
Alternatively, the privileges to create objects may only be granted to a
database administrator, who receives requests for object creation from
developers.

Application Developers
and Their Privileges

The Application
Developer’s Environment:
Test and Production
Databases

Free Versus Controlled
Application Development

18 – 9Establishing Security Policies

Database application developers are unique database users who require
special groups of privileges to accomplish their jobs. Unlike end–users,
developers need system privileges, such as CREATE TABLE, CREATE
PROCEDURE, and so on. However, only specific system privileges
should be granted to developers to restrict their overall capabilities in
the database.

In many cases, application development is restricted to test databases
and not allowed on production databases. This restriction ensures that
application developers do not compete with end–users for database
resources, and that they cannot detrimentally affect a production
database.

After an application has been thoroughly developed and tested, it is
permitted access to the production database and made available to the
appropriate end–users of the production database.

The database administrator can define the following options when
determining which privileges should be granted to application
developers:

An application developer is allowed to create new
schema objects, including tables, indexes,
procedures, packages, and so on. This option allows
the application developer to develop an application
independent of other objects.

An application developer is not allowed to create
new schema objects. All required tables, indexes,
procedures, and so on are created by a database
administrator, as requested by an application
developer. This option allows the database
administrator to completely control a database’s
space usage and the access paths to information in
the database.

Although some database systems use only one of these options, other
systems could mix them. For example, application developers can be
allowed to create new stored procedures and packages, but not allowed
to create tables or indexes. A security administrator’s decision regarding
this issue should be based on the following:

• the control desired over a database’s space usage

• the control desired over the access paths to schema objects

• the database used to develop applications—if a test database is
being used for application development, a more liberal
development policy would be in order

Free Development

Controlled
Development

Roles and Privileges for
Application Developers

Space Restrictions
Imposed on Application
Developers

Application
Administrator Security

18 – 10 Oracle7 Server Administrator’s Guide

Security administrators can create roles to manage the privileges
required by the typical application developer. For example, a typical role
named APPLICATION_DEVELOPER might include the CREATE
TABLE, CREATE VIEW, and CREATE PROCEDURE system privileges.
Consider the following when defining roles for application developers:

• CREATE system privileges are usually granted to application
developers so that they can create their own objects. However,
CREATE ANY system privileges, which allow a user to create an
object in any user’s domain, are not usually granted to
developers. This restricts the creation of new objects only to the
developer’s user account.

• Object privileges are rarely granted to roles used by application
developers. This is often impractical because granting object
privileges via roles often restricts their usability in the creation of
other objects (primarily views and stored procedures). It is more
practical to allow application developers to create their own
objects for development purposes.

While application developers are typically given the privileges to create
objects as part of the development process, security administrators must
maintain limits on what and how much database space can be used by
each application developer. For example, as the security administrator,
you should specifically set or restrict the following limits for each
application developer:

• the tablespaces in which the developer can create tables or
indexes

• the quota for each tablespace accessible to the developer

See Also: Both limitations can be set by altering a developer’s security
domain. For more information, see “Altering Users” on page 19 – 12.

In large database systems with many database applications (for
example, precompiler and Forms applications), you might want to have
application administrators. An application administrator is responsible
for the following types of tasks:

• creating roles for an application and managing the privileges of
each application role

• creating and managing the objects used by a database application

• maintaining and updating the application code and Oracle
procedures and packages, as necessary

Often, an application administrator is also the application developer that
designed the application. However, these jobs might not be the

18 – 11Establishing Security Policies

responsibility of the developer, and can be assigned to another
individual familiar with the database application.

Auditing Policy

Security administrators should define a policy for the auditing
procedures of each database. You may, for example, decide to have
database auditing disabled unless questionable activities are suspected.
When auditing is required, the security administrator must decide what
level of detail to audit the database; usually, general system auditing is
followed by more specific types of auditing after the origins of
suspicious activity are determined.

18 – 12 Oracle7 Server Administrator’s Guide

C H A P T E R

19
T

19 – 1Managing Users and Resources

Managing Users and
Resources

his chapter describes how to control access to an Oracle database,
and includes the following topics:

• Session and User Licensing

• User Authentication

• Oracle Users

• Managing Resources with Profiles

• Listing Information About Database Users and Profiles

See Also: For guidelines on establishing security policies for users and
profiles, see Chapter 18.

Privileges and roles control the access a user has to a database and the
schema objects within the database. For information on privileges and
roles, see Chapter 20.

For databases using Trusted Oracle, see the Trusted Oracle7 Server
Administrator’s Guide for additional information about user management
in that environment.

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server
Manager/GUI or Server Manager/LineMode, see the Oracle Server
Manager User’s Guide.

Concurrent Usage
Licensing

Connecting Privileges

19 – 2 Oracle7 Server Administrator’s Guide

Session and User Licensing

This section describes aspects of session and user licensing, and includes
the following topics:

• Concurrent Usage Licensing

• Connecting Privileges

• Named User Licensing

• Viewing Licensing Limits and Current Values

Oracle helps you ensure that your site complies with its Oracle Server
license agreement. If your site is licensed by concurrent usage, you can
track and limit the number of sessions concurrently connected to a
database. If your site is licensed by named users, you can limit the
number of named users created in a database. In either case, you control
the licensing facilities, and must enable the facilities and set the
appropriate limits.

To use the licensing facility, you need to know which type of licensing
agreement your site has, and what the maximum number of sessions or
named users is. Your site may use either type of licensing (concurrent
usage or named user), but not both.

Note: In a few cases, a site might have an unlimited license,
rather than concurrent usage or named user licensing. In these
cases only, leave the licensing mechanism disabled, and omit
LICENSE_MAX_SESSIONS, LICENSE_SESSIONS_WARNING,
and LICENSE_MAX_USERS from the parameter file, or set the
value of all three to 0.

Concurrent usage licensing limits the number of sessions that can be
connected simultaneously to the database on the specified computer.
You can set a limit on the number of concurrent sessions before you start
an instance. In fact, you should have set this limit as part of the initial
installation procedure. You can also change the maximum number of
concurrent sessions while the database is running.

See Also: For information about the initial installation procedure, see
“Edit New Parameter Files” on page 2 – 5.

After your instance’s session limit is reached, only users with
RESTRICTED SESSION privilege (usually DBAs) can connect to the
database. When a user with RESTRICTED SESSION privileges connects,
Oracle sends the user a message indicating that the maximum limit has
been reached, and writes a message to the ALERT file. When the
maximum is reached, you should connect only to terminate unneeded

Parallel Server Concurrent
Usage Limits

Setting the Maximum
Number of Sessions

19 – 3Managing Users and Resources

processes. Do not raise the licensing limits unless you have upgraded
your Oracle license agreement.

In addition to setting a maximum concurrent session limit, you can set a
warning limit on the number of concurrent sessions. After this limit is
reached, additional users can continue to connect (up to the maximum
limit); however, Oracle writes an appropriate message to the ALERT file
with each connection, and sends each connecting user who has the
RESTRICTED SESSION privilege a warning indicating that the
maximum is about to be reached.

If a user is connecting with administrator privileges, the limits still
apply; however, Oracle enforces the limit after the first statement the
user executes.

In addition to enforcing the concurrent usage limits, Oracle tracks the
highest number of concurrent sessions for each instance. You can use
this “high water mark.”

See Also: For information about terminating sessions, see “Terminating
Sessions” on page 4 – 16.

For information about Oracle licensing limit upgrades, see “Viewing
Licensing Limits and Current Values” on page 19 – 5.

For instances running with the Parallel Server, each instance can have its
own concurrent usage limit and warning limit. However, the sum of the
instances’ limits must not exceed the site’s concurrent usage license.

Warning: Sessions that connect to Oracle through multiplexing
software or hardware (such as a TP monitor) each contribute
individually to the concurrent usage limit. However, the Oracle
licensing mechanism cannot distinguish the number of sessions
connected this way. If your site uses multiplexing software or
hardware, you must consider that and set the maximum
concurrent usage limit lower to account for the multiplexed
sessions.

See Also: For more information about setting and changing limits in a
parallel server environment, see the Oracle7 Parallel Server Concepts &
Administration guide.

To set the maximum number of concurrent sessions for an instance, set
the parameter LICENSE_MAX_SESSIONS as follows:

LICENSE_MAX_SESSIONS = 80

If you set this limit, you are not required to set a warning limit
(LICENSE_SESSIONS_WARNING). However, using the warning limit

Setting the Session
Warning Limit

Changing Concurrent
Usage Limits While the
Database is Running

Named User Limits

19 – 4 Oracle7 Server Administrator’s Guide

makes the maximum limit easier to manage, because it gives you
advance notice that your site is nearing maximum use.

To set the warning limit for an instance, set the parameter
LICENSE_SESSIONS_WARNING in the parameter file used to start the
instance.

Set the session warning to a value lower than the concurrent usage
maximum limit (LICENSE_MAX_SESSIONS).

To change either the maximum concurrent usage limit or the warning
limit while the database is running, use the ALTER SYSTEM command
with the appropriate option. The following statement changes the
maximum limit to 100 concurrent sessions:

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 100;

The following statement changes both the warning limit and the
maximum limit:

ALTER SYSTEM

 SET LICENSE_MAX_SESSIONS = 64

 LICENSE_SESSIONS_WARNING = 54;

If you change either limit to a value lower than the current number of
sessions, the current sessions remain; however, the new limit is enforced
for all future connections until the instance is shut down. To change the
limit permanently, change the value of the appropriate parameter in the
parameter file.

To change the concurrent usage limits while the database is running,
you must have the ALTER SYSTEM privilege. Also, to connect to an
instance after the instance’s maximum limit has been reached, you must
have the RESTRICTED SESSION privilege.

Warning: Do not raise the concurrent usage limits unless you
have appropriately upgraded your Oracle Server license.
Contact your Oracle representative for more information.

Named user licensing limits the number of individuals authorized to
use Oracle on the specified computer. To enforce this license, you can set
a limit on the number of users created in the database before you start
an instance. You can also change the maximum number of users while
the instance is running, or disable the limit altogether. You cannot create
more users after reaching this limit. If you try to do so, Oracle returns an
error indicating that the maximum number of users have been created,
and writes a message to the ALERT file.

This mechanism operates on the assumption that each person accessing
the database has a unique username, and that there are no shared

Setting User Limits

Changing User Limits

Viewing Licensing
Limits and Current
Values

19 – 5Managing Users and Resources

usernames. Do not allow multiple users to connect using the same
username.

See Also: For instances running with the Parallel Server, all instances
connected to the same database should have the same named user limit.
See the Oracle7 Parallel Server Concepts & Administration guide for more
information.

To limit the number of users created in a database, set the
LICENSE_MAX_USERS parameter in the database’s parameter file. The
following example sets the maximum number of users to 200:

LICENSE_MAX_USERS = 200

If the database contains more than LICENSE_MAX_USERS when you
start it, Oracle returns a warning and writes an appropriate message in
the ALERT file. You cannot create additional users until the number of
users drops below the limit, you should delete users, or upgrade your
Oracle license.

To change the maximum named users limit, use the ALTER SYSTEM
command with the LICENSE_MAX_USERS option. The following
statement changes the maximum number of defined users to 300:

ALTER SYSTEM SET LICENSE_MAX_USERS = 300;

If you try to change the limit to a value lower than the current number
of users, Oracle returns an error and continues to use the old limit. If
you successfully change the limit, the new limit remains in effect until
you shut down the instance; to change the limit permanently, change the
value of LICENSE_MAX_USERS in the parameter file.

To change the maximum named users limit, you must have the ALTER
SYSTEM privilege.

Warning: Do not raise the named user limit unless you have
appropriately upgraded your Oracle license. Contact your
Oracle representative for more information.

You can see the current limits of all of the license settings, the current
number of sessions, and the maximum number of concurrent sessions
for the instance by querying the V$LICENSE data dictionary view. You
can use this information to determine if you need to upgrade your
Oracle license to allow more concurrent sessions or named users:

19 – 6 Oracle7 Server Administrator’s Guide

SELECT sessions_max s_max,

 sessions_warning s_warning,

 sessions_current s_current,

 sessions_highwater s_high,

 users_max

 FROM v$license;

S_MAX S_WARNING S_CURRENT S_HIGH USERS_MAX

–––

 100 80 65 88 250

In addition, Oracle writes the session high water mark to the database’s
ALERT file when the database shuts down, so you can check for it there.

To see the current number of named users defined in the database, use
the following query:

SELECT COUNT(*) FROM dba_users;

COUNT(*)

––––––––––

 174

User Authentication

This section describes aspects of authenticating users, and includes the
following topics:

• Operating System Authentication

• Database Authentication

Depending on the way you want user identities to be authenticated
before they are allowed to create a database session, there are two ways
to define users.

1. You can configure Oracle so that it performs both
identification and authentication of users.

2. You can configure Oracle so that it performs only the
identification of users (leaving authentication up to the
operating system or network security service).

You can use the following statement to create a user who is identified
and authenticated by Oracle:

CREATE USER scott IDENTIFIED BY tiger;

Operating System
Authentication

19 – 7Managing Users and Resources

Use the following command to create a user who is identified by Oracle
and authenticated by the operating system or a network service:

CREATE USER scott IDENTIFIED EXTERNALLY;

Using CREATE USER IDENTIFIED EXTERNALLY, database
administrators can create database accounts that must be authenticated
via the operating system and cannot be authenticated using a password.
By default, Oracle only allows operating system authenticated logins
over secure connections. Setting the initialization parameter
REMOTE_OS_AUTHENT to TRUE allows the RDBMS to trust the
client’s operating system username received over a non–secure
connection and use it for account access. When creating a user, you can
specify how that user is authenticated by Oracle. Of course, you can
alter any user authentication methods later, after creating a user.

See Also: For information about network authentication, see Oracle7
Server Distributed Systems, Volume I.

With operating system authentication your database relies on the
underlying operating system to restrict access to database accounts. A
database password is not used for this type of login. If your operating
system permits, you can have it authenticate users. If you do so, set the
parameter OS_AUTHENT_PREFIX, and use this prefix in Oracle
usernames. This parameter defines a prefix that Oracle adds to the
beginning of every user’s operating system account name. Oracle
compares the prefixed username with the Oracle usernames in the
database when a user attempts to connect.

For example, assume that OS_AUTHENT_PREFIX is set as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named “TSMITH” is to
connect to an Oracle database and be authenticated by the operating
system, Oracle checks that there is a corresponding database user
“OPS$TSMITH” and, if so, allows the user to connect. All references to a
user authenticated by the operating system must include the prefix, as
seen in “OPS$TSMITH”.

The default value of this parameter is “OPS$” for backward
compatibility with previous versions of Oracle. However, you might
prefer to set the prefix value to some other string or a null string (an
empty set of double quotes: “”). Using a null string eliminates the
addition of any prefix to operating system account names, so that Oracle
usernames exactly match operating system usernames.

After you set OS_AUTHENT_PREFIX, it should remain the same for the
life of a database. If you change the prefix, any database username that

Operating System
Authentication and
Network Clients

Database
Authentication

19 – 8 Oracle7 Server Administrator’s Guide

includes the old prefix cannot be used to establish a connection, unless
you alter the username to have it use password authentication.

See Also: The text of the OS_AUTHENT_PREFIX parameter is
case–sensitive on some operating systems. See your operating
system–specific Oracle documentation for more information about this
initialization parameter.

If you want to have the operating system authenticate a user, by default
that user cannot connect to the database over SQL*Net. This means the
user cannot connect using a multi–threaded server, as this connection
uses SQL*Net. This restriction is the default because a remote user could
impersonate another operating system user over a network connection.

If you are not concerned with this security risk and want to use
operating system user authentication with network clients, set the
parameter REMOTE_OS_AUTHENT (default is FALSE)in the database’s
parameter file to TRUE. The change will take effect the next time you
start the instance and mount the database.

To have Oracle authenticate a user, specify a password for the user when
you create or alter the user. Users can change their password at any
time. Passwords are stored in an encrypted format. Each password must
be made up of single–byte characters, even if your database uses a
multi–byte character set.

See Also: For more information about valid passwords, see the Oracle7
Server SQL Reference.

Oracle Users

Each Oracle database has a list of valid database users. To access a
database, a user must run a database application and connect to the
database instance using a valid username defined in the database. This
section explains how to manage users for a database, and includes the
following topics:

• Creating Users

• Altering Users

• Dropping Users

Creating Users

Specifying a Name

Setting a User’s
Authentication

19 – 9Managing Users and Resources

To create a database user, you must have the CREATE USER system
privilege. When creating a new user, tablespace quotas can be specified
for any tablespace in the database, even if the creator does not have a
quota on a specified tablespace. Due to such privileged power, a security
administrator is normally the only type of user that has the CREATE
USER system privilege.

You create a user with either the Create User property sheet of Server
Manager/GUI, or the SQL command CREATE USER. Using either
option, you can also specify the new user’s default and temporary
segment tablespaces, tablespace quotas, and profile.

The following statement creates a new user named JWARD, identified
externally:

CREATE USER OPS$jward

 IDENTIFIED EXTERNALLY

 DEFAULT TABLESPACE data_ts

 TEMPORARY TABLESPACE temp_ts

 QUOTA 100M ON test_ts

 QUOTA 500K ON data_ts

 PROFILE clerk;

See Also: A newly–created user cannot connect to the database until
granted the CREATE SESSION system privilege; see page 20 – 12.

Within each database, a username must be unique with respect to other
usernames and roles; a user and role cannot have the same name.
Furthermore, each user has an associated schema. Within a schema, each
schema object must have unique names.

Usernames in Multi–Byte Character Sets In a database that uses a
multi–byte character set, each username should contain at least one
single–byte character. If a username contains only multi–byte characters,
the encrypted username/password combination is considerably less
secure.

In the previous CREATE USER statement, the new user is to be
authenticated using the operating system. The username includes the
default prefix “OPS$.” If the OS_AUTHENT_PREFIX parameter is set
differently (that is, if it specifies either no prefix or some other prefix),
modify the username accordingly, by omitting the prefix or substituting
the correct prefix.

Assigning a Default
Tablespace

Assigning a Temporary
Tablespace

19 – 10 Oracle7 Server Administrator’s Guide

Alternatively, you can create a user who is authenticated using the
database and a password:

CREATE USER jward

 IDENTIFIED BY airplane

 . . . ;

In this case, the connecting user must supply the correct password to the
database to connect successfully.

User Passwords in Multi–Byte Character Sets In a database that uses a
multi–byte character set, passwords must include only single–byte
characters. Multi–byte characters are not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle7
Server SQL Reference.

Each user has a default tablespace. When a user creates a schema object
and specifies no tablespace to contain it, Oracle stores the object in the
user’s default tablespace.

The default setting for every user’s default tablespace is the SYSTEM
tablespace. If a user does not create objects, this default setting is fine.
However, if a user creates any type of object, consider specifically setting
the user’s default tablespace. You can set a user’s default tablespace
during user creation, and change it later. Changing the user’s default
tablespace affects only objects created after the setting is changed.

Consider the following issues when deciding which tablespace to
specify:

• Set a user’s default tablespace only if the user has the privileges
to create objects (such as tables, views, and clusters).

• Set a user’s default tablespace to a tablespace for which the user
has a quota.

• If possible, set a user’s default tablespace to a tablespace other
than the SYSTEM tablespace to reduce contention between data
dictionary objects and user objects for the same datafiles.

In the previous CREATE USER statement, JWARD’s default tablespace
is DATA_TS.

Each user also has a temporary tablespace. When a user executes a SQL
statement that requires a temporary segment, Oracle stores the segment
in the user’s temporary tablespace.

If a user’s temporary tablespace is not explicitly set, the default is the
SYSTEM tablespace. However, setting each user’s temporary tablespace
reduces file contention among temporary segments and other types of

Assigning Tablespace
Quotas

19 – 11Managing Users and Resources

segments. You can set a user’s temporary tablespace at user creation,
and change it later.

In the previous CREATE USER statement, JWARD’s temporary
tablespace is TEMP_TS, a tablespace created explicitly to only contain
temporary segments.

You can assign each user a tablespace quota for any tablespace.
Assigning a quota does two things:

• Users with privileges to create certain types of objects can create
those objects in the specified tablespace.

• Oracle limits the amount of space that can be allocated for storage
of a user’s objects within the specified tablespace to the amount of
the quota.

By default, a user has no quota on any tablespace in the database. If the
user has the privilege to create a schema object, you must assign a quota
to allow the user to create objects. Minimally, assign users a quota for
the default tablespace, and additional quotas for other tablespaces in
which they will create objects.

You can assign a user either individual quotas for a specific amount of
disk space in each tablespace, or an unlimited amount of disk space in
all tablespaces. Specific quotas prevent a user’s objects from consuming
too much space in the database.

You can assign a user’s tablespace quotas when you create the user, or
add or change quotas later. If a new quota is less than the old one, then
the following conditions hold true:

• If a user has already exceeded a new tablespace quota, the user’s
objects in the tablespace cannot be allocated more space until the
combined space of these objects falls below the new quota.

• If a user has not exceeded a new tablespace quota, or if the space
used by the user’s objects in the tablespace falls under a new
tablespace quota, the user’s objects can be allocated space up to
the new quota.

Revoking Tablespace AccessYou can revoke a user’s tablespace access
by changing the user’s current quota to zero. After a quota of zero is
assigned, the user’s objects in the revoked tablespace remain, but the
objects cannot be allocated any new space.

UNLIMITED TABLESPACE System PrivilegeTo permit a user to use
an unlimited amount of any tablespace in the database, grant the user
the UNLIMITED TABLESPACE system privilege. This overrides all
explicit tablespace quotas for the user. If you later revoke the privilege,

Setting Default Roles

Altering Users

19 – 12 Oracle7 Server Administrator’s Guide

explicit quotas again take effect. You can grant this privilege only to
users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege,
consider the consequences of doing so:

Advantage

• You can grant a user unlimited access to all tablespaces of a
database with one statement.

Disadvantages

• The privilege overrides all explicit tablespace quotas for the user.

• You cannot selectively revoke tablespace access from a user with
the UNLIMITED TABLESPACE privilege. You can grant access
selectively only after revoking the privilege.

You cannot set a user’s default roles in the CREATE USER statement.
When you first create a user, the user’s default role setting is ALL,
which causes all roles subsequently granted to the user to be default
roles. Use the ALTER USER command to change the user’s default roles.

Warning: When you create a role, it is granted to you implicitly
and added as a default role. You will get an error at login if you
have more than MAX_ENABLED_ROLES. You can avoid this
error by altering the user’s default roles to be less than
MAX_ENABLED_ROLES. Thus, you should change the
DEFAULT ROLE settings of SYS and SYSTEM before creating
user roles.

Users can change their own passwords. However, to change any other
option of a user’s security domain, you must have the ALTER USER
system privilege. Security administrators are normally the only users
that have this system privilege, as it allows a modification of any user’s
security domain. This privilege includes the ability to set tablespace
quotas for a user on any tablespace in the database, even if the user
performing the modification does not have a quota for a specified
tablespace.

You can alter a user’s security settings with either the Alter User
property sheet of Server Manager/GUI, or the SQL command ALTER
USER. Changing a user’s security settings affects the user’s future
sessions, not current sessions.

Changing a User’s
Password, for Non–DBAs

Changing a User’s Default
Roles

19 – 13Managing Users and Resources

The following statement alters the security settings for user AVYRROS:

ALTER USER avyrros

 IDENTIFIED EXTERNALLY

 DEFAULT TABLESPACE data_ts

 TEMPORARY TABLESPACE temp_ts

 QUOTA 100M ON data_ts

 QUOTA 0 ON test_ts

 PROFILE clerk;

The ALTER USER statement here changes AVYRROS’s security settings
as follows:

• Authentication is changed to use AVYRROS’s operating system
account.

• AVYRROS’s default and temporary tablespaces are explicitly set.

• AVYRROS is given a 100M quota for the DATA_TS tablespace.

• AVYRROS’s quota on the TEST_TS is revoked.

• AVYRROS is assigned the CLERK profile.

While most non–DBA users do not use Server Manager, they can still
change their own passwords with the ALTER USER command, as
follows:

ALTER USER andy

 IDENTIFIED BY swordfish;

Users can change their own passwords this way, without any special
privileges (other than those to connect to the database). Users should be
encouraged to change their passwords frequently.

A user must have the ALTER USER privilege to change between Oracle
authorization and operating system authorization; usually only DBAs
should have this privilege.

Passwords in Multi–Byte Character Sets In a database that uses a
multi–byte character set, passwords must include only single–byte
characters. Multi–byte characters are not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle7
Server SQL Reference.

A default role is one that is automatically enabled for a user when the
user creates a session. You can assign a user zero or more default roles.
Any role directly granted to a user can potentially be a default role of
the user; you cannot specify an indirectly granted role when listing
default roles in an ALTER USER DEFAULT ROLE command. However,
if the role that the indirectly granted role is granted to is a default role,

19 – 14 Oracle7 Server Administrator’s Guide

then all indirectly granted roles of that role are enabled by default. The
number of default roles for a user should not exceed the maximum
number of enabled roles that are allowed per user; if it does, when the
user tries to connect, errors are returned and the connection is not
allowed.

Note: Oracle automatically enables a user’s default roles when
the user creates a session. Placing a role in a user’s list of default
roles bypasses authentication for the role, whether the role is
defined to be authorized using a password or the operating
system.

If you specify a list of roles, all other roles granted to that user are
removed from the user’s default role list.

Suppose user AVYRROS has been granted the roles DEVELOPER and
CLERK, and CLERK is his only default role. The following statement
removes CLERK from his default role list and adds DEVELOPER:

ALTER USER avyrros

 DEFAULT ROLE DEVELOPER;

In this case, any roles subsequently granted to AVYRROS will not be
default roles, and will be disabled on connection.

If you specify ALL for the user’s list of default roles, every role granted
directly to the user is automatically added to the user’s list of default
roles. Subsequent modification of a user’s default role list can remove
newly granted roles from a user’s list of default roles. The following
example causes all roles currently granted to AVYRROS to be added to
his list of default roles, as well as all roles granted in the future:

ALTER USER avyrros

 DEFAULT ROLE ALL;

Furthermore, you can specify ALL EXCEPT with a list of roles, and
those roles will be the only roles granted to the user not on the default
role list. For example, the following statement adds all roles currently
granted to AVYRROS (except the role PAYROLL) to the user’s default
role list. Any roles granted to AVYRROS in the future are also added to
the default role list:

ALTER USER avyrros

 DEFAULT ROLE ALL EXCEPT payroll;

To ensure a user has no default roles, specify NONE for the user’s list of
default roles:

ALTER USER avyrros

 DEFAULT ROLE NONE;

Dropping Users

19 – 15Managing Users and Resources

Changing a user’s default role list affects subsequent sessions; it does
not affect any session in progress at the time.

Revoking a role from a user automatically removes the role from the
user’s default role list.

When a user is dropped, the user and associated schema is removed
from the data dictionary and all schema objects contained in the user’s
schema, if any, are immediately dropped.

Note: If a user’s schema and associated objects must remain but
the user must be revoked access to the database, revoke the
CREATE SESSION privilege from the user.

A user that is currently connected to a database cannot be dropped. To
drop a connected user, you must first terminate the user’s sessions using
either Server Manager/GUI, or the SQL command ALTER SYSTEM
with the KILL SESSION clause.

To drop a user and all the user’s schema objects (if any), you must have
the DROP USER system privilege. Because the DROP USER system
privilege is so powerful, a security administrator is typically the only
type of user that has this privilege.

You can drop a user from a database using either the Drop menu item of
Server Manager/GUI, or the SQL command DROP USER.

If the user’s schema contains any schema objects, use the CASCADE
option to drop the user and all associated objects and foreign keys that
depend on the tables of the user successfully. If you do not specify
CASCADE and the user’s schema contains objects, an error message is
returned and the user is not dropped. Before dropping a user whose
schema contains objects, thoroughly investigate which objects the user’s
schema contains and the implications of dropping them before the user
is dropped. Pay attention to any unknown cascading effects. For
example, if you intend to drop a user who owns a table, check whether
any views or procedures depend on that particular table.

The following statement drops the user JONES, all objects in JONES’
schema, and any dependent foreign keys:

DROP USER jones CASCADE;

See Also: For more information about terminating sessions, see
“Terminating Sessions” on page 4 – 16.

Creating Profiles

Using the DEFAULT
Profile

19 – 16 Oracle7 Server Administrator’s Guide

Managing Resources with Profiles

A profile is a named set of resource limits. If resource limits are turned
on, Oracle limits database usage and instance resources to whatever is
defined in the user’s profile. You can assign a profile to each user, and a
default profile to all users who do not have specific profiles. For profiles
to take effect, resource limits must be turned on for the database as a
whole.

This section describes aspects of profile management, and includes the
following topics:

• Creating Profiles

• Assigning Profiles

• Altering Profiles

• Using Composite Limits

• Dropping Profiles

• Enabling and Disabling Resource Limits

To create a profile, you must have the CREATE PROFILE system
privilege. You can create profiles using either the Create Profile property
sheet of Server Manager/GUI, or the SQL command CREATE PROFILE.
At the same time, you can explicitly set particular resource limits.

The following statement creates the profile CLERK:

CREATE PROFILE clerk LIMIT

 SESSIONS_PER_USER 2

 CPU_PER_SESSION unlimited

 CPU_PER_CALL 6000

 LOGICAL_READS_PER_SESSION unlimited

 LOGICAL_READS_PER_CALL 100

 IDLE_TIME 30

 CONNECT_TIME 480;

All unspecified resource limits for a new profile take the limit set by the
DEFAULT profile. You can also specify limits for the DEFAULT profile.

Each database has a DEFAULT profile, and its limits are used in two
cases:

• If a user is not explicitly assigned a profile, then the user
conforms to all the limits of the DEFAULT profile.

• All unspecified limits of any profile use the corresponding limit of
the DEFAULT profile.

Assigning Profiles

Altering Profiles

19 – 17Managing Users and Resources

Initially, all limits of the DEFAULT profile are set to UNLIMITED.
However, to prevent unlimited resource consumption by users of the
DEFAULT profile, the security administrator should change the default
limits using the Alter Profile dialog box of Server Manager, or a typical
ALTER PROFILE statement:

ALTER PROFILE default LIMIT

 . . . ;

Any user with the ALTER PROFILE system privilege can adjust the
limits in the DEFAULT profile. The DEFAULT profile cannot be
dropped.

After a profile has been created, you can assign it to database users.
Each user can be assigned only one profile at any given time. If a profile
is assigned to a user who already has a profile, the new profile
assignment overrides the previously assigned profile. Profile
assignments do not affect current sessions. Profiles can be assigned only
to users and not to roles or other profiles.

Profiles can be assigned to users using the Assign Profile dialog box of
Server Manager/GUI, or the SQL commands CREATE USER or ALTER
USER.

See Also: For more information about assigning a profile to a user, see
page 19 – 9 and page 19 – 12.

You can alter the resource limit settings of any profile using either the
Alter Profile property sheet of Server Manager/GUI, or the SQL
command ALTER PROFILE. To alter a profile, you must have the
ALTER PROFILE system privilege.

Any adjusted profile limit overrides the previous setting for that profile
limit. By adjusting a limit with a value of DEFAULT, the resource limit
reverts to the default limit set for the database. All profiles not adjusted
when altering a profile retain the previous settings. Any changes to a
profile do not affect current sessions. New profile settings are used only
for sessions created after a profile is modified.

The following statement alters the CLERK profile:

ALTER PROFILE clerk LIMIT

 CPU_PER_CALL default

 LOGICAL_READS_PER_SESSION 20000;

See Also: For information about default profiles, see “Using the Default
Profile” on page 19 – 16.

Using Composite
Limits

Determining the Value of
the Composite Limit

Setting Resource Costs

19 – 18 Oracle7 Server Administrator’s Guide

You can limit the total resource cost for a session via composite limits. In
addition to setting specific resource limits explicitly for a profile, you
can set a single composite limit that accounts for all resource limits in a
profile. You can set a profile’s composite limit using the Composite
Limit checkbox of the Create Profile and Alter Profile property sheets of
Server Manager/GUI, or the COMPOSITE_LIMIT parameter of the SQL
commands CREATE PROFILE or ALTER PROFILE. A composite limit is
set via a service unit, which is a weighted sum of all resources used.

The following CREATE PROFILE statement is defined using the
COMPOSITE_LIMIT parameter:

CREATE PROFILE clerk LIMIT

 COMPOSITE_LIMIT 20000

 SESSIONS_PER_USER 2

 CPU_PER_CALL 1000;

Notice that both explicit resource limits and a composite limit can exist
concurrently for a profile. The limit that is reached first stops the activity
in a session. Composite limits allow additional flexibility when limiting
the use of system resources.

The correct service unit setting for a composite limit depends on the
total amount of resource used by an average profile user. As with each
specific resource limit, historical information should be gathered to
determine the normal range of composite resource usage for a typical
profile user.

Each system has its own characteristics; some system resources may be
more valuable than others. Oracle enables you to give each system
resource a cost. Costs weight each system resource at the database level.
Costs are only applied to the composite limit of a profile; costs do not
apply to set individual resource limits explicitly.

To set resource costs, you must have the ALTER RESOURCE system
privilege.

Only certain resources can be given a cost, including CPU_PER_–
SESSION, LOGICAL_READS_PER_SESSION, CONNECT_TIME, and
PRIVATE_SGA. Set costs for a database using the SQL command ALTER
RESOURCE COST:

ALTER RESOURCE COST

 CPU_PER_SESSION 1

 LOGICAL_READS_PER_SESSION 50;

A large cost means that the resource is very expensive, while a small
cost means that the resource is not expensive. By default, each resource
is initially given a cost of 0. A cost of 0 means that the resource should

Dropping Profiles

Enabling and
Disabling Resource
Limits

Enabling and Disabling
Resource Limits Before
Startup

Enabling and Disabling
Resource Limits While the
Database is Open

19 – 19Managing Users and Resources

not be considered in the composite limit (that is, it does not cost
anything to use this resource). No resource can be given a cost of NULL.

See Also: For additional information and recommendations on setting
resource costs, see your operating system–specific Oracle
documentation.

To drop a profile, you must have the DROP PROFILE system privilege.
You can drop a profile using either Server Manager/GUI, or the SQL
command DROP PROFILE. To successfully drop a profile currently
assigned to a user, use the CASCADE option.

The following statement drops the profile CLERK, even though it is
assigned to a user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically
assigned to the DEFAULT profile. The DEFAULT profile cannot be
dropped. Note that when a profile is dropped, the drop does not affect
currently active sessions; only sessions created after a profile is dropped
abide by any modified profile assignments.

A profile can be created, assigned to users, altered, and dropped at any
time by any authorized database user, but the resource limits set for a
profile are enforced only when you enable resource limitation for the
associated database. Resource limitation enforcement can be enabled or
disabled by two different methods, as described in the next two sections.

To alter the enforcement of resource limitation while the database
remains open, you must have the ALTER SYSTEM system privilege.

If a database can be temporarily shut down, resource limitation can be
enabled or disabled by the RESOURCE_LIMIT initialization parameter
in the database’s parameter file. Valid values for the parameter are
TRUE (enables enforcement) and FALSE; by default, this parameter’s
value is set to FALSE. Once the parameter file has been edited, the
database instance must be restarted to take effect. Every time an instance
is started, the new parameter value enables or disables the enforcement
of resource limitation.

If a database cannot be temporarily shut down or the resource limitation
feature must be altered temporarily, you can enable or disable the
enforcement of resource limitation using the SQL command ALTER
SYSTEM. After an instance is started, an ALTER SYSTEM statement
overrides the value set by the RESOURCE_LIMIT parameter. For
example, the following statement enables the enforcement of resource
limitation for a database:

19 – 20 Oracle7 Server Administrator’s Guide

ALTER SYSTEM

 SET RESOURCE_LIMIT = TRUE;

An ALTER SYSTEM statement does not permanently determine the
enforcement of resource limitation. If the database is shut down and
restarted, the enforcement of resource limits is determined by the value
set for the RESOURCE_LIMIT parameter.

Listing Information About Database Users and Profiles

The data dictionary stores information about every user and profile,
including the following:

• all users in a database

• each user’s default tablespace for tables, clusters, and indexes

• each user’s tablespace for temporary segments

• each user’s space quotas, if any

• each user’s assigned profile and resource limits

• the cost assigned to each applicable system resource

• each current session’s memory usage

The following data dictionary views may be of interest when you work
with database users and profiles:

• ALL_USERS

• USER_USERS

• DBA_USERS

• USER_TS_QUOTAS

• DBA_TS_QUOTAS

• USER_RESOURCE_LIMITS

• DBA_PROFILES

• RESOURCE_COST

• V$SESSION

• V$SESSTAT

• V$STATNAME

See Also: See the Oracle7 Server Reference for detailed information about
each view.

Listing Information
about Users and
Profiles: Examples

Listing All Users and
Associated Information

Listing Users’ Roles

19 – 21Managing Users and Resources

The examples in this section assume a database in which the following
statements have been executed:

CREATE PROFILE clerk LIMIT

 SESSIONS_PER_USER 1

 IDLE_TIME 30

 CONNECT_TIME 600;

CREATE USER jfee

 IDENTIFIED BY wildcat

 DEFAULT TABLESPACE users

 TEMPORARY TABLESPACE temp_ts

 QUOTA 500K ON users

 PROFILE clerk;

CREATE USER tsmith

 IDENTIFIED BY bedrock

 DEFAULT TABLESPACE users

 TEMPORARY TABLESPACE temp_ts

 QUOTA unlimited ON users;

The following query lists all users defined in the database:

SELECT * FROM sys.dba_users;

USERNA USER_ID PASSWORD DEFAUL TEMPOR CREATED PROFILE

–––––– –––––––– –––––––––––––––– –––––– –––––– ––––––––– ––––––––

SYS % 522D06CDE017CF93 SYSTEM SYSTEM 31–JUL–90 PUBLIC...

SYSTEM % 9B30B3EB7A7EE46A SYSTEM SYSTEM 31–JUL–90 PUBLIC...

JFEE % DEE4F647381D62C4 USERS TEMP_TS 12–SEP–90 CLERK

TSMITH % 4791F162172E7834 USERS TEMP_TS 12–SEP–90 PUBLIC...

All passwords are encrypted to preserve security.

The following query lists, for each user, the roles granted to that user,
and indicates whether each role is granted with the ADMIN OPTION
and is a default role:

SELECT * FROM sys.dba_role_privs where grantee = ’JFEE’;

GRANTEE GRANTED_ROLE ADM DEF

–––––––––––––––––––––––––– ––––––––––––––––––––––––– ––– –––

JFEE CLERK YES YES

JFEE PAYROLL NO NO

JFEE WEEKLY_ADMIN NO NO

Listing All Tablespace
Quotas

Listing All Profiles and
Assigned Limits

19 – 22 Oracle7 Server Administrator’s Guide

The following query lists all tablespace quotas specifically assigned to
each user:

SELECT * FROM sys.dba_ts_quotas;

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS

–––––––––– –––––––––– –––––––––– –––––––––– –––––––––– ––––––––––

SYSTEM SYSTEM 0 0 0 0

SYSTEM JFEE 0 512000 0 250

SYSTEM TSMITH 0 –1 0 –1

When specific quotas are assigned, the exact number is indicated in the
MAX_BYTES column. Unlimited quotas are indicated by “–1”.

The following query lists all profiles in the database and associated
settings for each limit in each profile:

SELECT * FROM sys.dba_profiles

 ORDER BY profile;

PROFILE RESOURCE_NAME LIMIT

––––––––––––––– –––––––––––––––––––––––––––––––– ––––––––––––––

CLERK COMPOSITE_LIMIT UNLIMITED

CLERK SESSIONS_PER_USER 1

CLERK CPU_PER_SESSION UNLIMITED

CLERK CPU_PER_CALL UNLIMITED

CLERK LOGICAL_READS_PER_SESSION UNLIMITED

CLERK LOGICAL_READS_PER_CALL UNLIMITED

CLERK IDLE_TIME 30

CLERK CONNECT_TIME 600

CLERK PRIVATE_SGA UNLIMITED

DEFAULT COMPOSITE_LIMIT UNLIMITED

DEFAULT SESSIONS_PER_USER UNLIMITED

DEFAULT CPU_PER_SESSION UNLIMITED

DEFAULT CPU_PER_CALL UNLIMITED

DEFAULT LOGICAL_READS_PER_SESSION UNLIMITED

DEFAULT LOGICAL_READS_PER_CALL UNLIMITED

DEFAULT IDLE_TIME UNLIMITED

DEFAULT CONNECT_TIME UNLIMITED

DEFAULT PRIVATE_SGA UNLIMITED

Viewing Memory Use Per
User Session

19 – 23Managing Users and Resources

The following query lists all current sessions, showing the Oracle user
and current memory use per session:

SELECT username, value || ’bytes’ ”Current session memory”

 FROM v$session sess, v$sesstat stat, v$statname name

WHERE sess.sid = stat.sid

 AND stat.statistic# = name.statistic#

 AND name.name = ’session memory’;

The amount of space indicated in “Current session memory” is allocated
in the shared pool for each session connected through the
multi–threaded server. You can limit the amount of memory allocated
per user with the PRIVATE_SGA resource limit.

To see the maximum memory ever allocated to each session since the
instance started, replace ’session memory’ in the query above with ’max
session memory’.

19 – 24 Oracle7 Server Administrator’s Guide

C H A P T E R

20
T

20 – 1Managing User Privileges and Roles

Managing User
Privileges and Roles

his chapter explains how to control the capability to execute system
operations and access to schema objects using privileges and roles. The
following topics are included:

• Identifying User Privileges

• Managing User Roles

• Granting User Privileges and Roles

• Revoking User Privileges and Roles

• Granting Roles Using the Operating System or Network

• Listing Users’ Privilege and Role Information

See Also: For information about controlling access to a database, see
Chapter 19.

For suggested general database security policies, see Chapter 18.

If you are using Trusted Oracle7 in DBMS MAC mode, see the Trusted
Oracle7 Server Administrator’s Guide for important information about
system privileges and role management.

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server
Manager/GUI or Server Manager/LineMode, see the Oracle Server
Manager User’s Guide.

System Privileges

20 – 2 Oracle7 Server Administrator’s Guide

Identifying User Privileges

This section describes Oracle user privileges, and includes the following
topics:

• System Privileges

• Object Privileges

A user privilege is a right to execute a particular type of SQL statement,
or a right to access another user’s object. Oracle also provides shortcuts
for grouping privileges that are commonly granted or revoked together.

There are over 80 distinct system privileges. Each system privilege
allows a user to perform a particular database operation or class of
database operations. Table 20 – 1 lists all system privileges and the
operations that they permit.

Warning: System privileges are very powerful, and should be
cautiously granted to roles and trusted users of the database.

System Privilege Operations Permitted

ANALYZE

ANALYZE ANY Analyze any table, cluster, or index in the database.

AUDIT

AUDIT ANY Audit any schema object in the database.

AUDIT SYSTEM Enable and disable statement and privilege audit options.

CLUSTER

CREATE CLUSTER Create a cluster in own schema.

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to
CREATE ANY TABLE.

ALTER ANY CLUSTER Alter any cluster in the database.

DROP ANY CLUSTER Drop any cluster in the database.

DATABASE

ALTER DATABASE Alter the database; add files to the operating system via
Oracle, regardless of operating system privileges.

DATABASE LINK

CREATE DATABASE LINK Create private database links in own schema.

INDEX

CREATE ANY INDEX Create an index in any schema on any table.

ALTER ANY INDEX Alter any index in the database.

DROP ANY INDEX Drop any index in the database.

Table 20 – 1 System Privileges, continued on next page

20 – 3Managing User Privileges and Roles

System Privilege Operations Permitted

PRIVILEGE

GRANT ANY PRIVILEGE Grant any system privilege (not object privileges).

PROCEDURE

CREATE PROCEDURE Create stored procedures, functions, and packages in
own schema.

CREATE ANY
PROCEDURE

Create stored procedures, functions, and packages in any
schema. (Requires that user also have ALTER ANY
TABLE, BACKUP ANY TABLE, DROP ANY TABLE,
SELECT ANY TABLE, INSERT ANY TABLE, UPDATE
ANY TABLE, DELETE ANY TABLE, or GRANT ANY
TABLE.)

ALTER ANY PROCEDURE Compile any stored procedure, function, or package in
any schema.

DROP ANY PROCEDURE Drop any stored procedure, function, or package in any
schema.

EXECUTE ANY
PROCEDURE

Execute any procedure or function (stand–alone or
packaged), or reference any public package variable in
any schema.

PROFILE

CREATE PROFILE Create profiles.

ALTER PROFILE Alter any profile in the database.

DROP PROFILE Drop any profile in the database.

ALTER RESOURCE COST Set costs for resources used in all user sessions.

PUBLIC DATABASE LINK

CREATE PUBLIC
DATABASE LINK

Create public database links.

DROP PUBLIC DATABASE
LINK

Drop public database links.

PUBLIC SYNONYM

CREATE PUBLIC
SYNONYM

Create public synonyms.

DROP PUBLIC SYNONYM Drop public synonyms.

ROLE

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop any role in the database.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENT

CREATE ROLLBACK
SEGMENT

Create rollback segments.

Table 20 – 1 System Privileges, continued on next page

20 – 4 Oracle7 Server Administrator’s Guide

System Privilege Operations Permitted

ALTER ROLLBACK
SEGMENT

Alter rollback segments.

DROP ROLLBACK
SEGMENT

Drop rollback segments.

SESSION

CREATE SESSION Connect to the database.

ALTER SESSION Issue ALTER SESSION statements.

RESTRICTED SESSION Connect when the database has been started using
STARTUP RESTRICT. (The OSOPER and OSDBA roles
contain this privilege.)

SEQUENCE

CREATE SEQUENCE Create a sequence in own schema.

CREATE ANY SEQUENCE Create any sequence in any schema.

ALTER ANY SEQUENCE Alter any sequence in any schema.

DROP ANY SEQUENCE Drop any sequence in any schema.

SELECT ANY SEQUENCE Reference any sequence in any schema.

SNAPSHOT

CREATE SNAPSHOT Create snapshots in own schema. (User must also have
the CREATE TABLE privilege.)

CREATE SNAPSHOT Create snapshots in any schema. (User must also have
the CREATE ANY TABLE privilege.)

ALTER SNAPSHOT Alter any snapshot in any schema.

DROP ANY SNAPSHOT Drop any snapshot in any schema.

SYNONYM

CREATE SYNONYM Create a synonym in own schema.

CREATE SYNONYM Create any synonym in any schema.

DROP ANY SYNONYM Drop any synonym in any schema.

SYSTEM

ALTER SYSTEM Issue ALTER SYSTEM statements.

TABLE

CREATE TABLE Create tables in own schema. Also allows grantee to
create indexes (including those for integrity constraints)
on table in own schema. (The grantee must have a quota
for the tablespace or the UNLIMITED TABLESPACE
privilege.)

CREATE ANY TABLE Create tables in any schema. (If grantee has CREATE
ANY TABLE privilege and creates a table in another
user’s schema, the owner must have space quota on that
tablespace. The table owner need not have the CREATE
[ANY] TABLE privilege.)

Table 20 – 1 System Privileges, continued on next page

20 – 5Managing User Privileges and Roles

System Privilege Operations Permitted

ALTER ANY TABLE Alter any table in any schema and compile any view in
any schema.

BACKUP ANY TABLE Perform an incremental export using the Export utility of
tables in any schema.

DROP ANY TABLE Drop or truncate any table in any schema.

LOCK ANY TABLE Lock any table or view in any schema.

COMMENT ANY TABLE Comment on any table, view, or column in schema.

SELECT ANY TABLE Query any table, view, or snapshot in any schema.

INSERT ANY TABLE Insert rows into any table or view in any schema.

UPDATE ANY TABLE Update rows in any table or view in any schema.

DELETE ANY TABLE Delete rows from any table or view in any schema.

TABLESPACE

CREATE TABLE SPACE Create tablespaces; add files to the operating system via
Oracle, regardless of the user’s operating system
privileges.

ALTER TABLESPACE Alter tablespaces; add files to the operating system via
Oracle, regardless of the user’s operating system
privileges.

MANAGE TABLESPACE Take any tablespace offline, bring any tablespace online,
and begin and end backups of any tablespace.

DROP TABLESPACE Drop tablespaces.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege
overrides any specific quotas assigned. If revoked, the
grantee’s schema objects remain but further tablespace
allocation is denied unless allowed by specific tablespace
quotas. This system privilege can be granted only to
users and not to roles. In general, specific tablespace
quotas are assigned instead of granting this system
privilege.

TRANSACTION

FORCE TRANSACTION Force the commit or rollback of own in–doubt distributed
transaction in the local database.

FORCE ANY
TRANSACTION

Force the commit or rollback of any in–doubt distributed
transaction in the local database.

TRIGGER

CREATE TRIGGER Create a trigger in own schema.

CREATE ANY TRIGGER Create any trigger in any schema associated with any
table in any schema.

ALTER ANY TRIGGER Enable, disable, or compile any trigger in any schema.

DROP ANY TRIGGER Drop any trigger in any schema.

Table 20 – 1 System Privileges, continued on next page

Object Privileges

20 – 6 Oracle7 Server Administrator’s Guide

System Privilege Operations Permitted

USER

CREATE ANY USER Create users; assign quotas on any tablespace, set
default and temporary tablespaces, and assign a profile
as part of a CREATE USER statement.

BECOME ANY USER Become another user. (Required by any user performing
a full database import.)

ALTER USER Alter other users: change any user’s password or
authentication method, assign tablespace quotas, set
default and temporary tablespaces, assign profiles and
default roles, in an ALTER USER statement. (Not required
to alter own password.)

DROP USER Drop another user.

VIEW

CREATE VIEW Create a view in own schema.

CREATE ANY VIEW Create a view in any schema. (Requires that user also
have ALTER ANY TABLE, BACKUP ANY TABLE, DROP
ANY TABLE, LOCK ANY TABLE, COMMENT ANY
TABLE, SELECT ANY TABLE, INSERT ANY TABLE,
UPDATE ANY TABLE, DELETE ANY TABLE, or GRANT
ANY TABLE.)

DROP ANY VIEW Drop any view in any schema.

Table 20 – 1 System Privileges

Each type of object has different privileges associated with it.
Table 20 – 2 summarizes the object privileges available for each
type of object.

Object Privilege Table View Sequence Procedure 1

ALTER � �

DELETE � �

EXECUTE �

INDEX �2

INSERT � �

REFERENCES �2

SELECT � �3 �

UPDATE � �

Table 20 – 2 Object Privileges

1 Includes stand–alone stored procedures and functions, and public package constructs.
2 Privilege cannot be granted to a role.
3 Can also be granted for snapshots.

Object Privilege Shortcut

20 – 7Managing User Privileges and Roles

Not all types of schema objects are included in Table 20 – 2. Many of the
schema objects not listed here (such as clusters, indexes, triggers, and
database links) are controlled exclusively using system privileges. For
example, to alter a cluster, a user must own the cluster or have the
ALTER ANY CLUSTER system privilege.

Table 20 – 3 lists the SQL statements permitted by the object privileges
listed in Table 20 – 2.

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)

DELETE DELETE FROM object (table or view)

EXECUTE EXECUTE object (procedure or function). References to
public package variables

INDEX CREATE INDEX ON object (tables only)

INSERT INSERT INTO object (table or view)

REFERENCES CREATE or ALTER TABLE statement defining a FOREIGN
KEY integrity constraint on object (tables only)

SELECT SELECT...FROM object (table, view, or snapshot). SQL
statements using a sequence

UPDATE UPDATE object (table or view)

Table 20 – 3 SQL Statements Permitted by Object Privileges

The ALL and ALL PRIVILEGES shortcuts grant or revoke all available
object privileges for a object. This shortcut is not a privilege, rather, it is
a way of granting or revoking all object privileges with one word in
GRANT and REVOKE statements. Note that if all object privileges are
granted using the ALL shortcut, individual privileges can still be
revoked.

Likewise, all individually granted privileges can be revoked using the
ALL shortcut. However, if you REVOKE ALL, and revoking causes
integrity constraints to be deleted (because they depend on a
REFERENCES privilege that you are revoking), you must include the
CASCADE CONSTRAINTS option in the REVOKE statement.

Creating a Role

Role Names

Role Names in Multi–Byte
Character Sets

20 – 8 Oracle7 Server Administrator’s Guide

Managing User Roles

This section describes aspects of managing roles, and includes the
following topics:

• Creating a Role

• Predefined Roles

A role groups several privileges and roles, so that they can be granted
and revoked simultaneously from users. Roles can be enabled and
disabled per user.

See Also: For information about roles, see the Oracle7 Server Concepts
manual.

You can create a role using either the SQL command CREATE ROLE, or
the Create Role property sheet of Server Manager.

You must have the CREATE ROLE system privilege to create a role.
Typically, only security administrators have this system privilege.

Note: Immediately after creation, a role has no privileges
associated with it. To associate privileges with a new role, you
must grant privileges or other roles to the new role.

The following statement creates the CLERK role, which is authorized by
the database using the password BICENTENNIAL:

CREATE ROLE clerk

 IDENTIFIED BY bicentennial;

You must give each role you create a unique name among existing
usernames and role names of the database. Roles are not contained in
the schema of any user.

In a database that uses a multi–byte character set, Oracle Corporation
recommends that each role name contain at least one single–byte
character. If a role name contains only multi–byte characters, the
encrypted role name/password combination is considerably less secure.

Predefined Roles

Role Authorization

20 – 9Managing User Privileges and Roles

The roles listed in Table 20 – 4 are automatically defined for Oracle
databases. These roles are provided for backward compatibility to
earlier versions of Oracle. You can grant and revoke privileges and roles
to these predefined roles, much the way you do with any role you
define.

Role Name Privileges Granted To Role

CONNECT1 ALTER SESSION, CREATE CLUSTER, CREATE
DATABASE LINK, CREATE SEQUENCE, CREATE
SESSION, CREATE SYNONYM, CREATE TABLE,
CREATE VIEW

RESOURCE1,2 CREATE CLUSTER, CREATE PROCEDURE,
CREATE SEQUENCE, CREATE TABLE, CREATE
TRIGGER

DBA1,3,4 All system privileges WITH ADMIN OPTION

EXP_FULL_DATABASE5 SELECT ANY TABLE, BACKUP ANY TABLE,
INSERT, DELETE, AND UPDATE ON THE TABLES
SYS.INCVID, SYS.INCFIL, AND SYS.INCEXP

IMP_FULL_DATABASE5 BECOME USER, WRITEDOWN6

Table 20 – 4 Predefined Roles

1 Created by SQL.BSQ.
2 Grantees of the RESOURCE role also receive the UNLIMITED TABLESPACE system

privilege as an explicitly grant (not as part of the RESOURCE role).
3 Grantees of the DBA role also receive the UNLIMITED TABLESPACE system privilege

with the ADMIN OPTION as an explicit grant (not as part of the DBA role).
Therefore when the DBA role is revoked, any explicit grant of UNLIMITED TABLESPACE
is also revoked.

4 Also includes the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles if
CATEXP.SQL has been run.

5 Created by CATEXP.SQL.
6 A Trusted Oracle7 privilege only; see the Trusted Oracle7 Server Administrator’s Guide.

A database role can optionally require authorization when a user
attempts to enable the role. Role authorization can be maintained by the
database (using passwords), by the operating system, or by a network
service.

To alter the authorization method for a role, you must have the ALTER
ANY ROLE system privilege or have been granted the role with the
ADMIN OPTION.

See Also: For more information about network roles, see Oracle7 Server
Distributed Systems, Volume I.

Role Authorization by the
Database

Role Authorization by the
Operating System

Role Authorization and
Network Clients

20 – 10 Oracle7 Server Administrator’s Guide

The use of a role can be protected by an associated password. If you are
granted a role protected by a password, you can enable or disable the
role only by supplying the proper password for the role in a SET ROLE
command.

Note: In a database that uses a multi–byte character set,
passwords for roles must include only single–byte characters.
Multi–byte characters are not accepted in passwords.

See Also: For more information about valid passwords, see the Oracle7
Server Reference.

The following statement creates a role named ACCTS_REC and requires
that the operating system authorize its use:

CREATE ROLE role IDENTIFIED EXTERNALLY;

Role authentication via the operating system is useful only when the
operating system must be able to dynamically link operating system
privileges with applications. When a user starts an application, the
operating system grants an operating system privilege to the user. The
granted operating system privilege corresponds to the role associated
with the application. At this point, the application can enable the
application role. When the application is terminated, the previously
granted operating system privilege is revoked from the user’s operating
system account.

If a role is authorized by the operating system, you must configure
information for each user at the operating system level. This operation is
operating system–dependent.

If roles are granted by the operating system, you do not need to have the
operating system authorize them also; this is redundant.

See Also: For more information about roles granted by the operating
system, see page 20 – 18.

If users connect to the database over SQL*Net, by default their roles
cannot be authenticated by the operating system. This includes
connections through a multi–threaded server, as this connection requires
SQL*Net. This restriction is the default because a remote user could
impersonate another operating system user over a network connection.

If you are not concerned with this security risk and want to use
operating system role authentication for network clients, set the
parameter REMOTE_OS_ROLES in the database’s parameter file to
TRUE. The change will take effect the next time you start the instance
and mount the database. (The parameter is FALSE by default.)

Witholding Authorization

Changing a Role’s
Authorization

Changing a User’s Default
Roles

Dropping Roles

20 – 11Managing User Privileges and Roles

A role can also be created without authorization. If a role is created
without any protection, the role can be enabled or disabled by any
grantee.

You can set and change the authorization method for a role using either
the Alter Role property sheet of Server Manager/GUI or the SQL
command ALTER ROLE.

The following statement alters the CLERK role to be authorized
externally:

ALTER ROLE clerk

 IDENTIFIED EXTERNALLY;

A user’s list of default roles can be set and altered using either the Alter
User dialog box of Server Manager or the SQL command ALTER USER.

See Also: See “Altering Users” on page 19 – 12 for more information
about these options.

Using the ALL Keyword If the user’s list of default roles is specified as
ALL, every role granted to a user is automatically added to the user’s
list of default roles. Only subsequent modification of a user’s default
role list can remove newly granted roles from a user’s list of default
roles.

Using the MAX_ENABLED_ROLES Parameter A user can enable as
many roles as specified by the initialization parameter
MAX_ENABLED_ROLES. All indirectly granted roles enabled as a
result of enabling a primary role are included in this count. The database
administrator can alter this limitation by modifying the value for this
parameter. Higher values permit each user session to have more
concurrently enabled roles. However, the larger the value for this
parameter, the more memory space is required on behalf of each user
session; this is because the PGA size is affected for each user session,
and requires four bytes per role. Determine the highest number of roles
that will be concurrently enabled by any one user and use this value for
the MAX_ENABLED_ROLES parameter.

In some cases, it may be applicable to drop a role from the database. The
security domains of all users and roles granted a dropped role are
immediately changed to reflect the absence of the dropped role’s
privileges. All indirectly granted roles of the dropped role are also
removed from affected security domains. Dropping a role automatically
removes the role from all users’ default role lists.

Granting System
Privileges and Roles

The ADMIN Option

20 – 12 Oracle7 Server Administrator’s Guide

Because the creation of objects is not dependent on the privileges
received via a role, tables and other objects are not dropped when a role
is dropped.

To drop a role, you must have the DROP ANY ROLE system privilege or
have been granted the role with the ADMIN OPTION.

You can drop a role using either the Drop menu item of Server Manager,
or the SQL command DROP ROLE.

The following statement drops the role CLERK:

DROP ROLE clerk;

Granting User Privileges and Roles

This section describes aspects of granting privileges and roles, and
includes the following topics:

• Granting System Privileges and Roles

• Granting Object Privileges and Roles

• Granting Privileges on Columns

You can grant system privileges and roles to other roles and users using
either the Grant System Privileges/Roles dialog box of Server Manager,
or the SQL command GRANT.

To grant a system privilege or role, you must have the ADMIN OPTION
for all system privileges and roles being granted. Also, any user with the
GRANT ANY ROLE system privilege can grant any role in a database.

The following statement grants the CREATE SESSION system privilege
and the ACCTS_PAY role to the user JWARD:

GRANT create session, accts_pay

 TO jward;

Note: Object privileges cannot be granted along with system
privileges and roles in the same GRANT statement.

When a user creates a role, the role is automatically granted to the
creator with the ADMIN OPTION. A grantee with the ADMIN option
has several expanded capabilities:

• The grantee can grant or revoke the system privilege or role to or
from any user or other role in the database. (Users cannot revoke a
role from themselves.)

Granting Object
Privileges and Roles

20 – 13Managing User Privileges and Roles

• The grantee can further grant the system privilege or role with the
ADMIN OPTION.

• The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the
NEW_DBA role to MICHAEL:

GRANT new_dba TO michael WITH ADMIN OPTION;

The user MICHAEL cannot only use all of the privileges implicit in the
NEW_DBA role, but can grant, revoke, or drop the NEW_DBA role as
deemed necessary. Because of these powerful capabilities, exercise
caution when granting system privileges or roles with the ADMIN
OPTION. Such privileges are usually reserved for a security
administrator and rarely granted to other administrators or users of the
system.

You can grant object privileges to roles and users using the Add
Privilege to Role/User dialog box of Server Manager, or the SQL
command GRANT.

To grant an object privilege, you must fulfill one of the following
conditions:

• You own the object specified.

• You have been granted the object privileges being granted with
the GRANT OPTION.

The following statement grants the SELECT, INSERT, and DELETE
object privileges for all columns of the EMP table to the users JFEE and
TSMITH:

GRANT select, insert, delete ON emp TO jfee, tsmith;

To grant the INSERT object privilege for only the ENAME and JOB
columns of the EMP table to the users JFEE and TSMITH, issue the
following statement:

GRANT insert(ename, job) ON emp TO jfee, tsmith;

To grant all object privileges on the SALARY view to the user JFEE, use
the ALL shortcut, as shown in the following example:

GRANT ALL ON salary TO jfee;

Note: System privileges and roles cannot be granted along with
object privileges in the same GRANT statement.

The GRANT OPTION

Granting Privileges on
Columns

20 – 14 Oracle7 Server Administrator’s Guide

The user whose schema contains an object is automatically granted all
associated object privileges with the GRANT OPTION. This special
privilege allows the grantee several expanded privileges:

• The grantee can grant the object privilege to any user or any role
in the database.

• The grantee can also grant the object privilege to other users, with
or without the GRANT OPTION.

• If the grantee receives object privileges for a table with the
GRANT OPTION and the grantee has the CREATE VIEW or
CREATE ANY VIEW system privilege, the grantee can create
views on the table and grant the corresponding privileges on the
view to any user or role in the database.

The GRANT OPTION is not valid when granting an object privilege to a
role. Oracle prevents the propagation of object privileges via roles so
that grantees of a role cannot propagate object privileges received by
means of roles.

You can grant INSERT, UPDATE, or REFERENCES privileges on
individual columns in a table.

Warning: Before granting a column–specific INSERT privilege,
determine if the table contains any columns on which NOT
NULL constraints are defined. Granting selective insert
capability without including the NOT NULL columns prevents
the user from inserting any rows into the table. To avoid this
situation, make sure that each NOT NULL column is either
insertable or has a non–NULL default value. Otherwise, the
grantee will not be able to insert rows into the table and will
receive an error.

Grant INSERT privilege on the ACCT_NO column of the ACCOUNTS
table to SCOTT:

GRANT INSERT (acct_no)

 ON accounts TO scott;

Revoking System
Privileges and Roles

Revoking Object
Privileges and Roles

20 – 15Managing User Privileges and Roles

Revoking User Privileges and Roles

This section describes aspects of revoking user privileges and roles, and
includes the following topics:

• Revoking System Privileges and Roles

• Revoking Object Privileges and Roles

You can revoke system privileges and/or roles using either the Revoke
System Privileges/Roles dialog box of Server Manager, or the SQL
command REVOKE.

Any user with the ADMIN OPTION for a system privilege or role can
revoke the privilege or role from any other database user or role The
grantor does not have to be the user that originally granted the privilege
or role. Also, users with the GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege
and the ACCTS_REC role from TSMITH:

REVOKE create table, accts_rec FROM tsmith;

Note: The ADMIN OPTION for a system privilege or role
cannot be selectively revoked. The privilege or role must be
revoked and then the privilege or role re–granted without the
ADMIN OPTION.

You can revoke object privileges using Server Manager, or the SQL
command REVOKE.

To revoke an object privilege, the revoker must be the original grantor of
the object privilege being revoked.

For example, assuming you are the original grantor, to revoke the
SELECT and INSERT privileges on the EMP table from the users JFEE
and TSMITH, you would issue the following statement:

REVOKE select, insert ON emp

 FROM jfee, tsmith;

The following statement revokes all privileges (which were originally
granted to the role HUMAN_RESOURCE) from the table DEPT:

REVOKE ALL ON dept FROM human_resources;

Note: This statement above would only revoke the privileges
that the grantor authorized, not the grants made by other users.
The GRANT OPTION for an object privilege cannot be
selectively revoked. The object privilege must be revoked and
then re–granted without the GRANT OPTION. Users cannot
revoke object privileges from themselves.

Revoking Column
Selective Object Privileges

Revoking the
REFERENCES Object
Privilege

Effects of Revoking
Privileges

System Privileges

20 – 16 Oracle7 Server Administrator’s Guide

Although users can grant column selective INSERT, UPDATE, and
REFERENCES privileges for tables and views, they cannot selectively
revoke column specific privileges with a similar REVOKE statement.
Instead, the grantor must first revoke the object privilege for all columns
of a table or view, and then selectively re–grant the column specific
privileges that should remain.

For example, assume that role HUMAN_RESOURCES has been granted
the UPDATE privilege on the DEPTNO and DNAME columns of the
table DEPT. To revoke the UPDATE privilege on just the DEPTNO
column, you would issue the following two statements:

REVOKE UPDATE ON dept FROM human_resources;

GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes UPDATE privilege on all columns of
the DEPT table from the role HUMAN_RESOURCES. The GRANT
statement re–grants UPDATE privilege on the DNAME column to the
role HUMAN_RESOURCES.

If the grantee of the REFERENCES object privilege has used the
privilege to create a foreign key constraint (that currently exists), the
grantor can only revoke the privilege by specifying the CASCADE
CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked
REFERENCES privilege are dropped when the CASCADE
CONSTRAINTS options is specified.

Depending on the type of privilege, there may be cascading effects when
a privilege is revoked.

There are no cascading effects when revoking a system privilege related
to DDL operations, regardless of whether the privilege was granted with
or without the ADMIN OPTION. For example, assume the following:

1. The security administrator grants the CREATE TABLE system
privilege to JFEE with the ADMIN OPTION.

2. JFEE creates a table.

3. JFEE grants the CREATE TABLE system privilege to TSMITH.

4. TSMITH creates a table.

5. The security administrator revokes the CREATE TABLE system
privilege from JFEE.

Object Privileges

20 – 17Managing User Privileges and Roles

6. JFEE’s table continues to exist. TSMITH still has the table and the
CREATE TABLE system privilege.

Cascading effects can be observed when revoking a system privilege
related to a DML operation. For example, if SELECT ANY TABLE is
granted to a user, and that user has created any procedures, all
procedures contained in the user’s schema must be re–authorized before
they can be used again.

Revoking an object privilege may have cascading effects that should be
investigated before issuing a REVOKE statement.

• Object definitions that depend on a DML object privilege can be
affected if the DML object privilege is revoked. For example,
assume the procedure body of the TEST procedure includes a
SQL statement that queries data from the EMP table. If the
SELECT privilege on the EMP table is revoked from the owner of
the TEST procedure, the procedure can no longer be executed
successfully.

• Object definitions that require the ALTER and INDEX DDL object
privileges are not affected if the ALTER or INDEX object privilege
is revoked. For example, if the INDEX privilege is revoked from a
user that created an index on someone else’s table, the index
continues to exist after the privilege is revoked.

• When a REFERENCES privilege for a table is revoked from a user,
any foreign key integrity constraints defined by the user that
require the dropped REFERENCES privilege are automatically
dropped. For example, assume that the user JWARD is granted
the REFERENCES privilege for the DEPTNO column of the DEPT
table and creates a foreign key on the DEPTNO column in the
EMP table that references the DEPTNO column. If the
REFERENCES privilege on the DEPTNO column of the DEPT
table is revoked, the foreign key constraint on the DEPTNO
column of the EMP table is dropped in the same operation.

• The object privilege grants propagated using the GRANT
OPTION are revoked if a grantor’s object privilege is revoked. For
example, assume that USER1 is granted the SELECT object
privilege with the GRANT OPTION, and grants the SELECT
privilege on EMP to USER2. Subsequently, the SELECT privilege
is revoked from USER1. This revoke is cascaded to USER2 as well.
Any objects that depended on USER1’s and USER2’s revoked
SELECT privilege can also be affected, as described in previous
bullet items.

Granting to and
Revoking from the
User Group PUBLIC

When Do Grants and
Revokes Take Effect?

20 – 18 Oracle7 Server Administrator’s Guide

Privileges and roles can also be granted to and revoked from the user
group PUBLIC. Because PUBLIC is accessible to every database user, all
privileges and roles granted to PUBLIC are accessible to every database
user.

Security administrators and database users should only grant a privilege
or role to PUBLIC if every database user requires the privilege or role.
This recommendation reinforces the general rule that at any given time,
each database user should only have the privileges required to
accomplish the group’s current tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading
effects. If any privilege related to a DML operation is revoked from
PUBLIC (for example, SELECT ANY TABLE, UPDATE ON emp), all
procedures in the database, including functions and packages, must be
reauthorized before they can be used again. Therefore, exercise caution
when granting DML–related privileges to PUBLIC.

See Also: For more information about object dependencies, see
“Managing Object Dependencies” on page 16 – 18.

Depending on what is granted or revoked, a grant or revoke takes effect
at different times:

• All grants/revokes of system and object privileges to anything
(users, roles, and PUBLIC) are immediately observed.

• All grants/revokes of roles to anything (users, other roles,
PUBLIC) are only observed when a current user session issues a
SET ROLE statement to re–enable the role after the grant/revoke,
or when a new user session is created after the grant/revoke.

Granting Roles Using the Operating System or Network

This section describes aspects of granting roles via your operating
system or network, and includes the following topics:

• Using Operating System Role Identification

• Using Operating System Role Management

• Granting and Revoking Roles When OS_ROLES=TRUE

• Enabling and Disabling Roles When OS_ROLES=TRUE

• Using Network Connections with Operating System Role
Management

20 – 19Managing User Privileges and Roles

Instead of a security administrator explicitly granting and revoking
database roles to and from users using GRANT and REVOKE
statements, the operating system that operates Oracle can grant roles to
users at connect time. Roles can be administered using the operating
system and passed to Oracle when a user creates a session. As part of
this mechanism, each user’s default roles and the roles granted to a user
with the ADMIN OPTION can be identified. Even if the operating
system is used to authorize users for roles, all roles must be created in
the database and privileges assigned to the role with GRANT
statements.

Roles can also be granted through a network service. For information
about network roles, see Oracle7 Server Distributed Systems, Volume I.

The advantage of using the operating system to identify a user’s
database roles is that privilege management for an Oracle database can
be externalized. The security facilities offered by the operating system
control a user’s privileges. This option may offer advantages of
centralizing security for a number of system activities. For example,
MVS Oracle administrators may want RACF groups to identify a
database user’s roles, UNIX Oracle administrators may want UNIX
groups to identify a database user’s roles, or VMS Oracle administrators
may want to use rights identifiers to identify a database user’s roles.

The main disadvantage of using the operating system to identify a
user’s database roles is that privilege management can only be
performed at the role level. Individual privileges cannot be granted
using the operating system, but can still be granted inside the database
using GRANT statements.

A secondary disadvantage of using this feature is that by default users
cannot connect to the database through the multi–threaded server, or
any other network connection, if the operating system is managing
roles. However, you can change this default; see “Using Network
Connections with Operating System Role Management” on page 20 – 21.

See Also: The features described in this section are available only on
some operating systems. This information is operating
system–dependent; see your operating system–specific Oracle
documentation.

Using Operating
System Role
Identification

20 – 20 Oracle7 Server Administrator’s Guide

To operate a database so that it uses the operating system to identify
each user’s database roles when a session is created, set the initialization
parameter OS_ROLES to TRUE (and restart the instance, if it is currently
running). When a user attempts to create a session with the database,
Oracle initializes the user’s security domain using the database roles
identified by the operating system.

To identify database roles for a user, each Oracle user’s operating system
account must have operating system identifiers (these may be called
groups, rights identifiers, or other similar names) that indicate which
database roles are to be available for the user. Role specification can also
indicate which roles are the default roles of a user and which roles are
available with the ADMIN OPTION. No matter which operating system
is used, the role specification at the operating system level follows the
format:

ORA_<ID>_<ROLE>[_[D][A]]

where:

The definition of ID varies on different operating
systems. For example, on VMS, ID is the instance
identifier of the database; on MVS, it is the machine
type; on UNIX, it is the system ID.

This optional character indicates that this role is to
be a default role of the database user.

This optional character indicates that this role is to
be granted to the user with the ADMIN OPTION.
This allows the user to grant the role to other roles
only. (Roles cannot be granted to users if the
operating system is used to manage roles.)

Note: If either the D or A characters are specified, they must be
preceded by an underscore.

For example, an operating system account might have the following
roles identified in its profile:

ORA_PAYROLL_ROLE1

ORA_PAYROLL_ROLE2_A

ORA_PAYROLL_ROLE3_D

ORA_PAYROLL_ROLE4_DA

When the corresponding user connects to the PAYROLL instance of
Oracle, ROLE3 and ROLE4 are defaults, while ROLE2 and ROLE4 are
available with the ADMIN OPTION.

ID

D

A

Using Operating
System Role
Management

Granting and
Revoking Roles When
OS_ROLES=TRUE

Enabling and
Disabling Roles When
OS_ROLES=TRUE

Using Network
Connections with
Operating System Role
Management

20 – 21Managing User Privileges and Roles

When you use operating system managed roles, it is important to note
that database roles are being granted to an operating system user. Any
database user to which the OS user is able to connect will have the
authorized database roles enabled. For this reason, you should consider
defining all Oracle users as IDENTIFIED EXTERNALLY if you are using
OS_ROLES = TRUE, so that the database accounts are tied to the OS
account that was granted privileges.

If OS_ROLES is set to TRUE, the operating system completely manages
the grants and revokes of roles to users. Any previous grants of roles to
users via GRANT statements do not apply; however, they are still listed
in the data dictionary. Only the role grants made at the operating system
level to users apply. Users can still grant privileges to roles and users.

Note: If the operating system grants a role to a user with the
ADMIN OPTION, the user can grant the role only to other roles.

If OS_ROLES is set to TRUE, any role granted by the operating system
can be dynamically enabled using the SET ROLE command. If the role
was defined to require a password or operating system authorization,
that still applies. However, any role not identified in a user’s operating
system account cannot be specified in a SET ROLE statement, even if a
role has been granted using a GRANT statement when OS_ROLES =
FALSE. (If you specify such a role, Oracle ignores it.)

When OS_ROLES = TRUE, a user can enable as many roles as specified
by the parameter MAX_ENABLED_ROLES.

If you want to have the operating system manage roles, by default users
cannot connect to the database through the multi–threaded server. This
restriction is the default because a remote user could impersonate
another operating system user over a non–secure connection.

If you are not concerned with this security risk and want to use
operating system role management with the multi–threaded server, or
any other network connection, set the parameter REMOTE_OS_ROLES
in the database’s parameter file to TRUE. The change will take effect the
next time you start the instance and mount the database. (The parameter
is FALSE by default.)

20 – 22 Oracle7 Server Administrator’s Guide

Listing Privilege and Role Information

To list the grants made for objects, a user can query the following data
dictionary views:

• ALL_COL_PRIVS, USER_COL_PRIVS, DBA_COL_PRIVS

• ALL_COL_PRIVS_MADE, USER_COL_PRIVS_MADE

• ALL_COL_PRIVS_RECD, USER_COL_PRIVS_RECD

• ALL_TAB_PRIVS, USER_TAB_PRIVS, DBA_TAB_PRIVS

• ALL_TAB_PRIVS_MADE, USER_TAB_PRIVS_MADE

• ALL_TAB_PRIVS_RECD, USER_TAB_PRIVS_RECD

• DBA_ROLES

• USER_ROLE_PRIVS, DBA_ROLE_PRIVS

• USER_SYS_PRIVS, DBA_SYS_PRIVS

• COLUMN_PRIVILEGES

• ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, ROLE_TAB_PRIVS

• SESSION_PRIVS, SESSION_ROLES

Note: See the Oracle7 Server Reference for a detailed description
of these data dictionary views.

Listing Privilege and
Role Information:
Examples

Listing All System
Privilege Grants

20 – 23Managing User Privileges and Roles

For the following examples, assume the following statements are issued:

CREATE ROLE security_admin IDENTIFIED BY honcho;

GRANT create profile, alter profile, drop profile,

 create role, drop any role, grant any role, audit any,

 audit system, create user, become user, alter user, drop user

 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON sys.aud$ TO security_admin;

GRANT security_admin, create session TO swilliams;

GRANT security_admin TO system_administrator;

GRANT create session TO jward;

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

The following query indicates all system privilege grants made to roles
and users:

SELECT * FROM sys.dba_sys_privs;

GRANTEE PRIVILEGE ADM

–––––––––––––––––– ––––––––––––––––––––––––––––––––––––––– –––

SECURITY_ADMIN ALTER PROFILE YES

SECURITY_ADMIN ALTER USER YES

SECURITY_ADMIN AUDIT ANY YES

SECURITY_ADMIN AUDIT SYSTEM YES

SECURITY_ADMIN BECOME USER YES

SECURITY_ADMIN CREATE PROFILE YES

SECURITY_ADMIN CREATE ROLE YES

SECURITY_ADMIN CREATE USER YES

SECURITY_ADMIN DROP ANY ROLE YES

SECURITY_ADMIN DROP PROFILE YES

SECURITY_ADMIN DROP USER YES

SECURITY_ADMIN GRANT ANY ROLE YES

SWILLIAMS CREATE SESSION NO

JWARD CREATE SESSION NO

Listing All Role Grants

Listing Object Privileges
Granted to a User

Listing the Current
Privilege Domain of Your
Session

20 – 24 Oracle7 Server Administrator’s Guide

The following query returns all the roles granted to users and other
roles:

SELECT * FROM sys.dba_role_privs;

GRANTEE GRANTED_ROLE ADM

–––––––––––––––––– –– –––

SWILLIAMS SECURITY_ADMIN NO

The following query returns all object privileges (not including column
specific privileges) granted to the specified user:

SELECT table_name, privilege, grantable FROM sys.dba_tab_privs

 WHERE grantee = ’JWARD’;

TABLE_NAME PRIVILEGE GRANTABLE

–––––––––––– –––––––––––– –––––––––––

EMP SELECT NO

EMP DELETE NO

To list all the column specific privileges that have been granted, use the
following query:

SELECT grantee, table_name, column_name, privilege

 FROM sys.dba_col_privs;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE

––––––––––––– ––––––––––––– ––––––––––––––––––– –––––––––––––––––

SWILLIAMS EMP ENAME INSERT

SWILLIAMS EMP JOB INSERT

JWARD EMP ENAME INSERT

JWARD EMP JOB INSERT

The following query lists all roles currently enabled for the issuer:

SELECT * FROM session_roles;

If SWILLIAMS has enabled the SECURITY_ADMIN role and issues this
query, Oracle returns the following information:

ROLE

––––––––––––––––––––––––––––––

SECURITY_ADMIN

Listing Roles of the
Database

20 – 25Managing User Privileges and Roles

The following query lists all system privileges currently available in the
issuer’s security domain, both from explicit privilege grants and from
enabled roles:

SELECT * FROM session_privs;

If SWILLIAMS has the SECURITY_ADMIN role enabled and issues this
query, Oracle returns the following results:

PRIVILEGE

––

AUDIT SYSTEM

CREATE SESSION

CREATE USER

BECOME USER

ALTER USER

DROP USER

CREATE ROLE

DROP ANY ROLE

GRANT ANY ROLE

AUDIT ANY

CREATE PROFILE

ALTER PROFILE

DROP PROFILE

If the SECURITY_ADMIN role is disabled for SWILLIAMS, the first
query would have returned no rows, while the second query would
only return a row for the CREATE SESSION privilege grant.

The DBA_ROLES data dictionary view can be used to list all roles of a
database and the authentication used for each role. For example, the
following query lists all the roles in the database:

SELECT * FROM sys.dba_roles;

ROLE PASSWORD

–––––––––––––––––––––––––––––– ––––––––

CONNECT NO

RESOURCE NO

DBA NO

SECURITY_ADMIN YES

Listing Information About
the Privilege Domains of
Roles

20 – 26 Oracle7 Server Administrator’s Guide

The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS
data dictionary views contain information on the privilege domains of
roles.

For example, the following query lists all the roles granted to the
SYSTEM_ADMIN role:

SELECT granted_role, admin_option

 FROM role_role_privs

 WHERE role = ’SYSTEM_ADMIN’;

GRANTED_ROLE ADM

–––––––––––––––––––––––––––––– –––

SECURITY_ADMIN NO

The following query lists all the system privileges granted to the
SECURITY_ADMIN role:

SELECT * FROM role_sys_privs WHERE role = ’SECURITY_ADMIN’;

ROLE PRIVILEGE ADM

––––––––––––––––––––––––– ––––––––––––––––––––––––––––––––––– –––

SECURITY_ADMIN ALTER PROFILE YES

SECURITY_ADMIN ALTER USER YES

SECURITY_ADMIN AUDIT ANY YES

SECURITY_ADMIN AUDIT SYSTEM YES

SECURITY_ADMIN BECOME USER YES

SECURITY_ADMIN CREATE PROFILE YES

SECURITY_ADMIN CREATE ROLE YES

SECURITY_ADMIN CREATE USER YES

SECURITY_ADMIN DROP ANY ROLE YES

SECURITY_ADMIN DROP PROFILE YES

SECURITY_ADMIN DROP USER YES

SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the
SECURITY_ADMIN role:

SELECT table_name, privilege FROM role_tab_privs

 WHERE role = ’SECURITY_ADMIN’;

TABLE_NAME PRIVILEGE

–––––––––––––––––––––––––––––– –––––––––––––––––––

AUD$ DELETE

AUD$ SELECT

C H A P T E R

21
T

21 – 1Auditing Database Use

Auditing Database Use

his chapter describes how to use the Oracle auditing facilities, and
includes the following topics:

• Guidelines for Auditing

• Creating and Deleting the Database Audit Trail Views

• Managing Audit Trail Information

• Viewing Database Audit Trail Information

• Auditing through Database Triggers

See Also: If you are using Trusted Oracle7, see the Trusted Oracle7 Server
Administrator’s Guide for additional information about auditing and
audit trail management.

Audit via the Database
or Operating System

Keep Audited
Information
Manageable

21 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Auditing

This section describes guidelines for auditing and includes the following
topics:

• Audit via the Database or Operating System

• Keep Audited Information Manageable

The data dictionary of every database has a table named SYS.AUD$,
commonly referred to as the database audit trail.

Either the database or operating system audit trail can store all audit
records generated as the result of statement, privilege, or object
auditing.

Your operating system may or may not support database auditing to the
operating system audit trail. If this option is available, consider the
advantages and disadvantages of using either the database or operating
system auditing trail to store database audit records.

Using the database audit trail offers the following advantages:

• You can view selected portions of the audit trail with the
predefined audit trail views of the data dictionary.

• You can use Oracle tools (such as ReportWriter) to generate audit
reports.

Alternatively, your operating system audit trail may allow you to
consolidate audit records from multiple sources including Oracle and
other applications. Therefore, examining system activity might be more
efficient because all audit records are in one place.

See Also: Your operating system may also contain an audit trail that
stores audit records generated by the operating system auditing facility.
However, this facility is operating system–dependent. See your
operating system–specific Oracle documentation.

Although auditing is relatively inexpensive, limit the number of audited
events as much as possible. This will minimize the performance impact
on the execution of statements that are audited, and minimize the size of
the audit trail.

Auditing Suspicious
Database Activity

21 – 3Auditing Database Use

Use the following general guidelines when devising an auditing
strategy:

• Evaluate your purpose for auditing.

After you have a clear understanding of the reasons for auditing,
you can devise an appropriate auditing strategy and avoid
unnecessary auditing.

For example, suppose you are auditing to investigate suspicious
database activity. This information by itself is not specific enough.
What types of suspicious database activity do you suspect or
have you noticed? A more focused auditing purpose might be to
audit unauthorized deletions from arbitrary tables in the
database. This purpose narrows the type of action being audited
and the type of object being affected by the suspicious activity.

• Audit knowledgeably.

Audit the minimum number of statements, users, or objects
required to get the targeted information. This prevents
unnecessary audit information from cluttering the meaningful
information and consuming valuable space in the SYSTEM
tablespace. Balance your need to gather sufficient security
information with your ability to store and process it.

For example, if you are auditing to gather information about
database activity, determine exactly what types of activities you
are tracking, audit only the activities of interest, and audit only
for the amount of time necessary to gather the information you
desire. Do not audit objects if you are only interested in each
session’s logical I/O information.

When you audit to monitor suspicious database activity, use the
following guidelines:

• Audit generally, then specifically.

When starting to audit for suspicious database activity, it is
common that not much information is available to target specific
users or schema objects. Therefore, audit options must be set
more generally at first. Once preliminary audit information is
recorded and analyzed, the general audit options should be
turned off and more specific audit options enabled. This process
should continue until enough evidence is gathered to make
concrete conclusions about the origin of the suspicious database
activity.

• Protect the audit trail.

Auditing Normal
Database Activity

21 – 4 Oracle7 Server Administrator’s Guide

When auditing for suspicious database activity, protect the audit
trail so that audit information cannot be added, changed, or
deleted without being audited.

See Also: For more information about the audit trail, see “Protecting the
Audit Trail” on page 21 – 18.

When your purpose for auditing is to gather historical information
about particular database activities, use the following guidelines:

• Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit
records and reduce the amount of audit trail administration, only
audit the targeted database activities.

• Archive audit records and purge the audit trail.

After you have collected the required information, archive the
audit records of interest and purge the audit trail of this
information.

Creating and Deleting the Database Audit Trail Views

This section describes how to create and delete database audit trail
views, and includes the following topics:

• Creating the Audit Trail Views

• Deleting the Audit Trail Views

The database audit trail (SYS.AUD$) is a single table in each Oracle
database’s data dictionary. To help you view meaningful auditing
information in this table, several predefined views are provided. They
must be created for you to use auditing; you can later delete them if you
decide not to use auditing.

See Also: On most operating systems, the audit trail views are created
automatically with the data dictionary. See your operating
system–specific Oracle documentation.

Creating the Audit
Trail Views

Deleting the Audit
Trail Views

21 – 5Auditing Database Use

If you decide to use auditing, create the auditing views by connecting as
SYS and running the script CATAUDIT.SQL. This script creates the
following views:

• STMT_AUDIT_OPTION_MAP

• AUDIT_ACTIONS

• ALL_DEF_AUDIT_OPTS

• DBA_STMT_AUDIT_OPTS

• USER_OBJ_AUDIT_OPTS, DBA_OBJ_AUDIT_OPTS

• USER_AUDIT_TRAIL, DBA_AUDIT_TRAIL

• USER_AUDIT_SESSION, DBA_AUDIT_SESSION

• USER_AUDIT_STATEMENT, DBA_AUDIT_STATEMENT

• USER_AUDIT_OBJECT, DBA_AUDIT_OBJECT

• DBA_AUDIT_EXISTS

• USER_AUDIT_SESSION, DBA_AUDIT_SESSION

• USER_TAB_AUDIT_OPTS

See Also: For information about these views, see the Oracle7 Server
Reference.

For examples of audit information interpretations, see “Viewing
Database Audit Trail Information” on page 21 – 18.

If you disable auditing and no longer need the audit trail views, delete
them by connecting to the database as SYS and running the script file
CATNOAUD.SQL. The name and location of the CATNOAUD.SQL
script are operating system–dependent.

Managing Audit Trail Information

This section describes various aspects of managing audit trail
information, and includes the following topics:

• Events Audited by Default

• Setting Audit Options

• Enabling and Disabling Database Auditing

• Controlling the Growth and Size of the Audit Trail

• Protecting the Audit Trail

Events Audited by
Default

21 – 6 Oracle7 Server Administrator’s Guide

Depending on the events audited and the auditing options set, the audit
trail records can contain different types of information. The following
information is always included in each audit trail record, provided that
the information is meaningful to the particular audit action:

• user name

• session identifier

• terminal identifier

• name of the object accessed

• operation performed or attempted

• completion code of the operation

• date and time stamp

• system privileges (including MAC privileges for Trusted Oracle7)
used

• label of the user session (for Trusted Oracle7 only)

• label of the object accessed (for Trusted Oracle7 only)

Audit trail records written to the operating system audit trail contain
some encodings that are not readable. These can be decoded as follows:

This describes the operation performed or
attempted. The AUDIT_ACTIONS data dictionary
table contains a list of these codes and their
descriptions.

This describes any system privileges used to
perform the operation. The
SYSTEM_PRIVILEGE_MAP table lists all of these
codes, and their descriptions.

This describes the result of the attempted operation.
Successful operations return a value of zero, while
unsuccessful operations return the Oracle error
code describing why the operation was
unsuccessful.

See Also: Error codes are listed in the Oracle7 Server Messages manual.

Regardless of whether database auditing is enabled, the Oracle Server
will always audit certain database–related actions into the operating
system audit trail. These events include the following:

An audit record is generated that details the OS
user starting the instance, his terminal identifier, the

Action Code

Privileges Used

Completion Code

instance startup

Setting Auditing
Options

21 – 7Auditing Database Use

date and time stamp, and whether database
auditing was enabled or disabled. This is audited
into the OS audit trail because the database audit
trail is not available until after startup has
successfully completed. Recording the state of
database auditing at startup further prevents an
administrator from restarting a database with
database auditing disabled so that they are able to
perform unaudited actions.

An audit record is generated that details the OS
user shutting down the instance, her terminal
identifier, the date and time stamp.

An audit record is generated that details the OS
user connecting to Oracle as SYSOPER or SYSDBA,
to provide accountability of users with
administrator privileges.

On operating systems that do not make an audit trail accessible to
Oracle, these audit trail records are placed in an Oracle audit trail file in
the same directory as background process trace files.

Depending on the auditing options set, audit records can contain
different types of information. However, all auditing options generate
the following information:

• the user that executed the audited statement

• the action code (a number) that indicates the audited statement
executed by the user

• the object or objects referenced in the audited statement

• the date and time that the audited statement was executed

The audit trail does not store information about any data values that
might be involved in the audited statement. For example, old and new
data values of updated rows are not stored when an UPDATE statement
is audited. However, this specialized type of auditing can be performed
on DML statements involving tables by using database triggers.

instance
shutdown

connections to the
database with
administrator
privileges

Statement Audit Options

21 – 8 Oracle7 Server Administrator’s Guide

Oracle allows you to set audit options at three levels:

audits based on the type of a SQL statement, such
as any SQL statement on a table (which records
each CREATE, TRUNCATE, and DROP TABLE
statement)

audits use of a particular system privilege, such as
CREATE TABLE

audits specific statements on specific objects, such
as ALTER TABLE on the EMP table

See Also: For examples of trigger usage for this specialized type of
auditing, see page 21 – 21.

Valid statement audit options that can be included in AUDIT and
NOAUDIT statements are listed in Table 21 – 1.

Option SQL Statements Audited

ALTER SYSTEM ALTER SYSTEM

CLUSTER CREATE CLUSTER
ALTER CLUSTER
TRUNCATE CLUSTER
DROP CLUSTER

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

INDEX CREATE INDEX
ALTER INDEX
DROP INDEX

NOT EXISTS All SQL statements that return an Oracle error because the
specified structure or object does not exist

PROCEDURE CREATE [OR REPLACE] FUNCTION
CREATE [OR REPLACE] PACKAGE
CREATE [OR REPLACE] PACKAGE BODY
CREATE [OR REPLACE] PROCEDURE
DROP PACKAGE
DROP PROCEDURE

PUBLIC DATABASE
LINK

CREATE PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
SET ROLE
DROP ROLE

ROLLBACK SEGMENT CREATE ROLLBACK SEGMENT
ALTER DROPBACK SEGMENT‘DROP ROLLBACK
SEGMENT

Table 21 – 1 Statement Auditing Options, continued on next page

statement

privilege

object

21 – 9Auditing Database Use

Option SQL Statements Audited

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Connects and Disconnects

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT
NO AUDIT

SYSTEM GRANT GRANT system privileges/role
TO user/role

REVOKE system privileges/role
FROM user/role

TABLE CREATE TABLE
ALTER TABLE
DROP TABLE

TABLESPACE CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER ENABLE or DISABLE
ALTER TABLE with
ENABLE, DISABLE, and DROP clauses

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE [OR REPLACE] VIEW
DROP VIEW

Table 21 – 1 Statement Auditing Options

Shortcuts for Statement Audit Options Shortcuts are provided so that
you can specify several related statement options with one word.

Shortcuts are not statement options themselves; rather, they are ways of
specifying sets of related statement options with one word in AUDIT
and NOAUDIT statements.

equivalent to the SESSION option

equivalent to the options ALTER SYSTEM,
CLUSTER, DATABASE LINK, PROCEDURE,
ROLLBACK SEGMENT, SEQUENCE, SYNONYM,
TABLE, TABLESPACE, and VIEW

equivalent to the options SYSTEM AUDIT, PUBLIC
DATABASE LINK, PUBLIC SYNONYM, ROLE,
SYSTEM GRANT, and USER

equivalent to all options in Table 21 – 1, including
the NOT EXISTS option

CONNECT

RESOURCE

DBA

ALL

Auditing Connections and
Disconnections

Privilege Audit Options

21 – 10 Oracle7 Server Administrator’s Guide

Warning: Do not confuse the shortcuts CONNECT,
RESOURCE, and DBA with the predefined roles of the same
names.

The SESSION statement option (and CONNECT shortcut) is unique
because it does not generate an audit record when a particular type of
statement is issued; this option generates a single audit record for each
session created by connections to an instance. An audit record is
inserted into the audit trail at connect time and updated at disconnect
time. Cumulative information about a session such as connection time,
disconnection time, logical and physical I/Os processed, and more is
stored in a single audit record that corresponds to the session.

Table 21 – 2 lists additional audit options not covered by any of the
above shortcuts.

������� �
��	� SQL Statements Audited

ALTER SEQUENCE ALTER SEQUENCE sequence

������ ����� ALTER TABLE table

�
���	�� ����� COMMENT ON table, view,
snapshot, column

������� ����� DELETE FROM table, view

EXECUTE
PROCEDURE

Calls to procedures and functions

GRANT PROCEDURE GRANT privilege ON procedure REVOKE privilege ON
sequence

GRANT TABLE GRANT privilege ON table, view, snapshot REVOKE privilege
ON table, view, snapshot

INSERT TABLE INSERT INTO table view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Reference to a sequence

SELECT TABLE SELECT . . .FROM table, view, snapshot

UPDATE TABLE UPDATE table, view

Table 21 – 2 Statement Auditing Options

Privilege audit options exactly match the corresponding system
privileges. For example, the option to audit use of the DELETE ANY
TABLE privilege is DELETE ANY TABLE. To turn this option on, you
would use a statement similar to the following example:

AUDIT DELETE ANY TABLE

 BY ACCESS

 WHENEVER NOT SUCCESSFUL;

Oracle’s system privileges are listed beginning on page 20 – 2.

Object Audit Options

21 – 11Auditing Database Use

Table 21 – 3 lists valid object audit options and the schema object types
for which each option is available.

������� �
��	� Table View Sequence Procedure 1

ALTER ✓ ✓

AUDIT ✓ ✓ ✓ ✓

COMMENT ✓ ✓

DELETE ✓ ✓

EXECUTE ✓

GRANT ✓ ✓ ✓ ✓

INDEX ✓

INSERT ✓ ✓

LOCK ✓ ✓

RENAME ✓ ✓ ✓

SELECT ✓ ✓ 2 ✓

UPDATE ✓ ✓

 Table 21 – 3 Object Audit Options

1 “Procedure” refers to stand–alone stored procedures and functions, and packages.
2 The SELECT option may also be used for snapshots.

Table 21 – 4 lists the SQL statements audited by each object option.

Object Option Table

ALTER ALTER object (table or sequence)

AUDIT AUDIT (Form II) object

COMMENT COMMENT object (table or view)

DELETE DELETE FROM object (table or view)

EXECUTE EXECUTE object (procedure1)

GRANT GRANT (Form II) privilege ON object

INDEX CREATE INDEX ON object (tables only)

INSERT INSERT INTO object (table, view, or procedure)

LOCK LOCK object (table or view)

RENAME RENAME object (table, view, or procedure1)

SELECT SELECT . . .FROM object (table, view, snapshot)

UPDATE UPDATE object (table or view)

Table 21 – 4 SQL Statement Audited by Database Object Audit
 Options

1 Procedure refers to stand–alone stored procedures and functions, and packages.

Shortcut for Object Audit Options The ALL shortcut can be used to
specify all available object audit options for a schema object. This

Enabling Audit Options

21 – 12 Oracle7 Server Administrator’s Guide

shortcut is not an option itself; rather, it is a way of specifying all object
audit options with one word in AUDIT and NOAUDIT statements.

The SQL command AUDIT turns on statement and privilege audit
options, and object audit options. Audit statements that set statement
and privilege audit options can include the BY USER option to specify a
list of users to limit the scope of the statement and privilege audit
options. The SQL command AUDIT turns on audit options. To use it to
set statement and privilege options, you must have the AUDIT SYSTEM
privilege. To use it to set object audit options, you must own the object
to be audited or have the AUDIT ANY privilege.

You can set any auditing option, and specify the following conditions
for auditing:

• WHENEVER SUCCESSFUL/WHENEVER NOT SUCCESSFUL

• BY SESSION/BY ACCESS

A new database session picks up auditing options from the data
dictionary when the session is created. These auditing options remain in
force for the duration of the database connection. Setting new system or
object auditing options causes all subsequent database sessions to use
these options; existing sessions will continue using the audit options in
place at session creation.

Warning: The AUDIT command only turns auditing options
on; it does not enable auditing as a whole. To turn auditing on
and control whether Oracle generates audit records based on the
audit options currently set, set the parameter AUDIT_TRAIL in
the database’s parameter file.

The following examples illustrate the use of the AUDIT command.

See Also: For a complete description of the AUDIT command, see the
Oracle7 Server SQL Reference.

 For more information about enabling and disabling auditing, see
“Enabling and Disabling Database Auditing” on page 21 – 15.

Enabling Statement Privilege Auditing To audit all successful and
unsuccessful connections to and disconnections from the database,
regardless of user, BY SESSION (the default and only value for this
option), enter the following statement:

AUDIT SESSION;

21 – 13Auditing Database Use

You can set this option selectively for individual users also, as in the
next example:

AUDIT SESSION

 BY scott, lori;

To audit all successful and unsuccessful uses of the DELETE ANY
TABLE system privilege, enter the following statement:

AUDIT DELETE ANY TABLE;

To audit all unsuccessful SELECT, INSERT, and DELETE statements on
all tables and unsuccessful uses of the EXECUTE ANY PROCEDURE
system privilege, by all database users, BY ACCESS, enter the following
statement:

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,

 EXECUTE ANY PROCEDURE

 BY ACCESS

 WHENEVER NOT SUCCESSFUL;

The AUDIT SYSTEM system privilege is required to set any statement or
privilege audit option. Normally, the security administrator is the only
user granted this system privilege.

Enabling Object Auditing To audit all successful and unsuccessful
DELETE statements on the EMP table, BY SESSION (the default value),
enter the following statement:

AUDIT DELETE ON emp;

To audit all successful SELECT, INSERT, and DELETE statements on the
DEPT table owned by user JWARD, BY ACCESS, enter the following
statement:

AUDIT SELECT, INSERT, DELETE

 ON jward.dept

 BY ACCESS

 WHENEVER SUCCESSFUL;

To set the default object auditing options to audit all unsuccessful
SELECT statements, BY SESSION (the default), enter the following
statement:

AUDIT SELECT

 ON DEFAULT

 WHENEVER NOT SUCCESSFUL;

A user can set any object audit option for the objects contained in the
user’s schema. The AUDIT ANY system privilege is required to set an
object audit option for an object contained in another user’s schema or
to set the default object auditing options; normally, the security
administrator is the only user granted this system privilege.

Disabling Audit Options

21 – 14 Oracle7 Server Administrator’s Guide

The NOAUDIT command turns off the various audit options of Oracle.
Use it to reset statement and privilege audit options, and object audit
options. A NOAUDIT statement that sets statement and privilege audit
options can include the BY USER option to specify a list of users to limit
the scope of the statement and privilege audit options.

You can use a NOAUDIT statement to disable an audit option
selectively using the WHENEVER clause. If the clause is not specified,
the auditing option is disabled entirely, for both successful and
non–successful cases.

The BY SESSION/BY ACCESS option pair is not supported by the
NOAUDIT command; audit options, no matter how they were turned
on, are turned off by an appropriate NOAUDIT statement.

The following examples illustrate the use of the NOAUDIT command.

Warning: The NOAUDIT command only turns auditing
options off; it does not disable auditing as a whole. To turn
auditing off and stop Oracle from generating audit records,
even though you have audit options currently set, set the
parameter AUDIT_TRAIL in the database’s parameter file.

See Also: For a complete syntax listing of the NOAUDIT command, see
the Oracle7 Server SQL Reference.

Also see “Enabling and Disabling Database Auditing” on page 21 – 15.

Disabling Statement and Privilege Auditing The following statements
turn off the corresponding audit options:

NOAUDIT session;

NOAUDIT session BY scott, lori;

NOAUDIT DELETE ANY TABLE;

NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE,

 EXECUTE ANY PROCEDURE;

The following statements turn off all statement (system) and privilege
audit options:

NOAUDIT ALL;

NOAUDIT ALL PRIVILEGES;

To disable statement or privilege auditing options, you must have the
AUDIT SYSTEM system privilege.

Disabling Object Auditing The following statements turn off the
corresponding auditing options:

NOAUDIT DELETE

 ON emp;

NOAUDIT SELECT, INSERT, DELETE

 ON jward.dept;

Enabling and
Disabling Database
Auditing

21 – 15Auditing Database Use

Furthermore, to turn off all object audit options on the EMP table, enter
the following statement:

NOAUDIT ALL

 ON emp;

Disabling Default Object Audit Options To turn off all default object
audit options, enter the following statement:

NOAUDIT ALL

 ON DEFAULT;

Note that all schema objects created before this NOAUDIT statement is
issued continue to use the default object audit options in effect at the
time of their creation, unless overridden by an explicit NOAUDIT
statement after their creation.

To disable object audit options for a specific object, you must be the
owner of the schema object. To disable the object audit options of an
object in another user’s schema or to disable default object audit
options, you must have the AUDIT ANY system privilege. A user with
privileges to disable object audit options of an object can override the
options set by any user.

Any authorized database user can set statement, privilege, and object
auditing options at any time, but Oracle does not generate and store
audit records in the audit trail unless database auditing is enabled. The
security administrator is normally responsible for this operation.

Database auditing is enabled and disabled by the AUDIT_TRAIL
initialization parameter in the database’s parameter file. The parameter
can be set to the following values:

enables database auditing and directs all audit
records to the database audit trail

enables database auditing and directs all audit
records to the operating system audit trail

disables auditing (This value is the default.)

Once you have edited the parameter file, restart the database instance to
enable or disable database auditing as intended.

See Also: For more information about editing parameter files, see the
Oracle7 Server Reference.

DB

OS

NONE

Controlling the
Growth and Size of the
Audit Trail

21 – 16 Oracle7 Server Administrator’s Guide

If the audit trail becomes completely full and no more audit records can
be inserted, audited statements cannot be successfully executed until the
audit trail is purged. Warnings are returned to all users that issue
audited statements. Therefore, the security administrator must control
the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the
audit trail grows according to two factors:

• the number of audit options turned on

• the frequency of execution of audited statements

To control the growth of the audit trail, you can use the following
methods:

• Enable and disable database auditing. If it is enabled, audit
records are generated and stored in the audit trail; if it is disabled,
audit records are not generated.

• Be very selective about the audit options that are turned on. If
more selective auditing is performed, useless or unnecessary
audit information is not generated and stored in the audit trail.

• Tightly control the ability to perform object auditing. This can be
done two different ways:

– A security administrator owns all objects and the AUDIT
ANY system privilege is never granted to any other user.
Alternatively, all schema objects can belong to a schema for
which the corresponding user does not have CREATE
SESSION privilege.

– All objects are contained in schemas that do not correspond
to real database users (that is, the CREATE SESSION
privilege is not granted to the corresponding user) and the
security administrator is the only user granted the AUDIT
ANY system privilege.

In both scenarios, object auditing is controlled entirely by the
security administrator.

The maximum size of the database audit trail (SYS.AUD$ table) is
predetermined during database creation. By default, up to 99 extents,
each 10K in size, can be allocated for this table.

See Also: If you are directing audit records to the operating system
audit trail, see your operating system–specific Oracle documentation for
more information about managing the operating system audit trail.

Purging Audit Records
from the Audit Trail

Reducing the Size of the
Audit Trail

21 – 17Auditing Database Use

After auditing is enabled for some time, the security administrator may
want to delete records from the database audit trail both to free audit
trail space and to facilitate audit trail management.

For example, to delete all audit records from the audit trail, enter the
following statement:

DELETE FROM sys.aud$;

Alternatively, to delete all audit records from the audit trail generated as
a result of auditing the table EMP, enter the following statement:

DELETE FROM sys.aud$

 WHERE obj$name=’EMP’;

If audit trail information must be archived for historical purposes, the
security administrator can copy the relevant records to a normal
database table (for example, using “INSERT INTO table SELECT ...
FROM sys.aud$...”) or export the audit trail table to an operating
system file.

Only the user SYS, a user who has the DELETE ANY TABLE privilege,
or a user to whom SYS has granted DELETE privilege on SYS.AUD$ can
delete records from the database audit trail.

Note: If the audit trail is completely full and connections are
being audited (that is, if the SESSION option is set), typical
users cannot connect to the database because the associated
audit record for the connection cannot be inserted into the audit
trail. In this case, the security administrator must connect as SYS
(operations by SYS are not audited) and make space available in
the audit trail.

See Also: For information about exporting tables, see the Oracle7 Server
Utilities guide.

As with any database table, after records are deleted from the database
audit trail, the extents allocated for this table still exist.

If the database audit trail has many extents allocated for it, but many of
them are not being used, the space allocated to the database audit trail
can be reduced using the following steps:

To Reduce the Size of the Audit Trail

1. If you want to save information currently in the audit trail, copy it to
another database table or export it using the EXPORT utility.

2. Connect as with administrator privileges.

3. Truncate SYS.AUD$ using the TRUNCATE command.

Protecting the Audit
Trail

21 – 18 Oracle7 Server Administrator’s Guide

4. Reload archived audit trail records generated from Step 1.

The new version of SYS.AUD$ is allocated only as many extents that are
necessary to contain current audit trail records.

Note: SYS.AUD$ is the only SYS object that should ever be
directly modified.

When auditing for suspicious database activity, protect the integrity of
the audit trail’s records to guarantee the accuracy and completeness of
the auditing information.

To protect the database audit trail from unauthorized deletions, grant
the DELETE ANY TABLE system privilege to security administrators
only.

To audit changes made to the database audit trail, use the following
statement:

AUDIT INSERT, UPDATE, DELETE

 ON sys.aud$

 BY ACCESS;

Audit records generated as a result of object audit options set for the
SYS.AUD$ table can only be deleted from the audit trail by someone
connected with administrator privileges, which itself has protection
against unauthorized use. As a final measure of protecting the audit
trail, any operation performed while connected with administrator
privileges is audited in the operating system audit trail, if available.

See Also: For more information about the availability of an operating
system audit trail and possible uses, see your operating system–specific
Oracle documentation.

Viewing Database Audit Trail Information

This section offers examples that demonstrate how to examine and
interpret the information in the audit trail, and includes the following
topics:

• Listing Active Statement Audit Options

• Listing Active Privilege Audit Options

• Listing Active Object Audit Options for Specific Objects

21 – 19Auditing Database Use

• Listing Default Object Audit Options

• Listing Audit Records

• Listing Audit Records for the AUDIT SESSION Option

You may have to audit a database for the following suspicious activities:

• Passwords, tablespace settings, and quotas for some database
users are being altered without authorization.

• A high number of deadlocks are occurring, most likely because of
users acquiring exclusive table locks.

• Rows are arbitrarily being deleted from the EMP table in SCOTT’s
schema.

As an example, say that you suspect the users JWARD and SWILLIAMS
of several of these detrimental actions. The database administrator may
then issue the following statements (in order):

AUDIT ALTER, INDEX, RENAME ON DEFAULT

 BY SESSION;

CREATE TABLE scott.emp . . . ;

CREATE VIEW scott.employee AS SELECT * FROM scott.emp;

AUDIT SESSION BY jward, swilliams;

AUDIT ALTER USER;

AUDIT LOCK TABLE

 BY ACCESS

 WHENEVER SUCCESSFUL;

AUDIT DELETE ON scott.emp

 BY ACCESS

 WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user JWARD:

ALTER USER tsmith QUOTA 0 ON users;

DROP USER djones;

The following statements are subsequently issued by the user
SWILLIAMS:

LOCK TABLE scott.emp IN EXCLUSIVE MODE;

DELETE FROM scott.emp WHERE mgr = 7698;

ALTER TABLE scott.emp ALLOCATE EXTENT (SIZE 100K);

CREATE INDEX scott.ename_index ON scott.emp (ename);

CREATE PROCEDURE scott.fire_employee (empid NUMBER) AS

BEGIN

 DELETE FROM scott.emp WHERE empno = empid;

END;

/

EXECUTE scott.fire_employee(7902);

Listing Active
Statement Audit
Options

Listing Active Privilege
Audit Options

Listing Active Object
Audit Options for
Specific Objects

21 – 20 Oracle7 Server Administrator’s Guide

The following sections show the information that can be listed using the
audit trail views in the data dictionary.

The following query returns all the statement audit options that are set:

SELECT * FROM sys.dba_stmt_audit_opts;

USER_NAME AUDIT_OPTION SUCCESS FAILURE

–––––––––––––––––––– –––––––––––––––––––– –––––––––– ––––––––––

JWARD SESSION BY SESSION BY SESSION

SWILLIAMS SESSION BY SESSION BY SESSION

 LOCK TABLE BY ACCESS NOT SET

Notice that the view reveals the statement audit options set, whether
they are set for success or failure (or both), and whether they are set for
BY SESSION or BY ACCESS.

The following query returns all the privilege audit options that are set:

SELECT * FROM sys.dba_priv_audit_opts;

USER_NAME AUDIT_OPTION SUCCESS FAILURE

–––––––––––––––––––– –––––––––––––––––––– –––––––––– ––––––––––

ALTER USER BY SESSION BY SESSION

The following query returns all audit options set for any objects
contained in SCOTT’s schema:

SELECT * FROM sys.dba_obj_audit_opts

 WHERE owner = ’SCOTT’ AND object_name LIKE ’EMP%’;

OWNER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...

–––––– ––––––––––– ––––––––– ––– ––– ––– ––– ––– ––– ––– ––– ...

SCOTT EMP TABLE S/S –/– –/– A/– –/– S/S –/– –/– ...

SCOTT EMPLOYEE VIEW –/– –/– –/– –/– –/– –/– –/– –/– ...

Notice that the view returns information about all the audit options for
the specified object. The information in the view is interpreted as
follows:

• The character “–” indicates that the audit option is not set.

• The character “S” indicates that the audit option is set, BY
SESSION.

• The character “A” indicates that the audit option is set, BY
ACCESS.

• Each audit option has two possible settings, WHENEVER
SUCCESSFUL and WHENEVER NOT SUCCESSFUL, separated
by “/”. For example, the DELETE audit option for SCOTT.EMP is

Listing Default Object
Audit Options

Listing Audit Records

Listing Audit Records
for the AUDIT
SESSION Option

21 – 21Auditing Database Use

set BY ACCESS for successful delete statements and not set at all
for unsuccessful delete statements.

The following query returns all default object audit options:

SELECT * FROM all_def_audit_opts;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE

––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––

S/S –/– –/– –/– –/– S/S –/– –/– S/S –/– –/– –/– –/–

Notice that the view returns information similar to the
USER_OBJ_AUDIT_OPTS and DBA_OBJ_AUDIT_OPTS views (see
previous example).

The following query lists audit records generated by statement and
object audit options:

SELECT username, obj_name, action_name, ses_actions

 FROM sys.dba_audit_object;

The following query lists audit information corresponding to the AUDIT
SESSION statement audit option:

SELECT username, logoff_time, logoff_lread, logoff_pread,

 logoff_lwrite, logoff_dlock

 FROM sys.dba_audit_session;

USERNAME LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO

–––––––––– ––––––––– –––––––––– –––––––––– –––––––––– ––––––––––

JWARD 02–AUG–91 53 2 24 0

SWILLIAMS 02–AUG–91 3337 256 630 0

Auditing Through Database Triggers

You can use triggers to supplement the built–in auditing features of
Oracle. Although you can write triggers to record information similar to
that recorded by the AUDIT command, do so only when you need more
detailed audit information. For example, you can use triggers to provide
value–based auditing on a per–row basis for tables.

Note: In some fields, the Oracle AUDIT command is
considered a security audit facility, while triggers can provide a
financial audit facility.

When deciding whether to create a trigger to audit database activity,
consider the advantages that the standard Oracle database auditing
features provide compared to auditing by triggers:

21 – 22 Oracle7 Server Administrator’s Guide

• Standard auditing options cover DML and DDL statements
regarding all types of schema objects and structures. In contrast,
triggers can audit only DML statements issued against tables.

• All database audit information is recorded centrally and
automatically using the auditing features of Oracle.

• Auditing features enabled using the standard Oracle features are
easier to declare and maintain and less prone to errors than are
auditing functions defined through triggers.

• Any changes to existing auditing options can also be audited to
guard against malicious database activity.

• Using the database auditing features, you can generate records
once every time an audited statement is issued (BY ACCESS) or
once for every session that issues an audited statement (BY
SESSION). Triggers cannot audit by session; an audit record is
generated each time a trigger–audited table is referenced.

• Database auditing can audit unsuccessful data access. In
comparison, any audit information generated by a trigger is
rolled back if the triggering statement is rolled back.

• Connections and disconnections, as well as session activity (such
as physical I/Os, logical I/Os, and deadlocks), can be recorded by
standard database auditing.

When using triggers to provide sophisticated auditing, normally use
AFTER triggers. By using AFTER triggers, you record auditing
information after the triggering statement is subjected to any applicable
integrity constraints, preventing cases where audit processing is carried
out unnecessarily for statements that generate exceptions to integrity
constraints.

When you should use AFTER row vs. AFTER statement triggers
depends on the information being audited. For example, row triggers
provide value–based auditing on a per–row basis for tables. Triggers can
also allow the user to supply a “reason code” for issuing the audited
SQL statement, which can be useful in both row and statement–level
auditing situations.

The following trigger audits modifications to the EMP table on a
per–row basis. It requires that a “reason code” be stored in a global
package variable before the update. The trigger demonstrates the
following:

• how triggers can provide value–based auditing

• how to use public package variables

21 – 23Auditing Database Use

Comments within the code explain the functionality of the trigger.

CREATE TRIGGER audit_employee

AFTER INSERT OR DELETE OR UPDATE ON emp

FOR EACH ROW

BEGIN

/* AUDITPACKAGE is a package with a public package

 variable REASON. REASON could be set by the

 application by a command such as EXECUTE

 AUDITPACKAGE.SET_REASON(reason_string). Note that a

 package variable has state for the duration of a

 session and that each session has a separate copy of

 all package variables. */

IF auditpackage.reason IS NULL THEN

 raise_application_error(–20201,’Must specify reason with ’,

 ’AUDITPACKAGE.SET_REASON(reason_string)’);

END IF;

/* If the above conditional evaluates to TRUE, the

 user–specified error number and message is raised,

 the trigger stops execution, and the effects of the

 triggering statement are rolled back. Otherwise, a

 new row is inserted into the pre–defined auditing

 table named AUDIT_EMPLOYEE containing the existing

 and new values of the EMP table and the reason code

 defined by the REASON variable of AUDITPACKAGE. Note

 that the ”old” values are NULL if triggering

 statement is an INSERT and the ”new” values are NULL

 if the triggering statement is a DELETE. */

INSERT INTO audit_employee VALUES

 (:old.ssn, :old.name, :old.job_classification, :old.sal,

 :new.ssn, :new.name, :new.job_classification, :new.sal,

 auditpackage.reason, user, sysdate);

END;

Optionally, you can also set the reason code back to NULL if you want
to force the reason code to be set for every update. The following AFTER
statement trigger sets the reason code back to NULL after the triggering
statement is executed:

CREATE TRIGGER audit_employee_reset

AFTER INSERT OR DELETE OR UPDATE ON emp

BEGIN

 auditpackage.set_reason(NULL);

END;

21 – 24 Oracle7 Server Administrator’s Guide

The previous two triggers are both fired by the same type of SQL
statement. However, the AFTER row trigger is fired once for each row of
the table affected by the triggering statement, while the AFTER
statement trigger is fired only once after the triggering statement
execution is completed.

P A R T

 V Database Backup and
Recovery

C H A P T E R

22
T

22 – 1Archiving Redo Information

Archiving Redo
Information

his chapter describes how to create and maintain the archived redo
log, and includes the following topics:

• Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

• Turning Archiving On and Off

• Tuning Archiving

• Displaying Archiving Status Information

• Specifying the Archived Redo Log Filename Format and
Destination

See Also: If you are using Oracle with the Parallel Server, see the Oracle7
Parallel Server Concepts & Administration for additional information about
archiving in the environment.

This chapter contains several references to Oracle Server Manager. For
more information about performing specific tasks using Server
Manager/GUI or Server Manager/LineMode, see the Oracle Server
Manager User’s Guide.

Running a Database in
NOARCHIVELOG
Mode

Running a Database in
ARCHIVELOG Mode

22 – 2 Oracle7 Server Administrator’s Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

This section describes the issues you must consider when choosing to
run your database in NOARCHIVELOG or ARCHIVELOG mode, and
includes the following topics:

• Running a Database in NOARCHIVELOG Mode

• Running a Database in ARCHIVELOG Mode

When you run your database in NOARCHIVELOG mode, the archiving
of the online redo log is disabled. Information in the database’s control
file indicates that filled groups are not required to be archived.
Therefore, after a filled group becomes inactive and the checkpoint at
the log switch completes, the group is available for reuse by LGWR.

NOARCHIVELOG mode protects a database only from instance failure,
not from disk (media) failure. Only the most recent changes made to the
database, stored in the groups of the online redo log, are available for
instance recovery. In other words, if you are using NOARCHIVELOG
mode, you can only restore (not recover) the database to the point of the
most recent full database backup. You cannot recover subsequent
transactions.

Also, in NOARCHIVELOG mode, you cannot perform online tablespace
backups. Furthermore, you cannot use online tablespace backups
previously taken while the database operated in ARCHIVELOG mode.
Only full backups taken while the database is closed can be used to
restore a database operating in NOARCHIVELOG mode. Therefore, if
you decide to operate a database in NOARCHIVELOG mode, take full
database backups at regular, frequent intervals.

When you run a database in ARCHIVELOG mode, the archiving of the
online redo log is enabled. Information in a database control file
indicates that a group of filled online redo log files cannot be used by
LGWR until the group is archived. A filled group is immediately
available to the process performing the archiving after a log switch
occurs (when a group becomes inactive). The process performing the
archiving does not have to wait for the checkpoint of a log switch to
complete before it can access the inactive group for archiving.

Figure 22 – 1 illustrate how the database’s online redo log is generated
by the process archiving the filled groups (ARCH in this illustration).

22 – 3Archiving Redo Information

LGWR

ARCH ARCH ARCH

LGWR LGWR

0001

0001

0002

0001

0002

0003

Log 0001 Log 0002 Log 0003 Log 0001

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Figure 22 – 1 Online Redo Log File Use in ARCHIVELOG Mode

ARCHIVELOG mode enables complete recovery from disk failure as
well as instance failure, because all changes made to the database are
permanently saved in an archived redo log.

If all databases in a distributed database operate in ARCHIVELOG
mode, you can perform coordinated distributed database recovery.
However, if any database in a distributed database uses
NOARCHIVELOG mode, recovery of a global distributed database (to
make all databases consistent) is limited by the last full backup of any
database operating in NOARCHIVELOG mode.

Also, the entire database can be open and available for normal use while
you back up or recover all or part of the database in ARCHIVELOG
mode. Note that extra administrative operations are required to manage
the files of the archived redo log, and that you must have a dedicated
tape drive or additional disk space to store the archived redo log files
when the database operates in ARCHIVELOG mode.

Setting the Initial
Database Archiving
Mode

22 – 4 Oracle7 Server Administrator’s Guide

You must also decide how filled groups of the online redo log are to be
archived. An instance can be configured to have Oracle automatically
archive filled online redo log files, or you can manually archive filled
groups.

See Also: You can also configure Oracle to verify redo log blocks when
they are archived. For more information, see “Verifying Blocks in Redo
Log Files” on page 5 – 14.

Turning Archiving On and Off

This section describes aspect of archiving, and includes the following
topics:

• Setting the Initial Database Archiving Mode

• Changing the Database Archiving Mode

• Enabling Automatic Archiving

• Disabling Automatic Archiving

• Performing Manual Archiving

You set a database’s initial archiving mode as part of database creation.
Usually, you can use the default of NOARCHIVELOG mode at database
creation because there is no need to archive the redo information
generated then. After creating the database, decide whether to change
from the initial archiving mode.

After a database has been created, you can switch the database’s
archiving mode on demand. However, you should generally not switch
the database between archiving modes.

See Also: If a database is automatically created during Oracle
installation, the initial archiving mode of the database is operating
system specific. See your operating system–specific Oracle
documentation.

When you create the database, you set the initial archiving mode of the
redo log in the CREATE DATABASE statement. If you do not specify
either ARCHIVELOG or NOARCHIVELOG, NOARCHIVELOG is the
default.

See Also: See Chapter 2 for more information about creating a database.

Changing the Database
Archiving Mode

22 – 5Archiving Redo Information

To switch a database’s archiving mode between NOARCHIVELOG and
ARCHIVELOG mode, use the SQL command ALTER DATABASE with
the ARCHIVELOG or NOARCHIVELOG option. The following
statement switches the database’s archiving mode from
NOARCHIVELOG to ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

Before switching the database’s archiving mode, perform the following
operations:

To Prepare to Switch Database Archiving Mode

1. Shut down the database instance.

An open database must be closed and dismounted and any
associated instances shut down before the database’s archiving
mode can be switched. Archiving cannot be disabled if any datafiles
need media recovery.

2. Back up the database.

Before making any major alteration to a database, always back up
the database to protect against any problems that might occur.

3. Perform any operating system specific steps (optional).

These steps may involve exiting Server Manager to configure how
Oracle will perform the archiving of the filled groups. Once this
operation is complete, start Server Manager again and continue to
Step 4.

4. Start up a new instance and mount but do not open the database.

To enable or disable archiving, the database must be mounted but
not open.

Note: If you are using the Oracle Parallel Server, you must
mount the database exclusively, using one instance, to switch
the database’s archiving mode.

5. Switch the database’s archiving mode.

After using the ALTER DATABASE command to switch a database’s
archiving mode, open the database for normal operation. If you
switched to ARCHIVELOG mode, you should also set the archiving
options—decide whether to enable Oracle to archive groups of online
redo log files automatically as they fill.

Enabling Automatic
Archiving

☞

Enabling Automatic
Archiving at Instance
Startup

22 – 6 Oracle7 Server Administrator’s Guide

See Also: For more information about starting an instance and
mounting a database, see Chapter 3.

If you want to archive filled groups, you may have to execute some
additional steps at this point, depending on your operating system; see
your operating system–specific Oracle documentation for details for
your system.

For more information about database backup, see Chapter 23.

See the Oracle7 Parallel Server Concepts & Administration guide for more
information about switching the archiving mode when using the Oracle
Parallel Server.

If your operating system permits, you can enable automatic archiving of
the online redo log. Under this option, no action is required to copy a
group after it fills; Oracle automatically archives groups after they are
filled. For this convenience alone, automatic archiving is the method of
choice for archiving the filled groups of online redo log files.

To enable automatic archiving after instance startup, you must be
connected to Oracle with administrator privileges.

Attention: Oracle does not automatically archive log files
unless the database is also in ARCHIVELOG mode.

Automatic archiving can be enabled before or after instance startup.

See Also: See your operating system–specific Oracle documentation to
determine whether this is a valid option for your Oracle Server.

Always specify an archived redo log destination and filename format
when enabling automatic archiving; see “Specifying the Archived Redo
Log Filename Format and Destination” on page 22 – 11.

If automatic archiving is enabled, manual archiving is still possible; see
“Performing Manual Archiving” on page 22 – 7.

To enable automatic archiving of filled groups each time an instance is
started, include the LOG_ARCHIVE_START parameter, set to TRUE, in
the database’s parameter file:

LOG_ARCHIVE_START=TRUE

The new value takes effect the next time you start the database.

Enabling Automatic
Archiving After Instance
Startup

Disabling Automatic
Archiving

Disabling Automatic
Archiving at Instance
Startup

Disabling Automatic
Archiving after Instance
Startup

22 – 7Archiving Redo Information

To enable automatic archiving of filled online redo log groups without
shutting down the current instance, use the SQL command ALTER
SYSTEM with the ARCHIVE LOG START parameter; you can optionally
include the archiving destination.

The following statement enables archiving:

ALTER SYSTEM ARCHIVE LOG START;

Using either of the options above, the instance does not have to be shut
down to enable automatic archiving. However, if an instance is shut
down and restarted after automatic archiving is enabled, the instance is
reinitialized using the settings of the parameter file, which may or may
not enable automatic archiving.

You can disable automatic archiving of the online redo log groups at any
time. However, once automatic archiving is disabled, you must
manually archive groups of online redo log files in a timely fashion. If a
database is operated in ARCHIVELOG mode, automatic archiving is
disabled, and all groups of online redo log files are filled but not
archived, then LGWR cannot reuse any inactive groups of online redo
log groups to continue writing redo log entries. Therefore, database
operation is temporarily suspended until the necessary archiving is
performed.

To disable automatic archiving after instance startup, you must be
connected with administrator privilege and have the ALTER SYSTEM
privilege.

Automatic archiving can be disabled at or after instance startup.

To disable the automatic archiving of filled online redo log groups each
time a database instance is started, set the LOG_ARCHIVE_START
parameter of a database’s parameter file to FALSE:

LOG_ARCHIVE_START=FALSE

The new value takes effect the next time the database is started.

To disable the automatic archiving of filled online redo log groups
without shutting down the current instance, use the SQL command
ALTER SYSTEM with the ARCHIVE LOG STOP parameter. The
following statement stops archiving:

ALTER SYSTEM ARCHIVE LOG STOP;

If ARCH is archiving a redo log group when you attempt to disable
automatic archiving, ARCH finishes archiving the current group, but
does not begin archiving the next filled online redo log group.

Performing Manual
Archiving

22 – 8 Oracle7 Server Administrator’s Guide

The instance does not have to be shut down to disable automatic
archiving. However, if an instance is shut down and restarted after
automatic archiving is disabled, the instance is reinitialized using the
settings of the parameter file, which may or may not enable automatic
archiving.

If a database is operating in ARCHIVELOG mode, inactive groups of
filled online redo log files must be archived. You can manually archive
groups of the online redo log whether or not automatic archiving is
enabled:

• If automatic archiving is not enabled, you must manually archive
groups of filled online redo log files in a timely fashion. If all
online redo log groups are filled but not archived, LGWR cannot
reuse any inactive groups of online redo log members to continue
writing redo log entries. Therefore, database operation is
temporarily suspended until the necessary archiving is
performed.

• If automatic archiving is enabled, but you want to rearchive an
inactive group of filled online redo log members to another
location, you can use manual archiving. (However, the instance
can decide to reuse the redo log group before you have finished
manually archiving, and thereby overwrite the files; if this
happens, Oracle will put an error message in the ALERT file.)

To manually archive a filled online redo log group, you must be
connected with administrator privileges.

Manually archive inactive groups of filled online redo log members
using the SQL command ALTER SYSTEM with the ARCHIVE LOG
clause.

The following statement archives all unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL;

See Also: With both manual or automatic archiving, you need to specify
a thread only when you are using the Oracle Parallel Server. See the
Oracle7 Parallel Server Concepts & Administration guide for more
information.

Minimizing the Impact
on System Performance

22 – 9Archiving Redo Information

Tuning Archiving

This section describes aspects of tuning the archive process, and
includes the following topics:

• Minimizing the Impact on System Performance

• Improving Archiving Speed

For most databases, the archive process has no effect on overall system
performance. In some large database sites, however, archiving can have
an impact on system performance. On one hand, if the archiver works
very quickly, overall system performance can be reduced while the
archiver runs, since CPU cycles are being consumed in archiving. On the
other hand, if the archiver runs extremely slowly, it has little detrimental
effect on system performance, but it takes longer to archive redo log
files, and can be a bottleneck if all redo log groups are unavailable
because they are waiting to be archived.

For these large database sites, you can tune archiving, to cause it to run
either as slowly as possible without being a bottleneck, or as quickly as
possible without reducing system performance substantially. To do so,
adjust the values of the initialization parameters
LOG_ARCHIVE_BUFFERS (the number of buffers allocated to
archiving) and LOG_ARCHIVE_BUFFER_SIZE (the size of each such
buffer).

Note: When you change the value of
LOG_ARCHIVE_BUFFERS or LOG_ARCHIVE_BUFFER_SIZE,
the new value takes effect the next time you start the instance.

To make the archiver work as slowly as possible without forcing the
system to wait for redo logs, begin by setting the number of archive
buffers (LOG_ARCHIVE_BUFFERS) to 1 and the size of each buffer
(LOG_ARCHIVE_BUFFER_SIZE) to the maximum possible.

If the performance of the system drops significantly while the archiver is
working, make the value of LOG_ARCHIVE_BUFFER_SIZE lower, until
system performance is no longer reduced when the archiver runs.

Note: If you want to set archiving to be very slow, but find that
Oracle frequently has to wait for redo log files to be archived
before they can be reused, consider creating additional redo log
file groups. Adding groups can ensure that a group is always
available for Oracle to use.

Improving Archiving
Speed

22 – 10 Oracle7 Server Administrator’s Guide

To improve archiving performance (for example, if you want to stream
input to a tape drive), use multiple archive buffers, so that the archiver
process can read the archive log at the same time that it writes the
output log. You can set LOG_ARCHIVE_BUFFERS to 2, but for a very
fast tape drive you might want to set it to 3 or more. Then, set the size of
the archive buffers to a moderate number, and increase it until archiving
is as fast as you want it to be without impairing system performance.

See Also: This maximum is operating system dependent; see your
operating system–specific Oracle documentation.

For more information about these parameters, see the Oracle7 Server
Reference guide.

Displaying Archiving Status Information

To list archive status information, you must be connected with
administrator privileges.

To see the current archiving mode, query the V$DATABASE view :

SELECT log_mode FROM sys.v$database;

LOG_MODE

––––––––––––

NOARCHIVELOG

The V$ARCHIVE and V$LOG data dictionary views also contain
archiving information of a database. For example, the following query
lists all log groups for the database and indicates the ones that remain to
be archived:

SELECT group#, archived

 FROM sys.v$log;

GROUP# ARC

–––––––––– –––

1 YES

2 NO

22 – 11Archiving Redo Information

The command ARCHIVE LOG with the LIST parameter also shows
archiving information for the connected instance:

ARCHIVE LOG LIST;

Database log mode ARCHIVELOG

Automatic archival ENABLED

Archive destination destination

Oldest online log sequence 30

Next log sequence to archive 32

Current log sequence number 33

This display tells you all the necessary information regarding the redo
log settings for the current instance:

• The database is currently operating in ARCHIVELOG mode.

• Automatic archiving is enabled.

• The destination of the archived redo log (operating system
specific) is destination (corresponds to LOG_ARCHIVE_DEST or
an overriding destination).

• The oldest filled online redo log group has a sequence number
 of 30.

• The next filled online redo log group to archive has a sequence
number of 32.

• The current online redo log file has a sequence number of 33.

You must archive all redo log groups with a sequence number equal to
or greater than the Next log sequence to archive, yet less than the Current
log sequence number. For example, the display above indicates that the
online redo log group with sequence number 32 needs to be archived.

Specifying the Archived Redo Log Filename Format and Destination

When the database is used in ARCHIVELOG mode, Oracle must know
the archived redo log filename format and destination so that automatic
or manual archiving creates uniquely named archived redo log files in
the proper location.

Archived redo log files are uniquely named as specified by the
LOG_ARCHIVE_FORMAT parameter. Filename format is operating
system specific; for most operating systems it consists of a text string,
one or more parameters, and a filename extension. When a filled online
redo log group is archived, the archiving process concatenates the
supplied text string with the return values of the specified parameters to

22 – 12 Oracle7 Server Administrator’s Guide

create uniquely identified archived redo log files. Each parameter has an
upper bound, which is operating system dependent.

Table 22 – 1 lists the parameters that can be included in a filename
format and corresponding examples to show how the parameter affects
the filenames created by the archiving process.

Parameter Description Example 1

%T thread number, left–zero–padded arch0000000001

%t thread number, not padded arch1

%S log sequence number,
left–zero–padded

arch0000000251

%s log sequence number, not padded arch251

Table 22 – 1 Archived Redo Log Filename Format Parameters

1 Assume LOG_ARCHIVE_FORMAT=arch%parameter, and the upper bound for all parameters
 is 10 characters.

The different options are provided so that you can customize the
archived redo log filenames as you need. For example, you might want
to take into account the operating system sorting algorithm used to list
filenames.

The %T and %t are useful only when the Oracle Parallel Server is used.
In a non–Parallel Server configuration, you must decide whether to use
%S or %s to identify each archived redo log file uniquely. The following
is a typical example of a common archived redo log filename format:

LOG_ARCHIVE_FORMAT = arch%S.arc

Here, arch is the filename, %S is the zero–padded log sequence
parameter, and .arc is the file extension. Assuming the upper bound for
the %S parameter is four, this filename format generates archived redo
log filenames of the following format:

arch0001.arc

arch0002.arc

arch0003.arc

 .

 .

Take into account the maximum operating system filename length when
specifying the archive filename format. If ARCH or a user process
attempts to archive a file and the supplied filename format is too large,
the process fails to archive the file.

Note: If no archived filename format is specified using LOG_–
ARCHIVE_FORMAT, Oracle uses a default filename format that
is operating system–specific.

22 – 13Archiving Redo Information

The archived redo log destination is also operating system–specific. For
most operating systems, the archive redo log destination points to a disk
drive and a file directory. If permitted by your Oracle Server, this
destination can also point to a tape drive dedicated to Oracle for
archiving filled online redo log files.

The archived redo log destination is determined at instance startup by
the LOG_ARCHIVE_DEST initialization parameter, but can be
overridden while the instance is up:

• If a database’s parameter file is edited to include a destination
using the LOG_ARCHIVE_DEST parameter, the current instance
must be shut down and restarted to read the new parameter file.

• If the current instance cannot be shut down, but the archived redo
log destination must be specified or changed for automatic
archiving, use the ALTER SYSTEM ARCHIVE LOG START
’destination’ statement to override the automatic archiving
destination.

• During manual archiving, a specified destination overrides the
default archived redo log destination. However, automatic
archiving continues to use the current automatic archive
destination. If no destination is specified, Oracle automatically
uses the destination specified by the LOG_ARCHIVE_DEST
parameter of the parameter file used to start the instance. If no
destination is supplied by the LOG_ARCHIVE_DEST parameter,
Oracle uses a default destination that is operating
system–dependent.

See Also: See your operating system–specific Oracle documentation for
more information about the LOG_ARCHIVE_FORMAT and
LOG_ARCHIVE_DEST initialization parameters, and the default
archived redo log filename format and destination.

For more information about filename format parameters and the term
“thread” see the Oracle7 Parallel Server Concepts & Administration guide.

22 – 14 Oracle7 Server Administrator’s Guide

C H A P T E R

23
T

23 – 1Backing Up a Database

Backing Up a Database

his chapter explains how to back up the data in an Oracle database,
and includes the following topics:

• Guidelines for Database Backups

• Creating a Backup Strategy

• Read–Only Tablespaces and Backup

• Performing Backups

• Recovering from an Incomplete Online Tablespace Backup

• Using the Export and Import Utilities for Supplemental Database
Protection

See Also: This chapter contains several references to Oracle Server
Manager. For more information about performing specific tasks using
Server Manager/GUI or Server Manager/LineMode, see the Oracle
Server Manager User’s Guide.

Test Backup and
Recovery Strategies

Perform Operating
System Backups
Frequently and
Regularly

23 – 2 Oracle7 Server Administrator’s Guide

Guidelines for Database Backups

This section describes guidelines to consider before performing database
backups, and includes the following topics:

• Test Backup and Recovery Strategies

• Perform Operating System Backups Frequently and Regularly

• Backup Appropriate Portions of the Database When Making
Structural Changes

• Back Up Often–Used Tablespaces Frequently

• Keep Older Backups

• Export Database Data for Added Protection and Flexibility

• Consider Distributed Database Backups

• Back Up after Creating Unrecoverable Objects

Before you create an Oracle database, you should decide how you plan
to protect the database against potential disk failures, or to enable
point–in–time recovery (if desired). If such planning is not considered
before database creation, database recovery may not be possible if a disk
failure damages the datafiles, online redo log files, or control files of a
database.

See Also: See “Creating a Backup Strategy” on page 23 – 5 if you are
not familiar with typical backup strategies for a database.

Test your backup and recovery strategies in a test environment before
and after you move to a production system. By doing so, you can test
the thoroughness of your strategies and minimize problems before they
occur in a real situation.

Performing test recoveries regularly ensures that your archiving,
backup, and recovery procedures work. It also helps you stay familiar
with recovery procedures, so that you are less likely to make a mistake
in a crisis.

Frequent and regular full or partial database backups are essential for
any recovery scheme. The frequency of backups should be based on the
rate or frequency of changes to database data (such as insertions,
updates, and deletions of rows in existing tables, and addition of new
tables). If a database’s data is changed at a high rate, database backup
frequency should be proportionally high. Alternatively, if a database is
mainly read–only, and updates are issued only infrequently, the
database can be backed up less frequently.

Backup Appropriate
Portions of the
Database When
Making Structural
Changes

Back Up Often–Used
Tablespaces Frequently

Keep Older Backups

23 – 3Backing Up a Database

If you make any of the following structural changes, perform a backup
of the appropriate portion of your database immediately before and
after completing the alteration:

• create or drop a tablespace

• add or rename (relocate) a datafile in an existing tablespace

• add, rename (relocate), or drop an online redo log group or
member

Backing up the appropriate portion of the database depends on the
archiving mode of the database, as described below:

• If a database is operated in ARCHIVELOG mode, only a control
file backup (using the ALTER DATABASE command with the
BACKUP CONTROLFILE option) is required before and after a
structural alteration. However, you can back up other parts of the
database.

• If the database is operated in NOARCHIVELOG mode, a full
offline database backup should be taken immediately before and
after the modification, including all datafiles, and control files.

If a database is operated in ARCHIVELOG mode, it is acceptable to back
up the datafiles of an individual tablespace or even a single datafile.
This option is useful if a portion of a database is used more extensively
than others, such as the SYSTEM tablespace and tablespaces that contain
rollback segments. By taking more frequent backups of the extensively
used datafiles of a database, you gather more recent copies of the
datafiles. As a result, if a disk failure damages the extensively used
datafiles, the more recent backup can restore the damaged files. Only a
small number of changes to data need to be applied to roll the restored
file forward to the time of the failure, or desired point–in–time recovery,
thereby reducing database recovery time.

How long you should keep an older database backup depends on the
choices you want for database recovery. If you want to recover to a past
point–in–time, you need a database backup taken before that
point–in–time. For a database operating in NOARCHIVELOG mode,
this means a full database backup. For a database operating in
ARCHIVELOG mode, this means you should perform a backup of each
datafile, taken individually or together, taken any time before the
desired recovery point–in–time, and a backup of the associated control
file that reflects the database’s structure at the point–in–time of recovery.

For added protection, consider keeping two or more backups (and all
archive logs that go with these backups) previous to the current backup.

Export Database Data
for Added Protection
and Flexibility

Consider Distributed
Database Backups

Back Up after Creating
Unrecoverable Objects

23 – 4 Oracle7 Server Administrator’s Guide

Warning: After opening the database with the RESETLOGS
option, existing backups cannot be used for subsequent
recovery beyond the time when the logs were reset. You should
therefore shutdown the database and make a full offline backup.
Doing so will enable recovery of database changes subsequent
to using the RESETLOGS option.

See Also: For more information on the Export utility, see the Oracle7
Server Utilities guide.

Because the Oracle Export utility can selectively export specific objects,
you might consider exporting portions or all of a database for
supplemental protection and flexibility in a database’s backup strategy.
Database exports are not a substitute for operating system backups and
cannot provide the same complete recovery advantages that the built–in
functionality of Oracle offers.

If a database is a node in a distributed database, consider the following
guidelines:

• All databases in the distributed database system should be
operated in the same archiving mode.

• If the databases in a distributed database system are operating in
ARCHIVELOG mode, backups at each node can be performed
autonomously (individually, without time coordination).

• If the databases in a distributed database system are operating in
NOARCHIVELOG mode, full offline backups must be performed
at the same (global) time, to plan for global distributed database
recovery. For example, if a database in New York is backed up at
midnight EST, the database in San Francisco should be backed up
at 9PM PST.

See Also: For more information about distributed database recovery
when databases are operating in NOARCHIVELOG mode, see
“Coordinate Distributed Recovery” on page 24 – 5.

If users are creating tables or indexes using the UNRECOVERABLE
option, consider taking backups after the objects are created. When
tables and indexes are created as UNRECOVERABLE, no redo is logged,
and these objects cannot be recovered from existing backups.

See Also: For information about the UNRECOVERABLE option, see the
CREATE TABLE...AS SELECT and CREATE INDEX commands in the
Oracle7 Server SQL Reference.

Backup Strategies in
NOARCHIVELOG
Mode

23 – 5Backing Up a Database

Creating a Backup Strategy

Before you create an Oracle database, decide how you plan to protect
the database against potential failures. Answer the following questions
before developing your backup strategy:

• Is it acceptable to lose any data if a disk failure damages some
of the files that constitute a database? If it is not acceptable to
lose any data, the database must be operated in ARCHIVELOG
mode, ideally with a multiplexed online redo log. If it is
acceptable to lose a limited amount of data if there is a disk
failure, you can operate the database in NOARCHIVELOG mode
and avoid the extra work required to archive filled online redo
log files.

• Will you ever need to recover to past points–in–time? If you
need to recover to a past point–in–time to correct an erroneous
operational or programmatic change to the database, be sure to
run in ARCHIVELOG mode and perform control file backups
whenever making structural changes. Recovery to a past
point–in–time is facilitated by having a backup control file that
reflects the database structure at the desired point–in–time.

• Does the database need to be available at all times (twenty–four
hours per day, seven days per week)? If so, do not operate the
database in NOARCHIVELOG mode because the required full
database backups, taken while the database is shutdown, cannot
be made frequently, if at all. Therefore, high–availability
databases always operate in ARCHIVELOG mode to take
advantage of online datafile backups.

If a database is operated in NOARCHIVELOG mode, filled groups of
online redo log files are not being archived. Therefore, the only
protection against a disk failure is the most recent full backup of the
database.

Plan to take full backups regularly, according to the amount of work that
you can afford to lose. For example, if you can afford to lose the amount
of work accomplished in one week, make a full offline backup once per
week. If you can afford to lose only a day’s work, make a full offline
backup every day. For large databases with a high amount of activity, it
is usually unacceptable to lose work. Therefore, the database should be
operated in ARCHIVELOG mode, and the appropriate backup
strategies should be used.

Whenever you alter the physical structure of a database operating in
NOARCHIVELOG mode, immediately take a full database backup. An

Backup Strategies in
ARCHIVELOG Mode

23 – 6 Oracle7 Server Administrator’s Guide

immediate full backup protects the new structure of the database not
reflected in the previous full backup.

If a database is operating in ARCHIVELOG mode, filled groups of
online redo log files are being archived. Therefore, the archived redo log
coupled with the online redo log and datafile backups can protect the
database from a disk failure, providing for complete recovery from a
disk failure to the instant that the failure occurred (or, to the desired past
point–in–time). Following are common backup strategies for a database
operating in ARCHIVELOG mode:

• When the database is initially created, perform a full offline
backup of the entire database. This initial full backup is the
foundation of your backups because it provides copies of all
datafiles and the control file of the associated database.

Note: When you perform this initial full backup, make sure that
the database is in ARCHIVELOG mode first. Otherwise, the
backed up database files will contain the NOARCHIVELOG
mode setting.

• Subsequent full backups are not required, and if a database must
remain open at all times, full offline backups are not feasible.
Instead, you can take partial online backups to update the
backups of a database.

• Take online or offline datafile backups to update backed up
information for the database (supplementing the full, initial
backup). In particular, the datafiles of extensively used
tablespaces should be backed up frequently to reduce database
recovery time, should recovery ever be required. If a more recent
datafile backup restores a damaged datafile, fewer archived redo
logs need to be applied to the restored datafile to roll it forward to
the time of the failure.

Whether you should take online or offline datafile backups
depends on the availability requirements of the data. Online
datafile backups are the only choice if the data being backed up
must always be available.

• Every time you make a structural change to the database, take a
control file backup, using the ALTER DATABASE command with
the BACKUP CONTROLFILE option.

Warning: If the control file does not contain the name of a
datafile, and you have no backup of that datafile, you cannot
recover the file if it is lost. Also, do not use operating system
utilities to backup the control file in ARCHIVELOG mode,
unless you are performing a full, offline backup.

23 – 7Backing Up a Database

• If you want a copy of the current online log, then archive it.
Archiving means the online log will no longer be the current log.
If you end up copying a current online log, the copy will appear
as the end of the redo thread. However, additional redo may have
been generated in the thread. If you ever attempt to execute
recovery supplying the redo log copy, recovery will erroneously
detect the end of the redo thread and prematurely terminate,
possibly corrupting the database.

Read–Only Tablespaces and Backup

You can create backups of a read–only tablespace while the database is
open. Immediately after making a tablespace read–only, you should
back up the tablespace. Provided the tablespace remains read–only,
there is no need to perform any further backups of it.

Unlike backups of writeable tablespaces, you do not need to use the
BEGIN and END BACKUP commands to mark the beginning and end
of the online backup of a read–only tablespace. Using these commands
with reference to a read–only tablespace causes an error.

After you change a read–only tablespace to a read–write tablespace, you
need to resume your normal backups of the tablespace, just as you do
when you bring an offline read–write tablespace back online.

Bringing the datafiles of a read–only tablespace online does not make
these files writeable, nor does it cause the file header to be updated.
Thus, it is not necessary to perform a backup of these files, as is
necessary when you bring a writeable datafile back online.

Performing Backups

This section describes the various aspects of taking database backups,
and includes the following topics:

• Listing Database Files Before Backup

• Performing Full Offline Backups

• Performing Partial Backups

• Performing Control File Backups

Listing Database Files
Before Backup

Performing Full
Offline Backups

23 – 8 Oracle7 Server Administrator’s Guide

Before taking a full or partial database backup, identify the files to be
backed up. Obtain a list of datafiles by querying the V$DATAFILE view:

SELECT name FROM v$datafile;

Then obtain a list of online redo log files for a database using the query
below:

SELECT member FROM v$logfile;

These queries list the datafiles and online redo log files of a database,
respectively, according to the information in the current control file of
the database.

Finally, obtain the names of the current control files of the database by
issuing the following statement within Server Manager:

SHOW PARAMETER control_files;

Whenever you take a control file backup (using the ALTER DATABASE
command with the BACKUP CONTROLFILE TO ’filename’ option),
save a list of all datafiles and online redo log files with the control file
backup. To obtain this list use the ALTER DATABASE command with
the BACKUP CONTROLFILE TO TRACE option. By saving the control
file backup with the output of the TO TRACE invocation, the database’s
physical structure at the time of the control file backup is clearly
documented.

Take a full offline backup of all files that constitute a database after the
database is shut down to system–wide use in normal priority. A full
backup taken while the database is open, after an instance crash or shutdown
abort is useless. In such cases, the backup is not a full offline backup
because the files are inconsistent with respect to the current
point–in–time. The files that constitute the database are the datafiles,
online redo log files, and control file.

Full offline backups do not require the database to be operated in a
specific archiving mode. A full offline backup can be taken if a database
is operating in either ARCHIVELOG or NOARCHIVELOG mode.

The set of backup files that result from a full offline backup are
consistent. All files correspond to the same point in time. If database
recovery is necessary, these files can completely restore the database to
an exact point in time. After restoring the backup files, additional
recovery steps may be possible to restore the database to a more current
time if the database is operated in ARCHIVELOG mode and online redo
logs are not restored.

Warning: A backup control file created during a full database
backup should only be used with the other files taken in that

Preparing to Take a Full
Backup

23 – 9Backing Up a Database

backup, to restore the full backup. It should not be used for
complete or incomplete database recovery. Unless you are
taking a full database backup, you should back up your control
file using the ALTER DATABASE command with the BACKUP
CONTROLFILE option.

See Also: For more information about backing up control files, see
“Control File Backups” on page 23 – 14.

To guarantee that a database’s datafiles are consistent, always shut
down the database with normal or immediate priority before making a
full database backup. Never perform a full database backup after an
instance failure or after the database is shut down with abort priority
(that is, using a SHUTDOWN ABORT statement). In this case, the
datafiles are probably not consistent with respect to a specific
point–in–time.

To Perform a Full Backup

1. Shut down the database with normal or immediate priority.

To make a full backup, all database files must be closed by shutting
down the database. Do not make a full backup when the instance is
aborted or stopped because of a failure. Reopen the database and
shut it down cleanly before making a full backup.

2. Back up all files that constitute the database.

Use operating system commands or a backup utility to make
backups of all datafiles, online redo log files, and a single control file
of the database. If you are multiplexing the online redo log, back up
all members of each group, because it is not guaranteed that any one
member of a group is complete. Also back up the parameter files
associated with the database.

Operating system backups can be performed:

• within Server Manager, using the HOST command

• outside Server Manager, with the operating system commands or
a backup utility

3. Restart the database.

After you have finished backing up all datafiles, online redo log
files, and a single control file of the database, you can restart the
database.

Verifying Backups

Performing Partial
Backups

Online Tablespace and
Datafile Backups

23 – 10 Oracle7 Server Administrator’s Guide

DB_VERIFY is a command–line utility that performs a physical data
structure integrity check on database files. Use DB_VERIFY primarily
when you need to ensure that a backup database (or datafile) is valid
before it is restored.

See Also: See page 3 – 8 for more information about database shutdown.

For more information about making operating system backups of files,
see your operating system–specific Oracle documentation.

For more information on DB_VERIFY, see the Oracle7 Server Utilities
guide.

You can perform different types of partial backups:

• online tablespace and datafile backups

• offline tablespace and datafile backups

Partial backups should only be taken (and in some cases can only be
taken) if a database is operating in ARCHIVELOG mode. Partial
backups cannot be used to restore a database operating in
NOARCHIVELOG mode.

All datafiles of an individual online tablespace or specific datafiles of an
online tablespace can be backed up while the tablespace and datafiles
are currently online and in use for normal database operation.

To back up online tablespaces, you must have the MANAGE
TABLESPACE system privilege.

To Perform an Online Backup of an Entire Tablespace or Specific
Datafile

1. Identify the datafiles.

If you are backing up a specific datafile, use the fully specified
filename of the datafile.

Before beginning a backup on an entire tablespace, identify all of the
tablespace’s datafiles using the DBA_DATA_FILES data dictionary
view. For example, assume that the USERS tablespace is to be
backed up. To identify the USERS tablespace’s datafile, you can
query the DBA_DATA_FILES view:

SELECT tablespace_name, file_name

 FROM sys.dba_data_files

 WHERE tablespace_name = ’USERS’;

TABLESPACE_NAME FILE_NAME

––––––––––––––– –––––––––

23 – 11Backing Up a Database

USERS filename1

USERS filename2

Here, filename1 and filename2 are fully specified filenames
corresponding to the datafiles of the USERS tablespace.

2. Mark the beginning of the online tablespace backup.

To prepare the datafiles of an online tablespace for backup, use
either the Start Online Backup menu item of Server Manager, or the
SQL command ALTER TABLESPACE with the BEGIN BACKUP
option.

The following statement marks the start of an online backup for the
tablespace USERS:

ALTER TABLESPACE users BEGIN BACKUP;

Warning: If you forget to mark the beginning of an online
tablespace backup, or neglect to assure that the BEGIN
BACKUP command has completed before backing up an online
tablespace, the backup datafiles are not useful for subsequent
recovery operations. Attempting to recover such a backup is a
risky procedure, and can return errors that result in inconsistent
data later. For example, the attempted recovery operation will
issue a “fuzzy files” warning, and lead to an inconsistent
database that will not open.

3. Back up the online datafiles.

At this point, you can back up the online datafiles of the online
tablespace from within Server Manager, using the HOST command,
by exiting Server Manager and entering the operating system
commands, or starting the Backup utility

4. Mark the end of the online tablespace backup.

After backing up the datafiles of the online tablespace, indicate the
end of the online backup using either the End Online Tablespace
Backup dialog box of Server Manager, or the SQL command ALTER
TABLESPACE with the END BACKUP option.

23 – 12 Oracle7 Server Administrator’s Guide

The following statement ends the online backup of the tablespace
USERS:

ALTER TABLESPACE users END BACKUP;

If you forget to indicate the end of an online tablespace backup, and an
instance failure or SHUTDOWN ABORT occurs, Oracle assumes that
media recovery (possibly requiring archived redo logs) is necessary at
the next instance start up.

See Also: See the Oracle7 Server Reference for more information about the
DBA_DATA_FILES data dictionary view.

See your operating system–specific Oracle documentation for more
information about making operating system backups of files.

To restart the database without media recovery, see “Recovering From
an Incomplete Online Tablespace Backup” on page 23 – 17.

Determining Datafile Backup Status To view the backup status of a
datafile, you can use the data dictionary table V$BACKUP. This table
lists all online files and gives their backup status. It is most useful when
the database is open. It is also useful immediately after a crash, because
it shows the backup status of the files at the time of the crash. You can
use this information to determine whether you have left tablespaces in
backup mode.

Note: V$BACKUP is not useful if the control file currently in
use is a restored backup or a new control file created since the
media failure occurred. A restored or re–created control file
does not contain the information Oracle needs to fill
V$BACKUP accurately. Also, if you have restored a backup of a
file, that file’s STATUS in V$BACKUP reflects the backup status
of the older version of the file, not the most current version.
Thus, this view might contain misleading information on
restored files.

23 – 13Backing Up a Database

For example, the following query displays the current backup status of
datafiles:

SELECT file#, status

 FROM v$backup;

FILE# STATUS

–––––––––––––––––––––

 0011 INACTIVE

 0012 INACTIVE

 0013 ACTIVE

...

In the STATUS column, “INACTIVE” indicates that the file is not
currently being backed up. “ACTIVE” indicates that the file is marked
as currently being backed up.

Backing Up Several Online Tablespaces If you have to back up several
online tablespaces, use either of the following procedures:

• Back up the online tablespaces in parallel. For example, prepare
all online tablespaces for backup:

ALTER TABLESPACE ts1 BEGIN BACKUP;

ALTER TABLESPACE ts2 BEGIN BACKUP;

ALTER TABLESPACE ts3 BEGIN BACKUP;

Next, back up all files of the online tablespaces and indicate that
the online backups have been completed:

ALTER TABLESPACE ts1 END BACKUP;

ALTER TABLESPACE ts2 END BACKUP;

ALTER TABLESPACE ts3 END BACKUP;

• Back up the online tablespaces serially. For example, individually
prepare, back up, and end the backup of each online tablespace:

ALTER TABLESPACE ts1 BEGIN BACKUP;

backup files

ALTER TABLESPACE ts1 END BACKUP;

ALTER TABLESPACE ts2 BEGIN BACKUP;

backup files

ALTER TABLESPACE ts2 END BACKUP;

The second option minimizes the time between ALTER TABLESPACE...
BEGIN/END BACKUP commands and is recommended. During online
backups, more redo information is generated for the tablespace.

Offline Tablespace and
Datafile Backups

23 – 14 Oracle7 Server Administrator’s Guide

All or some of the datafiles of an individual tablespace can be backed up
while the tablespace is offline. All other tablespaces of the database can
remain open and available for system–wide use.

Note: You cannot take the SYSTEM tablespace or any
tablespace with active rollback segments offline. The following
procedure cannot be used for such tablespaces.

To take tablespaces offline and online, you must have the MANAGE
TABLESPACE system privilege.

To Back Up the Offline Datafiles of an Offline Tablespace

1. Identify the datafiles of the offline tablespace.

Use the fully specified filename of the datafile.

Before taking the tablespace offline, identify the names of its
datafiles by querying the data dictionary view DBA_DATA_FILES.
(See Step 1 on page 23 – 10.)

2. Take the tablespace offline, using normal priority if possible.

Use of normal priority, if possible, is recommended because it
guarantees that the tablespace can be subsequently brought online
without the requirement for tablespace recovery.

To take a tablespace and all associated datafiles offline with normal
priority, use the Take Offline menu item of Server Manager, or the
SQL command ALTER TABLESPACE with the OFFLINE parameter.
The following statement takes a tablespace named USERS offline
normally:

ALTER TABLESPACE users OFFLINE NORMAL;

After a tablespace is taken offline with normal priority, all datafiles
of the tablespace are closed.

3. Back up the offline datafiles.

At this point, you can back up the datafiles of the offline tablespace
from within Server Manager using the HOST command, by exiting
Server Manager and entering the operating system commands, or
starting the Backup utility.

4. Bring the tablespace online. (Optional)

Bring the tablespace online using either the Place Online menu item
of Server Manager, or the SQL command ALTER TABLESPACE
with the ONLINE option. The following statement brings an offline
tablespace named USERS online:

Performing Control
File Backups

Backing Up the Control
File to the Trace File

23 – 15Backing Up a Database

ALTER TABLESPACE users ONLINE;

Note: If you took the tablespace offline using temporary or
immediate priority, the tablespace may not be brought online
unless tablespace recovery is performed.

After a tablespace is brought online, the datafiles of the tablespace
are open and available for use.

See Also: For more information about online and offline tablespaces, see
page 8 – 7.

For more information about making operating system backups of files,
see your operating system–specific Oracle documentation.

For more information about tablespace recovery, see page 24 – 20.

Back up the control file of a database after making a structural
modification to a database operating in ARCHIVELOG mode.

To backup a database’s control file, you must have the ALTER
DATABASE system privilege.

You can take a backup of a database’s control file using the SQL
command ALTER DATABASE with the BACKUP CONTROLFILE
option. The following statement backs up a database’s control file:

ALTER DATABASE BACKUP CONTROLFILE TO ’ filename ’ REUSE;

Here, filename is a fully specified filename that indicates the name of the
new control file backup.

The REUSE option allows you to have the new control file overwrite a
control file that currently exists.

The TRACE option of the ALTER DATABASE BACKUP CONTROLFILE
command helps you manage and recover your control file. TRACE
prompts Oracle to write SQL commands to the database’s trace file,
rather than making a physical backup of the control file. These
commands start up the database, re–create the control file, and recover
and open the database appropriately, based on the current control file.
Each command is commented. Thus, you can copy the commands from
the trace file into a script file, edit them as necessary, and use the script
to recover the database if all copies of the control file are lost (or to
change the size of the control file).

23 – 16 Oracle7 Server Administrator’s Guide

For example, assume the SALES database has three enabled threads, of
which thread 2 is public and thread 3 is private. It also has multiplexed
redo log files, and one offline and one online tablespace.

ALTER DATABASE

 BACKUP CONTROLFILE TO TRACE NORESETLOGS;

3–JUN–1992 17:54:47.27:

The following commands will create a new control file and use it

to open the database.

No data other than log history will be lost. Additional logs may

be required for media recovery of offline data files. Use this

only if the current version of all online logs are available.

STARTUP NOMOUNT

CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG

 MAXLOGFILES 32

 MAXLOGMEMBERS 2

 MAXDATAFILES 32

 MAXINSTANCES 16

 MAXLOGHISTORY 1600

LOGFILE

 GROUP 1

 ’/diska/prod/sales/db/log1t1.dbf’,

 ’/diskb/prod/sales/db/log1t2.dbf’

) SIZE 100K

 GROUP 2

 ’/diska/prod/sales/db/log2t1.dbf’,

 ’/diskb/prod/sales/db/log2t2.dbf’

) SIZE 100K,

 GROUP 3

 ’/diska/prod/sales/db/log3t1.dbf’,

 ’/diskb/prod/sales/db/log3t2.dbf’

) SIZE 100K

DATAFILE

 ’/diska/prod/sales/db/database1.dbf’,

 ’/diskb/prod/sales/db/filea.dbf’

;

Take files offline to match current control file.

ALTER DATABASE DATAFILE ’/diska/prod/sales/db/filea.dbf’ OFFLINE

Recovery is required if any data files are restored backups,

or if the last shutdown was not normal or immediate.

RECOVER DATABASE;

All logs need archiving and a log switch is needed.

ALTER SYSTEM ARCHIVE LOG ALL;

Database can now be opened normally

ALTER DATABASE OPEN;

23 – 17Backing Up a Database

Files in normal offline tablespaces are now named.

ALTER DATABASE RENAME FILE ’MISSING0002’

 TO ’/diska/prod/sales/db/fileb.dbf’;

Using the command without NORESETLOGS produces the same
output. Using the command with RESETLOGS produces a similar script
that includes commands that recover and open the database, but resets
the redo logs upon startup.

Recovering From an Incomplete Online Tablespace Backup

The following situations can cause an incomplete tablespace backup:

• You did not indicate the end of the online tablespace backup
operation (using the ALTER TABLESPACE command with the
END BACKUP option), and the database was subsequently shut
down with the ABORT option.

• A system or instance failure, or SHUTDOWN...ABORT
interrupted the backup.

Upon detecting an incomplete online tablespace backup at startup,
Oracle assumes that media recovery (possibly requiring archived redo
log) is necessary for startup to proceed. You can avoid performing
media recovery by using the ALTER DATABASE DATAFILE...END
BACKUP command. Remember to list all the datafiles of the tablespaces
that were in the process of being backup up before the database was
restarted. You can determine whether datafiles were in the process of
being backed up by querying the V$BACKUP view.

Warning: Do not use ALTER DATABASE DATAFILE...END
BACKUP if you have restored any of the affected files from a
backup.

After you have restarted your database, you can perform the recovery in
either of two ways:

• Use the STARTUP RECOVER command to start and recover the
database automatically.

• Start an instance, open and mount the database, and issue the
statement RECOVER DATABASE.

The first method is easier because it prompts Oracle to perform recovery
only if it is needed.

See Also: For information on starting the database, see page 3 – 2.

Using Export

23 – 18 Oracle7 Server Administrator’s Guide

For information on recovering a database, see page 24 – 7.

Using the Export and Import Utilities for Supplemental Database Protection

This section describes the Import and Export utilities, and includes the
following topics:

• Using Import

• Using Export

Export and Import are utilities that move Oracle data in and out of
Oracle databases. Export writes data from an Oracle database to an
operating system file in a special format. Import reads Export files and
restores the corresponding information into an existing database.
Although Export and Import are designed for moving Oracle data, you
can also use them to supplement backups of data.

See Also: Both the Export and Import utilities are described in detail in
the Oracle7 Server Utilities guide.

The Export utility allows you to backup your database while it is open
and available for use. It writes a read–consistent view of the database’s
objects to an operating system file. System audit options are not
exported.

Warning: If you use Export to backup, all data must be
exported in a logically consistent way so that the backup reflects
a single point in time. No one should make changes to the
database while the Export takes place. Ideally, you should run
the database in restricted mode while you export the data, so no
regular users can access the data.

Table 23 – 1 lists available export modes.

Mode Description

User exports all objects owned by a user

Table exports all or specific tables owned by a user

Full Database exports all objects of the database

Table 23 – 1 Export Modes

Following are descriptions of Export types:

Only database data that has changed since the last
incremental, cumulative, or complete export is
exported. An incremental export exports the
object’s definition and all its data. Incremental

Incremental
Export

Using Import

23 – 19Backing Up a Database

exports are typically performed more often than
cumulative or complete reports.

For example, if tables A, B, and C exist, and only
table A’s information has been modified since the
last incremental export, only table A is exported.

Only database data that has been changed since the
last cumulative or complete export is exported.

Perform this type of export on a limited basis, such
as once a week, to condense the information
contained in numerous incremental exports.

For example, if tables A, B, and C exist, and only
table A’s and table B’s information has been
modified since the last cumulative export, only the
changes to tables A and B are exported.

All database data is exported.

Perform this type of export on a limited basis, such
as once a month, to export all data contained in a
database.

The Import utility allows you to restore the database information held in
previously created Export files. It is the complement utility to Export.

To recover a database using Export files and the Import utility:

• Re–create the database structure, including all tablespaces and
users

Note: These re–created structures should not have objects in
them.

• Import the appropriate Export files to restore the database to the
most current state possible. Depending on how your Export
schedule is performed, imports of varying degrees will be
necessary to restore a database.

Assume that the schedule illustrated in Figure 23 – 1 is used in
exporting data from an Oracle database.

Cumulative
Exports

Complete Exports

23 – 20 Oracle7 Server Administrator’s Guide

1 2 3 4 5 6 7 8 9 10

FCI = Incremental = Cumulative = Full (Complete)

F I CI I I I I I I

Day

Export
Type

Figure 23 – 1 A Typical Export Schedule

A complete export was taken on Day 1, a cumulative export was taken
every week, and incremental exports were taken daily.

To recover from a disk failure that occurs on Day 10, before the next
incremental export is taken on Day 11

1. Recreate the database, including all tablespaces and users.

2. Import the complete database export taken on Day 1.

3. Import the cumulative database export taken on Day 7.

4. Import the incremental database exports taken on Days 8, 9, and 10.

C H A P T E R

24
T

24 – 1Recovering a Database

Recovering a Database

his chapter describes how to recover a database, and includes the
following topics:

• Fundamental Recovery Concepts and Strategies

• Preparing for Media Recovery

• Performing Complete Media Recovery

• Performing Incomplete Media Recovery

• Planning and Preparing for Disaster Recovery

• Unrecoverable Objects

• Read–Only Tablespaces and Recovery

• Recovery Procedure Examples

See Also: Occasionally, this chapter refers you to Oracle Server
Manager. To learn how to use Server Manager/GUI or Server
Manager/LineMode, see the Oracle Server Manager User’s Guide.

Important Recovery
Data Structures

24 – 2 Oracle7 Server Administrator’s Guide

Fundamental Recovery Concepts and Strategies

Before recovering a database, familiarize yourself with the fundamental
data structures, concepts and strategies of Oracle recovery. This section
describes basic recovery issues, and includes the following topics:

• Important Recovery Data Structures

• Recovery Operations

• Recovery Planning and Strategies

Table 24 – 1 describes important data structures involved in recovery
processes. Be familiar with these data structures before starting any
recovery procedure.

Data Structure Description

Control File The control file contains records that describe and maintain
information about the physical structure of a database. The
control file is updated continuously during database use, and
must be available for writing whenever the database is open. If
the control file is not accessible, the database will not function
properly.

System Change Num-
ber (SCN)

The system change number is a clock value for the Oracle
database that describes a committed version of the database.
The SCN functions as a sequence generator for a database,
and controls concurrency and redo record ordering. Think of
the SCN as a timestamp that helps ensure transaction consis-
tency.

Redo Records A redo record is a group of change vectors describing a single,
atomic change to the database. Redo records are constructed
for all data block changes and saved on disk in the redo log.
Redo records allow multiple database blocks to be changed so
that either all changes occur or no changes occur, despite
arbitrary failures.

Redo Logs All changes to the Oracle database are recorded in redo logs,
which consist of at least two redo log files that are separate
from the datafiles. During database recovery from an instance
or media failure, Oracle applies the appropriate changes in the
database’s redo log to the datafiles; this updates database
data to the instant that the failure occurred.

Rollback Segments Information in a rollback segment is used during database
recovery to undo any uncommitted changes applied from the
redo log to the datafiles. After the rollback segments are used
to remove all uncommitted data from the datafiles, data is in a
consistent state.

Backup A database backup consists of operating system backups of
the physical files that constitute the Oracle database. To begin
database recovery from a media failure, Oracle uses file back-
ups to restore damaged datafiles or control files.

Table 24 – 1 Important Recovery Data Structures

Recovery Operations

Recovery Planning and
Strategies

Test Backup and Recovery
Strategies

Determine What Type of
Recovery Operation Is
Appropriate

24 – 3Recovering a Database

Checkpoint A checkpoint is a data structure in the control file that defines a
consistent point of the database across all threads of a redo
log. Checkpoints are similar to SCNs, and also describe which
threads exist at that SCN. Checkpoints are used by recovery to
ensure that Oracle starts reading the log threads for the redo
application at the correct point. For Parallel Server, each
checkpoint has its own redo information.

Table 24 – 1 Important Recovery Data Structures

See Also: For more information about these and other data structures,
see the Oracle7 Server Concepts manual.

Media recovery restores a database’s datafiles to the most recent
point–in–time before disk failure, and includes the committed data in
memory that was lost due to failure. Following is a list of media
recovery operations:

• Media Recovery

1. Complete Media Recovery

– Closed Database Recovery

– Open–Database, Offline–Tablespace Recovery

– Open–Database, Offline–Tablespace, Individual Datafile
Recovery

2. Incomplete Media Recovery

– Cancel–Based Recovery

– Time–Based Recovery

– Change–Based Recovery

Before recovering a database, you should create a recovery plan or
strategy. This section describes important issues to consider when
defining your plan.

You should test your backup and recovery strategies in a test
environment before moving to a production system. You should
continue to test your system regularly. That way, you can test the
thoroughness of your strategies and later avoid real–life crises.
Performing test recoveries regularly ensures that your archiving and
backup procedures work. It also keeps you familiar with recovery
procedures, so that you are less likely to make mistakes in a crisis.

You can use the RECOVER command when faced with any of the
following problems:

• Media failure has damaged your database.

Moving Datafiles

24 – 4 Oracle7 Server Administrator’s Guide

• You need to recover to a point–in–time in the past (for example,
undo an erroneous operational or programmatic change to the
database).

• You have lost online logs.

Before recovering a database, you must choose an appropriate recovery
operation. Your answers to the following questions will determine the
most appropriate operation.

1. What recovery operations are available?

The answer to this first question depends on whether your database
is archiving redo logs.

• If the database is in ARCHIVELOG mode, several recovery
operations are available.

• If the database is in NOARCHIVELOG mode, usually only one
recovery operation is available, which is to restore the most recent
full backup and re–enter all work performed since the backup. (If
you have used Export to supplement regular backups, you can
instead use Import to restore data.) Some special losses are easier
to repair.

2. What recovery operations are appropriate for this particular
problem?

If the database is in ARCHIVELOG mode, several recovery
operations are available to restore a damaged database to a
transaction–consistent state.

3. Is the damaged database part of a distributed database?

If so, database recovery may need to be coordinated among the
nodes of the distributed database.

4. Are disaster recovery procedures in place?

If you have lost all of your online media, or have determined that
your recovery time will be too long, you may want to activate your
standby database rather than perform media recovery on your
primary database.

See Also: For a detailed list of different problems that media failures can
cause and the appropriate recovery operations, see page 24 – 47.

The goal of database recovery is to reopen a database for normal
operation as soon as possible. If a media failure occurs because of a
hardware problem, the damage should be repaired as soon as possible.
However, database recovery does not depend on the resolution of
long–lasting hardware problems. Table 24 – 2 lists sections in this Guide

Coordinate Distributed
Recovery

24 – 5Recovering a Database

that contain procedures for restoring files from a damaged device to
other storage devices.

Type of File Section Name Page

Datafile Renaming and Relocating Datafiles for
Tablespace

9 – 8

Online Redo Log File Renaming and Relocating Online Redo Log
Members

5 – 6

Control File Creating Additional Copies of the Control
File, and Renaming or Relocating Control
Files

6 – 4

Table 24 – 2 Damaged File Restoration

The Oracle distributed database architecture is autonomous in nature.
Therefore, depending on the type of recovery operation selected for a
single, damaged database, recovery operations may, or may not, have to
be coordinated globally among all databases in the distributed database
system. Table 24 – 3 summarizes the different types of recovery
operations and whether coordination among nodes of a distributed
database system is required.

Type of Recovery Operation Implication for Distributed Database
System

Restoring a full backup for a database that
was never accessed (updated or queried)
from a remote node

Use non–coordinated, autonomous
database recovery.

Restoring a full backup for a database that
was accessed by a remote node

Shut down all databases and restore them
using the same coordinated full backup.

Complete media recovery of one or more
databases in a distributed database

Use non–coordinated, autonomous
database recovery.

Incomplete media recovery of a database
that was never accessed by a remote
node

Use non–coordinated, autonomous
database recovery.

Incomplete media recovery of a database
that was accessed by a remote node

Use coordinated, incomplete media
recovery to the same global point–in–time
for all databases in the distributed
database.

Table 24 – 3 Database Recovery in a Distributed Database
System

Coordinate Time–Based and Change–Based Distributed Database
Recovery In special circumstances, one node in a distributed database
may require recovery to a past point–in–time. To preserve global data
consistency, it is often necessary to recover all other nodes in the system
to the same point–in–time. This is called “coordinated, time–based,
distributed database recovery.” The following tasks should be
performed with the standard procedures of time–based and
change–based recovery described in this chapter.

24 – 6 Oracle7 Server Administrator’s Guide

To Coordinate Time–Based, Distributed Recovery Among Many
Nodes in a Distributed Database System

1. Recover the database that requires the recovery operation using
time–based recovery. For example, if a database needs to be
recovered because of a user error (such as an accidental table drop),
recover this database first using time–based recovery. Do not
recover the other databases at this point.

2. After you have recovered the database and opened it using the
RESETLOGS option, look in the ALERT file of the database for the
RESETLOGS message.

If the message is, “RESETLOGS after complete recovery through
change nnnnnnnn,” you have applied all the changes in the
database and performed a complete recovery. Do not recover any of
the other databases in the distributed system, or you will
unnecessarily remove changes in them. Recovery is complete.

If the reset message is, “RESETLOGS after incomplete recovery
UNTIL CHANGE nnnnnnnn,” you have successfully performed an
incomplete recovery. Record the change number from the message
and proceed to the next step.

3. Recover all other databases in the distributed database system using
change–based recovery, specifying the change number (SCN) from
Step 2.

Recover Database with Snapshots If a master database is
independently recovered to a past point in time (that is, coordinated,
time–based distributed database recovery is not performed), any
dependent remote snapshot that was refreshed in the interval of lost
time will be inconsistent with its master table. In this case, the
administrator of the master database should instruct the remote
administrators to perform a complete refresh of any inconsistent
snapshot.

Media Recovery
Commands

RECOVER DATABASE
Command

RECOVER TABLESPACE
Command

RECOVER DATAFILE
Command

24 – 7Recovering a Database

Preparing for Media Recovery

This section describes issues related to media recovery preparation, and
includes the following topics:

• Media Recovery Commands

• Issues Common to All Media Recovery Operations

• Restoring a Full Backup, NOARCHIVELOG Mode

• Specifying Parallel Recovery

See Also: For information about the appropriate method of recovery for
each type of problem, see “Examples of Recovery Procedures” on page
24 – 47.

There are three basic media recovery commands, which differ only in
the way the set of files being recovered is determined. They all use the
same criteria for determining if files can be recovered. Media recovery
signals an error if it cannot get the lock for a file it is attempting to
recover. This prevents two recovery sessions from recovering the same
file. It also prevents media recovery of a file that is in use. You should be
familiar with all media recovery commands before performing media
recovery.

RECOVER DATABASE performs media recovery on all online datafiles
that require redo to be applied. If all instances were cleanly shutdown,
and no backups were restored, RECOVER DATABASE indicates a no
recovery required error. It also fails if any instances have the database
open (since they have the datafile locks). To perform media recovery on
an entire database (all tablespaces), the database must be mounted
EXCLUSIVE and closed.

RECOVER TABLESPACE performs media recovery on all datafiles in
the tablespaces listed. To translate the tablespace names into datafile
names, the database must be mounted and open. The tablespaces must
be offline to perform the recovery. An error is indicated if none of the
files require recovery.

RECOVER DATAFILE lists the datafiles to be recovered. The database
can be open or closed, provided the media recovery locks can be
acquired. If the database is open in any instance, then datafile recovery
can only recover offline files.

See Also: For more information about recovery commands, see the
Oracle7 Server SQL Reference guide.

Issues Common to All
Media Recovery
Operations

Determining Which Files
to Recover

Restoring Damaged
Datafiles

24 – 8 Oracle7 Server Administrator’s Guide

This section describes topics common to all complete and incomplete
media recovery operations. You should be familiar with these topics
before proceeding with any recovery process.

You can often use the table V$RECOVER_FILE to determine which files
to recover. This table lists all files that need to be recovered, and explains
why they need to be recovered.

Note: The table is not useful if the control file currently in use is
a restored backup or a new control file created since the media
failure occurred. A restored or re–created control file does not
contain the information Oracle needs to fill V$RECOVER_FILE
accurately.

The following query displays the file ID numbers of datafiles that
require recovery:

SELECT file#, online, error

 FROM v$recover_file;

FILE# ONLINE ERROR

–––

 0014 ONLINE

 0018 ONLINE FILE NOT FOUND

 0032 OFFLINE OFFLINE NORMAL

...

Use the data dictionary view V$DATAFILE, which contains the file’s
NAME and FILE#, to find the name of a file based on its file number.

If a media failure permanently damages one or more datafiles of a
database, you must restore backups of the damaged datafiles before you
can recover the damaged files.

Relocating Damaged Files If a damaged datafile cannot be restored to
its original location (for example, a disk must be replaced, so the files are
restored to an alternate disk), the new locations of these files must be
indicated to the control file of the associated database. Therefore, use the
procedure given in “Renaming and Relocating Datafiles” on page 9 – 7.

Recovering a Datafile Without a Backup If a datafile is damaged and
no backup of the file is available, the datafile can still be recovered if:

• all log files written since the creation of the original datafile are
available

• the control file contains the name of the damaged file (that is, the
control file is current, or is a backup taken after the damaged
datafile was added to the database)

Restoring Necessary
Archived Redo Log Files

24 – 9Recovering a Database

Use the CREATE DATAFILE clause of the ALTER DATABASE
command to create a new, empty datafile, replacing a damaged datafile
that has no corresponding backup. However, you cannot create a new
file based on the first datafile of the SYSTEM tablespace because it
contains information not covered by redo logs. For example, assume
that the datafile “disk1:users1” has been damaged, and no backup is
available. The following statement re–creates the original datafile (same
size) on disk 2:

ALTER DATABASE CREATE DATAFILE ’disk1:users1’ AS ’disk2:users1’;

Note: The old datafile is renamed as the new datafile when an
ALTER DATABASE CREATE DATAFILE statement is executed.

This statement enables you to create an empty file that matches the lost
file. Oracle looks at information in the control file and the data
dictionary to obtain size information. Next, you must perform media
recovery on the empty datafile. All archived redo logs written since the
original datafile was created must be mounted and reapplied to the new,
empty version of the lost datafile during recovery. If the database was
created in NOARCHIVELOG mode, the original datafiles of the
SYSTEM tablespace cannot be restored using an ALTER DATABASE
CREATE DATAFILE statement because the necessary archived redo logs
are not available.

All archived redo log files required for the pending media recovery
eventually need to be on disk, so that they are readily available to
Oracle.

To determine which archived redo log files you need, you can use the
tables V$LOG_HISTORY and V$RECOVERY_LOG. V$LOG_HISTORY
lists all of the archived logs, including their probable names, given the
current archived log file naming scheme (as set by the parameter
LOG_ARCHIVE_FORMAT). V$RECOVERY_LOG lists only the
archived redo logs that Oracle needs to perform recovery. It also
includes the probable names of the files, using
LOG_ARCHIVE_FORMAT. Be aware that you will need all the redo
information from the time the datafile was added to the database.

If space is available, restore all of the required archived redo log files to
the location currently specified by the initialization parameter
LOG_ARCHIVE_DEST. By doing this, you enable Oracle to locate
automatically the correct archived redo log file when required during
media recovery. If sufficient space is not available at the location
indicated by LOG_ARCHIVE_DEST, you can restore some or all of the
required archived redo log files to any disk accessible to Oracle. In this
case, you can specify the location of the archived redo log files before or
during media recovery.

Starting Media Recovery

Recovery Scenarios

24 – 10 Oracle7 Server Administrator’s Guide

After an archived log is applied, you can delete the restored copy of the
archived redo log file to free disk space. However, make sure that a copy
of each archived log group still exists on offline storage.

See Also: For more information about tables, see the Oracle7 Server
Reference.

If a damaged database is in ARCHIVELOG mode, it is a candidate for
either complete media recovery or incomplete media recovery
operations. To begin media recovery operations, use one of the
following options of Server Manager:

• the Apply Recovery Archives dialog box

• the Server Manager RECOVER command

• the SQL command ALTER DATABASE

To start any type of media recovery, you must have administrator
privileges. All recovery sessions must be compatible. One session cannot
start complete media recovery while another performs incomplete
media recovery. Also, you cannot start media recovery if you are
connected to the database via a multi–threaded server process.

See Also: For more information on multi–threaded server processes, see
page 4 – 3.

The following scenarios describe various ways to invoke media
recovery.

Recovering a Closed Database After the database is mounted, but
closed, start closed database recovery (complete or incomplete) using
either Server Manager’s Apply Recovery Archives dialog box, or the
RECOVER command with the DATABASE parameter.

The following statement recovers the database up to a specified time
using a control file backup:

RECOVER DATABASE

 UNTIL TIME ’1992–12–31:12:47:30’ USING BACKUP CONTROLFILE;

Recovering an Offline Tablespace in an Open Database After the
tablespaces of interest are taken offline, you can start open–database,
offline–tablespace recovery using the RECOVER command with the
TABLESPACE parameter. You can recover one or more offline
tablespaces. The remainder of the database may be left open and online
for normal database operation.

The following statement recovers two offline tablespaces:

RECOVER TABLESPACE ts1, ts2;

Applying Redo Log Files

Applying Log Files

24 – 11Recovering a Database

After the tablespaces that contain the damaged files have been taken
offline, and you are positive the associated datafiles are also offline
(check the file’s status in V$DATAFILE), recover selected datafiles using
the RECOVER command with the DATAFILE parameter:

RECOVER DATAFILE ’filename1’, ’filename2’;

The SQL command equivalent of Server Manager media recovery
options is the SQL command ALTER DATABASE command with the
RECOVER clause. Generally, database recovery should be performed
using Server Manager; which prompts you for information and returns
messages from the system. However, if you want to design your own
recovery application using SQL commands, use the ALTER DATABASE
command.

Starting Recovery During Instance Startup You can start complete
media recovery using the STARTUP command with the RECOVER
option in Server Manager. After an instance is started, and the database
is mounted, complete media recovery proceeds as described in
“Complete Media Recovery” on page 24 – 17.

See Also: For information about taking tablespaces offline, see “Taking
Tablespaces Offline” on page 8 – 8.

For more information about the STARTUP command, see page 3 – 2.

During complete or incomplete media recovery, redo log files (online
and archived) are applied to the datafiles during the roll forward phase
of media recovery. Because rollback data is recorded in the redo log,
rolling forward regenerates the corresponding rollback segments.
Rolling forward proceeds through as many redo log files as necessary to
bring the database forward in time. As a log file is needed, Oracle
suggests the name of the file. For example, if you are using Server
Manager, it returns the following lines and prompt:

ORA–00279: Change #### generated at DD/MM/YY HH:MM:SS needed for

 thread #

ORA–00289: Suggestion : logfile

ORA–00280: Change #### for thread # is in sequence #

Specify log: [<RET> for suggested | AUTO | FROM logsource |

 CANCEL]

Similar messages are returned when using an ALTER DATABASE...
RECOVER statement. However, no prompt is displayed.

This section describes how log files can be applied in different
environments.

Suggested Log Filenames Oracle suggests log filenames by
concatenating the current values of the initialization parameters

24 – 12 Oracle7 Server Administrator’s Guide

LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT and using
information from the control file. Therefore, if all the required archived
log files are mounted at LOG_ARCHIVE_DEST, and the value for
LOG_ARCHIVE_FORMAT is never altered, Oracle can suggest and
apply log files to complete media recovery automatically without your
intervention. If the location specified by LOG_ARCHIVE_DEST is not
available (for example, because of media failure), you can change the
value for this parameter, move the log files to the new location, and start
a new instance before beginning media recovery.

In some cases, you might want to override the current setting for
LOG_ARCHIVE_DEST as a source for log files. For example, assume
that a database is open and an offline tablespace must be recovered, but
not enough space is available to mount the necessary log files at the
location specified by LOG_ARCHIVE_DEST. In this case, you can
mount the log files to an alternate location, then specify the alternate
location to Oracle for the recovery operation. To specify the location
where required log files can be found, use the LOGSOURCE parameter
of the SET command in Server Manager. Use the RECOVER...FROM
parameter of the ALTER DATABASE command in SQL.

Note: Overriding the log source does not affect the archive log
destination for filled online groups being archived.

Consider overriding the current setting for LOG_ARCHIVE_DEST
when not enough space is available to mount all the required log files at
any one location. In this case, you can set the log file source to an
operating system variable (such as a logical or an environment variable)
that acts as a search path to several locations.

See Also: Such functionality is operating system–dependent. See your
operating system–specific Oracle documentation for more information.

Applying Log Files when Using Server Manager If the suggested
archived redo log file is correct, apply the suggested archived redo log.
You do not have to specify a filename unless the suggested file is
incorrect. After a filename is provided, Oracle applies the redo log file to
roll forward the restored datafiles.

24 – 13Recovering a Database

In Server Manager, you can have Oracle automatically apply the redo
log files that it suggests by choosing either of the following options:

• Before starting media recovery, issue the following Server
Manager statement to turn on automatic recovery:

SET AUTORECOVERY ON;

Automatic application of the suggested redo log starts once
recovery begins.

• After media recovery is started, enter “auto” when prompted for
a redo log file. Automatic application of the suggested redo log
starts from this point.

Suggested redo log files are automatically applied until a suggested
redo log is incorrect or recovery is complete. You might need to specify
online redo log files manually when using cancel–based recovery or a
backup of the control file.

See Also: For examples of logfile application, see your operating
system–specific Oracle documentation.

Application of Log Files When Using SQL Commands Application of
redo log files is similar to the application of log files. However, a prompt
for log files is not displayed after media recovery is started. Instead, you
must provide the correct log file using an ALTER DATABASE
RECOVER LOGFILE statement. For example, if a message suggests
LOG1.ARC, you can apply the suggestion using the following
statement:

ALTER DATABASE RECOVER LOGFILE ’log1.arc’;

As a result, recovering a tablespace requires several statements, as
indicated in the following example (DBA input is boldfaced; variable
information is italicized.):

> ALTER DATABASE RECOVER TABLESPACE users;

ORA–00279: Change #### generated at DD/MM/YY HH:MM:SS needed for

 thread #

ORA–00289: Suggestion : logfile1

ORA–00280: Change #### for thread # is in sequence #

> ALTER DATABASE RECOVER LOGFILE ’ logfile1 ’;

ORA–00279: Change #### generated at DD/MM/YY HH:MM:SS needed for

 thread #<D%0>

ORA–00289: Suggestion : logfile2

ORA–00280: Change #### for thread # is in sequence #

24 – 14 Oracle7 Server Administrator’s Guide

> ALTER DATABASE RECOVER LOGFILE ’ logfile2 ’;

(Repeat until all logs are applied.)

Statement processed.

> ALTER TABLESPACE users ONLINE;

Statement processed.

In this example, it is assumed that the backup files have been restored,
and that the user has administrator privileges.

Like the method you used with Server Manager, automatic application
of the redo logs can be started with the following statements, before and
during recovery, respectively:

ALTER DATABASE RECOVER AUTOMATIC ...;

ALTER DATABASE RECOVER AUTOMATIC LOGFILE suggested_log_file ;

An example of the first statement follows:

> ALTER DATABASE RECOVER AUTOMATIC TABLESPACE users;

Statement processed.

> ALTER TABLESPACE users ONLINE;

Statement processed.

In this example, it is assumed that the backup files have been restored,
and that the user has administrator privileges.

An example of the ALTER DATABASE RECOVER AUTOMATIC
LOGFILE statement follows:

> ALTER DATABASE RECOVER TABLESPACE users;

ORA–00279: Change #### generated at DD/MM/YY HH:MM:SS needed for

 thread #

ORA–00289: Suggestion : logfile1

ORA–00280: Change #### for thread # is in sequence #

> ALTER DATABASE RECOVER AUTOMATIC LOGFILE ’logfile1 ’;

Statement processed.

> ALTER TABLESPACE users ONLINE;

Statement processed.

In this example, assume that the backup files have been restored, and
that the user has administrator privileges.

Note: After issuing the ALTER DATABASE RECOVER
command, you can view all files that have been considered for
recovery in the V$RECOVERY_FILE_STATUS view. You can
access status information for each file in the
V$RECOVERY_STATUS view. These views are not accessible
after you terminate the recovery session.

See Also: For information about the content of all recovery–related
views, see the Oracle7 Server Reference.

Interrupting Media
Recovery

24 – 15Recovering a Database

Successful Application of Redo Logs If you are using Server
Manager’s recovery options (not SQL statements), each time Oracle
finishes applying a redo log file, the following message is returned:

Log applied.

Make sure that the message “Log applied” is returned after each
application of a redo log file. If the suggested file is incorrect or you
provide an incorrect filename, an error message is returned instead. If
you see an error message instead of “Log applied,” a redo log file
required for recovery has not been applied. Recovery cannot continue
until the required redo log file is applied.

If an error message is returned after supplying a redo log filename, one
of the following errors has been detected:

• If the error message says that the file cannot be found, you may
have entered the wrong filename. Re–enter the correct filename.

• If the redo log file is found, but cannot be opened, then it may be
locked. After unlocking the redo log file, re–enter the filename.

• If a redo log file is found and opened, but cannot be read, an I/O
error is returned. In this case, the redo log file may have been only
partially written or may have been corrupted. If you can locate an
uncorrupted or complete copy of the log, you can simply apply
that copy; you do not need to restart recovery. Otherwise, if no
other copy of the log exists and you know the time of the last
valid redo entry, you can perform time–based or change–based
recovery; in this case, you must restart recovery from the
beginning, including restoring backups.

If you start a media recovery operation and must then interrupt it (for
example, because a recovery operation must end for the night and
resume the next morning), you can interrupt recovery at any time by
taking either of the following actions:

• Enter the word “cancel” when prompted for a redo log file.

• If you must abort when recovering an individual datafile, or
when automated recovery is in progress, use your operating
system’s interrupt signal.

After recovery is canceled, it must be completed before opening a
database for normal operation. To resume recovery, restart it. Recovery
resumes where it left off when it was canceled.

Warning: There are several reasons why, after starting
recovery, you may want to restart. If, for example, you want to
restart with a different backup or want to use the same backup,

Restoring a Full
Backup,
NOARCHIVELOG
Mode

24 – 16 Oracle7 Server Administrator’s Guide

but need to change the end–time to an earlier point–in–time
than you initially specified, then the entire operation must
recommence by restoring a backup. Failure to do so may result in
“file inconsistent” error messages when attempting to open the
database.

If a database is in NOARCHIVELOG mode and a media failure
damages some or all of the datafiles, usually the only option for
recovering the database is to restore the most recent full backup. If you
are using Export to supplement regular backups, you can instead restore
the database by importing an exported backup of the database.

The disadvantage of NOARCHIVELOG mode is that to recover your
database from the time of the most recent full backup up to the time of
the media failure, you have to re–enter manually all of the changes
executed in that interval. However, if your database was in
ARCHIVELOG mode, the redo log covering this interval would have
been available as archived log files or online log files. This would have
enabled you to use complete or incomplete recovery to reconstruct your
database and minimize the amount of lost work.

If you have a database damaged by media failure and operating in
NOARCHIVELOG mode, and you want to restore from your most
recent full backup (your only option at this point), perform the
following tasks.

To Restore the Most Recent Full Backup (NOARCHIVELOG Mode)

1. If the database is open, shut it down using the Server Manager
Shutdown Abort mode of the Shutdown Database dialog box, or the
SHUTDOWN command with the ABORT option.

2. If the hardware problem that caused the media failure has been
corrected so that the backup database files can be restored to their
original locations, follow only Step 2.1 before proceeding to Step 3.
If, on the other hand, the hardware problem has not been corrected
and some or all of the database files must be restored to alternative
locations, follow Steps 2.1 through 2.4.

2.1 Restore the most recent full backup. All of the datafiles and
control files of the full backup must be restored, not just the
damaged files. This guarantees that the entire database is
synchronized to a single point in time.

2.2 If necessary, edit the restored parameter file to indicate the new
location of the control files.

Specifying Parallel
Recovery

24 – 17Recovering a Database

2.3 Start an instance using the restored and edited parameter file
and mount, but do not open, the database.

2.4 Perform the steps necessary to record the relocation of the
restored datafiles as described in “Renaming and Relocating
Datafiles” on page 9 – 7. If applicable, perform the steps
necessary to record the relocation of online redo log files, as
described in “Renaming and Relocating Online Redo Log
Members” on page 5 – 6.

3. Issue the ALTER DATABASE OPEN RESETLOGS command, which
opens the database and resets the current log sequence to 1. It also
invalidates all redo entries in the online redo log file. Restoring from
a full backup and then resetting the log discards all changes to the
database made from the time the backup was taken to the time of
the media failure.

See Also: See “Using the Export and Import Utilities for Supplemental
Database Protection” on page 23 – 18.

The RECOVERY_PARALLELISM initialization parameter specifies the
number of concurrent recovery processes to use for any recovery
operation. Because crash recovery occurs at instance startup, this
parameter is useful for specifying the number of processes to use for
crash recovery. The value of this parameter is also the default number of
processes used for media recovery if the PARALLEL clause of the
RECOVER command is not specified. The value of this parameter must
be greater than one and cannot exceed the value of the
PARALLEL_MAX_SERVERS parameter.

In general, parallel recovery is most effective at reducing recovery time
when several datafiles on several different disks are being recovered
concurrently. Crash recovery (recovery after instance failure) and media
recovery of many datafiles on different disk drives are good candidates
for parallel recovery. Parallel recovery requires a minimum of eight
recovery processes to improve upon serial recovery.

See Also: For more information on parallel recovery, see Oracle7 Server
Concepts.

For more information about initialization parameters, see the Oracle7
Server Reference.

Performing Closed
Database Recovery

☞

24 – 18 Oracle7 Server Administrator’s Guide

Performing Complete Media Recovery

This section describes the steps necessary to complete media recovery
operations, and includes the following topics:

• Performing Closed Database Recovery

• Performing Open–Database, Offline–Tablespace Recovery

• Performing Open–Database, Offline–Tablespace Individual
Recovery

Do not depend solely on the steps in the following procedures to
understand all the tasks necessary to recover from a media failure. If
you haven’t already done so, familiarize yourself with the fundamental
recovery concepts and strategies on page 24 – 2.

See Also: See page 24 – 47 for a detailed list of the different problems
that media failures can cause and describes the appropriate methods of
recovery from each type of problem.

This section describes steps to perform closed database recovery of
either all damaged datafiles in one operation, or individual recovery of
each damaged datafile in separate operations.

To Perform Closed Database Recovery

1. If the database is open, shut it down using the Server Manager
Shutdown Abort mode of the Shutdown Database dialog box, or the
SHUTDOWN command with the ABORT option.

2. If you’re recovering from a media error, correct it if possible.

Attention: If the hardware problem that caused the media
failure was temporary, and the data was undamaged (for
example, a disk or controller power failure), stop at this point.

3. If files are permanently damaged, restore the most recent backup
files (taken as part of a full or partial backup) of only the datafiles
damaged by the media failure. Do not restore any undamaged
datafiles or any online redo log files. If the hardware problem has
been repaired, and damaged datafiles can be restored to their
original locations, do so, and skip Step 6 of this procedure. If the
hardware problem persists, restore the datafiles to an alternative
storage device of the database server and continue with this
procedure.

Note: If you do not have a backup of a specific datafile, you
might be able to create an empty replacement file that can be
recovered.

24 – 19Recovering a Database

4. Start Server Manager and connect to Oracle with administrator
privileges.

5. Start a new instance and mount, but do not open, the database using
either the Server Manager Startup Database dialog box (with the
Startup Mount radio button selected), or the STARTUP command
with the MOUNT option.

6. If one or more damaged datafiles were restored to alternative
locations in Step 3, the new location of these files must be indicated
to the control file of the associated database. Therefore, use the
operation described in “Renaming and Relocating Datafiles” on
page 9 – 7, as necessary.

7. All datafiles you want to recover must be online during complete
media recovery. To get the datafile names, check the list of datafiles
that normally accompanies the current control file, or query the
V$DATAFILE view. Then, issue the ALTER DATABASE command
with the DATAFILE ONLINE option to ensure that all datafiles of
the database are online. For example, to guarantee that a datafile
named USERS1 (a fully specified filename) is online, enter the
following statement:

ALTER DATABASE DATAFILE ’users1’ ONLINE;

If a specified datafile is already online, Oracle ignores the statement.

8. To start closed database recovery of all damaged datafiles in one
step, use either the Server Manager Apply Recovery Archive dialog
box, or an equivalent RECOVER DATABASE statement.

8.1 To start closed database recovery of an individual damaged
datafile, use the RECOVER DATAFILE statement in Server
Manager.

Note: For maximum performance, use parallel recovery to
recover the datafiles.

9. Now Oracle begins the roll forward phase of media recovery by
applying the necessary redo log files (archived and online) to
reconstruct the restored datafiles. Unless the application of files is
automated, Oracle prompts you for each required redo log file.

Oracle continues until all required archived redo log files have been
applied to the restored datafiles. The online redo log files are then
automatically applied to the restored datafiles and notifies you when
media recovery is complete. If no archived redo log files are required for
complete media recovery, Oracle does not prompt for any. Instead, all

Performing
Open–Database,
Offline–Tablespace
Recovery

24 – 20 Oracle7 Server Administrator’s Guide

necessary online redo log files are applied, and media recovery is
complete.

After performing closed database recovery, the database is recovered up
to the moment that media failure occurred. You can then open the
database using the SQL command ALTER DATABASE with the OPEN
option.

See Also: See “Restoring Damaged Datafiles” on page 24 – 8 for more
information about creating datafiles.

For more information about datafile lists, see “Listing Database Files
Before Backup” on page 23 – 8.

For more information about applying redo log files, see “Applying Redo
Log Files” on page 24 – 11.

At this point, an open database has experienced a media failure, and the
database remains open while the undamaged datafiles remain online
and available for use. The damaged datafiles are automatically taken
offline by Oracle.

This procedure cannot be used to perform complete media recovery on
the datafiles of the SYSTEM tablespace. If the media failure damages
any datafiles of the SYSTEM tablespace, Oracle automatically shuts
down the database.

See Also: To proceed with complete media recovery, follow the
procedure in “Performing Closed Database Recovery” on page 24 – 18.

To Perform Open–Database, Offline–Tablespace Recovery

1. The starting point for this recovery operation can vary, depending
on whether you left the database open after the media failure
occurred.

1.1 If the database was shut down, start a new instance, and mount
and open the database. Perform this operation using the Server
Manager Startup Database dialog box (with the Startup Open
radio button selected), or with the STARTUP command with the
OPEN option. After the database is open, take all tablespaces
that contain damaged datafiles offline.

1.2 If the database is still open and only damaged datafiles of the
database are offline, take all tablespaces containing damaged
datafiles offline. Oracle identifies damaged datafiles via error
messages. Tablespaces can be taken offline using either the Take
Offline menu item of Server Manager, or the SQL command
ALTER TABLESPACE with the OFFLINE option, as described in

24 – 21Recovering a Database

“Taking Tablespaces Offline” on page 8 – 8. If possible, take the
damaged tablespaces offline with temporary priority (to
minimize the amount of recovery).

2. Correct the hardware problem that caused the media failure. If the
hardware problem cannot be repaired quickly, you can proceed with
database recovery by restoring damaged files to an alternative
storage device.

3. If files are permanently damaged, restore the most recent backup
files (taken as part of a full or partial backup) of only the datafiles
damaged by the media failure. Do not restore undamaged datafiles,
online redo log files, or control files. If the hardware problem has
been repaired and the datafiles can be restored to their original
locations, do so. If the hardware problem persists, restore the
datafiles to an alternative storage device of the database server.

Note: If you do not have a backup of a specific datafile, you can
create an empty replacement file, which can be recovered.

4. If one or more damaged datafiles were restored to alternative
locations (Step 3), indicate the new locations of these files to the
control file of the associated database by using the procedure in
“Renaming and Relocating Datafiles” on page 9 – 7, as necessary.

5. After connecting with administrator privileges, use the RECOVER
TABLESPACE statement in Server Manager to start offline
tablespace recovery of all damaged datafiles in one or more offline
tablespaces using one step.

Note: For maximum performance, use parallel recovery to recover
the datafiles.

6. Oracle begins the roll forward phase of media recovery by applying
the necessary redo log files (archived and online) to reconstruct the
restored datafiles. Unless the applying of files is automated, Oracle
prompts for each required redo log file.

Oracle continues until all required archived redo log files have been
applied to the restored datafiles. The online redo log files are then
automatically applied to the restored datafiles to complete media
recovery.

If no archived redo log files are required for complete media
recovery, Oracle does not prompt for any. Instead, all necessary
online redo log files are applied, and media recovery is complete.

Performing
Open–Database,
Offline–Tablespace
Individual Recovery

24 – 22 Oracle7 Server Administrator’s Guide

7. The damaged tablespaces of the open database are now recovered
up to the moment that media failure occurred. You can bring the
offline tablespaces online using the Place Online menu item of
Server Manager, or the SQL command ALTER TABLESPACE with
the ONLINE option.

See Also: For more information about redo log application, see
“Applying Redo Log Files” on page 24 – 11.

For more information about creating datafiles, see “Restoring Damaged
Datafiles” on page 24 – 8.

Identical to the preceding operation, here an open database has
experienced a media failure, and remains open while the undamaged
datafiles remain online and available for use. The damaged datafiles are
automatically taken offline by Oracle.

Note: This procedure cannot be used to perform complete
media recovery on the datafiles of the SYSTEM tablespace. If the
media failure damages any datafiles of the SYSTEM tablespace,
Oracle automatically shuts down the database.

To Perform Open–Database, Offline–Tablespace Individual Recovery

1. The starting point for this recovery operation can vary, depending
on whether you left the database open after the media failure
occurred.

1.1 If the database was shut down, start a new instance, and mount
and open the database. Perform this operation using the Server
Manager Startup Database dialog box (with the Startup Open
radio button selected), or with the STARTUP command with the
OPEN option. After the database is open, take all tablespaces
that contain damaged datafiles offline.

1.2 If the database is still open and only damaged datafiles of the
database are offline, take all tablespaces containing damaged
datafiles offline. Oracle identifies damaged datafiles via error
messages. Tablespaces can be taken offline using either the Take
Offline menu item of Server Manager, or the SQL command
ALTER TABLESPACE with the OFFLINE option, as described in
“Taking Tablespaces Offline” on page 8 – 8. If possible, take the
damaged tablespaces offline with temporary priority (to
minimize the amount of recovery).

24 – 23Recovering a Database

2. Correct the hardware problem that caused the media failure. If the
hardware problem cannot be repaired quickly, you can proceed with
database recovery by restoring damaged files to an alternative
storage device.

3. If files are permanently damaged, restore the most recent backup
files (taken as part of a full or partial backup) of only the datafiles
damaged by the media failure. Do not restore undamaged datafiles,
online redo log files, or control files. If the hardware problem has
been repaired and the datafiles can be restored to their original
locations, do so. If the hardware problem persists, restore the
datafiles to an alternative storage device of the database server.

Note: If you do not have a backup of a specific datafile, you can
create an empty replacement file, which can be recovered.

4. If one or more damaged datafiles were restored to alternative
locations (Step 3), indicate the new locations of these files to the
control file of the associated database by using the procedure in
“Renaming and Relocating Datafiles” on page 9 – 7, as necessary.

5. After connecting with administrator privileges use the RECOVER
DATAFILE statement in Server Manager to start recovery of an
individual damaged datafile in an offline tablespace

Note: For maximum performance, use parallel recovery to recover
the datafiles.

6. Oracle begins the roll forward phase of media recovery by applying
the necessary redo log files (archived and online) to reconstruct the
restored datafiles. Unless the application of files is automated,
Oracle prompts for each required redo log file.

Oracle continues until all required archived redo log files have been
applied to the restored datafiles. The online redo log files are then
automatically applied to the restored datafiles to complete media
recovery.

If no archived redo log files are required for complete media
recovery, Oracle does not prompt for any. Instead, all necessary
online redo log files are applied, and media recovery is complete.

7. The damaged tablespaces of the open database are now recovered
up to the moment that media failure occurred. You can bring the
offline tablespaces online using the Place Online menu item of
Server Manager, or the SQL command ALTER TABLESPACE with
the ONLINE option.

Changing the System
Time on a Running
Database

Performing
Cancel–Based Recovery

24 – 24 Oracle7 Server Administrator’s Guide

See Also: For information about how to proceed with complete media
recovery, see “Performing Closed Database Recovery” on page 24 – 18.

For more information about creating datafiles, see “Restoring Damaged
Datafiles” on page 24 – 8.

Performing Incomplete Media Recovery

This section descrines the steps necessary to complete the different
types of incomplete media recovery operations, and includes the
following topics:

• Performing Cancel–Based Recovery

• Performing Time–Based Recovery

• Performing Change–Based Recovery

See Also: Do not rely solely on this section to understand the
procedures necessary to recover from a media failure. Also see
“Examples of Media Failures and Appropriate Recovery Procedures” on
page 24 – 47 for a detailed list of the different types of problems that
media failures can cause, and the appropriate methods of recovery from
each type of problem.

If your database is affected by seasonal time changes (for example,
daylight savings time), you may experience a problem if a time appears
twice in the redo log and you want to recover to the second, or later
time. To deal with time changes, perform cancel–based or change–based
recovery to the point in time where the clock is set back, then continue
with the time–based recovery to the exact time.

This section describes how to perform cancel–based recovery.:

To Perform Cancel–Based Recovery

1. If the database is still open and incomplete media recovery is
necessary, shut down the database using the Server Manager
Shutdown Abort mode of the Shutdown Database dialog box, or the
SHUTDOWN command with the ABORT option.

2. Make a full backup of the database (all datafiles, a control file, and
the parameter files of the database) as a precautionary measure, in
case an error is made during the recovery procedure.

3. If a media failure occurred, correct the hardware problem that
caused the media failure.

24 – 25Recovering a Database

4. If the current control files do not match the physical structure of the
database at the intended time of recovery (for example, if a datafile
was added after the point in time to which you intend to recover),
then restore a backup of the control file that reflects the database’s
physical file structure (contains the names of datafiles and online
redo log files) at the point at which incomplete media recovery is
intended to finish. Review the list of files that correspond to the
current control file as well as each control file backup to determine
the correct control file to use. If necessary, replace all current control
files of the database with the correct control file backup. You can,
alternatively, create a new control file to replace the missing one.

Note: If a database control file cannot function or be replaced
with a control file backup, you must edit the parameter file
associated with the database to modify the CONTROL_FILES
parameter.

5. Restore backup files (taken as part of a full or partial backup) of all
the datafiles of the database. All backup files used to replace
existing datafiles must have been taken before the intended time of
recovery. For example, if you intend to recover to redo log sequence
number 38, then restore all datafiles with backups completed before
redo log sequence number 38.

If you do not have a backup of a specific datafile, you can create an
empty replacement file, which can be recovered.

If a datafile was added after the intended time of recovery, it is not
necessary to restore a backup for this file, as it will no longer be
used for the database after recovery is complete.

If the hardware problem that caused a media failure has been solved
and all datafiles can be restored to their original locations, do so,
and skip Step 8 of this procedure. If a hardware problem persists,
restore damaged datafiles to an alternative storage device.

Note: Files in read–only tablespaces should be offline if you are
using a control file backup. Otherwise, recovery will try to
update the headers of the read–only files.

6. Start Server Manager and connect to Oracle with administrator
privileges.

7. Start a new instance and mount the database. You can perform this
operation using the Server Manager Startup Database dialog box
with the Startup Mount radio button selected, or the STARTUP
command with the MOUNT option.

Opening the Database
After Successful
Cancel–Based Recovery

24 – 26 Oracle7 Server Administrator’s Guide

8. If one or more damaged datafiles were restored to alternative
locations in Step 5, the new locations of these files must be indicated
to the control file of the associated database.

9. If a backup of the control file is being used with this incomplete
recovery (that is, a control file backup or re–created control file was
restored in Step 4), indicate this in the dialog box or command used
to start recovery (that is, specify the USING BACKUP
CONTROLFILE parameter).

10. Use Server Manager Apply Recovery Archives dialog box, or an
equivalent RECOVER DATABASE UNTIL CANCEL statement to
begin cancel–based recovery.

11. Oracle begins the roll forward phase of media recovery by applying
the necessary redo log files (archived and online) to reconstruct the
restored datafiles. Unless the application of files is automated,
Oracle supplies the name it expects to find from
LOG_ARCHIVE_DEST and requests you to stop or proceed with
applying the log file. If the control file is a backup file, you must
supply names of online logs.

Oracle continues to apply redo log files.

12. Continue applying redo log files until the most recent, undamaged
redo log file has been applied to the restored datafiles.

13. Enter “CANCEL” to cancel recovery after Oracle has applied the
redo log file just prior to the damaged file. Cancel–based recovery is
now complete.

Oracle returns a message indicating whether recovery is successful.

The first time you open the database subsequent to incomplete media
recovery, you must explicitly specify whether to reset the log sequence
number by including either the RESETLOGS or NORESETLOGS option.
Resetting the redo log:

• discards any redo information that was not applied during
recovery, ensuring that it will never be applied

• reinitializes the control file information about online redo logs
and redo threads

• clears the contents of the online redo logs

• creates the online redo log files if they do not currently exist

• resets the log sequence number to 1

24 – 27Recovering a Database

Warning: Resetting the redo log discards all changes to the
database made since the first discarded redo information.
Updates entered after that time must be re–entered manually.

Use the following rules when deciding to specify RESETLOGS or
NORESETLOGS:

• Reset the log sequence number if you used a backup of the
control file in recovery, no matter what type of recovery was
performed (complete or incomplete).

• Reset the log sequence number if the recovery was actually
incomplete. For example, you must have specified a previous
time or SCN, not one in the future.

• Do not reset logs if recovery was complete (unless you used a
backup control file). This applies when you intentionally
performed complete recovery and when you performed
incomplete recovery but actually recovered all changes in the
redo logs anyway. See the explanation in step 12 for how to
examine the ALERT file to see if incomplete recovery was actually
complete.

• Do not reset logs if you are using the archived logs of this
database for a standby database. If the log must be reset, then you
will have to re–create your standby database.

To preserve the log sequence number when opening a database after
recovery, use the SQL command ALTER DATABASE with the OPEN
NORESETLOGS option. To reset the log sequence number when
opening a database after recovery, use the SQL command ALTER
DATABASE with the OPEN RESETLOGS option. (If you attempt to
reset the log when you should not, or if you neglect to reset the log
when you should, Oracle returns an error and does not open the
database. Correct the error and try again.)

If the log sequence number is reset when opening a database,
different messages are returned, depending on whether the recovery
was complete or incomplete. If the recovery was complete, the
following message appears in the ALERT file:

RESETLOGS after complete recovery through change scn

If the recovery was incomplete, the following message is reported in
the ALERT file:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

If you reset the redo log sequence when opening the database,
immediately shut down the database normally and make a full database
backup. Otherwise, you will not be able to recover changes made after

Performing
Time–Based Recovery

24 – 28 Oracle7 Server Administrator’s Guide

you reset the logs. Until you take a full backup, the only way to recover
will be to repeat the procedures you just finished, up to resetting the
logs. (You do not need to back up the database if you did not reset the
log sequence.)

After opening the database using the RESETLOGS option, check the
ALERT log to see if Oracle7 has detected inconsistencies between the
data dictionary and the control file (for example, a datafile that the data
dictionary includes but does not list in the new control file).

If a datafile exists in the data dictionary but not in the new control file,
Oracle7 creates a placeholder entry in the control file under
MISSINGnnnn (where nnnn is the file number in decimal).
MISSINGnnnn is flagged in the control file as being offline and requiring
media recovery. The actual datafile corresponding to MISSINGnnnn can
be made accessible by renaming MISSINGnnnn, so that it points to the
datafile only when the datafile was read–only or offline normal. If, on
the other hand, MISSINGnnnn corresponds to a datafile that was not
read–only or offline normal, then the rename operation cannot be used
to make the datafile accessible, because the datafile requires media
recovery that is precluded by the results of RESETLOGS. In this case, the
tablespace containing the datafile must be dropped.

In contrast, if a datafile indicated in the control file is not present in
the data dictionary, Oracle7 removes references to it from the new
control file. In both cases, Oracle7 includes an explanatory message
in the ALERT file to let you know what was found.

See Also: See “Creating Additional Copies of the Control File, and
Renaming and Relocating Control Files” on page 6 – 4.

For more information about creating datafiles, see “Restoring Damaged
Datafiles” on page 24 – 8.

To relocate or rename datafiles, see “Renaming and Relocating
Datafiles” on page 9 – 7, as necessary.

For more information about listing datafiles, see “Listing Database Files
Before Backup” on page 23 – 8.

For more information about applying redo logs, see “Applying Redo
Log Files” on page 24 – 11.

When you are performing time–based, incomplete media recovery, and
you are recovering with a backup control file and have read–only
tablespaces, contact Oracle Support before attempting this recovery
procedure.

24 – 29Recovering a Database

To Perfrom Time–Based Recovery

1. If the database is still open and incomplete media recovery is
necessary, shut down the database using the Server Manager
Shutdown Abort mode of the Shutdown Database dialog box, or the
SHUTDOWN command with the ABORT option.

2. Make a full backup of the database (all datafiles, a control file, and
the parameter files of the database) as a precautionary measure, in
case an error is made during the recovery procedure.

3. If a media failure occurred, correct the hardware problem that
caused the media failure.

4. If the current control files do not match the physical structure of the
database at the intended time of recovery (for example, if a datafile
was added after the point in time to which you intend to recover),
then restore a backup of the control file that reflects the database’s
physical file structure (contains the names of datafiles and online
redo log files) at the point at which incomplete media recovery is
intended to finish. Review the list of files that corresponds to the
current control file and each control file backup to determine the
correct control file to use. If necessary, replace all current control
files of the database with the correct control file backup. You can,
alternatively, create a new control file to replace the missing one.

Note: If a database control file cannot function or be replaced
with a control file backup because the hardware problem
causing the media failure persists, you must edit the parameter
file associated with the database to modify the
CONTROL_FILES parameter.

5. Restore backup files (taken as part of a full or partial backup) of all
the datafiles of the database. All backup files used to replace
existing datafiles must have been taken before the intended time of
recovery. For example, if you intend to recover to redo log sequence
number 38, then restore all datafiles with backups completed before
redo log sequence number 38.

If you do not have a backup of a specific datafile, you can create an
empty replacement file, which can be recovered.

If a datafile was added after the intended time of recovery, it is not
necessary to restore a backup for this file, as it will no longer be
used for the database after recovery is complete.

If the hardware problem that caused a media failure has been solved
and all datafiles can be restored to their original locations, do so,

24 – 30 Oracle7 Server Administrator’s Guide

and skip Step 8 of this procedure. If a hardware problem persists,
restore damaged datafiles to an alternative storage device.

Note: Files in read–only tablespaces should be offline if you are
using a control file backup. Otherwise, the recovery will try to
update the headers of the read–only files.

6. Start Server Manager and connect to Oracle with administrator
privileges.

7. Start a new instance and mount the database. This operation can be
performed with the Server Manager Startup Database dialog box
with the Startup Mount radio button selected, or the STARTUP
command with the MOUNT option.

8. If one or more damaged datafiles were restored to alternative
locations in Step 5, the new locations of these files must be indicated
to the control file of the associated database.

9. All datafiles of the database must be online unless an offline
tablespace was taken offline normally. To get the names of all
datafiles to recover, check the list of datafiles that normally
accompanies the control file being used or query the V$DATAFILE
view. Then, use the ALTER DATABASE command and the
DATAFILE ONLINE option to make sure that all datafiles of the
database are online. For example, to guarantee that a datafile named
USERS1 (a fully specified filename) is online, enter the following
statement:

ALTER DATABASE DATAFILE ’users1’ ONLINE;

If a backup of the control file is being used with this incomplete
recovery (that is, a control file backup or re–created control file was
restored), indicate this in the dialog box or command used to start
recovery. If a specified datafile is already online, Oracle ignores the
statement.

10. Issue the RECOVER DATABASE UNTIL TIME statement to begin
time–based recovery. The time is always specified using the
following format, delimited by single quotation marks:
’YYYY–MM–DD:HH24:MI:SS’.

11. Oracle begins the roll forward phase of media recovery by applying
the necessary redo log files (archived and online) to reconstruct the
restored datafiles. Unless the application of files is automated,
Oracle supplies the name it expects to find from
LOG_ARCHIVE_DEST and requests you to stop or proceed with
applying the log file. If the control file is a backup file, you must
supply names of online logs. Oracle continues to apply redo log
files.

Opening the Database
After Successful
Time–Based Recovery

24 – 31Recovering a Database

12. Continue applying redo log files until the last required redo log file
has been applied to the restored datafiles. Oracle automatically
terminates the recovery when it reaches the correct time, and returns
a message indicating whether recovery is successful.

The first time you open the database subsequent to incomplete media
recovery, you must explicitly specify whether to reset the log sequence
number by including either the RESETLOGS or NORESETLOGS option.
Resetting the redo log:

• discards any redo information that was not applied during
recovery, ensuring that it will never be applied

• reinitializes the control file information about online redo logs
and redo threads

• clears the contents of the online redo logs

• creates the online redo log files if they do not currently exist

• resets the log sequence number to 1

Warning: Resetting the redo log discards all changes to the
database made since the first discarded redo information.
Updates entered after that time must be re–entered manually.

Use the following rules when deciding to specify RESETLOGS or
NORESETLOGS:

• Reset the log sequence number if you used a backup of the
control file in recovery, no matter what type of recovery was
performed (complete or incomplete).

• Reset the log sequence number if the recovery was actually
incomplete. For example, you must have specified a previous
time or SCN, not one in the future.

• Do not reset logs if recovery was complete (unless you used a
backup control file). This applies when you intentionally
performed complete recovery and when you performed
incomplete recovery but actually recovered all changes in the
redo logs anyway. See the explanation in step 12 for how to
examine the ALERT file to see if incomplete recovery was actually
complete.

• Do not reset logs if you are using the archived logs of this
database for a standby database. If the log must be reset, then you
will have to re–create your standby database.

24 – 32 Oracle7 Server Administrator’s Guide

To preserve the log sequence number when opening a database after
recovery, use the SQL command ALTER DATABASE with the OPEN
NORESETLOGS option. To reset the log sequence number when
opening a database after recovery, use the SQL command ALTER
DATABASE with the OPEN RESETLOGS option. (If you attempt to
reset the log when you should not, or if you neglect to reset the log
when you should, Oracle returns an error and does not open the
database. Correct the error and try again.)

If the log sequence number is reset when opening a database,
different messages are returned, depending on whether the recovery
was complete or incomplete. If the recovery was complete, the
following message appears in the ALERT file:

RESETLOGS after complete recovery through change scn

If the recovery was incomplete, the following message is reported in
the ALERT file:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

If you reset the redo log sequence when opening the database,
immediately shut down the database normally and make a full database
backup. Otherwise, you will not be able to recover changes made after
you reset the logs. Until you take a full backup, the only way to recover
will be to repeat the procedures you just finished, up to resetting the
logs. (You do not need to back up the database if you did not reset the
log sequence.)

After opening the database using the RESETLOGS option, check the
ALERT log to see if Oracle7 has detected inconsistencies between the
data dictionary and the control file (for example, a datafile that the data
dictionary includes but does not list in the new control file).

If a datafile exists in the data dictionary but not in the new control file,
Oracle7 creates a placeholder entry in the control file under
MISSINGnnnn (where nnnn is the file number in decimal).
MISSINGnnnn is flagged in the control file as being offline and requiring
media recovery. The actual datafile corresponding to MISSINGnnnn can
be made accessible by renaming MISSINGnnnn, so that it points to the
datafile only when the datafile was read–only or offline normal. If, on
the other hand, MISSINGnnnn corresponds to a datafile that was not
read–only or offline normal, then the rename operation cannot be used
to make the datafile accessible, because the datafile requires media
recovery that is precluded by the results of RESETLOGS. In this case, the
tablespace containing the datafile must be dropped.

In contrast, if a datafile indicated in the control file is not present in
the data dictionary, Oracle7 removes references to it from the new

Performing
Change–Based
Recovery

24 – 33Recovering a Database

control file. In both cases, Oracle7 includes an explanatory message
in the ALERT file to let you know what was found.

See Also: See “Creating Additional Copies of the Control File, and
Renaming and Relocating Control Files” on page 6 – 4.

For more information about creating datafiles, see “Restoring Damaged
Datafiles” on page 24 – 8.

To relocate or rename datafiles, see “Renaming and Relocating
Datafiles” on page 9 – 7, as necessary.

For more information about listing datafiles, see “Listing Database Files
Before Backup” on page 23 – 8.

For more information about applying redo logs, see “Applying Redo
Log Files” on page 24 – 11.

This section describes how to perform change–based recovery.

To Perform Change–Based Recovery

1. If the database is still open and incomplete media recovery is
necessary, shut down the database using the Server Manager
Shutdown Abort mode of the Shutdown Database dialog box, or the
SHUTDOWN command with the ABORT option.

2. Make a full backup of the database (all datafiles, a control file, and
the parameter files of the database) as a precautionary measure, in
case an error is made during the recovery procedure.

3. If a media failure occurred, correct the hardware problem that
caused the media failure.

4. If the current control files do not match the physical structure of the
database at the intended time of recovery (for example, if a datafile
was added after the point in time to which you intend to recover),
then restore a backup of the control file that reflects the database’s
physical file structure (contains the names of datafiles and online
redo log files) at the point at which incomplete media recovery is
intended to finish. Review the list of files that correspond to the
current control file as well as each control file backup to determine
the correct control file to use. If necessary, replace all current control
files of the database with the correct control file backup. You can,
alternatively, create a new control file to replace the missing one.

Note: If a database control file cannot function or be replaced
with a control file backup, you must edit the parameter file

24 – 34 Oracle7 Server Administrator’s Guide

associated with the database to modify the CONTROL_FILES
parameter.

5. Restore backup files (taken as part of a full or partial backup) of all
the datafiles of the database. All backup files used to replace
existing datafiles must have been taken before the intended time of
recovery. For example, if you intend to recover to redo log sequence
number 38, then restore all datafiles with backups completed before
redo log sequence number 38.

If you do not have a backup of a specific datafile, you can create an
empty replacement file, which can be recovered.

If a datafile was added after the intended time of recovery, it is not
necessary to restore a backup for this file, as it will no longer be
used for the database after recovery is complete.

If the hardware problem that caused a media failure has been solved
and all datafiles can be restored to their original locations, do so,
and skip Step 8 of this procedure. If a hardware problem persists,
restore damaged datafiles to an alternative storage device.

Note: Files in read–only tablespaces should be offline if you are
using a control file backup. Otherwise, recovery will try to
update the headers of the read–only files.

6. Start Server Manager and connect to Oracle with administrator
privileges.

7. Start a new instance and mount the database. You can perform this
operation using the Server Manager Startup Database dialog box
with the Startup Mount radio button selected, or the STARTUP
command with the MOUNT option.

8. If one or more damaged datafiles were restored to alternative
locations in Step 5, the new locations of these files must be indicated
to the control file of the associated database.

9. To get the names of all datafiles to recover, check the list of datafiles
that normally accompany the control file being used or query the
V$DATAFILE view. Then, use the ALTER DATABASE command
with the DATAFILE ONLINE option to make sure that all datafiles
of the database are online. For example, to guarantee that a datafile
named USERS1 (a fully specified filename) is online, enter the
following statement:

ALTER DATABASE DATAFILE ’users1’ ONLINE;

If a specified datafile is already online, Oracle ignores the statement.

Opening the Database
After Successful
Change–Based Recovery

24 – 35Recovering a Database

If a backup of the control file is being used with this incomplete
recovery (that is, a control file backup or re–created control file was
restored), specify the USING BACKUP CONTROLFILE parameter
in the dialog box or command used to start recovery.

10. Issue the RECOVER DATABASE UNTIL CHANGE statement to
begin change–based recovery. The SCN is specified as a decimal
number without quotation marks.

11. Oracle begins the roll forward phase of media recovery by applying
the necessary redo log files (archived and online) to reconstruct the
restored datafiles. Unless the application of files is automated,
Oracle supplies the name it expects to find from
LOG_ARCHIVE_DEST and requests you to stop or proceed with
applying the log file. If the control file is a backup file, you must
supply names of online logs. Oracle continues to apply redo log
files.

12. Continue applying redo log files until the last required redo log file
has been applied to the restored datafiles. Oracle automatically
terminates the recovery when it reaches the correct time, and returns
a message indicating whether recovery is successful.

The first time you open the database subsequent to incomplete media
recovery, you must explicitly specify whether to reset the log sequence
number by including either the RESETLOGS or NORESETLOGS option.
Resetting the redo log:

• discards any redo information that was not applied during
recovery, ensuring that it will never be applied

• reinitializes the control file information about online redo logs
and redo threads

• clears the contents of the online redo logs

• creates the online redo log files if they do not currently exist

• resets the log sequence number to 1

Warning: Resetting the redo log discards all changes to the
database made since the first discarded redo information.
Updates entered after that time must be re–entered manually.

Use the following rules when deciding to specify RESETLOGS or
NORESETLOGS:

24 – 36 Oracle7 Server Administrator’s Guide

• Reset the log sequence number if you used a backup of the
control file in recovery, no matter what type of recovery was
performed (complete or incomplete).

• Reset the log sequence number if the recovery was actually
incomplete. For example, you must have specified a previous
time or SCN, not one in the future.

• Do not reset logs if recovery was complete (unless you used a
backup control file). This applies when you intentionally
performed complete recovery and when you performed
incomplete recovery but actually recovered all changes in the
redo logs anyway. See the explanation in step 12 for how to
examine the ALERT file to see if incomplete recovery was actually
complete.

• Do not reset logs if you are using the archived logs of this
database for a standby database. If the log must be reset, then you
will have to re–create your standby database.

To preserve the log sequence number when opening a database after
recovery, use the SQL command ALTER DATABASE with the OPEN
NORESETLOGS option. To reset the log sequence number when
opening a database after recovery, use the SQL command ALTER
DATABASE with the OPEN RESETLOGS option. (If you attempt to
reset the log when you should not, or if you neglect to reset the log
when you should, Oracle returns an error and does not open the
database. Correct the error and try again.)

If the log sequence number is reset when opening a database,
different messages are returned, depending on whether the recovery
was complete or incomplete. If the recovery was complete, the
following message appears in the ALERT file:

RESETLOGS after complete recovery through change scn

If the recovery was incomplete, the following message is reported in
the ALERT file:

RESETLOGS after incomplete recovery UNTIL CHANGE scn

If you reset the redo log sequence when opening the database,
immediately shut down the database normally and make a full database
backup. Otherwise, you will not be able to recover changes made after
you reset the logs. Until you take a full backup, the only way to recover
will be to repeat the procedures you just finished, up to resetting the
logs. (You do not need to back up the database if you did not reset the
log sequence.)

24 – 37Recovering a Database

After opening the database using the RESETLOGS option, check the
ALERT log to see if Oracle7 has detected inconsistencies between the
data dictionary and the control file (for example, a datafile that the data
dictionary includes but does not list in the new control file).

If a datafile exists in the data dictionary but not in the new control file,
Oracle7 creates a placeholder entry in the control file under
MISSINGnnnn (where nnnn is the file number in decimal).
MISSINGnnnn is flagged in the control file as being offline and requiring
media recovery. The actual datafile corresponding to MISSINGnnnn can
be made accessible by renaming MISSINGnnnn, so that it points to the
datafile only when the datafile was read–only or offline normal. If, on
the other hand, MISSINGnnnn corresponds to a datafile that was not
read–only or offline normal, then the rename operation cannot be used
to make the datafile accessible, because the datafile requires media
recovery that is precluded by the results of RESETLOGS. In this case, the
tablespace containing the datafile must be dropped.

In contrast, if a datafile indicated in the control file is not present in
the data dictionary, Oracle7 removes references to it from the new
control file. In both cases, Oracle7 includes an explanatory message
in the ALERT file to let you know what was found.

See Also: See “Creating Additional Copies of the Control File, and
Renaming and Relocating Control Files” on page 6 – 4.

For more information about creating datafiles, see “Restoring Damaged
Datafiles” on page 24 – 8.

To relocate or rename datafiles, see “Renaming and Relocating
Datafiles” on page 9 – 7, as necessary.

For more information about listing datafiles, see “Listing Database Files
Before Backup” on page 23 – 8.

For more information about applying redo logs, see “Applying Redo
Log Files” on page 24 – 11.

Planning and Creating
a Standby Database

Creating a Standby
Database

24 – 38 Oracle7 Server Administrator’s Guide

Preparing for Disaster Recovery

This section describes how to plan for and implement disaster recovery
procedures for your primary database, and includes the following
topics:

• Planning and Creating a Standby Database

• Altering the Physical Structure of the Primary Database

A standby database maintains a duplicate, or standby copy of your
primary (also known as production) database and provides continued
primary database availability in the event of a disaster (when all media
is destroyed at your production site). A standby database is constantly
in recovery mode. If a disaster occurs, you can take the standby
database out of recovery mode and activate it for online use. A standby
database is intended only for recovery of the primary database; you
cannot query or open it for any purpose other than to activate disaster
recovery. Once you activate your standby database, you cannot return it
to standby recovery mode unless you re–create it as another standby
database.

Warning: Activating a standby database resets the online logs
of the standby database. Hence, after activation, the logs from
your standby database and production database are
incompatible.

You must place the data files, log files, and control files of your primary
and standby databases on separate physical media. Therefore, it is
impossible to use the same control file for both your primary and
standby databases.

This section lists the steps and rules to follow when creating a standby
database.

To Create a Standby Database

1. Back up (either online or offline) the data files from your
primary database.

2. Create the control file for your standby database by issuing
the ALTER DATABASE CREATE STANDBY CONTROLFILE
AS ’filename’ command, which creates a modified copy of the
primary database’s control file.

3. Archive the current online logs of the primary database by
issuing the ALTER SYSTEM ARCHIVE LOG CURRENT
command. Issuing the ALTER SYSTEM ARCHIVE LOG

Maintaining a Standby
Database

24 – 39Recovering a Database

CURRENT command also ensures consistency among the
data files in step 1, the control file in step 2, and the log files.

4. Transfer the standby database control file, archived log files,
and backed up data files to the remote (standby) site using
operating system commands or utilities. Use an appropriate
method if transferring binary files.

Warning: Oracle encourages you to use a datafile naming
scheme that keeps the datafile names the same at both the
primary and standby databases. If this is not possible, then you
can use the datafile name conversion parameters. If you do not
use either of these suggested datafile naming schemes, you may
end up crashing your standby database.

See Also: For information about setting name conversion parameters
when you create your standby database, see “Converting Data File and
Log File Names.”

This section provides the tasks for maintaining your standby database,
including information about clearing standby logfiles.

To Maintain Your Standby Database in Recovery Mode

1. Start up the Oracle instance at the standby database using the
NO MOUNT clause.

2. Issue the ALTER DATABASE MOUNT STANDBY
DATABASE [EXCLUSIVE / PARALLEL] command.

3. Transfer the archived redo logs from the primary database to
the remote (standby) site. Use an appropriate operating
system utility for transferring binary data.

4. Place the standby database in recovery mode by issuing the
RECOVER [FROM ’location’] STANDBY DATABASE
command.

Note: As the archived logs are generated, you must continually
transfer and apply them to the standby database. Also, you can
only apply logs that have been archived at the primary database
to the standby database.

Converting Data File and
Log File Names

Activating a Standby
Database

24 – 40 Oracle7 Server Administrator’s Guide

Clearing Online Logfiles You can clear standby database online
logfiles to optimize performance as you maintain your standby
database. If you prefer not to perform this operation during
maintenance, the online logfiles will be cleared automatically during
activation. You can clear logfiles using the following statement:

ALTER DATABASE CLEAR LOGFILE GROUP integer;

You can set the following initialization parameters so that all filenames
from your primary database control file are converted for use by your
standby database:

• DB_FILE_STANDBY_NAME_CONVERT

• LOG_FILE_STANDBY_NAME_CONVERT

If your primary and standby databases exist on the same machine (of
course, they should not, but if they are), setting these parameters is
advisable, because they allow you to make your standby database
filenames distinguishable from your primary database filenames.

The DB_FILE_STANDBY_NAME_CONVERT and
LOG_FILE_STANDBY_NAME_CONVERT parameters must have two
strings. The first string is a sequence of characters to be looked for in a
primary database filename. If that sequence of characters is matched, it
is replaced by the second string to construct the standby database
filename.

Figure 24 – 1 shows how the filename conversion parameters work:

”/oracle”, ”/oracle/standby”
Primary

Database
Standby

Database

/oracle/dbfiles/tbsl.ora
tbs2.ora

.

.

.

DB_FILE_STANDBY_NAME_CONVERT set to:

/oracle/standby/dbfiles/tbs1.ora
tbs2.ora

.

.

.

Figure 24 – 1 Setting Filename Conversion Parameters

Note: If you perform a data file (or log file) RENAME at the
standby database, or use the AS clause with the ALTER
DATABASE CREATE FILE command, then the conversion
parameters will not apply to that file.

In the event of a disaster, you should (if possible) archive your primary
database logs (ALTER SYSTEM ARCHIVE LOG CURRENT), transfer

Altering the Physical
Structure of the
Primary Database

Adding Data Files

24 – 41Recovering a Database

them to your standby site, and apply them before activating your
standby database. This makes your standby database current to the
same point in time as your primary database (before the failure). If you
cannot archive your current online logs, then you must activate the
standby database without recovering the transactions from the
unarchived logs of the primary database.

After you activate your standby database, its online redo logs are reset.
Note that this makes the logs from the standby database and primary
database incompatible. Also, the standby database is dismounted when
activated, therefore, you are unable to look at tables and views
immediately after activation.

To Activate a Standby Database

1. Ensure that your standby database is mounted in
EXCLUSIVE mode.

2. Issue the ALTER DATABASE ACTIVATE STANDBY
DATABASE command.

3. Shut down your standby instances.

4. As soon as possible, back up your new production database.
At this point, the former standby database is now your
production database. This task, while not required, is a
recommended safety measure, because you cannot recover
changes made after activation without a backup.

5. Startup the new production instance.

Note: After you activate your standby database, all transactions
from unarchived logs at your original production database are
lost.

Altering the physical structure of your primary database can have an
impact on your standby database. The following sections describe the
effects of primary database structural alterations on a standby database.

Adding a data file to your primary database generates redo information
that, when applied at your standby database, automatically adds the
data file name to the standby control file. If the standby database locates
the new file with the new filename, the recovery process continues. If
the standby database is unable to locate the new data file, the recovery
process will stop.

Renaming Files

Altering Log Files

Altering Control Files

24 – 42 Oracle7 Server Administrator’s Guide

If the recovery process stops, then perform either of the following
procedures before resuming the standby database recovery process:

• Copy a backup of the added data file from the primary database
to the standby database.

• Issue the ALTER DATABASE CREATE DATAFILE command at
the standby database.

If you don’t want the new data file in the standby database, you can take
it offline using the DROP option.

See Also: For more information on offline data file alterations, see
“Taking Data Files in the Standby Database Offline” on page 24 – 44.

Data file renames on your primary database do not take effect at the
standby database until the standby database control file is refreshed. If
you want the data files at your primary and standby databases to
remain in sync when you rename primary database data files, then
perform analogous operations on the standby database.

You can add log file groups or members to the primary database
without affecting your standby database. Likewise, you can drop log file
groups or members from the primary database without affecting your
standby database. Similarly, enabling and disabling of threads at the
primary database has no effect on the standby database.

You may want to keep the online log file configuration the same at the
primary and standby databases. If so, when you enable a log file thread
with the ALTER DATABASE ENABLE THREAD at the primary
database, you should create a new control file for your standby database
before activating it. See “Refreshing the Standby Database Control File”
on page 24 – 45 for refresh procedures.

If you clear log files at the primary database by issuing the ALTER
DATABASE CLEAR UNARCHIVED LOGFILE command, or open the
primary database using the RESETLOGS option, you invalidate the
standby database. Because the standby database recovery process will
not have the archived logs it requires to continue, you will need to
re–create the standby database.

If you use the CREATE CONTROLFILE command at the primary
database to perform any of the following, you may invalidate the
standby database’s control file:

• change the maximum number of redo log file groups or members

• change the maximum number of data files

Configuring Initialization
Parameters

24 – 43Recovering a Database

• change the maximum number of instances that can concurrently
mount and open the database

If you’ve invalidated the standby database’s control file, you must
re–create it using the procedures in “Refreshing the Standby Database
Control File” on page 24 – 45.

Using the CREATE CONTROLFILE command with the RESETLOGS
option on your primary database will force the next open of the primary
database to reset the online logs, thereby invalidating the standby
database.

Most initialization parameters at your primary and standby databases
should be identical. Specific initialization parameters such as
CONTROL_FILES and DB_FILE_STANDBY_NAME_CONVERT should
be changed. Differences in other initialization parameters may cause
performance degradation at the standby database, and in some cases,
bring standby database operations to a halt.

The following initialization parameters play a key role in the standby
database recovery process:

• COMPATIBLE

The COMPATIBLE parameter must be the same at the primary
and standby databases. If it is not, you may not be able to apply
the logs from your primary database to your standby database.

• DB_FILES

MAXDATAFILES must be the same at both databases so that you
allow the same number of files at the standby database as you
allow at the primary database.

• CONTROL_FILES

CONTROL_FILES must be different between the primary and
standby databases. The names of the control files that you list in
this parameter for the standby database must exist at the standby
database.

• DB_FILE_STANDBY_NAME_CONVERT (or
LOG_FILE_STANDBY_NAME_CONVERT)

Set the DB_FILE_STANDBY_NAME_CONVERT (or
LOG_FILE_STANDBY_NAME_CONVERT) parameter when you
want to make your standby database filenames distinguishable
from your primary database filenames. For more information on
this parameter see “Converting Data File and Log File Names” on
page 24 – 40.

Taking Data Files in the
Standby Database Offline

Performing Direct Path
Operations

24 – 44 Oracle7 Server Administrator’s Guide

See Also: For more information on initialization parameters, see the
Oracle7 Server Reference.

You can take standby database datafiles offline as a means to support a
subset of your primary database’s datafiles. For example, you decide it
is undesirable to recover the primary database’s temporary tablespaces
on the standby database. So you take the datafiles offline using the
ALTER DATABASE DATAFILE ’fn’ OFFLINE DROP command on the
standby database. If you do this, then the tablespace containing the
offline files must be dropped after opening the standby database.

When you perform a direct load originating from either direct path load,
table create via subquery, or index create on the primary database, the
performance improvement applies only to the primary database; there is
no corresponding recovery process performance improvement on the
standby database. The standby database recovery process still
sequentially reads and applies the redo information generated by the
unrecoverable direct load.

Primary database processes using the UNRECOVERABLE option are
not propagated to the standby database. Why? Because these processes
do not appear in the archived redo logs. If you want to propagate such
processes to your standby database, perform any one of the following
tasks.

To Propagate UNRECOVERABLE Processes to a Standby Database

1. Take the affected datafiles offline in the standby database, and
drop the tablespace after activation.

2. Re–create the standby database from a new database backup.

3. Back up the affected tablespace and archive the current logs
in the primary database. Transfer the datafiles to the standby
database. Then resume standby recovery. This is the same
procedure that you would perform to guarantee ordinary
database recoverability after an UNRECOVERABLE
operation.

If you perform an unrecoverable operation at the primary database, and
attempt to recover at the standby database, you will not receive error
messages during recovery. Such error messages appear in the standby
database alert log. Thus, you should check the standby database alert
log periodically.

Refreshing the Standby
Database Control File

24 – 45Recovering a Database

See Also: For more details, see “Taking Datafiles in the Standby
Database Offline” on page 24 – 44.

The following steps describe how to refresh, or create a copy of changes
you’ve made to the primary database control file.

To Refresh the Standby Database Control File

1. Issue the CANCEL command on the standby database to halt
its recovery process.

2. Shut down the standby instances.

3. Issue the ALTER DATABASE CREATE STANDBY
CONTROLFILE AS ’filename’ statement on the primary
database to create the control file for the standby database.

4. Issue the ALTER SYSTEM ARCHIVE LOG CURRENT
statement on the primary database to archive the current
online logs of your primary database.

5. Transfer the standby control file and archived log files to the
standby site.

6. Restart and mount (but do not open) the standby database by
issuing the ALTER DATABASE MOUNT STANDBY
DATABASE [EXCLUSIVE/PARALLEL] statement.

7. Restart the recovery process on the standby database by
issuing the RECOVER [FROM ’location’] STANDBY
DATABASE statement.

Using a Backup
Control File

24 – 46 Oracle7 Server Administrator’s Guide

Unrecoverable Objects and Recovery

You can create tables and indexes using the CREATE TABLE AS
SELECT command. You can also specify that Oracle create them as
unrecoverable. When you create a table or index as unrecoverable, Oracle
does not generate redo log records for the operation. Thus, objects
created unrecoverable cannot be recovered, even if you are running in
ARCHIVELOG mode.

Note: If you cannot afford to lose tables or indexes created
unrecoverable, take a backup after the unrecoverable table or
index is created.

Be aware that when you perform a media recovery, and some tables or
indexes are created as recoverable while others are unrecoverable, the
unrecoverable objects will be marked logically corrupt by the RECOVER
operation. Any attempt to access the unrecoverable objects returns an
ORA–01578 error message. You should drop the unrecoverable objects,
and recreate them, if needed.

Because it is possible to create a table unrecoverable and then create a
recoverable index on that table, the index is not marked as logically
corrupt after you perform a media recovery. However, the table was
unrecoverable (and thus marked as corrupt after recovery), so the index
points to corrupt blocks. The index must be dropped, and the table and
index must be re–created if necessary.

See Also: For information about the impact of UNRECOVERABLE
operations on a standby database, see page 24 – 44.

Read–Only Tablespaces and Recovery

This section describes how read–only tablespaces affect instance and
media recovery.

Media recovery with the USING BACKUP CONTROLFILE option
checks for read–only files. It is an error to attempt recovery of a
read–only file. You can avoid this error by taking all datafiles from
read–only tablespaces offline before doing recovery with a backup
control file. Therefore, it is very important to have the correct version of
the control file for the recovery. If the tablespace will be read–only when
the recovery is complete, then the control file must be from a time when
the tablespace was read–only. Similarly, if the tablespace will be
read–write at the end of recovery, it should be read–write in the control

Re–Creating a Control
File

Types of Media
Failures

24 – 47Recovering a Database

file. If the appropriate control file is not available, you should create a
new control file with the CREATE CONTROLFILE command.

If you need to re–create a control file for a database with read–only
tablespaces, you must follow some special procedures. Issue the ALTER
DATABASE BACKUP CONTROLFILE TO TRACE command to get a
listing of the procedure that you need to follow. The procedure is similar
to the procedure for offline normal tablespaces, except that you need to
bring the tablespace online after the database is open.

Re–creating a control file can also affect the recovery of read–write
tablespaces that were at one time read–only. If you re–create the control
file after making the tablespace writeable, Oracle can no longer
determine when the tablespace was changed from read–only to
read–write. Thus, you can no longer recover from the read–only version
of the tablespace. Instead, you must recover from the time of the most
recent backup. It is important to backup a tablespace immediately after
making it read–write.

Examples of Recovery Procedures

This section describes how to recover from common media failures, and
includes the following topics:

• Types of Media Failures

• Loss of Datafiles

• Loss of Online Redo Log Files

• Loss of Archived Redo Log Files

• Loss of Control Files

• Recovery From User Errors

Media failures fall into two general categories: permanent and
temporary. Permanent media failures are serious hardware problems
that cause the permanent loss of data on the disk. Lost data cannot be
recovered except by repairing or replacing the failed storage device and
restoring backups of the files stored on the damaged storage device.
Temporary media failures are hardware problems that make data
temporarily inaccessible; they do not corrupt the data. Following are
two examples of temporary media failures:

• A disk controller fails. Once the disk controller is replaced, the
data on the disk can be accessed.

Loss of Datafiles

Loss of Datafiles,
NOARCHIVELOG Mode

Loss of Datafiles,
ARCHIVELOG Mode

24 – 48 Oracle7 Server Administrator’s Guide

• Power to a storage device is cut off. Once the power is returned,
the storage device and all associated data is accessible again.

If a media failure affects datafiles of a database, the appropriate recovery
procedure depends on the archiving mode of the database, the type of
media failure, and the exact files affected by the media failure. The
following sections explain the appropriate recovery strategies in various
situations.

If either a permanent or temporary media failure affects any datafiles of
a database operating in NOARCHIVELOG mode, Oracle automatically
shuts down the database. Depending on the type of media failure, you
can use one of two recovery paths:

• If the media failure is temporary, correct the temporary hardware
problem and restart the database. Usually, instance recovery is
possible, and all committed transactions can be recovered using
the online redo log.

• If the media failure is permanent, follow the steps on page 24 – 15
to recover from the media failure.

If either a permanent or temporary media failure affects the datafiles of
a database operating in ARCHIVELOG mode, the following situations
can exist:

• If a temporary or permanent media failure affects any datafiles of
the SYSTEM tablespace or any datafiles that contain active
rollback segments, the database becomes inoperable and should
be immediately shut down if it has not already been shut down
by Oracle.

If the hardware problem is temporary, correct the problem and
restart the database. Usually, instance recovery is possible, and all
committed transactions can be recovered using the online redo
log.

If the hardware problem is permanent, follow the procedure in
“Performing Closed Database Recovery” on page 24 – 18.

• If a temporary or permanent media failure affects only datafiles
not mentioned in the previous item, the affected datafiles are
unavailable and taken offline automatically by Oracle, but the
database can continue to operate.

If the unaffected portions of the database must remain available,
do not shut down the database. First take all tablespaces that
contain problem datafiles offline using the temporary option.

Loss of Online Redo
Log Files

Loss of an Online Redo
Log Member of Mirrored
Online Redo Log

Loss of All Online Redo
Log Members of an Online
Redo Log Group

24 – 49Recovering a Database

Then follow the procedure in “Performing Open
Database–Offline Tablespace Recovery” on page 24 – 20.

If a media failure has affected the online redo log of a database, the
appropriate recovery procedure depends on the configuration of the
online redo log (mirrored or non–mirrored), the type of media failure
(temporary or permanent), and the types of online redo log files affected
by the media failure (current, active, not yet archived, or inactive online
redo log files). The following sections describe the appropriate recovery
strategies in various situations.

If the online redo log of a database is mirrored, and at least one member
of each online redo log group is not affected by the media failure, Oracle
allows the database to continue functioning as normal (error messages
are written to the LGWR trace file and ALERT file of the database).
However, you should handle the problem by taking one of the following
actions:

• If the hardware problem is temporary, correct the problem. After
it has been fixed, LGWR accesses the previously unavailable
online redo log files as if the problem never existed.

• If the hardware problem is permanent, use the DROP command
to drop the damaged member and use the ADD command to add
a new member.

Note: The newly added member provides no redundancy until
the log group is reused.

If all members of an online redo log group are damaged by a media
failure, different situations can arise, depending on the type of online
redo log group affected by the failure and the archiving mode of the
database. You can locate the filename in V$LOGFILE, and then look for
the group number corresponding to the one you lost to verify the lost
file’s status (verify that it was inactive).

SELECT *

FROM v$logfile

;

GROUP# STATUS MEMBER

––

0001 log1

0002 log2

0003 log3

SELECT *

FROM v$log

24 – 50 Oracle7 Server Administrator’s Guide

;

GROUP# MEMBERS STATUS ARCHIVED

–––

 0001 1 INACTIVE YES

 0002 1 ACTIVE YES

 0003 1 CURRENT NO

Loss of an Inactive, Online Redo Log Group If all members of an
inactive online redo log group are damaged, the following situations can
arise:

• If a temporary media failure affects only an inactive online redo
log group, correct the problem; LGWR can reuse the group when
required.

• If a media failure permanently prevents access to only an inactive
online redo log group, the damaged inactive online redo log
group will eventually halt normal database operation.

If you notice the problem before the database shuts down, use the
ALTER DATABASE CLEAR LOGFILE command.

If the database has already shut down, perform the following
tasks:

To Recover From Loss of an Inactive, Online Redo Log Group

1. Abort the current instance immediately with the Server Manager
Shutdown Database dialog box with the Shutdown Abort radio
button selected, or the SHUTDOWN command with the ABORT
option.

2. Start a new instance and mount the database, but do not open it.
This operation can be performed with the Server Manager Startup
Database dialog box with the Startup Mount radio button selected,
or the STARTUP command with the MOUNT option.

3. If the lost log was archived, issue the ALTER DATABASE CLEAR
LOGFILE command.

4. If the lost log was unarchived, issue the ALTER DATABASE CLEAR
UNARCHIVED LOGFILE command, and immediately backup the
database. Also backup the database’s control file (using the ALTER
DATABASE command with the BACKUP CONTROLFILE option).

Clearing a log that has not been archived allows it to be reused
without archiving it. However, this will make backups unusable if
they were started before the last change in the log (unless the file

24 – 51Recovering a Database

was taken offline prior to the first change in the log). Hence, if the
cleared logfile is needed for recovery of a backup, it will not be
possible to recover that backup.

If there is an offline datafile that requires the cleared unarchived log
to bring it online, the keywords UNRECOVERABLE DATAFILE are
required. The datafile and its entire tablespace will have to be
dropped from the database because the redo necessary to bring it
online is being cleared, and there is no copy of it.

Note: The ALTER DATABASE CLEAR LOGFILE command
could fail (with an I/O error due to media failure) in two cases:

• When it is not possible to relocate the logfile onto alternative
media by re–creating it under the currently configured logfile
name.

• When it is not possible to reuse the currently configured logfile
name to recreate the logfile because the name itself is invalid or
unusable (for example, due to media failure).

In these two cases, the CLEAR LOGFILE command (before
receiving the I/O error) would have successfully updated the
control file to change the state of the logfile to “being cleared” and
“not requiring archiving.” The I/O error occurred at the step in
which CLEAR LOGFILE attempts to create the new logfile and
write zeros to it.

At this point, you can complete recovery by executing, in order,
the following commands:

• ADD a logfile under a new name.

• DROP the logfile under the old name.

You can now open the database.

Loss of an Active Online Redo Log Group If your database is still
running and the lost active log is not the current log, you can use the
ALTER SYSTEM CHECKPOINT command. If successful, your active log
is rendered inactive, and you can follow the steps on page 24 – 49.

If unsuccessful, or if your database has already halted, you cannot use
the steps on page 24 – 49. Instead, perform the following tasks:

Loss of Archived Redo
Log Files

24 – 52 Oracle7 Server Administrator’s Guide

To Recover From Loss of an Active Online Redo Log Group

1. If the media failure is temporary, correct the problem so that Oracle
can reuse the group when required.

2. If the database is in NOARCHIVELOG mode and a permanent
media failure prevents access to an active online redo log group,
restore the database from a full backup.

After restoring the database, redo the work and open the database
using the RESETLOGS option. Updates done after the backup have
been lost and must be re–executed. Shut down the database and
take a full offline backup.

3. If the database was in ARCHIVELOG mode, incomplete media
recovery must be performed. Use the procedure given in
“Performing Cancel–Based, Time–Based, or Change–Based
Recovery” on page 24 – 24, recovering up through the log before the
damaged log. Ensure that the current name of the lost redo log can
be used for a newly created file. If not, issue the RENAME
command to rename the damaged online redo log group to a new
location.

4. Open the database using the RESETLOGS option.

Note: All updates executed from the endpoint of the
incomplete recovery to the present must be re–executed.

Loss of Multiple Redo Log Groups If you have lost multiple groups of
the online redo log, use the recovery method for the most difficult log to
recover. The order of difficulty, from most difficult to least, follows:

1. the current online redo log

2. the active online redo log

3. the unarchived redo log

4. the inactive online redo log

If the database is operating so that filled online redo log groups are
being archived, and the only copy of an archived redo log file is
damaged, it does not affect the present operation of the database.
However, the following situations can arise if media recovery is required
in the future:

• If all datafiles have been backed up after the filled online redo log
group (which is now archived) was written, the archived version

Loss of Control Files

Loss of a Member of a
Mirrored Control File

24 – 53Recovering a Database

of the filled online redo log group is not required for complete
media recovery operation.

• Assume the most recent backup file of a datafile was taken before
the filled online redo log group was written. The group now
corresponds to the damaged archived redo log file. At some
future point, the corresponding datafile is damaged by a
permanent media failure. The most recent backup of the damaged
datafile must be used, and incomplete media recovery can only
recover the database up to the damaged archived redo log file.

• If time–based recovery is needed, the damaged archived redo log
file may be required if you use old datafile backups that were
taken before the original online redo log group was written. In
this case, the incomplete media recovery can only recover the
database up to the damaged archived redo log group.

Warning: If you know that an archived redo log group has
been damaged, immediately backup all datafiles so that you
will have a complete backup that does not require the damaged
archived redo log.

If a media failure has affected the control files of a database (whether
control files are mirrored or not), the database continues to run until the
first time that an Oracle background process needs to access the control
files. At this point, the database and instance are automatically shut
down.

If the media failure is temporary and the database has not yet shut
down, immediately correcting the media failure can avoid the automatic
shut down of the database. However, if the database shuts down before
the temporary media failure is corrected, you can restart the database
after fixing the problem (and restoring access to the control files).

The appropriate recovery procedure for media failures that permanently
prevent access to control files of a database depends on whether you
have mirrored the control files. The following sections describe the
appropriate procedures.

Use the following steps to recover a database after one or more control
files of a database have been damaged by a permanent media failure,
and at least one control file has not been damaged by the media failure:

Note: If all control files of a mirrored control file configuration
have been damaged, follow the instructions for recovering from
the loss of non–mirrored control files.

Loss of All Copies of the
Current Control File

24 – 54 Oracle7 Server Administrator’s Guide

To Recover a Database After Control Files Are Damaged

1. If the instance is still running, immediately abort the current
instance with the Server Manager Shutdown Abort option of the
Shutdown Database dialog box, or the SHUTDOWN command with
the ABORT option.

2. Correct the hardware problem that caused the media failure. If the
hardware problem cannot be repaired quickly, you can proceed with
database recovery by restoring damaged control files to an
alternative storage device.

3. Use an intact copy of the database’s control file to copy over the
damaged control files. If possible, copy the intact control file to the
original locations of all damaged control files. If the hardware
problem persists, copy the intact control file to alternative locations.
If you restored all damaged control files to their original location,
proceed to Step 5. If all damaged control files were not restored, or
not restored to their original location, proceed to Step 4.

4. If all damaged control files were not restored, or not restored to their
original location in Step 3, the parameter file of the database must be
edited so that the CONTROL_FILES parameter reflects the current
locations of all control files and excludes all control files that were
not restored.

5. Start a new instance. Mount and open the database.

If all control files of a database have been lost or damaged by a
permanent media failure, but all online redo logfiles remain intact, you
can recover by creating a new control file (using the CREATE
CONTROLFILE command with the NORESETLOGS option). Then
execute RECOVER DATABASE followed by ALTER DATABASE OPEN.

Depending on the existence and currency of a control file backup, you
have the following options for generating the text of the CREATE
CONTROLFILE command:

• If you have executed ALTER DATABASE BACKUP
CONTROLFILE TO TRACE NORESETLOGS since you made the
last structural change to the database, and if you have saved the
SQL command output, then you can use the CREATE
CONTROLFILE command from the output as–is. If, however,
your most recent execution of ALTER DATABASE BACKUP
CONTROLFILE TO TRACE was performed before you made a
structural change to the database, then you must edit the output

Recovery From User
Errors

24 – 55Recovering a Database

of ALTER DATABASE BACKUP CONTROLFILE TO TRACE to
reflect that structural change. For example, if you recently added
a datafile to the database, then you should add that datafile to the
DATAFILE clause of the CREATE CONTROLFILE command.

• If you have not backed up the control file using the TO TRACE
option, but instead have used the TO filename option of the
ALTER DATABASE BACKUP CONTROLFILE command, then
you can use the control file copy to obtain SQL command output.
You can do this by copying the backup control file and executing
STARTUP MOUNT before executing ALTER DATABASE
BACKUP CONTROLFILE TO TRACE NORESETLOGS. If your
control file copy predated a recent structural change, you must
edit the TO TRACE output to reflect that structural change.

• If you do not have a backup of the control file (in either TO
TRACE format or TO filename format), then you must generate the
CREATE CONTROLFILE command manually.

An accidental or erroneous operational or programmatic change to the
database can cause loss or corruption of data. Recovery may require a
return to a state prior to the error.

Note: If the database administrator has properly granted
powerful privileges (such as DROP ANY TABLE) to only
selected, appropriate users, user errors that require database
recovery are minimized.

To Recover Data Lost or Corrupted by User Error

1. Back up the existing, intact database.

2. Leave the existing database intact, but reconstruct a
temporary copy of the database up to the time of the user
error using time–based recovery.

3. Export the lost or corrupted data from the reconstructed,
temporary copy of the database.

4. Import the lost or corrupted data into the permanent
database.

5. Delete the files associated with the temporary copy of the
reconstructed database to conserve disk space.

The following scenario describes how to recover a table that has been
accidentally dropped.

24 – 56 Oracle7 Server Administrator’s Guide

1. The database that experienced the user error can remain
online and available for normal use. The database can remain
open or be shut down. Back up all datafiles of the existing
database in case an error is made during the remaining steps
of this procedure.

2. Create a temporary copy of the database to a past
point–in–time using time–based recovery. Be careful not to
cause a conflict with the existing control file of the permanent
database. Restore a single control file backup to an alternative
location (step 4) and edit the parameter file, as necessary, or
create a new control file at the alternative location. Also,
restore all datafiles to alternative locations (step 5) so that you
do not affect the permanent copy of the database.

3. Export the lost data using the Oracle utility Export from the
temporary, restored version of the database. In this case,
export the accidentally dropped table.

Note: System audit options are exported.

4. Import the exported data (step 3) into the permanent copy of
the database using the Oracle Import utility.

5. Delete the files of the temporary, reconstructed copy of the
database to conserve space.

See Also: For more information about the Import and Export utilities,
see Oracle7 Server Utilities.

P A R T

 VI Reference

A P P E N D I X

A

☞

A – 1Space Estimations for Schema Objects

Space Estimations for
Schema Objects

This appendix contains equations that can help you approximate the
amount of space for specific schema objects. Constants in estimate
calculations are operating system–specific.

Attention: While these equations help estimate schema object
size, they are approximations, and may vary from your actual
results

Step 1: Calculate the Total
Block Header Size

A – 2 Oracle7 Server Administrator’s Guide

Estimating Space Required by Non–Clustered Tables

The procedures in this section describe how to estimate the total number
of data blocks necessary to hold data inserted into a non–clustered table
Within this sample calculation, no concurrency is assumed, and users
are not performing intervening delete or update operations.

Note: This is a best case scenario only when users insert rows
without performing deletes or updates.

Typically, the space required to store a set of rows will exceed this
calculation when updates and deletes are also being performed on the
table. The actual space required for complex workloads is best
determined empirically, and then scaled by the number of rows in the
table. In general, increasing amounts of concurrent activity on the same
data block results in additional overhead (for transaction records), so it
is important that you take into account such activity when scaling
empirical results.

To Calculate Space Required by Non–Clustered Tables

1. Calculate the total block header size.

2. Calculate the available data space per data block.

3. Calculate the space used per row.

4. Calculate the total number of rows that will fit in a data block.

The space required by the data block header is the result of the
following formula:

Space after headers (hsize)

=

DB_BLOCK_SIZE – KCBH – UB4 – KTBBH – (INITRANS – 1) * KTBIT – KDBH

Where:

is the database block size as viewed in the
V$PARAMETER view

are constants whose sizes you can obtain by
selecting from entries in the V$TYPE_SIZE view

is the initial number of transaction entries allocated
to the table

DB_BLOCK_
SIZE

KCBH, UB4,
KTBBH,
KTBIT,KDBH

INITRANS

Step 2: Calculate the
Available Data Space Per
Data Block

Step 3: Calculate the
Space Used per Row

A – 3Space Estimations for Schema Objects

The space reserved in each data block for data, as specified by
PCTFREE, is calculated as follows:

available data space (availspace)

=

CEIL(hsize * (1 – PCTFREE/100)) – KDBT

Where:

rounds a fractional result to the next highest integer

is the percentage of space reserved for updates in
the table

is a constant whose size you can obtain by selecting
the entry from the V$TYPE_SIZE view

Note: If you are unable to locate the value of KDBT,
use the value of UB4 instead.

Calculating the amount of space used per row is a multi–step task.

First, you must calculate the column size, including byte lengths:

Column size including byte length

=

column size + (1, if column size < 250, else 3)

Note: You can also determine column size empirically, by selecting
avg(vsize(colname)) for each column in the table.

Then, calculate the row size:

Rowsize

=

row header (3 * UB1) + sum of column sizes including length bytes

Finally, you can calculate the space used per row:

Space used per row (rowspace)

=

MIN(UB1 * 3 + UB4 + SB2, rowsize) + SB2

Where:

are constants whose size can be obtained by
selecting entries from the V$TYPE_SIZE view

When the space per row exceeds the available space per data block, but
is less than the available space per data block without any space
reserved for updates (for example, available space with PCTFREE=0),
each row will be stored in its own block.

When the space per row exceeds the available space per data block
without any space reserved for updates, rows inserted into the table will

CEIL

PCTFREE

KDBT

UB1, UB4, SB2

Step 4: Calculate the Total
Number of Rows That
Will Fit in a Data Block

Space Requirements for
Tables in Use

A – 4 Oracle7 Server Administrator’s Guide

be chained into 2 or more pieces, hence, this storage overhead will be
higher.

Figure A – 1 depicts elements in a table row.

Row
Header

Length Bytes and
Index Column Data

Table Row

Figure A – 1 Calculating the Size of a Row

You can calculate the total number of rows that will fit into a data block
using the following equation:

Number of rows in block

=

FLOOR(availspace / rowspace)

Where:

rounds a fractional result to the next lowest integer

In summary, remember that this procedure provides a reasonable
estimate of a table’s size, not an exact number of blocks or bytes. After
you have estimated the size of a table, you can use this information
when specifying the INITIAL storage parameter (size of the table’s
initial extent) in your corresponding CREATE TABLE statement.

See Also: See your operating system–specific Oracle documentation for
any substantial deviations from the constants provided in this
procedure.

After a table is created and in use, the space required by the table is
usually higher than the estimate derived from your calculations. More
space is required due to the method by which Oracle manages free space
in the database.

FLOOR

Step 1: Calculate the Total
Block Header Size

A – 5Space Estimations for Schema Objects

Estimating Space for Indexes

The following procedure demonstrates how to estimate the initial
amount of space required by an index.

The calculations in the procedure rely on average column lengths of the
columns that constitute an index; therefore, if column lengths in each
row of a table are relatively constant with respect to the indexed
columns, the estimates calculated by the following procedure are more
accurate.

To Estimate Space for Indexes

1. Calculate the total block header size.

2. Calculate the available data space per data block.

3. Calculate the combined column lengths of an average index value.

4. Calculate the total average index value size.

5. Calculate the number of blocks and bytes required for the index.

Note: Several calculations are required to obtain a final
estimate, and several of the constants (indicated by *) provided
are operating system–specific. Your estimates should not
significantly differ from actual values.

See Also: See your operating system–specific Oracle documentation for
any substantial deviations from the constants provided in the following
procedure.

Figure A – 2 shows the elements of an index block used in the following
calculations. The space required by the data block header of a block to
contain index data is given by the formula:

block header size = fixed header + variable transaction header

where:

113 bytes

24*I
I is the value of INITRANS for the index.

If INITRANS =2 (the default for indexes), the previous formula can be
simplified:

fixed header*

variable
transaction
header*

Step 2: Calculate
Available Data Space Per
Data Block

Step 3: Calculate
Combined Column
Lengths

A – 6 Oracle7 Server Administrator’s Guide

block header = 113 + (24*2) bytes

 = 161 bytes

Index Block

Fixed Header & Variable Transaction

Free Space (determined by PCTFREE)

Available Data Space

Block Size

Figure A – 2 Calculating the Space for an Index

The space reserved in each data block for index data, as specified by
PCTFREE, is calculated as a percentage of the block size minus the block
header:

available

 data = (block size – block header) –

space per block ((block size – block header)*(PCTFREE/100))

The block size of a database is set during database creation and can be
determined using the Server Manager command SHOW, if necessary:

SHOW PARAMETERS db_block_size;

If the data block size is 2K and PCTFREE=10 for a given index, the total
space for new data in data blocks allocated for the index is:

available data space per block

 = (2048 bytes – 161 bytes) –

 ((2048 bytes – 161 bytes)*(10/100))

 = (1887 bytes) – (1887 bytes * 0.1)

 = 1887 bytes – 188.7 bytes

 = 1698.3 bytes

The space required by the average value of an index must be calculated
before you can complete Step 4, calculating the total row size. This step
is identical to Step 3 in the procedure for calculating table size, except

Step 4: Calculate Total
Average Index Value Size

Step 5: Calculate Number
of Blocks and Bytes

A – 7Space Estimations for Schema Objects

you only need to calculate the average combined column lengths of the
columns in the index.

Figure A – 3 shows elements of an index entry used in the following
calculations. Once you have calculated the combined column length of
an average index entry, you can calculate the total average entry size
according to the following formula:

bytes/entry = entry header + ROWID length + F + V + D

where:

2 bytes

6 bytes

Total length bytes of all columns that store 127 bytes
or less. The number of length bytes required by
each column of this type is 1 byte.

Total length bytes of all columns that store more
than 127 bytes. The number of length bytes required
by each column of this type is 2 bytes.

Combined data space of all index columns (from
Step 3).

Entry
Header

ROWID Length Bytes and
Index Column Data

Index Entry

Figure A – 3 Calculating the Average Size of an Index Entry

For example, given that D is calculated to be 22 bytes and that the index
is comprised of three VARCHAR(10) columns, the total average entry
size of the index is:

avg. entry size = 2 + 6 + (1 * 3) + (2 * 0) + 22 bytes

 = 33 bytes

Note: For a non–unique index, the ROWID is considered
another column, so it must have one length byte.

Calculate the number of blocks required to store the index using the
following formula:

blocks for index =

entry header

ROWID length

F

V

D

Temporary Space
Required for Index
Creation

A – 8 Oracle7 Server Administrator’s Guide

 # not null rows

1.05 * ___

 FLOOR(avail. data space per block/avg. entry size)

Note: The additional 5% added to this result (by means of the
multiplication factor of 1.05) accounts for the extra space
required for branch blocks of the index.

For example, continuing with the previous example, and assuming you
estimate that indexed table will have 10000 rows that contain non–null
values in the columns that constitute the index:

blocks for index =

 10000 * 33 bytes

1.05 * _____________________________________

 FLOOR(1700 bytes/33 bytes)*(33 bytes)

This results in 204 blocks. The number of bytes can be calculated by
multiplying the number of blocks by the data block size.

Remember that this procedure provides a reasonable estimate of an
index’s size, not an exact number of blocks or bytes. Once you have
estimated the size of a index, you can use this information when
specifying the INITIAL storage parameter (size of the index’s initial
extent) in your corresponding CREATE INDEX statement.

When creating an index for a loaded table, temporary segments are
created to sort the index. The amount of space required to sort an index
varies, but can be up to 110% of the size of the index.

Note: Temporary space is not required if the NOSORT option is
included in the CREATE INDEX command. However, you
cannot specify this option when creating a cluster index.

Step 1:
Calculate Total Block
Header Size and Space
Available for Table Data

A – 9Space Estimations for Schema Objects

Estimating Space Required by Clusters

The following procedure demonstrates how to estimate the initial
amount of space required by a set of tables in a cluster. This procedure
estimates only the initial amount of space required for a cluster. When
using these estimates, note that the following items can affect the
accuracy of estimations:

• Trailing nulls are not stored, nor is a length byte.

• Inserts of, updates to, and deletes of rows, as well as tables
containing columns larger than a single data block can cause
fragmentation and chained row pieces. Therefore, the following
estimates may tend to be lower that the actual space required if
significant fragmentation occurs.

Once you calculate a table’s size using the following procedure, you
should add about 10 to 20 percent additional space to calculate the
initial extent size for a working table.

To Estimate Space Required by Clusters

1. Calculate total block header size and space available for table data.

2. Calculate the combined column lengths of the average rows per
cluster key.

3. Calculate the average row size of all clustered tables.

4. Calculate the average cluster block size.

5. Calculate the total number of blocks required for the cluster.

The following formula returns the amount of available space in a block:

Note: Several calculations are required to obtain a final
estimate, and several of the constants (indicated by *) provided
are operating system–specific. Your estimates should not
significantly differ from actual values. See your operating
system–specific Oracle documentation for any substantial
deviations from the constants provided in the following
procedure.

space left in block after headers (hspace)

= BLOCKSIZE – KCBH – UB4 – KTBBH – KTBIT*(INITTRANS – 1) – KDBH

where the sizes of KCBH, KTBBH, KTBIT, KDBH, and UB4 can be
obtained by selecting * from v$type_size table.

Step 2:
Calculate Space Required
by a Row

A – 10 Oracle7 Server Administrator’s Guide

Note: If this is a table segment (instead of the cluster segment
shown above), the table directory would simply be 4.

Then use the following formula to calculate the space available for table
data:

space available for table data

= hspace*(1 – PCTFREE/100) – 4*(NTABLES + 1) * ROWSINBLOCK

where:

is the size of a data block

is the initial number of transaction entries for the
object

is the percentage of space to reserve in a block for
updates

is the number of tables in the cluster

is the number of rows in a block

Use Step 3 from the procedure in “Calculating Space Required by
Non–Clustered Tables” to calculate this number. Make note of the
following caveats:

• Calculate the data space required by an average row for each
table in the cluster. For example, in a cluster that contains tables
T1 and T2, calculate the average row size for both tables.

• Do not include the space required by the cluster key in any of the
above calculations. However, make note of the space required to
store an average cluster key value for Step 5. For example,
calculate the data space required by an average row in table T1,
not including the space required to store the cluster key.

• Do not include any space required by the row header (that is, the
length bytes for each column); this space is accounted for in the
next step.

For example, assume two clustered tables are created with the following
statements:

CREATE TABLE t1 (a CHAR(10), b DATE, c NUMBER(10,2))

 CLUSTER t1_t2 (c);

CREATE TABLE t2 (c NUMBER(10,2), d CHAR(10))

 CLUSTER t1_t2 (c);

Notice that the cluster key is column C in each table.

BLOCKSIZE

INITTRANS

PCTFREE

NTABLES

ROWS
INBLOCK

Step 3:
Calculate Total Average
Row Size

A – 11Space Estimations for Schema Objects

Considering these example tables, the space required for an average row
(D1) of table T1 and the space required for an average row (D2) of table
T2 is:

D1 (space/average row) = (a + b)

 = (10 + 7) bytes

 = 17 bytes

D2 (space/average row) = (d)

 = 10 bytes

You can calculate the minimum amount of space required by a row in a
clustered table according to the following equation:

Sn bytes/row = row header + F n + V n + D n

where:

4 bytes per row of a clustered table.

Total length bytes of all columns in table n that store
250 bytes or less. The number of length bytes
required by each column of this type is 1 byte.

Total length bytes of all columns in table n that store
more than 250 bytes. The number of length bytes
required by each column of this type is 3 bytes.

Combined data space of all columns in table n (from
Step 3).

Note: Do not include the column length for the cluster key in
variables F or V for any table in the cluster. This space is
accounted for in Step 5.

For example, the total average row size of the clustered tables T1 and T2
are as follows:

 S 1 = (4 + (1 * 2) + (3 * 0) + 17) bytes

 = 23 bytes

 S 2 = (4 + (1 * 1) + (3 * 0) + 10) bytes

 = 15 bytes

Note: The absolute minimum row size of a clustered row is 10
bytes, and is operating system–specific. Therefore, if your
calculated value for a table’s total average row size is less than
these absolute minimum row sizes, use the minimum value as
the average row size in subsequent calculations.

row header*

Fn

Vn

Dn

Step 4:
Calculate Average Cluster
Block Size

A – 12 Oracle7 Server Administrator’s Guide

To calculate the average cluster block size, first estimate the average
number of rows (for all tables) per cluster key. Once this is known, use
the following formula to calculate average cluster block size:

avg. cluster block size (bytes)=

((R 1*S 1) + (R 2*S 2) + .. + (R n*S n)) + key header + C k + S k + 2R t

where:

The average number of rows in table n associated
with a cluster key.

The average row size in table n (see Step 4).

19

Column length for the cluster key.

Space required to store average cluster
 key value.

Total number of rows associated with an average
cluster key (R1 + R2 ... + Rn). This accounts for the
space required in the data block header for each
row in the block.

For example, consider the cluster that contains tables T1 and T2. An
average cluster key has one row per table T1 and 20 rows per table T2.
Also, the cluster key is of datatype NUMBER (column length is 1 byte),
and the average number is 4 digits (3 bytes). Considering this
information and the previous results, the average cluster key size is:

SIZE = ((1 * 23) + (20 * 15) + 19 + 1 + 3 + (2 * 21)) bytes

 = 388 bytes

Specify the estimated SIZE in the SIZE option when you create the
cluster with the CREATE CLUSTER command. This specifies the space
required to hold an average cluster key and its associated rows; Oracle
uses the value of SIZE to limit the number of cluster keys that can be
assigned to any given data block. After estimating an average cluster
key SIZE, choose a SIZE somewhat larger than the average expected size
to account for the space required for cluster keys on the high side of the
estimate.

To estimate the number of cluster keys that will fit in a database block,
use the following formula, which uses the value you calculated in Step 2
for available data space, the number of rows associated with an average
cluster key (Rt), and SIZE:

cluster keys per block

= FLOOR(available data space + 2R / SIZE + 2R t)

Rn

Sn

key header*

Ck

Sk

Rt

Step 5:
Calculate Total Number of
Blocks

Space Requirements for
Clustered Tables in Use

A – 13Space Estimations for Schema Objects

For example, with SIZE previously calculated as 400 bytes (calculated as
388 earlier in this step and rounded up), Rt estimated at 21, and
available space per data block (from Step 2) calculated as 1742 – 2R
bytes, the result is as follows:

cluster keys per block

= FLOOR((1936 – 2 R + 2R) / (400 + 2 * 21))

= FLOOR(1936 / 442)

= FLOOR(4.4)

= 4

To calculate the total number of blocks for the cluster, you must estimate
the number of cluster keys in the cluster. Once this is estimated, use the
following formula to calculate the total number of blocks required for
the cluster:

blocks = CEIL(# cluster keys / # cluster keys per block)

Note: If you have a test database, you can use statistics
generated by the ANALYZE command to determine the number
of key values in a cluster key. See “Analyzing Tables, Indexes,
and Clusters” on page 16 – 3.

For example, assume that there are approximately 500 cluster keys in the
T1_T2 cluster:

blocks T1_T2 = CEIL(500/3)

 = CEIL(166.7)

 = 167

To convert the number of blocks to bytes, multiply the number of blocks
by the data block size.

This procedure provides a reasonable estimation of a cluster’s size, but
not an exact number of blocks or bytes. Once you have estimated the
space for a cluster, you can use this information when specifying the
INITIAL storage parameter (size of the cluster’s initial extent) in your
corresponding CREATE CLUSTER statement.

Once clustered tables are created and in use, the space required by the
tables is usually higher than the estimate given by the previous section.
More space is required due to the method Oracle uses to manage free
space in the database.

A – 14 Oracle7 Server Administrator’s Guide

Estimating Space Required by Hash Clusters

As with index clusters, it is important to estimate the storage required
for the data in a hash cluster. Use the procedure described in
“Estimating Space Required by Clusters” on page A – 9, with the
following additional notes:

• A sub–goal of the procedure is to determine the SIZE of each
cluster key. However, for hash clusters, the corresponding
sub–goal is to determine the SIZE of each hash key. Therefore,
you must consider not only the number of rows per cluster key
value, but also the distribution of cluster keys over the hash keys
in the cluster.

• In Step 3, make sure to include the space required by the cluster
key value. Unlike an index cluster, the cluster key value is stored
with each row placed in a hash cluster.

• In Step 5, you are calculating the average hash key size, not
cluster key size. Therefore, take into account how many cluster
keys map to each hash value. Also, disregard the addition of the
space required by the cluster key value, Ck. This value has
already been accounted for in Step 3 (see previous item).

 Index – 1

Index

A
abort, shutting down an instance, 3 – 9
access

data
managing, 20 – 1
system privileges, 20 – 2

database
controlling, 19 – 1
database administrator account, 1 – 4
granting privileges, 20 – 12
restricting, 3 – 4
revoking privileges, 20 – 15

object
granting privileges, 20 – 13
privilege types, 20 – 6
revoking privileges, 20 – 15

accounts
operating–system

database administrator, 1 – 4
role identification, 20 – 20

user, SYS and SYSTEM, 1 – 4
active extents, 17 – 6
Add Datafiles to Tablespace dialog, 9 – 4
Add Online Redo Log Group dialog box, 5 – 5
Add Online Redo Log Member dialog, 5 – 6
ADMIN OPTION

about, 20 – 12
revoking, 20 – 15

AFTER triggers, auditing
and, 21 – 23 to 21 – 25

ALERT file
about, 4 – 13

location of, 4 – 14
session high water mark in, 19 – 6
size of, 4 – 14
using, 4 – 12
when written, 4 – 14

ALL_INDEXES view, filling with data, 16 – 5
ALL_TAB_COLUMNS view, filling

with data, 16 – 5
ALL_TABLES view, filling with data, 16 – 5
allocation

extents, 11 – 8
extents for clusters, 14 – 9
minimizing extents for rollback

segments, 17 – 13
multi–threaded server and, 4 – 5
temporary space, 11 – 5

alphanumeric datatypes, 10 – 17
ALTER CLUSTER command

ALLOCATE EXTENT option, 14 – 9
MAXTRANS option, 10 – 10
using for hash clusters, 15 – 8
using for index clusters, 14 – 8

ALTER DATABASE command
ADD LOG MEMBER option, 5 – 6
ADD LOGFILE option, 5 – 5
ARCHIVELOG option, 22 – 5
BACKUP CONTROLFILE TO TRACE

option, 23 – 15
CREATE DATAFILE option, 24 – 8
database partially available to users, 3 – 6
DATAFILE...OFFLINE DROP option, 9 – 7
DROP LOGFILE MEMBER option, 5 – 10
DROP LOGFILE option, 5 – 9

Index – 2 Oracle7 Server Administrator’s Guide

MOUNT option, 3 – 6
NOARCHIVELOG option, 22 – 5
NORESETLOGS

option, 24 – 27, 24 – 32, 24 – 36
OPEN NORESETLOGS option, 24 – 20
OPEN option, 3 – 7
RENAME FILE option, datafiles for

multiple tablespaces, 9 – 9
RESETLOGS option, 24 – 27, 24 – 32, 24 – 36

ALTER FUNCTION command,
COMPILE option, 16 – 19

ALTER INDEX command
about, 13 – 8
MAXTRANS option, 10 – 10

ALTER PACKAGE command, COMPILE
option, 16 – 19

ALTER PROCEDURE command, COMPILE
option, 16 – 19

ALTER PROFILE command
altering resource limits, 19 – 17
COMPOSITE_LIMIT option, 19 – 17

Alter Profile dialog, 19 – 17
ALTER RESOURCE COST command, 19 – 18
ALTER ROLE command, changing

authorization method, 20 – 11
Alter Role dialog, 20 – 11
ALTER ROLLBACK SEGMENT command

changing storage parameters, 17 – 9
OFFLINE option, 17 – 12
ONLINE option, 17 – 11, 17 – 12
PUBLIC option, 17 – 10
STORAGE clause, 17 – 9

Alter Rollback Segment Storage dialog, 17 – 9
ALTER SEQUENCE command, 12 – 11
ALTER SESSION command, SET SQL_TRACE

parameter, 4 – 12
ALTER SYSTEM command

ARCHIVE LOG ALL option, 22 – 8
ARCHIVE LOG START option, 22 – 7
ARCHIVE LOG START option, s

pecifying destination, 22 – 13
ARCHIVE LOG STOP option, 22 – 7
CHECKPOINT option, 5 – 13
ENABLE RESTRICTED SESSION

option, 3 – 7

SET LICENSE_MAX_SESSIONS
option, 19 – 4

SET LICENSE_MAX_USERS option, 19 – 5
SET LICENSE_SESSIONS_WARNING

option, 19 – 4
SET MTS_DISPATCHERS option, 4 – 9
SET MTS_SERVERS option, 4 – 8
SET RESOURCE_LIMIT option, 19 – 19
SWITCH LOGFILE option, 5 – 13

ALTER TABLE command
ALLOCATE EXTENT option, 11 – 8
DISABLE ALL TRIGGERS option, 16 – 12
DISABLE integrity constraint option, 16 – 15
DROP integrity constraint option, 16 – 15
ENABLE ALL TRIGGERS option, 16 – 11
ENABLE integrity constraint option, 16 – 15
example, 11 – 8
MAXTRANS option, 10 – 10

ALTER TABLESPACE command
ADD DATAFILE parameter, 9 – 4
BEGIN BACKUP option

marking the beginning, 23 – 11
minimizing time between begin

and end, 23 – 13
DEFAULT STORAGE option, 8 – 5
END BACKUP option

marking the end, 23 – 11
minimizing time between

begin and end, 23 – 13
OFFLINE option, 23 – 14
ONLINE option

bringing tablespaces back online, 23 – 14
example, 8 – 8

READ ONLY option, 8 – 9 to 8 – 11
READ WRITE option, 8 – 11
RENAME DATA FILE option, 9 – 8

ALTER TRIGGER command
DISABLE option, 16 – 12
ENABLE option, 16 – 11

ALTER USER command, changing
passwords with, 19 – 13

Alter User dialog, 19 – 12
ALTER USER privilege, 19 – 12
ALTER VIEW command, COMPILE

option, 16 – 19

 Index – 3

altering
cluster indexes, 14 – 9
clustered tables, 14 – 9
clusters, 14 – 8
database status, 3 – 6
hash clusters, 15 – 8
indexes, 13 – 8
passwords, 19 – 13
public rollback segments, 17 – 10
rollback segment storage parameters, 17 – 9
sequences, 12 – 11
storage parameters, 11 – 7
tables, 11 – 7, 11 – 8
tablespace storage, 8 – 5
users, 19 – 12

ANALYZE command
CASCADE option, 16 – 8
COMPUTE STATISTICS option, 16 – 6
ESTIMATE STATISTICS SAMPLE

option, 16 – 6
LIST CHAINED ROWS option, 16 – 8
number of cluster keys, A – 13
shared SQL and, 16 – 7
STATISTICS option, 16 – 4
VALIDATE STRUCTURE option, 16 – 7

analyzing objects
about, 16 – 3
privileges, 16 – 3

application administrator, 1 – 3
database administrator versus, 18 – 10

application developers
privileges for, 18 – 9
roles for, 18 – 10

application development, security for, 18 – 9
ARCHIVE LOG command, LIST

parameter, 5 – 9
archived redo log

applying during recovery, 24 – 11, 24 – 13
archiving modes, 22 – 5
automatic archiving, 22 – 6
automatic, disabling archiving, 22 – 7
default filename format, 22 – 12
deleting after recovery, 24 – 10
enabling automatic archiving, 22 – 6
errors during recovery, 24 – 15
filename format, 22 – 11
listing status, 22 – 10

location during recovery, 24 – 11
loss of, 24 – 52
preserving or resetting log sequence

number, 24 – 26, 24 – 31, 24 – 35
restoring to disk, 24 – 9
setting archive destination, 22 – 13
specifying archive destination, 22 – 11

ARCHIVELOG mode
archiving, 22 – 2
datafile loss in, 24 – 48
distributed database backups, 23 – 4
enabling, 22 – 5
setting at database creation, 22 – 4
strategies for backups in, 23 – 6
taking datafiles offline and online in, 9 – 7

archiving
advantages, 22 – 2
automatic

disabling, 22 – 7
disabling after setup, 22 – 7
disabling at startup, 22 – 7
enabling, 22 – 6

changing mode, 22 – 5
default file name format, 22 – 12
disadvantages, 22 – 2
enabling and disabling, 22 – 4
enabling automatic, 22 – 6
increasing speed of, 22 – 10
manually, 22 – 8
minimizing impact on system

performance, 22 – 9
privileges

disabling, 22 – 7
enabling, 22 – 6
for manually archiving, 22 – 8
to view status, 22 – 10

specifying destination, 22 – 11
tuning, 22 – 9
viewing information on, 22 – 10

AUDIT command, 21 – 12
schema objects, 21 – 13
statement auditing, 21 – 12
system privileges, 21 – 12

audit trail
See also auditing
archiving, 21 – 17
auditing changes to, 21 – 18

Index – 4 Oracle7 Server Administrator’s Guide

controlling size of, 21 – 16
creating and deleting, 21 – 4
deleting views, 21 – 5
interpreting, 21 – 18
maximum size of, 21 – 16
protecting integrity of, 21 – 18
purging records from, 21 – 17
recording changes to, 21 – 18
records in, 21 – 7
reducing size of, 21 – 17
table that holds, 21 – 2
views on, 21 – 5

AUDIT_TRAIL parameter, setting, 21 – 15
auditing

See also audit trail
AUDIT command, 21 – 12
audit option levels, 21 – 8
audit trail records, 21 – 6
default options, 21 – 13
disabling default options, 21 – 15
disabling options, 21 – 14, 21 – 15
disabling options versus auditing, 21 – 14
enabling options, 21 – 12, 21 – 15
enabling options versus auditing, 21 – 12
guidelines, 21 – 2
historical information, 21 – 4
keeping information manageable, 21 – 2
managing the audit trail, 21 – 4
operating–system audit trails, 21 – 6
policies for, 18 – 11
privilege audit options, 21 – 10
privileges required for object, 21 – 13
privileges required for system, 21 – 13
schema object types, 21 – 11
schema objects, 21 – 13
session level, 21 – 10
shortcuts for object, 21 – 11
shortcuts for system, 21 – 9
statement, 21 – 12
statement level, 21 – 8
suspicious activity, 21 – 3
system privileges, 21 – 12
triggers and, 21 – 22
using the database, 21 – 2
viewing

active object options, 21 – 21
active privilege options, 21 – 21
active statement options, 21 – 21

default object options, 21 – 22
views, 21 – 5

authentication
changing, 19 – 13
database managed, 19 – 8
multi–threaded server and, 19 – 8
operating system, 1 – 7
operating–system managed, 19 – 7
password file, 1 – 8
password policy, 18 – 4
specifying when creating a user, 19 – 9
users, 18 – 2, 19 – 6, 19 – 7

authorization
changing for roles, 20 – 11
omitting for roles, 20 – 11
operating–system role

management and, 20 – 10
roles

about, 20 – 9
multi–threaded server and, 20 – 10

automatic archiving, archive log
destination, 22 – 6

B
background processes, Oracle7

processes, 4 – 11
BACKGROUND_DUMP_DEST

parameter, 4 – 14
backups

after creating new databases
full backups, 2 – 7
guidelines, 1 – 19

after structural changes to database, 23 – 3
ARCHIVELOG mode in, 23 – 6
before database creation, 2 – 4
checking datafile backup status, 23 – 12
control files, 23 – 15
creating a strategy, 23 – 5
DB_VERIFY, 23 – 10
DB_VERIFY utility, 23 – 10
distributed databases, 23 – 4
effects of archiving on, 22 – 2
Export utility and, 23 – 4
frequency of, 23 – 2
full backups, about, 23 – 8

 Index – 5

guidelines for, 23 – 2
keeping, 23 – 3
listing files needed, 23 – 8
marking end, 23 – 11
NOARCHIVELOG mode in, 23 – 5
often–used tablespaces, 23 – 3
partial backups, 23 – 10
planning before database creation, 23 – 2
privileges for control files, 23 – 15
procedures for

about, 23 – 7
offline datafiles, 23 – 14
offline tablespaces, 23 – 14
online datafiles, 23 – 10
online tablespaces, 23 – 10

read–only tablespaces, 23 – 7
restoring a full backup, 24 – 16
tablespaces, 23 – 13
test strategies, 23 – 2

Begin Manual Archive dialog box, 22 – 8
Begin Online Tablespace Backup dialog, 23 – 11
branch blocks, space required, A – 7
bringing online, tablespaces, 8 – 7
broken jobs

about, 7 – 11
marking, 7 – 11
running, 7 – 12

buffers, buffer cache in SGA, 2 – 11
bug fixes, 1 – 20

C
CASCADE option

integrity constraints, 14 – 11
when dropping unique or primary

keys, 16 – 15
cascading revokes, 20 – 16
CATAUDIT.SQL, running, 21 – 5
CATBLOCK.SQL script, 4 – 10
CATNOAUD.SQL, running, 21 – 5
change–based recovery, procedure for, 24 – 24
CHAR datatype, 10 – 17

increasing column length, 11 – 7
space use of, 10 – 17

character sets
multi–byte characters

in role names, 20 – 8
in role passwords, 20 – 10
in user names, 19 – 9
user passwords and, 19 – 10

parameter file and, 3 – 10
specifying when creating a database, 2 – 2
supported by Oracle, 10 – 17

CHECK constraint, 16 – 14
checkpoint, 24 – 3
checkpoint process (CKPT), starting, 4 – 15
CHECKPOINT_PROCESS parameter,

setting, 4 – 15
checkpoints

controlling, 5 – 10
fast checkpoint, 5 – 13
forcing, 5 – 13
log switches and, 5 – 10
setting intervals, 5 – 11

checksums
for data blocks, 9 – 11
for redo blocks, 5 – 14

CKPT. See checkpoint process (CKPT)
CLEAR LOGFILE clause, 5 – 14
clearing log files, 5 – 14
cluster keys

ANALYZE command and, A – 13
columns for, 14 – 4
SIZE parameter, 14 – 5

clustered tables, 14 – 10
clusters

allocating extents, 14 – 9
altering, 14 – 8
analyzing statistics, 16 – 3
choosing data, 14 – 4
columns for cluster key, 14 – 4
creating, 14 – 6
dropped tables and, 11 – 9
dropping, 14 – 9
estimating space, 14 – 5, A – 9 to A – 15
guidelines for managing, 14 – 3
hash, contrasted with index, 15 – 2
hash clusters, 15 – 1
index, contrasted with hash, 15 – 2

Index – 6 Oracle7 Server Administrator’s Guide

index creation, 14 – 7
indexes and, 13 – 2
keys, 14 – 2
location, 14 – 5
managing, 14 – 1
overview of, 14 – 2 to 14 – 6
privileges

for controlling, 20 – 7
for creating, 14 – 6
for dropping, 14 – 10

specifying PCTFREE for, 10 – 4
storage parameters, 10 – 11
truncating, 16 – 9
validating structure, 16 – 7

cold backups, full backups, 23 – 8
columns

displaying information about, 16 – 25
granting privileges for selected, 20 – 13
granting privileges on, 20 – 14
increasing length, 11 – 7
INSERT privilege and, 20 – 14
listing users granted to, 20 – 24
privileges, 20 – 14
revoking privileges on, 20 – 16

complete recovery, procedures for, 24 – 18
composite limits, 19 – 17

costs and, 19 – 18
service units, 19 – 17

COMPUTE STATISTICS option, 16 – 6
configuring an instance, with dedicated

server processes, 4 – 2
CONNECT audit option, shortcut for

auditing, 21 – 9
CONNECT role, 20 – 9
connecting

administrator privileges, 3 – 8
to a database as INTERNAL, 3 – 2

connections
auditing, 21 – 10
dedicated servers, 4 – 3
during shutdown, 3 – 8

control files
adding, 6 – 4
backing up, 23 – 8, 23 – 15
changing size, 6 – 4
conflicts with data dictionary, 6 – 8

creating
about, 6 – 3
additional control files, 6 – 4
initially, 6 – 4
new files, 6 – 5

default name, 2 – 10, 6 – 4
dropping, 6 – 9
during incomplete

recovery, 24 – 25, 24 – 29, 24 – 33
errors during creation, 6 – 9
finding filenames, 23 – 8
guidelines for, 6 – 2
importance of mirrored, 6 – 2
location of, 6 – 3
loss of, 24 – 53, 24 – 54
managing, 6 – 1
mirroring, 2 – 10
moving, 6 – 4
names, 6 – 2
number of, 6 – 2
overwriting existing, 2 – 10
privileges to backup, 23 – 15
relocating, 6 – 4
renaming, 6 – 4
requirement of one, 6 – 3
size of, 6 – 3
specifying names before database

creation, 2 – 10
unavailable during startup, 3 – 3
V$BACKUP view and, 23 – 12

CONTROL_FILES parameter
overwriting existing control files, 2 – 10
setting

before database creation, 2 – 10, 6 – 4
names for, 6 – 2

costs, resource limits and, 19 – 18
CREATE CLUSTER command

example, 14 – 6
for hash clusters, 15 – 5
HASH IS option, 15 – 6
HASHKEYS option, 15 – 7
SIZE option, 15 – 6, A – 12

CREATE CONTROLFILE command
about, 6 – 5
checking for inconsistencies, 6 – 8
NORESETLOGS option, 6 – 7
RESETLOGS option, 6 – 7

 Index – 7

CREATE DATABASE command
CONTROLFILE REUSE option, 6 – 4
example, 2 – 7
MAXDATAFILES option, 9 – 2
MAXLOGFILES option, 5 – 4
MAXLOGMEMBERS option, 5 – 4

CREATE INDEX command
explicitly, 13 – 7
ON CLUSTER option, 14 – 7
temporary space required, A – 8
UNRECOVERABLE, 13 – 5
with a constraint, 13 – 7

CREATE PROFILE command
about, 19 – 16
COMPOSITE_LIMIT option, 19 – 17

Create Profile dialog, 19 – 16
CREATE ROLE command

IDENTIFIED BY option, 20 – 10
IDENTIFIED EXTERNALLY option, 20 – 10

CREATE ROLLBACK SEGMENT command
about, 17 – 8
tuning guidelines, 2 – 15

Create Rollback Segment dialog, 17 – 8
CREATE SCHEMA command

multiple tables and views, 16 – 2
privileges required, 16 – 2

CREATE SEQUENCE command, 12 – 10
CREATE SYNONYM command, 12 – 12
CREATE TABLE command

about, 11 – 6
CLUSTER option, 14 – 7
UNRECOVERABLE, 11 – 4

CREATE TABLESPACE command
datafile names in, 8 – 4
example, 8 – 4

Create Tablespace dialog, 8 – 4
CREATE USER command

IDENTIFIED BY option, 19 – 9
IDENTIFIED EXTERNALLY option, 19 – 9

CREATE VIEW command
about, 12 – 2
OR REPLACE option, 12 – 8
WITH CHECK OPTION, 12 – 3

creating
audit trail, 21 – 4
cluster index, 14 – 6

clustered tables, 14 – 6
clusters, 14 – 6
control files, 6 – 3
database, 1 – 19, 2 – 1

archiving mode, 22 – 4
backing up the new database, 2 – 7
during installation, 2 – 3
executing CREATE DATABASE, 2 – 6
maximum number of datafiles, 9 – 2
migration from different versions, 2 – 3
preparing to, 2 – 2
prerequisites for, 2 – 3
problems encountered while, 2 – 8
steps, 2 – 4

datafiles, 8 – 3, 9 – 4
hash clustered tables, 15 – 5
hash clusters, 15 – 5
indexes, explicitly, 13 – 7
multiple objects, 16 – 2
online redo log groups, 5 – 5
parameter file, 2 – 4
profiles, 19 – 16
redo log members, 5 – 5
rollback segments

about, 17 – 8
specifying storage parameters, 17 – 8

sequences, 12 – 10
synonyms, 12 – 12
tables, 11 – 6
tablespaces, 8 – 3

rollback segments required, 8 – 4
views, 12 – 2

D
data, security of, 18 – 3
data blocks

altering size of, 2 – 11
managing space usage of, 10 – 2
managing space use of, 10 – 2
operating system blocks versus, 2 – 11
PCTFREE storage parameter, 10 – 3
PCTUSED storage parameter, 10 – 5
shared in clusters, 14 – 2
size of, 2 – 11
verifying, 9 – 11

Index – 8 Oracle7 Server Administrator’s Guide

data dictionary
changing storage parameters, 16 – 23
conflicts with control files, 6 – 8
dropped tables and, 11 – 9
schema object views, 16 – 23
segments in the, 16 – 21
setting storage parameters of, 16 – 21
V$DBFILE view, 2 – 8
V$DISPATCHER view, 4 – 9
V$LOGFILE view, 2 – 8
V$QUEUE view, 4 – 9

data integrity
See also integrity constraints
integrity constraints, 16 – 14

database administrator, 1 – 2
application administrator versus, 18 – 10
initial priorities, 1 – 17
operating–system account, 1 – 4
password files for, 1 – 7
responsibilities of, 1 – 2
roles

about, 1 – 5
for security, 18 – 7

security and privileges of, 1 – 4
security for, 18 – 7
security officer versus, 1 – 3, 18 – 2
usernames, 1 – 4
utilities for, 1 – 16

database links
job queues and, 7 – 8
privileges for controlling, 20 – 7

databases
administering, 1 – 1
auditing, 21 – 1
availability, 3 – 6
backing up

after creation of, 1 – 19
full backups, 2 – 7

checking the default instance, 2 – 6
control files of, 6 – 2
CREATE DATABASE command, 2 – 7
creating

about, 2 – 1
opening and, 1 – 19
steps for, 2 – 4
trouble–shooting problems, 2 – 8

design of, implementing, 1 – 19
dropping, 2 – 8

exclusive mode, 3 – 5
global database name, about, 2 – 9
global database names, in a

distributed system, 2 – 9
hardware evaluation, 1 – 18
logical structure of, 1 – 18
managing, size of, 9 – 1
migration of, 2 – 3
mounting a database, 3 – 3
mounting to an instance, 3 – 6
name, starting an instance, 3 – 2
names

about, 2 – 9
conflicts in, 2 – 9

opening, a closed database, 3 – 7
parallel mode, 3 – 5
physical structure of, 1 – 19
planning, 1 – 18
production, 18 – 9, 18 – 10
renaming, 6 – 5
restricting access to, 3 – 4, 3 – 7
shutting down, 3 – 8
specifying control files, 2 – 10
starting up

before database creation, 2 – 6
general procedures for, 3 – 2
parameter filenames, 3 – 3
restricting access, 3 – 4

structure of, distributed database, 1 – 19
test, 18 – 9
tuning

archiving large databases, 22 – 9
responsibilities for, 1 – 20

user responsibilities, 1 – 3
viewing datafiles and redo log files, 2 – 8

datafiles
adding to a tablespace, 9 – 4
backing up offline, 23 – 14
backing up online, 23 – 10
bringing online and offline, 9 – 6 to 9 – 7
checking associated tablespaces, 8 – 14
creating, 8 – 3
database administrator’s access to, 1 – 4
default directory, 9 – 4
dropping, 8 – 12

NOARCHIVELOG mode, 9 – 7
FILEXT$, 9 – 5
fully specifying filenames, 9 – 4

 Index – 9

identifying filenames, 9 – 10
location, 9 – 3
loss of, 24 – 48
managing, 9 – 1
maximum number of, 9 – 2
minimum number of, 9 – 2
MISSING, 6 – 8
monitoring, 9 – 12
offline, 9 – 7
online, 9 – 7
privileges to rename, 9 – 8
privileges to take offline, 9 – 7
recovering without a backup, 24 – 8
recovery creation, 24 – 8
relocating, 9 – 7 to 9 – 11
relocating, example, 9 – 9
renaming, 9 – 7 to 9 – 11
renaming for single tables, 9 – 8
reusing, 9 – 4
size of, 9 – 3
storing separately from redo log files, 9 – 3
unavailable when database is opened, 3 – 3
verifying data blocks, 9 – 11
viewing

backup status, 23 – 12
files needing recovery, 24 – 8
general status of, 9 – 12
V$DBFILE and V$LOGFILE views, 2 – 8

datatypes
character, 10 – 17
DATE, 10 – 18
individual type names, 10 – 17
LONG, 10 – 18
LONG RAW, 10 – 18
MLSLABEL, 10 – 19
NUMBER, 10 – 17
RAW, 10 – 18
ROWID, 10 – 18
space use of, 10 – 17
summarized, 10 – 20

DATE datatype, 10 – 18
DB_BLOCK_BUFFERS parameter, setting

before database creation, 2 – 11
DB_BLOCK_CHECKSUM, 9 – 11
DB_BLOCK_SIZE parameter

database buffer cache size and, 2 – 11
setting before creation, 2 – 11

DB_DOMAIN parameter, setting before
database creation, 2 – 9

DB_FILES parameter
default, 9 – 2
optional use of, 9 – 3

DB_NAME parameter
MTS_SERVICE and, 4 – 6
setting before database creation, 2 – 9

DBA. See database administrator
DBA audit option shortcuts, 21 – 9
DBA role, 1 – 5, 20 – 9
DBA_DATA_FILES, 8 – 13, 9 – 12
DBA_EXTENTS, 9 – 12
DBA_FREE_SPACE, 8 – 13, 9 – 12
DBA_FREE_SPACE_COALESCED view, 8 – 7
DBA_INDEXES view, filling with data, 16 – 5
DBA_ROLLBACK_SEGS view, 17 – 14, 17 – 15
DBA_SEGMENTS, 8 – 13, 9 – 12
DBA_TAB_COLUMNS view, filling

with data, 16 – 5
DBA_TABLES view, filling with data, 16 – 5
DBA_TABLESPACES, 8 – 13, 9 – 12
DBA_TABLESPACES view, 8 – 12
DBA_TS_QUOTAS, 8 – 13, 9 – 12
DBA_USERS, 8 – 13, 9 – 12
DBMS_JOB package

altering a job, 7 – 10 to 7 – 13
forcing jobs to execute, 7 – 12
job queues and, 7 – 3
REMOVE procedure and, 7 – 9
submitting jobs, 7 – 4

DBMS_UTILITY.ANALYZE_SCHEMA(),
running, 16 – 7

dedicated server processes
configuring, 4 – 2
connecting with, 4 – 3
trace files for, 4 – 12

dedicated servers, multi–threaded servers
contrasted with, 4 – 3

default
archive log filename format, 22 – 12
audit options, 21 – 13

disabling, 21 – 15

Index – 10 Oracle7 Server Administrator’s Guide

profile, 19 – 16
role, 19 – 13
tablespace quota, 19 – 11
temporary tablespace, 19 – 10
user tablespaces, 19 – 10

deleting, table statistics, 16 – 4
dependencies, displaying, 16 – 26
developers, application, 18 – 9
disabling

archiving, 22 – 4
audit options, 21 – 14
auditing, 21 – 15
automatic archiving, 22 – 7
integrity constraints, 16 – 14

effects on indexes, 13 – 6
resource limits, 19 – 19
triggers, 16 – 11

disconnections, auditing, 21 – 10
dispatcher processes

calculating maximum number of, 4 – 7
number to start, 4 – 6
privileges to change number of, 4 – 9
removing, 4 – 9
service name, 4 – 6
setting the number of, 4 – 9
spawning new, 4 – 9

distributed databases
coordinated time–based recovery, 24 – 5
media recovery and snapshots, 24 – 6
recovery in, 24 – 5
running in ARCHIVELOG mode, 22 – 3
running in NOARCHIVELOG mode, 22 – 3
starting a remote instance, 3 – 5
taking backups, 23 – 4

distributed processing, parameter file
location in, 3 – 11

distributing I/O, 2 – 16
DROP CLUSTER command

CASCADE CONSTRAINTS option, 14 – 11
dropping

cluster with no tables, 14 – 10
hash cluster, 15 – 9

INCLUDING TABLES option, 14 – 10
DROP INDEX command, 13 – 10
Drop Online Redo Log dialog, 5 – 9

Drop Online Redo Log Member
dialog box, 5 – 10

DROP PROFILE command, 19 – 19
Drop Profile dialog, 19 – 19
DROP ROLE command, 20 – 11, 20 – 12
DROP ROLLBACK SEGMENT

command, 17 – 14
Drop Rollback Segment dialog, 17 – 14
DROP SYNONYM command, 12 – 12
DROP TABLE command

about, 11 – 9
CASCADE CONSTRAINTS option, 11 – 9
for clustered tables, 14 – 10

DROP TABLESPACE command, 8 – 12
Drop Tablespace dialog box, 8 – 12
DROP USER command, 19 – 15
Drop User dialog, 19 – 15
DROP USER privilege, 19 – 15
dropping

audit trail, 21 – 4
cluster indexes, 14 – 9
clusters, 14 – 9
control files, 6 – 9
databases, 2 – 8
datafiles, 8 – 12
hash clusters, 15 – 9
indexes, 13 – 9
integrity constraints

about, 16 – 15
effects on indexes, 13 – 6

online redo log groups, 5 – 8
online redo log members, 5 – 9
profiles, 19 – 19
roles, 20 – 11
rollback segments, 17 – 11, 17 – 14
sequences, 12 – 11
synonyms, 12 – 12
tables, 11 – 9
tablespaces

about, 8 – 12
required privileges, 8 – 12

users, 19 – 15
views, 12 – 9

dynamic performance tables, using, 4 – 11

 Index – 11

E
enabling

archiving, 22 – 4
auditing options

about, 21 – 12
privileges for, 21 – 15

integrity constraints
at creation, 16 – 14
example, 16 – 14
reporting exceptions, 16 – 16
when violations exist, 16 – 13

resource limits, 19 – 19
triggers, 16 – 11

encryption, Oracle passwords, 19 – 8
End Online Tablespace Backup dialog, 23 – 11
enroll, database users, 1 – 20
environment of a job, 7 – 6
errors

ALERT file and, 4 – 13
during startup, 3 – 3
ORA–00028, 4 – 17
ORA–00114, 4 – 6
ORA–01090, 3 – 8
ORA–01173, 6 – 9
ORA–01176, 6 – 9
ORA–01177, 6 – 9
ORA–1215, 6 – 9
ORA–1216, 6 – 9
ORA–1547, 16 – 23
ORA–1628 through 1630, 16 – 23
snapshot too old, 17 – 6
trace files and, 4 – 12
when creating a database, 2 – 8
when creating control file, 6 – 9
while starting an instance, 3 – 5

ESTIMATE STATISTICS option, 16 – 6
estimating size

hash clusters, 15 – 4
indexes, A – 5
tables, 11 – 4, A – 4

evaluating, hardware for the Oracle7
Server, 1 – 18

example, creating constraints, 16 – 14
examples, altering an index, 13 – 8
exceptions, integrity constraints, 16 – 16

exclusive mode
of the database, 3 – 5
rollback segments and, 17 – 3
terminating remaining user sessions, 4 – 16

EXP_FULL_DATABASE role, 20 – 9
Export utility

about, 1 – 17
backups and, 23 – 4
read consistency and, 23 – 18
restricted mode and, 3 – 4
using for backup, 23 – 18

exporting jobs, 7 – 6
extents

allocating
clusters, 14 – 9
index creation, 13 – 6
tables, 11 – 8

data dictionary views for, 16 – 24
displaying free extents, 16 – 27
displaying information on, 16 – 26
dropped tables and, 11 – 9

F
failures

media (disk), 24 – 47
media failure, 24 – 47

fast checkpoint, 5 – 13
filenames, listing, 23 – 8
files, OS limit on number open, 8 – 2
FILEXT$, 9 – 5
Force Checkpoint menu option, 5 – 13
Force Log Switch menu option, 5 – 13
FOREIGN KEY constraint, enabling, 16 – 14
fragmentation, reducing, 10 – 9
free space

coalescing, 8 – 6
listing free extents, 16 – 27
tablespaces and, 8 – 14

full backups, 23 – 8
restoring, 24 – 16

functions, recompiling, 16 – 19

Index – 12 Oracle7 Server Administrator’s Guide

G
global database name, 2 – 9
GRANT command

 ADMIN option, 20 – 12
 GRANT option, 20 – 14
object privileges, 20 – 13
SYSOPER/SYSDBA privileges, 1 – 13
system privileges and roles, 20 – 12
when takes effect, 20 – 18

GRANT OPTION
about, 20 – 14
revoking, 20 – 15

granting privileges and roles
listing grants, 20 – 22
shortcuts for object privileges, 20 – 7
SYSOPER/SYSDBA privileges, 1 – 13

group, redo log, online redo log, archived
redo log, 24 – 49

guidelines, for managing rollback
segments, 17 – 2

H
hardware, evaluating, 1 – 18
hash clusters

altering, 15 – 8
choosing key, 15 – 5
clusters, 15 – 1
controlling space use of, 15 – 5
creating, 15 – 5
dropping, 15 – 9
estimating storage, 15 – 4
example, 15 – 7
managing, 15 – 1
usage, 15 – 2

high water mark, for a session, 19 – 3
HOST, command in Server Manager, 5 – 7
hot backups, partial backups, 23 – 10

I
I/O, distributing, 2 – 16
identification, users, 19 – 6
IMP_FULL_DATABASE role, 20 – 9

implementing database design, 1 – 19
Import utility

about, 1 – 17
procedure for using, 23 – 19
restricted mode and, 3 – 4
using for recovery, 23 – 18

importing, jobs, 7 – 6
in–doubt transactions, rollback

segments and, 17 – 11
incomplete recovery, procedures for, 24 – 24
indexes

altering, 13 – 8
analyzing statistics, 16 – 3
cluster

altering, 14 – 9
creating, 14 – 6
dropping, 14 – 9
managing, 14 – 1

correct tables and columns, 13 – 6
creating

after inserting table data, 13 – 3
explicitly, 13 – 7
unrecoverably, 13 – 5

disabling and dropping
constraints and, 13 – 6

dropped tables and, 11 – 9
dropping, 13 – 9
estimating size, 13 – 5, A – 5 to A – 10
extent allocation for, 13 – 6
guidelines for managing, 13 – 2
INITRANS for, 13 – 4
limiting per table, 13 – 3
managing, 13 – 1, 13 – 9
MAXTRANS for, 13 – 4
monitoring space use of, 13 – 9
overview of, 13 – 2 to 13 – 6
parallelizing index creation, 13 – 4
PCTFREE for, 13 – 4
PCTUSED for, 13 – 4
privileges

for altering, 13 – 8
for controlling, 20 – 7
for creating, 13 – 6
for dropping, 13 – 9

separating from a table, 11 – 5
setting storage parameters for, 13 – 5
SQL*Loader and, 13 – 3

 Index – 13

storage parameters, 10 – 11
tablespace for, 13 – 4
temporary segments and, 13 – 3
temporary space and, A – 8
validating structure, 16 – 7

initial, passwords for SYS and SYSTEM, 1 – 4
INITIAL storage parameter, 10 – 8

altering, 11 – 7
initialization parameters

affecting sequences, 12 – 11
multi–threaded server and, 4 – 4

INITRANS storage parameter
altering, 11 – 7
default, 10 – 10
guidelines for setting, 10 – 10
transaction entries and, 10 – 10

INSERT privilege
granting, 20 – 14
revoking, 20 – 16

installation
and creating a database, 2 – 3
Oracle7 Server, 1 – 18
tuning recommendations for, 2 – 14

instance identifier
checking, 2 – 6
process names and, 4 – 12

instance menu
Open option, 3 – 7
prevent Connections option, 3 – 7

instances
aborting, 3 – 9
default, 2 – 6
shutting down immediately, 3 – 9
starting, 3 – 2
starting before database creation, 2 – 6

integrity constraints
disabling, 16 – 12, 16 – 14
disabling on creation, 16 – 14
dropping, 16 – 15
dropping and disabling, 13 – 6
dropping tablespaces and, 8 – 12
enabling, 16 – 12
enabling on creation, 16 – 14
enabling when violations exist, 16 – 13
exceptions to, 16 – 16
managing, 16 – 12
UTLEXCPT.SQL script, 16 – 16

violations, 16 – 13
when to disable, 16 – 13

INTERNAL
alternatives to, 1 – 7
connecting for shutdown, 3 – 8
creating a database as, 2 – 6
OSOPER and OSDBA, 1 – 7
security for, 18 – 7
starting an instance as, 3 – 2

INTERNAL date function,
executing jobs and, 7 – 7

interrupting, media recovery, 24 – 15

J
job queues, 7 – 2

executing jobs in, 7 – 8
locks, 7 – 8
multiple SNP processes and, 7 – 2
privileges for using, 7 – 4
removing jobs from, 7 – 9
scheduling jobs, 7 – 3
starting up SNP processes, 7 – 3
submitting new jobs, 7 – 4
viewing, 7 – 13 to 7 – 15

jobs
altering, 7 – 10 to 7 – 13
broken, 7 – 11
database links and, 7 – 8
executing, 7 – 8
exporting, 7 – 6
forcing to execute, 7 – 12
importing, 7 – 6
INTERNAL date function and, 7 – 7
job definition, 7 – 7
job number, 7 – 6
killing, 7 – 13
managing, 7 – 3
marking broken jobs, 7 – 11
ownership of, 7 – 6
removing from job queue, 7 – 9
running broken jobs, 7 – 12
scheduling, 7 – 3
submitting to job queue, 7 – 4
trace files, 7 – 9
troubleshooting, 7 – 9

Index – 14 Oracle7 Server Administrator’s Guide

join view, 12 – 4
DELETE statements, 12 – 7
key–preserved tables in, 12 – 5
mergeable, 12 – 5
modifying, rule for, 12 – 6
when modifiable, 12 – 4

JQ locks, 7 – 8

K
key–preserved tables, in join views, 12 – 5
keys, cluster, 14 – 2
Kill User Session dialog, 4 – 16
killing, jobs, 7 – 13

L
LGWR. See log writer process (LGWR)
LICENSE_MAX_SESSIONS parameter

changing while instance runs, 19 – 4
setting, 19 – 3
setting before database creation, 2 – 12

LICENSE_MAX_USERS parameter
changing while database runs, 19 – 5
setting, 19 – 5
setting before database creation, 2 – 12

LICENSE_SESSION_WARNING parameter,
setting before database creation, 2 – 12

LICENSE_SESSIONS_WARNING parameter
changing while instance runs, 19 – 4
setting, 19 – 4

licensing
complying with license

agreement, 2 – 12, 19 – 2
concurrent usage, 19 – 2
named user, 19 – 2, 19 – 4
number of concurrent sessions, 2 – 12
privileges for changing named

user limits, 19 – 5
privileges for changing session limits, 19 – 4
session–based, 19 – 2
viewing limits, 19 – 5

limits
composite limits, 19 – 17
concurrent usage, 19 – 2
resource limits, 19 – 17
session, high water mark, 19 – 3

LIST CHAINED ROWS option, 16 – 8
listener process

configuration file, 4 – 5
setting MTS_LISTENER_ADDRESS, 4 – 5

location, rollback segments, 17 – 7
locks

job queue, 7 – 8
monitoring, 4 – 10

log sequence numbers, 5 – 2
See also redo log files
preserving after

recovery, 24 – 26, 24 – 31, 24 – 35
requested during recovery, 24 – 11
resetting to 1, 24 – 26, 24 – 31, 24 – 35

log switches
checkpoints and, 5 – 10
forcing, 5 – 12
privileges, 5 – 13

log writer process (LGWR), trace
file monitoring, 4 – 13

LOG_ARCHIVE_BUFFER_SIZE
parameter, setting, 22 – 9, 22 – 10

LOG_ARCHIVE_BUFFERS parameter,
setting, 22 – 9, 22 – 10

LOG_ARCHIVE_DEST parameter,
setting, 22 – 13

LOG_ARCHIVE_FORMAT parameter,
setting, 22 – 11

LOG_ARCHIVE_START parameter, 22 – 6
setting, 22 – 6, 22 – 7

LOG_CHECKPOINT_INTERVAL parameter,
setting, 5 – 11

LOG_CHECKPOINT_TIMEOUT parameter,
setting, 5 – 12

LOG_FILES parameter, number of log files
and, 5 – 4

logical structure of a database, 1 – 18
LONG datatype, 10 – 18
LONG RAW datatype, 10 – 18

 Index – 15

M
maintenance release number. See releases
managing

auditing, 21 – 1
cluster indexes, 14 – 1
clustered tables, 14 – 1
clusters, 14 – 1
indexes, 13 – 1, 13 – 9
jobs, 7 – 3
object dependencies, 16 – 18
profiles, 19 – 16
roles, 20 – 8
rollback segments, 17 – 1
sequences, 12 – 10
synonyms, 12 – 12
tables, 11 – 1
users, 19 – 8
views, 12 – 1, 12 – 9

manual archiving, in ARCHIVELOG
mode, 22 – 8

marked user session, 4 – 17
MAX_DUMP_FILE_SIZE parameter, 4 – 14
MAX_ENABLED_ROLES parameter

default roles and, 20 – 11
enabling roles and, 20 – 11

MAXDATAFILES parameter
changing, 6 – 5
optional use of, 9 – 3

MAXEXTENTS storage parameter
about, 10 – 8
setting for the data dictionary, 16 – 21

MAXINSTANCES parameter, changing, 6 – 5
MAXLOGFILES parameter

changing, 6 – 5
number of log files and, 5 – 4

MAXLOGHISTORY, changing, 6 – 5
MAXLOGMEMBERS parameter

changing, 6 – 5
number of log files and, 5 – 4

MAXTRANS storage parameter
altering, 11 – 7
default, 10 – 10
guidelines for setting, 10 – 10
transaction entries and, 10 – 10

media failure (disk failure)
about, 24 – 47
archived redo log file loss, 24 – 52
control file loss, 24 – 53, 24 – 54
datafile loss, 24 – 48
online redo log group loss, 24 – 49
online redo log loss, 24 – 49

media recovery
applying archived redo logs, 24 – 11
at instance startup, 24 – 11
cancel–based, 24 – 24
change–based, 24 – 24
complete recovery, 24 – 18
completion of, 24 – 19, 24 – 21, 24 – 23
coordinated time–based distributed

database, 24 – 5
deciding which files need recovery, 24 – 8
determining appropriate operation, 24 – 3
distributed databases, 24 – 5
errors with redo log files, 24 – 15
guidelines and prerequisites, 24 – 3
incomplete, 24 – 24
interrupting, 24 – 15
lost files

about, 24 – 47 to 24 – 56
lost archived redo log files, 24 – 52
lost control files, 24 – 53
lost datafiles, 24 – 48
lost online redo log files, 24 – 49

lost mirrored control files, 24 – 53
NOARCHIVELOG mode, 24 – 16
open database–offline tablespace, 24 – 20
performing, about, 24 – 7
requirements of

incomplete, 24 – 26, 24 – 31, 24 – 35
restoring

archived redo log files, 24 – 9
damaged files, 24 – 8
full backups, 24 – 16
to different devices, 24 – 4

resuming, 24 – 15
Server Manager and, 24 – 12
snapshots and, 24 – 6
starting, 24 – 10
successfully applied redo logs, 24 – 15
SYSTEM tablespace, 24 – 20, 24 – 22
testing, 24 – 3

Index – 16 Oracle7 Server Administrator’s Guide

time–based, 24 – 24
undamaged tablespaces

online, 24 – 10, 24 – 20
memory, viewing per user, 19 – 23
migration, database migration, 2 – 3
MINEXTENTS storage parameter

about, 10 – 9
altering, 11 – 7

mirrored control files
importance of, 6 – 2
loss of, 24 – 53

mirrored redo log files
location of, 5 – 3
size of, 5 – 3

mirroring, control files, 2 – 10
MLSLABEL datatype, 10 – 19
modes

exclusive, 3 – 5
parallel, 3 – 5
restricted, 3 – 4, 3 – 7

modifiable join view, definition of, 12 – 4
modifying, a join view, 12 – 4
MONITOR command, ROLLBACK

option, 17 – 15
monitoring

datafiles, 9 – 12
locks, 4 – 10
performance tables, 4 – 11
processes of an instance, 4 – 10
rollback segments, 17 – 6, 17 – 15
tablespaces, 9 – 12

mounting a database, 3 – 3
exclusive mode, 3 – 5
parallel mode, 3 – 5

moving
control files, 6 – 4
relocating, 9 – 7 to 9 – 11

MTS_DISPATCHERS parameter, setting
initially, 4 – 6

MTS_LISTENER_ADDRESS parameter
setting, 4 – 5
starting new dispatchers and, 4 – 9

MTS_MAX_DISPATCHERS parameter, 4 – 7
setting, 4 – 7

MTS_MAX_SERVERS parameter, setting, 4 – 8

MTS_SERVERS parameter
minimum value, 4 – 8
setting, 4 – 7

MTS_SERVICE parameter
DB_NAME parameter as default, 4 – 6
setting, 4 – 6

multiplex online redo logs, symmetric
groups, 5 – 2

multiplexing
online redo log, 5 – 2
redo log files, 5 – 2

See also redo log files, mirrored
multiplexing online redo log, 5 – 2
multi–threaded server

configuring dispatchers, 4 – 6
database shutdown and, 3 – 8
database startup and, 3 – 2
dedicated server contrasted with, 4 – 3
enabling and disabling, 4 – 8
operating–system authentication

restrictions, 19 – 8
OS role management restrictions, 20 – 21
restrictions on OS role authorization, 20 – 10
service name, 4 – 6
shared pool and, 4 – 5
starting, 4 – 4

N
name resolution, 16 – 20
named user limits, 19 – 4

setting initially, 2 – 13
network protocol, dispatcher for each, 4 – 6
NEXT storage parameter, 10 – 8

setting for the data dictionary, 16 – 21
NOARCHIVELOG mode

archiving, 22 – 2
datafile loss, 24 – 48
distributed database backups, 23 – 4
partial backups and, 23 – 10
setting at database creation, 22 – 4
strategies for backups in, 23 – 5
taking datafiles offline in, 9 – 7

NOAUDIT command
disabling audit options, 21 – 14

 Index – 17

privileges, 21 – 14
schema objects, 21 – 14
statements, 21 – 14

non–clustered tables, estimating size of, A – 2
NORESET LOGS option, backing up control

file, 23 – 17
NOT NULL constraint, 16 – 14
NUMBER datatype, 10 – 17

O
objects, schema

cascading effects on revoking, 20 – 17
default tablespace for, 19 – 10
granting privileges, 20 – 13
in a revoked tablespace, 19 – 11
owned by dropped users, 19 – 15
privileges with, 20 – 6
revoking privileges, 20 – 15

offline backups, 23 – 2
offline datafiles, 9 – 7
offline rollback segments

about, 17 – 10
bringing online, 17 – 11
when to use, 17 – 11

offline tablespaces
altering, 8 – 7
priorities, 8 – 8
rollback segments and, 17 – 11

online backups, 23 – 2
online datafiles, 9 – 7
online redo log

See also redo log files, online
active group, 24 – 49
applying during recovery, 24 – 13
archived group, 24 – 49
creating groups, 5 – 5
creating members, 5 – 5
current group, 24 – 49
dropping groups, 5 – 8
dropping members, 5 – 9
forcing a log switch, 5 – 12
guidelines for configuring, 5 – 2
inactive group, 24 – 49
location of, 5 – 3
loss of, 24 – 49

loss of all members, 24 – 49
loss of group, 24 – 49
loss of mirrored members, 24 – 49
managing, 5 – 1
moving files, 5 – 8
multiplexing, 5 – 2
number of files, 5 – 4
preserving or resetting log sequence

number, 24 – 26, 24 – 31, 24 – 35
privileges

adding groups, 5 – 5
dropping groups, 5 – 8
dropping members, 5 – 9
forcing a log switch, 5 – 13

renaming files, 5 – 8
renaming members, 5 – 6
STALE members, 5 – 10
status of members, 24 – 49
storing separately from datafiles, 9 – 3
unavailable when database is opened, 3 – 3
viewing filenames, 23 – 8
viewing information about, 5 – 15

online rollback segments
about, 17 – 10
bringing rollback segments online, 17 – 11
taking offline, 17 – 12
when new, 17 – 8

online tablespaces, altering, 8 – 7
opening a database

after creation, 1 – 19
mounted database, 3 – 7

operating system, 2 – 5
accounts, 20 – 20
auditing with, 21 – 2
authentication, 20 – 18
database administrator’s

requirements for, 1 – 4
deleting datafiles, 8 – 12
enabling and disabling roles, 20 – 21
limit of number of open files, 9 – 2
Oracle7 process names, 4 – 11
renaming and relocating files, 9 – 8
role identification, 20 – 20
role management, 20 – 21
roles and, 20 – 18
security in, 18 – 3

OPS$ account, OS_AUTHENT_PREFIX
parameter, 19 – 7

Index – 18 Oracle7 Server Administrator’s Guide

OPTIMAL storage parameter, 17 – 6
options of Oracle7 Server, i
Oracle blocks. See data blocks
Oracle Parallel Server. See Parallel Server
Oracle7 Server

complying with license agreement, 19 – 2
identifying releases, 1 – 20
installing, 1 – 18
options, i
processes

checkpoint (CKPT), 4 – 15
monitoring, 4 – 10
operating–system names, 4 – 11
service names for dispatchers, 4 – 6
trace files, 4 – 12

Oracle7 Server processes, processes
dedicated server processes, 4 – 2
identifying and managing, 4 – 10

ORAPWD utility, 1 – 9 to 1 – 16
OS authentication, 1 – 7
OS_AUTHENT_PREFIX parameter

operating–system authentication and, 19 – 7
setting, 19 – 7

OS_ROLES parameter
operating–system authorization and, 20 – 10
REMOTE_OS_ROLES and, 20 – 21
using, 20 – 20

OSDBA, privileges included in, 1 – 8
OSOPER, privileges included in, 1 – 7
owner of a queued job, 7 – 6

P
packages

privileges for recompiling, 16 – 19
recompiling, 16 – 19

parallel mode, of the database, 3 – 5
parallel query option

number of server processes, 4 – 15
parallelizing index creation, 13 – 4
parallelizing table creation, 11 – 3
query servers, 4 – 15

Parallel Server
ALTER CLUSTER..ALLOCATE

EXTENT, 14 – 9

archive log file name format, 22 – 12
datafile upper bound for instances, 9 – 3
forcing a checkpoint for the local

instance, 5 – 13
licensed session limit and, 2 – 13
limits on named users and, 19 – 5
LOG_CHECKPOINT_TIMEOUT and, 5 – 12
managing rollback segments, 17 – 1
named users and, 2 – 13
own rollback segments, 17 – 3
sequence numbers and, 12 – 10
session and warning limits, 19 – 3
specifying thread for archiving, 22 – 8
switching archiving modes, 22 – 5
V$THREAD view, 5 – 15

PARALLEL_MAX_SERVERS parameter, 4 – 15
parallel recovery, 24 – 17

PARALLEL_MIN_SERVERS parameter, 4 – 16
PARALLEL_SERVER_IDLE_TIME

parameter, 4 – 16
parameter files

character set of, 3 – 10
choosing for startup, 3 – 3
creating for database creation, 2 – 4
default for instance startup, 3 – 3
editing, 3 – 10
editing before database creation, 2 – 5
individual parameter names, 2 – 9
location of, 3 – 11
minimum set of, 2 – 9
number of, 3 – 10
sample of, 3 – 10
using, 3 – 10

partial backups, 23 – 10
passwords

altering user passwords, 19 – 13
authentication file for, 1 – 8
changing for roles, 20 – 11
initial for SYS and SYSTEM, 1 – 4
password file

adding users to, 1 – 12
creating, 1 – 9 to 1 – 16
OS authentication, 1 – 7
relocating, 1 – 15
removing, 1 – 15
state of, 1 – 16

privileges for changing for roles, 20 – 9

 Index – 19

privileges to alter, 19 – 12
roles, 20 – 10
security policy for users, 18 – 4
setting REMOTE_LOGIN_PASSWORD

parameter, 1 – 11
user authentication, 19 – 8

patch release number. See releases
PCTFREE storage parameter

altering, 11 – 7
block overhead and, 10 – 6
clustered tables, 10 – 4
default, 10 – 3
guidelines for setting, 10 – 3
how it works, 10 – 2 to 10 – 4
indexes, 10 – 4
non–clustered tables, 10 – 4
PCTUSED and, 10 – 6

PCTINCREASE storage parameter
about, 10 – 9
altering, 10 – 11
setting for the data dictionary, 16 – 21

PCTUSED storage parameter
altering, 11 – 7
block overhead and, 10 – 6
default, 10 – 5
guidelines for setting, 10 – 5
how it works, 10 – 4 to 10 – 7
PCTFREE and, 10 – 6

performance
location of datafiles and, 9 – 3
tuning archiving, 22 – 9

performance tables, dynamic performance
tables, 4 – 11

physical structure of a database, 1 – 19
PL/SQL program units

dropped tables and, 11 – 9
replaced views and, 12 – 9

planning
database creation, 2 – 2
relational design, 1 – 19
the database, 1 – 18

precedence of storage parameters, 10 – 12
predefined roles, 1 – 5
prerequisites, for creating a database, 2 – 3

PRIMARY KEY constraint
disabling, 16 – 14
dropping associated indexes, 13 – 10
enabling, 16 – 14
enabling on creation, 13 – 6
foreign key references when dropped, 16 – 15
indexes associated with, 13 – 6
storage of associated indexes, 13 – 7

private
rollback segments, 17 – 8

taking offline, 17 – 12
synonyms, 12 – 12

privileges, 20 – 2
See also revoking privileges
adding datafiles to a tablespace, 9 – 4
adding redo log groups, 5 – 5
altering

default storage parameters, 8 – 5
dispatcher privileges, 4 – 9
indexes, 13 – 8
named user limit, 19 – 5
passwords, 19 – 13
role authentication, 20 – 9
rollback segments, 17 – 10
sequences, 12 – 10
tables, 11 – 7
users, 19 – 12

analyzing objects, 16 – 3
application developers and, 18 – 9
audit object, 21 – 13
auditing system, 21 – 13
auditing use of, 21 – 10
backing up, control files, 23 – 15
bringing datafiles offline and online, 9 – 7
bringing tablespaces online, 8 – 7
cascading revokes, 20 – 16
cluster creation, 14 – 6
coalescing tablespaces, 8 – 6
column, 20 – 14
CREATE SCHEMA command, 16 – 2
creating

indexes, 13 – 6
roles, 20 – 8
rollback segments, 17 – 8
sequences, 12 – 10
synonyms, 12 – 12
tables, 11 – 6
tablespaces, 8 – 4

Index – 20 Oracle7 Server Administrator’s Guide

users, 19 – 9
views, 12 – 2

database administrator, 1 – 4
disabling automatic archiving, 22 – 7
dropping

clusters, 14 – 10
indexes, 13 – 9
online redo log members, 5 – 9
redo log groups, 5 – 8
roles, 20 – 12
rollback segments, 17 – 14
sequences, 12 – 11
synonyms, 12 – 12
tables, 11 – 9
views, 12 – 9

dropping profiles, 19 – 19
enabling and disabling resource

limits, 19 – 19
enabling and disabling triggers, 16 – 11
enabling automatic archiving, 22 – 6
for changing session limits, 19 – 4
forcing a checkpoint, 5 – 13
forcing a log switch, 5 – 13
granting

about, 20 – 12
object privileges, 20 – 13
required privileges, 20 – 13
system privileges, 20 – 12

grouping with roles, 20 – 8
individual privilege names, 20 – 2
job queues and, 7 – 4
listing grants, 20 – 23
manually archiving, 22 – 8
object, 20 – 6
on selected columns, 20 – 16
operating system, required for database

administrator, 1 – 4
policies for managing, 18 – 5
recompiling packages, 16 – 19
recompiling procedures, 16 – 19
recompiling views, 16 – 19
renaming

datafiles of a tablespace, 9 – 8
datafiles of several tablespaces, 9 – 9
objects, 16 – 3
redo log members, 5 – 6

replacing views, 12 – 8
RESTRICTED SESSION system

privilege, 3 – 4, 3 – 7

revoking, 20 – 15
ADMIN OPTION, 20 – 15
GRANT OPTION, 20 – 15
object privileges, 20 – 17
system privileges, 20 – 15

revoking object, 20 – 15
revoking object privileges, 20 – 15
setting resource costs, 19 – 18
SQL statements permitted by, 20 – 7
system, 20 – 2
taking rollback segments online and

offline, 17 – 10
taking tablespaces offline, 8 – 8
truncating, 16 – 10
viewing archive status, 22 – 10

procedures, recompiling, 16 – 19
processes, 4 – 1

SNP background processes, 7 – 2
PROCESSES parameter, setting before

database creation, 2 – 12
profiles, 19 – 16

altering, 19 – 17
assigning to users, 19 – 17
composite limit, 19 – 17
creating, 19 – 16
default, 19 – 16
disabling resource limits, 19 – 19
dropping, 19 – 19
enabling resource limits, 19 – 19
listing, 19 – 20
managing, 19 – 16
privileges for dropping, 19 – 19
privileges to alter, 19 – 17
privileges to set resource costs, 19 – 18
PUBLIC_DEFAULT, 19 – 16
setting a limit to null, 19 – 17
viewing, 19 – 22

program global area (PGA), effect of
MAX_ENABLED_ROLES on, 20 – 11

pseudo–column, 10 – 18
public, synonyms, 12 – 12
public rollback segments

making available for use, 17 – 10
taking offline, 17 – 12

PUBLIC user group
granting and revoking privileges to, 20 – 18
procedures and, 20 – 18

 Index – 21

PUBLIC_DEFAULT profile
dropping profiles and, 19 – 19
using, 19 – 16

Q
query server process, about, 4 – 15
quotas

listing, 19 – 20
revoking from users, 19 – 11
setting to zero, 19 – 11
tablespace, 19 – 11
tablespace quotas, 8 – 3
temporary segments and, 19 – 11
unlimited, 19 – 11
viewing, 19 – 21, 19 – 22

R
RAW datatype

about, 10 – 18
VARCHAR2 and, 10 – 18

read consistency, Export utility and, 23 – 18
read–only tablespaces

altering to writeable, 8 – 11
backing up, 23 – 7
creating, 8 – 9 to 8 – 11
datafiles, 9 – 6 to 9 – 7
on a WORM device, 8 – 11
recovering, 24 – 46 to 24 – 47

recompiling
automatically, 16 – 19
functions, 16 – 19
packages, 16 – 19
procedures, 16 – 19
views, 16 – 19

Recover Closed Database dialog box, 24 – 10
RECOVER command

DATABASE parameter, 24 – 10
DATAFILE parameter, 24 – 11
TABLESPACE parameter, 24 – 10

Recover Offline Tablespaces dialog box, 24 – 10
recovery

creating new control files, 6 – 5
effects of archiving on, 22 – 2
Import utility, 23 – 19

media recovery, 24 – 1
PARALLEL_MAX_SERVERS

parameter, 24 – 17
read–only tablespaces, 24 – 46 to 24 – 47
setting parallelism, 24 – 17
startup with automatic, 3 – 5

RECOVERY_PARALLELISM
parameter, 24 – 17

redo log
archived redo log, 22 – 2
online redo log, 5 – 1
relocating, 5 – 7
renaming, 5 – 7

redo log files
archived redo log files, 22 – 4
log sequence numbers of, defined, 5 – 2
multiplexing, overview of, 5 – 2
online, 5 – 2
viewing, 2 – 8

redo records, 24 – 2
reducing fragmentation, 10 – 9
REFERENCES privilege

CASCADE CONSTRAINTS option, 20 – 16
revoking, 20 – 16

relational design, planning, 1 – 19
releases

checking the release number, 1 – 21
identifying for Oracle7 Server, 1 – 20
maintenance release number, 1 – 21
patch release number, 1 – 21
port–specific release number, 1 – 21
versions of other Oracle software, 1 – 21

relocating
control files, 6 – 4
datafiles, 9 – 7 to 9 – 11

remote connections
connecting as INTERNAL, 1 – 14
connecting as SYSOPER/SYSDBA, 1 – 14
password files, 1 – 9 to 1 – 16

REMOTE_LOGIN_PASSWORDFILE
parameter, 1 – 11

REMOTE_OS_AUTHENT parameter,
setting, 19 – 8

REMOTE_OS_ROLES parameter,
setting, 20 – 10, 20 – 21

RENAME command, 16 – 3

Index – 22 Oracle7 Server Administrator’s Guide

Rename Data File dialog, 9 – 8
Rename Online Redo Log Member

dialog box, 5 – 7
renaming

control files, 6 – 4
datafiles, 9 – 7 to 9 – 11
datafiles with a single table, 9 – 8
online redo log members, 5 – 6
schema objects, 16 – 3

replacing, views, 12 – 8
RESOURCE audit option, shortcut for

auditing, 21 – 9
resource limits

altering in profiles, 19 – 17
assigning with profiles, 19 – 17
composite limits and, 19 – 17
costs and, 19 – 18
creating profiles and, 19 – 16
disabling, 19 – 19
enabling, 19 – 19
privileges to enable and disable, 19 – 19
privileges to set costs, 19 – 18
profiles, 19 – 16
PUBLIC_DEFAULT profile and, 19 – 16
service units, 19 – 17
setting to null, 19 – 17

RESOURCE role, 20 – 9
RESOURCE_LIMIT parameter, enabling and

disabling limits, 19 – 19
resources, profiles, 19 – 16
responsibilities

of a database administrator, 1 – 2
of database users, 1 – 3

restoring, full backup, 24 – 16
RESTRICTED SESSION privilege

instances in restricted mode, 3 – 7
restricted mode and, 3 – 4
session limits and, 19 – 2

restricting access to database, starting an
instance, 3 – 4

resuming recovery, 24 – 15
REVOKE command, 20 – 15

when takes effect, 20 – 18
Revoke System Privileges/Roles dialog, 20 – 15

revoking, privileges and roles, SYSOPER/DBA
privileges, 1 – 13

revoking privileges and roles
on selected columns, 20 – 16
REVOKE command, 20 – 15
shortcuts for object privileges, 20 – 7
when using operating–system roles, 20 – 21

roles
ADMIN OPTION and, 20 – 12
application developers and, 18 – 10
authorization, 20 – 9
backward compatibility, 20 – 9
changing authorization for, 20 – 11
changing passwords, 20 – 11
CONNECT role, 20 – 9
database authorization, 20 – 10
DBA role, 1 – 5, 20 – 9
default, 19 – 13
dropping, 20 – 11
EXP_FULL_DATABASE, 20 – 9
GRANT command, 20 – 21
GRANT OPTION and, 20 – 14
granting, about, 20 – 12
grouping with roles, 20 – 8
IMP_FULL_DATABASE, 20 – 9
listing, 20 – 25
listing grants, 20 – 24
listing privileges and roles in, 20 – 26
management using the operating

system, 20 – 18
managing, 20 – 8
multi–byte characters, in names, 20 – 8
multi–byte characters in passwords, 20 – 10
multi–threaded server and, 20 – 10
operating system granting of, 20 – 20, 20 – 21
operating–system authorization, 20 – 10
OS management and the multi–threaded

server, 20 – 21
passwords for enabling, 20 – 10
predefined, 1 – 5, 20 – 9
privileges

changing authorization method, 20 – 9
changing passwords, 20 – 9
for creating, 20 – 8
for dropping, 20 – 12
granting system privileges or roles, 20 – 12

 Index – 23

RESOURCE role, 20 – 9
REVOKE command, 20 – 21
revoking, 20 – 15
revoking ADMIN OPTION, 20 – 15
security and, 18 – 5
SET ROLE command, 20 – 21
unique names for, 20 – 8
without authorization, 20 – 11

rollback segments
acquiring automatically, 17 – 4, 17 – 12
acquiring on startup, 2 – 12
allocating, 2 – 15
altering public, 17 – 10
altering storage parameters, 17 – 9
AVAILABLE, 17 – 11
average byte size of active extents, 17 – 6
average size of truncated space, 17 – 6
bringing

online, 17 – 11
online automatically, 17 – 12
online when new, 17 – 8
PARTLY AVAILABLE segment

online, 17 – 11
checking if offline, 17 – 12
choosing how many, 2 – 15
choosing size for, 2 – 15
creating, 17 – 8
creating after database creation, 17 – 3
creating public and private, 17 – 3
decreasing size of, 17 – 10
deferred, 17 – 16
displaying

all deferred rollback segments, 17 – 16
deferred rollback segments, 17 – 16
information on, 17 – 15
PENDING OFFLINE segments, 17 – 16

displaying names of all, 17 – 15
dropping, 17 – 14
equally sized extents, 17 – 5
explicitly assigning transactions to, 17 – 13
extends, 17 – 6
guidelines for managing, 17 – 2
initial, 17 – 2
invalid status, 17 – 14
listing extents in, 16 – 26
location of, 17 – 7
making available for use, 17 – 10
managing, 17 – 1

MINEXTENTS and, 10 – 9
monitoring, 17 – 6, 17 – 15
OFFLINE, 17 – 11
offline rollback segments, 17 – 10
offline status, 17 – 12
online rollback segments, 17 – 10
online status, 17 – 12
PARTLY AVAILABLE, 17 – 11
PENDING OFFLINE, 17 – 12
privileges

for dropping, 17 – 14
required to alter, 17 – 10
required to create, 17 – 8
taking online and offline, 17 – 10

setting size of, 17 – 4
shrinks, 17 – 6
status for dropping, 17 – 14
status or state, 17 – 11
storage parameters, 17 – 9
storage parameters and, 17 – 8
SYSTEM rollback segment, 17 – 3
taking offline, 17 – 12
taking tablespaces offline and, 8 – 9
transactions and, 17 – 13
using multiple, 17 – 2
wraps, 17 – 6

ROLLBACK_SEGMENTS parameter
adding rollback segments to, 17 – 8
setting before database creation, 2 – 12

ROWID datatype, 10 – 18
ROWID pseudo–column, 10 – 18

changes in, 10 – 19
rows

chaining across blocks, 10 – 4, 16 – 8
estimating size, A – 4
ROWID changes, 10 – 19
violating integrity constraints, 16 – 13

S
schema objects

auditing, 21 – 11
creating multiple objects, 16 – 2
default audit options, 21 – 13
dependencies between, 16 – 18
disabling audit options, 21 – 14

Index – 24 Oracle7 Server Administrator’s Guide

enabling audit options on, 21 – 13
listing by type, 16 – 25
listing information, 16 – 23
name resolution, 16 – 20
privileges to access, 20 – 6
privileges to rename, 16 – 3
renaming, 16 – 3

SCN. See System Change Number (SCN)
security

accessing a database, 18 – 2
administrator of, 18 – 2
application developers and, 18 – 8
auditing policies, 18 – 11
authentication of users, 18 – 2
data, 18 – 3
database administrator’s r

esponsibilities, 1 – 4
database security, 18 – 2
database users and, 18 – 2
establishing policies, 18 – 1
general users, 18 – 4
multi–byte characters

in role names, 20 – 8
in role passwords, 20 – 10
in user names, 19 – 9
in user passwords, 19 – 10

operating–system role management, 20 – 21
operating–system security and the

database, 18 – 3
policies for database administrators, 18 – 7
privilege management policies, 18 – 5
privileges, 18 – 2
protecting the audit trail, 21 – 18
REMOTE_OS_ROLES parameter, 20 – 21
roles to force security, 18 – 5
security officer, 1 – 3
sensitivity, 18 – 3

segments
data and index

default storage parameters, 10 – 11
reducing fragmentation, 10 – 9

data dictionary, 16 – 21
displaying information on, 16 – 26
monitoring, 17 – 15
rollback, 17 – 1
temporary storage parameters, 10 – 12

sensitivity, security, 18 – 3

SEQUENCE_CACHE_ENTRIES
parameter, 12 – 11

sequences
altering, 12 – 11
creating, 12 – 10
dropping, 12 – 11
initialization parameters, 12 – 11
managing, 12 – 10
Parallel Server and, 12 – 10
privileges for altering, 12 – 10
privileges for creating, 12 – 10
privileges for dropping, 12 – 11

Server Manager
about, 1 – 16
operating system account, 1 – 4
starting, 2 – 6

server units, composite
limits and, 19 – 17

servers
dedicated, multi–threaded contrasted

with, 4 – 3
multi–threaded, dedicated contrasted

with, 4 – 3
service name, for dispatcher in multi–threaded

server, 4 – 6
session limits, license, setting initially, 2 – 12
session monitor, 4 – 10
session, user

active, 4 – 17
inactive, 4 – 18
marked to be terminated, 4 – 17
terminating, 4 – 16
viewing terminated sessions, 4 – 18

sessions
auditing connections and

disconnections, 21 – 10
limits per instance, 19 – 2
listing privilege domain of, 20 – 24
number of concurrent sessions, 2 – 12
Parallel Server session limits, 2 – 13
setting maximum for instance, 19 – 3
setting warning limit for instance, 19 – 4
viewing current number and high water

mark, 19 – 5
viewing memory use, 19 – 23

 Index – 25

SET ROLE command
how password is set, 20 – 10
when using operating–system roles, 20 – 21

Set Rollback Segment Offline dialog, 17 – 12
Set Rollback Segment Online dialog, 17 – 11
Set Rollback Segment Storage dialog, 17 – 8
Set Tablespace Offline dialog, 23 – 14
Set Tablespace Online dialog, 8 – 7, 23 – 14
Set Tablespace Storage dialog box, 8 – 5
SET TRANSACTION command, USE

ROLLBACK SEGMENT option, 17 – 13
SGA, determining buffers in cache, 2 – 11
shared mode, rollback segments and, 17 – 3
shared pool

ANALYZE command and, 16 – 7
multi–threaded server and, 4 – 5

shared server processes
changing the minimum number of, 4 – 8
maximum number of, 4 – 8
number to start initially, 4 – 7
privileges to change number of, 4 – 8
trace files for, 4 – 12

shared SQL areas, ANALYZE
command and, 16 – 7

shortcuts
CONNECT, for auditing, 21 – 10
object auditing, 21 – 11
object privileges, 20 – 7
statement level auditing options, 21 – 9

shrunken extents, 17 – 6
Shut Down menu, 3 – 8

Abort Instance option, 3 – 10
Immediate option, 3 – 9
Normal option, 3 – 8

SHUTDOWN command, 3 – 8
ABORT option, 3 – 10
IMMEDIATE option, 3 – 9
NORMAL option, 3 – 8

shutting down a database, 3 – 1
shutting down an instance

aborting the instance, 3 – 9
connecting and, 3 – 8
connecting as INTERNAL, 3 – 8
example of, 3 – 8
general procedures, 3 – 8

immediately, 3 – 9
multi–threaded server, 3 – 8
normally, 3 – 8

size
clusters, A – 9 to A – 15
datafile, 9 – 3
hash clusters, 15 – 4
indexes, A – 5
on non–clustered tables, A – 2
rollback segments, 17 – 4

snapshot logs, storage parameters, 10 – 11
snapshots

media recovery and, 24 – 6
storage parameters, 10 – 11
too old, OPTIMAL storage

parameter and, 17 – 6
SNP background processes

about, 7 – 2
initialization parameters, 7 – 3
job queues and, 7 – 3
multiple, 7 – 2

software versions, 1 – 20
SORT_AREA_SIZE parameter,

index creation and, 13 – 3
space

adding to the database, 8 – 3
used by indexes, 13 – 9

space management
PCTFREE, 10 – 2
PCTUSED, 10 – 4

SQL statements
disabling audit options, 21 – 14
enabling audit options on, 21 – 12
privileges required for, 20 – 7

SQL trace facility, when to enable, 4 – 15
SQL*Loader

about, 1 – 17
indexes and, 13 – 3

SQL_TRACE parameter, trace files and, 4 – 12
STALE status, of redo log members, 5 – 10
standby database, 24–38
Start Automatic Archiving dialog, 22 – 13
Start Up Instance dialog box, 3 – 2

Force check box, 3 – 5
Mount radio button, 3 – 4

Index – 26 Oracle7 Server Administrator’s Guide

Nomount radio button, 3 – 3
Open radio button, 3 – 4
Recover checkbox, 24 – 11
Restrict to DBAs check box, 3 – 4
specifying a parameter file, 3 – 3

starting a database
about, 3 – 1
general procedures, 3 – 2
recovering during, 24 – 11

starting an instance
at database creation, 3 – 3
automatically at system startup, 3 – 5
connecting as INTERNAL, 3 – 2
database closed and mounted, 3 – 3
database name conflicts and, 2 – 9
dispatcher processes and, 4 – 6
enabling automatic archiving, 22 – 6
examples of, 3 – 5
exclusive mode, 3 – 5
forcing, 3 – 5
general procedures, 3 – 2
mounting and opening the database, 3 – 4
multi–threaded server and, 3 – 2
normally, 3 – 4
parallel mode, 3 – 5
parameter files, 3 – 3
problems encountered while, 3 – 5
recovery and, 3 – 5
remote instance startup, 3 – 5
restricted mode, 3 – 4
specifying database name, 3 – 2
troubleshooting, 3 – 3
with multi–threaded servers, 4 – 4
without mounting a database, 3 – 3

starting Server Manager, 2 – 6
STARTUP command, 3 – 2

FORCE option, 3 – 5
MOUNT option, 3 – 4
NOMOUNT option, 3 – 3
OPEN option, 3 – 4
RECOVER option, 3 – 5, 24 – 11
RESTRICT option, 3 – 4
specifying database name, 3 – 2
specifying parameter file, 3 – 3

statistics, updating, 16 – 4
Stop Auto Archive menu option, 22 – 7

storage
altering tablespaces, 8 – 5
quotas and, 19 – 11
revoking tablespaces and, 19 – 11
unlimited quotas, 19 – 11

storage parameters
applicable objects, 10 – 7
changing settings, 10 – 11
data dictionary, 16 – 21
default, 10 – 7
for the data dictionary, 16 – 21
INITIAL, 10 – 8, 11 – 7
INITRANS, 10 – 10, 11 – 7
MAXEXTENTS, 10 – 8
MAXTRANS, 10 – 10, 11 – 7
MINEXTENTS, 10 – 9, 11 – 7
NEXT, 10 – 8
OPTIMAL (in rollback segments), 17 – 6
PCTFREE, 11 – 7
PCTINCREASE, 10 – 9
PCTUSED, 11 – 7
precedence of, 10 – 12
rollback segments, 17 – 9
SYSTEM rollback segment, 17 – 9
temporary segments, 10 – 12

stored procedures
privileges for recompiling, 16 – 19
using privileges granted to PUBLIC, 20 – 18

stream, tape drive, 22 – 10
synonyms

creating, 12 – 12
displaying dependencies of, 16 – 26
dropped tables and, 11 – 9
dropping, 12 – 12
managing, 12 – 12
private, 12 – 12
privileges for creating, 12 – 12
privileges for dropping, 12 – 12
public, 12 – 12

SYS
initial password, 1 – 4
objects owned, 1 – 5
policies for protecting, 18 – 7
privileges, 1 – 5
user, 1 – 5

 Index – 27

SYS.AUD$
audit trail, 21 – 2
creating and deleting, 21 – 4

SYSOPER/SYSDBA privileges
adding users to the password file, 1 – 12
connecting with, 1 – 14
determining who has privileges, 1 – 13
granting and revoking, 1 – 13

SYSTEM
initial password, 1 – 4
objects owned, 1 – 5
policies for protecting, 18 – 7
user, 1 – 5

System Change Number (SCN)
checking for a datafile, 9 – 12
use in distributed recovery, 24 – 6

System Global Area. See SGA
System Global Area (SGA), 2 – 11
system identifier, 1 – 10
system privileges, 20 – 2
SYSTEM rollback segment

adding, 17 – 3
altering storage parameters of, 17 – 9
remaining online always, 17 – 11
rollback segments, 17 – 3

SYSTEM tablespace
backing up, 23 – 14
cannot drop, 8 – 12
initial rollback segment, 17 – 2
non–data dictionary tables and, 11 – 3
recovery of, 24 – 20, 24 – 22
restrictions on taking offline, 9 – 6
when created, 8 – 3

system time, changing, 24 – 24

T
tables

allocating extents, 11 – 8
altering, 11 – 7, 11 – 8
analyzing statistics, 16 – 3
clustered, 14 – 2
clustered tables

altering, 14 – 9
creating, 14 – 6
dropping, 14 – 9

managing, 14 – 1
privileges to drop, 14 – 10
storage, A – 13

creating, 11 – 6
designing before creating, 11 – 2
dropping, 11 – 9
estimating initial size, A – 2
estimating size, 11 – 4, A – 4
guidelines for managing, 11 – 1, 11 – 5
hash clustered

creating, 15 – 5
managing, 15 – 1

increasing column length, 11 – 7
indexes and, 13 – 2
key–preserved, 12 – 5
limiting indexes on, 13 – 3
location, 11 – 6
location of, 11 – 3
managing, 11 – 1
parallelizing creation of, 11 – 3
privileges for creation, 11 – 6
privileges for dropping, 11 – 9
privileges to alter, 11 – 7
schema of clustered, 14 – 7
separating from indexes, 11 – 5
specifying PCTFREE for, 10 – 4
specifying tablespace, 11 – 3, 11 – 6
storage parameters, 10 – 11
SYSTEM tablespace and, 11 – 3
temporary space and, 11 – 5
transaction parameters, 11 – 3
truncating, 16 – 9
UNRECOVERABLE, 11 – 4
validating structure, 16 – 7

tablespaces
adding datafiles, 9 – 4
altering availability, 8 – 7
altering storage settings, 8 – 5
assigning defaults for users, 19 – 10
assigning user quotas, 8 – 3
backing up offline, 23 – 14
backing up online, 23 – 10
backing up several online, 23 – 13
bringing online, 8 – 7
checking default storage parameters, 8 – 13
coalescing, 8 – 6
creating, 8 – 3
creating additional, 8 – 3

Index – 28 Oracle7 Server Administrator’s Guide

default quota, 19 – 11
default storage parameters for, 10 – 11
default temporary, 19 – 10
dropping

about, 8 – 12
required privileges, 8 – 12

frequency of backups, 23 – 3
guidelines for managing, 8 – 2 to 8 – 3
listing files of, 8 – 14
listing free space in, 8 – 14
location, 9 – 3
managing, 9 – 1
monitoring, 9 – 12
privileges for creating, 8 – 4
privileges to take offline, 8 – 8
quotas, assigning, 8 – 3
quotas for users, 19 – 11
read–only, 8 – 9
revoking from users, 19 – 11
rollback segments required, 8 – 4
setting default storage parameters for, 8 – 2
SYSTEM tablespace, 8 – 3
taking offline immediately, 8 – 9
taking offline normal, 8 – 8
taking offline temporarily, 8 – 8
temporary, 19 – 10
unlimited quotas, 19 – 11
using multiple, 8 – 2
viewing quotas, 19 – 21, 19 – 22
writeable, 8 – 11

taking offline, tablespaces, 8 – 8
tape drives, streaming for archiving, 22 – 10
temporary segments, index creation and, 13 – 3
temporary space, allocating, 11 – 5
terminating, a user session, 4 – 16
terminating sessions

active sessions, 4 – 17
identifying sessions, 4 – 17
inactive session, example, 4 – 18
inactive sessions, 4 – 18

test, security for databases, 18 – 9
time–based recovery

coordinated in a distributed database, 24 – 5
procedure for, 24 – 24

tip
executing OS commands within Server

Manager, 5 – 7

object privilege shortcut, 20 – 7
shortcuts for auditing objects, 21 – 11
statement auditing shortcut, 21 – 9

trace files
control file backups to, 23 – 15
job failures and, 7 – 9
location of, 4 – 14
log writer, 4 – 13
size of, 4 – 14
using, 4 – 12, 4 – 13
when written, 4 – 14

trailing nulls, A – 9
transaction entries, guidelines for

storage, 10 – 10
transactions

assigning to specific rollback
segment, 17 – 13

rollback segments and, 17 – 13
TRANSACTIONS parameter, using, 17 – 2
TRANSACTIONS_PER_ROLLBACK_

SEGMENT parameter, using, 17 – 2
triggers

auditing, 21 – 22
disabling, 16 – 11
dropped tables and, 11 – 9
enabling, 16 – 11
examples, 21 – 23
privileges for controlling, 20 – 7
privileges for enabling and disabling, 16 – 11

TRUNCATE command, 16 – 9
DROP STORAGE option, 16 – 10
REUSE STORAGE option, 16 – 10

truncated extents, 17 – 6
truncating

clusters, 16 – 9
privileges for, 16 – 10
tables, 16 – 9

Trusted Oracle
role management, 20 – 1
security policies for, 18 – 1
special datatypes, 10 – 19
system privileges, 20 – 1

Trusted Oracle7 Server
auditing, 21 – 1
controlling database access, 19 – 1
database migration to, 2 – 3

 Index – 29

LOG_CHECKPOINT_INTERVAL and, 5 – 12
managing rollback segments, 17 – 1
managing tablespaces and datafiles, 9 – 1
managing users and resources, 19 – 1
shutting down a database, 3 – 8

tuning
archiving, 22 – 9
databases, 1 – 20
initially, 2 – 14

tuning parameters, 2 – 14

U
UNIQUE key constraints

disabling, 16 – 14
dropping associated indexes, 13 – 10
enabling, 16 – 14
enabling on creation, 13 – 6
foreign key references when dropped, 16 – 15
indexes associated with, 13 – 6
storage of associated indexes, 13 – 7

UNLIMITED TABLESPACE privilege, 19 – 12
unrecoverable

objects and recovery, 24 – 46
tables, 11 – 4

unrecoverable indexes, indexes, 13 – 5
UPDATE privilege, revoking, 20 – 16
USER_DUMP_DEST parameter, 4 – 14
USER_EXTENTS, 9 – 12
USER_FREE, 8 – 13, 9 – 12
USER_INDEXES view, filling with data, 16 – 5
USER_SEGMENTS, 8 – 13, 9 – 12
USER_TAB_COLUMNS view, filling with

data, 16 – 5
USER_TABLES view, filling with data, 16 – 5
USER_TABLESPACES, 8 – 13, 9 – 12
usernames, SYS and SYSTEM, 1 – 4
users

altering, 19 – 12
assigning profiles to, 19 – 17
assigning tablespace quotas, 8 – 3
assigning unlimited quotas for, 19 – 11
authentication, database

authentication, 19 – 8

authentication
about, 18 – 2, 19 – 6
operating–system authentication, 19 – 7

changing authentication method, 19 – 13
changing default roles, 19 – 13
changing passwords, 19 – 13
composite limits and, 19 – 17
default tablespaces, 19 – 10
dropping, 19 – 15
dropping profiles and, 19 – 19
dropping roles and, 20 – 11
end–user security policies, 18 – 5
enrolling, 1 – 20
identification, 19 – 6
in a newly created database, 2 – 14
limiting number of, 2 – 13
listing, 19 – 20
listing privileges granted to, 20 – 23
listing roles granted to, 20 – 24
managing, 19 – 8
multi–byte characters

in names, 19 – 9
in passwords, 19 – 10

objects after dropping, 19 – 15
password security, 18 – 4
policies for managing privileges, 18 – 5
privileges for changing passwords, 19 – 12
privileges for creating, 19 – 9
privileges for dropping, 19 – 15
PUBLIC group, 20 – 18
security and, 18 – 2
security for general users, 18 – 4
session, terminating, 4 – 18
specifying user names, 19 – 9
tablespace quotas, 19 – 11
unique user names, 2 – 13, 19 – 5
viewing information on, 19 – 21
viewing memory use, 19 – 23
viewing tablespace quotas, 19 – 21, 19 – 22

utilities
Export, 1 – 17
for the database administrator, 1 – 16
Import, 1 – 17
Server Manager, 1 – 16
SQL*Loader, 1 – 17

UTLCHAIN.SQL, 16 – 8
UTLEXCPT.SQL, running, 16 – 16

Index – 30 Oracle7 Server Administrator’s Guide

UTLLOCKT.SQL script, 4 – 10

V
V$ARCHIVE view, 22 – 10
V$BACKUP view, 23 – 12
V$DATABASE view, 22 – 10
V$DATAFILE, 8 – 13, 9 – 12
V$DATAFILE view, 23 – 8
V$DBFILE view, 2 – 8
V$DISPATCHER view, controlling dispatcher

process load, 4 – 9
V$LICENSE view, 19 – 5
V$LOG view

displaying archiving status, 22 – 10
online redo log and, 5 – 15

V$LOGFILE view, 2 – 8
listing files before backup, 23 – 8

V$PWFILE_USERS view, 1 – 13
V$QUEUE view, controlling

dispatcher process load, 4 – 9
V$RECOVERY_FILE view, 24 – 8
V$RECOVERY_FILE_STATUS, 24 – 14
V$RECOVERY_STATUS, 24 – 14
V$ROLLNAME, finding PENDING OFFLINE

segments, 17 – 16
V$ROLLSTAT, finding PENDING OFFLINE

segments, 17 – 16
V$SESSION, 7 – 13
V$SESSION view, 4 – 18
V$THREAD view, 5 – 15
VALIDATE STRUCTURE option, 16 – 7
VARCHAR2 datatype, 10 – 17

space use of, 10 – 17
versions

See also releases
of other Oracle software, 1 – 21

views
creating, 12 – 2

creating with errors, 12 – 4
displaying dependencies of, 16 – 26
dropped tables and, 11 – 9
dropping, 12 – 9
FOR UPDATE clause and, 12 – 3
managing, 12 – 1, 12 – 9
ORDER BY clause and, 12 – 3
privileges, 12 – 2
privileges for dropping, 12 – 9
privileges for recompiling, 16 – 19
privileges to replace, 12 – 8
recompiling, 16 – 19
replacing, 12 – 8
wildcards in, 12 – 3
WITH CHECK OPTION, 12 – 3

violating integrity constraints, 16 – 13

W
warning

archiving mode for first backup, 23 – 6
changing data dictionary storage

parameters, 16 – 21
consistency and Export backups, 23 – 18
creating a rollback segment, 2 – 12
data in dropped tablespace is

unrecoverable, 8 – 12
datafile names missing from control

file, 23 – 6
disabling audit options, 21 – 14
enabling auditing, 21 – 12
keeping symmetric online redo log

groups, 5 – 2
number of control files, 6 – 2
setting the CONTROL_FILES

parameter, 2 – 10
use mirrored control files, 6 – 2

wildcards, in views, 12 – 3
WORM devices, and read–only

tablespaces, 8 – 11
writeable tablespaces, 8 – 11

Reader’s Comment Form

Name of Document: Oracle7 � Server Administrator’s Guide
Part No. A32535–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle7 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Oracle Library-Top Level
	Title
	Preface
	Audience
	Knowledge Assumed of the Reader
	Readers Interested in Installation and Migration Information
	Readers Interested in Application Design Information

	How to Use This Guide
	Conventions Used in This Guide
	Text of the Guide
	Examples of the Server Manager Interface
	Examples of Commands and Statements
	Your Comments Are Welcome

	Table of Contents
	Part I: Basic Database Administration
	1: The Oracle7 Database Administrator
	Types of Oracle7 Users
	Database Administrators
	Security Officers
	Application Developers
	Application Administrators
	Database Users
	Network Administrators

	Database Administrator Security and Privileges
	The Database Administrator’s Operating System Account
	Database Administrator Usernames
	The DBA Role

	Database Administrator Authentication
	Selecting an Authentication Method
	Using Operating System Authentication
	OSOPER and OSDBA
	Using an Authentication Password File

	Password File Administration
	Using ORAPWD
	Setting REMOTE_LOGIN_ PASSWORDFILE
	Adding Users to a Password File
	Connecting with Administrator Privileges
	Maintaining a Password File

	Database Administrator Utilities
	Server Manager
	SQL*Loader
	Export and Import

	Initial Priorities of a Database Administrator
	Step 1: Install the Oracle7 Software
	Step 2: Evaluate the Database Server Hardware
	Step 3: Plan the Database
	Step 4: Create and Open the Database
	Step 5: Implement the Database Design
	Step 6: Back up the Database
	Step 7: Enroll System Users
	Step 8: Tune Database Performance

	Identifying Oracle Software Releases
	Release Number Format
	Versions of Other Oracle Software
	Checking Your Current Release Number

	2: Creating a Database
	Considerations Before Creating a Database
	Creation Prerequisites
	Using an Initial Database
	Migrating an Older Version of the Database

	Creating an Oracle7 Database
	Steps for Creating an Oracle7 Database
	Creating a Database: Example
	Troubleshooting Database Creation
	Dropping a Database

	Parameters
	DB_NAME and DB_DOMAIN
	CONTROL_FILES
	DB_BLOCK_SIZE
	DB_BLOCK_BUFFERS
	PROCESSES
	ROLLBACK_ SEGMENTS
	License Parameters
	LICENSE_MAX_ SESSIONS and LICENSE_SESSIONS_ WARNING
	LICENSE_MAX_ USERS

	Considerations After Creating a Database
	Initial Tuning Guidelines
	Allocating Rollback Segments
	Choosing Sizes for Rollback Segments
	Choosing the Number of DB_BLOCK_LRU_ LATCHES
	Distributing I/O

	3: Starting Up and Shutting Down
	Startup Procedures
	Preparing to Start an Instance
	Starting an Instance: Scenarios

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Restricting Access to an Open Database

	Shutdown Procedures
	Shutting Down a Database Under Normal Conditions
	Shutting Down a Database Immediately
	Aborting an Instance

	Using Parameter Files
	The Sample Parameter File
	The Number of Parameter Files
	The Location of the Parameter File in Distributed Environments

	Part II: Oracle Server Configuration
	4: Managing Oracle7 Processes
	Configuring Oracle7 for Dedicated Server Processes
	When to Connect to a Dedicated Server Process

	Configuring Oracle7 for Multi–Threaded Server Processes
	SHARED_POOL_ SIZE: Allocating Additional Space in the Shared Pool for Shared Server
	MTS_LISTENER_ ADDRESS: Setting the Listener Process Address
	MTS_SERVICE: Specifying Service Names for Dispatchers
	MTS_DISPATCHERS: Setting the Initial Number of Dispatchers
	MTS_MAX_ DISPATCHERS: Setting the Maximum Number of Dispatchers
	MTS_SERVERS: Setting the Initial Number of Shared Server Processes
	MTS_MAX_SERVERS: Setting the Maximum Number of Shared Server Processes

	Modifying Server Processes
	Changing the Minimum Number of Shared Server Processes
	Adding and Removing Dispatcher Processes

	Tracking Oracle7 Processes
	Monitoring the Processes of an Oracle7 Instance
	Trace Files, the ALERT File, and Background Processes
	Starting the Checkpoint Process

	Managing Processes for the Parallel Query Option
	Managing the Query Servers
	Variations in the Number of Query Server Processes

	Terminating Sessions
	Identifying Which Session to Terminate
	Terminating an Active Session
	Terminating an Inactive Session

	5: Managing the Online Redo Log
	Planning the Online Redo Log
	Multiplex the Online Redo Log
	Place Online Redo Log Members on Different Disks
	Set the Size of Online Redo Log Members
	Choose an Appropriate Number of Online Redo Log Files

	Creating Online Redo Log Groups and Members
	Renaming and Relocating Online Redo Log Members
	Dropping Online Redo Log Groups
	Dropping Online Redo Log Members
	Controlling Checkpoints and Log Switches
	Setting Database Checkpoint Intervals
	Forcing a Log Switch
	Forcing a Fast Database Checkpoint Without a Log Switch

	Verifying Blocks in Redo Log Files
	Clearing an Online Redo Log File
	Restrictions

	Listing Information about the Online Redo Log

	6: Managing Control Files
	Guidelines for Control Files
	Name Control Files
	Multiplex Control Files on Different Disks
	Place Control Files Appropriately
	Manage the Size of Control Files

	Creating Control Files
	Creating Initial Control Files
	Creating Additional Copies of the Control File, and Renaming and Relocating Control Files
	New Control Files
	Creating New Control Files

	Troubleshooting After Creating Control Files
	Checking for Missing or Extra Files
	Handling Errors During CREATE CONTROLFILE

	Dropping Control Files

	7: Managing Job Queues
	SNP Background Processes
	Multiple SNP Processes
	Starting Up SNP Processes

	Managing Job Queues
	DBMS_JOB Package
	Submitting a Job to the Job Queue
	How Jobs Execute
	Removing a Job From the Job Queue
	Altering a Job
	Broken Jobs
	Forcing a Job to Execute
	Terminating a Job

	Viewing Job Queue Information

	Part III: Database Storage
	8: Managing Tablespaces
	Guidelines for Managing Tablespaces
	Using Multiple Tablespaces
	Specifying Tablespace Storage Parameters
	Assigning Tablespace Quotas to Users

	Creating Tablespaces
	Creating a Temporary Tablespace

	Managing Tablespace Allocation
	Altering Storage Settings for Tablespaces
	Coalescing Free Space

	Altering Tablespace Availability
	Bringing Tablespaces Online
	Taking Tablespaces Offline

	Making a Tablespace Read–Only
	Prerequisites
	Making a Read–Only Tablespace Writeable
	Creating a Read–Only Tablespace on a WORM Device

	Dropping Tablespaces
	Viewing Information About Tablespaces

	9: Managing Datafiles
	Guidelines for Managing Datafiles
	Number of Datafiles
	Set the Size of Datafiles
	Place Datafiles Appropriately
	Store Datafiles Separately From Redo Log Files

	Creating and Adding Datafiles to a Tablespace
	Changing a Datafile’s Size
	Enabling and Disabling Automatic Extension for a Datafile
	Manually Resizing a Datafile

	Altering Datafile Availability
	Bringing Datafiles Online in ARCHIVELOG Mode
	Taking Datafiles Offline in NOARCHIVELOG Mode

	Renaming and Relocating Datafiles
	Renaming and Relocating Datafiles for a Single Tablespace
	Renaming and Relocating Datafiles for Multiple Tablespaces

	Verifying Data Blocks in Datafiles
	Viewing Information About Datafiles
	Listing Status Information About Datafiles: Example

	10: Guidelines for Managing Schema Objects
	Managing Space in Data Blocks
	The PCTFREE Parameter
	The PCTUSED Parameter
	Selecting Associated PCTUSED and PCTFREE Values

	Setting Storage Parameters
	Storage Parameters You Can Specify
	Setting INITRANS and MAXTRANS
	Setting Default Storage Parameters for Segments in a Tablespace
	Setting Storage Parameters for Data Segments
	Setting Storage Parameters for Index Segments
	Changing Values for Storage Parameters
	Understanding Precedence in Storage Parameters

	Deallocating Space
	Viewing the High Water Mark
	Issuing Space Deallocation Statements

	Understanding Space Use of Datatypes
	Summary of Oracle Datatypes

	11: Managing Tables
	Guidelines for Managing Tables
	Design Tables Before Creating Them
	Specify How Data Block Space Is to Be Used
	Specify Transaction Entry Parameters
	Specify the Location of Each Table
	Parallelize Table Creation
	Consider Creating UNRECOVERABLE Tables
	Estimate Table Size and Set Storage Parameters
	Plan for Large Tables

	Creating Tables
	Altering Tables
	Manually Allocating Storage for a Table
	Dropping Tables

	12: Managing Views, Sequences and Synonyms
	Managing Views
	Creating Views
	Modifying a Join View
	Replacing Views
	Dropping Views

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Initialization Parameters Affecting Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	13: Managing Indexes
	Guidelines for Managing Indexes
	Create Indexes After Inserting Table Data
	Limit the Number of Indexes per Table
	Specify Transaction Entry Parameters
	Specify Index Block Space Use
	Specify the Tablespace for Each Index
	Parallelize Index Creation
	Consider Creating UNRECOVERABLE Indexes
	Estimate Index Size and Set Storage Parameters
	Considerations Before Disabling or Dropping Constraints

	Creating Indexes
	Creating an Index Associated with a Constraint
	Creating an Index Explicitly
	Re–Creating an Existing Index

	Altering Indexes
	Monitoring Space Use of Indexes
	Dropping Indexes

	14: Managing Clusters
	Guidelines for Managing Clusters
	Cluster Appropriate Tables
	Choose Appropriate Columns for the Cluster Key
	Specify Data Block Space Use
	Specify the Space Required by an Average Cluster Key and Its Associated Rows
	Specify the Location of Each Cluster and Cluster Index
	Estimate Cluster Size and Set Storage Parameters

	Creating Clusters
	Creating Clustered Tables
	Creating Cluster Indexes

	Altering Clusters
	Altering Cluster Tables and Cluster Indexes

	Dropping Clusters
	Dropping Clustered Tables
	Dropping Cluster Indexes

	15: Managing Hash Clusters
	Guidelines for Managing Hash Clusters
	Advantages of Hashing
	Disadvantages of Hashing
	Estimate Size Required by Hash Clusters and Set Storage Parameters

	Creating Hash Clusters
	Controlling Space Use Within a Hash Cluster

	Altering Hash Clusters
	Dropping Hash Clusters

	16: General Management of Schema Objects
	Creating Multiple Tables and Views in A Single Operation
	Renaming Schema Objects
	Analyzing Tables, Indexes, and Clusters
	Using Statistics for Tables, Indexes, and Clusters
	Validating Tables, Indexes, and Clusters
	Listing Chained Rows of Tables and Clusters

	Truncating Tables and Clusters
	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Managing Integrity Constraints
	Managing Constraints That Have Associated Indexes
	Enabling and Disabling Integrity Constraints Upon Definition
	Enabling and Disabling Existing Integrity Constraints
	Dropping Integrity Constraints
	Reporting Constraint Exceptions

	Managing Object Dependencies
	Manually Recompiling Views
	Manually Recompiling Procedures and Functions
	Manually Recompiling Packages

	Managing Object Name Resolution
	Changing Storage Parameters for the Data Dictionary
	Structures in the Data Dictionary
	Errors that Require Changing Data Dictionary Storage

	Displaying Information About Schema Objects
	Oracle Packages

	17: Managing Rollback Segments
	Guidelines for Managing Rollback Segments
	Use Multiple Rollback Segments
	Choose Between Public and Private Rollback Segments
	Specify Rollback Segments to Acquire Automatically
	Set Rollback Segment Sizes Appropriately
	Create Rollback Segments with Many Equally–Sized Extents
	Set an Optimal Number of Extents for Each Rollback Segment
	Set the Storage Location for Rollback Segments

	Creating Rollback Segments
	Bringing New Rollback Segments Online

	Specifying Storage Parameters for Rollback Segments
	Setting Storage Parameters When Creating a Rollback Segment
	Changing Rollback Segment Storage Parameters
	Altering Rollback Segment Format
	Shrinking a Rollback Segment Manually

	Taking Rollback Segments Online and Offline
	Bringing Rollback Segments Online
	Taking Rollback Segments Offline

	Explicitly Assigning a Transaction to a Rollback Segment
	Dropping Rollback Segments
	Monitoring Rollback Segment Information
	Displaying Rollback Segment Information

	Part IV: Database Security
	18: Establishing Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	End–User Security
	Administrator Security
	Application Developer Security
	Application Administrator Security

	Auditing Policy

	19: Managing Users and Resources
	Session and User Licensing
	Concurrent Usage Licensing
	Connecting Privileges
	Named User Limits
	Viewing Licensing Limits and Current Values

	User Authentication
	Operating System Authentication
	Database Authentication

	Oracle Users
	Creating Users
	Altering Users
	Dropping Users

	Managing Resources with Profiles
	Creating Profiles
	Assigning Profiles
	Altering Profiles
	Using Composite Limits
	Dropping Profiles
	Enabling and Disabling Resource Limits

	Listing Information About Database Users and Profiles
	Listing Information about Users and Profiles: Examples

	20: Managing User Privileges and Roles
	Identifying User Privileges
	System Privileges
	Object Privileges

	Managing User Roles
	Creating a Role
	Predefined Roles
	Role Authorization
	Dropping Roles

	Granting User Privileges and Roles
	Granting System Privileges and Roles
	Granting Object Privileges and Roles
	Granting Privileges on Columns

	Revoking User Privileges and Roles
	Revoking System Privileges and Roles
	Revoking Object Privileges and Roles
	Effects of Revoking Privileges
	Granting to and Revoking from the User Group PUBLIC

	Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES=TRUE
	Enabling and Disabling Roles When OS_ROLES=TRUE
	Using Network Connections with Operating System Role Management

	Listing Privilege and Role Information
	Listing Privilege and Role Information: Examples

	21: Auditing Database Use
	Guidelines for Auditing
	Audit via the Database or Operating System
	Keep Audited Information Manageable

	Creating and Deleting the Database Audit Trail Views
	Creating the Audit Trail Views
	Deleting the Audit Trail Views

	Managing Audit Trail Information
	Events Audited by Default
	Setting Auditing Options
	Enabling and Disabling Database Auditing
	Controlling the Growth and Size of the Audit Trail
	Protecting the Audit Trail

	Viewing Database Audit Trail Information
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific Objects
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option

	Auditing Through Database Triggers

	Part V: Database Backup and Recovery
	22: Archiving Redo Information
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	Running a Database in NOARCHIVELOG Mode
	Running a Database in ARCHIVELOG Mode

	Turning Archiving On and Off
	Setting the Initial Database Archiving Mode
	Changing the Database Archiving Mode
	Enabling Automatic Archiving
	Disabling Automatic Archiving
	Performing Manual Archiving

	Tuning Archiving
	Minimizing the Impact on System Performance
	Improving Archiving Speed

	Displaying Archiving Status Information
	Specifying the Archived Redo Log Filename Format and Destination

	23: Backing Up a Database
	Guidelines for Database Backups
	Test Backup and Recovery Strategies
	Perform Operating System Backups Frequently and Regularly
	Backup Appropriate Portions of the Database When Making Structural Changes
	Back Up Often–Used Tablespaces Frequently
	Keep Older Backups
	Export Database Data for Added Protection and Flexibility
	Consider Distributed Database Backups
	Back Up after Creating Unrecoverable Objects

	Creating a Backup Strategy
	Backup Strategies in NOARCHIVELOG Mode
	Backup Strategies in ARCHIVELOG Mode

	Read–Only Tablespaces and Backup
	Performing Backups
	Listing Database Files Before Backup
	Performing Full Offline Backups
	Performing Partial Backups
	Performing Control File Backups

	Recovering From an Incomplete Online Tablespace Backup
	Using the Export and Import Utilities for Supplemental Database Protection
	Using Export
	Using Import

	24: Recovering a Database
	Fundamental Recovery Concepts and Strategies
	Important Recovery Data Structures
	Recovery Operations
	Recovery Planning and Strategies

	Preparing for Media Recovery
	Media Recovery Commands
	Issues Common to All Media Recovery Operations
	Restoring a Full Backup, NOARCHIVELOG Mode
	Specifying Parallel Recovery

	Performing Complete Media Recovery
	Performing Closed Database Recovery
	Performing Open–Database, Offline–Tablespace Recovery
	Performing Open–Database, Offline–Tablespace Individual Recovery

	Performing Incomplete Media Recovery
	Performing Cancel–Based Recovery
	Performing Time–Based Recovery
	Performing Change–Based Recovery

	Preparing for Disaster Recovery
	Planning and Creating a Standby Database
	Altering the Physical Structure of the Primary Database

	Unrecoverable Objects and Recovery
	Read–Only Tablespaces and Recovery
	Using a Backup Control File
	Re–Creating a Control File

	Examples of Recovery Procedures
	Types of Media Failures
	Loss of Datafiles
	Loss of Online Redo Log Files
	Loss of Archived Redo Log Files
	Loss of Control Files
	Recovery From User Errors

	Part VI: Reference
	Ap A: Space Estimations for Schema Objects
	Estimating Space Required by Non–Clustered Tables
	Estimating Space for Indexes
	Estimating Space Required by Clusters
	Estimating Space Required by Hash Clusters

	Index
	Reader's Comment Form

